Zadaci iz trigonometrije za seminar

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "Zadaci iz trigonometrije za seminar"

Transcript

1 Zadaci iz trigonometrije za seminar FON: 1. Vrednost izraza sin 1 cos 6 jednaka je: ; B) 1 ; V) ; G) ; D). 16. Broj rexea jednaqine sin x cos x + cos x = sin x + sin x na intervalu π ), π je: ; B) ; V) 0; G) ; D) vei od.. Vrednost izraza sin 6 sin sin 66 sin 7 pripada intervalu: 0, 6 ]; B) 6, ]; V), ]; G), ]; D), ].. Broj rexea [ jednaqine cos x + cos x + sin x = 0 koja pripadaju intervalu π, π ) je: ; B) ; V) 6; G) 7; D) 10.. Ako je a = cos cos 7 sin sin 7 i b = log / sin π ), onda je taqan iskaz: a + b = 0; B) a b = 0; V) a = b; G) a > b ; D) a < b. 6. Broj rexea jednaqine sin x + π ) + cos x + π ) = cos x, koja pripadaju intervalu π, π ] [ 6 je: 1; B) ; V) ; G) ; D). π ) ) π 7. Broj rexea jednaqine cos x + sin + x = koja zadovo avaju uslov x < π je: 1; B) ; V) ; G) ; D).. Vrednost izraza 1 tg tg 1 je: 1 + ; B) ; V) ; G) ; D). 9. Broj rexea jednaqine x sin πx = x 1 koja zadovo avaju uslov x je: 10; B) ; V) 6; G) ; D). 1

2 10. Vrednost izraza cos 0 sin 10 cos 10 je: 1; B) cos 10 ; V) cos 10 ; G) 7; D) Zbir najmaeg pozitivnog i najveeg negativnog rexea trigonometrijske jednaqine sin x + sin x = cos x π ; B) π ; V) 0; G) π ; D) π. 1. Vrednost izraza sin 0 + cos 0 cos je: ; B) ; V) /; G) 1/; D) /. = cos x na in- π ) 1. Broj rexea jednaqine cos x tervalu π, π ) je: ; B) 1; V) ; G) ; D). 1. Vrednost izraza sin + cos cos : 1; B) ; V) ; G) ; D). sin jednak je: ) π + x 1. Broj rexea trigonometrijske jednaqine sin x + cos x + 1 = 0, koja pripadaju intervalu [006π, 007π], jednak je: ; B) 1; V) ; G) ; D). 16. Vrednost izraza sin 70 + cos 0 cos 190 je: 1 ; B) ; V) ; G) 1; D). 17. Zbir kvadrata najmaeg pozitivnog i najveeg negativnog rexea jednaqine cos x π ) + sin x + π ) = je: π 9 π π ; B) ; V) 6 ; G) π ; D) π. 1. Vrednost izraza 6 sin sin cos 0 je: ; B) 1.; V) 1; G) 6; D). koja pripadaju in- 19. Broj rexea jednaqine cos x cos x = cos x tervalu π/, π/) je: ; B) ; V) ; G) ; D) Ako je cos α =, onda je vrednost izraza sin α + cos α jednaka: /; B) /; V) /; G) /6; D) 6/7.

3 1. Data je jednaqina sin x sin x + cos x = 0. Zbir kvadrata najmaeg pozitivnog i najveeg negativnog rexea te jednaqine je: π 9 ; B) π 1 ; V) π Graevinski fakultet: 1. Jednaqina taqno: π 1π ; G) ; D) sin x 1 + cos x = sin x ima na odseqku [0, 1] razliqitih rexea 6; B) ; V) ; G) ; D).. Neka je x oxtar ugao. Skup rexea nejednaqine sin x + cos x > je interval: 0, π ) π ; B) 6, π ) π ; V), π ) π ; G), π ) ; D) 0, π ).. Broj rexea jednaqine sin x + 1 sin x = 0 na intervalu [0, π] je: ; B) ; V) ; G) ; D) 7.. Ako je α ugao izmeu strana ABC i ABD pravilnog tetraedra jednakoiviqna trostrana piramida), onda je zbir sin α + cos α jednak: 1 + ); B) ); V) ); G) 1); D) ). π ). Vrednost sin 1 + ; B) 1 D) 1 1). jednaka je: ; V) 1 ; G) ; 6. Broj rexea jednaqine sin x + sin x = 0 koja pripadaju intervalu [ π, π] je: ; B) 0; V) ; G) ; D). 7. Broj onih rexea jednaqine π sin x = x π x π koja pripadaju intervalu π, π) jednak je: ; B) ; V) 1; G) 0; D).. Ako je fx) = 1 x i gx) = sin x, onda je 6g f f π ))) + f g π )) jednako: 7 ; B) ; V) ; G) 7 ; D). π ) 9. Broj rexea jednaqine sin sin x = 1 je: 0; B) vei od 10; V) ; G) 6; D) 7.

4 10. Broj onih rexea jednaqine 1 cos x = sin x koja su sadrana u π ) intervalu, π jednak je: ; B) ; V) 6; G) ; D). 11. Ako je sin x = 1 i 0 < x < π, onda je sin x + cos x jednako: 1; B) ; V) 1; G) 0; D). 1. Za sve x R je sin x jednako: sin x cos x; B) x sin 1; V) cos x; G) cos x sin x; D) sin x. 1. Za sve x R, cosx je jednako: 1 cos x; B) x cos 1; V) sin x cos x; G) cos x sin x; D) cos x. 1. Broj onih rexea jednaqine sin x + cos x = 0 koja pripadaju intervalu [0, π] jednak je: ; B) ; V) ; G) ; D) 6v. 1. Za sve vrednosti x π, π ) je tg x jednako: tg x x tg 1; B) 1 tg x ; V) tg x 1 + tg x ; G) tg x; D) 1 tg x tg x. 16. Broj onih rexea jednaqine cos x + cos x = 1 koja pripadaju intervalu [0, π] jednak je: 1; B) ; V) 0; G) ; D). 17. Vrednost sin 10 jednaka je: /; B) /; V) 1/; G) /; D) 1/. 1. Broj onih rexea jednaqine sin x cos x = 1 koja pripadaju intervalu 0, π) jednak je: 1; B) ; V) ; G) ; D) 0. Saobraajni fakultet: 1. Vrednost izraza cos 0 cos 0 ctg 0 sin 110 je: 1 ; B) 1; V) 1 ; G) 1 ; D) 1.. Zbir kvadrata najveeg negativnog i najmaeg pozitivnog rexea jednaqine cos x + sin x = cos x je: π 9. Vrednost izraza π π ; B) ; V) 9 ; G) π ; D) π 9. cos 60 sin 60 ctg 0 cos 10 je: ; B) 1; V) ; G) 1; D) 0.

5 . Izraz cos x + sin x) identiqki je jednak izrazu: 1; B) sin x 1; V) 1 + sin x; G) cos x 1; D) 1 + cos x.. Ako je sin α = π ), α, π i cos β = 1, β π, π), onda je 1 cosα β): 16 6 ; B) ; V) 16 ; G) ; D) Vrednost izraza sin 0 cos 1 + ctg 60 je: ; B) 0; V) ; G) ; D). 7. Izraz cos x + sin x identiqki je jednak izrazu: 1; B) 1+ 1 sin x; V) 1 1 sin x; G) 1 1 cos x; D) 1+ 1 cos x.. Zbir svih rexea jednaqine cos x sin x + 1 = 0, x [ 0, π ] je: π; B) π; V) π; G) π/; D) 7π/. Matematiqki fakultet: 1. Koji je poredak brojeva a = sin 100, b = tg 100, c = cos 1000 : a < b < c; B) b < c < a; V) c < a < b; G) b < a < c; D) a < c < b.. Jednaqina sin x + cos x = u intevalu [0, π]: ima jedno rexee; B) nema rexea; V) ima dva rexea; G) ima tri rexea; D) ima qetiri rexea.. Ako je sin x+sin y = sinx+y), x k+1)π, y k+1)π, x+y kπ, k Z, tada je tg x tg y jednako: 1 ; B) ; V) 1 ; G) ; D).. Skup rexea nejednaqine cos x > cos x u intervalu [0, π) je: 0, π ) ) π π, π ; B), π ) ; V) 0, π ) ) π, π ; G) 0, π ) π ; D), π ).. Broj rexea jednaqine cos x = sin x u intervalu [0, π] je: 1; B) 0; V) ; G) ; D). 6. Broj rexea jednaqine x cos x = 0 je: 0; B) 1; V) ; G) ; D). 7. Broj rexea jednaqine sin x = sin x u intervalu 6, 6) je: ; B) ; V) ; G) 7; D) 9.. Jednaqina a 1) sin x = a + 1 ima rexea akko vrednost parametra a pripada skupu:, 1]; B) [ 1, 1]; V), 0]; G) ; D) [0, + ).

6 9. Broj rexea nejednaqine cos x u intervalu [ π/, π/] je: 0; B) 1; V) ; G) ; D) beskonaqan. 10. Duine stranica oxtrouglog trougla su a = 9, b = 60 i c, a veliqine odgovarajuih uglova su, redom, α, β i γ. Ako je sin α =, onda je sin γ jednak: 6 6 ; B) 6 6 ; V) ; G) ; D) Vrednost izraza sinarccos 1 ) + arcsin π 6 1 ; B) 1 + π 6 ; V) 1 ; G) je: 1 + π ; D) nije definisano. 1. Izraz sin α+sin α + π ) +sin α + π ) identiqki je jednak izrazu: sin α; B) 0; V) ; G) sin α; D) sin α. 1. Broj rexea jednaqine sin x = cos x na intervalu [ π, π] je: ; B) ; V) ; G) ; D) vei od. 1. Vrednost izraza 1 sin π ) 1 + sin π ) je: ; B) ; V) 1 ; G) ; D) Date su funkcije f 1 x) = 1, f x) = tg x ctg x i f x) = Taqno je tvree: sin x 1 cos x. sve date funkcije su jednake meu sobom; B) meu datim funkcijama nema jednakih; V) f 1 = f f ; G) f 1 f = f ; D) f 1 = f f. 16. Vrednost izraza tg 0 tg tg 0 je: 0; B) ; V) 1 ; G) ; D) Broj rexea jednaqine sin x cos π + cos x sin π = intervalu [ 0, π/ ] je: 0; B) 1; V) ; G) ; D). koja pripadaju ETF: x sin x 1. Koliqnik je racionalan broj ako i samo ako koliqnik cos x x nije racionalan broj. Ova reqenica: je taqna; B) je taqna ako je x = 0 ; V) je taqna ako je x = π ; G) je netaqna; D) je taqna za samo dve vrednosti x. 6

7 . Izraz cos π 7 + cos π 7 + cos 6π jednak je: 7 1 ; B) 1 ; V) 1 ; G) 1 ; D) 1.. Ako je sin x 0 i cos x 0, onda je izraz sin x + sin x sin nx n 1) jednak: G) sin nx cos nx n + 1)x sin sin nx sin x ; B) n + 1)x cos cos x ; D) sin nx n + 1)x cos cos nx cos x ; V) n 1)x sin sin x. n + 1)x sin sin x ;. Razlika cos x + y sin x y jednaka je: sinx y); B) cos x cos y; V) sin x cos y; G) sin x sin y; D) sinx+y).. Povrxina trougla qiji su uglovi α, β, γ, a R polupreqnik opisanog kruga, jednaka je: R sin α sin β sin γ; B) 1 R sin α sin β sin γ; V) 1 R cos α cos β cos γ; G) R sin α cos β cos γ; D) R cos α sinβ + γ). 6. Date su funkcije f 1 x) = 1, f = sin x 1 cos x, f cos x x) = 1 sin x, f x) = tg x ctg x. Taqan je iskaz: Meu datim funkcijama nema meusobno jednakih; B) Sve funkcije su meusobno jednake; V) f 1 f = f ; G) f 1 = f f ; D) f f = f f 1. [ 7. Broj rexea j-ne cos x) sin x sin x+ 1 = 1 na intervalu 0, π ) je: 0; B) 1; V) ; G) ; D).. Ako je cos x : cos x : cos x = 1 : : y, tada je y jednako: ; B) + ; V) ; G) ; D). 9. Neka su α, β i γ uglovi, a a, b i c stranice trougla. Tada je a sinβ γ) + b sinγ α) + c sinα β) = cosα + β γ); B) cosα β γ); V) 1; G) 0; D) Ako je cos x = 1, pri qemu je 0 < x < π, tada je sin 7x jednako: 0; B) ; V) 1; G) 1; D) 1. 7

8 11. Dati su izrazi E 1 = sin x + y +cos x cos y, E = cos x y sin x sin y, E = cos x + y +sin x sin y, E = sin x y +cos x cos y. Taqan je iskaz: E 1 E, E = E ; B) E 1 = E, E E ; V) meu datim izrazima nema meusobno jednakih; G) E 1 = E, E = E ; D) E 1 = E, E = E. 1. Neka je S skup svih realnih brojeva x za koje vai log cos x sin x log sin x ctg x 0 < x < π). Tada je za neke brojeve a, b, c, d, r, f a < b < c < d < e < f), skup S oblika: [a, b); B) [a, b] [c, d]; V) a, b) c, d); G) [a, b]; D) a, b) c, d) e, f). 1. Ako je tg α = 7, α ; B) ; V) 11 0 π, π ), tada 11 ; G) 11 ; D) sin α + cos α cos α sin α iznosi: 1. U proizvo nom trouglu qije su stranice a, b i c i odgovarajui uglovi sinα β) α i β koliqnik jednak je: sinα + β) a b) c ; B) c a b ; V) a b c ; G) c a b) ; D) a b) a + b). 1. Ukupan broj rexea jednaqine sin x+sin x = 1 na intervalu 0, π) jednak je: ; B) ; V) ; G) ; D) Ako je tg α = 1 + tg 1 )1 + tg ) 1 tg 1 )1 tg ) i α 0, 90 ), tada je α jednako: 0 ; B) 1 ; V) ; G) ; D). 17. Ako je cos α = 6 6, 0 < α < π i cos β = 7, 0 < β < π, tada je 10 α + β jednako: π ; B) π ; V) π ; G) π ; D) π. 1. Ako je α oxtar ugao izmeu prostornih dijagonala kocke, tada tg α = ; B) ; V) ; G) ; D). 19. Zbir rexea j-ne sin x + cos x = na intervalu 0, π) je: π ; B) 0; V) π ; G) π ; D) π Vrednost izraza sin 6 + sin 76 sin 6 sin 16 cos 6 + cos 76 + cos 6 + cos 16 iznosi: ; B) ; V) 1 ; G) ; D) 0.

9 1. Dati su brojevi a = sin 1 sin, b = sin sin i c = sin. Tada je: sin a < b < c; B) c < b < a; V) c < a < b; G) b < a < c; D) a < c < b.. Ako je tg α = 1 i tg β = 1 sin α + sinα β). Tada je izraz cos α + cosα β) jednak: 1 7 ; B) 1 6 ; V) 1; G) ; D) 1. π. Ako je tg x ) = a, a > 0, b > 0, a b), tada je sin x jednak: b b a b + a ; B) b a; V) a + b a b ; G) 1 a b ; D) 1 b a.. Ukupan broj realnih rexea jednaqine sin x cos x = cos x na segmentu [ 0, π ] je: ; B) ; V) 6; G) 7; D) 0. Tehniqki fakulteti: 1. Koliko rexea u intervalu 0, π) ima jednaqina sin x+cos x+1 = 0? nijedno; B) jedno; V) dva; G) tri; D) beskonaqno mnogo.. Izraz sin x + cos x identiqki je jednak izrazu: 1 B) sin x + cos x; V) 1 + cos x; G) 1 cos x ; D) + cos x.. Polazei od zbira geom. progresije 1 + x + x + x + x ili na drugi naqin) mogu se izraqunati cos π i cos π. Zbir cos π + cos π = ; B) 1 ; V) 1 ; G) 1 + ; D) 1.. Vrednost sin π 1 je: 1 ; B) 1 ; V) ; G) ; D). pripada in-. Koliko rexea jednaqine sin x cos π 7 + cos x sin π [ 7 = tervalu π, π ]? nijedno; B) jedno; V) dva; G) sedam; D) beskonaqno mnogo. 6. Ako je cos x + cos y = a, sin x + sin y = b, a + b 0, onda je cosx + y) = ab a + b ; B) a b a + b ; V) a b a + b ; G) a b a + b ; D) a b. ab 7. Date su funkcije f 1 x) = 1, f x) = tg x ctg x, f x) = 1 + cos x f x) =. Taqan je iskaz: cos x sin x 1 cos x, 9

10 sve f-je su meusobno jednake; B) meu datim funkcijama nema meusobno jednakih; V) f 1 f = f f f 1 ; G) f 1 f = f = f ; D) f 1 f = f f f 1.. Vrednost proizvoda sin 0 sin 0 sin 0 jednaka je: 1 ; B) 1 ; V) 1 ; G) 1 1); D) U jednakokrakom trouglu krak je dva puta vei od osnovice. Ako je α ugao izmeu krakova, onda je sin α = 1 ; B) ; V) ; G) ; D) Zbir kvadrata rexea jednaqine x + αx + α = 0 je 7 akko je: α = 1; B) α = 1; V) α = 1 ; G) α = 1 ; D) α = Sva rexea jednaqine sin x + cos x + tg = 1 cos x su k Z): x = k + 1)π; B) x = kπ; V) x = kπ; G) x = π + kπ; D) x = π + kπ. 1. Na segmentu [0, π] broj rexea jednaqine sin x = cos x je: ; B) ; V) ; G) ; D) Izraz sin 6 x + cos 6 x jednak je: sin 6x + cos 6x; B) + cos x D). + cos x ; V) cos x ; G) + cos x ; 1. Nejednaqina α + α cos x α sin x > vai za svako x ako a pripada skupu:, 6), + ); B), 6); V), + 6), + ); G), + ); D), + ). 1. Na segmentu [0, π] broj rexea jednaqine sin x = cos x je: ; B) ; V) ; G) ; D) Jednaqina sin x + cos x = a, a R, ima bar jedno realno rexae ako i samo ako je: 1 < a < 1; B) 0 a 1; V) 0 a 1 ; G) 1 a 1; D) 1 < a < Vrednost izraza sin 160 sin 100 cos 0 sin 0 ) ; B) ; V) ; G) sin 0 ; D). jednaka je: 10

11 1. Ako je tg x = 1, π < x < π, tg y =, 0 < y < π, tada je sinx + y) jednako: ; B) 10 ; V) ; G) 1 6 ; D) Broj rexea j-ne sin x cos x 1 = 0 na intervalu [ π, π] je: 6; B) ; V) ; G) ; D). 0. Vrednost proizvoda cos π 7 cos π 7 cos π 7 jednaka je: 1 ; B) ; V) 1 ; G) 16 ; D) Broj rexea jednaqine cos x = cos x na segmentu [0, π] jednak je: 0; B) 1; V) ; G) ; D) vei od.. Ako su α i β oxtri uglovi, za koje tg α = 1 7 i tg β = 1, tada je α+β = 0 ; B) ; V) 60 ; G) 90 ; D) 1.. Skup svih rexea nejednaqine sin x + cos x > 1 je: k Z) π ; B) 6 + kπ, π ) + kπ ; V) kπ, π ) + kπ ; G) kπ, π ) + kπ ; ) π π D) + kπ, kπ.. Zbir tg 9 + tg 1 + tg tg 1 jednak je: 1 ; B) ; V) 1; G) ; D).. Neka je p ceo broj i α 0, π ). Ako su x 1 = cos α i x = sin α rexea j-ne 1x 6p + )x + pp + 6) = 0, broj ureenih parova p, α) je: ; B) vei od ; V) 0; G) 1; D). 6. Neka je S skup svih realnih brojeva x za koje vai log tg x sin x log ctg x cos x i 0 x π. Tada je za neke realne brojeve a, b, c a < b < c) skup oblika: [a, b); B) a, b); V) a, b) b, c); G) [a, b]; D) [a, b) b, c]. 7. Broj rexea jednaqine cos x + x = x + x je: ; B) vei od ; V) 0; G) 1; D).. Ako je sin 199 = a, tg 199 = b, ctg 199 = c, tada je: a > b > c; B) b > c > a; V) b > a > c; G) c > b > a; D) c > a > b. cos x + sin x 9. Izraz identiqki je jednak: cos x sin x π ) π ) tg + x ; B) tg x ; V) tg x; G) ctg x; D) 1 tg x. 11

12 0. Ako je sin xcos x + sin x) = 1 i x 0, π ), tada je x jednako: π 1 ; B) π ; V) π π ; G) 1 ; D) π. 1. Ako je tg α π ) =, onda je tg α = ; B) 6; V) ; G) 9; D) 7.. Jednaqina po x : sin x + cos x = λ λ R) ima rexea u skupu realnih brojeva ako i samo ako je: λ < 7; B) 7 λ 7; V) λ ; G) 7 < λ < 7; D) λ.. Neka cos α = 6 0, 6, α π ) i cos β = 7, β 0, π ). α + β = 10 π ; B) π ; V) π ; G) π ; D) π.. Broj rexea j-ne 1 sin x = cos x sin x na segmentu [0, π] jednak je: 1; B) ; V) ; G) ; D).. Proizvod 1 sin π ) 1 + sin π ) jednak je: + ; B) ; V) ; G) 1 ; D). 6. Jednaqina x = π sin x ima: taqno sedam rexea; B) taqno pet rexea; V) taqno tri rexea; G) taqno jedno rexee; D) paran broj rexea Ako je tg α ctg α + 1 sin α + 1 ) cos = 1996 i π α < α < π, onda je sin α jednak: + ; B) ; V) ; G) ; D).. Razlika 1 sin 10 sin 70 je jednaka: 1; B) 1 ; V) 0; G) 1 ; D) Broj rexea j-ne sin x + cos x + 1 = 0 na segmentu [1996π, 1997π] je: 0; B) 1; V) ; G) ; D) vei od. 0. Jednaqina sin x + cos x = 6 na segmentu [ π, π]: ima taqno jedno rexee; B) nema rexea; V) ima taqno qetiri rexea; G) ima taqno dva rexea; D) ima vixe od qetiri rexea. 1. Minimalna vrednost funkcije fx) = sin x cos x 1 je: 9 ; B) 1 ; V) 0; G) ; D) 1. 1

13 . Neka su α i β oxtri uglovi takvi da je tg α = i tg 1. Razlika α β tih uglova je: π 6 ; B) π ; V) π 1 ; G) π ; D) π.. Data je jednaqina 1 cosπ x) + sin π + x jednaqine na segmentu [1997π, 199π] je: 0; B) ; V) 1; G) ; D) vei od. = 0. Broj rexea ove. Vrednost izraza cos 10 1 sin 10 je: 1); B) ; V) 1 ; G) ; D) 1.. Broj rexea nejednaqine sin x + cos x 1, na segmentu [0, π], je: 0; B) 1; V) ; G) ; D) vei od, ali konaqan. 6. Broj rexea j-ne log sin x cos x + log cos x sin x = na segmentu [0, π] je: 0; B) 1; V) ; G) ; D) vei od. 7. Ako je π < α < π i cos α =, onda je sin α jednako: ; B) 9 9 ; V) 1 ; G) 1 ; D) 9.. Broj rexea jednaqine cos x + sin x = 0 na segmentu [0, π] je: 0; B) 1; V) ; G) ; D) vei od. 9. Ako je x = cos α cos β i y = sin α sin β, onda je maksimalna vrednost izraza x + y jednaka: 1 ; B) 1; V) ; G) ; D). 0. Vrednost izraza cos sin 1 je: ; B) ; V) 0; G) ; D). 1. Broj rexea jednaqine cos x 1 sin x = 1 [ na segmentu π, π ] je: 0; B) 1; V) ; G) ; D) vei od. 1

Zadaci sa prethodnih prijemnih ispita iz matematike na Beogradskom univerzitetu

Zadaci sa prethodnih prijemnih ispita iz matematike na Beogradskom univerzitetu Zadaci sa prethodnih prijemnih ispita iz matematike na Beogradskom univerzitetu Trigonometrijske jednačine i nejednačine. Zadaci koji se rade bez upotrebe trigonometrijskih formula. 00. FF cos x sin x

Διαβάστε περισσότερα

Druxtvo matematiqara Srbije OPXTINSKO TAKMIQENjE IZ MATEMATIKE Prvi razred A kategorija. f(x + 1) x f(x) + 1.

Druxtvo matematiqara Srbije OPXTINSKO TAKMIQENjE IZ MATEMATIKE Prvi razred A kategorija. f(x + 1) x f(x) + 1. 09.0200 Prvi razred A kategorija Ako je n prirodan broj, dokazati da 3n 2 + 3n + 7 nije kub nijednog prirodnog broja. U trouglu ABC je ABC = 60. Neka su D i E redom preseqne taqke simetrala uglova CAB

Διαβάστε περισσότερα

ANALIZA SA ALGEBROM I razred MATEMATI^KA LOGIKA I TEORIJA SKUPOVA. p q r F

ANALIZA SA ALGEBROM I razred MATEMATI^KA LOGIKA I TEORIJA SKUPOVA. p q r F ANALIZA SA ALGEBROM I razred MATEMATI^KA LOGIKA I TEORIJA SKUPOVA. Istinitosna tablica p q r F odgovara formuli A) q p r p r). B) q p r p r). V) q p r p r). G) q p r p r). D) q p r p r). N) Ne znam. Date

Διαβάστε περισσότερα

Ministarstvo prosvete i sporta Republike Srbije Druxtvo matematiqara Srbije OPXTINSKO TAKMIQENjE IZ MATEMATIKE Prvi razred A kategorija

Ministarstvo prosvete i sporta Republike Srbije Druxtvo matematiqara Srbije OPXTINSKO TAKMIQENjE IZ MATEMATIKE Prvi razred A kategorija 18.1200 Prvi razred A kategorija Neka je K sredixte teжixne duжi CC 1 trougla ABC ineka je AK BC = {M}. Na i odnos CM : MB. Na i sve proste brojeve p, q i r, kao i sve prirodne brojeve n, takve da vaжi

Διαβάστε περισσότερα

(P.I.) PRETPOSTAVKA INDUKCIJE - pretpostavimo da tvrdnja vrijedi za n = k.

(P.I.) PRETPOSTAVKA INDUKCIJE - pretpostavimo da tvrdnja vrijedi za n = k. 1 3 Skupovi brojeva 3.1 Skup prirodnih brojeva - N N = {1, 2, 3,...} Aksiom matematičke indukcije Neka je N skup prirodnih brojeva i M podskup od N. Ako za M vrijede svojstva: 1) 1 M 2) n M (n + 1) M,

Διαβάστε περισσότερα

Osnovni primer. (Z, +,,, 0, 1) je komutativan prsten sa jedinicom: množenje je distributivno prema sabiranju

Osnovni primer. (Z, +,,, 0, 1) je komutativan prsten sa jedinicom: množenje je distributivno prema sabiranju RAČUN OSTATAKA 1 1 Prsten celih brojeva Z := N + {} N + = {, 3, 2, 1,, 1, 2, 3,...} Osnovni primer. (Z, +,,,, 1) je komutativan prsten sa jedinicom: sabiranje (S1) asocijativnost x + (y + z) = (x + y)

Διαβάστε περισσότερα

18. listopada listopada / 13

18. listopada listopada / 13 18. listopada 2016. 18. listopada 2016. 1 / 13 Neprekidne funkcije Važnu klasu funkcija tvore neprekidne funkcije. To su funkcije f kod kojih mala promjena u nezavisnoj varijabli x uzrokuje malu promjenu

Διαβάστε περισσότερα

radni nerecenzirani materijal za predavanja

radni nerecenzirani materijal za predavanja Matematika 1 Funkcije radni nerecenzirani materijal za predavanja Definicija 1. Kažemo da je funkcija f : a, b R u točki x 0 a, b postiže lokalni minimum ako postoji okolina O(x 0 ) broja x 0 takva da je

Διαβάστε περισσότερα

IZVODI ZADACI (I deo)

IZVODI ZADACI (I deo) IZVODI ZADACI (I deo) Najpre da se podsetimo tablice i osnovnih pravila:. C`=0. `=. ( )`= 4. ( n )`=n n-. (a )`=a lna 6. (e )`=e 7. (log a )`= 8. (ln)`= ` ln a (>0) 9. = ( 0) 0. `= (>0) (ovde je >0 i a

Διαβάστε περισσότερα

a M a A. Može se pokazati da je supremum (ako postoji) jedinstven pa uvodimo oznaku sup A.

a M a A. Može se pokazati da je supremum (ako postoji) jedinstven pa uvodimo oznaku sup A. 3 Infimum i supremum Definicija. Neka je A R. Kažemo da je M R supremum skupa A ako je (i) M gornja meda skupa A, tj. a M a A. (ii) M najmanja gornja meda skupa A, tj. ( ε > 0)( a A) takav da je a > M

Διαβάστε περισσότερα

Verovatnoća i Statistika I deo Teorija verovatnoće (zadaci) Beleške dr Bobana Marinkovića

Verovatnoća i Statistika I deo Teorija verovatnoće (zadaci) Beleške dr Bobana Marinkovića Verovatnoća i Statistika I deo Teorija verovatnoće zadaci Beleške dr Bobana Marinkovića Iz skupa, 2,, 00} bira se na slučajan način 5 brojeva Odrediti skup elementarnih dogadjaja ako se brojevi biraju

Διαβάστε περισσότερα

radni nerecenzirani materijal za predavanja R(f) = {f(x) x D}

radni nerecenzirani materijal za predavanja R(f) = {f(x) x D} Matematika 1 Funkcije radni nerecenzirani materijal za predavanja Definicija 1. Neka su D i K bilo koja dva neprazna skupa. Postupak f koji svakom elementu x D pridružuje točno jedan element y K zovemo funkcija

Διαβάστε περισσότερα

Veleučilište u Rijeci Stručni studij sigurnosti na radu Akad. god. 2011/2012. Matematika. Monotonost i ekstremi. Katica Jurasić. Rijeka, 2011.

Veleučilište u Rijeci Stručni studij sigurnosti na radu Akad. god. 2011/2012. Matematika. Monotonost i ekstremi. Katica Jurasić. Rijeka, 2011. Veleučilište u Rijeci Stručni studij sigurnosti na radu Akad. god. 2011/2012. Matematika Monotonost i ekstremi Katica Jurasić Rijeka, 2011. Ishodi učenja - predavanja Na kraju ovog predavanja moći ćete:,

Διαβάστε περισσότερα

Prvi pismeni zadatak iz Analize sa algebrom novembar Ispitati znak funkcije f(x) = tgx x x3. 2. Naći graničnu vrednost lim x a

Prvi pismeni zadatak iz Analize sa algebrom novembar Ispitati znak funkcije f(x) = tgx x x3. 2. Naći graničnu vrednost lim x a Testovi iz Analize sa algebrom 4 septembar - oktobar 009 Ponavljanje izvoda iz razreda (f(x) = x x ) Ispitivanje uslova Rolove teoreme Ispitivanje granične vrednosti f-je pomoću Lopitalovog pravila 4 Razvoj

Διαβάστε περισσότερα

Zadaci iz Osnova matematike

Zadaci iz Osnova matematike Zadaci iz Osnova matematike 1. Riješiti po istinitosnoj vrijednosti iskaza p, q, r jednačinu τ(p ( q r)) =.. Odrediti sve neekvivalentne iskazne formule F = F (p, q) za koje je iskazna formula p q p F

Διαβάστε περισσότερα

POTPUNO RIJEŠENIH ZADATAKA PRIRUČNIK ZA SAMOSTALNO UČENJE

POTPUNO RIJEŠENIH ZADATAKA PRIRUČNIK ZA SAMOSTALNO UČENJE **** MLADEN SRAGA **** 011. UNIVERZALNA ZBIRKA POTPUNO RIJEŠENIH ZADATAKA PRIRUČNIK ZA SAMOSTALNO UČENJE SKUP REALNIH BROJEVA α Autor: MLADEN SRAGA Grafički urednik: BESPLATNA - WEB-VARIJANTA Tisak: M.I.M.-SRAGA

Διαβάστε περισσότερα

POLINOMI I RACIONALNE FUNKCIJE Nastava u Matematiqkoj gimnaziji, Vladimir Balti

POLINOMI I RACIONALNE FUNKCIJE Nastava u Matematiqkoj gimnaziji, Vladimir Balti POLINOMI I RACIONALNE FUNKCIJE Nastava u Matematiqkoj gimnaziji, 004. Vladimir Balti Pojam polinoma. Prsten polinoma.. Dati su polinomi P (x) = x + x +, Q(x) = x 4 x +, R(x) = x x +. Proveriti da li za

Διαβάστε περισσότερα

4.1 Elementarne funkcije

4.1 Elementarne funkcije . Elementarne funkcije.. Polinomi Funkcija f : R R zadana formulom f(x) = a n x n + a n x n +... + a x + a 0 gdje je n N 0 te su a n, a n,..., a, a 0 R, zadani brojevi takvi da a n 0 naziva se polinom

Διαβάστε περισσότερα

MATRICE I DETERMINANTE - formule i zadaci - (Matrice i determinante) 1 / 15

MATRICE I DETERMINANTE - formule i zadaci - (Matrice i determinante) 1 / 15 MATRICE I DETERMINANTE - formule i zadaci - (Matrice i determinante) 1 / 15 Matrice - osnovni pojmovi (Matrice i determinante) 2 / 15 (Matrice i determinante) 2 / 15 Matrice - osnovni pojmovi Matrica reda

Διαβάστε περισσότερα

Geometrija (I smer) deo 1: Vektori

Geometrija (I smer) deo 1: Vektori Geometrija (I smer) deo 1: Vektori Srdjan Vukmirović Matematički fakultet, Beograd septembar 2013. Vektori i linearne operacije sa vektorima Definicija Vektor je klasa ekvivalencije usmerenih duži. Kažemo

Διαβάστε περισσότερα

Racionalni algebarski izrazi

Racionalni algebarski izrazi . Skratimo razlomak Racionalni algebarski izrazi [MM.4-()6] 5 + 6 +. Ako je a + b + c = dokazati da je a + b + c = abc [MM.4-()] 5 6 5. Reši jednačinu: y y y + + = 7 4 y = [MM.4-(4)] 4. Reši jednačinu:

Διαβάστε περισσότερα

INTEGRALI Zadaci sa kolokvijuma

INTEGRALI Zadaci sa kolokvijuma INTEGRALI Zadaci sa kolokvijuma ragan ori Sadrжaj Neodređeni integral Određeni integral 6 Nesvojstveni integral 9 4 vojni integral 5 Redovi 5 Studentima generacije / (grupe A9, A i A) Ovo je jox jedna

Διαβάστε περισσότερα

Zadatak 2 Odrediti tačke grananja, Riemann-ovu površ, opisati sve grane funkcije f(z) = z 3 z 4 i objasniti prelazak sa jedne na drugu granu.

Zadatak 2 Odrediti tačke grananja, Riemann-ovu površ, opisati sve grane funkcije f(z) = z 3 z 4 i objasniti prelazak sa jedne na drugu granu. Kompleksna analiza Zadatak Odrediti tačke grananja, Riemann-ovu površ, opisati sve grane funkcije f(z) = z z 4 i objasniti prelazak sa jedne na drugu granu. Zadatak Odrediti tačke grananja, Riemann-ovu

Διαβάστε περισσότερα

Kompleksni brojevi. Algebarski oblik kompleksnog broja je. z = x + iy, x, y R, pri čemu je: x = Re z realni deo, y = Im z imaginarni deo.

Kompleksni brojevi. Algebarski oblik kompleksnog broja je. z = x + iy, x, y R, pri čemu je: x = Re z realni deo, y = Im z imaginarni deo. Kompleksni brojevi Algebarski oblik kompleksnog broja je z = x + iy, x, y R, pri čemu je: x = Re z realni deo, y = Im z imaginarni deo Trigonometrijski oblik kompleksnog broja je z = rcos θ + i sin θ,

Διαβάστε περισσότερα

2. KOLOKVIJ IZ MATEMATIKE 1

2. KOLOKVIJ IZ MATEMATIKE 1 2 cos(3 π 4 ) sin( + π 6 ). 2. Pomoću linearnih transformacija funkcije f nacrtajte graf funkcije g ako je, g() = 2f( + 3) +. 3. Odredite domenu funkcije te odredite f i njenu domenu. log 3 2 + 3 7, 4.

Διαβάστε περισσότερα

2.7 Primjene odredenih integrala

2.7 Primjene odredenih integrala . INTEGRAL 77.7 Primjene odredenih integrala.7.1 Računanje površina Pořsina lika omedenog pravcima x = a i x = b te krivuljama y = f(x) i y = g(x) je b P = f(x) g(x) dx. a Zadatak.61 Odredite površinu

Διαβάστε περισσότερα

Fakultet tehničkih nauka, Softverske i informacione tehnologije, Matematika 2 KOLOKVIJUM 1. Prezime, ime, br. indeksa:

Fakultet tehničkih nauka, Softverske i informacione tehnologije, Matematika 2 KOLOKVIJUM 1. Prezime, ime, br. indeksa: Fakultet tehničkih nauka, Softverske i informacione tehnologije, Matematika KOLOKVIJUM 1 Prezime, ime, br. indeksa: 4.7.1 PREDISPITNE OBAVEZE sin + 1 1) lim = ) lim = 3) lim e + ) = + 3 Zaokružiti tačne

Διαβάστε περισσότερα

I.13. Koliki je napon između neke tačke A čiji je potencijal 5 V i referentne tačke u odnosu na koju se taj potencijal računa?

I.13. Koliki je napon između neke tačke A čiji je potencijal 5 V i referentne tačke u odnosu na koju se taj potencijal računa? TET I.1. Šta je Kulonova sila? elektrostatička sila magnetna sila c) gravitaciona sila I.. Šta je elektrostatička sila? sila kojom međusobno eluju naelektrisanja u mirovanju sila kojom eluju naelektrisanja

Διαβάστε περισσότερα

DRUXTVO MATEMATIQARA SRBIJE MATEMATIQKA TAKMIQENjA SREDNjOXKOLACA 2010/2011. Beograd, 2011.

DRUXTVO MATEMATIQARA SRBIJE MATEMATIQKA TAKMIQENjA SREDNjOXKOLACA 2010/2011. Beograd, 2011. DRUXTVO MATEMATIQARA SRBIJE MATEMATIQKA TAKMIQENjA SREDNjOXKOLACA 010/011. Beograd, 011. Organizacioni odbor 53. Drжavnog takmiqenja iz matematike 1. Profesor dr Zoran Kadelburg, predsednik DMS. Marko Radovanovi,

Διαβάστε περισσότερα

Matematiqka gimnazija u Beogradu Vektori. Milivoje Luki

Matematiqka gimnazija u Beogradu Vektori. Milivoje Luki Matematiqka gimnazija u Beogradu 30.01.2007. Vektori Milivoje Luki 1. Linearne kombinacije vektora Vektor v je linearna kombinacija vektora v 1, v 2,..., v n ako postoje skalari (odn. realni brojevi) λ

Διαβάστε περισσότερα

ПРВА ЕКОНОМСКА ШКОЛА Београд Maj, 2010.

ПРВА ЕКОНОМСКА ШКОЛА Београд Maj, 2010. XI РЕПУБЛИЧКОГ ТАКМИЧЕЊА ИЗ МАТЕМАТИКЕ УЧЕНИКА СРЕДЊИХ ЕКОНОМСКИХ, ПРАВНО-БИРОТЕХНИЧКИХ ТРГОВИНСКИХ И УГОСТИТЕЉСКО-ТУРИСТИЧКИХ ШКОЛА СРБИЈЕ школске 2009/2010. године ПРВА ЕКОНОМСКА ШКОЛА Београд Maj, 2010.

Διαβάστε περισσότερα

Polinomske jednaqine

Polinomske jednaqine Matematiqka gimnazija u Beogradu Dodatna nastava, xk.g. 2005/06. Polinomske jednaqine 13.6.2006. Naslov se odnosi na određivanje polinoma po jednoj ili vixe promenljivih (sa npr. realnim ili kompleksnim

Διαβάστε περισσότερα

Jednodimenzionalne slučajne promenljive

Jednodimenzionalne slučajne promenljive Jednodimenzionalne slučajne promenljive Definicija slučajne promenljive Neka je X f-ja def. na prostoru verovatnoća (Ω, F, P) koja preslikava prostor el. ishoda Ω u skup R realnih brojeva: (1)Skup {ω/

Διαβάστε περισσότερα

ZBIRKA POTPUNO RIJEŠENIH ZADATAKA

ZBIRKA POTPUNO RIJEŠENIH ZADATAKA **** IVANA SRAGA **** 1992.-2011. ZBIRKA POTPUNO RIJEŠENIH ZADATAKA PRIRUČNIK ZA SAMOSTALNO UČENJE POTPUNO RIJEŠENI ZADACI PO ŽUTOJ ZBIRCI INTERNA SKRIPTA CENTRA ZA PODUKU α M.I.M.-Sraga - 1992.-2011.

Διαβάστε περισσότερα

Odred eni integrali. Osnovne osobine odred enog integrala: f(x)dx = 0, f(x)dx = f(x)dx + f(x)dx.

Odred eni integrali. Osnovne osobine odred enog integrala: f(x)dx = 0, f(x)dx = f(x)dx + f(x)dx. Odred eni integrli Osnovne osobine odred enog integrl: fx), fx) fx) b c fx), fx) + c fx), 4 ) b αfx) + βgx) α fx) + β gx), 5 fx) F x) b F b) F ), gde je F x) fx), 6 Ako je f prn funkcij fx) f x), x R ),

Διαβάστε περισσότερα

UNIVERZITET U NIŠU ELEKTRONSKI FAKULTET. Marjan M. Matejiæ Lidija V. Stefanoviæ Branislav M. Ranðeloviæ Igor. Milovanoviæ MATEMATIKA

UNIVERZITET U NIŠU ELEKTRONSKI FAKULTET. Marjan M. Matejiæ Lidija V. Stefanoviæ Branislav M. Ranðeloviæ Igor. Milovanoviæ MATEMATIKA UNIVERZITET U NIŠU ELEKTRONSKI FAKULTET Marjan M. Matejiæ Lidija V. Stefanoviæ Branislav M. Ranðeloviæ Igor. Milovanoviæ MATEMATIKA KOMPLETI ZADATAKA ZA PRIJEMNI ISPIT 011. Edicija: Pomoæni ud benici Marjan

Διαβάστε περισσότερα

- pravac n je zadan s točkom T(2,0) i koeficijentom smjera k=2. (30 bodova)

- pravac n je zadan s točkom T(2,0) i koeficijentom smjera k=2. (30 bodova) MEHANIKA 1 1. KOLOKVIJ 04/2008. grupa I 1. Zadane su dvije sile F i. Sila F = 4i + 6j [ N]. Sila je zadana s veličinom = i leži na pravcu koji s koordinatnom osi x zatvara kut od 30 (sve komponente sile

Διαβάστε περισσότερα

Sistemi veštačke inteligencije primer 1

Sistemi veštačke inteligencije primer 1 Sistemi veštačke inteligencije primer 1 1. Na jeziku predikatskog računa formalizovati rečenice: a) Miloš je slikar. b) Sava nije slikar. c) Svi slikari su umetnici. Uz pomoć metode rezolucije dokazati

Διαβάστε περισσότερα

QETVRTI KOLOKVIJUM IZ MATEMATIKE 1, Grupa A. x 2, g : x. 1 (x 2 + y 2 dx dy. QETVRTI KOLOKVIJUM IZ MATEMATIKE 1, Grupa B. ln x (x 1) 3/2.

QETVRTI KOLOKVIJUM IZ MATEMATIKE 1, Grupa A. x 2, g : x. 1 (x 2 + y 2 dx dy. QETVRTI KOLOKVIJUM IZ MATEMATIKE 1, Grupa B. ln x (x 1) 3/2. 1. Izraqunati QETVRTI KOLOKVIJUM IZ MATEMATIKE 1, 1995. x arctan x 1 + x dx. Grupa A. Izraqunati povrxinu koju ograniqavaju pozitivan deo x - ose i grafici funkcija 3. Ako je oblast ograniqena krivama

Διαβάστε περισσότερα

Glava 1. Vektori. Definicija 1.1. Dva vektora su jednaka ako su im jednaki pravac, smer i intenzitet.

Glava 1. Vektori. Definicija 1.1. Dva vektora su jednaka ako su im jednaki pravac, smer i intenzitet. Glava 1 Vektori U mnogim naukama proučavaju se vektorske i skalarne veličine. Skalarna veličina je odred ena svojom brojnom vrednošću u izabranom sistemu jedinica. Takve veličine su temperatura, težina

Διαβάστε περισσότερα

Mate Vijuga: Rijeseni zadaci iz matematike za srednju skolu

Mate Vijuga: Rijeseni zadaci iz matematike za srednju skolu 7. KOMPLEKSNI BROJEVI 7. Opc pojmov Kompleksn brojev su sastavljen dva djela: Realnog djela (Re) magnarnog djela (Im) Promatrajmo broj a+ b = + 3 Realn do jednak je Re : Imagnarna jednca: = - l = (U elektrotehnc

Διαβάστε περισσότερα

5. Upi{i brojeve 14, 15, 16, 17, 18 i 19 u krugove, ali tako da zbirovi na svakoj od stranica zami{qenog trougla budu me usobno

5. Upi{i brojeve 14, 15, 16, 17, 18 i 19 u krugove, ali tako da zbirovi na svakoj od stranica zami{qenog trougla budu me usobno Ministarstvo prosvete i sporta Republike Srbije DRU[TVO MATEMATI^ARA SRBIJE OP[TINSKO TAKMI^EWE IZ MATEMATIKE U^ENIKA OSNOVNIH [KOLA 15.03.2008. III RAZRED 1. Izra~unaj: a) 52 10 + 12, b) 7 8 + 124, v)

Διαβάστε περισσότερα

ELEMENTARNA MATEMATIKA 2

ELEMENTARNA MATEMATIKA 2 ELEMENTARNA MATEMATIKA 1. Osnovni pojmovi o funkcijama Jedan od najvažnijih pojmova u matematici predstavlja pojam funkcije. Definicija 1.1. Neka su X i Y dva neprazna skupa. Funkcija f iz skupa X u skup

Διαβάστε περισσότερα

OBLAST DEFINISANOSTI FUNKCIJE (DOMEN) Pre nego što krenete sa proučavanjem ovog fajla, obavezno pogledajte fajl ELEMENTARNE FUNKCIJE, jer se na

OBLAST DEFINISANOSTI FUNKCIJE (DOMEN) Pre nego što krenete sa proučavanjem ovog fajla, obavezno pogledajte fajl ELEMENTARNE FUNKCIJE, jer se na OBLAST DEFINISANOSTI FUNKCIJE (DOMEN) Prva tačka u ispitivanju toka unkcije je odredjivanje oblasti deinisanosti, u oznaci Pre nego što krenete sa proučavanjem ovog ajla, obavezno pogledajte ajl ELEMENTARNE

Διαβάστε περισσότερα

VEKTORI. Nenad O. Vesi 1. = α, ako je

VEKTORI. Nenad O. Vesi 1. = α, ako je VEKTORI Nenad O. Vesi 1 1 Uvod Odnos vektora AB, jednak je α CD ( AB CD ) = α, ako je AB = αcd. Teorema 1 (TEOREME BLIZANCI) Dat je trougao ABC i ta ke P i Q na pravama BC, CA redom i ta ke R i S na pravoj

Διαβάστε περισσότερα

Pitanja za usmeni dio ispita iz matematike

Pitanja za usmeni dio ispita iz matematike PITANJA ZA MATURALNI ISPIT Pitanja za usmeni dio ispita iz matematike. Dokazati da je zbroj unutarnjih kutova u trokutu 80 0,a spoljnjih 60 0.. Dokazati da je spoljnji kut trokuta jednak zbroju dva nesusjedna

Διαβάστε περισσότερα

Funkcije. Matematika 1. Gregor Dolinar. Fakulteta za elektrotehniko Univerza v Ljubljani. 21. november Gregor Dolinar Matematika 1

Funkcije. Matematika 1. Gregor Dolinar. Fakulteta za elektrotehniko Univerza v Ljubljani. 21. november Gregor Dolinar Matematika 1 Matematika 1 Gregor Dolinar Fakulteta za elektrotehniko Univerza v Ljubljani 21. november 2013 Hiperbolične funkcije Hiperbolični sinus sinhx = ex e x 2 20 10 3 2 1 1 2 3 10 20 hiperbolični kosinus coshx

Διαβάστε περισσότερα

ASIMPTOTE FUNKCIJA. Dakle: Asimptota je prava kojoj se funkcija približava u beskonačno dalekoj tački. Postoje tri vrste asimptota:

ASIMPTOTE FUNKCIJA. Dakle: Asimptota je prava kojoj se funkcija približava u beskonačno dalekoj tački. Postoje tri vrste asimptota: ASIMPTOTE FUNKCIJA Naš savet je da najpre dobro proučite granične vrednosti funkcija Neki profesori vole da asimptote funkcija ispituju kao ponašanje funkcije na krajevima oblasti definisanosti, pa kako

Διαβάστε περισσότερα

Primene kompleksnih brojeva u geometriji

Primene kompleksnih brojeva u geometriji Primene kompleksnih brojeva u geometriji Radoslav Dimitrijević 07.1.011. 1 Neki osnovni geometrijski pojmovi 1.1. Rastojanje izmed u tačaka Neka su tačke A i B u kompleksnoj ravni odred ene kompleksnim

Διαβάστε περισσότερα

Ako dva trougla imaju dvije stranice proporcionalne i podudaran ugao izme du njih tada su ta dva trougla slična.

Ako dva trougla imaju dvije stranice proporcionalne i podudaran ugao izme du njih tada su ta dva trougla slična. Sličnost trouglova i Talesova teorema Definicija sličnosti trouglova Dva trougla ABC i A B C su slična ako su im sva tri ugla redom podudarna i ako su im a odgovarajuće stranice proporcionalne tj. = b

Διαβάστε περισσότερα

Algebarske strukture

Algebarske strukture i operacije Univerzitet u Nišu Prirodno Matematički Fakultet februar 2010 Istraživačka stanica Petnica i operacije Operacije Šta je to algebra i apstraktna algebra? Šta je to algebarska struktura? Cemu

Διαβάστε περισσότερα

Grafičko prikazivanje atributivnih i geografskih nizova

Grafičko prikazivanje atributivnih i geografskih nizova Grafičko prikazivanje atributivnih i geografskih nizova Biserka Draščić Ban Pomorski fakultet u Rijeci 17. veljače 2011. Grafičko prikazivanje atributivnih nizova Atributivni nizovi prikazuju se grafički

Διαβάστε περισσότερα

On predstavlja osnovni pojam, poput pojma tačke ili prave u geometriji. Suštinsko svojstvo skupa je da se on sastoji od elemenata ili članova.

On predstavlja osnovni pojam, poput pojma tačke ili prave u geometriji. Suštinsko svojstvo skupa je da se on sastoji od elemenata ili članova. Pojam skupa U matematici se pojam skup ne definiše eksplicitno. On predstavlja osnovni pojam, poput pojma tačke ili prave u geometriji. Suštinsko svojstvo skupa je da se on sastoji od elemenata ili članova.

Διαβάστε περισσότερα

RE[EWA ZADATAKA IV RAZRED

RE[EWA ZADATAKA IV RAZRED Ministarstvo prosvete i sporta Republike Srbije DRU[TVO MATEMATI^ARA SRBIJE OKRU@NO TAKMI^EWE IZ MATEMATIKE U^ENIKA OSNOVNIH [KOLA 19.04.008 IV RAZRED 1. Tri prijateqa, Milo{, Uro{ i Jano{, poklonili su

Διαβάστε περισσότερα

Skupovi, relacije, funkcije

Skupovi, relacije, funkcije Chapter 1 Skupovi, relacije, funkcije 1.1 Skup, torka, multiskup 1.1.1 Skup Pojam skupa ne definišemo eksplicitno. Intuitivno skup prihvatamo kao konačnu ili beskonačnu kolekciju objekata (ili elemenata)u

Διαβάστε περισσότερα

( ) π. I slučaj-štap sa zglobovima na krajevima F. Opšte rešenje diferencijalne jednačine (1): min

( ) π. I slučaj-štap sa zglobovima na krajevima F. Opšte rešenje diferencijalne jednačine (1): min Kritična sia izvijanja Kritična sia je ona najmanja vrednost sie pritisa pri ojoj nastupa gubita stabinosti, odnosno, pri ojoj štap iz stabine pravoinijse forme ravnoteže preazi u nestabinu rivoinijsu

Διαβάστε περισσότερα

Matematika. Viša razina. Marina Ninković, prof. Vesna Ovčina, prof. Zagreb, 2015.

Matematika. Viša razina. Marina Ninković, prof. Vesna Ovčina, prof. Zagreb, 2015. Matematika Viša razina Marina Ninković, prof. Vesna Ovčina, prof. Zagreb, 2015. Autor: Marina Ninković, prof. Vesna Ovčina, prof. Naslov: Matematika Viša razina Izdanje: 4. izdanje Urednica: Ana Belin,

Διαβάστε περισσότερα

Neprekinute funkcije i limesi Definicija neprekinute funkcije i njen odnos prema limesu Asimptote Svojstva neprekinutih funkcija

Neprekinute funkcije i limesi Definicija neprekinute funkcije i njen odnos prema limesu Asimptote Svojstva neprekinutih funkcija Sadržaj: Nizovi brojeva Pojam niza Limes niza. Konvergentni nizovi Neki važni nizovi. Broj e. Limes funkcije Definicija esa Računanje esa Jednostrani esi Neprekinute funkcije i esi Definicija neprekinute

Διαβάστε περισσότερα

POLIEDRI. Ivana Bojović 171/03

POLIEDRI. Ivana Bojović 171/03 POLIEDRI Ivana Bojović 171/03 Sadržaj Poliedarske površi...2 Prizma...5 Piramida...8 Zarubljena piramida...10 Pravilni poliedri...11 Površina poliedara...12 Površina prizme...12 Površina pravouglog paralelopipeda...13

Διαβάστε περισσότερα

3n an = 4n3/2 +2n+ n 5n 3/2 +5n+2 n a 2 n = n 2. ( 2) n Dodatak. = 0, lim n! 2n 6n + 1

3n an = 4n3/2 +2n+ n 5n 3/2 +5n+2 n a 2 n = n 2. ( 2) n Dodatak. = 0, lim n! 2n 6n + 1 Nizovi 5 a = 5 +3+ + 6 a = 3 00 + 00 3 +5 7 a = +)+) ) 3 3 8 a = 3 +3+ + +3 9 a = 3 5 0 a = 43/ ++ 5 3/ +5+ a = + + a = + ) 3 a = + + + 4 a = 3 3 + 3 ) 5 a = +++ 6 a = + ++ 3 a = +)!++)! +3)! a = ) +3

Διαβάστε περισσότερα

ALGEBRA 1. Grupe. Konaqno generisane Abelove grupe. Zoran Petrovi 11. i 18. decembar ρ = 0. nρ = 0

ALGEBRA 1. Grupe. Konaqno generisane Abelove grupe. Zoran Petrovi 11. i 18. decembar ρ = 0. nρ = 0 ALGEBRA 1 Grupe Konaqno generisane Abelove grupe Zoran Petrovi 11 i 18 decembar 2012 Podsetimo se diedarske grupe: Njena abelizacija zadata je sa: D n = σ, ρ σ 2 = ε, ρ n = ε, σρ = ρ n 1 σ D Ab n = σ, ρ,

Διαβάστε περισσότερα

Tehnologija bušenja II

Tehnologija bušenja II INŽENJERSTVO NAFTE I GASA Tehnologija bušenja II 1. Vežba V - 1 Tehnologija bušenja II Slide 1 of 44 Algebra i trigonometrija V - 1 Tehnologija bušenja II Slide 2 of 44 Jednačine Pitanje: Ako je a = 3b

Διαβάστε περισσότερα

Uvod u teoriju brojeva. Andrej Dujella

Uvod u teoriju brojeva. Andrej Dujella Uvod u teoriju brojeva (skripta) Andrej Dujella PMF - Matematički odjel Sveučilište u Zagrebu Sadržaj. Djeljivost.... Kongruencije... 3. Kvadratni ostatci... 9 4. Kvadratne forme... 38 5. Aritmetičke funkcije...

Διαβάστε περισσότερα

Teorija brojeva Okvirni program rada sa nadarenim učenicima osnovnih škola. Hasan Jamak Prirodno-matematički fakultet Sarajevo

Teorija brojeva Okvirni program rada sa nadarenim učenicima osnovnih škola. Hasan Jamak Prirodno-matematički fakultet Sarajevo Teorija brojeva Okvirni program rada sa nadarenim učenicima osnovnih škola Hasan Jamak Prirodno-matematički fakultet Sarajevo January 24, 2012 Uvod U Bosni i Hercegovini već pedesetak godina se organizuju

Διαβάστε περισσότερα

Dijagrami: Greda i konzola. Prosta greda. II. Dijagrami unutarnjih sila. 2. Popre nih sila TZ 3. Momenata savijanja My. 1. Uzdužnih sila N. 11.

Dijagrami: Greda i konzola. Prosta greda. II. Dijagrami unutarnjih sila. 2. Popre nih sila TZ 3. Momenata savijanja My. 1. Uzdužnih sila N. 11. Dijagrami:. Udužnih sia N Greda i konoa. Popre nih sia TZ 3. Momenata savijanja My. dio Prosta greda. Optere ena koncentriranom siom F I. Reaktivne sie:. M A = 0 R B F a = 0. M B = 0 R A F b = 0 3. F =

Διαβάστε περισσότερα

Granične vrednosti realnih nizova

Granične vrednosti realnih nizova Graiče vredosti realih izova Fukcija f : N R, gde je N skup prirodih brojeva a R skup realih brojeva, zove se iz realih brojeva ili reala iz. Opšti čla iza f je f(), N, i običo se obeležava sa f, dok se

Διαβάστε περισσότερα

1 ISKAZNA I PREDIKATSKA LOGIKA Zadaci Rešenja SKUPOVI Zadaci RELACIJE Zadaci Rešenja...

1 ISKAZNA I PREDIKATSKA LOGIKA Zadaci Rešenja SKUPOVI Zadaci RELACIJE Zadaci Rešenja... Sadržaj 1 ISKAZNA I PREDIKATSKA LOGIKA 3 1.1 Zadaci............................... 6 1.2 Rešenja.............................. 8 2 SKUPOVI 13 2.1 Zadaci............................... 16 2.2 Rešenja..............................

Διαβάστε περισσότερα

Kotne in krožne funkcije

Kotne in krožne funkcije Kotne in krožne funkcije Kotne funkcije v pravokotnem trikotniku Avtor: Rok Kralj, 4.a Gimnazija Vič, 009/10 β a c γ b α sin = a c cos= b c tan = a b cot = b a Sinus kota je razmerje kotu nasprotne katete

Διαβάστε περισσότερα

56. TAKMIČENJE MLADIH MATEMATIČARA BOSNE I HERCEGOVINE FEDERALNO PRVENSTVO UČENIKA SREDNJIH ŠKOLA. Sarajevo, godine

56. TAKMIČENJE MLADIH MATEMATIČARA BOSNE I HERCEGOVINE FEDERALNO PRVENSTVO UČENIKA SREDNJIH ŠKOLA. Sarajevo, godine 56. TAKMIČENJE MLADIH MATEMATIČARA BOSNE I HERCEGOVINE FEDERALNO PRVENSTVO UČENIKA SREDNJIH ŠKOLA Sarajevo, 3.04.016. godine 56. TAKMIČENJE MLADIH MATEMATIČARA BOSNE I HERCEGOVINE FEDERALNO PRVENSTVO UČENIKA

Διαβάστε περισσότερα

Sadržaj sveske sa vježbi iz predmeta Euklidska geometrija 1 (akademska 2011/2012.)

Sadržaj sveske sa vježbi iz predmeta Euklidska geometrija 1 (akademska 2011/2012.) Univerzitet u Zenici Pedagoški fakultet Matematika i informatika Sadržaj sveske sa vježbi iz predmeta Euklidska geometrija 1 (akademska 2011/2012.) Sedmica broj 1 i 2 (Osnovi pojmovi iz geometrije) Uvod

Διαβάστε περισσότερα

OPĆINSKO/ŠKOLSKO NATJECANJE IZ MATEMATIKE 4. veljače razred-rješenja

OPĆINSKO/ŠKOLSKO NATJECANJE IZ MATEMATIKE 4. veljače razred-rješenja OPĆINSKO/ŠKOLSKO NATJECANJE IZ MATEMATIKE 4. veljače 00. 4. razred-rješenja. 00 + 00 + 00 3 + 00 4 + 00 = 00 ( + + 3 + 4 + ) = 00 = 300... UKUPNO 4 BODA. 96 8 : 4 + 0 ( 68 66 ) = 96 7 + 0 = 89 + 0 = 09...

Διαβάστε περισσότερα

4 Numeričko diferenciranje

4 Numeričko diferenciranje 4 Numeričko diferenciranje 7. Funkcija fx) je zadata tabelom: x 0 4 6 8 fx).17 1.5167 1.7044 3.385 5.09 7.814 Koristeći konačne razlike, zaključno sa trećim redom, odrediti tačku x minimuma funkcije fx)

Διαβάστε περισσότερα

Sistemi linearnih jednačina

Sistemi linearnih jednačina Sistemi linearnih jednačina Sistem od n linearnih jednačina sa n nepoznatih (x 1, x 2,..., x n ) je a 11 x 1 + a 12 x 2 + + a 1n x n = b 1, a 21 x 1 + a 22 x 2 + + a 2n x n = b 2, a n1 x 1 + a n2 x 2 +

Διαβάστε περισσότερα

Akvizicija tereta. 5660t. Y= masa drva, X=masa cementa. Na brod će se ukrcati 1733 tona drva i 3927 tona cementa.

Akvizicija tereta. 5660t. Y= masa drva, X=masa cementa. Na brod će se ukrcati 1733 tona drva i 3927 tona cementa. Akvizicija tereta. Korisna nosivost broda je 6 t, a na brodu ia 8 cu. ft. prostora raspoloživog za sještaj tereta pod palubu. Navedeni brod treba krcati drvo i ceent, a na palubu ože aksialno ukrcati 34

Διαβάστε περισσότερα

MATEMATIKA II. Dr Boban Marinković

MATEMATIKA II. Dr Boban Marinković MATEMATIKA II VEŽBE Dr Boban Marinković 1 Neodredjeni integral dx = x + C, dx x = ln x + C, dx = arcsin x + C, 1 x 2 a x dx = ax ln a + C, cos x dx = sin x + C, dx x 2 a = 1 2 2a ln x a x + a + C, dx x2

Διαβάστε περισσότερα

x M kazemo da je slijed ogranicen. Weierstrass-Bolzano-v teorem tvrdi da svaki ograniceni slijed ima barem jednu granicnu tocku.

x M kazemo da je slijed ogranicen. Weierstrass-Bolzano-v teorem tvrdi da svaki ograniceni slijed ima barem jednu granicnu tocku. 1. FUNKCIJE, LIMES, NEPREKINUTOST 1.1 Brojevi - slijed, interval, limes Slijed realnih brojeva je postava brojeva na primjer u obliku 1,,3..., nn, + 1... koji na realnoj osi imaju oznaceno mjesto odgovarajucom

Διαβάστε περισσότερα

Zbirka oglednih zadataka iz matematike za pripreme za upis na Ekonomski fakultet

Zbirka oglednih zadataka iz matematike za pripreme za upis na Ekonomski fakultet X. GIMNAZIJA Zbirka oglednih zadataka iz matematike za pripreme za upis na Ekonomski fakultet Pripremila Vesna Skočir PREDGOVOR Zbirka sadrži zadatke koji su se zadnjih nekoliko godina pojavljivali na

Διαβάστε περισσότερα

Geometrijska mesta tačaka i primena na konstrukcije

Geometrijska mesta tačaka i primena na konstrukcije Univerzitet u Nišu Prirodno - matematički fakultet Departman za matematiku Geometrijska mesta tačaka i primena na konstrukcije Master rad Mentor: Prof. dr Mića Stanković Student: Ivana Gavrilović Niš,

Διαβάστε περισσότερα

EKSPONENCIJALNE i LOGARITAMSKE FUNKCIJE

EKSPONENCIJALNE i LOGARITAMSKE FUNKCIJE **** MLADEN SRAGA **** 0. UNIVERZALNA ZBIRKA POTPUNO RIJEŠENIH ZADATAKA PRIRUČNIK ZA SAMOSTALNO UČENJE EKSPONENCIJALNE i LOGARITAMSKE FUNKCIJE α LOGARITMI Autor: MLADEN SRAGA Grafički urednik: Mladen Sraga

Διαβάστε περισσότερα

SKUP REALNIH BROJEVA BROJEVI I RAČUNSKE OPERACIJE. Koja je vrijednost izraza : ? A. B. C. 5 D. 7. Koja je od navedenih tvrdnji istinita?

SKUP REALNIH BROJEVA BROJEVI I RAČUNSKE OPERACIJE. Koja je vrijednost izraza : ? A. B. C. 5 D. 7. Koja je od navedenih tvrdnji istinita? SŠ AMBROZA HARAČIĆA MALI LOŠINJ ZBIRKA ZADATAKA IZ MATEMATIKE Viša (A) razina Zadaci i rješenja sa nacionalnih ispita i državnih matura 006.-0. Prikupio i obradio: Ivan Brzović,prof. Mali Lošinj,rujan

Διαβάστε περισσότερα

Κεφάλαιο 3 ΠΑΡΑΓΩΓΟΣ. 3.1 Η έννοια της παραγώγου. y = f(x) f(x 0 ), = f(x 0 + x) f(x 0 )

Κεφάλαιο 3 ΠΑΡΑΓΩΓΟΣ. 3.1 Η έννοια της παραγώγου. y = f(x) f(x 0 ), = f(x 0 + x) f(x 0 ) Κεφάλαιο 3 ΠΑΡΑΓΩΓΟΣ 3.1 Η έννοια της παραγώγου Εστω y = f(x) µία συνάρτηση, που συνδέει τις µεταβλητές ποσότητες x και y. Ενα ερώτηµα που µπορεί να προκύψει καθώς µελετούµε τις δύο αυτές ποσοτήτες είναι

Διαβάστε περισσότερα

ΑΝΑΛΥΣΗ 2. Μ. Παπαδημητράκης.

ΑΝΑΛΥΣΗ 2. Μ. Παπαδημητράκης. ΑΝΑΛΥΣΗ 2 Μ. Παπαδημητράκης. 1 ΔΩΔΕΚΑΤΟ ΜΑΘΗΜΑ Έστω συνάρτηση f ορισμένη σε διάστημα I. Λέμε ότι η F είναι αντιπαράγωγος της f στο I αν ισχύει F = f στο I. ΠΡΟΤΑΣΗ. Αν η F είναι αντιπαράγωγος της f στο

Διαβάστε περισσότερα

2x 2 y. f(y) = f(x, y) = (xy, x + y)

2x 2 y. f(y) = f(x, y) = (xy, x + y) ΕΠΑΝΑΛΗΠΤΙΚΕΣ ΑΣΚΗΣΕΙΣ 1. Εστω f : R R η συνάρτηση με τύπο y + x sin 1, για y 0, f(x, y) = y 0, για y = 0. (α) Να αποδειχθεί οτι lim f(x, y) = 0. (x,y) (0,0) (β) Να αποδειχθεί οτι το lim(lim f(x, y)) δεν

Διαβάστε περισσότερα

ELEMENTI VISE ˇ MATEMATIKE

ELEMENTI VISE ˇ MATEMATIKE Nada Miličić Miloš Miličić ELEMENTI VISE ˇ MATEMATIKE II deo II izdanje Akademska misao Beograd, 2011 Dr Nada Miličić, redovni profesor Dr Miloš Miličić, redovni profesor ELEMENTI VIŠE MATEMATIKE II DEO

Διαβάστε περισσότερα

12 Elementarni zadaci: Računanje površine tijela u ravni i trigonometrija

12 Elementarni zadaci: Računanje površine tijela u ravni i trigonometrija 12 Elementarni zadaci: Računanje površine tijela u ravni i trigonometrija Elementarna pitanja: 1. Nabrojati sve geometriske figure prikazane na slici ispod. [kocka, kvadar, četverostrana piramida, sfera

Διαβάστε περισσότερα

TAČKA i PRAVA. , onda rastojanje između njih računamo po formuli C(1,5) d(b,c) d(a,b)

TAČKA i PRAVA. , onda rastojanje između njih računamo po formuli C(1,5) d(b,c) d(a,b) TAČKA i PRAVA Najpre ćemo se upoznati sa osnovnim formulama i njihovom primenom.. Rastojanje između dve tačke Ako su nam date tačke Ax (, y) i Bx (, y ), onda rastojanje između njih računamo po formuli

Διαβάστε περισσότερα

4 Funkcije. 4.1 Pojam funkcije

4 Funkcije. 4.1 Pojam funkcije 4 Funkcije 4.1 Pojam unkcije Neka su i neprazni skupovi i pravilo koje svakom elementu skupa pridružuje točno jedan element skupa. Tada se uredena trojka (,, ) naziva preslikavanje ili unkcija sa skupa

Διαβάστε περισσότερα

5 Sistemi linearnih jednačina. a 11 x 1 + a 12 x a 1n x n = b 1 a 21 x 1 + a 22 x a 2n x n = b 2.

5 Sistemi linearnih jednačina. a 11 x 1 + a 12 x a 1n x n = b 1 a 21 x 1 + a 22 x a 2n x n = b 2. 5 Sistemi linearnih jednačina 47 5 Sistemi linearnih jednačina U opštem slučaju, pod sistemom linearnih jednačina podrazumevamo sistem od m jednačina sa n nepoznatih x 1 + a 12 x 2 + + a 1n x n = b 1 a

Διαβάστε περισσότερα

VJEROJATNOST I STATISTIKA Popravni kolokvij - 1. rujna 2016.

VJEROJATNOST I STATISTIKA Popravni kolokvij - 1. rujna 2016. Broj zadataka: 5 Vrijeme rješavanja: 120 min Ukupan broj bodova: 100 Zadatak 1. (a) Napišite aksiome vjerojatnosti ako je zadan skup Ω i σ-algebra F na Ω. (b) Dokažite iz aksioma vjerojatnosti da za A,

Διαβάστε περισσότερα

Funkcije Materijali za nastavu iz Matematike 1

Funkcije Materijali za nastavu iz Matematike 1 Funkcije Materijali za nastavu iz Matematike 1 Kristina Krulić Himmelreich i Ksenija Smoljak 2012/13 1 / 76 Definicija funkcije Funkcija iz skupa X u skup Y je svako pravilo f po kojemu se elementu x X

Διαβάστε περισσότερα

UNIVERZITET U BEOGRADU MATEMATIQKI FAKULTET

UNIVERZITET U BEOGRADU MATEMATIQKI FAKULTET UNIVERZITET U BEOGRADU MATEMATIQKI FAKULTET Dragana Rankovi Stabilnost, nestabilnost i bifurkacije u modelovau neurona diferencijalnim jednaqinama sa kaxeem doktorska disertacija Beograd, 2011. Sadraj

Διαβάστε περισσότερα

O SKUPOVIMA. Do pojma skupa može se vrlo lako doći empirijskim putem, posmatrajući razne grupe,

O SKUPOVIMA. Do pojma skupa može se vrlo lako doći empirijskim putem, posmatrajući razne grupe, O SKUPOVIM Do pojma skupa može se vrlo lako doći empirijskim putem, posmatrajući razne grupe, skupine, mnoštva neke vrste objekata, stvari, živih bića i dr. Tako imamo skup stanovnika nekog grada, skup

Διαβάστε περισσότερα

10. STABILNOST KOSINA

10. STABILNOST KOSINA MEHANIKA TLA: Stabilnot koina 101 10. STABILNOST KOSINA 10.1 Metode proračuna koina Problem analize tabilnoti zemljanih maa vodi e na određivanje odnoa između rapoložive mičuće čvrtoće i proečnog mičućeg

Διαβάστε περισσότερα

POGLAVLJE 1 BEZUSLOVNA OPTIMIZACIJA. U ovom poglavlju proučavaćemo problem bezuslovne optimizacije:

POGLAVLJE 1 BEZUSLOVNA OPTIMIZACIJA. U ovom poglavlju proučavaćemo problem bezuslovne optimizacije: POGLAVLJE 1 BEZUSLOVNA OPTIMIZACIJA U ovom poglavlju proučavaćemo problem bezuslovne optimizacije: min f(x) (1.1) pri čemu nema dodatnih ograničenja na X = (x 1,..., x n ) R n. Probleme bezuslovne optimizacije

Διαβάστε περισσότερα

dužina usmjerena (orijentirana) dužina (zna se koja je točka početna, a koja krajnja) vektor

dužina usmjerena (orijentirana) dužina (zna se koja je točka početna, a koja krajnja) vektor I. VEKTORI d. sc. Min Rodić Lipnović 009./010. 1 Pojm vekto A B dužin A B usmjeen (oijentin) dužin (n se koj je točk početn, koj kjnj) A B vekto - kls ( skup ) usmjeenih dužin C D E F AB je epeentnt vekto

Διαβάστε περισσότερα

Društvo matematičara Srbije. Pripreme za Juniorske olimpijade školske 2007/2008. Matematička indukcija

Društvo matematičara Srbije. Pripreme za Juniorske olimpijade školske 2007/2008. Matematička indukcija Društvo matematičara Srbije Pripreme za Juiorske olimpijade školske 007/008 -Dord e Baralić Tel:063/706-706-6 e-mail:djolebar@ptt.yu Matematička idukcija Primer 1. Dokazati da je > za sve N. Ituitivo zamo

Διαβάστε περισσότερα

Mate Vijuga: Rijeseni zadaci iz matematike za srednju skolu

Mate Vijuga: Rijeseni zadaci iz matematike za srednju skolu 5. TRIGONOMETRIJA 5. Definicija trigonometrijskih funkcija Naj jednostavnija definicija trigonometrijskih funkcija dobije se promatranjem pravokutnog ( ) ( r) ( ) trokuta. Svaki takav trokut, za promatrani

Διαβάστε περισσότερα

1. If log x 2 y 2 = a, then dy / dx = x 2 + y 2 1] xy 2] y / x. 3] x / y 4] none of these

1. If log x 2 y 2 = a, then dy / dx = x 2 + y 2 1] xy 2] y / x. 3] x / y 4] none of these 1. If log x 2 y 2 = a, then dy / dx = x 2 + y 2 1] xy 2] y / x 3] x / y 4] none of these 1. If log x 2 y 2 = a, then x 2 + y 2 Solution : Take y /x = k y = k x dy/dx = k dy/dx = y / x Answer : 2] y / x

Διαβάστε περισσότερα

Statistika i osnovna mjerenja

Statistika i osnovna mjerenja Statistika i osnovna mjerenja Teorija vjerojatnosti M. Makek 2016/2017 Uvod Pokus bilo koji postupak ili proces koji rezultira opažanjem Ishod moguć rezultat pokusa (različiti ishodi se međusobno isključuju)

Διαβάστε περισσότερα

OSNOVNI PRINCIPI PREBROJAVANJA. () 6. studenog 2011. 1 / 18

OSNOVNI PRINCIPI PREBROJAVANJA. () 6. studenog 2011. 1 / 18 OSNOVNI PRINCIPI PREBROJAVANJA () 6. studenog 2011. 1 / 18 TRI OSNOVNA PRINCIPA PREBROJAVANJA -vrlo često susrećemo se sa problemima prebrojavanja elemenata nekog konačnog skupa S () 6. studenog 2011.

Διαβάστε περισσότερα