3 Populacija i uzorak

Save this PDF as:
 WORD  PNG  TXT  JPG

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "3 Populacija i uzorak"

Transcript

1 3 Populacija i uzorak 1

2 3.1 Slučajni uzorak X varijabla/stat. obilježje koje izučavamo Cilj statističke analize na osnovi uzorka izvesti odredene zaključke o (populacijskoj) razdiobi od X 2

3 Primjer 3.1. (Primjer 1.2) U nekom gradu u SADu, u glasačke liste upisano je glasača. Ispitivanjem slučajnog uzorka od osoba želimo procijeniti postotak glasača za Demokratsku stranku (DS). Nakon ispitivanja pokazuje se da u uzorku ima 917 glasača za DS. 3

4 Kako biramo osobe u uzorak? jednostavni slučajni uzorak bez ponavljanja jednostavni slučajni uzorak s ponavljanjem Varijabla čija nas razdioba zanima: X = 1 ukoliko je osoba glasač za DS, inače je 0 X je indikator glasača za DS 4

5 Neka je: N = veličina populacije M = (nepoznata) veličina glasača za DS u populaciji p = M N = proporcija glasača za DS u populaciji Želimo procijeniti parametar p iz uzorka duljine n. 5

6 n = 1600 = veličina uzorka Neka su: X 1 = indikator je li 1. osoba na sl. način izabrana u uzorak glasač za DS X 2 = indikator je li 2. osoba na sl. način izabrana u uzorak glasač za DS X n = indikator je li n-ta osb. na sl. način izabrana u uzorak glasač za DS Y := X 1 + X X n = ukupan broj (frekvencija) glasača za DS u slučajnom uzorku 6

7 Slučaj jednostavnog sl. uzorka s ponavljanjem Slučajne su varijable X 1, X 2,..., X n jednako distribuirane Bernoullijeve ( ) 0 1 X i, i = 1, 2,..., n 1 p p nezavisne Y B(n, p) 7

8 Slučaj jednostavnog sl. uzorka bez ponavljanja Slučajne su varijable X 1, X 2,..., X n Bernoullijeve (jednako distribuirane?) zavisne su. Y hipergeometrijska (N, M, n) 8

9 U oba slučaja je procjenitelj parametra p statistika Vrijedi: ˆp = Y n ˆp = = 57.3% Ako je Y B(n, p), tada: p(1 p) E[ˆp] = p, Var[ˆp] =. n Ako je Y hipergeometrijska (M, N, n), tada: E[ˆp] = p, Var[ˆp] = p(1 p) n 1 N n 1 N 1. 9

10 Zadatak 1. Dokažite izraze za matematičko očekivanje i varijancu hipergeometrijske razdiobe, te za pripadni procjenitelj parametra proporcije. 10

11 Teorem 3.1. Neka je (X N ) niz hipergeometrijskih s.v. s parametrima (N, M N, n). Ako je n konstantno i lim N M N N = p, tada lim P(X N = k) = ( n N k ) p k q n k, k {0, 1,..., n}. Interpretacija: P(X = k) ( n) p k q n k, k {0, 1,..., n}, k za velike N i M i p = M/N. 11

12 Zadatak 2. Dokažite teorem

13 Primjer 3.2. Moguće je da je novčić nesimetričan. Želimo procijeniti vjerojatnost da će pasti pismo. Uzimamo uzorak duljine n na sljedeći način. Označimo sa X 1 ishod 1. bacanja novčića, sa X 2 ishod 2. bacanja, itd., sa X n ishod n-tog bacanja. Sva bacanja su bila neovisna od drugih i izvedena pod istim uvjetima. X 1, X 2,..., X n su n.j.d. s.v. 13

14 Bitna razlika izmedu primjera 3.1 i 3.2: U primjeru 3.1 populacija je bila konačna, a u primjeru 3.2 beskonačna. U danom kontekstu, ukoliko je populacija konačna i velika, slučajni uzorci s i bez ponavljanja su po distribuciji približno jednaki (Teorem 3.1!). 14

15 Definicija. Slučajni uzorak duljine n za X je niz od n nezavisnih, jednako distribuiranih slučajnih varijabli X 1, X 2,..., X n kojima je distribucija jednaka (populacijskoj) razdiobi varijable X. Realizaciju slučajnog uzorka (= opažene vrijednosti x i od X i, i = 1,..., n) zovemo uzorkom. 15

16 3.2 Parametar i statistika Neka je X statistička varijabla čiju populacijsku distribuciju izučavamo, te neka je X 1, X 2,..., X n slučajni uzorak za X iz te populacije. 16

17 Parametrom razdiobe od X nazivamo onu vrijednost (broj, vektor, graf,...) koja je funkcija populacijske razdiobe od X. Statistika je funkcija slučajnog uzorka. 17

18 Statistike su slučajne varijable. Njihova razdioba se zove uzoračka razdioba. Primjer 3.3. Uzoračka razdioba statistike Y iz primjera 3.1 je binomna ako se radi o jednostavnom sl. uzorku s ponavljanjem, a ako je uzorak bez ponavljanja, onda je uzoračka razdioba te iste statistike hipergeometrijska. 18

19 Primjer 3.4. Neka X ima normalnu populacijsku razdiobu N(µ, σ 2 ), te neka je X 1, X 2,... X n pripadni slučajni uzorak. Aritmetička sredina X := 1 n (X 1 + X X n ) je statistika. Njena uzoračka razdioba je X N ( µ, σ2 n ). 19

20 3.3 Empirijska funkcija distribucije Neka je F funkcija distribucije populacijske razdiobe varijable X. Slučajni uzorak za X: X 1, X 2,..., X n Empirijska funkcija distribucije (e.f.d.) je slučajna funkcija: ˆF n ( )(ω) : R R, ω Ω t.d. je ˆF n (x) := 1 n n i=1 1 {Xi x} = #{i : X i x}, x R. n 20

21 Svojstva e.f.d.: 1. Za svaki fiksni x R je n ˆF n (x) B(n, F (x)) E[ ˆF n (x)] = F (x), Var[ ˆF n (x)] = 1 F (x)(1 F (x)). n 21

22 2. Za svaki fiksni ω Ω je x ˆF n (x)(ω) funkcija distribucije neke diskretne razdiobe. Neka je x (1) x (2) x (n) jedna uredena realizacija slučajnog uzorka. Graf... ˆF n (x) = #{i : x (i) x}. n 22

23 x (2) x (1) x (3) x (4) 23

24 3. Iz prethodnog grafa slijedi: sup ˆF n (x) F (x) = x R = max max{ F (x 1 i n (i) ) i 1 n, F (x (i) ) i n }. Teorem 3.2 (Glivenko-Cantelli) P (Dokaz.) ( lim n sup ˆF n (x) F (x) = 0 x R ) = 1 24

25 U dokazu se koristi: Borelov jaki zakon velikih brojeva Ako je X n B(n, p), n N, niz binomnih s.v., tada P ( lim n X n n = p ) = 1. 25

Funkcija gustoće neprekidne slučajne varijable ima dva bitna svojstva: 1. Nenegativnost: f(x) 0, x R, 2. Normiranost: f(x)dx = 1.

Funkcija gustoće neprekidne slučajne varijable ima dva bitna svojstva: 1. Nenegativnost: f(x) 0, x R, 2. Normiranost: f(x)dx = 1. σ-algebra skupova Definicija : Neka je Ω neprazan skup i F P(Ω). Familija skupova F je σ-algebra skupova na Ω ako vrijedi:. F, 2. A F A C F, 3. A n, n N} F n N A n F. Borelova σ-algebra Definicija 2: Neka

Διαβάστε περισσότερα

VJEROJATNOST I STATISTIKA Popravni kolokvij - 1. rujna 2016.

VJEROJATNOST I STATISTIKA Popravni kolokvij - 1. rujna 2016. Broj zadataka: 5 Vrijeme rješavanja: 120 min Ukupan broj bodova: 100 Zadatak 1. (a) Napišite aksiome vjerojatnosti ako je zadan skup Ω i σ-algebra F na Ω. (b) Dokažite iz aksioma vjerojatnosti da za A,

Διαβάστε περισσότερα

Slučajne varijable Materijali za nastavu iz Statistike

Slučajne varijable Materijali za nastavu iz Statistike Slučajne varijable Materijali za nastavu iz Statistike Kristina Krulić Himmelreich i Ksenija Smoljak 2012/13 1 / 1 Slučajna varijabla Slučajna varijabla je funkcija X koja elementarnim dogadajima pridružuje

Διαβάστε περισσότερα

(Hi-kvadrat test) r (f i f ti ) 2 H = f ti. i=1

(Hi-kvadrat test) r (f i f ti ) 2 H = f ti. i=1 χ 2 test (Hi-kvadrat test) Jedan od prvih statističkih testova je χ 2 -test. Predložio ga je K. Pearson 900. godine, pa je poznat i pod nazivom Pearsonov test. χ 2 test je neparametarski test. Pomoću χ

Διαβάστε περισσότερα

Slučajne varijable. Diskretna slučajna varijabla X je promjenjiva veličina koja poprima vrijednosti iz skupa

Slučajne varijable. Diskretna slučajna varijabla X je promjenjiva veličina koja poprima vrijednosti iz skupa Slučajne varijable Statistički podaci su distribuirani po odredenoj zakonitosti. Za matematičko (apstraktno) opisivanje te zakonitosti potrebno je definirati slučajnu varijablu kojoj pripada odredena razdioba

Διαβάστε περισσότερα

Sadrˇzaj. Sadrˇzaj 1 9 DVODIMENZIONALNI SLUČAJNI VEKTOR DISKRETNI DVODIMENZIONALNI

Sadrˇzaj. Sadrˇzaj 1 9 DVODIMENZIONALNI SLUČAJNI VEKTOR DISKRETNI DVODIMENZIONALNI Sadrˇzaj Sadrˇzaj DVODIMENZIONALNI. DISKRETNI DVODIMENZIONALNI............................ KONTINUIRANI -dim tko želi znati više.............................. 5. KOVARIJANCA, KORELACIJA, PRAVCI REGRESIJE........

Διαβάστε περισσότερα

2.2 Srednje vrijednosti. aritmetička sredina, medijan, mod. Podaci (realizacije varijable X): x 1,x 2,...,x n (1)

2.2 Srednje vrijednosti. aritmetička sredina, medijan, mod. Podaci (realizacije varijable X): x 1,x 2,...,x n (1) 2.2 Srednje vrijednosti aritmetička sredina, medijan, mod Podaci (realizacije varijable X): x 1,x 2,...,x n (1) 1 2.2.1 Aritmetička sredina X je numerička varijabla. Aritmetička sredina od (1) je broj:

Διαβάστε περισσότερα

Verovatnoća i Statistika I deo Teorija verovatnoće (zadaci) Beleške dr Bobana Marinkovića

Verovatnoća i Statistika I deo Teorija verovatnoće (zadaci) Beleške dr Bobana Marinkovića Verovatnoća i Statistika I deo Teorija verovatnoće zadaci Beleške dr Bobana Marinkovića Iz skupa, 2,, 00} bira se na slučajan način 5 brojeva Odrediti skup elementarnih dogadjaja ako se brojevi biraju

Διαβάστε περισσότερα

a M a A. Može se pokazati da je supremum (ako postoji) jedinstven pa uvodimo oznaku sup A.

a M a A. Može se pokazati da je supremum (ako postoji) jedinstven pa uvodimo oznaku sup A. 3 Infimum i supremum Definicija. Neka je A R. Kažemo da je M R supremum skupa A ako je (i) M gornja meda skupa A, tj. a M a A. (ii) M najmanja gornja meda skupa A, tj. ( ε > 0)( a A) takav da je a > M

Διαβάστε περισσότερα

Vjerojatnost i matematička statistika

Vjerojatnost i matematička statistika Vjerojatnost i matematička statistika Ante Mimica Poslijediplomski specijalistički studij aktuarske matematike 29. siječnja 2016. Sadržaj kolegija 1. Opisna analiza podataka 2. Slučajne varijable 3. Funkcije

Διαβάστε περισσότερα

7 Algebarske jednadžbe

7 Algebarske jednadžbe 7 Algebarske jednadžbe 7.1 Nultočke polinoma Skup svih polinoma nad skupom kompleksnih brojeva označavamo sa C[x]. Definicija. Nultočka polinoma f C[x] je svaki kompleksni broj α takav da je f(α) = 0.

Διαβάστε περισσότερα

4 Testiranje statističkih hipoteza

4 Testiranje statističkih hipoteza 4 Testiranje statističkih hipoteza 1 4.1. Statistička hipoteza Promatramo statističko obilježje X. Statistička hipoteza je (bilo koja) pretpostavka o (populacijskoj) razdiobi od X. Kažemo da je statistička

Διαβάστε περισσότερα

18. listopada listopada / 13

18. listopada listopada / 13 18. listopada 2016. 18. listopada 2016. 1 / 13 Neprekidne funkcije Važnu klasu funkcija tvore neprekidne funkcije. To su funkcije f kod kojih mala promjena u nezavisnoj varijabli x uzrokuje malu promjenu

Διαβάστε περισσότερα

Uvod u vjerojatnost i matematičku statistiku

Uvod u vjerojatnost i matematičku statistiku Uvod u vjerojatnost i matematičku statistiku - vježbe - Danijel Krizmanić 28. rujna 2007. Sadržaj Osnove vjerojatnosti 2 2 Kombinatorika i vjerojatnost 5 3 Uvjetna vjerojatnost. Nezavisnost 9 4 Geometrijske

Διαβάστε περισσότερα

Apsolutno neprekidne raspodele Raspodele apsolutno neprekidnih sluqajnih promenljivih nazivaju se apsolutno neprekidnim raspodelama.

Apsolutno neprekidne raspodele Raspodele apsolutno neprekidnih sluqajnih promenljivih nazivaju se apsolutno neprekidnim raspodelama. Apsolutno neprekidne raspodele Raspodele apsolutno neprekidnih sluqajnih promenljivih nazivaju se apsolutno neprekidnim raspodelama. a b Verovatno a da sluqajna promenljiva X uzima vrednost iz intervala

Διαβάστε περισσότερα

(P.I.) PRETPOSTAVKA INDUKCIJE - pretpostavimo da tvrdnja vrijedi za n = k.

(P.I.) PRETPOSTAVKA INDUKCIJE - pretpostavimo da tvrdnja vrijedi za n = k. 1 3 Skupovi brojeva 3.1 Skup prirodnih brojeva - N N = {1, 2, 3,...} Aksiom matematičke indukcije Neka je N skup prirodnih brojeva i M podskup od N. Ako za M vrijede svojstva: 1) 1 M 2) n M (n + 1) M,

Διαβάστε περισσότερα

Ako između tri slučajne varijable postoji veza ζ = f (ξ, η) i ako su poznate sve relevantne gustoće vjerojatnosti, tada je

Ako između tri slučajne varijable postoji veza ζ = f (ξ, η) i ako su poznate sve relevantne gustoće vjerojatnosti, tada je Višekomponentne slučajne varijable Srednje vrijednosti i momenti Definicija srednje vrijednosti Ako između tri slučajne varijable postoji veza ζ = f (ξ, η) i ako su poznate sve relevantne gustoće vjerojatnosti,

Διαβάστε περισσότερα

Testiranje statističkih hipoteza Materijali za nastavu iz Statistike

Testiranje statističkih hipoteza Materijali za nastavu iz Statistike Testiranje statističkih hipoteza Materijali za nastavu iz Statistike Kristina Krulić Himmelreich i Ksenija Smoljak 2012/13 1 / 39 Uvod Osnovna zadaća Statistike je na temelju uzorka ocijeniti kakvu razdiobu

Διαβάστε περισσότερα

(BIO)STATISTIKA. seminari. smjer: Prehrambena tehnologija i Biotehnologija. pripremila: dr.sc. Iva Franjić

(BIO)STATISTIKA. seminari. smjer: Prehrambena tehnologija i Biotehnologija. pripremila: dr.sc. Iva Franjić (BIO)STATISTIKA seminari smjer: Prehrambena tehnologija i Biotehnologija pripremila: dr.sc. Iva Franjić Sadržaj DESKRIPTIVNA STATISTIKA 4. Grafički prikaz podataka..................... 4. Srednje vrijednosti

Διαβάστε περισσότερα

PRIMJER 3. MATLAB filtdemo

PRIMJER 3. MATLAB filtdemo PRIMJER 3. MATLAB filtdemo Prijenosna funkcija (IIR) Hz () =, 6 +, 3 z +, 78 z +, 3 z +, 53 z +, 3 z +, 78 z +, 3 z +, 6 z, 95 z +, 74 z +, z +, 9 z +, 4 z +, 5 z +, 3 z +, 4 z 3 4 5 6 7 8 3 4 5 6 7 8

Διαβάστε περισσότερα

radni nerecenzirani materijal za predavanja R(f) = {f(x) x D}

radni nerecenzirani materijal za predavanja R(f) = {f(x) x D} Matematika 1 Funkcije radni nerecenzirani materijal za predavanja Definicija 1. Neka su D i K bilo koja dva neprazna skupa. Postupak f koji svakom elementu x D pridružuje točno jedan element y K zovemo funkcija

Διαβάστε περισσότερα

Zadaci sa prethodnih prijemnih ispita iz matematike na Beogradskom univerzitetu

Zadaci sa prethodnih prijemnih ispita iz matematike na Beogradskom univerzitetu Zadaci sa prethodnih prijemnih ispita iz matematike na Beogradskom univerzitetu Trigonometrijske jednačine i nejednačine. Zadaci koji se rade bez upotrebe trigonometrijskih formula. 00. FF cos x sin x

Διαβάστε περισσότερα

Parametarski zadane neprekidne distribucije

Parametarski zadane neprekidne distribucije Sveučilište J. J. Strossmayera u Osijeku Odjel za matematiku Sveučilišni preddiplomski studij matematike Kristijan Šućur Parametarski zadane neprekidne distribucije Završni rad Osijek, 217. Sveučilište

Διαβάστε περισσότερα

TRIGONOMETRIJSKE FUNKCIJE I I.1.

TRIGONOMETRIJSKE FUNKCIJE I I.1. TRIGONOMETRIJSKE FUNKCIJE I I Odredi na brojevnoj trigonometrijskoj kružnici točku Et, za koju je sin t =,cost < 0 Za koje realne brojeve a postoji realan broj takav da je sin = a? Izračunaj: sin π tg

Διαβάστε περισσότερα

Optimalnost u procjeni Nepristran procjenitelj minimalne varijance Cramer-Rao donja granica - ekasnost Konzistentnost. Vjeºbe - Statistika II.

Optimalnost u procjeni Nepristran procjenitelj minimalne varijance Cramer-Rao donja granica - ekasnost Konzistentnost. Vjeºbe - Statistika II. Vjeºbe - Statistika II. dio Optimalnost u procjeni Procjenitelja ima puno, pa treba imati kriterije za usporedbu izmežu njih. Radi jednostavnosti promatramo samo jednodimenzionalne parametre θ Θ R Funkcija

Διαβάστε περισσότερα

VEROVATNO A I STATISTIKA A - TEST 1 9. NOVEMBAR 2013.

VEROVATNO A I STATISTIKA A - TEST 1 9. NOVEMBAR 2013. VEROVATNO A I STATISTIKA A - TEST 1 9. NOVEMBAR 2013. 1. Novqi se baca tri puta. (a) Zapisati skup svih mogu ih ishoda. (b) Oznaqimo sa A k događaj da je u k-tom bacanju palo pismo, k {1, 2, 3}. Koriste

Διαβάστε περισσότερα

radni nerecenzirani materijal za predavanja

radni nerecenzirani materijal za predavanja Matematika 1 Funkcije radni nerecenzirani materijal za predavanja Definicija 1. Kažemo da je funkcija f : a, b R u točki x 0 a, b postiže lokalni minimum ako postoji okolina O(x 0 ) broja x 0 takva da je

Διαβάστε περισσότερα

π π ELEKTROTEHNIČKI ODJEL i) f (x) = x 3 x 2 x + 1, a = 1, b = 1;

π π ELEKTROTEHNIČKI ODJEL i) f (x) = x 3 x 2 x + 1, a = 1, b = 1; 1. Provjerite da funkcija f definirana na segmentu [a, b] zadovoljava uvjete Rolleova poučka, pa odredite barem jedan c a, b takav da je f '(c) = 0 ako je: a) f () = 1, a = 1, b = 1; b) f () = 4, a =,

Διαβάστε περισσότερα

Jednodimenzionalne slučajne promenljive

Jednodimenzionalne slučajne promenljive Jednodimenzionalne slučajne promenljive Definicija slučajne promenljive Neka je X f-ja def. na prostoru verovatnoća (Ω, F, P) koja preslikava prostor el. ishoda Ω u skup R realnih brojeva: (1)Skup {ω/

Διαβάστε περισσότερα

Procjena parametara. Zadatak 4.1 Neka je X 1, X 2,..., X n slučajni uzorak iz populacije s konačnim očekivanjem µ i varijancom σ 2.

Procjena parametara. Zadatak 4.1 Neka je X 1, X 2,..., X n slučajni uzorak iz populacije s konačnim očekivanjem µ i varijancom σ 2. 4 Procjea parametara Neka je X slučaja varijabla čiju distribuciju proučavamo. Defiicija: Slučaji uzorak duljie za X je iz od ezavisih i jedako distribuiraih slučajih varijabli X 1, X,..., X koje imaju

Διαβάστε περισσότερα

3.1 Granična vrednost funkcije u tački

3.1 Granična vrednost funkcije u tački 3 Granična vrednost i neprekidnost funkcija 2 3 Granična vrednost i neprekidnost funkcija 3. Granična vrednost funkcije u tački Neka je funkcija f(x) definisana u tačkama x za koje je 0 < x x 0 < r, ili

Διαβάστε περισσότερα

Statistika. primjeri i zadaci. Ante Mimica, Marina Ninčević. 30. kolovoza 2010.

Statistika. primjeri i zadaci. Ante Mimica, Marina Ninčević. 30. kolovoza 2010. Statistika primjeri i zadaci Ante Mimica, Marina Ninčević 3. kolovoza. Sadržaj Opisna statistika 5. Zadaci za vježbu................................ 4 Neprekidne slučajne varijable 47. Normalna distribucija..............................

Διαβάστε περισσότερα

Statističko zaključivanje jedna varijabla

Statističko zaključivanje jedna varijabla Poglavlje 5 Statističko zaključivanje jedna varijabla 5.1 Procjena distribucije, očekivanja i varijance U prethodnim poglavljima naučili smo da se veličine promatrane na jedinkama obuhvaćenim nekim istraživanjem

Διαβάστε περισσότερα

Zadaci iz Osnova matematike

Zadaci iz Osnova matematike Zadaci iz Osnova matematike 1. Riješiti po istinitosnoj vrijednosti iskaza p, q, r jednačinu τ(p ( q r)) =.. Odrediti sve neekvivalentne iskazne formule F = F (p, q) za koje je iskazna formula p q p F

Διαβάστε περισσότερα

Veleučilište u Rijeci Stručni studij sigurnosti na radu Akad. god. 2011/2012. Matematika. Monotonost i ekstremi. Katica Jurasić. Rijeka, 2011.

Veleučilište u Rijeci Stručni studij sigurnosti na radu Akad. god. 2011/2012. Matematika. Monotonost i ekstremi. Katica Jurasić. Rijeka, 2011. Veleučilište u Rijeci Stručni studij sigurnosti na radu Akad. god. 2011/2012. Matematika Monotonost i ekstremi Katica Jurasić Rijeka, 2011. Ishodi učenja - predavanja Na kraju ovog predavanja moći ćete:,

Διαβάστε περισσότερα

9. GRANIČNA VRIJEDNOST I NEPREKIDNOST FUNKCIJE GRANIČNA VRIJEDNOST ILI LIMES FUNKCIJE

9. GRANIČNA VRIJEDNOST I NEPREKIDNOST FUNKCIJE GRANIČNA VRIJEDNOST ILI LIMES FUNKCIJE Geodetski akultet, dr sc J Beban-Brkić Predavanja iz Matematike 9 GRANIČNA VRIJEDNOST I NEPREKIDNOST FUNKCIJE GRANIČNA VRIJEDNOST ILI LIMES FUNKCIJE Granična vrijednost unkcije kad + = = Primjer:, D( )

Διαβάστε περισσότερα

Monte Carlo metode Bojan Basrak, PMF MO Zagreb. Financijski praktikum 29. veljače 2016.

Monte Carlo metode Bojan Basrak, PMF MO Zagreb. Financijski praktikum 29. veljače 2016. Monte Carlo metode Bojan Basrak, PMF MO Zagreb Financijski praktikum 29. veljače 2016. 1 Monte Carlo metode 2 Primjene modeliranje složenih sustava upravljanje portfeljima u financijama i osiguranju procjena

Διαβάστε περισσότερα

Osnove teorije uzoraka

Osnove teorije uzoraka Oove teorije uzoraka Oove teorije uzoraka UZORAK: lučaji, reprezetativi dio oovog kupa populacije Uzorci: 1.uzorak:,, 1 1.uzorak:,, i.uzorak:,, i i Razdioba aritmetičke redie uzorka f ( ) f ( ) razdioba

Διαβάστε περισσότερα

BILJEŠKE ZA PREDAVANJA (za internu uporabu)

BILJEŠKE ZA PREDAVANJA (za internu uporabu) 1. Statistika - Nazivlje... 2 2. Statistika podjela statističkih analiza... 2 3. Objekti, varijable, mjerne skale... 3 4. Ekstremne i nedostajuće vrijednosti podaci... 4 5. Ciljevi statističke analize...

Διαβάστε περισσότερα

STATISTIKA. KONCEPTI : POPULACIJA i UZORAK. Primjer: svi glasači, samo neki glasači

STATISTIKA. KONCEPTI : POPULACIJA i UZORAK. Primjer: svi glasači, samo neki glasači STATISTIKA KONCEPTI : POPULACIJA i UZORAK Primjer: svi glasači, samo neki glasači populacija uključuje sve podatke, a uzorak samo dio, slučajno izabranih kako procjeniti reprezentativni element? MJERE

Διαβάστε περισσότερα

Statističke metode. doc. dr Dijana Karuović

Statističke metode. doc. dr Dijana Karuović Statističke metode doc. dr Dijana Karuović STATISTIČKE METODE Danas jedan od glavnih metoda naučnog saznanja Najvažnije statističke metode koje se upotrebljavaju: Metod uzorka Metod srednjih vrednosti

Διαβάστε περισσότερα

Sadrˇzaj. Sadrˇzaj MATEMATIČKA STATISTIKA DESKRIPTIVNA STATISTIKA Ponovimo... 15

Sadrˇzaj. Sadrˇzaj MATEMATIČKA STATISTIKA DESKRIPTIVNA STATISTIKA Ponovimo... 15 Sadrˇzaj Sadrˇzaj 1 11 MATEMATIČKA STATISTIKA 3 11.1 DESKRIPTIVNA STATISTIKA..................... 5 11. Poovimo................................. 15 1 Radi materijal Poglavlje 11 MATEMATIČKA STATISTIKA

Διαβάστε περισσότερα

SADR\AJ. Predgovor. POGLAVLJE 2 Grafičko opisivanje podataka Klasifikacija varijabli 10 Kvalitativne ili numeričke 10 Mjerne skale 11

SADR\AJ. Predgovor. POGLAVLJE 2 Grafičko opisivanje podataka Klasifikacija varijabli 10 Kvalitativne ili numeričke 10 Mjerne skale 11 KRATAK SADR\AJ Poglavlje 1 Čemu proučavati statistiku? 1 Poglavlje 2 Grafičko opisivanje podataka 9 Poglavlje 3 Numeričko opisivanje podataka 46 Poglavlje 4 Vjerojatnost 78 Poglavlje 5 Diskretne slučajne

Διαβάστε περισσότερα

U teoriji vjerojatnosti razmatraju se događaji koji se mogu, ali ne moraju dogoditi. Takvi se događaji zovu slučajnim događajima.

U teoriji vjerojatnosti razmatraju se događaji koji se mogu, ali ne moraju dogoditi. Takvi se događaji zovu slučajnim događajima. Sažetak vjerojatnost Skup ishoda U teoriji vjerojatnosti razmatraju se događaji koji se mogu, ali ne moraju dogoditi. Takvi se događaji zovu slučajnim događajima. Jednostavne događaje u nekom pokusu zvat

Διαβάστε περισσότερα

Populacija Ciljna/uzoračka populacija

Populacija Ciljna/uzoračka populacija Populacija i uzorak Sadržaj predavanja Šta je populacija, šta je uzorak a šta uzorkovanje? Statističko zaključivanje Klasifikacija uzoraka: sa i bez verovatnoće, sa i bez zamenjivanja Uzoračke raspodele

Διαβάστε περισσότερα

Karakteristične funkcije

Karakteristične funkcije Sveučilište J. J. Strossmayera u Osijeku Odjel za matematiku Sveučilišni preddiplomski studij matematike Matea Spajić Karakteristične funkcije Završni rad Osijek, 2015. Sveučilište J. J. Strossmayera u

Διαβάστε περισσότερα

MATRICE I DETERMINANTE - formule i zadaci - (Matrice i determinante) 1 / 15

MATRICE I DETERMINANTE - formule i zadaci - (Matrice i determinante) 1 / 15 MATRICE I DETERMINANTE - formule i zadaci - (Matrice i determinante) 1 / 15 Matrice - osnovni pojmovi (Matrice i determinante) 2 / 15 (Matrice i determinante) 2 / 15 Matrice - osnovni pojmovi Matrica reda

Διαβάστε περισσότερα

STATISTIKA I OSNOVE FIZIKALNIH MJERENJA

STATISTIKA I OSNOVE FIZIKALNIH MJERENJA STATISTIKA I OSNOVE FIZIKALNIH MJERENJA ŽELJKO SKOKO PREDAVANJA: ČETVRTAK, 12-14 h, F25 VJEŽBE: ČETVRTAK, 14-15 h, F25 MIRKO BAĆANI KONZULTACIJE: PETAK, 11-12.30 h ili prema dogovoru e-mail: zskoko@phy.hr

Διαβάστε περισσότερα

Riješeni zadaci: Limes funkcije. Neprekidnost

Riješeni zadaci: Limes funkcije. Neprekidnost Riješeni zadaci: Limes funkcije. Neprekidnost Limes funkcije Neka je 0 [a, b] i f : D R, gdje je D = [a, b] ili D = [a, b] \ { 0 }. Kažemo da je es funkcije f u točki 0 jednak L i pišemo f ) = L, ako za

Διαβάστε περισσότερα

1 Osnovni pojmovi Tipovi varijabli Skale mjerenja... 3

1 Osnovni pojmovi Tipovi varijabli Skale mjerenja... 3 Sadržaj Predgovor iii 1 Osnovni pojmovi 1 1.1 Tipovi varijabli............................ 2 1.2 Skale mjerenja............................ 3 2 Organizacija i prikazivanje podataka 5 2.1 Sirovi podatci.............................

Διαβάστε περισσότερα

Neka je a 3 x 3 + a 2 x 2 + a 1 x + a 0 = 0 algebarska jednadžba trećeg stupnja. Rješavanje ove jednadžbe sastoji se od nekoliko koraka.

Neka je a 3 x 3 + a 2 x 2 + a 1 x + a 0 = 0 algebarska jednadžba trećeg stupnja. Rješavanje ove jednadžbe sastoji se od nekoliko koraka. Neka je a 3 x 3 + a x + a 1 x + a 0 = 0 algebarska jednadžba trećeg stupnja. Rješavanje ove jednadžbe sastoji se od nekoliko koraka. 1 Normiranje jednadžbe. Jednadžbu podijelimo s a 3 i dobivamo x 3 +

Διαβάστε περισσότερα

DRUGI KOLOKVIJUM IZ MATEMATIKE 9x + 6y + z = 1 4x 2y + z = 1 x + 2y + 3z = 2. je neprekidna za a =

DRUGI KOLOKVIJUM IZ MATEMATIKE 9x + 6y + z = 1 4x 2y + z = 1 x + 2y + 3z = 2. je neprekidna za a = x, y, z) 2 2 1 2. Rešiti jednačinu: 2 3 1 1 2 x = 1. x = 3. Odrediti rang matrice: rang 9x + 6y + z = 1 4x 2y + z = 1 x + 2y + 3z = 2. 2 0 1 1 1 3 1 5 2 8 14 10 3 11 13 15 = 4. Neka je A = x x N x < 7},

Διαβάστε περισσότερα

PRIMIJENJENA MATEMATIKA

PRIMIJENJENA MATEMATIKA SVEUČILIŠTE U RIJECI POMORSKI FAKULTET U RIJECI BISERKA DRAŠČIĆ BAN, TIBOR POGANJ PRIMIJENJENA MATEMATIKA Autorizirana predavanja i vježbe Rijeka, 2009. Sadržaj Poglavlje 1. Kombinatorika 5 1. Permutacije

Διαβάστε περισσότερα

IspitivaƬe funkcija: 1. Oblast definisanosti funkcije (ili domen funkcije) D f

IspitivaƬe funkcija: 1. Oblast definisanosti funkcije (ili domen funkcije) D f IspitivaƬe funkcija: 1. Oblast definisanosti funkcije (ili domen funkcije) D f IspitivaƬe funkcija: 1. Oblast definisanosti funkcije (ili domen funkcije) D f 2. Nule i znak funkcije; presek sa y-osom IspitivaƬe

Διαβάστε περισσότερα

Neka su A i B skupovi. Kažemo da je A podskup od B i pišemo A B ako je svaki element skupa A ujedno i element skupa B. Simbolima to zapisujemo:

Neka su A i B skupovi. Kažemo da je A podskup od B i pišemo A B ako je svaki element skupa A ujedno i element skupa B. Simbolima to zapisujemo: 2 Skupovi Neka su A i B skupovi. Kažemo da je A podskup od B i pišemo A B ako je svaki element skupa A ujedno i element skupa B. Simbolima to zapisujemo: A B def ( x)(x A x B) Kažemo da su skupovi A i

Διαβάστε περισσότερα

Zadaci iz trigonometrije za seminar

Zadaci iz trigonometrije za seminar Zadaci iz trigonometrije za seminar FON: 1. Vrednost izraza sin 1 cos 6 jednaka je: ; B) 1 ; V) 1 1 + 1 ; G) ; D). 16. Broj rexea jednaqine sin x cos x + cos x = sin x + sin x na intervalu π ), π je: ;

Διαβάστε περισσότερα

Uvod u neparametarske testove

Uvod u neparametarske testove Str. 148 Uvod u neparametarske testove Predavač: Dr Mirko Savić savicmirko@ef.uns.ac.rs www.ef.uns.ac.rs Hi-kvadrat testovi c Str. 149 Koristi se za upoređivanje dve serije frekvencija. Vrste c testa:

Διαβάστε περισσότερα

Slučajna varijabla i vjerojatnost.

Slučajna varijabla i vjerojatnost. Statistika, Prehrambeno-tehnološki fakultet 1 Slučajna varijabla i vjerojatnost. Primjer 1: Promotrimo pokus koji se sastoji od zagrijavanja određene količine vode pod normalnim atmosferskim tlakom na

Διαβάστε περισσότερα

UNIVERZITET U NIŠU ELEKTRONSKI FAKULTET SIGNALI I SISTEMI. Zbirka zadataka

UNIVERZITET U NIŠU ELEKTRONSKI FAKULTET SIGNALI I SISTEMI. Zbirka zadataka UNIVERZITET U NIŠU ELEKTRONSKI FAKULTET Goran Stančić SIGNALI I SISTEMI Zbirka zadataka NIŠ, 014. Sadržaj 1 Konvolucija Literatura 11 Indeks pojmova 11 3 4 Sadržaj 1 Konvolucija Zadatak 1. Odrediti konvoluciju

Διαβάστε περισσότερα

( x) ( ) ( ) ( x) ( ) ( x) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

( x) ( ) ( ) ( x) ( ) ( x) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) Zadatak 08 (Vedrana, maturantica) Je li unkcija () = cos (sin ) sin (cos ) parna ili neparna? Rješenje 08 Funkciju = () deiniranu u simetričnom području a a nazivamo: parnom, ako je ( ) = () neparnom,

Διαβάστε περισσότερα

Osnovni primer. (Z, +,,, 0, 1) je komutativan prsten sa jedinicom: množenje je distributivno prema sabiranju

Osnovni primer. (Z, +,,, 0, 1) je komutativan prsten sa jedinicom: množenje je distributivno prema sabiranju RAČUN OSTATAKA 1 1 Prsten celih brojeva Z := N + {} N + = {, 3, 2, 1,, 1, 2, 3,...} Osnovni primer. (Z, +,,,, 1) je komutativan prsten sa jedinicom: sabiranje (S1) asocijativnost x + (y + z) = (x + y)

Διαβάστε περισσότερα

13. TESTIRANJE HIPOTEZE O NEPOZNATIM KARAKTERISTIKAMA POPULACIJE

13. TESTIRANJE HIPOTEZE O NEPOZNATIM KARAKTERISTIKAMA POPULACIJE 13. TESTIRANJE HIPOTEZE O NEPOZNATIM KARAKTERISTIKAMA POPULACIJE χ - TEST χ -test je neparametrijski test kojim se vrlo uspješno rješavaju problemi masovnih pojava kao što su: testiranje hipoteze da distribucija

Διαβάστε περισσότερα

2.7 Primjene odredenih integrala

2.7 Primjene odredenih integrala . INTEGRAL 77.7 Primjene odredenih integrala.7.1 Računanje površina Pořsina lika omedenog pravcima x = a i x = b te krivuljama y = f(x) i y = g(x) je b P = f(x) g(x) dx. a Zadatak.61 Odredite površinu

Διαβάστε περισσότερα

4 Funkcije. 4.1 Pojam funkcije

4 Funkcije. 4.1 Pojam funkcije 4 Funkcije 4.1 Pojam unkcije Neka su i neprazni skupovi i pravilo koje svakom elementu skupa pridružuje točno jedan element skupa. Tada se uredena trojka (,, ) naziva preslikavanje ili unkcija sa skupa

Διαβάστε περισσότερα

Matematičke metode u marketingu. Generalizirani linearni model. Lavoslav Čaklović PMF-MO

Matematičke metode u marketingu. Generalizirani linearni model. Lavoslav Čaklović PMF-MO Matematičke metode u marketingu. Generalizirani linearni model Lavoslav Čaklović PMF-MO 2016 Jedan loš linearni model n = 1000, i = 1,..., n { 1 ako yi > 0 y Y = i = 2x i + rnorm(n) 0 inače x i = round(0.001

Διαβάστε περισσότερα

Slučajni proces i njegova svojstva

Slučajni proces i njegova svojstva Slučajni proces i njegova svojsva omislav Peković sudeni 29. 1. Slučajni proces Definicija 1.1. (Slučajni proces). Slučajni ili sohasički proces je familija slučajnih varijabli X(, ω) 1. Slučajni proces

Διαβάστε περισσότερα

Neparametarski testovi za dva nezavisna uzorka. Boris Glišić 208/2010 Bojana Ružičić 21/2010

Neparametarski testovi za dva nezavisna uzorka. Boris Glišić 208/2010 Bojana Ružičić 21/2010 Neparametarski testovi za dva nezavisna uzorka Boris Glišić 208/2010 Bojana Ružičić 21/2010 Neparametarski testovi Hipoteze o raspodeli obeležja se nazivaju neparametarske hipoteze, a odgovarajući testovi

Διαβάστε περισσότερα

( , treći kolokvij) 3. Na dite lokalne ekstreme funkcije z = x 4 + y 4 2x 2 + 2y 2 3. (20 bodova)

( , treći kolokvij) 3. Na dite lokalne ekstreme funkcije z = x 4 + y 4 2x 2 + 2y 2 3. (20 bodova) A MATEMATIKA (.6.., treći kolokvij. Zadana je funkcija z = e + + sin(. Izračunajte a z (,, b z (,, c z.. Za funkciju z = 3 + na dite a diferencijal dz, b dz u točki T(, za priraste d =. i d =.. c Za koliko

Διαβάστε περισσότερα

Sume kvadrata. mn = (ax + by) 2 + (ay bx) 2.

Sume kvadrata. mn = (ax + by) 2 + (ay bx) 2. Sume kvadrata Koji se prirodni brojevi mogu prikazati kao zbroj kvadrata dva cijela broja? Propozicija 1. Ako su brojevi m i n sume dva kvadrata, onda je i njihov produkt m n takoder suma dva kvadrata.

Διαβάστε περισσότερα

MATEMATIKA 3. (vjerojatnost - zadaća)

MATEMATIKA 3. (vjerojatnost - zadaća) http://www.fsb.hr/matematika/ MATEMATIKA 3 (vjerojatnost - zadaća) Vjerojatnost. Kolika je vjerojatnost da bacanjem dviju kockica dobijemo zbroj veći od 6? 2. Strijelac A i strijelac B ga daju metu 3 puta.

Διαβάστε περισσότερα

Determinante. a11 a. a 21 a 22. Definicija 1. (Determinanta prvog reda) Determinanta matrice A = [a] je broj a.

Determinante. a11 a. a 21 a 22. Definicija 1. (Determinanta prvog reda) Determinanta matrice A = [a] je broj a. Determinante Determinanta A deta je funkcija definirana na skupu svih kvadratnih matrica, a poprima vrijednosti iz skupa skalara Osim oznake deta za determinantu kvadratne matrice a 11 a 12 a 1n a 21 a

Διαβάστε περισσότερα

Više dokaza jedne poznate trigonometrijske nejednakosti u trokutu

Više dokaza jedne poznate trigonometrijske nejednakosti u trokutu Osječki matematički list 000), 5 9 5 Više dokaza jedne poznate trigonometrijske nejednakosti u trokutu Šefket Arslanagić Alija Muminagić Sažetak. U radu se navodi nekoliko različitih dokaza jedne poznate

Διαβάστε περισσότερα

Statistika i osnovna mjerenja

Statistika i osnovna mjerenja Statistika i osnovna mjerenja Teorija vjerojatnosti M. Makek 2016/2017 Uvod Pokus bilo koji postupak ili proces koji rezultira opažanjem Ishod moguć rezultat pokusa (različiti ishodi se međusobno isključuju)

Διαβάστε περισσότερα

Grafičko prikazivanje atributivnih i geografskih nizova

Grafičko prikazivanje atributivnih i geografskih nizova Grafičko prikazivanje atributivnih i geografskih nizova Biserka Draščić Ban Pomorski fakultet u Rijeci 17. veljače 2011. Grafičko prikazivanje atributivnih nizova Atributivni nizovi prikazuju se grafički

Διαβάστε περισσότερα

Zavrxni ispit iz Matematiqke analize 1

Zavrxni ispit iz Matematiqke analize 1 Građevinski fakultet Univerziteta u Beogradu 3.2.2016. Zavrxni ispit iz Matematiqke analize 1 Prezime i ime: Broj indeksa: 1. Definisati Koxijev niz. Dati primer niza koji nije Koxijev. 2. Dat je red n=1

Διαβάστε περισσότερα

kolokviji i pismeni ispiti

kolokviji i pismeni ispiti Matematika 3 Matematika 3 Sadržaj kolokviji i pismeni ispiti Matematika 3, 3A, 3B 4 Zadaće......................................................... 5 vjerojatnost - zadaća..............................................

Διαβάστε περισσότερα

Aktuarska matematika II, 2.dio. Bojan Basrak

Aktuarska matematika II, 2.dio. Bojan Basrak Aktuarska matematika II, 2.dio Bojan Basrak 2016 1 1. Bayesovska statistika Apriori i aposteriori razdioba Matematički gledano vjerojatnost je tek funkcija koja na matematički konzistentan način slučajnim

Διαβάστε περισσότερα

- pravac n je zadan s točkom T(2,0) i koeficijentom smjera k=2. (30 bodova)

- pravac n je zadan s točkom T(2,0) i koeficijentom smjera k=2. (30 bodova) MEHANIKA 1 1. KOLOKVIJ 04/2008. grupa I 1. Zadane su dvije sile F i. Sila F = 4i + 6j [ N]. Sila je zadana s veličinom = i leži na pravcu koji s koordinatnom osi x zatvara kut od 30 (sve komponente sile

Διαβάστε περισσότερα

SISTEMI NELINEARNIH JEDNAČINA

SISTEMI NELINEARNIH JEDNAČINA SISTEMI NELINEARNIH JEDNAČINA April, 2013 Razni zapisi sistema Skalarni oblik: Vektorski oblik: F = f 1 f n f 1 (x 1,, x n ) = 0 f n (x 1,, x n ) = 0, x = (1) F(x) = 0, (2) x 1 0, 0 = x n 0 Definicije

Διαβάστε περισσότερα

nepoznati parametar θ jednak broju θ 0, u oznaci H 0 (θ =θ 0 ), je primer proste hipoteze. Ako hipoteza nije prosta, onda je složena.

nepoznati parametar θ jednak broju θ 0, u oznaci H 0 (θ =θ 0 ), je primer proste hipoteze. Ako hipoteza nije prosta, onda je složena. Testiraje parametarskih hipoteza Pretpostavka (hipoteza) o parametru raspodele se zove parametarska hipoteza. Postupak jeog potvrđivaja ili odbacivaja a osovu podataka iz uzorka je parametarski test. t

Διαβάστε περισσότερα

I INFORMATIKE STATISTIKA. Uvod u verovatnoću i statistiku Osnovni pojmovi matematičke statistike Parametri deskriptivne statistike

I INFORMATIKE STATISTIKA. Uvod u verovatnoću i statistiku Osnovni pojmovi matematičke statistike Parametri deskriptivne statistike OSNOVE SPORTSKE STATISTIKE I INFORMATIKE Predavač: Dragan Veličković, dipl.mat. MSc. profesor matematike i računarstva ECDL ovlašćeni ispitivač CS 0826J 1. Uvod STATISTIKA Uvod u verovatnoću i statistiku

Διαβάστε περισσότερα

Autori: Dr Biljana Popović, redovni profesor Prirodno matematičkog fakulteta u Nišu Mr Borislava Blagojević, asistent Gradjevinskog fakulteta u Nišu

Autori: Dr Biljana Popović, redovni profesor Prirodno matematičkog fakulteta u Nišu Mr Borislava Blagojević, asistent Gradjevinskog fakulteta u Nišu Biblioteka: ACADEMIA Autori: Dr Biljana Popović, redovni profesor Prirodno matematičkog fakulteta u Nišu Mr Borislava Blagojević, asistent Gradjevinskog fakulteta u Nišu MATEMATIČKA STATISTIKA SA PRIMENAMA

Διαβάστε περισσότερα

MATEMATIKA 2. Grupa 1 Rexea zadataka. Prvi pismeni kolokvijum, Dragan ori

MATEMATIKA 2. Grupa 1 Rexea zadataka. Prvi pismeni kolokvijum, Dragan ori MATEMATIKA 2 Prvi pismeni kolokvijum, 14.4.2016 Grupa 1 Rexea zadataka Dragan ori Zadaci i rexea 1. unkcija f : R 2 R definisana je sa xy 2 f(x, y) = x2 + y sin 3 2 x 2, (x, y) (0, 0) + y2 0, (x, y) =

Διαβάστε περισσότερα

MATEMATIČKA STATISTIKA

MATEMATIČKA STATISTIKA MATEMATIČKA STATISTIKA Bilješke s predavaja (prof. dr. sc. Miljeko Huzak akademske godie 04./05. Natipkao i uredio: Kristija Kilassa Kvaterik Ova skripta služi samo kao pomoć u praćeju predavaja iz istoimeog

Διαβάστε περισσότερα

41. Jednačine koje se svode na kvadratne

41. Jednačine koje se svode na kvadratne . Jednačine koje se svode na kvadrane Simerične recipročne) jednačine Jednačine oblika a n b n c n... c b a nazivamo simerične jednačine, zbog simeričnosi koeficijenaa koeficijeni uz jednaki). k i n k

Διαβάστε περισσότερα

Dijagrami: Greda i konzola. Prosta greda. II. Dijagrami unutarnjih sila. 2. Popre nih sila TZ 3. Momenata savijanja My. 1. Uzdužnih sila N. 11.

Dijagrami: Greda i konzola. Prosta greda. II. Dijagrami unutarnjih sila. 2. Popre nih sila TZ 3. Momenata savijanja My. 1. Uzdužnih sila N. 11. Dijagrami:. Udužnih sia N Greda i konoa. Popre nih sia TZ 3. Momenata savijanja My. dio Prosta greda. Optere ena koncentriranom siom F I. Reaktivne sie:. M A = 0 R B F a = 0. M B = 0 R A F b = 0 3. F =

Διαβάστε περισσότερα

Moguća i virtuelna pomjeranja

Moguća i virtuelna pomjeranja Dnamka sstema sa vezama Moguća vrtuelna pomjeranja f k ( r 1,..., r N, t) = 0 (k = 1, 2,..., K ) df k dt = r + t = 0 d r = r dt moguća pomjeranja zadovoljavaju uvjet: df k = d r + dt = 0. t δ r = δx +

Διαβάστε περισσότερα

2.6 Nepravi integrali

2.6 Nepravi integrali 66. INTEGRAL.6 Neprvi integrli Definicij. Nek je f : [, R funkcij koj je Riemnn integrbiln n svkom podsegmentu [, ] od [,. Ako postoji končn es f() (.4) ond se tj es zove neprvi integrl funkcije f n [,

Διαβάστε περισσότερα

2. KOLOKVIJ IZ MATEMATIKE 1

2. KOLOKVIJ IZ MATEMATIKE 1 2 cos(3 π 4 ) sin( + π 6 ). 2. Pomoću linearnih transformacija funkcije f nacrtajte graf funkcije g ako je, g() = 2f( + 3) +. 3. Odredite domenu funkcije te odredite f i njenu domenu. log 3 2 + 3 7, 4.

Διαβάστε περισσότερα

I.13. Koliki je napon između neke tačke A čiji je potencijal 5 V i referentne tačke u odnosu na koju se taj potencijal računa?

I.13. Koliki je napon između neke tačke A čiji je potencijal 5 V i referentne tačke u odnosu na koju se taj potencijal računa? TET I.1. Šta je Kulonova sila? elektrostatička sila magnetna sila c) gravitaciona sila I.. Šta je elektrostatička sila? sila kojom međusobno eluju naelektrisanja u mirovanju sila kojom eluju naelektrisanja

Διαβάστε περισσότερα

Str

Str Str. Testiranje statističkih hipoteza Predavač: Dr Mirko Savić savicmirko@ef.uns.ac.rs www.ef.uns.ac.rs Definicija: Hipoteza predstavlja pretpostavku koja je zasnovana na određenim činjenicama (najčešće

Διαβάστε περισσότερα

UVOD DEFINICIJA: Statistika planiranje i provođenje pokusa skupljanje podataka interpretacija

UVOD DEFINICIJA: Statistika planiranje i provođenje pokusa skupljanje podataka interpretacija OSNOVE STATISTIKE UVOD DEFINICIJA: Statistika je grana matematike koja obuhvaća sakupljanje, analizu, interpretaciju i prezentaciju podataka te izradu predviđanja koja se temelje na tim podacima. Smatra

Διαβάστε περισσότερα

KONVEKSNI SKUPOVI. Definicije: potprostor, afin skup, konveksan skup, konveksan konus. 1/5. Back FullScr

KONVEKSNI SKUPOVI. Definicije: potprostor, afin skup, konveksan skup, konveksan konus. 1/5. Back FullScr KONVEKSNI SKUPOVI Definicije: potprostor, afin skup, konveksan skup, konveksan konus. 1/5 KONVEKSNI SKUPOVI Definicije: potprostor, afin skup, konveksan skup, konveksan konus. 1/5 1. Neka su x, y R n,

Διαβάστε περισσότερα

Sistemi veštačke inteligencije primer 1

Sistemi veštačke inteligencije primer 1 Sistemi veštačke inteligencije primer 1 1. Na jeziku predikatskog računa formalizovati rečenice: a) Miloš je slikar. b) Sava nije slikar. c) Svi slikari su umetnici. Uz pomoć metode rezolucije dokazati

Διαβάστε περισσότερα

mogućih vrijednosti rs3. Za m, n N, mn+1 m 2 +n 2 m2 + n 2 mn + 1 je kvadrat prirodnog broja.

mogućih vrijednosti rs3. Za m, n N, mn+1 m 2 +n 2 m2 + n 2 mn + 1 je kvadrat prirodnog broja. r1. Neka je n fiksan prirodan broj. Neka je k bilo koji prirodan broj ne veći od n i neka je S skup nekih k različitih prostih brojeva. Ivica i Marica igraju naizmjenično sljedeću igru. Svako od njih bira

Διαβάστε περισσότερα

VJEŽBE IZ MATEMATIKE 1

VJEŽBE IZ MATEMATIKE 1 VJEŽBE IZ MATEMATIKE 1 Ivana Baranović Miroslav Jerković Lekcija 8 Pojam funkcije, grafa i inverzne funkcije Poglavlje 1 Funkcije Neka su X i Y dva neprazna skupa. Ako je po nekom pravilu, ozna imo ga

Διαβάστε περισσότερα

Ispitivanje toka i skiciranje grafika funkcija

Ispitivanje toka i skiciranje grafika funkcija Ispitivanje toka i skiciranje grafika funkcija Za skiciranje grafika funkcije potrebno je ispitati svako od sledećih svojstava: Oblast definisanosti: D f = { R f R}. Parnost, neparnost, periodičnost. 3

Διαβάστε περισσότερα

Redovi funkcija. Redovi potencija. Franka Miriam Brückler

Redovi funkcija. Redovi potencija. Franka Miriam Brückler Franka Miriam Brückler Redovi funkcija 1 + (x 2) + 1 + x + x 2 + x 3 + x 4 +... = (x 2)2 2! + (x 2)3 3! + +... = sin(x) + sin(2x) + sin(3x) +... = x n, + + n=1 (x 2) n, n! sin(nx). Redovi funkcija 1 +

Διαβάστε περισσότερα

PROCJENE PARAMETARA POPULACIJE

PROCJENE PARAMETARA POPULACIJE PROCJENE PARAMETARA POPULACIJE Iferecijala statistika je skup postupaka kojima se a osovi rezultata iz uzorka doose zaključci o populaciji. INFERENCIJALNA STATISTIKA Procjee parametara Testiraje hipoteza

Διαβάστε περισσότερα

MATEMATIKA Pokažite da za konjugiranje (a + bi = a bi) vrijedi. a) z=z b) z 1 z 2 = z 1 z 2 c) z 1 ± z 2 = z 1 ± z 2 d) z z= z 2

MATEMATIKA Pokažite da za konjugiranje (a + bi = a bi) vrijedi. a) z=z b) z 1 z 2 = z 1 z 2 c) z 1 ± z 2 = z 1 ± z 2 d) z z= z 2 (kompleksna analiza, vježbe ). Izračunajte a) (+i) ( i)= b) (i+) = c) i + i 4 = d) i+i + i 3 + i 4 = e) (a+bi)(a bi)= f) (+i)(i )= Skicirajte rješenja u kompleksnoj ravnini.. Pokažite da za konjugiranje

Διαβάστε περισσότερα