Kvantni računalnik. Avtor: Miha Muškinja Mentor: prof. dr. Norma Susana Mankoč Borštnik

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "Kvantni računalnik. Avtor: Miha Muškinja Mentor: prof. dr. Norma Susana Mankoč Borštnik"

Transcript

1 Kvantni računalnik Avtor: Miha Muškinja Mentor: prof. dr. Norma Susana Mankoč Borštnik

2 Vsebina predstavitve Moorov zakon, Osnove kvantnega računalnika: kvantni bit, kvantni register, Kvantna logična vrata, Kvantni algoritmi: časovna zahtevnost, zmogljivost kvantnih računalnikov in Groverjev algoritem. Realizacija kvantnega računalnika. 2

3 Moorov zakon Gordon Moore, 1965: število tranzistorjev, ki jih lahko postavimo na integrirano vezje, se podvoji vsaki dve leti. Današnja vezja vsebujejo 10⁹ tranzistorjev. Velikost tranzistorjev ter razdalja med komponentami je pod 50nm. Razdalja med osnovnimi celicami silicija je 0,543nm. 3

4 Kvantni bit (qubit) Je osnovna struktura kvantnega računalnika. Dvonivojski sistem, ki ima dve bazni stanji: 0 in 1. Ne zazeseda le enega stanja, temveč superpozicijo obeh baznih stanj: ψ = α 0 + β 1, α 2 + β 2 = 1. 4

5 Meritev kvantnega bita Stanja ne moremo določiti tako kot pri klasičnem bitu. Po meritvi izmerimo natanko eno bazno stanje. Kvadrat koeficientov α in β predstavlja verjetnost, da izmerimo določeno bazno stanje. Po meritvi se kvantni bit sesede v eno izmed baznih stanj. 5

6 Kvantni register Kvantni register je skupek več kvantnih bitov. Kvantni register, sestavljen iz n kvantnih bitov, ima 2 n baznih stanj. Kvantni register iz štirih bitov zapišemo tako: ψ = α α α α Po meritvi se prav tako sesede v eno izmed baznih stanj. 6

7 Kvantna logična vrata So sestavni elementi kvantnih vezij. Predstavimo jih z unitarnimi operatorji. Najpogosteje delujejo na enem ali dveh kvantnih bitih. Zapišemo jih v obliki matrik, bazna stanja pa predstavimo z vektorji (l je indeks bita): 0 l = 1 0 l, 1 l = 0 1 l. 7

8 Univerzalni set kvantnih vrat Je katerikoli nabor kvantnih vrat, s katerimi lahko predstavimo vsako možno operacijo na kvantnem računalniku. Tak set lahko sestavimo z Hadamardovimi vrati, faznimi vrati ter vrati C-NOT. 8

9 Hadamardova vrata Delujejo na enem kvantnem bitu. Zapišemo jih tako (l je indeks bita, na katerega delujejo): H l = l Ponazoritev v kvantnem vezju: 9

10 Hadamardova vrata Delovanje na baznih stanjih: H l = l 0 l = 1 0 l 1 l = 0 1 l H 0 = , H 1 = Register v osnovnem stanju pretvorijo v register, ki zaseda vsa možna stanja: 3 l=1 H l 00 0 = 1 8 ijk =0,1 ijk 10

11 Fazna vrata Delujejo na enem kvantnem bitu, zapišemo jih tako: R l Φ = e iφ. l Bazni stanji transformirajo tako: R(Φ) 0 = 0, R(Φ) 1 = e iφ 1. Upodobitev v kvantnem vezju: 11

12 Vrata C-NOT ( Controlled NOT gate ) Delujejo na dva qubita, zapišemo novo bazo: 00 = , 01 = , 10 = Vrata lahko zdaj predstavimo z matriko: , 11 = C NOT =

13 Vrata C-NOT ( Controlled NOT gate ) Delovanje na baznih stanjih: C NOT 00 = 00, C NOT 01 = 01, C NOT 10 = 11, C NOT 11 = 10. Predstavitev v kvantnem vezju: 13

14 Kvantni algoritmi So zaporedje operacij na kvantnih bitih. Vse klasične algoritme lahko predstavimo z ekvivalentnim kvantnim algoritmom [Tommaso Toffoli leta 1980]. Nekaterih kvantnih operacij ne moremo izvesti na klasičnih algoritmih. Kvantni algoritmi lahko bolj učinkovito rešijo določene probleme. 14

15 Časovna zahtevnost Mera, ki pove, kako dober je nek algoritem. Pove, koliko elementarnih operacij je potrebno izvršiti v odvisnosti od velikosti vhodnih podatkov. Oznaka je velik O. Algoritem quicksort ima časovno zahtevnost: O(N log N) 15

16 Zmogljivost kvantnih računalnikov Kvantni algoritmi imajo za reševanje določenih problemov boljšo časovno zahtevnost. Primer takšnega algoritma sta Shorov ter Groverjev algoritem. Shorov algoritem je uporaben predvsem za faktorizacijo števil, ima časovno zahtevnost: O((log N) 3 ) Najboljši klasični algoritem za faktorizacijo ima eksponentno časovno zahtevnost. 16

17 Groverjev algoritem Algoritem za iskanje po neurejeni bazi. Časovna zahtevnost Groverjevega algoritma je za primerljiv klasični pa O( N), O N. Primer problema, kjer bi deloval Groverjev algoritem, je iskanje lastnika dane telefonske številke v imeniku. 17

18 Priprava Groverjevega algoritma Definiramo funkcijo: f k = 1, če je k iskani element 0, če k ni iskani element Definiramo operator orakelj : Ô k = 1 f k k. Če z k 0 označimo iskani element, lahko orakelj zapišemo tako: Ô = I 2 k 0 k 0. 18

19 Postopek Groverjevega algoritma Register pripravimo v superpozicijo elementov neurejene baze: 1 s = N Amplituda iskanega elementa je Definiramo operator: N 1 k=0 k. s k 0 2 = 1 N ε = 2 s s I Ô = 2 s s I I 2 k 0 k 0. 19

20 Postopek Groverjevega algoritma Z operatorjem delujemo na začetno stanje in dobimo: ε s = N 4 N s + 2 N k 0. Amplituda iskanega elementa se je povečala: εs k 0 2 = N 4 N N + 2 N 2 9 N. 20

21 Časovna zahtevnost algoritma Za izračun časovne zahtevnosti definiramo novo spremenljivko: sin 2 θ = 1 N, cos2 θ = N 1 N Definiramo stanje vseh razen iskanega elementa: 1 s = N 1 k k 0 Pogledamo, kaj naredi operator : k ε j ε j s = cos((2j + 1) θ) s + sin( 2j + 1 θ) k 0 21

22 Časovna zahtevnost algoritma Amplituda pred iskanim elementom po j ponovitvah: Za velike N velja ε j s k 0 2 = sin 2 ( 2j + 1 θ) θ 1/ N. Amplituda bo maksimalna, ko bo zadoščeno: j = j 0 = π 4 N 1 2 Zaključimo, da je časovna zahtevnost O N. 22

23 Realizacija kvantnega računalnika 4. aprila, 2012 je bil objavljen članek o uspešni uporabi dvo-qubitnega kvantnega računalnika. Kvantni računalnik je bil zgrajen v diamantu z nečistočami. Kvantna bita sta bila predstavljena s spinom elektrona in spinom jedra dušika. Največji problem predstavlja dekoherenca. 23

24 Dekoherenca je izguba koherence med komponentami sistema v kvantni superpoziciji. Primer: elektron v spinskem stanju ψ = 1 2 ali stanju 50%, 50% Tipičen čas dekoherence elektronskega spina v omenjenem eksperimentu je nekaj mikro sekund. Dekoherence so se ubranili z mikrovalovnimi pulzi, ki obračajo spin elektrona. 24

25 Izvedba Groverjevega algoritma Skupina je uspešno demonstrirala Groverjev algoritem. Dva qubita pomenita štiri različna stanja, potreben je samo en korak, da najdemo iskan element: j 0 = π 4 N 1 2 = 1.07 sin2 2j N = sin 2 (1.5) =

26 Izvedba Groverjevega algoritma Celoten postopek algoritma je trajal 322μs, kar je 100 krat več od časa dekoherence spina elektrona. Kljub temu je bila uspešnost algoritma večja od 90%. Stanje sistema med algoritmom: 26

27 Zaključek Predstavili smo Moorov zakon. Spoznali smo osnove kvantnega računalnika, kot so kvantni bit, kvantni register ter kvantna logična vrata. Seznanili smo se s prednostmi kvantnih računalnikov (algoritmov). Podrobneje smo si ogledali Groverjev algoritem. Spoznali smo primer kvantnega računalnika. 27

28 Hvala za pozornost! 28

KODE ZA ODKRIVANJE IN ODPRAVLJANJE NAPAK

KODE ZA ODKRIVANJE IN ODPRAVLJANJE NAPAK 1 / 24 KODE ZA ODKRIVANJE IN ODPRAVLJANJE NAPAK Štefko Miklavič Univerza na Primorskem MARS, Avgust 2008 Phoenix 2 / 24 Phoenix 3 / 24 Phoenix 4 / 24 Črtna koda 5 / 24 Črtna koda - kontrolni bit 6 / 24

Διαβάστε περισσότερα

Diferencialna enačba, v kateri nastopata neznana funkcija in njen odvod v prvi potenci

Diferencialna enačba, v kateri nastopata neznana funkcija in njen odvod v prvi potenci Linearna diferencialna enačba reda Diferencialna enačba v kateri nastopata neznana funkcija in njen odvod v prvi potenci d f + p= se imenuje linearna diferencialna enačba V primeru ko je f 0 se zgornja

Διαβάστε περισσότερα

Funkcijske vrste. Matematika 2. Gregor Dolinar. Fakulteta za elektrotehniko Univerza v Ljubljani. 2. april Gregor Dolinar Matematika 2

Funkcijske vrste. Matematika 2. Gregor Dolinar. Fakulteta za elektrotehniko Univerza v Ljubljani. 2. april Gregor Dolinar Matematika 2 Matematika 2 Gregor Dolinar Fakulteta za elektrotehniko Univerza v Ljubljani 2. april 2014 Funkcijske vrste Spomnimo se, kaj je to številska vrsta. Dano imamo neko zaporedje realnih števil a 1, a 2, a

Διαβάστε περισσότερα

Zaporedja. Matematika 1. Gregor Dolinar. Fakulteta za elektrotehniko Univerza v Ljubljani. 22. oktober Gregor Dolinar Matematika 1

Zaporedja. Matematika 1. Gregor Dolinar. Fakulteta za elektrotehniko Univerza v Ljubljani. 22. oktober Gregor Dolinar Matematika 1 Matematika 1 Gregor Dolinar Fakulteta za elektrotehniko Univerza v Ljubljani 22. oktober 2013 Kdaj je zaporedje {a n } konvergentno, smo definirali s pomočjo limite zaporedja. Večkrat pa je dobro vedeti,

Διαβάστε περισσότερα

Funkcije. Matematika 1. Gregor Dolinar. Fakulteta za elektrotehniko Univerza v Ljubljani. 21. november Gregor Dolinar Matematika 1

Funkcije. Matematika 1. Gregor Dolinar. Fakulteta za elektrotehniko Univerza v Ljubljani. 21. november Gregor Dolinar Matematika 1 Matematika 1 Gregor Dolinar Fakulteta za elektrotehniko Univerza v Ljubljani 21. november 2013 Hiperbolične funkcije Hiperbolični sinus sinhx = ex e x 2 20 10 3 2 1 1 2 3 10 20 hiperbolični kosinus coshx

Διαβάστε περισσότερα

Odvod. Matematika 1. Gregor Dolinar. Fakulteta za elektrotehniko Univerza v Ljubljani. 5. december Gregor Dolinar Matematika 1

Odvod. Matematika 1. Gregor Dolinar. Fakulteta za elektrotehniko Univerza v Ljubljani. 5. december Gregor Dolinar Matematika 1 Matematika 1 Gregor Dolinar Fakulteta za elektrotehniko Univerza v Ljubljani 5. december 2013 Primer Odvajajmo funkcijo f(x) = x x. Diferencial funkcije Spomnimo se, da je funkcija f odvedljiva v točki

Διαβάστε περισσότερα

Funkcije. Matematika 1. Gregor Dolinar. Fakulteta za elektrotehniko Univerza v Ljubljani. 14. november Gregor Dolinar Matematika 1

Funkcije. Matematika 1. Gregor Dolinar. Fakulteta za elektrotehniko Univerza v Ljubljani. 14. november Gregor Dolinar Matematika 1 Matematika 1 Gregor Dolinar Fakulteta za elektrotehniko Univerza v Ljubljani 14. november 2013 Kvadratni koren polinoma Funkcijo oblike f(x) = p(x), kjer je p polinom, imenujemo kvadratni koren polinoma

Διαβάστε περισσότερα

Kotne in krožne funkcije

Kotne in krožne funkcije Kotne in krožne funkcije Kotne funkcije v pravokotnem trikotniku Avtor: Rok Kralj, 4.a Gimnazija Vič, 009/10 β a c γ b α sin = a c cos= b c tan = a b cot = b a Sinus kota je razmerje kotu nasprotne katete

Διαβάστε περισσότερα

Iterativno reševanje sistemov linearnih enačb. Numerične metode, sistemi linearnih enačb. Numerične metode FE, 2. december 2013

Iterativno reševanje sistemov linearnih enačb. Numerične metode, sistemi linearnih enačb. Numerične metode FE, 2. december 2013 Numerične metode, sistemi linearnih enačb B. Jurčič Zlobec Numerične metode FE, 2. december 2013 1 Vsebina 1 z n neznankami. a i1 x 1 + a i2 x 2 + + a in = b i i = 1,..., n V matrični obliki zapišemo:

Διαβάστε περισσότερα

Tretja vaja iz matematike 1

Tretja vaja iz matematike 1 Tretja vaja iz matematike Andrej Perne Ljubljana, 00/07 kompleksna števila Polarni zapis kompleksnega števila z = x + iy): z = rcos ϕ + i sin ϕ) = re iϕ Opomba: Velja Eulerjeva formula: e iϕ = cos ϕ +

Διαβάστε περισσότερα

PONOVITEV SNOVI ZA 4. TEST

PONOVITEV SNOVI ZA 4. TEST PONOVITEV SNOVI ZA 4. TEST 1. * 2. *Galvanski člen z napetostjo 1,5 V požene naboj 40 As. Koliko električnega dela opravi? 3. ** Na uporniku je padec napetosti 25 V. Upornik prejme 750 J dela v 5 minutah.

Διαβάστε περισσότερα

8. Diskretni LTI sistemi

8. Diskretni LTI sistemi 8. Diskreti LI sistemi. Naloga Določite odziv diskretega LI sistema s podaim odzivom a eoti impulz, a podai vhodi sigal. h[] x[] - - 5 6 7 - - 5 6 7 LI sistem se a vsak eoti impulz δ[] a vhodu odzove z

Διαβάστε περισσότερα

Booleova algebra. Izjave in Booleove spremenljivke

Booleova algebra. Izjave in Booleove spremenljivke Izjave in Booleove spremenljivke vsako izjavo obravnavamo kot spremenljivko če je izjava resnična (pravilna), ima ta spremenljivka vrednost 1, če je neresnična (nepravilna), pa vrednost 0 pravimo, da gre

Διαβάστε περισσότερα

Delovna točka in napajalna vezja bipolarnih tranzistorjev

Delovna točka in napajalna vezja bipolarnih tranzistorjev KOM L: - Komnikacijska elektronika Delovna točka in napajalna vezja bipolarnih tranzistorjev. Določite izraz za kolektorski tok in napetost napajalnega vezja z enim virom in napetostnim delilnikom na vhod.

Διαβάστε περισσότερα

matrike A = [a ij ] m,n αa 11 αa 12 αa 1n αa 21 αa 22 αa 2n αa m1 αa m2 αa mn se števanje po komponentah (matriki morata biti enakih dimenzij):

matrike A = [a ij ] m,n αa 11 αa 12 αa 1n αa 21 αa 22 αa 2n αa m1 αa m2 αa mn se števanje po komponentah (matriki morata biti enakih dimenzij): 4 vaja iz Matematike 2 (VSŠ) avtorica: Melita Hajdinjak datum: Ljubljana, 2009 matrike Matrika dimenzije m n je pravokotna tabela m n števil, ki ima m vrstic in n stolpcev: a 11 a 12 a 1n a 21 a 22 a 2n

Διαβάστε περισσότερα

Zaporedja. Matematika 1. Gregor Dolinar. Fakulteta za elektrotehniko Univerza v Ljubljani. 15. oktober Gregor Dolinar Matematika 1

Zaporedja. Matematika 1. Gregor Dolinar. Fakulteta za elektrotehniko Univerza v Ljubljani. 15. oktober Gregor Dolinar Matematika 1 Matematika 1 Gregor Dolinar Fakulteta za elektrotehniko Univerza v Ljubljani 15. oktober 2013 Oglejmo si, kako množimo dve kompleksni števili, dani v polarni obliki. Naj bo z 1 = r 1 (cosϕ 1 +isinϕ 1 )

Διαβάστε περισσότερα

Odvod. Matematika 1. Gregor Dolinar. Fakulteta za elektrotehniko Univerza v Ljubljani. 10. december Gregor Dolinar Matematika 1

Odvod. Matematika 1. Gregor Dolinar. Fakulteta za elektrotehniko Univerza v Ljubljani. 10. december Gregor Dolinar Matematika 1 Matematika 1 Gregor Dolinar Fakulteta za elektrotehniko Univerza v Ljubljani 10. december 2013 Izrek (Rolleov izrek) Naj bo f : [a,b] R odvedljiva funkcija in naj bo f(a) = f(b). Potem obstaja vsaj ena

Διαβάστε περισσότερα

SKUPNE PORAZDELITVE VEČ SLUČAJNIH SPREMENLJIVK

SKUPNE PORAZDELITVE VEČ SLUČAJNIH SPREMENLJIVK SKUPNE PORAZDELITVE SKUPNE PORAZDELITVE VEČ SLUČAJNIH SPREMENLJIVK Kovaec vržemo trikrat. Z ozačimo število grbov ri rvem metu ( ali ), z Y a skuo število grbov (,, ali 3). Kako sta sremelivki i Y odvisi

Διαβάστε περισσότερα

IZPIT IZ ANALIZE II Maribor,

IZPIT IZ ANALIZE II Maribor, Maribor, 05. 02. 200. (a) Naj bo f : [0, 2] R odvedljiva funkcija z lastnostjo f() = f(2). Dokaži, da obstaja tak c (0, ), da je f (c) = 2f (2c). (b) Naj bo f(x) = 3x 3 4x 2 + 2x +. Poišči tak c (0, ),

Διαβάστε περισσότερα

Numerično reševanje. diferencialnih enačb II

Numerično reševanje. diferencialnih enačb II Numerčno reševanje dferencaln enačb I Dferencalne enačbe al ssteme dferencaln enačb rešujemo numerčno z več razlogov:. Ne znamo j rešt analtčno.. Posamezn del dferencalne enačbe podan tabelarčno. 3. Podatke

Διαβάστε περισσότερα

Funkcije. Matematika 1. Gregor Dolinar. Fakulteta za elektrotehniko Univerza v Ljubljani. 12. november Gregor Dolinar Matematika 1

Funkcije. Matematika 1. Gregor Dolinar. Fakulteta za elektrotehniko Univerza v Ljubljani. 12. november Gregor Dolinar Matematika 1 Matematika 1 Gregor Dolinar Fakulteta za elektrotehniko Univerza v Ljubljani 12. november 2013 Graf funkcije f : D R, D R, je množica Γ(f) = {(x,f(x)) : x D} R R, torej podmnožica ravnine R 2. Grafi funkcij,

Διαβάστε περισσότερα

Algoritmi in podatkovne strukture 2. Številska drevesa

Algoritmi in podatkovne strukture 2. Številska drevesa Algoritmi in podatkovne strukture 2 Številska drevesa osnove, PATRICIA, LC Trie Andrej Brodnik: Algoritmi in podatkovne strukture 2 / Številska drevesa osnove, PATRICIA, LC Trie (03) 1 Osnove rekurzivna

Διαβάστε περισσότερα

p 1 ENTROPIJSKI ZAKON

p 1 ENTROPIJSKI ZAKON ENROPIJSKI ZAKON REERZIBILNA srememba: moža je obrjea srememba reko eakih vmesih staj kot rvota srememba. Po obeh sremembah e sme biti obeih trajih srememb v bližji i dalji okolici. IREERZIBILNA srememba:

Διαβάστε περισσότερα

13. Jacobijeva metoda za računanje singularnega razcepa

13. Jacobijeva metoda za računanje singularnega razcepa 13. Jacobijeva metoda za računanje singularnega razcepa Bor Plestenjak NLA 25. maj 2010 Bor Plestenjak (NLA) 13. Jacobijeva metoda za računanje singularnega razcepa 25. maj 2010 1 / 12 Enostranska Jacobijeva

Διαβάστε περισσότερα

*M * Osnovna in višja raven MATEMATIKA NAVODILA ZA OCENJEVANJE. Sobota, 4. junij 2011 SPOMLADANSKI IZPITNI ROK. Državni izpitni center

*M * Osnovna in višja raven MATEMATIKA NAVODILA ZA OCENJEVANJE. Sobota, 4. junij 2011 SPOMLADANSKI IZPITNI ROK. Državni izpitni center Državni izpitni center *M40* Osnovna in višja raven MATEMATIKA SPOMLADANSKI IZPITNI ROK NAVODILA ZA OCENJEVANJE Sobota, 4. junij 0 SPLOŠNA MATURA RIC 0 M-40-- IZPITNA POLA OSNOVNA IN VIŠJA RAVEN 0. Skupaj:

Διαβάστε περισσότερα

Gimnazija Krˇsko. vektorji - naloge

Gimnazija Krˇsko. vektorji - naloge Vektorji Naloge 1. V koordinatnem sistemu so podane točke A(3, 4), B(0, 2), C( 3, 2). a) Izračunaj dolžino krajevnega vektorja točke A. (2) b) Izračunaj kot med vektorjema r A in r C. (4) c) Izrazi vektor

Διαβάστε περισσότερα

Integralni račun. Nedoločeni integral in integracijske metrode. 1. Izračunaj naslednje nedoločene integrale: (a) dx. (b) x 3 +3+x 2 dx, (c) (d)

Integralni račun. Nedoločeni integral in integracijske metrode. 1. Izračunaj naslednje nedoločene integrale: (a) dx. (b) x 3 +3+x 2 dx, (c) (d) Integralni račun Nedoločeni integral in integracijske metrode. Izračunaj naslednje nedoločene integrale: d 3 +3+ 2 d, (f) (g) (h) (i) (j) (k) (l) + 3 4d, 3 +e +3d, 2 +4+4 d, 3 2 2 + 4 d, d, 6 2 +4 d, 2

Διαβάστε περισσότερα

Το άτομο του Υδρογόνου

Το άτομο του Υδρογόνου Το άτομο του Υδρογόνου Δυναμικό Coulomb Εξίσωση Schrödinger h e (, r, ) (, r, ) E (, r, ) m ψ θφ r ψ θφ = ψ θφ Συνθήκες ψ(, r θφ, ) = πεπερασμένη ψ( r ) = 0 ψ(, r θφ, ) =ψ(, r θφ+, ) π Επιτρεπτές ενέργειες

Διαβάστε περισσότερα

Osnove elektrotehnike uvod

Osnove elektrotehnike uvod Osnove elektrotehnike uvod Uvod V nadaljevanju navedena vprašanja so prevod testnih vprašanj, ki sem jih našel na omenjeni spletni strani. Vprašanja zajemajo temeljna znanja opredeljenega strokovnega področja.

Διαβάστε περισσότερα

1. Definicijsko območje, zaloga vrednosti. 2. Naraščanje in padanje, ekstremi. 3. Ukrivljenost. 4. Trend na robu definicijskega območja

1. Definicijsko območje, zaloga vrednosti. 2. Naraščanje in padanje, ekstremi. 3. Ukrivljenost. 4. Trend na robu definicijskega območja ZNAČILNOSTI FUNKCIJ ZNAČILNOSTI FUNKCIJE, KI SO RAZVIDNE IZ GRAFA. Deinicijsko območje, zaloga vrednosti. Naraščanje in padanje, ekstremi 3. Ukrivljenost 4. Trend na robu deinicijskega območja 5. Periodičnost

Διαβάστε περισσότερα

Na pregledni skici napišite/označite ustrezne točke in paraboli. A) 12 B) 8 C) 4 D) 4 E) 8 F) 12

Na pregledni skici napišite/označite ustrezne točke in paraboli. A) 12 B) 8 C) 4 D) 4 E) 8 F) 12 Predizpit, Proseminar A, 15.10.2015 1. Točki A(1, 2) in B(2, b) ležita na paraboli y = ax 2. Točka H leži na y osi in BH je pravokotna na y os. Točka C H leži na nosilki BH tako, da je HB = BC. Parabola

Διαβάστε περισσότερα

Kvantni delec na potencialnem skoku

Kvantni delec na potencialnem skoku Kvantni delec na potencialnem skoku Delec, ki se giblje premo enakomerno, pride na mejo, kjer potencial naraste s potenciala 0 na potencial. Takšno potencialno funkcijo zapišemo kot 0, 0 0,0. Slika 1:

Διαβάστε περισσότερα

Kontrolne karte uporabljamo za sprotno spremljanje kakovosti izdelka, ki ga izdelujemo v proizvodnem procesu.

Kontrolne karte uporabljamo za sprotno spremljanje kakovosti izdelka, ki ga izdelujemo v proizvodnem procesu. Kontrolne karte KONTROLNE KARTE Kontrolne karte uporablamo za sprotno spremlane kakovosti izdelka, ki ga izdeluemo v proizvodnem procesu. Izvaamo stalno vzorčene izdelkov, npr. vsako uro, vsake 4 ure.

Διαβάστε περισσότερα

ΕΠΙΤΥΧΟΝΤΕΣ ΑΕΙ 2009 Αρχιτεκτόνων Μηχανικών Κρήτης

ΕΠΙΤΥΧΟΝΤΕΣ ΑΕΙ 2009 Αρχιτεκτόνων Μηχανικών Κρήτης ΕΠΙΤΥΧΟΝΤΕΣ ΑΕΙ 2009 Χρηστίδης Δ. Ανωγιάτη Χ. Κοκκολάκη Α. Λουράντου Α. Χασάπης Φ. Σταυροπούλου Ε. Αλωνιστιώτη Δ. Καρκασίνας Α. Μαραγκουδάκης Θ. Κεφαλάς Γ. Μπαχά Α. Μπέζα Γ. Μποραζέλης Ν. Χίνης Π. Λύτρα

Διαβάστε περισσότερα

ΕΚΛΟΓΙΚΗ ΠΕΡΙΦΕΡΕΙΑ ΕΒΡΟΥ

ΕΚΛΟΓΙΚΗ ΠΕΡΙΦΕΡΕΙΑ ΕΒΡΟΥ ΕΚΛΟΓΙΚΗ ΠΕΡΙΦΕΡΕΙΑ ΕΒΡΟΥ ΑΣΗΜΑΚΟΠΟΥΛΟΣ ΣΠΥΡΙΔΩΝ του ΔΗΜΗΤΡΙΟΥ ΚΑΛΑΪΤΖΙΔΟΥ ΑΙΚΑΤΕΡΙΝΗ του ΜΙΧΑΗΛ ΚΟΖΑΡΗΣ ΚΥΡΙΑΚΟΣ του ΧΡΗΣΤΟΥ ΜΑΛΚΟΥΚΗΣ ΒΑΣΙΛΕΙΟΣ του ΔΗΜΗΤΡΙΟΥ ΜΟΡΑΛΗΣ ΖΗΣΗΣ του ΙΩΑΝΝΗ ΕΚΛΟΓΙΚΗ ΠΕΡΙΦΕΡΕΙΑ

Διαβάστε περισσότερα

Ι Ο Λ Ο Γ Ι Μ Ο - Α Π Ο Λ Ο Γ Ι Μ Ο Μ Η Ν Ο Γ Δ Κ Δ Μ Β Ρ Ι Ο Υ 2 0 1 5

Ι Ο Λ Ο Γ Ι Μ Ο - Α Π Ο Λ Ο Γ Ι Μ Ο Μ Η Ν Ο Γ Δ Κ Δ Μ Β Ρ Ι Ο Υ 2 0 1 5 Μ Ρ : 0 9 / 0 1 / 2 0 1 6 Ρ. Ρ Ω. : 7 Λ Γ Μ - Λ Γ Μ Μ Η Γ Δ Κ Δ Μ Β Ρ Υ 2 0 1 5 Δ Γ Ρ Ϋ Λ Γ Θ Δ ΚΔ Μ Β Δ Β Ω Θ Δ Δ Ρ Υ Θ Δ 0111 Χ / Γ Δ Θ Μ Θ Δ Ρ Ω Κ - - - 0112 Χ / Γ Λ Ρ Γ Κ Δ 2 3. 2 1 3. 0 0 0, 0 0-2

Διαβάστε περισσότερα

ΕΠΙΚΡΑΤΕΙΑΣ 1 2 3 4 5 6 7 8 9 10 11 12

ΕΠΙΚΡΑΤΕΙΑΣ 1 2 3 4 5 6 7 8 9 10 11 12 ΕΠΙΚΡΑΤΕΙΑΣ 1 2 3 4 5 6 7 8 9 10 11 12 ΠΕΡΙΦΕΡΕΙΑ ΑΝΑΤΟΛΙΚΗΣ ΜΑΚΕΔΟΝΙΑΣ ΚΑΙ ΘΡΑΚΗΣ ΔΡΑΜΑ 1 ΚΑΡΑΓΙΑΝΝΙΔΗΣ ΧΡΗΣΤΟΣ 2 ΣΥΜΕΩΝΙΔΟΥ ΣΤΑΥΡΟΥΛΑ 3 ΠΑΤΚΑΣ ΙΩΑΝΝΗΣ 4 ΠΑΓΚΑΛΙΔΟΥ ΔΗΜΗΤΡΑ 5 ΤΟΥΡΤΟΥΡΗ ΜΥΡΤΩ - ΡΟΖΑ ΕΒΡΟΣ

Διαβάστε περισσότερα

Splošno o interpolaciji

Splošno o interpolaciji Splošno o interpolaciji J.Kozak Numerične metode II (FM) 2011-2012 1 / 18 O funkciji f poznamo ali hočemo uporabiti le posamezne podatke, na primer vrednosti r i = f (x i ) v danih točkah x i Izberemo

Διαβάστε περισσότερα

Definicija. definiramo skalarni produkt. x i y i. in razdaljo. d(x, y) = x y = < x y, x y > = n (x i y i ) 2. i=1. i=1

Definicija. definiramo skalarni produkt. x i y i. in razdaljo. d(x, y) = x y = < x y, x y > = n (x i y i ) 2. i=1. i=1 Funkcije več realnih spremenljivk Osnovne definicije Limita in zveznost funkcije več spremenljivk Parcialni odvodi funkcije več spremenljivk Gradient in odvod funkcije več spremenljivk v dani smeri Parcialni

Διαβάστε περισσότερα

Analiza možnosti realizacije logičnih reverzibilnih vrat v trostanjskem kvantnem celičnem avtomatu

Analiza možnosti realizacije logičnih reverzibilnih vrat v trostanjskem kvantnem celičnem avtomatu Univerza v Ljubljani Fakulteta za računalništvo in informatiko Mark Rolih Analiza možnosti realizacije logičnih reverzibilnih vrat v trostanjskem kvantnem celičnem avtomatu diplomska naloga na univerzitetnem

Διαβάστε περισσότερα

Ε.Φ.Ο.Α. - Βαθμολογία 2014 (βδ.24) - Αγόρια U18 (best4) κτγρ # αα ΑΜ Ονοματεπώνυμο Έτος Σύλλογος ΕΝ Βαθμ b18 1 1 23775 ΑΝΤΩΝΟΠΟΥΛΟΣ ΧΡΗΣΤΟΣ 1998

Ε.Φ.Ο.Α. - Βαθμολογία 2014 (βδ.24) - Αγόρια U18 (best4) κτγρ # αα ΑΜ Ονοματεπώνυμο Έτος Σύλλογος ΕΝ Βαθμ b18 1 1 23775 ΑΝΤΩΝΟΠΟΥΛΟΣ ΧΡΗΣΤΟΣ 1998 b18 1 1 23775 ΑΝΤΩΝΟΠΟΥΛΟΣ ΧΡΗΣΤΟΣ 1998 Ο.Α.ΚΕΡΑΤΣΙΝΙΟΥ Θ 820.0 b18 2 2 25438 ΤΣΙΤΣΙΠΑΣ ΣΤΕΦΑΝΟΣ 1998 Ο.Α.ΓΛΥΦΑΔΑΣ ΙΑ 770.0 b18 3 3 24845 ΗΛΙΟΠΟΥΛΟΣ ΒΑΣΙΛΗΣ 1998 Α.Ο.Α.ΦΙΛΟΘΕΗΣ Η 750.0 b18 4 4 21565 ΘΕΟΔΩΡΟΥ

Διαβάστε περισσότερα

ΠΑΤΡΩΝΥΜΟ / ΟΝΟΜΑ ΣΥΖΥΓΟΥ 1 ΑΓΟΡΑΣΤΟΥ ΜΑΡΙΑ ΤΟΥ ΔΗΜΗΤΡΙΟΥ 2 ΑΘΑΝΑΣΙΑΔΗΣ ΙΩΑΝΝΗΣ ΤΟΥ ΠΑΥΛΟΥ 3 ΑΚΤΣΟΓΛΟΥ ΣΩΚΡΑΤΗΣ ΤΟΥ ΓΕΩΡΓΙΟΥ

ΠΑΤΡΩΝΥΜΟ / ΟΝΟΜΑ ΣΥΖΥΓΟΥ 1 ΑΓΟΡΑΣΤΟΥ ΜΑΡΙΑ ΤΟΥ ΔΗΜΗΤΡΙΟΥ 2 ΑΘΑΝΑΣΙΑΔΗΣ ΙΩΑΝΝΗΣ ΤΟΥ ΠΑΥΛΟΥ 3 ΑΚΤΣΟΓΛΟΥ ΣΩΚΡΑΤΗΣ ΤΟΥ ΓΕΩΡΓΙΟΥ Υποψήφιοι ημοτικοί Σύμβουλοι: ΠΑΤΡΩΝΥΜΟ / ΣΥΖΥΓΟΥ 1 ΑΓΟΡΑΣΤΟΥ ΜΑΡΙΑ ΤΟΥ ΔΗΜΗΤΡΙΟΥ 2 ΑΘΑΝΑΣΙΑΔΗΣ ΙΩΑΝΝΗΣ ΤΟΥ ΠΑΥΛΟΥ 3 ΑΚΤΣΟΓΛΟΥ ΣΩΚΡΑΤΗΣ ΤΟΥ ΓΕΩΡΓΙΟΥ 4 ΑΛΦΑΤΖΗΣ ΙΩΑΝΝΗΣ ΤΟΥ ΓΕΩΡΓΙΟΥ 5 ΑΜΟΡΓΙΑΝΟΣ ΝΙΚΟΛΑΟΣ

Διαβάστε περισσότερα

DISKRETNA FOURIERJEVA TRANSFORMACIJA

DISKRETNA FOURIERJEVA TRANSFORMACIJA 29.03.2004 Definicija DFT Outline DFT je linearna transformacija nekega vektorskega prostora dimenzije n nad obsegom K, ki ga označujemo z V K, pri čemer ima slednji lastnost, da vsebuje nek poseben element,

Διαβάστε περισσότερα

Osnovni primer. (Z, +,,, 0, 1) je komutativan prsten sa jedinicom: množenje je distributivno prema sabiranju

Osnovni primer. (Z, +,,, 0, 1) je komutativan prsten sa jedinicom: množenje je distributivno prema sabiranju RAČUN OSTATAKA 1 1 Prsten celih brojeva Z := N + {} N + = {, 3, 2, 1,, 1, 2, 3,...} Osnovni primer. (Z, +,,,, 1) je komutativan prsten sa jedinicom: sabiranje (S1) asocijativnost x + (y + z) = (x + y)

Διαβάστε περισσότερα

IZVODI ZADACI (I deo)

IZVODI ZADACI (I deo) IZVODI ZADACI (I deo) Najpre da se podsetimo tablice i osnovnih pravila:. C`=0. `=. ( )`= 4. ( n )`=n n-. (a )`=a lna 6. (e )`=e 7. (log a )`= 8. (ln)`= ` ln a (>0) 9. = ( 0) 0. `= (>0) (ovde je >0 i a

Διαβάστε περισσότερα

IZVODI ZADACI ( IV deo) Rešenje: Najpre ćemo logaritmovati ovu jednakost sa ln ( to beše prirodni logaritam za osnovu e) a zatim ćemo

IZVODI ZADACI ( IV deo) Rešenje: Najpre ćemo logaritmovati ovu jednakost sa ln ( to beše prirodni logaritam za osnovu e) a zatim ćemo IZVODI ZADACI ( IV deo) LOGARITAMSKI IZVOD Logariamskim izvodom funkcije f(), gde je >0 i, nazivamo izvod logarima e funkcije, o jes: (ln ) f ( ) f ( ) Primer. Nadji izvod funkcije Najpre ćemo logarimovai

Διαβάστε περισσότερα

MATEMATIČNI IZRAZI V MAFIRA WIKIJU

MATEMATIČNI IZRAZI V MAFIRA WIKIJU I FAKULTETA ZA MATEMATIKO IN FIZIKO Jadranska cesta 19 1000 Ljubljan Ljubljana, 25. marec 2011 MATEMATIČNI IZRAZI V MAFIRA WIKIJU KOMUNICIRANJE V MATEMATIKI Darja Celcer II KAZALO: 1 VSTAVLJANJE MATEMATIČNIH

Διαβάστε περισσότερα

Προσυνεδριακό σεµινάριο «Ελεγχος της αναπνευστικής λειτουργίας στα παιδιά» «Αναπνευστικές λοιµώξεις στα παιδιά»

Προσυνεδριακό σεµινάριο «Ελεγχος της αναπνευστικής λειτουργίας στα παιδιά» «Αναπνευστικές λοιµώξεις στα παιδιά» Προσυνεδριακό σεµινάριο «Ελεγχος της αναπνευστικής λειτουργίας στα παιδιά» «Αναπνευστικές λοιµώξεις στα παιδιά» τµήµα 1 Προσυνεδριακό σεµινάριο «Ελεγχος της αναπνευστικής λειτουργίας στα παιδιά» «Αναπνευστικές

Διαβάστε περισσότερα

Obrada signala

Obrada signala Obrada signala 1 18.1.17. Greška kvantizacije Pretpostavka je da greška kvantizacije ima uniformnu raspodelu 7 6 5 4 -X m p x 1,, za x druge vrednosti x 3 x X m 1 X m = 3 x Greška kvantizacije x x x p

Διαβάστε περισσότερα

CM707. GR Οδηγός χρήσης... 2-7. SLO Uporabniški priročnik... 8-13. CR Korisnički priručnik... 14-19. TR Kullanım Kılavuzu... 20-25

CM707. GR Οδηγός χρήσης... 2-7. SLO Uporabniški priročnik... 8-13. CR Korisnički priručnik... 14-19. TR Kullanım Kılavuzu... 20-25 1 2 3 4 5 6 7 OFFMANAUTO CM707 GR Οδηγός χρήσης... 2-7 SLO Uporabniški priročnik... 8-13 CR Korisnički priručnik... 14-19 TR Kullanım Kılavuzu... 20-25 ENG User Guide... 26-31 GR CM707 ΟΔΗΓΟΣ ΧΡΗΣΗΣ Περιγραφή

Διαβάστε περισσότερα

Ε.Φ.Ο.Α. - Βαθμολογία 2015 (βδ.47) - Κορίτσια U16 (best 8μ+3δ) κτγρ # αα ΑΜ Ονοματεπώνυμο Έτος Σύλλογος ΕΝ tours Βαθμ g16 1 1 22833 ΑΔΑΛΟΓΛΟΥ

Ε.Φ.Ο.Α. - Βαθμολογία 2015 (βδ.47) - Κορίτσια U16 (best 8μ+3δ) κτγρ # αα ΑΜ Ονοματεπώνυμο Έτος Σύλλογος ΕΝ tours Βαθμ g16 1 1 22833 ΑΔΑΛΟΓΛΟΥ g16 1 1 22833 ΑΔΑΛΟΓΛΟΥ ΜΑΓΔΑΛΗΝΗ 1999 Ε.Σ.Ο.ΕΠΙΚΟΥΡΟΣ ΠΟΛΙΧΝΗΣ Β 10 917.5 g16 2 2 90069 ΜΤΣΕΝΤΛΙΤΖΕ ΕΛΕΝΗ 2000 Α.Ο.Α.ΣΤΑΥΡΟΥΠΟΛΗΣ ΙΦΙΤΟΣ Β 7 666.0 g16 3 3 28688 ΣΤΑΜΑΤΟΓΙΑΝΝΟΠΟΥΛΟΥ ΒΑΣΙΛΙΚΗ 2001 Ο.Α.ΚΕΡΑΤΣΙΝΙΟΥ

Διαβάστε περισσότερα

Ε.Φ.Ο.Α. - Βαθμολογία 2014 (βδ.31) - Αγόρια U18 (best4) κτγρ # αα ΑΜ Ονοματεπώνυμο Έτος Σύλλογος ΕΝ Βαθμ b18 1 1 23775 ΑΝΤΩΝΟΠΟΥΛΟΣ ΧΡΗΣΤΟΣ 1998

Ε.Φ.Ο.Α. - Βαθμολογία 2014 (βδ.31) - Αγόρια U18 (best4) κτγρ # αα ΑΜ Ονοματεπώνυμο Έτος Σύλλογος ΕΝ Βαθμ b18 1 1 23775 ΑΝΤΩΝΟΠΟΥΛΟΣ ΧΡΗΣΤΟΣ 1998 b18 1 1 23775 ΑΝΤΩΝΟΠΟΥΛΟΣ ΧΡΗΣΤΟΣ 1998 Ο.Α.ΚΕΡΑΤΣΙΝΙΟΥ Θ 810.0 b18 2 2 24845 ΗΛΙΟΠΟΥΛΟΣ ΒΑΣΙΛΗΣ 1998 Α.Ο.Α.ΦΙΛΟΘΕΗΣ Η 690.0 b18 3 3 23517 ΤΣΙΡΑΝΙΔΗΣ ΕΥΣΤΑΘΙΟΣ 1998 Ο.Α.ΚΑΣΤΟΡΙΑΣ ΚΕΛΕΤΡΟΝ Γ 680.0 b18 4

Διαβάστε περισσότερα

Ε.Φ.Ο.Α. - Βαθμολογία 2015 (βδ.12) - Αγόρια U18 (best4) κτγρ # αα ΑΜ Ονοματεπώνυμο Έτος Σύλλογος ΕΝ Βαθμ b18 1 1 23517 ΤΣΙΡΑΝΙΔΗΣ ΕΥΣΤΑΘΙΟΣ 1998

Ε.Φ.Ο.Α. - Βαθμολογία 2015 (βδ.12) - Αγόρια U18 (best4) κτγρ # αα ΑΜ Ονοματεπώνυμο Έτος Σύλλογος ΕΝ Βαθμ b18 1 1 23517 ΤΣΙΡΑΝΙΔΗΣ ΕΥΣΤΑΘΙΟΣ 1998 b18 1 1 23517 ΤΣΙΡΑΝΙΔΗΣ ΕΥΣΤΑΘΙΟΣ 1998 Ο.Α.ΘΕΣΣΑΛΟΝΙΚΗΣ Β 797.5 b18 2 2 22969 ΚΑΝΕΛΛΟΠΟΥΛΟΣ ΑΛΕΞΑΝΔΡΟΣ 1997 Α.Ο.ΤΑΤΟΪΟΥ Η 747.0 b18 3 3 23775 ΑΝΤΩΝΟΠΟΥΛΟΣ ΧΡΗΣΤΟΣ 1998 Ο.Α.ΚΕΡΑΤΣΙΝΙΟΥ Θ 692.5 b18 4 4

Διαβάστε περισσότερα

Ε.Φ.Ο.Α. - Βαθμολογία 2015 (βδ.12) - Αγόρια U12 (best8) κτγρ # αα ΑΜ Ονοματεπώνυμο Έτος Σύλλογος ΕΝ Βαθμ b12 1 1 32605 ΚΥΠΡΙΩΤΗΣ ΕΥΑΓΓΕΛΟΣ 2003

Ε.Φ.Ο.Α. - Βαθμολογία 2015 (βδ.12) - Αγόρια U12 (best8) κτγρ # αα ΑΜ Ονοματεπώνυμο Έτος Σύλλογος ΕΝ Βαθμ b12 1 1 32605 ΚΥΠΡΙΩΤΗΣ ΕΥΑΓΓΕΛΟΣ 2003 b12 1 1 32605 ΚΥΠΡΙΩΤΗΣ ΕΥΑΓΓΕΛΟΣ 2003 Ο.Α.ΑΘΗΝΩΝ Η 194.0 b12 2 2 31353 ΜΗΤΣΑΚΟΣ ΘΕΟΔΩΡΟΣ 2004 ΡΗΓΑΣ Α.Ο.Α.ΑΡΓΟΛΙΔΑΣ ΣΤ 74.5 b12 3 3 32680 ΦΩΤΕΙΝΟΠΟΥΛΟΣ ΑΘΑΝΑΣΙΟΣ 2003 Α.Ο.Α.ΗΛΙΟΥΠΟΛΗΣ ΙΑ 68.5 b12 4 4

Διαβάστε περισσότερα

Ε.Φ.Ο.Α. - Βαθμολογία 2015 (βδ.12) - Αγόρια U16 (best8) κτγρ # αα ΑΜ Ονοματεπώνυμο Έτος Σύλλογος ΕΝ Βαθμ b16 1 1 30186 ΠΙΤΣΙΝΗΣ ΔΗΜΗΤΡΙΟΣ 1999

Ε.Φ.Ο.Α. - Βαθμολογία 2015 (βδ.12) - Αγόρια U16 (best8) κτγρ # αα ΑΜ Ονοματεπώνυμο Έτος Σύλλογος ΕΝ Βαθμ b16 1 1 30186 ΠΙΤΣΙΝΗΣ ΔΗΜΗΤΡΙΟΣ 1999 b16 1 1 30186 ΠΙΤΣΙΝΗΣ ΔΗΜΗΤΡΙΟΣ 1999 Ο.Α.ΚΕΡΑΤΣΙΝΙΟΥ Θ 810.0 b16 2 2 26317 ΚΩΣΤΑΡΑΣ ΠΑΝΑΓΙΩΤΗΣ 1999 Ο.Α.ΠΕΤΡΟΥΠΟΛΗΣ Θ 804.0 b16 3 3 25297 ΚΑΠΙΡΗΣ ΣΤΑΜΑΤΗΣ 1999 Α.Ο.Α.ΗΛΙΟΥΠΟΛΗΣ ΙΑ 682.0 b16 4 4 29817

Διαβάστε περισσότερα

ΟΔΗΓΙΕΣ Η εξέταση έχει διάρκεια 60 λεπτά. Δεν επιτρέπεται να εγκαταλείψετε την αίθουσα εξέτασης πριν περάσει μισή ώρα από την ώρα έναρξης.

ΟΔΗΓΙΕΣ Η εξέταση έχει διάρκεια 60 λεπτά. Δεν επιτρέπεται να εγκαταλείψετε την αίθουσα εξέτασης πριν περάσει μισή ώρα από την ώρα έναρξης. ΟΔΗΓΙΕΣ Η εξέταση έχει διάρκεια 60 λεπτά. Δεν επιτρέπεται να εγκαταλείψετε την αίθουσα εξέτασης πριν περάσει μισή ώρα από την ώρα έναρξης. Όλες α ερωτήσεις (σύνολο 40) είναι ερωτήσεις πολλαπλής επιλογής.

Διαβάστε περισσότερα

2 tg x ctg x 1 = =, cos 2x Zbog četvrtog kvadranta rješenje je: 2 ctg x

2 tg x ctg x 1 = =, cos 2x Zbog četvrtog kvadranta rješenje je: 2 ctg x Zadatak (Darjan, medicinska škola) Izračunaj vrijednosti trigonometrijskih funkcija broja ako je 6 sin =,,. 6 Rješenje Ponovimo trigonometrijske funkcije dvostrukog kuta! Za argument vrijede sljedeće formule:

Διαβάστε περισσότερα

Ε.Φ.Ο.Α. - Βαθμολογία 2014 (βδ.01) - Αγόρια U16 κτγρ # αα ΑΜ Ονοματεπώνυμο Έτος Σύλλογος ΕΝ Βαθμ b16 1 1 25438 ΤΣΙΤΣΙΠΑΣ ΣΤΕΦΑΝΟΣ 1998 Ο.Α.

Ε.Φ.Ο.Α. - Βαθμολογία 2014 (βδ.01) - Αγόρια U16 κτγρ # αα ΑΜ Ονοματεπώνυμο Έτος Σύλλογος ΕΝ Βαθμ b16 1 1 25438 ΤΣΙΤΣΙΠΑΣ ΣΤΕΦΑΝΟΣ 1998 Ο.Α. b16 1 1 25438 ΤΣΙΤΣΙΠΑΣ ΣΤΕΦΑΝΟΣ 1998 Ο.Α.ΓΛΥΦΑΔΑΣ ΙΑ 1270,0 b16 2 2 23775 ΑΝΤΩΝΟΠΟΥΛΟΣ ΧΡΗΣΤΟΣ 1998 Ο.Α.ΚΕΡΑΤΣΙΝΙΟΥ Θ 1180,0 b16 3 3 24845 ΗΛΙΟΠΟΥΛΟΣ ΒΑΣΙΛΗΣ 1998 Α.Ο.Α.ΦΙΛΟΘΕΗΣ Η 1030,0 b16 4 4 23517

Διαβάστε περισσότερα

Ε.Φ.Ο.Α. - Βαθμολογία 2014 (βδ.43) - Κορίτσια U12 (best8) κτγρ # αα ΑΜ Ονοματεπώνυμο Έτος Σύλλογος ΕΝ Βαθμ g12 1 1 31873 ΓΡΙΒΑ ΒΑΣΙΛΕΙΑ 2002 ΑΙΟΛΟΣ

Ε.Φ.Ο.Α. - Βαθμολογία 2014 (βδ.43) - Κορίτσια U12 (best8) κτγρ # αα ΑΜ Ονοματεπώνυμο Έτος Σύλλογος ΕΝ Βαθμ g12 1 1 31873 ΓΡΙΒΑ ΒΑΣΙΛΕΙΑ 2002 ΑΙΟΛΟΣ g12 1 1 31873 ΓΡΙΒΑ ΒΑΣΙΛΕΙΑ 2002 ΑΙΟΛΟΣ Α.Λ.ΙΛΙΟΥ Θ 226.0 g12 2 2 29169 ΝΤΑΝΟΥ ΧΡΙΣΤΙΝΑ 2002 Ο.Α.ΓΟΥΔΙΟΥ ΙΑ 186.0 g12 3 3 31551 ΠΑΠΑΚΩΝΣΤΑΝΤΙΝΟΥ ΕΛΕΝΑ-ΜΑΡΙΑ 2002 ΦΘΙΩΤΙΚΟΣ Ο.Α. Ε 184.5 g12 4 4 30176 ΓΙΑΝΝΑΚΟΥ

Διαβάστε περισσότερα

Ε.Φ.Ο.Α. - Βαθμολογία 2014 (βδ.31) - Κορίτσια U12 (best8) κτγρ # αα ΑΜ Ονοματεπώνυμο Έτος Σύλλογος ΕΝ Βαθμ g12 1 1 31873 ΓΡΙΒΑ ΒΑΣΙΛΕΙΑ 2002 ΑΙΟΛΟΣ

Ε.Φ.Ο.Α. - Βαθμολογία 2014 (βδ.31) - Κορίτσια U12 (best8) κτγρ # αα ΑΜ Ονοματεπώνυμο Έτος Σύλλογος ΕΝ Βαθμ g12 1 1 31873 ΓΡΙΒΑ ΒΑΣΙΛΕΙΑ 2002 ΑΙΟΛΟΣ g12 1 1 31873 ΓΡΙΒΑ ΒΑΣΙΛΕΙΑ 2002 ΑΙΟΛΟΣ Α.Λ.ΙΛΙΟΥ Θ 210.0 g12 2 2 30176 ΓΙΑΝΝΑΚΟΥ ΙΩΑΝΝΑ 2002 Α.Ο.Α.ΠΟΣΕΙΔΩΝ ΘΕΣΣΑΛΟΝΙΚΗΣ Β 161.0 g12 3 3 31551 ΠΑΠΑΚΩΝΣΤΑΝΤΙΝΟΥ ΕΛΕΝΑ-ΜΑΡΙΑ 2002 ΦΘΙΩΤΙΚΟΣ Ο.Α. Ε 155.0

Διαβάστε περισσότερα

NEPARAMETRIČNI TESTI. pregledovanje tabel hi-kvadrat test. as. dr. Nino RODE

NEPARAMETRIČNI TESTI. pregledovanje tabel hi-kvadrat test. as. dr. Nino RODE NEPARAMETRIČNI TESTI pregledovanje tabel hi-kvadrat test as. dr. Nino RODE Parametrični in neparametrični testi S pomočjo z-testa in t-testa preizkušamo domneve o parametrih na vzorcih izračunamo statistike,

Διαβάστε περισσότερα

ΠΙΝΑΚΑ ΑΠΟΦΑΕΩΝ ΔΗΜΟΣΙΚΟΤ ΤΜΒΟΤΛΙΟΤ ΜΤΚΗ ΚΑΣΑ ΣΗ 28 θ ΤΝΕΔΡΙΑΗ ΣΙ 22/10/2014. Απόφαςθσ

ΠΙΝΑΚΑ ΑΠΟΦΑΕΩΝ ΔΗΜΟΣΙΚΟΤ ΤΜΒΟΤΛΙΟΤ ΜΤΚΗ ΚΑΣΑ ΣΗ 28 θ ΤΝΕΔΡΙΑΗ ΣΙ 22/10/2014. Απόφαςθσ ΠΙΝΑΚΑ ΑΠΟΦΑΕΩΝ ΔΗΜΟΣΙΚΟΤ ΤΜΒΟΤΛΙΟΤ ΜΤΚΗ ΚΑΣΑ ΣΗ 28 θ ΤΝΕΔΡΙΑΗ ΣΙ 22/10/2014 κζμα 1 ο ζκτακτο «υγκρότθςθ Δθμοτικισ Επιτροπισ Διαβοφλευςθσ» α/α Απόφαςθσ Περίλθψθ Απόφαςθσ υςτινεται επιτροπι διαβοφλευςθσ

Διαβάστε περισσότερα

Matematika 1. Gregor Dolinar. 2. januar Fakulteta za elektrotehniko Univerza v Ljubljani. Gregor Dolinar Matematika 1

Matematika 1. Gregor Dolinar. 2. januar Fakulteta za elektrotehniko Univerza v Ljubljani. Gregor Dolinar Matematika 1 Mtemtik 1 Gregor Dolinr Fkultet z elektrotehniko Univerz v Ljubljni 2. jnur 2014 Gregor Dolinr Mtemtik 1 Izrek (Izrek o povprečni vrednosti) Nj bo m ntnčn spodnj mej in M ntnčn zgornj mej integrbilne funkcije

Διαβάστε περισσότερα

Podobnost matrik. Matematika II (FKKT Kemijsko inženirstvo) Diagonalizacija matrik

Podobnost matrik. Matematika II (FKKT Kemijsko inženirstvo) Diagonalizacija matrik Podobnost matrik Matematika II (FKKT Kemijsko inženirstvo) Matjaž Željko FKKT Kemijsko inženirstvo 14 teden (Zadnja sprememba: 23 maj 213) Matrika A R n n je podobna matriki B R n n, če obstaja obrnljiva

Διαβάστε περισσότερα

UNIVERZITET U NIŠU ELEKTRONSKI FAKULTET SIGNALI I SISTEMI. Zbirka zadataka

UNIVERZITET U NIŠU ELEKTRONSKI FAKULTET SIGNALI I SISTEMI. Zbirka zadataka UNIVERZITET U NIŠU ELEKTRONSKI FAKULTET Goran Stančić SIGNALI I SISTEMI Zbirka zadataka NIŠ, 014. Sadržaj 1 Konvolucija Literatura 11 Indeks pojmova 11 3 4 Sadržaj 1 Konvolucija Zadatak 1. Odrediti konvoluciju

Διαβάστε περισσότερα

ΥΧΡΩΜΑ ΜΟΛΥΒΙΑ. «Γ λ υ κ ό κ α λ ο κ α ι ρ ά κ ι» της Γ ω γ ώ ς Α γ γ ε λ ο π ο ύ λ ο υ

ΥΧΡΩΜΑ ΜΟΛΥΒΙΑ. «Γ λ υ κ ό κ α λ ο κ α ι ρ ά κ ι» της Γ ω γ ώ ς Α γ γ ε λ ο π ο ύ λ ο υ ΤΑ Π ΥΧΡΩΜΑ ΜΟΛΥΒΙΑ Εφη μ ε ρ ί δ α τ ο υ τ μ ή μ α τ ο ς Β τ ο υ 1 9 ου Δ η μ ο τ ι κ ο ύ σ χ ο λ ε ί ο υ Η ρ α κ λ ε ί ο υ Α ρ ι θ μ ό ς φ ύ λ λ ο υ 1 Ι ο ύ ν ι ο ς 2 0 1 5 «Γ λ υ κ ό κ α λ ο κ α ι ρ

Διαβάστε περισσότερα

Deli in vladaj. J.Kozak: PSA II, / 75

Deli in vladaj. J.Kozak: PSA II, / 75 Deli in vladaj J.Kozak: PSA II, 2010-2011 1 / 75 Metoda deli in vladaj je ena od pomembnih splošnih metod načrtovanja algoritmov. Če je problem, ki ga rešujemo, preveč zapleten, si lahko pomagamo tako,

Διαβάστε περισσότερα

ΩΡΕΣ ΔΕΥΤΕΡΑ ΤΡΙΤΗ ΤΕΤΑΡΤΗ ΠΕΜΠΤΗ ΠΑΡΑΣΚΕΥΗ

ΩΡΕΣ ΔΕΥΤΕΡΑ ΤΡΙΤΗ ΤΕΤΑΡΤΗ ΠΕΜΠΤΗ ΠΑΡΑΣΚΕΥΗ ΕΞΑΜΗΝΟ : Α' Α/Α ΩΡΕΣ ΔΕΥΤΕΡΑ ΤΡΙΤΗ ΤΕΤΑΡΤΗ ΠΕΜΠΤΗ ΠΑΡΑΣΚΕΥΗ 1 9 00-9 45 Α2 Α3 (Α) ΠΑΙΔΑΓΩΓΙΚΗ & Α1 ΦΙΛΟΣΟΦΙΑ ΤΗΣ Α3 2 (ΜΟΥΤΗΣ) ΠΑΙΔΕΙΑΣ 10 00 10 45 (ΜΟΥΤΗΣ) ΜΑΘΗΜΑΤΙΚΑ I 3 11 00 11 45 Α1 (ΛΑΓΟΣ) Α4 Α3

Διαβάστε περισσότερα

Elementi spektralne teorije matrica

Elementi spektralne teorije matrica Elementi spektralne teorije matrica Neka je X konačno dimenzionalan vektorski prostor nad poljem K i neka je A : X X linearni operator. Definicija. Skalar λ K i nenula vektor u X se nazivaju sopstvena

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΕΛΟΠΟΝΝΗΣΟΥ

ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΕΛΟΠΟΝΝΗΣΟΥ ΠΡΟΓΡΑΜΜΑ ΕΞΕΤΑΣΕΩΝ ΠΕΡΙΟΔΟΥ ΙΟΥΝΙΟΥ 2011-2012 2ο - 4ο ΕΞΑΜΗΝΟΥ Παλαιού οδηγού σπουδών ΒΙΟΛΟΓΙΑ ΤΗΣ ΑΣΚΗΣΗΣ ΙΙ ΚΑΙ ΠΡΟΛΗΨΗ 20/6/2012 ΤΕΤΑΡΤΗ 15:00-17:00 Ι 29 ΣΤΕΡΓΙΟΥΛΑΣ Α. ΔΙΟΙΚΗΤΙΚΟ ΔΙΚΑΙΟ ΟΡΓΑΝΩΣΗ ΚΑΛΑΘΟΣΦΑΙΡΙΣΗΣ

Διαβάστε περισσότερα

Τα η/µ κύµατα πρέπει να ικανοποιούν όλες τις σχέσεις Maxwell. Στον ελεύθερο χώρο, έχουµε τα παρακάτω ηλεκτρικά πεδία

Τα η/µ κύµατα πρέπει να ικανοποιούν όλες τις σχέσεις Maxwell. Στον ελεύθερο χώρο, έχουµε τα παρακάτω ηλεκτρικά πεδία 1 Τα η/µ κύµατα πρέπει να ικανοποιούν όλες τις σχέσεις Mawell. Στον ελεύθερο χώρο, έχουµε τα παρακάτω ηλεκτρικά πεδία e1 = zˆ cos( ωt kz) e = ( ˆ + zˆ) cos( ωt k z ) e 3 = ( ˆ + zˆ) cos( ω t + k) (α) Ικανοποιούν

Διαβάστε περισσότερα

VEKTORJI. Operacije z vektorji

VEKTORJI. Operacije z vektorji VEKTORJI Vektorji so matematični objekti, s katerimi opisujemo določene fizikalne količine. V tisku jih označujemo s krepko natisnjenimi črkami (npr. a), pri pisanju pa s puščico ( a). Fizikalne količine,

Διαβάστε περισσότερα

Καθηγητής τεχνικών µαθηµάτων Παιδαγωγικής Ακαδηµίας Αθηνών 1054 Φαµηλιάρης Παντελής - Έγγραφο Βιογραφικά στοιχεία. (σ. 1)

Καθηγητής τεχνικών µαθηµάτων Παιδαγωγικής Ακαδηµίας Αθηνών 1054 Φαµηλιάρης Παντελής - Έγγραφο Βιογραφικά στοιχεία. (σ. 1) 563 Φαίαξ βλ. Λυκούδης Εµµανουήλ Σ. 2577 Φαλτάιτς Αλέξανδρος. - Βιογραφικά στοιχεία Καθηγητής τεχνικών µαθηµάτων Παιδαγωγικής Ακαδηµίας Αθηνών 1054 Φαµηλιάρης Παντελής - Επιχειρηµατίας, Βιογραφικά στοιχεία

Διαβάστε περισσότερα

Ispitivanje toka i skiciranje grafika funkcija

Ispitivanje toka i skiciranje grafika funkcija Ispitivanje toka i skiciranje grafika funkcija Za skiciranje grafika funkcije potrebno je ispitati svako od sledećih svojstava: Oblast definisanosti: D f = { R f R}. Parnost, neparnost, periodičnost. 3

Διαβάστε περισσότερα

Celični avtomati iz kvantnih pik

Celični avtomati iz kvantnih pik Univerza v Ljubljani Fakulteta za matematiko in fiziko Oddelek za fiziko Seminar I b - 1. letnik, II. stopnja Celični avtomati iz kvantnih pik Avtor: Blaž Kranjc Mentor: doc. dr. Tomaž Rejec Ljubljana,

Διαβάστε περισσότερα

Zadaci sa prethodnih prijemnih ispita iz matematike na Beogradskom univerzitetu

Zadaci sa prethodnih prijemnih ispita iz matematike na Beogradskom univerzitetu Zadaci sa prethodnih prijemnih ispita iz matematike na Beogradskom univerzitetu Trigonometrijske jednačine i nejednačine. Zadaci koji se rade bez upotrebe trigonometrijskih formula. 00. FF cos x sin x

Διαβάστε περισσότερα

Π Ι Ν Α Κ Α Σ Α Μ Ο Ι Β Ω Ν Ε Π Ι Δ Ο Σ Ε Ω Ν

Π Ι Ν Α Κ Α Σ Α Μ Ο Ι Β Ω Ν Ε Π Ι Δ Ο Σ Ε Ω Ν Π Ι Ν Α Κ Α Σ Α Μ Ο Ι Β Ω Ν Ε Π Ι Δ Ο Σ Ε Ω Ν ΔΙΚΑΣΤΙΚΩΝ ΕΠΙΜΕΛΗΤΩΝ ΕΦΕΤΕΙΩΝ ΑΘΗΝΩΝ & ΠΕΙΡΑΙΩΣ ΔΙΟΡΙΣΜΕΝΩΝ ΣΤΑ ΠΡΩΤΟΔΙΚΕΙΑ ΑΘΗΝΩΝ & ΠΕΙΡΑΙΩΣ ΜΕ ΕΔΡΑ ΤΗΝ ΑΘΗΝΑ Η χιλιομετρική απόσταση υπολογίσθηκε με σημείο

Διαβάστε περισσότερα

Algebraične strukture

Algebraične strukture Poglavje V Algebraične strukture V tem poglavju bomo spoznali osnovne algebraične strukture na dani množici. Te so podane z eno ali dvema binarnima operacijama. Binarna operacija paru elementov iz množice

Διαβάστε περισσότερα

ΠΡΙΤΣΙΝΑΔΟΡΟΣ ΛΑΔΙΟΥ ΑΕΡΟΣ ΓΙΑ ΠΡΙΤΣΙΝΙΑ M4/M12 ΟΔΗΓΙΕΣ ΧΡΗΣΗΣ - ΑΝΤΑΛΛΑΚΤΙΚΑ

ΠΡΙΤΣΙΝΑΔΟΡΟΣ ΛΑΔΙΟΥ ΑΕΡΟΣ ΓΙΑ ΠΡΙΤΣΙΝΙΑ M4/M12 ΟΔΗΓΙΕΣ ΧΡΗΣΗΣ - ΑΝΤΑΛΛΑΚΤΙΚΑ GR ΠΡΙΤΣΙΝΑΔΟΡΟΣ ΛΑΔΙΟΥ ΑΕΡΟΣ ΓΙΑ ΠΡΙΤΣΙΝΙΑ M4/M12 ΟΔΗΓΙΕΣ ΧΡΗΣΗΣ - ΑΝΤΑΛΛΑΚΤΙΚΑ H OLJLAJNYOMÁSÚ SZEGECSELŐ M4/M12 SZEGECSEKHEZ HASZNÁLATI UTASÍTÁS - ALKATRÉSZEK SLO OLJNO-PNEVMATSKI KOVIČAR ZA ZAKOVICE

Διαβάστε περισσότερα

Page 1 of 14. α/α Α.Μ. Ονοματεπώνυμο Σύλλογος Έτος Βαθμοί Κατηγορία ΑΓΟΡΙΑ 10

Page 1 of 14. α/α Α.Μ. Ονοματεπώνυμο Σύλλογος Έτος Βαθμοί Κατηγορία ΑΓΟΡΙΑ 10 ΑΓΟΡΙΑ 10 1 36030 ΤΟΥΝΤΑΣ ΜΑΡΙΟΣ ΡΗΓΑΣ Α.Ο.Α.ΑΡΓΟΛΙΔΑΣ 2005 b10 2 35955 ΖΑΧΑΡΑΚΗΣ ΚΩΝΣΤΑΝΤΙΝΟΣ Ο.Α.ΣΑΛΑΜΙΝΑΣ 2005 b10 3 34580 ΠΑΠΑΔΟΠΟΥΛΟΣ ΙΑΣΟΝΑΣ Α.Ο.ΤΑΤΟΪΟΥ 2005 b10 4 35959 ΚΟΚΚΙΝΟΣ ΙΑΣΩΝ-ΝΙΚΟΛΑΟΣ Α.Ο.Α.ΠΑΠΑΓΟΥ

Διαβάστε περισσότερα

Ε Λ Ε Γ Κ Τ Ι Κ Ο Σ Υ Ν Ε Δ Ρ Ι Ο ΣΕ Ο Λ Ο Μ Ε Λ Ε Ι Α

Ε Λ Ε Γ Κ Τ Ι Κ Ο Σ Υ Ν Ε Δ Ρ Ι Ο ΣΕ Ο Λ Ο Μ Ε Λ Ε Ι Α Επί του Απολογισμού των εσόδων και εξόδων του Κράτους έτους 2006 και του Γενικού Ισολογισμού της 31 ης Δεκεμβρίου 2006, σύμφωνα με το άρθρο 98 παρ. 1 περ. ε σε συνδυασμό με το άρθρο 79 παρ. 7 του Συντάγματος

Διαβάστε περισσότερα

Α Π Ο Φ Α Σ Η 4/459/27.12.2007. του ιοικητικού Συµβουλίου

Α Π Ο Φ Α Σ Η 4/459/27.12.2007. του ιοικητικού Συµβουλίου Α Π Ο Φ Α Σ Η 4/459/27.12.2007 του ιοικητικού Συµβουλίου ΘΕΜΑ: «Υπολογισµός κεφαλαιακών απαιτήσεων των Επιχειρήσεων Παροχής Επενδυτικών Υπηρεσιών για τον κίνδυνο αγοράς» ΤΟ ΙΟΙΚΗΤΙΚΟ ΣΥΜΒΟΥΛΙΟ ΤΗΣ ΕΠΙΤΡΟΠΗΣ

Διαβάστε περισσότερα

1 Fibonaccijeva stevila

1 Fibonaccijeva stevila 1 Fibonaccijeva stevila Fibonaccijevo število F n, kjer je n N, lahko definiramo kot število načinov zapisa števila n kot vsoto sumandov, enakih 1 ali Na primer, število 4 lahko zapišemo v obliki naslednjih

Διαβάστε περισσότερα

ΕΠΙΛΥΣΗ ΕΝΟΣ ΠΡΟΒΛΗΜΑΤΟΣ ΚΑΤΑΣΚΕΥΗΣ ΜΕ ΧΡΗΣΗ ΘΕΩΡΙΑΣ ΚΑΜΠΥΛΩΝ

ΕΠΙΛΥΣΗ ΕΝΟΣ ΠΡΟΒΛΗΜΑΤΟΣ ΚΑΤΑΣΚΕΥΗΣ ΜΕ ΧΡΗΣΗ ΘΕΩΡΙΑΣ ΚΑΜΠΥΛΩΝ ΕΠΙΛΥΣΗ ΕΝΟΣ ΠΡΟΒΛΗΜΑΤΟΣ ΚΑΤΑΣΚΕΥΗΣ ΜΕ ΧΡΗΣΗ ΘΕΩΡΙΑΣ ΚΑΜΠΥΛΩΝ Ανδρέας Αρβανιτογεώργος και Μαρίνα Σταθά Πανεπιστήμιο Πατρών Τμήμα Μαθηματικών 1 Περιγραφή του προβλήματος 2 Θέλουμε να προσαρμόσουμε σε μια

Διαβάστε περισσότερα

8. Posplošeni problem lastnih vrednosti

8. Posplošeni problem lastnih vrednosti 8. Posplošeni problem lastnih vrednosti Bor Plestenjak NLA 13. april 2010 Bor Plestenjak (NLA) 8. Posplošeni problem lastnih vrednosti 13. april 2010 1 / 15 Matrični šop Dani sta kvadratni n n matriki

Διαβάστε περισσότερα

ΕΚΛΟΓΙΚΑ ΤΜΗΜΑΤΑ ΚΑΙ ΚΑΤΑΣΤΗΜΑΤΑ ΨΗΦΟΦΟΡΙΑΣ ΒΟΥΛΕΥΤΙΚΩΝ ΕΚΛΟΓΩΝ ΤΗΣ 6 ης ΜΑΪΟΥ 2012

ΕΚΛΟΓΙΚΑ ΤΜΗΜΑΤΑ ΚΑΙ ΚΑΤΑΣΤΗΜΑΤΑ ΨΗΦΟΦΟΡΙΑΣ ΒΟΥΛΕΥΤΙΚΩΝ ΕΚΛΟΓΩΝ ΤΗΣ 6 ης ΜΑΪΟΥ 2012 ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΕΡΙΦΕΡΕΙΑΚΗ ΕΝΟΤΗΤΑ ΔΗΜΟΣ ΕΚΛΟΓΙΚΑ ΤΑ ΚΑΙ ΤΑ ΒΟΥΛΕΥΤΙΚΩΝ ΕΚΛΟΓΩΝ ΤΗΣ 6 ης ΜΑΪΟΥ 2012 ΔΗΜΟΥ ΠΕΡΙΦΕΡΕΙΑ ΚΡΗΤΗΣ ΠΕΡΙΦΕΡΕΙΑΚΗ ΕΝΟΤΗΤΑ ΔΗΜΟΣ ΔΗΜΟΤΙΚΗ ΕΝΟΤΗΤΑ ΑΚΡΩΤΗΡΙΟΥ 178ο Αρωνίου 1 ο

Διαβάστε περισσότερα

Pismeni ispit iz matematike Riješiti sistem jednačina i diskutovati rješenja sistema u zavisnosti od parametra: ( ) + 1.

Pismeni ispit iz matematike Riješiti sistem jednačina i diskutovati rješenja sistema u zavisnosti od parametra: ( ) + 1. Pismeni ispit iz matematike 0 008 GRUPA A Riješiti sistem jednačina i diskutovati rješenja sistema u zavisnosti od parametra: λ + z = Ispitati funkciju i nacrtati njen grafik: + ( λ ) + z = e Izračunati

Διαβάστε περισσότερα

TEI ΠΕΛΟΠΟΝΝΗΣΟΥ - ΣΧΟΛΗ ΤΕΧΝΟΛΟΓΙΚΩΝ ΕΦΑΡΜΟΓΩΝ 13:00-14:00 14:00-15:00 ΠΡΟΓ/ΜΟΣ Ι Ε ΕΗΛ ΓΚΑΤΖΙΩΛΗΣ ΕA2 ΑΝΑΛΟΓΙΚΑ ΗΛΕΚΤΡΟΝΙΚΑ Ε ΛΙΑΠΕΡ ΟΣ ΕΗΛ

TEI ΠΕΛΟΠΟΝΝΗΣΟΥ - ΣΧΟΛΗ ΤΕΧΝΟΛΟΓΙΚΩΝ ΕΦΑΡΜΟΓΩΝ 13:00-14:00 14:00-15:00 ΠΡΟΓ/ΜΟΣ Ι Ε ΕΗΛ ΓΚΑΤΖΙΩΛΗΣ ΕA2 ΑΝΑΛΟΓΙΚΑ ΗΛΕΚΤΡΟΝΙΚΑ Ε ΛΙΑΠΕΡ ΟΣ ΕΗΛ Πρόγραµµα Μαθηµάτων Χειµερινού Εξαµήνου 0-0 Α ΕΞΑΜΗΝΟ 0 ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ Ι ΠΡΟΓ/ΜΟΣ Ι Ε ΑΝΑΛΟΓΙΚΑ ΗΛΕΚΤΡΟΝΙΚΑ Θ ΠΡΟΓ/ΜΟΣ Ι Ε ΦΥΣΙΚΗ Ι Θ ΜΠΟΥΛΜΕΤΗΣ Ε ΨΗΦΙΑΚΗ ΛΟΓΙΚΗ ΣΧΕ ΙΑΣΗ Θ ΦΥΣΙΚΗ Ι Φ ΜΠΟΥΛΜΕΤΗΣ ΜΑΘΗΜΑΤΙΚΗ

Διαβάστε περισσότερα

TAXATION_OFFICE_CODE TAXATION_OFFICE_NAME 1101 Α ΑΘΗΝΩΝ 3321 Α ΒΟΛΟΥ 1161 Α ΔΟΥ ΚΕΦΑΛΑΙΟΥ ΑΘΗΝΩΝ 1123 Α ΕΛΕΥΘ. ΕΠΑΓΓΕΛΜΑΤΩΝ 8111 Α ΗΡΑΚΛΕΙΟΥ 4211 Α

TAXATION_OFFICE_CODE TAXATION_OFFICE_NAME 1101 Α ΑΘΗΝΩΝ 3321 Α ΒΟΛΟΥ 1161 Α ΔΟΥ ΚΕΦΑΛΑΙΟΥ ΑΘΗΝΩΝ 1123 Α ΕΛΕΥΘ. ΕΠΑΓΓΕΛΜΑΤΩΝ 8111 Α ΗΡΑΚΛΕΙΟΥ 4211 Α TAXATION_OFFICE_CODE TAXATION_OFFICE_NAME 1101 Α ΑΘΗΝΩΝ 3321 Α ΒΟΛΟΥ 1161 Α ΔΟΥ ΚΕΦΑΛΑΙΟΥ ΑΘΗΝΩΝ 1123 Α ΕΛΕΥΘ. ΕΠΑΓΓΕΛΜΑΤΩΝ 8111 Α ΗΡΑΚΛΕΙΟΥ 4211 Α ΘΕΣΣΑΛΟΝΙΚΗΣ 6311 Α ΙΩΑΝΝΙΝΩΝ 5321 Α ΚΑΒΑΛΑΣ 1130 Α ΚΑΛΛΙΘΕΑΣ

Διαβάστε περισσότερα

Zajemanje merilnih vrednosti z vf digitalnim spominskim osciloskopom

Zajemanje merilnih vrednosti z vf digitalnim spominskim osciloskopom VSŠ Velenje ELEKTRIČNE MERITVE Laboratorijske vaje Zajemanje merilnih vrednosti z vf digitalnim spominskim osciloskopom Vaja št.2 M. D. Skupina A PREGLEDAL:. OCENA:.. Velenje, 22.12.2006 1. Besedilo naloge

Διαβάστε περισσότερα

ΕΚΤΕΛΕΣΗ ΠΡΟΫΠΟΛΟΓΙΣΜΟΥ

ΕΚΤΕΛΕΣΗ ΠΡΟΫΠΟΛΟΓΙΣΜΟΥ Σελίδα 1 ΕΣΟΔΑ ΚΑΕ Ονομασία ΠΡΟΫΠΟΛΟΓΙΣΘΕΝΤ ΒΕΒΑΙΩΘΕΝΤΑ ΕΙΣΠΡΑΧΘΕΝΤΑ 0113 ΕΠΙΧΟΡΗΓΗΣΕΙΣ ΓΙΑ ΜΙΣΘΟΔΟΣΙΑ ΠΡΟΣΩΠΙΚΟΥ & ΔΑΠΑΝΕΣ ΛΕΙΤΟΥΡΓΙΑΣ 1.460.000 1.314.000 1.314.000 0133 ΕΠΙΧΟΡΗΓΗΣΕΙΣ ΓΙΑ ΤΗΝ ΛΕΙΤΟΥΡΓΙΑ

Διαβάστε περισσότερα

ΔΗΜΟΣ ΑΧΑΡΝΩΝ Σύστημα Διαχείρισης Ποιότητας ISO 9001 : 2008 ΠΑΡΟΝΤΕΣ ΚΑΙ ΑΠΟΝΤΕΣ ΔΗΜΟΤΙΚΟΙ ΣΥΜΒΟΥΛΟΙ

ΔΗΜΟΣ ΑΧΑΡΝΩΝ Σύστημα Διαχείρισης Ποιότητας ISO 9001 : 2008 ΠΑΡΟΝΤΕΣ ΚΑΙ ΑΠΟΝΤΕΣ ΔΗΜΟΤΙΚΟΙ ΣΥΜΒΟΥΛΟΙ ΔΗΜΟΣ ΑΧΑΡΝΩΝ Σύστημα Διαχείρισης Ποιότητας ISO 9001 : 2008 ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΝΟΜΟΣ ΑΤΤΙΚΗΣ ΔΗΜΟΣ ΑΧΑΡΝΩΝ Διεύθυνση Διοίκησης Τμήμα Δημοτικού Συμβουλίου Φιλαδελφείας 87 & Μπόσδα Τ.Κ. 13673, Αχαρνές Συντάκτης:

Διαβάστε περισσότερα

ΤΕΛΟΣ 1ΗΣ ΑΠΟ 6 ΣΕΛΙ ΕΣ

ΤΕΛΟΣ 1ΗΣ ΑΠΟ 6 ΣΕΛΙ ΕΣ ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ ΕΣΠΕΡΙΝΩΝ ΕΠΑΝΑΛΗΠΤΙΚΕΣ ΠΑΝΕΛΛΗΝΙΕΣ ΕΞΕΤΑΣΕΙΣ Δ ΤΑΞΗΣ ΕΣΠΕΡΙΝΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΤΡΙΤΗ 11 ΙΟΥΝΙΟΥ 013 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΦΥΣΙΚΗ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΣΥΝΟΛΟ ΣΕΛΙΔΩΝ: ΕΞΙ

Διαβάστε περισσότερα

SEMINAR IZ KOLEGIJA ANALITIČKA KEMIJA I. Studij Primijenjena kemija

SEMINAR IZ KOLEGIJA ANALITIČKA KEMIJA I. Studij Primijenjena kemija SEMINAR IZ OLEGIJA ANALITIČA EMIJA I Studij Primijenjena kemija 1. 0,1 mola NaOH je dodano 1 litri čiste vode. Izračunajte ph tako nastale otopine. NaOH 0,1 M NaOH Na OH Jak elektrolit!!! Disoira potpuno!!!

Διαβάστε περισσότερα

ΦΥΣΙΚΟΧΗΜΕΙΑ I Ασκήσεις

ΦΥΣΙΚΟΧΗΜΕΙΑ I Ασκήσεις ΦΥΣΙΚΟΧΗΜΕΙΑ I Ασκήσεις Ενότητα 6 Περιστροφική Κίνηση Δημήτρης Κονταρίδης Αναπληρωτής Καθηγητής Πολυτεχνική Σχολή Τμήμα Χημικών Μηχανικών Eφαρμογές Περιστροφική κίνηση Άσκηση 1 Η κυματοσυνάρτηση ψ(φ) για

Διαβάστε περισσότερα

Řečtina I průvodce prosincem a začátkem ledna prezenční studium

Řečtina I průvodce prosincem a začátkem ledna prezenční studium Řečtina I průvodce prosincem a začátkem ledna prezenční studium Dobson číst si Dobsona 9. až 12. lekci od 13. lekce už nečíst (minulý čas probírán na stažených slovesech velmi matoucí) Bartoň pořídit si

Διαβάστε περισσότερα

ΕΒ ΟΜΑ ΙΑΙΟ ΩΡΟΛΟΓΙΟ ΠΡΟΓΡΑΜΜΑ Α ΕΞΑΜΗΝΟΥ 2012-2013

ΕΒ ΟΜΑ ΙΑΙΟ ΩΡΟΛΟΓΙΟ ΠΡΟΓΡΑΜΜΑ Α ΕΞΑΜΗΝΟΥ 2012-2013 ΕΒ ΟΜΑ ΙΑΙΟ ΩΡΟΛΟΓΙΟ ΠΡΟΓΡΑΜΜΑ Α ΕΞΑΜΗΝΟΥ 2012-2013 Θ. Ζυγκιρίδης- Μ. Λούτα- Θ. Ζυγκιρίδης- Μ. Λούτα- Θ. Ζυγκιρίδης- Π. Αγγελίδης- Μ. Λούτα- Π. Αγγελίδης-,Β Θ. Ζυγκιρίδης- Π. Αγγελίδης- Μ. Λούτα- Π. Αγγελίδης-,Β

Διαβάστε περισσότερα

1. Έντυπα αιτήσεων αποζημίωσης... 2 1.1. Αξίωση αποζημίωσης... 2 1.1.1. Έντυπο... 2 1.1.2. Πίνακας μεταφράσεων των όρων του εντύπου...

1. Έντυπα αιτήσεων αποζημίωσης... 2 1.1. Αξίωση αποζημίωσης... 2 1.1.1. Έντυπο... 2 1.1.2. Πίνακας μεταφράσεων των όρων του εντύπου... ΑΠΟΖΗΜΙΩΣΗ ΘΥΜΑΤΩΝ ΕΓΚΛΗΜΑΤΙΚΩΝ ΠΡΑΞΕΩΝ ΣΛΟΒΕΝΙΑ 1. Έντυπα αιτήσεων αποζημίωσης... 2 1.1. Αξίωση αποζημίωσης... 2 1.1.1. Έντυπο... 2 1.1.2. Πίνακας μεταφράσεων των όρων του εντύπου... 3 1 1. Έντυπα αιτήσεων

Διαβάστε περισσότερα

( ) ( ) 2 UNIVERZITET U ZENICI POLITEHNIČKI FAKULTET. Zadaci za pripremu polaganja kvalifikacionog ispita iz Matematike. 1. Riješiti jednačine: 4

( ) ( ) 2 UNIVERZITET U ZENICI POLITEHNIČKI FAKULTET. Zadaci za pripremu polaganja kvalifikacionog ispita iz Matematike. 1. Riješiti jednačine: 4 UNIVERZITET U ZENICI POLITEHNIČKI FAKULTET Riješiti jednačine: a) 5 = b) ( ) 3 = c) + 3+ = 7 log3 č) = 8 + 5 ć) sin cos = d) 5cos 6cos + 3 = dž) = đ) + = 3 e) 6 log + log + log = 7 f) ( ) ( ) g) ( ) log

Διαβάστε περισσότερα

M086 LA 1 M106 GRP. Tema: Baza vektorskog prostora. Koordinatni sustav. Norma. CSB nejednakost

M086 LA 1 M106 GRP. Tema: Baza vektorskog prostora. Koordinatni sustav. Norma. CSB nejednakost M086 LA 1 M106 GRP Tema: CSB nejednakost. 19. 10. 2017. predavač: Rudolf Scitovski, Darija Marković asistent: Darija Brajković, Katarina Vincetić P 1 www.fizika.unios.hr/grpua/ 1 Baza vektorskog prostora.

Διαβάστε περισσότερα