Το σενάριο προτείνεται να υλοποιηθεί με το λογισμικό Function Probe.

Save this PDF as:
 WORD  PNG  TXT  JPG

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "Το σενάριο προτείνεται να υλοποιηθεί με το λογισμικό Function Probe."

Transcript

1 9.3.3 Σενάριο 10. Τριγωνομετρικές συναρτήσεις Γνωστική περιοχή: Άλγεβρα Β Λυκείου. Η συνάρτηση ψ= ρ ημ(λχ+κ). Γραφική παράσταση τριγωνομετρικών συναρτήσεων. Γραφική επίλυση τριγωνομετρικής εξίσωσης. Θέμα: Το προτεινόμενο θέμα αφορά την μελέτη της συνάρτησης f(x)=ρ ημ(λx+κ) και συγκεκριμένα την περίοδο, τα ακρότατα και το χαρακτηριστικό της περιττής συνάρτησης. Η γραφική παράσταση θα αποτελέσει ένα επιπλέον θέμα μελέτης. Τεχνολογικά εργαλεία: Το σενάριο προτείνεται να υλοποιηθεί με το λογισμικό Function Probe. Σκεπτικό Βασική ιδέα: Οι μαθητές με τη βοήθεια της ψηφιακής τεχνολογίας θα μελετήσουν την συμπεριφορά της συνάρτησης f(x)=ημx σε τρεις βασικούς μετασχηματισμούς της. α) όταν η εξαρτημένη μεταβλητή πολλαπλασιαστεί επί έναν αριθμό y ρ x β) όταν η ανεξάρτητη μεταβλητή πολλαπλασιαστεί επί έναν αριθμό x λ x γ) όταν στην ανεξάρτητη μεταβλητή προστεθεί ένας αριθμός x x+κ. Προστιθέμενη αξία: Ο τρόπος με τον οποίο παρουσιάζεται η συνάρτηση f(x)= ρ ημ(λx+κ) στην διδασκαλία της τριγωνομετρίας με τα συμβατικά μέσα είναι λίγο έως πολύ γνωστός. Το παρακάτω απόσπασμα είναι χαρακτηριστικό.

2 Η έλλειψη αναπαραστασιακών εργαλείων υποχρεώνει τους συγγραφείς να καταφύγουν σε μία περιγραφή των μετασχηματισμών η οποία στηρίζεται κυρίως σε αλγεβρική επεξεργασία των συμβόλων. Η περιγραφή αυτή συνήθως παρουσιάζεται από τον διδάσκοντα στον πίνακα. Με τις δραστηριότητες του σεναρίου οι μαθητές: Θα δημιουργήσουν οι ίδιοι σταδιακά την γραφική παράσταση της συνάρτησης με ένα μεγάλο πλήθος σημείων. Η διαδικασία αυτή μπορεί να επαναλαμβάνεται ταχύτατα ώστε να δημιουργείται πύκνωση των ήδη υπαρχόντων σημείων κατά βούληση. Οι μαθητές θα πραγματοποιήσουν ένα πέρασμα από την έννοια των τριγωνομετρικών αριθμών στην έννοια της τριγωνομετρικής συνάρτησης κάτι που συνήθως, στην παραδοσιακή διδασκαλία, γίνεται βίαια μέσω ενός άλματος από τις μοίρες στα ακτίνια. Η γραφική παράσταση τους συνάρτησης θα μετατραπεί σε ένα αντικείμενο πάνω στο οποίο οι μαθητές θα εφαρμόσουν μετασχηματισμούς οι οποίοι καταγράφονται αυτομάτως από το λογισμικό. Αυτή ακριβώς η δυνατότητα μετασχηματισμού τους γραφικής παράστασης έχει μία ιδιαίτερη διδακτική αξία αφού στην συνήθη πρακτική η μετασχηματισμός τους είναι η κατάληξη και όχι η αφετηρία τους διερεύνησης τους συνάρτησης. Οι πολλαπλές αναπαραστάσεις τους συνάρτησης, στο μαθησιακό περιβάλλον στο οποίο θα υλοποιηθούν οι δραστηριότητες, είναι δυναμικά συνδεδεμένες και η μετάβαση από την μία στην άλλη γίνεται μέσα από την δυνατότητα αλληλεπίδρασης των ψηφιακών εργαλείων. Οι μαθητές θα διαπραγματευτούν και θα διερευνήσουν την συμπεριφορά τους συνάρτησης συνεργαζόμενοι μεταξύ τους και με τον διδάσκοντα ώστε η αίθουσα να μετατραπεί σε ένα εργαστήριο μαθηματικών δραστηριοτήτων.

3 Πλαίσιο εφαρμογής Σε ποιους απευθύνεται: Το σενάριο απευθύνεται τους μαθητές τους Β Λυκείου. Χρόνος υλοποίησης: Για την εφαρμογή του σεναρίου εκτιμάται ότι απαιτούνται 2-3 διδακτικές ώρες. Χώρος υλοποίησης: Το σενάριο προτείνεται να διεξαχθεί εξ ολοκλήρου στο εργαστήριο υπολογιστών. Ο πειραματισμός με τη βοήθεια κατάλληλου λογισμικού απαιτεί πάνω απ όλα εργαστήριο με 10 τουλάχιστον θέσεις, ώστε να μπορούν να εργαστούν οι μαθητές ανά τρεις. Η επιλογή από τον διδάσκοντα να το υλοποιήσει στην αίθουσα διδασκαλίας με την χρήση βιντεοπροβολέα θα ακύρωνε το μεγαλύτερο μέρος της προστιθέμενης αξίας. Προαπαιτούμενες γνώσεις: Ως τους τα μαθηματικά οι μαθητές θα πρέπει να γνωρίζουν: Τους μονάδες μέτρησης γωνίας και τον τύπο που συνδέει τους μονάδες αυτές. Την έννοια του πίνακα τιμών και τους γραφικής παράστασης συνάρτησης. Την γραφική επίλυση τους εξίσωσης. Ως τους την τεχνολογία οι μαθητές θα πρέπει να γνωρίζουν: Την λειτουργία του πίνακα τιμών του λογισμικού fp και ιδιαίτερα την συμπλήρωση μιας στήλης μέσω μιας τους. Την δημιουργία γραφικών παραστάσεων Την λειτουργία τους οριζόντιας παραμόρφωσης μιας γραφικής παράστασης. Απαιτούμενα βοηθητικά υλικά και εργαλεία: Κάθε ομάδα είναι σκόπιμο να διαθέτει ένα φύλλο εργασίας μέσα στο οποίο ο διδάσκων θα έχει θέσει συγκεκριμένα ερωτήματα και οδηγίες. Επιπλέον καλό θα είναι οι μαθητές να διαθέτουν ένα τετράδιο σημειώσεων. Κοινωνική ενορχήστρωση τους τάξης:

4 Οι μαθητές εργαζόμενοι σε ομάδες και καθοδηγούμενοι από φύλλο εργασίας, καλούνται να κατασκευάσουν και να εξερευνήσουν συγκεκριμένα σχήματα και να απαντήσουν σε συγκεκριμένες ερωτήσεις. Επομένως η διερεύνηση αυτή θα γίνει συνεργατικά. Για να υπάρχει κοινός στόχος και καλή συνεργασία οι μαθητές καλούνται να συμπληρώσουν ένα κοινό φύλλο εργασίας που περιέχει ερωτήσεις σχετικές με το θέμα. Φυσικά το φύλλο εργασίας αυτό θα πρέπει να αφήνει μια αρκετά μεγάλη ελευθερία τους μαθητές ώστε να θέτουν τα δικά τους ερωτήματα και να απαντούν σ αυτά. Στη διάρκεια τους υλοποίησης του σεναρίου ο εκπαιδευτικός θα πρέπει να ελέγχει τα συμπεράσματα των μαθητών, να συνεργάζεται μαζί τους, να τους καθοδηγεί ώστε να αντιλαμβάνονται καλύτερα τα αποτελέσματά τους και να τους ενθαρρύνει να συνεχίσουν την διερεύνηση. Στόχοι: Οι δραστηριότητες που περιγράφονται στη συνέχεια έχουν ως στόχο την μέσω πειραματισμού προσέγγιση και κατανόηση βασικών μαθηματικών εννοιών και συγκεκριμένα: την μετάβαση από την έννοια του τριγωνομετρικού αριθμού, που προσεγγίστηκε σε μικρότερες τάξεις, στην έννοια της τριγωνομετρικής συνάρτησης πραγματικής μεταβλητής την έννοια άρτιας-περιττής συνάρτησης την έννοια της κυκλικής συνάρτησης την έννοια της περιόδου και τους παράγοντες που την καθορίζουν την έννοια του μεγίστου - ελαχίστου συνάρτησης. τους μετασχηματισμούς της ημιτονοειδούς καμπύλης όταν μετασχηματίζεται ο τύπος της. Τα παραπάνω αφορούν τους γνωστικούς στόχους. Οι κοινωνικοί στόχοι για τους μαθητές εντοπίζονται κυρίως στην συνεργασία και την διαπραγμάτευση των ιδεών τους ώστε η γνώση να αποκτήσει έναν διυποκειμενικό χαρακτήρα. Ανάλυση του σεναρίου Ροή εφαρμογής των δραστηριοτήτων:

5 1η δραστηριότητα: Αντιστοιχία μοιρών - πραγματικών αριθμών Πριν από την συγκεκριμένη δραστηριότητα καλό θα ήταν ο διδάσκων να διαπραγματευτεί με τους μαθητές τις δύο βασικές μονάδες μέτρησης τόξων (μοίρες ακτίνια) και την χρησιμότητα των ακτινίων στην περίπτωση που θέλουμε να ορίσουμε την συνάρτηση f(x)=ημχ. Στην συνέχεια ζητά να δημιουργήσουν έναν πίνακα μετατροπής των ακτινίων σε μοίρες (ή και το αντίστροφο). Εικόνα 1 Με τη βοήθεια του πίνακα τιμών οι μαθητές εξοικειώνονται στην αντιστοιχία μοιρών-πραγματικών αριθμών (ακτίνια). Στον παραπάνω πίνακα χρησιμοποιείται ως βήμα μεταβολής το π/8 (η τιμή του υπολογίζεται με την αριθμομηχανή), το αντίστοιχο, δηλαδή, των 22,5 ο. Εκτυπώνουμε και αναπαράγουμε τον πίνακα και ενθαρρύνουμε τους μαθητές να προσέξουν και να σημειώσουν μερικές βασικές αντιστοιχίες (π.χ. π 3,14 180, π/2 1,57 90 κ.τλ.). 2η δραστηριότητα: Δημιουργία του πίνακα τιμών Στην αρχή της δραστηριότητας αυτή ο διδάσκων καλό είναι να αναφέρει την χρησιμότητα ενός πίνακα ημιτόνων καθώς και το γεγονός ότι ιστορικά η ανάγκη για αστρονομικούς υπολογισμούς κατασκευάστηκαν τέτοιοι συστηματικοί πίνακες πρίν από 2000 τουλάχιστον χρόνια. Στην συνέχεια προτείνει στους μαθητές να περιορίσουν την μελέτη στο διάστημα [-π, π], «γεμίζοντας» (Table/Fill) τη στήλη του x με τιμές που μεταβάλλονται με βήμα υποπολλαπλάσιο του π, για παράδειγμα π/8. Οι «ακριβείς» τιμές των π και π/8 υπολογίζονται και εισάγονται με τη βοήθεια της αριθμομηχανής (calculator).

6 Εικόνα 2 Στη διπλανή στήλη (του y) οι μαθητές θα γράψουν τον τύπο y=sinx, οπότε συμπληρώνεται αυτομάτως ο πίνακας τιμών. Προτείνουμε και πάλι να αναζητήσουν και να σημειώσουν οι μαθητές τις τιμές με τις οποίες έχουν εξοικειωθεί σε προηγούμενες χρονιές Εικόνα 3 3η δραστηριότητα: Δημιουργία γραφήματος- γραφικής παράστασης Το γράφημα των σημείων που αντιστοιχούν στον πίνακα τιμών δίνει μια πρώτη ιδέα της ημιτονοειδούς καμπύλης. Στο μέτρο του διαθέσιμου χρόνου παροτρύνουμε τους μαθητές να δημιουργήσουν κι άλλο, πιο «πυκνό» πίνακα τιμών και το αντίστοιχο γράφημα (φροντίζουμε προηγουμένως να σώσουμε τον αρχικό πίνακα, με όνομα π.χ. sin.tbl). Τέλος, υποδεικνύουμε τον τρόπο κατασκευής της γραφικής παράστασης για χєr, στο παράθυρο γραφικών. 4η δραστηριότητα: Μελέτη της καμπύλης y=ημχ

7 α) κυκλική συνάρτηση: Ζητάμε από τους μαθητές να επισημάνουν πάνω σε αντίτυπο της γραφικής παράστασης σε χαρτί, σημεία της καμπύλης που έχουν την ίδια τιμή και την ίδια φάση. Επιβεβαιώνουμε την ορθότητα του δείγματος με τη βοήθεια της αριθμομηχανής (μπορούμε να κατασκευάσουμε αντίστοιχο πλήκτρο). Αναζητούμε τη σχέση που συνδέει τα σημεία αυτά. Επιβεβαιώνουμε την ορθότητα του τύπου με δοκιμές στον πίνακα τιμών. β) περιττή (συμμετρική ως προς την αρχή των αξόνων): Ο πειραματισμός μπορεί να γίνει και αλγεβρικά (με τη βοήθεια του πίνακα τιμών) και γραφικά με μετασχηματισμούς. 5η δραστηριότητα: Μελέτη της y=ρημχ Στον πίνακα sin.tbl συμπληρώνουμε στήλες με τους τύπους y=2sinx και y=3sinx. Συγκρίνουμε τις νέες τιμές με αυτήν της στήλης y=sinx προσπαθώντας να ανακαλύψουμε τις νέες αντιστοιχίες, τα νέα μέγιστα και ελάχιστα και να ερμηνεύσουμε το φαινόμενο. Δημιουργούμε τις γραφικές παραστάσεις των τριών συναρτήσεων στο ίδιο γραφικό παράθυρο, με διαφορετικά χρώματα (η συμφωνία χρωμάτων στις γραφικές παραστάσεις και στις αντίστοιχες στήλες τιμών του πίνακα ενισχύει την εποπτεία). Ζητάμε από τους μαθητές να μαντέψουν τη γραφική παράσταση των y=0.5sinx, y=0.3sinx κ.τ.λ. Καλό είναι να έχουμε ετοιμάσει φύλλο εργασίας, όπου θα σχεδιάσουν πρόχειρα και τις καμπύλες των συναρτήσεων, μαζί με την καμπύλη της y=sinx. Ζητάμε να διατυπώσουν συμπεράσματα, σχετικά με το ρόλο του ρ στη μελέτη της συνάρτησης.

8 Εικόνα 4 6η δραστηριότητα: Μετασχηματισμός καμπύλης με το εργαλείο κατακόρυφης στρέβλωσης Με το εργαλείο κατακόρυφης στρέβλωσης μεταβάλλουμε το ύψος της καμπύλης κατά ένα-δύο τετραγωνάκια προς τα πάνω ή προς τα κάτω (αλλάζουμε την τιμή του μέγιστου-ελάχιστου), παρακολουθώντας το μετασχηματισμό του τύπου της. Συνεχίζουμε τον πειραματισμό με κατακόρυφες στρεβλώσεις τυχαίου ύψους. Η εμφάνιση του «ιστορικού» του παραθύρου γραφικών βοηθά στον αναλογισμό του φαινομένου της κατακόρυφης παραμόρφωσης. Η ονομασία (define) κάθε καμπύλης μας βοηθά να κάνουμε συγκεκριμένες αναφορές σε προηγούμενα στάδια. Η δυνατότητα δημιουργίας πλήκτρου στην αριθμομηχανή για τον τύπο συγκεκριμένης συνάρτησης επιτρέπει τις επαληθεύσεις. 7η δραστηριότητα: Μελέτη της y=ημ(λ χ)

9 Ενδεικτικό φύλλο εργασίας 1) Να κατακσευάσετε την γραφική παράσταση της συνάρτησης του ημιτόνου f(x)=sin(x). Χωρίς να χρησιμοποιήσετε τις δυνατότητες τπου λογισμικού να διαπραγματευτείται το ερώτημα: «Τι κοινό θα έχει η γραφική παράσταση της συνάρτηση f(x)=sin(2 x) με την f(x)=sin(x) και σε τι θα διαφέρουν;» 2) Με το εργαλείο οριζόντιας παραμόρφωσης να μεταβάλλετε την καμπύλη μέχρις ότου το πλάτος της γίνει το μισό του αρχικού. Να συγκρίνεται τις εικασίες που είχατε διατυπώσει στην πρώτη ερώτηση με τα αποτελέσματα που προέκυψαν. 3) Να επαναλάβετε την διερεύνηση με αρκετές τιμές μεγαλύτερες του 1 αλλά και μικρότερες του 1. Να διατυπώσετε έναν κανόνα για τους μετασχηματισμούς της συνάρτησης f(x)=sin(x) όταν η ανεξάρτητη μεταβλητή x υφίσταται τον μετασχηματισμό x κ x. Αναμενόμενες δράσεις Στο πρώτο ερώτημα οι μαθητές θα κάνουν εικασίες για το τι μπορεί να συμβεί στην γραφική παράσταση της ημιτονοειδούς καμπύλης όταν η ανεξάρτητη μεταβλητή πολλαπλασιαστεί με έναν αριθμό. Την συζήτηση θα ενθαρρύνει ο διδάσκων προτρέποντας τους μαθητές να δίνουν μία εξήγηση για αυτά που υποστηρίζουν. Στο δεύτερο ερώτημα οι μαθητές θα πειραματιστούν με το εργαλείο αυξομείωσης ώστε να εντοπίσουν τους μετασχηματισμούς της γραφικής παράστασης σε συνδυασμό με τον συντελεστή του x. Εικόνα 5

10 Με αντίστοιχα βήματα και πειραματισμούς οδηγούμε τους μαθητές σε συμπεράσματα για το ρόλο που παίζει γενικά το λ στην περίοδο της συνάρτησης. 8η δραστηριότητα: Μελέτη της y=ημ(χ+κ) Με αντίστοιχα βήματα και με τη βοήθεια του εργαλείου οριζόντιας μετατόπισης μελετάμε και αυτό τον τύπο συνάρτησης, σε σχέση πάντα με την y=ημχ. Εικόνα 6 Στην περίπτωση που χρησιμοποιείται διαδραστικός πίνακας στην αίθουσα, ο διδάσκων μπορεί να καλέσει έναν μαθητή κάθε φορά ο οποίος θα σημειώνει με την ειδική γραφίδα του πίνακα τον τύπο που αντιστοιχεί σε κάθε μία γραφική παράσταση. Τέλος, ο διδάσκων μπορεί να εκτυπώσει το αποτέλεσμα και να το μοιράσει στους μαθητές ή να το αποθηκεύσει και να το ανεβάσει σε ένα ψηφιακό τόπο από όπου οι μαθητές θα το παραλάβουν σε ηλεκτρονική μορφή. 9η δραστηριότητα: Μελέτη της εξίσωσης ημχ=α Στο παράθυρο γραφικών ζητάμε την κατασκευή της y=ημχ και στη συνέχεια της τέμνουσας ευθεία y=α.. Με κατάλληλες ερωτήσεις κινητοποιούμε τους μαθητές να σκεφτούν σχετικά με την τιμή του α. Με τη βοήθεια του εργαλείου συντεταγμένων, ελέγχουμε τις συντεταγμένες των σημείων στα οποία η ευθεία τέμνει την καμπύλη. Με την κατακόρυφη μετακίνηση της ευθείας y=α διερευνούμε την επίλυση της εξίσωσης ημχ=α.

11 Τα εργαλεία που θα χρησιμοποιηθούν Για την υλοποίηση του σεναρίου θα χρησιμοποιηθεί το λογισμικό function probe. Το συγκεκριμένο λογισμικό διαθέτει τρία παράθυρα Το γράφημα, τον πίνακα τιμών και τον υπολογιστή. Κάθε ένα από τα παραπάνω εργαλεία διαθέτει μία σειρά από λειτουργίες ορισμένες από τις οποίες είναι απαραίτητες για τις δραστηριότητες. Για παράδειγμα το γέμισμα μιας στήλης με την βοήθεια του υπολογιστή ή η παραμόρφωση μιας γραφικής παράστασης. Επέκταση Οι δραστηριότητες θα μπορούσαν να επεκταθούν στην μελέτη των άλλων τριγωνομετρικών συναρτήσεων όπως της ψ=ρ συν(λχ+κ) ή ψ=ρ εφ(λχ+κ). Το σημαντικό είναι οι δραστηριότητες του παρόντος σεναρίου να μετασχηματιστούν σε μέθοδο διερεύνησης τριγωνομετρικών συναρτήσεων εν γένει. Αξιολόγηση μετά την εφαρμογή Ως προς τις επιδιώξεις του σεναρίου: Μετά την υλοποίηση του σεναρίου ο διδάσκων ελέγχει κατά πόσο επετεύχθησαν οι στόχοι του σεναρίου. Ένας τρόπος είναι και η κατασκευή κατάλληλων ερωτήσεων τις οποίες στο τέλος θα απευθύνει προς τους μαθητές για να ελέγξει τον βαθμό κατανόησης των εννοιών που είχαν εμπλακεί. Ως προς τα εργαλεία: Η εφαρμογή μέσα σε πραγματικές συνθήκες μιας δραστηριότητας παρουσιάζει μη αναμενόμενες δυσκολίες οι οποίες μπορεί να οφείλονται στο ψηφιακό εργαλείο που χρησιμοποιείται. Οι δυσκολίες που θα παρουσιαστούν θα καταγραφούν από τον διδάσκοντα ο οποίος θα είτε θα βελτιώσει τις απαιτήσεις του σεναρίου είτε θα σχεδιάσει μια περισσότερο κατευθυνόμενη πορεία εφαρμογής του ίδιου σεναρίου. Ως προς την διαδικασία υλοποίησης: Η δομή του σεναρίου, η σειρά των δραστηριοτήτων και τα ερωτήματα που τίθενται στους μαθητές αποτελούν αντικείμενο αξιολόγησης από τον ίδιο τον διδάσκοντα. Κρατώντας σημειώσεις για τις δυσκολίες υλοποίησης συγκεκριμένων δραστηριοτήτων μπορεί να εκτιμήσει τα σημεία στα οποία οι μαθητές δήλωναν ή εκδήλωναν δυσκολίες κατανόησης ή εφαρμογής. Στην συνέχεια, με κατάλληλες

12 επεμβάσεις στις δραστηριότητες, επιχειρεί να θεραπεύσει τα προβλήματα που προέκυψαν απλοποιώντας διαδικασίες ή περιγράφοντας με μεγαλύτερη σαφήνεια τις ερωτήσεις των δραστηριοτήτων. Ως προς την προσαρμογή και επεκτασιμότητα: Ο εκπαιδευτικός μετά από κάθε εφαρμογή του σεναρίου επανεκτιμά την δομή του σεναρίου και σχεδιάζει νέες δυνατότητες και επεκτάσεις. Το συγκεκριμένο σενάριο θα μπορούσε να αποτελέσει την βάση πάνω στην οποία είναι δυνατόν να οργανωθεί η λύση μιας οποιασδήποτε τριγωνομετρικής εξίσωσης της μορφής ρ συν(λχ+κ) = c. Ακόμη θα μπορούσε να γίνει μελέτη σύνθετων τριγωνομετρικών συναρτήσεων της μορφής: f(x)=ρ 1 συν(λ 1 χ+κ 1 ) + ρ 2 συν(λ 2 χ+κ 2 ).

To σενάριο προτείνεται να υλοποιηθεί µε το λογισµικό Function probe. Σκεπτικό: Βασική

To σενάριο προτείνεται να υλοποιηθεί µε το λογισµικό Function probe. Σκεπτικό: Βασική Σενάριο 8. Τριγωνοµετρικές. συναρτήσεις; Γνωστική περιοχή: Άλγεβρα Β' Λυκείου. Η συνάρτηση ψ= ρηµ(λχ+κ) Γραφική παράσταση τριγωνοµετρικών συναρτήσεων Γραφική επίλυση τριγωνοµετρικής εξίσωσης. Θέµα: To

Διαβάστε περισσότερα

Σενάριο 10. Ελάχιστη Απόσταση δυο Τρένων. Γνωστική περιοχή: Άλγεβρα Α' Λυκείου. Η συνάρτηση ψ= αχ 2 +βχ+γ. Γραφική παράσταση τριωνύµου

Σενάριο 10. Ελάχιστη Απόσταση δυο Τρένων. Γνωστική περιοχή: Άλγεβρα Α' Λυκείου. Η συνάρτηση ψ= αχ 2 +βχ+γ. Γραφική παράσταση τριωνύµου Σενάριο 10. Ελάχιστη Απόσταση δυο Τρένων Γνωστική περιοχή: Άλγεβρα Α' Λυκείου. Η συνάρτηση ψ= αχ 2 +βχ+γ Γραφική παράσταση τριωνύµου Εξισώσεις κίνησης. Θέµα: To προτεινόµενο θέµα αφορά την µελέτη της µεταβολής

Διαβάστε περισσότερα

Η λογαριθµική συνάρτηση και οι ιδιότητές της

Η λογαριθµική συνάρτηση και οι ιδιότητές της ΕΚΦΩΝΗΣΗ ΕΛΕΥΘΕΡΟΥ ΘΕΜΑΤΟΣ Η λογαριθµική συνάρτηση και οι ιδιότητές της Η διδασκαλία της λογαριθµικής συνάρτησης, στο σχολικό εγχειρίδιο της Β Λυκείου, έχει σαν βάση την εκθετική συνάρτηση και την ιδιότητα

Διαβάστε περισσότερα

Το σενάριο προτείνεται να υλοποιηθεί με το λογισμικό Geogebra.

Το σενάριο προτείνεται να υλοποιηθεί με το λογισμικό Geogebra. 9.3. Σενάριο 9. Μελέτη της συνάρτησης f(x) = αx +βx+γ Γνωστική περιοχή: Άλγεβρα Α Λυκείου. Η συνάρτηση ψ= αχ +βχ+γ (γραφική παράσταση, μονοτονία, ακρότατα). Θέμα: Το προτεινόμενο θέμα αφορά την κατασκευή

Διαβάστε περισσότερα

To σενάριο προτείνεται να υλοποιηθεί µε το λογισµικό Function probe.

To σενάριο προτείνεται να υλοποιηθεί µε το λογισµικό Function probe. Σενάριο 7. Η Οµοιότητα Τριγώνων ως Λόγος Πλευρών Γνωστική περιοχή: Άλγεβρα Α' Λυκείου. Η γραµµική συνάρτηση ψ= αχ. Συντελεστής διεύθυνσης ευθείας. Γεωµετρία Α' Λυκείου Οµοιότητα τριγώνων Θέµα: To προτεινόµενο

Διαβάστε περισσότερα

ΣΕΝΑΡΙΟ ΤΠΕ ΓΕΝΙΚΕΥΜΕΝΟ ΠΥΘΑΓΟΡΕΙΟ ΘΕΩΡΗΜΑ - ΝΟΜΟΣ ΣΥΝΗΜΙΤΟΝΩΝ

ΣΕΝΑΡΙΟ ΤΠΕ ΓΕΝΙΚΕΥΜΕΝΟ ΠΥΘΑΓΟΡΕΙΟ ΘΕΩΡΗΜΑ - ΝΟΜΟΣ ΣΥΝΗΜΙΤΟΝΩΝ ΣΕΝΑΡΙΟ ΤΠΕ ΓΕΝΙΚΕΥΜΕΝΟ ΠΥΘΑΓΟΡΕΙΟ ΘΕΩΡΗΜΑ - ΝΟΜΟΣ ΣΥΝΗΜΙΤΟΝΩΝ Γνωστική Περιοχή: Γεωμετρία Β Λυκείου Θέμα Το Πυθαγόρειο Θεώρημα είναι γνωστό στους μαθητές από το Γυμνάσιο. Το προτεινόμενα θέμα αφορά την

Διαβάστε περισσότερα

Το σενάριο προτείνεται να υλοποιηθεί με το λογισμικό Function Probe.

Το σενάριο προτείνεται να υλοποιηθεί με το λογισμικό Function Probe. Σενάριο 2: Ο ερευνητής και οι χελώνες ΚΑΡΕΤΑ_ΚΑΡΕΤΑ Συγγραφέας: Καλλιόπη Αρδαβάνη, Επιμορφώτρια Μαθηματικών (Β επιπέδου). Γνωστική περιοχή: Άλγεβρα Ανεξάρτητη και εξαρτημένη μεταβλητή. Πεδίο ορισμού και

Διαβάστε περισσότερα

Ενότητα: Χειρισµός αλγεβρικών ψηφιακών συστηµάτων

Ενότητα: Χειρισµός αλγεβρικών ψηφιακών συστηµάτων Ενότητα: Χειρισµός αλγεβρικών ψηφιακών συστηµάτων Σενάριο 8 (Τροποποιηµένο): Η γραµµική συνάρτηση ψ=αx Γνωστική περιοχή: Άλγεβρα Α Λυκείου. - Η γραµµική συνάρτηση ψ=αx. Θέµα: Το προτεινόµενο θέµα αφορά

Διαβάστε περισσότερα

Το σενάριο προτείνεται να διεξαχθεί με τη χρήση του Cabri Geometry II.

Το σενάριο προτείνεται να διεξαχθεί με τη χρήση του Cabri Geometry II. 9.2.3 Σενάριο 6. Συμμεταβολές στο ισοσκελές τρίγωνο Γνωστική περιοχή: Γεωμετρία Β Λυκείου. Συμμεταβολή μεγεθών. Εμβαδόν ισοσκελούς τριγώνου. Σύστημα συντεταγμένων. Γραφική παράσταση συνάρτησης. Μέγιστη

Διαβάστε περισσότερα

Γεωµετρία Β' Λυκείου. Συµµεταβολή µεγεθών. Εµβαδόν ισοσκελούς τριγώνου. Σύστηµα. συντεταγµένων. Γραφική παράσταση συνάρτησης. Μέγιστη - ελάχιστη τιµή.

Γεωµετρία Β' Λυκείου. Συµµεταβολή µεγεθών. Εµβαδόν ισοσκελούς τριγώνου. Σύστηµα. συντεταγµένων. Γραφική παράσταση συνάρτησης. Μέγιστη - ελάχιστη τιµή. Σενάριο 6. Συµµεταβολές στο ισοσκελές τρίγωνο Γνωστική περιοχή: Γεωµετρία Β' Λυκείου. Συµµεταβολή µεγεθών. Εµβαδόν ισοσκελούς τριγώνου. Σύστηµα συντεταγµένων. Γραφική παράσταση συνάρτησης. Μέγιστη - ελάχιστη

Διαβάστε περισσότερα

Ερωτήµατα σχεδίασης και παρατήρησης (για εστίαση σε συγκεκριµένες πτυχές των αλλαγών στο σχήµα).

Ερωτήµατα σχεδίασης και παρατήρησης (για εστίαση σε συγκεκριµένες πτυχές των αλλαγών στο σχήµα). τάξης είναι ένα από τα στοιχεία που το καθιστούν σηµαντικό. Ο εκπαιδευτικός πρέπει να λάβει σοβαρά υπόψη του αυτές τις παραµέτρους και να προσαρµόσει το σενάριο ανάλογα. Ιδιαίτερα όταν εφαρµόσει το σενάριο

Διαβάστε περισσότερα

Γεωµετρία Γ' Γυµνασίου: Παραλληλία πλευρών, αναλογίες γεωµετρικών µεγεθών, οµοιότητα

Γεωµετρία Γ' Γυµνασίου: Παραλληλία πλευρών, αναλογίες γεωµετρικών µεγεθών, οµοιότητα Σενάριο 3. Τα µέσα των πλευρών τριγώνου Γνωστική περιοχή: Γεωµετρία Γ' Γυµνασίου: Παραλληλία πλευρών, αναλογίες γεωµετρικών µεγεθών, οµοιότητα τριγώνων, τριγωνοµετρικοί αριθµοί περίµετρος και εµβαδόν.

Διαβάστε περισσότερα

Σενάριο 5. Μετασχηµατισµοί στο επίπεδο. Γνωστική περιοχή: Γεωµετρία Α' Λυκείου. Συµµετρία ως προς άξονα. Σύστηµα συντεταγµένων.

Σενάριο 5. Μετασχηµατισµοί στο επίπεδο. Γνωστική περιοχή: Γεωµετρία Α' Λυκείου. Συµµετρία ως προς άξονα. Σύστηµα συντεταγµένων. Σενάριο 5. Μετασχηµατισµοί στο επίπεδο Γνωστική περιοχή: Γεωµετρία Α' Λυκείου. Συµµετρία ως προς άξονα. Σύστηµα συντεταγµένων. Απόλυτη τιµή πραγµατικών αριθµών. Συµµεταβολή σηµείων. Θέµα: Στο περιβάλλον

Διαβάστε περισσότερα

ΣΧΕΔΙΟ ΜΑΘΗΜΑΤΟΣ ΑΛΓΕΒΡΑ Α ΛΥΚΕΙΟΥ

ΣΧΕΔΙΟ ΜΑΘΗΜΑΤΟΣ ΑΛΓΕΒΡΑ Α ΛΥΚΕΙΟΥ Μυλωνάκης Κων/νος ΣΧΕΔΙΟ ΜΑΘΗΜΑΤΟΣ ΑΛΓΕΒΡΑ Α ΛΥΚΕΙΟΥ Σχολείο: Ημερομηνία: / / Α Λυκείου τμήμα.. Καθηγητής/τρια: Α) Το θέμα και το μαθησιακό περιβάλλον. 1) Το γνωστικό αντικείμενο της διδασκαλίας είναι

Διαβάστε περισσότερα

Σε ποιους απευθύνεται: Χρόνος υλοποίησης: Χώρος υλοποίησης: Κοινωνική ενορχήστρωση της τάξης Στόχοι:... 4

Σε ποιους απευθύνεται: Χρόνος υλοποίησης: Χώρος υλοποίησης: Κοινωνική ενορχήστρωση της τάξης Στόχοι:... 4 Περιεχόμενα Νικόλαος Μανάρας... 2 Σενάριο για διδασκαλία/ εκμάθηση σε μια σύνθεση μεικτής μάθησης (Blended Learning) με τη χρήση του δυναμικού μαθηματικού λογισμικού Geogebra σε διαδραστικό πίνακα και

Διαβάστε περισσότερα

Σενάριο 1. Σκιτσάροντας µε Παραλληλόγραµµα. Γνωστική περιοχή: Γεωµετρία (και σχέσεις µεταξύ γενικευµένων αριθµών).

Σενάριο 1. Σκιτσάροντας µε Παραλληλόγραµµα. Γνωστική περιοχή: Γεωµετρία (και σχέσεις µεταξύ γενικευµένων αριθµών). Σενάριο 1. Σκιτσάροντας µε Παραλληλόγραµµα Γνωστική περιοχή: Γεωµετρία (και σχέσεις µεταξύ γενικευµένων αριθµών). Θέµα: Η διερεύνηση µερικών βασικών ιδιοτήτων των παραλληλογράµµων από τους µαθητές µε χρήση

Διαβάστε περισσότερα

Εικόνα 31. To σενάριο προτείνεται να διεξαχθεί µε τη χρήση του λογισµικού Geogebra.

Εικόνα 31. To σενάριο προτείνεται να διεξαχθεί µε τη χρήση του λογισµικού Geogebra. Σενάριο 4. Η µέτρηση του εµβαδού ενός παραβολικού οικοπέδου Γνωστική περιοχή: Μαθηµατικά Γ' Λυκείου. Παραβολή. Τετραγωνική συνάρτηση. Εµβαδόν. Ορισµένο ολοκλήρωµα Θέµα: Οι τέσσερις πλευρές ενός οικοπέδου

Διαβάστε περισσότερα

Ερωτήµατα σχεδίασης και παρατήρησης (για εστίαση σε συγκεκριµένες πτυχές των αλλαγών στο σχήµα).

Ερωτήµατα σχεδίασης και παρατήρησης (για εστίαση σε συγκεκριµένες πτυχές των αλλαγών στο σχήµα). λάβει σοβαρά υπόψη του αυτές τις παραµέτρους και να προσαρµόσει το σενάριο ανάλογα. Ιδιαίτερα όταν εφαρµόσει το σενάριο πολλές φορές και σε διαφορετικές τάξεις ή ανταλλάξει ιδέες µε άλλους συναδέλφους

Διαβάστε περισσότερα

ΣΕΝΑΡΙΟ: Εφαπτομένη οξείας γωνίας στη Β Γυμνασίου

ΣΕΝΑΡΙΟ: Εφαπτομένη οξείας γωνίας στη Β Γυμνασίου ΣΕΝΑΡΙΟ: Εφαπτομένη οξείας γωνίας στη Β Γυμνασίου Συγγραφέας: Κοπατσάρη Γεωργία Ημερομηνία: Φλώρινα, 5-3-2014 Γνωστική περιοχή: Μαθηματικά (Γεωμετρία) Β Γυμνασίου Προτεινόμενο λογισμικό: Προτείνεται να

Διαβάστε περισσότερα

ΣΕΝΑΡΙΟ ΕΚΘΕΤΙΚΗ ΣΥΝΑΡΤΗΣΗ. ΑΛΕΞΑΝΔΡΟΣ ΣΥΓΚΕΛΑΚΗΣ asygelakis@gmail.com

ΣΕΝΑΡΙΟ ΕΚΘΕΤΙΚΗ ΣΥΝΑΡΤΗΣΗ. ΑΛΕΞΑΝΔΡΟΣ ΣΥΓΚΕΛΑΚΗΣ asygelakis@gmail.com ΣΕΝΑΡΙΟ ΕΚΘΕΤΙΚΗ ΣΥΝΑΡΤΗΣΗ ΑΛΕΞΑΝΔΡΟΣ ΣΥΓΚΕΛΑΚΗΣ asygelakis@gmail.com Επιμόρφωση Β Επιπέδου Κλάδος: ΠΕ03 Περίοδος: Δεκέμβριος 2010 Ιούνιος 2011 ΧΑΡΑΚΤΗΡΙΣΤΙΚΑ ΣΕΝΑΡΙΟΥ 1. Τίτλος σεναρίου: Μελέτη της εκθετικής

Διαβάστε περισσότερα

ΔΙΔΑΣΚΑΛΙΑ ΤΗΣ ΕΝΝΟΙΑΣ ΤΟΥ ΟΡΙΟΥ ΣΥΝΑΡΤΗΣΗΣ

ΔΙΔΑΣΚΑΛΙΑ ΤΗΣ ΕΝΝΟΙΑΣ ΤΟΥ ΟΡΙΟΥ ΣΥΝΑΡΤΗΣΗΣ ΕΠΙΜΟΡΦΩΣΗ ΤΩΝ ΕΚΠΑΙΔΕΥΤΙΚΩΝ ΓΙΑ ΤΗΝ ΑΞΙΟΠΟΙΗΣΗ ΚΑΙ ΕΦΑΡΜΟΓΗ ΤΩΝ ΤΠΕ ΣΤΗ ΔΙΔΑΚΤΙΚΗ ΠΡΑΞΗ ΔΙΔΑΣΚΑΛΙΑ ΤΗΣ ΕΝΝΟΙΑΣ ΤΟΥ ΟΡΙΟΥ ΣΥΝΑΡΤΗΣΗΣ ΟΡΙΟ ΣΥΝΑΡΤΗΣΗΣ ΕΞ ΑΡΙΣΤΕΡΩΝ ΚΑΙ ΕΚ ΔΕΞΙΩΝ ΣΥΓΓΡΑΦΕΑΣ: ΚΟΥΤΙΔΗΣ ΙΩΑΝΝΗΣ

Διαβάστε περισσότερα

«Εισαγωγή στον Τριγωνομετρικό Κύκλο» Διδάσκοντας Μαθηματικά με Τ.Π.Ε.

«Εισαγωγή στον Τριγωνομετρικό Κύκλο» Διδάσκοντας Μαθηματικά με Τ.Π.Ε. «Εισαγωγή στον Τριγωνομετρικό Κύκλο» Διδάσκοντας Μαθηματικά με Τ.Π.Ε. Μπολοτάκης Γιώργος Μαθηματικός, Επιμορφωτής Β επιπέδου, Διευθυντής Γυμνασίου Αγ. Αθανασίου Δράμας, Τραπεζούντος 7, Άγιος Αθανάσιος,

Διαβάστε περισσότερα

πολυγώνων που µπορούν να χρησιµοποιηθούν για να καλυφθεί το επίπεδο γύρω από µια

πολυγώνων που µπορούν να χρησιµοποιηθούν για να καλυφθεί το επίπεδο γύρω από µια Κάθε οµάδα παρουσιάζει στην τάξη: (1) Τις logo διαδικασίες µε τις οποίες σχεδίασε τα κανονικά πολύγωνα. (2) Τις διαδικασίες µε τις οποίες σχεδίασαν τα κανονικά πολύγωνα γύρω από µια περιοχή. (3) Τα τεχνουργήµατα

Διαβάστε περισσότερα

ΠΑΙΖΟΝΤΑΣ ΜΕ ΙΣΟΠΛΕΥΡΑ ΤΡΙΓΩΝΑ

ΠΑΙΖΟΝΤΑΣ ΜΕ ΙΣΟΠΛΕΥΡΑ ΤΡΙΓΩΝΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΔΥΤΙΚΗΣ ΜΑΚΕΔΟΝΙΑΣ ΠΑΙΔΑΓΩΓΙΚΟ ΔΗΜΟΤΙΚΗΣ ΕΚΠΑΙΔΕΥΣΗΣ 13/11/2016 ΠΑΙΖΟΝΤΑΣ ΜΕ ΙΣΟΠΛΕΥΡΑ ΤΡΙΓΩΝΑ ΜΑΘΗΜΑ ΚΑΤΑΣΚΕΥΗ ΕΚΠΑΙΔΕΥΤΙΚΟΥ ΥΛΙΚΟΥ ΓΙΑ ΤΑ ΜΑΘΗΜΑΤΙΚΑ ΜΕ ΤΗ ΧΡΗΣΗ ΤΠΕ ΥΠΕΥΘΥΝΟΣ ΚΑΘΗΓΗΤΗΣ:

Διαβάστε περισσότερα

«Χρήση εκπαιδευτικού λογισμικού για τη διδασκαλία του θεωρήματος του Bolzano»

«Χρήση εκπαιδευτικού λογισμικού για τη διδασκαλία του θεωρήματος του Bolzano» «Χρήση εκπαιδευτικού λογισμικού για τη διδασκαλία του θεωρήματος του Bolzano» Ιορδανίδης Ι. Φώτιος Καθηγητής Μαθηματικών, 2 ο Γενικό Λύκειο Πτολεμαΐδας fjordaneap@gmail.com ΠΕΡΙΛΗΨΗ Το θεώρημα του Bolzano

Διαβάστε περισσότερα

Τα Διδακτικά Σενάρια και οι Προδιαγραφές τους. του Σταύρου Κοκκαλίδη. Μαθηματικού

Τα Διδακτικά Σενάρια και οι Προδιαγραφές τους. του Σταύρου Κοκκαλίδη. Μαθηματικού Τα Διδακτικά Σενάρια και οι Προδιαγραφές τους του Σταύρου Κοκκαλίδη Μαθηματικού Διευθυντή του Γυμνασίου Αρχαγγέλου Ρόδου-Εκπαιδευτή Στα προγράμματα Β Επιπέδου στις ΤΠΕ Ορισμός της έννοιας του σεναρίου.

Διαβάστε περισσότερα

ΕΚΦΩΝΗΣΗ ΕΛΕΥΘΕΡΟΥ ΘΕΜΑΤΟΣ. Μελέτη της συνάρτησης f(x)=ηµx

ΕΚΦΩΝΗΣΗ ΕΛΕΥΘΕΡΟΥ ΘΕΜΑΤΟΣ. Μελέτη της συνάρτησης f(x)=ηµx ΕΚΦΩΝΗΣΗ ΕΛΕΥΘΕΡΟΥ ΘΕΜΑΤΟΣ Μελέτη της συνάρτησης f(x)=ηµx Στη Γ' γυµνασίου, το ηµίτονο µελετάται ως τριγωνοµετρικός αριθµός µε βάση τις συντεταγµένες ενός σηµείου Μ µιας ηµιευθείας ΟΜ που σχηµατίζει µε

Διαβάστε περισσότερα

ΤΟ ΠΡΟΣΗΜΟ ΤΟΥ ΤΡΙΩΝΥΜΟΥ

ΤΟ ΠΡΟΣΗΜΟ ΤΟΥ ΤΡΙΩΝΥΜΟΥ ΣΕΝΑΡΙΟ του Κύπρου Κυπρίδηµου, µαθηµατικού ΤΟ ΠΡΟΣΗΜΟ ΤΟΥ ΤΡΙΩΝΥΜΟΥ Περίληψη Στη δραστηριότητα αυτή οι µαθητές καλούνται να διερευνήσουν το πρόσηµο του τριωνύµου φ(x) = αx 2 + βx + γ. Προτείνεται να διδαχθεί

Διαβάστε περισσότερα

ΠΑΙΖΟΝΤΑΣ ΜΕ ΙΣΟΠΛΕΥΡΑ ΤΡΙΓΩΝΑ

ΠΑΙΖΟΝΤΑΣ ΜΕ ΙΣΟΠΛΕΥΡΑ ΤΡΙΓΩΝΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΔΥΤΙΚΗΣ ΜΑΚΕΔΟΝΙΑΣ ΠΑΙΔΑΓΩΓΙΚΟ ΔΗΜΟΤΙΚΗΣ ΕΚΠΑΙΔΕΥΣΗΣ 13/11/2016 ΠΑΙΖΟΝΤΑΣ ΜΕ ΙΣΟΠΛΕΥΡΑ ΤΡΙΓΩΝΑ ΜΑΘΗΜΑ ΚΑΤΑΣΚΕΥΗ ΕΚΠΑΙΔΕΥΤΙΚΟΥ ΥΛΙΚΟΥ ΓΙΑ ΤΑ ΜΑΘΗΜΑΤΙΚΑ ΜΕ ΤΗ ΧΡΗΣΗ ΤΠΕ ΥΠΕΥΘΥΝΟΣ ΚΑΘΗΓΗΤΗΣ:

Διαβάστε περισσότερα

Μαθητές Β ΕΠΑ.Λ. Σωτήρης Δ. Χασάπης. 4-5 διδακτικές ώρες, ανάλογα με το γενικότερο επίπεδο της τάξης.

Μαθητές Β ΕΠΑ.Λ. Σωτήρης Δ. Χασάπης. 4-5 διδακτικές ώρες, ανάλογα με το γενικότερο επίπεδο της τάξης. Τίτλος σεναρίου : Η συνάρτηση f (x)=α ημ(ωx)+ β Γνωστική περιοχή : Θέμα : Τεχνολογικά εργαλεία : Πλαίσιο εφαρμογής Σε ποιους απευθύνεται : Διδάσκων : Χρόνος υλοποίησης : Χώρος υλοποίησης : 1 Σκεπτικό Βασική

Διαβάστε περισσότερα

Γωνίες μεταξύ παραλλήλων ευθειών που τέμνονται από τρίτη ευθεία

Γωνίες μεταξύ παραλλήλων ευθειών που τέμνονται από τρίτη ευθεία Γωνίες μεταξύ παραλλήλων ευθειών που τέμνονται από τρίτη ευθεία Επαρκές Σενάριο Γνωστικό αντικείμενο: Μαθηματικά (ΔΕ) Δημιουργός: ΙΩΑΝΝΗΣ ΟΙΚΟΝΟΜΟΥ ΙΝΣΤΙΤΟΥΤΟ ΕΚΠΑΙΔΕΥΤΙΚΗΣ ΠΟΛΙΤΙΚΗΣ ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ,

Διαβάστε περισσότερα

Εκπαιδευτικό Σενάριο: Αναλογίες. Βασίλης Παπαγεωργίου

Εκπαιδευτικό Σενάριο: Αναλογίες. Βασίλης Παπαγεωργίου Εκπαιδευτικό Σενάριο: Αναλογίες Ιανουάριος 2011 1. Τίτλος Αναλογίες 2. Ταυτότητα Συγγραφέας: Γνωστική περιοχή των μαθηματικών: Άλγεβρα, Γεωμετρία Θέμα: Αναλογίες Συντεταγμένες στο επίπεδο 3. Σκεπτικό 2

Διαβάστε περισσότερα

Παιδαγωγικό σενάριο : Μελέτη της συνάρτησης y=αx

Παιδαγωγικό σενάριο : Μελέτη της συνάρτησης y=αx Παιδαγωγικό σενάριο : Μελέτη της συνάρτησης y=αx Στόχος: Το παιδαγωγικό σενάριο αναφέρεται στη μελέτη της συνάρτησης y=αx και στη κατανόηση της κλίσης ευθείας. Λογισμικό: Για την εφαρμογή του σεναρίου

Διαβάστε περισσότερα

Διδακτικές ενότητες Στόχος

Διδακτικές ενότητες Στόχος Η διδασκαλία του τριγωνομετρικού κύκλου με τον παραδοσιακό τρόπο στον πίνακα, είναι μία διαδικασία όχι εύκολα κατανοητή για τους μαθητές, με αποτέλεσμα τη μηχανική παπαγαλίστικη χρήση των τύπων της τριγωνομετρίας.

Διαβάστε περισσότερα

ΣΧΕΔΙΟ ΜΑΘΗΜΑΤΟΣ ΑΛΓΕΒΡΑ Α ΛΥΚΕΙΟΥ

ΣΧΕΔΙΟ ΜΑΘΗΜΑΤΟΣ ΑΛΓΕΒΡΑ Α ΛΥΚΕΙΟΥ Μυλωνάκης Κων/νος ΣΧΕΔΙΟ ΜΑΘΗΜΑΤΟΣ ΑΛΓΕΒΡΑ Α ΛΥΚΕΙΟΥ Σχολείο: Ημερομηνία: / / Α Λυκείου τμήμα.. Καθηγητής/τρια: Α) Το θέμα και το μαθησιακό περιβάλλον. 1) Το γνωστικό αντικείμενο της διδασκαλίας είναι

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΔΥΤΙΚΗΣ ΜΑΚΕΔΟΝΙΑΣ ΠΑΙΔΑΓΩΓΙΚΟ ΤΜΗΜΑ ΔΗΜΟΤΙΚΗΣ ΕΚΠΑΙΔΕΥΣΗΣ ΦΛΩΡΙΝΑ

ΠΑΝΕΠΙΣΤΗΜΙΟ ΔΥΤΙΚΗΣ ΜΑΚΕΔΟΝΙΑΣ ΠΑΙΔΑΓΩΓΙΚΟ ΤΜΗΜΑ ΔΗΜΟΤΙΚΗΣ ΕΚΠΑΙΔΕΥΣΗΣ ΦΛΩΡΙΝΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΔΥΤΙΚΗΣ ΜΑΚΕΔΟΝΙΑΣ ΠΑΙΔΑΓΩΓΙΚΟ ΤΜΗΜΑ ΔΗΜΟΤΙΚΗΣ ΕΚΠΑΙΔΕΥΣΗΣ ΦΛΩΡΙΝΑ ΕΡΓΑΣΙΑ ΓΙΑ ΤΟ ΜΑΘΗΜΑ: ΚΑΤΑΣΚΕΥΗ ΕΚΠΑΙΔΕΥΤΙΚΟΥ ΥΛΙΚΟΥ ΓΙΑ ΤΑ ΜΑΘΗΜΑΤΙΚΑ ΜΕ ΧΡΗΣΗ ΤΠΕ ΘΕΜΑ ΕΡΓΑΣΙΑΣ: ΜΕΤΑΤΡΟΠΗ ΤΟΥ ΣΕΝΑΡΙΟΥ

Διαβάστε περισσότερα

ΕΝΔΕΙΚΤΙΚΟΙ ΤΡΟΠΟΙ ΣΧΕΔΙΑΣΜΟΥ ΤΗΣ ΔΙΔΑΣΚΑΛΙΑΣ ΤΗΣ ΜΕΛΕΤΗΣ ΠΡΟΣΗΜΟΥ ΤΡΙΩΝΥΜΟΥ.

ΕΝΔΕΙΚΤΙΚΟΙ ΤΡΟΠΟΙ ΣΧΕΔΙΑΣΜΟΥ ΤΗΣ ΔΙΔΑΣΚΑΛΙΑΣ ΤΗΣ ΜΕΛΕΤΗΣ ΠΡΟΣΗΜΟΥ ΤΡΙΩΝΥΜΟΥ. Στέφανος Κεΐσογλου Σχολικός σύμβουλος ΕΝΕΙΚΤΙΚΟΙ ΤΡΟΠΟΙ ΣΧΕΙΑΣΜΟΥ ΤΗΣ ΙΑΣΚΑΛΙΑΣ ΤΗΣ ΜΕΛΕΤΗΣ ΠΡΟΣΗΜΟΥ ΤΡΙΩΝΥΜΟΥ. Στο κείμενο που ακολουθεί έχει γίνει προσπάθεια να φανεί ότι ο σχεδιασμός της διδασκαλίας

Διαβάστε περισσότερα

Στρατηγική επίλυσης προβλημάτων: Διερεύνηση περιμέτρου κι εμβαδού με τη βοήθεια του Ms Excel.

Στρατηγική επίλυσης προβλημάτων: Διερεύνηση περιμέτρου κι εμβαδού με τη βοήθεια του Ms Excel. Στρατηγική επίλυσης προβλημάτων: Διερεύνηση περιμέτρου κι εμβαδού με τη βοήθεια του Ms Excel. Έντυπο Α Φύλλα εργασίας Μαθητή Διαμαντής Κώστας Τερζίδης Σωτήρης 31/1/2008 Φύλλο εργασίας 1. Ομάδα: Ημερομηνία:

Διαβάστε περισσότερα

ΓΕΩΜΕΤΡΙΑ B ΛΥΚΕΙΟΥ. Στέφανος Κεΐσογλου Σχολικός σύμβουλος ΕΝΔΕΙΚΤΙΚΟ ΣΧΕΔΙΟ ΜΑΘΗΜΑΤΟΣ

ΓΕΩΜΕΤΡΙΑ B ΛΥΚΕΙΟΥ. Στέφανος Κεΐσογλου Σχολικός σύμβουλος ΕΝΔΕΙΚΤΙΚΟ ΣΧΕΔΙΟ ΜΑΘΗΜΑΤΟΣ Στέφανος Κεΐσογλου Σχολικός σύμβουλος ΕΝΔΕΙΚΤΙΚΟ ΣΧΕΔΙΟ ΜΑΘΗΜΑΤΟΣ ΓΕΩΜΕΤΡΙΑ B ΛΥΚΕΙΟΥ Σχολείο: Ημερομηνία: / / Β Λυκείου τμήμα.. Καθηγητής/τρια:Τάξη: Α) Το θέμα και το μαθησιακό περιβάλλον. 1) Το γνωστικό

Διαβάστε περισσότερα

Η αξιοποίηση των μαθηματικών εκπαιδευτικών λογισμικών στη διδασκαλία των συναρτήσεων στην δευτεροβάθμια εκπαίδευση

Η αξιοποίηση των μαθηματικών εκπαιδευτικών λογισμικών στη διδασκαλία των συναρτήσεων στην δευτεροβάθμια εκπαίδευση Η αξιοποίηση των μαθηματικών εκπαιδευτικών λογισμικών στη διδασκαλία των συναρτήσεων στην δευτεροβάθμια εκπαίδευση Αργύρη Παναγιώτα Πρότυπο Πειραματικό Λύκειο Ευαγγελικής Σμύρνης, argiry@gmail.com Περίληψη

Διαβάστε περισσότερα

Κατακόρυφη - Οριζόντια μετατόπιση συνάρτησης

Κατακόρυφη - Οριζόντια μετατόπιση συνάρτησης ΕΠΙΜΟΡΦΩΣΗ ΕΚΠΑΙΔΕΥΤΙΚΩΝ Β ΕΠΙΠΕΔΟΥ ΓΙΑ ΤΗΝ ΑΞΙΟΠΟΙΗΣΗ ΚΑΙ ΕΦΑΡΜΟΓΗ ΤΩΝ ΤΠΕ ΣΤΗΝ ΔΙΔΑΚΤΙΚΗ ΠΡΑΞΗ ΚΣΕ 4 ου ΣΕΚ ΠΕΡΙΣΤΕΡΙΟΥ ΕΠΙΜΟΡΦΩΤΗΣ: ΜΗΤΡΟΓΙΑΝΝΟΠΟΥΛΟΥ ΑΓΓΕΛΙΚΗ ΔΙΔΑΚΤΙΚΟ ΣΕΝΑΡΙΟ Κατακόρυφη - Οριζόντια

Διαβάστε περισσότερα

1. Τίτλος: Οι κρυµµένοι τριγωνοµετρικοί αριθµοί Συγγραφέας Βλάστος Αιµίλιος. Γνωστική περιοχή των µαθηµατικών: Τριγωνοµετρία

1. Τίτλος: Οι κρυµµένοι τριγωνοµετρικοί αριθµοί Συγγραφέας Βλάστος Αιµίλιος. Γνωστική περιοχή των µαθηµατικών: Τριγωνοµετρία 1. Τίτλος: Οι κρυµµένοι τριγωνοµετρικοί αριθµοί Συγγραφέας Βλάστος Αιµίλιος Γνωστική περιοχή των µαθηµατικών: Τριγωνοµετρία Θέµα- Σκεπτικό της δραστηριότητας. Η ιδέα πάνω στην οποία έχει στηριχτεί ο σχεδιασµός

Διαβάστε περισσότερα

Η ΘΕΡΜΟΚΡΑΣΙΑ ΤΩΝ ΑΘΗΝΩΝ

Η ΘΕΡΜΟΚΡΑΣΙΑ ΤΩΝ ΑΘΗΝΩΝ 1 ο ΣΥΝΕΔΡΙΟ ΣΤΗ ΣΥΡΟ ΤΠΕ ΣΤΗΝ ΕΚΠΑΙΔΕΥΣΗ 171 Η ΘΕΡΜΟΚΡΑΣΙΑ ΤΩΝ ΑΘΗΝΩΝ Νίκος Καμπράνης Μαθηματικός, Επιμορφωτής νέων τεχνολογιών http://www.geocities.com/kampranis ΦΥΛΛΟ ΕΡΓΑΣΙΑΣ ΟΝΟΜΑΤΕΠΩΝΥΜΟ: ΤΑΞΗ:.

Διαβάστε περισσότερα

Άθροισµα γωνιών τριγώνου, γωνίες ισοπλεύρου, ισοσκελούς τριγώνου και εξωτερική γωνία τριγώνου στην Α Γυµνασίου

Άθροισµα γωνιών τριγώνου, γωνίες ισοπλεύρου, ισοσκελούς τριγώνου και εξωτερική γωνία τριγώνου στην Α Γυµνασίου ΣΕΝΑΡΙΟ «Προσπάθησε να κάνεις ένα τρίγωνο» Άθροισµα γωνιών τριγώνου, γωνίες ισοπλεύρου, ισοσκελούς τριγώνου και εξωτερική γωνία τριγώνου στην Α Γυµνασίου Ηµεροµηνία: Φλώρινα, 6-5-2014 Γνωστική περιοχή:

Διαβάστε περισσότερα

4.2 Δραστηριότητα: Ολικά και τοπικά ακρότατα

4.2 Δραστηριότητα: Ολικά και τοπικά ακρότατα 4.2 Δραστηριότητα: Ολικά και τοπικά ακρότατα Θέμα της δραστηριότητας Η δραστηριότητα αυτή αφορά στην εισαγωγή των εννοιών του ολικού και του τοπικού ακροτάτου. Στόχοι της δραστηριότητας Μέσω αυτής της

Διαβάστε περισσότερα

Χάρτινα χειροποίητα κουτιά Περίληψη: Χάρτινα κουτιά

Χάρτινα χειροποίητα κουτιά Περίληψη: Χάρτινα κουτιά Χάρτινα χειροποίητα κουτιά Περίληψη: Στη δραστηριότητα αυτή οι μαθητές διερευνούν τη χωρητικότητα κουτιών σχήματος ορθογωνίου παραλληλεπιπέδου που προκύπτουν από ένα χαρτόνι συγκεκριμένων διαστάσεων. Οι

Διαβάστε περισσότερα

ΕΠΙΜΟΡΦΩΣΗ ΤΩΝ ΕΚΠΑΙΔΕΥΤΙΚΩΝ ΓΙΑ ΤΗΝ ΑΞΙΟΠΟΙΗΣΗ ΚΑΙ ΕΦΑΡΜΟΓΗ ΤΩΝ ΤΠΕ ΣΤΗ ΔΙΔΑΚΤΙΚΗ ΠΡΑΞΗ

ΕΠΙΜΟΡΦΩΣΗ ΤΩΝ ΕΚΠΑΙΔΕΥΤΙΚΩΝ ΓΙΑ ΤΗΝ ΑΞΙΟΠΟΙΗΣΗ ΚΑΙ ΕΦΑΡΜΟΓΗ ΤΩΝ ΤΠΕ ΣΤΗ ΔΙΔΑΚΤΙΚΗ ΠΡΑΞΗ ΞΑΝΘΗ 2013, 2 ο ΣΕΚ ΞΑΝΘΗΣ ΕΠΙΜΟΡΦΩΣΗ ΤΩΝ ΕΚΠΑΙΔΕΥΤΙΚΩΝ ΓΙΑ ΤΗΝ ΑΞΙΟΠΟΙΗΣΗ ΚΑΙ ΕΦΑΡΜΟΓΗ ΤΩΝ ΤΠΕ ΣΤΗ ΔΙΔΑΚΤΙΚΗ ΠΡΑΞΗ ΕΠΙΜΟΡΦΩΤΗΣ : ΓΙΑΝΝΗΣ ΚΟΥΤΙΔΗΣ Μαθηματικός www.kutidis.gr ΑΠΡΙΛΙΟΣ ΝΟΕΜΒΡΙΟΣ 2013 Νέες

Διαβάστε περισσότερα

ΤΙΤΛΟΣ ΑΝΟΙΧΤΗΣ ΕΚΠΑΙΔΕΥΤΙΚΗΣ ΠΡΑΚΤΙΚΗΣ

ΤΙΤΛΟΣ ΑΝΟΙΧΤΗΣ ΕΚΠΑΙΔΕΥΤΙΚΗΣ ΠΡΑΚΤΙΚΗΣ ΤΙΤΛΟΣ ΑΝΟΙΧΤΗΣ ΕΚΠΑΙΔΕΥΤΙΚΗΣ ΠΡΑΚΤΙΚΗΣ ΟΜΑΔΑ ΑΝΑΠΤΥΞΗΣ ΒΑΣΙΛΗΣ ΦΑΓΟΓΕΝΗΣ ΣΧΟΛΕΙΟ 5 ο ΓΕΛ ΚΕΡΚΥΡΑΣ ΚΕΡΚΥΡΑ 25.6.2015 1. Συνοπτική περιγραφή της ανοιχτής εκπαιδευτικής πρακτικής Με χρήση του λογισμικού

Διαβάστε περισσότερα

222 Διδακτική των γνωστικών αντικειμένων

222 Διδακτική των γνωστικών αντικειμένων 222 Διδακτική των γνωστικών αντικειμένων 8. Χελωνόκοσμος (απαιτεί να είναι εγκατεστημένο το Αβάκιο) (6 ώρες) Τίτλος: Ιδιότητες παραλληλογράμμων Δημιουργός: Μιχάλης Αργύρης ΕΜΠΛΕΚΟΜΕΝΕΣ ΓΝΩΣΤΙΚΕΣ ΠΕΡΙΟΧΕΣ

Διαβάστε περισσότερα

ΣΧΕΔΙΟ ΜΑΘΗΜΑΤΟΣ: ΜΑΘΗΜΑΤΙΚΑ ΣΤ ΔΗΜΟΤΙΚΟΥ «ΤΑ ΚΛΑΣΜΑΤΑ»

ΣΧΕΔΙΟ ΜΑΘΗΜΑΤΟΣ: ΜΑΘΗΜΑΤΙΚΑ ΣΤ ΔΗΜΟΤΙΚΟΥ «ΤΑ ΚΛΑΣΜΑΤΑ» ΣΧΕΔΙΟ ΜΑΘΗΜΑΤΟΣ: ΜΑΘΗΜΑΤΙΚΑ ΣΤ ΔΗΜΟΤΙΚΟΥ «ΤΑ ΚΛΑΣΜΑΤΑ» Νικόλαος Μπαλκίζας 1. ΕΙΣΑΓΩΓΗ Σκοπός του σχεδίου μαθήματος είναι να μάθουν όλοι οι μαθητές της τάξης τις έννοιες της ισοδυναμίας των κλασμάτων,

Διαβάστε περισσότερα

ΔΙΔΑΚΤΙΚΉ ΤΩΝ ΜΑΘΗΜΑΤΙΚΏΝ

ΔΙΔΑΚΤΙΚΉ ΤΩΝ ΜΑΘΗΜΑΤΙΚΏΝ ΔΙΔΑΚΤΙΚΉ ΤΩΝ ΜΑΘΗΜΑΤΙΚΏΝ 2. Εκπαιδευτικό Λογισμικό για τα Μαθηματικά 2.1 Κύρια χαρακτηριστικά του εκπαιδευτικού λογισμικού για την Διδακτική των Μαθηματικών 2.2 Κατηγορίες εκπαιδευτικού λογισμικού για

Διαβάστε περισσότερα

ΣΧΕΔΙΟ ΜΑΘΗΜΑΤΟΣ: ΜΑΘΗΜΑΤΙΚΑ Ε ΔΗΜΟΤΙΚΟΥ «Ο ΚΥΚΛΟΣ» Νικόλαος Μπαλκίζας Ιωάννα Κοσμίδου

ΣΧΕΔΙΟ ΜΑΘΗΜΑΤΟΣ: ΜΑΘΗΜΑΤΙΚΑ Ε ΔΗΜΟΤΙΚΟΥ «Ο ΚΥΚΛΟΣ» Νικόλαος Μπαλκίζας Ιωάννα Κοσμίδου ΣΧΕΔΙΟ ΜΑΘΗΜΑΤΟΣ: ΜΑΘΗΜΑΤΙΚΑ Ε ΔΗΜΟΤΙΚΟΥ «Ο ΚΥΚΛΟΣ» Νικόλαος Μπαλκίζας Ιωάννα Κοσμίδου Αθήνα, Φεβρουάριος 2008 ΣΧΕΔΙΟ ΜΑΘΗΜΑΤΟΣ: ΜΑΘΗΜΑΤΙΚΑ Ε ΔΗΜΟΤΙΚΟΥ «Ο ΚΥΚΛΟΣ» Νικόλαος Μπαλκίζας Ιωάννα Κοσμίδου 1.

Διαβάστε περισσότερα

Γραμμικά Συστήματα Δίνεται η εξίσωση 4x y 11(1). α) Ποια από τα ζεύγη (2, 3),(0, 11), (1, 8) κα (7, 0) είναι λύση της εξίσωσης (1);

Γραμμικά Συστήματα Δίνεται η εξίσωση 4x y 11(1). α) Ποια από τα ζεύγη (2, 3),(0, 11), (1, 8) κα (7, 0) είναι λύση της εξίσωσης (1); 8808Δίνεται η εξίσωση x y 7 Γραμμικά Συστήματα α) Να επαληθεύσετε ότι το ζεύγος αριθμών x, y, είναι μια λύση της εξίσωσης β) Να αποδείξετε ότι το, 88Δίνεται η εξίσωση x y 8 δεν είναι λύση του συστήματος

Διαβάστε περισσότερα

Παράλληλες ευθείες που τέμνονται από μια άλλη ευθεία

Παράλληλες ευθείες που τέμνονται από μια άλλη ευθεία Παράλληλες ευθείες που τέμνονται από μια άλλη ευθεία Υποδειγματικό Σενάριο Γνωστικό αντικείμενο: Μαθηματικά (ΔΕ) Δημιουργός: ΣΠΥΡΙΔΩΝ ΔΟΥΚΑΚΗΣ ΙΝΣΤΙΤΟΥΤΟ ΕΚΠΑΙΔΕΥΤΙΚΗΣ ΠΟΛΙΤΙΚΗΣ ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ, ΕΡΕΥΝΑΣ

Διαβάστε περισσότερα

Γραμμικά Συστήματα. δεν είναι λύση του συστήματος. β) Ποιο από τα παραπάνω ζεύγη είναι λύση του συστήματος

Γραμμικά Συστήματα. δεν είναι λύση του συστήματος. β) Ποιο από τα παραπάνω ζεύγη είναι λύση του συστήματος 8808Δίνεται η εξίσωση x y 7 Γραμμικά Συστήματα α) Να επαληθεύσετε ότι το ζεύγος αριθμών x, y 4, είναι μια λύση της εξίσωσης β) Να αποδείξετε ότι το 4, 88Δίνεται η εξίσωση x y 8 δεν είναι λύση του συστήματος

Διαβάστε περισσότερα

Βοηθήστε τη ΕΗ. Ένα µικρό νησί απέχει 4 χιλιόµετρα από την ακτή και πρόκειται να συνδεθεί µε τον υποσταθµό της ΕΗ που βλέπετε στην παρακάτω εικόνα.

Βοηθήστε τη ΕΗ. Ένα µικρό νησί απέχει 4 χιλιόµετρα από την ακτή και πρόκειται να συνδεθεί µε τον υποσταθµό της ΕΗ που βλέπετε στην παρακάτω εικόνα. Γιώργος Μαντζώλας ΠΕ03 Βοηθήστε τη ΕΗ Η προβληµατική της Εκπαιδευτικής ραστηριότητας Η επίλυση προβλήµατος δεν είναι η άµεση απόκριση σε ένα ερέθισµα, αλλά ένας πολύπλοκος µηχανισµός στον οποίο εµπλέκονται

Διαβάστε περισσότερα

ΣΕΝΑΡΙΟ ΓΙΑ ΤΗ Ι ΑΣΚΑΛΙΑ ΤΗΣ ΣΥΝΑΡΤΗΣΗΣ f(x) = αηµ(βx+θ)+γ. Συγγραφείς : Γεώργιος Μαντζώλας, µαθηµατικός Κύπρος Κυπρίδηµος, µαθηµατικός

ΣΕΝΑΡΙΟ ΓΙΑ ΤΗ Ι ΑΣΚΑΛΙΑ ΤΗΣ ΣΥΝΑΡΤΗΣΗΣ f(x) = αηµ(βx+θ)+γ. Συγγραφείς : Γεώργιος Μαντζώλας, µαθηµατικός Κύπρος Κυπρίδηµος, µαθηµατικός 1 ΣΕΝΑΡΙΟ ΓΙΑ ΤΗ Ι ΑΣΚΑΛΙΑ ΤΗΣ ΣΥΝΑΡΤΗΣΗΣ f(x) = αηµ(βx+θ)+γ Συγγραφείς : Γεώργιος Μαντζώλας, µαθηµατικός Κύπρος Κυπρίδηµος, µαθηµατικός 1 Ταυτότητα του σεναρίου Γνωστική περιοχή των µαθηµατικών: Τριγωνοµετρία

Διαβάστε περισσότερα

Η έννοια της κάλυψης του επιπέδου με κανονικά πολύγωνα.

Η έννοια της κάλυψης του επιπέδου με κανονικά πολύγωνα. 9.1.3 Σενάριο 3. Διερεύνηση των κανονικών πολυγώνων σε περιβάλλον που αξιοποιεί λογισμικό συμβολικής έκφρασης, την κοινωνική δικτύωση και τη συλλογική διαπραγμάτευση. Γνωστική περιοχή: Μαθηματικά Β Γυμνασίου.

Διαβάστε περισσότερα

Εισαγωγή στην έννοια της συνάρτησης

Εισαγωγή στην έννοια της συνάρτησης Εισαγωγή στην έννοια της συνάρτησης Υποδειγματικό Σενάριο Γνωστικό αντικείμενο: Μαθηματικά (ΔΕ) Δημιουργός: ΙΩΑΝΝΗΣ ΖΑΝΤΖΟΣ ΙΝΣΤΙΤΟΥΤΟ ΕΚΠΑΙΔΕΥΤΙΚΗΣ ΠΟΛΙΤΙΚΗΣ ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ, ΕΡΕΥΝΑΣ ΚΑΙ ΘΡΗΣΚΕΥΜΑΤΩΝ

Διαβάστε περισσότερα

«Οι γραφικές παραστάσεις απαραίτητο εργαλείο στη φαρέτρα του μαθητή»

«Οι γραφικές παραστάσεις απαραίτητο εργαλείο στη φαρέτρα του μαθητή» «Οι γραφικές παραστάσεις απαραίτητο εργαλείο στη φαρέτρα του μαθητή» Αρδαβάνη Καλλιόπη 1, Μαργιόρα Φιλίππα 2, Μαυρουδής Σπύρος 3 1 Καθηγήτρια Μαθηματικών 3ο Γυμνάσιο Γλυφάδας, επιμορφώτρια Β επιπέδου popiardv@hotmail.com

Διαβάστε περισσότερα

ΑΛΓΕΒΡΑ Β ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ

ΑΛΓΕΒΡΑ Β ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΑΛΓΕΒΡΑ Β ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΣΤΟΙΧΕΙΑ ΑΡΧΙΚΗΣ ΕΚ ΟΣΗΣ Συγγραφική ομάδα: Ανδρεαδάκης Στυλιανός Κατσαργύρης Βασίλειος Παπασταυρίδης Σταύρος Πολύζος Γεώργιος Σβέρκος Ανδρέας Καθηγητής Πανεπιστημίου Αθηνών Καθηγητής

Διαβάστε περισσότερα

ΦΥΛΛΑΔΙΟ ΑΣΚΗΣΕΩΝ ΤΗΣ ΑΛΓΕΒΡΑΣ Β ΛΥΚΕΙΟΥ

ΦΥΛΛΑΔΙΟ ΑΣΚΗΣΕΩΝ ΤΗΣ ΑΛΓΕΒΡΑΣ Β ΛΥΚΕΙΟΥ ΦΥΛΛΑΔΙΟ ΑΣΚΗΣΕΩΝ ΤΗΣ ΑΛΓΕΒΡΑΣ Β ΛΥΚΕΙΟΥ ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ ΣΥΣΤΗΜΑΤΑ ΓΡΑΜΜΙΚΑ ΣΥΣΤΗΜΑΤΑ ΘΕΜΑ ο _6950 α) Να κατασκευάσετε ένα γραμμικό σύστημα δυο εξισώσεων με δυο αγνώστους με συντελεστές διάφορους του

Διαβάστε περισσότερα

ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ ΤΗΣ ΑΛΓΕΒΡΑΣ Β ΛΥΚΕΙΟΥ

ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ ΤΗΣ ΑΛΓΕΒΡΑΣ Β ΛΥΚΕΙΟΥ ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ ΤΗΣ ΑΛΓΕΒΡΑΣ Β ΛΥΚΕΙΟΥ ΣΥΣΤΗΜΑΤΑ ΓΡΑΜΜΙΚΑ ΣΥΣΤΗΜΑΤΑ ΘΕΜΑ ο _6950 α) Να κατασκευάσετε ένα γραμμικό σύστημα δυο εξισώσεων με δυο αγνώστους με συντελεστές διάφορους του μηδενός, το οποίο να

Διαβάστε περισσότερα

ΔΕΙΓΜΑ ΠΡΙΝ ΤΙΣ ΔΙΟΡΘΩΣΕΙΣ - ΕΚΔΟΣΕΙΣ ΚΡΙΤΙΚΗ

ΔΕΙΓΜΑ ΠΡΙΝ ΤΙΣ ΔΙΟΡΘΩΣΕΙΣ - ΕΚΔΟΣΕΙΣ ΚΡΙΤΙΚΗ Συναρτήσεις Προεπισκόπηση Κεφαλαίου Τα μαθηματικά είναι μια γλώσσα με ένα συγκεκριμένο λεξιλόγιο και πολλούς κανόνες. Πριν ξεκινήσετε το ταξίδι σας στον Απειροστικό Λογισμό, θα πρέπει να έχετε εξοικειωθεί

Διαβάστε περισσότερα

«Ψηφιακά δομήματα στα μαθηματικά ως εργαλεία μάθησης για το δάσκαλο και το μαθητή»

«Ψηφιακά δομήματα στα μαθηματικά ως εργαλεία μάθησης για το δάσκαλο και το μαθητή» Ψηφιακό σχολείο: Το γνωστικό πεδίο των Μαθηματικών «Ψηφιακά δομήματα στα μαθηματικά ως εργαλεία μάθησης για το δάσκαλο και το μαθητή» ΕΛΕΝΗ ΚΑΛΑΪΤΖΙΔΟΥ Πληροφορικός ΠΕ19 (1 ο Πρότυπο Πειραματικό Γυμνάσιο

Διαβάστε περισσότερα

Να επιλύουμε και να διερευνούμε γραμμικά συστήματα. Να ορίζουμε την έννοια του συμβιβαστού και ομογενούς συστήματος.

Να επιλύουμε και να διερευνούμε γραμμικά συστήματα. Να ορίζουμε την έννοια του συμβιβαστού και ομογενούς συστήματος. Ενότητα 2 Γραμμικά Συστήματα Στην ενότητα αυτή θα μάθουμε: Να επιλύουμε και να διερευνούμε γραμμικά συστήματα. Να ορίζουμε την έννοια του συμβιβαστού και ομογενούς συστήματος. Να ερμηνεύουμε γραφικά τη

Διαβάστε περισσότερα

9.2.4 Σενάριο 7. Η έννοια του εμβαδού επίπεδων γεωμετρικών σχημάτων με λογισμικό δυναμικής γεωμετρίας και συλλογική διαπραγμάτευση

9.2.4 Σενάριο 7. Η έννοια του εμβαδού επίπεδων γεωμετρικών σχημάτων με λογισμικό δυναμικής γεωμετρίας και συλλογική διαπραγμάτευση 9.2.4 Σενάριο 7. Η έννοια του εμβαδού επίπεδων γεωμετρικών σχημάτων με λογισμικό δυναμικής γεωμετρίας και συλλογική διαπραγμάτευση Γνωστική περιοχή: Μαθηματικά Β Γυμνασίου. Η έννοια του εμβαδού επίπεδων

Διαβάστε περισσότερα

Cabri II Plus. Λογισμικό δυναμικής γεωμετρίας

Cabri II Plus. Λογισμικό δυναμικής γεωμετρίας Cabri II Plus Λογισμικό δυναμικής γεωμετρίας Cabri II Plus Ο Jean-Marie LABORDE ξεκίνησε το 1985 το πρόγραμμα με σκοπό να διευκολύνει τη διδασκαλία και την εκμάθηση της Γεωμετρίας Ο σχεδιασμός και η κατασκευή

Διαβάστε περισσότερα

ΘΕΩΡΗΜΑ BOLZANO Μία διδακτική προσέγγιση

ΘΕΩΡΗΜΑ BOLZANO Μία διδακτική προσέγγιση Μία διδακτική προσέγγιση ΣΕΝΑΡΙΟ Δ. Ε. ΚΟΝΤΟΚΩΣΤΑΣ ΜΑΘΗΜΑΤΙΚΟΣ Σενάριο τεσσάρων 2ωρων μαθημάτων διδασκαλίας της Γ Λυκείου στα Μαθηματικά Κατεύθυνσης Τίτλος σεναρίου: Διερεύνηση Θεωρήματος Bolzano (Θ.Β.)

Διαβάστε περισσότερα

ΣΥΣΤΗΜΑΤΑ ΓΡΑΜΜΙΚΑ ΣΥΣΤΗΜΑΤΑ. ΘΕΜΑ 2ο

ΣΥΣΤΗΜΑΤΑ ΓΡΑΜΜΙΚΑ ΣΥΣΤΗΜΑΤΑ. ΘΕΜΑ 2ο ΣΥΣΤΗΜΑΤΑ ΓΡΑΜΜΙΚΑ ΣΥΣΤΗΜΑΤΑ ΘΕΜΑ ο _6950 α) Να κατασκευάσετε ένα γραμμικό σύστημα δυο εξισώσεων με δυο αγνώστους με συντελεστές διάφορους του μηδενός, το οποίο να είναι αδύνατο. β) Να παραστήσετε γραφικά

Διαβάστε περισσότερα

Γραφήματα οικογένειας παραβολών

Γραφήματα οικογένειας παραβολών Γραφήματα οικογένειας παραβολών Η βολή ενός αντικειμένου στον αέρα έχει ως αποτέλεσμα μια καμπυλωμένη τροχιά, η οποία είναι πάντοτε μια παραβολή. Η παραβολή είναι το γράφημα μιας δευτεροβάθμιας συνάρτησης,

Διαβάστε περισσότερα

ΜΕΛΕΤΗ ΤΟΥ ΦΑΙΝΟΜΕΝΟΥ ΤΗΣ ΔΙΑΘΛΑΣΗΣ ΣΕ «ΕΙΚΟΝΙΚΟ ΕΡΓΑΣΤΗΡΙΟ»

ΜΕΛΕΤΗ ΤΟΥ ΦΑΙΝΟΜΕΝΟΥ ΤΗΣ ΔΙΑΘΛΑΣΗΣ ΣΕ «ΕΙΚΟΝΙΚΟ ΕΡΓΑΣΤΗΡΙΟ» 1 ο ΣΥΝΕΔΡΙΟ ΣΤΗ ΣΥΡΟ ΤΠΕ ΣΤΗΝ ΕΚΠΑΙΔΕΥΣΗ 217 ΜΕΛΕΤΗ ΤΟΥ ΦΑΙΝΟΜΕΝΟΥ ΤΗΣ ΔΙΑΘΛΑΣΗΣ ΣΕ «ΕΙΚΟΝΙΚΟ ΕΡΓΑΣΤΗΡΙΟ» Λουκία Μαρνέλη Εκπαιδευτικός Δευτεροβάθμιας Εκπαίδευσης Διεύθυνση: Μονής Κύκκου 1, 15669 Παπάγου

Διαβάστε περισσότερα

Σχέδιο Μαθήματος - "Ευθεία Απόδειξη"

Σχέδιο Μαθήματος - Ευθεία Απόδειξη Σχέδιο Μαθήματος - "Ευθεία Απόδειξη" ΤΑΞΗ: Α Λυκείου Μάθημα: Άλγεβρα Τίτλος Ενότητας: Μέθοδοι Απόδειξης - Ευθεία απόδειξη Ώρες Διδασκαλίας: 1. Σκοποί Να κατανοήσουν οι μαθητές την διαδικασία της ευθείας

Διαβάστε περισσότερα

Περιγραφή του εκπαιδευτικού/ μαθησιακού υλικού (Teaching plan)

Περιγραφή του εκπαιδευτικού/ μαθησιακού υλικού (Teaching plan) On-the-fly feedback, Upper Secondary Περιγραφή του εκπαιδευτικού/ μαθησιακού υλικού (Teaching plan) Τάξη: Β Λυκείου Διάρκεια ενότητας Μάθημα: Φυσική Θέμα: Ταλαντώσεις (αριθμός Χ διάρκεια μαθήματος): 6X90

Διαβάστε περισσότερα

ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ Β ΛΥΚΕΙΟΥ ΑΛΓΕΒΡΑ

ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ Β ΛΥΚΕΙΟΥ ΑΛΓΕΒΡΑ 1 ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ Β ΛΥΚΕΙΟΥ ΑΛΓΕΒΡΑ ΘΕΜΑ ο GI_V_ALG 16950 1.1 α) Να κατασκευάσετε ένα γραμμικό σύστημα δυο εξισώσεων με δυο αγνώστους με συντελεστές διάφορους του μηδενός, το οποίο να είναι αδύνατο. β)

Διαβάστε περισσότερα

ΣΕΝΑΡΙΟ ΔΙΔΑΣΚΑΛΙΑΣ. 1. Τίτλος Αεροπορικό ταξίδι.ταυτότητα του σεναρίου. Συγγραφέας: Βλάστος Αιμίλιος. Γνωστική περιοχή των μαθηματικών: Άλγεβρα

ΣΕΝΑΡΙΟ ΔΙΔΑΣΚΑΛΙΑΣ. 1. Τίτλος Αεροπορικό ταξίδι.ταυτότητα του σεναρίου. Συγγραφέας: Βλάστος Αιμίλιος. Γνωστική περιοχή των μαθηματικών: Άλγεβρα ΣΕΝΑΡΙΟ ΔΙΔΑΣΚΑΛΙΑΣ 1. Τίτλος Αεροπορικό ταξίδι.ταυτότητα του σεναρίου. Συγγραφέας: Βλάστος Αιμίλιος Γνωστική περιοχή των μαθηματικών: Άλγεβρα Θέματα: Μεταβλητές, Συναρτήσεις,. γραφική παράσταση, Σύστημα

Διαβάστε περισσότερα

3) το παράθυρο Πίνακας τιμών όπου εμφανίζονται οι τιμές που παίρνουν οι παράμετροι

3) το παράθυρο Πίνακας τιμών όπου εμφανίζονται οι τιμές που παίρνουν οι παράμετροι Ο Δ Η Γ Ι Ε Σ Γ Ι Α Τ Ο M O D E L L U S 0.0 4. 0 5 Για να κατεβάσουμε το πρόγραμμα Επιλέγουμε Download στη διεύθυνση: http://modellus.co/index.php/en/download. Στη συνέχεια εκτελούμε το ModellusX_windows_0_4_05.exe

Διαβάστε περισσότερα

Εκπαιδευτικό λογισμικό: Αβάκιο Χελωνόκοσμος Δραστηριότητα 1: «Διερευνώντας τα παραλληλόγραμμα»

Εκπαιδευτικό λογισμικό: Αβάκιο Χελωνόκοσμος Δραστηριότητα 1: «Διερευνώντας τα παραλληλόγραμμα» Εκπαιδευτικό λογισμικό: Αβάκιο Χελωνόκοσμος Δραστηριότητα 1: «Διερευνώντας τα παραλληλόγραμμα» Φύλλο δασκάλου 1.1 Ένταξη δραστηριότητας στο πρόγραμμα σπουδών Τάξη: Ε και ΣΤ Δημοτικού. Γνωστικά αντικείμενα:

Διαβάστε περισσότερα

ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ - 2 ο ΘΕΜΑ

ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ - 2 ο ΘΕΜΑ ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ - ο ΘΕΜΑ ΚΕΦΑΛΑΙΟ 1 ο : ΣΥΣΤΗΜΑΤΑ 1. α) Να κατασκευάσετε ένα γραμμικό σύστημα δυο εξισώσεων με δυο αγνώστους με συντελεστές διάφορους του μηδενός, το οποίο να είναι αδύνατο. β) Να παραστήσετε

Διαβάστε περισσότερα

ΠΡΑΚΤΙΚΗ ΑΣΚΗΣΗ 2013/14. Μιχαηλίδου Αγγελική Λάλας Γεώργιος

ΠΡΑΚΤΙΚΗ ΑΣΚΗΣΗ 2013/14. Μιχαηλίδου Αγγελική Λάλας Γεώργιος ΠΡΑΚΤΙΚΗ ΑΣΚΗΣΗ 2013/14 Μιχαηλίδου Αγγελική Λάλας Γεώργιος Περιγραφή Πλαισίου Σχολείο: 2 ο Πρότυπο Πειραματικό Γυμνάσιο Αθηνών Τμήμα: Β 3 Υπεύθυνος καθηγητής: Δημήτριος Διαμαντίδης Συνοδός: Δημήτριος Πρωτοπαπάς

Διαβάστε περισσότερα

Ζάντζος Ιωάννης. Περιληπτικά το σενάριο διδασκαλίας (Β Γυμνασίου)

Ζάντζος Ιωάννης. Περιληπτικά το σενάριο διδασκαλίας (Β Γυμνασίου) Ζάντζος Ιωάννης Οι έννοιες του 'μήκους κύκλου' και της 'καμπυλότητας του κύκλου' μέσα από τη διαδικασία προσέγγισης του κύκλου με περιγεγραμμένα κανονικά πολύγωνα. Περιληπτικά το σενάριο διδασκαλίας (Β

Διαβάστε περισσότερα

Η διάρκεια πραγματοποίησης της ανοιχτής εκπαιδευτικής πρακτικής ήταν 2 διδακτικές ώρες

Η διάρκεια πραγματοποίησης της ανοιχτής εκπαιδευτικής πρακτικής ήταν 2 διδακτικές ώρες ΣΧΟΛΕΙΟ Η εκπαιδευτική πρακτική αφορούσε τη διδασκαλία των μεταβλητών στον προγραμματισμό και εφαρμόστηκε σε μαθητές της τελευταίας τάξης ΕΠΑΛ του τομέα Πληροφορικής στα πλαίσια του μαθήματος του Δομημένου

Διαβάστε περισσότερα

ΕΦΑΠΤΟΜΕΝΗ ΓΩΝΙΑΣ ΚΑΙ ΚΛΙΣΗ ΕΥΘΕΙΑΣ ΜΑΘΗΜΑΤΙΚΑ Β' ΓΥΜΝΑΣΙΟΥ

ΕΦΑΠΤΟΜΕΝΗ ΓΩΝΙΑΣ ΚΑΙ ΚΛΙΣΗ ΕΥΘΕΙΑΣ ΜΑΘΗΜΑΤΙΚΑ Β' ΓΥΜΝΑΣΙΟΥ 184 1 ο ΣΥΝΕΔΡΙΟ ΣΤΗ ΣΥΡΟ ΤΠΕ ΣΤΗΝ ΕΚΠΑΙΔΕΥΣΗ ΕΦΑΠΤΟΜΕΝΗ ΓΩΝΙΑΣ ΚΑΙ ΚΛΙΣΗ ΕΥΘΕΙΑΣ ΜΑΘΗΜΑΤΙΚΑ Β' ΓΥΜΝΑΣΙΟΥ Ιωάννου Στυλιανός Εκπαιδευτικός Μαθηματικός Β θμιας Εκπ/σης Παιδαγωγική αναζήτηση Η τριγωνομετρία

Διαβάστε περισσότερα

Κατασκευή δυναµικής γραµµατοσειράς

Κατασκευή δυναµικής γραµµατοσειράς Κατασκευή δυναµικής γραµµατοσειράς Γνωστική περιοχή: Γεωµετρία. Θέµα: Η διερεύνηση της αυξοµείωσης γεωµετρικών κατασκευών µε χρήση εργαλείων συµβολικής έκφρασης και δυναµικού χειρισµού γεωµετρικών αντικειµένων.

Διαβάστε περισσότερα

ΑΠΟ ΤΙΣ ΜΕΤΑΒΛΗΤΕΣ ΣΤΑ ΜΕΓΕΘΗ Ή ΤΟ ΑΝΤΙΣΤΡΟΦΟ; ΜΙΑ ΔΙΔΑΚΤΙΚΗ ΠΡΟΣΕΓΓΙΣΗ ΜΕΛΕΤΗΣ ΤΗΣ ΣΥΝΑΡΤΗΣΗΣ y=ax+b ΜΕ ΕΚΠΑΙΔΕΥΤΙΚΟ ΛΟΓΙΣΜΙΚΟ

ΑΠΟ ΤΙΣ ΜΕΤΑΒΛΗΤΕΣ ΣΤΑ ΜΕΓΕΘΗ Ή ΤΟ ΑΝΤΙΣΤΡΟΦΟ; ΜΙΑ ΔΙΔΑΚΤΙΚΗ ΠΡΟΣΕΓΓΙΣΗ ΜΕΛΕΤΗΣ ΤΗΣ ΣΥΝΑΡΤΗΣΗΣ y=ax+b ΜΕ ΕΚΠΑΙΔΕΥΤΙΚΟ ΛΟΓΙΣΜΙΚΟ 176 1 ο ΣΥΝΕΔΡΙΟ ΣΤΗ ΣΥΡΟ ΤΠΕ ΣΤΗΝ ΕΚΠΑΙΔΕΥΣΗ ΑΠΟ ΤΙΣ ΜΕΤΑΒΛΗΤΕΣ ΣΤΑ ΜΕΓΕΘΗ Ή ΤΟ ΑΝΤΙΣΤΡΟΦΟ; ΜΙΑ ΔΙΔΑΚΤΙΚΗ ΠΡΟΣΕΓΓΙΣΗ ΜΕΛΕΤΗΣ ΤΗΣ ΣΥΝΑΡΤΗΣΗΣ y=ax+b ΜΕ ΕΚΠΑΙΔΕΥΤΙΚΟ ΛΟΓΙΣΜΙΚΟ Σωτηρόπουλος Παναγιώτης 1 -

Διαβάστε περισσότερα

ΠΑΡΑΔΕΙΓΜΑΤΑ ΘΕΜΑ Β. Να βρείτε τις ασύμπτωτες της γραφικής παράστασης της συνάρτησης f με τύπο

ΠΑΡΑΔΕΙΓΜΑΤΑ ΘΕΜΑ Β. Να βρείτε τις ασύμπτωτες της γραφικής παράστασης της συνάρτησης f με τύπο ΚΕΦΑΛΑΙΟ 3ο: ΔΙΑΦΟΡΙΚΟΣ ΛΟΓΙΣΜΟΣ ΕΝΟΤΗΤΑ : ΑΣΥΜΠΤΩΤΕΣ - ΚΑΝΟΝΕΣ DE L HOSPITAL - ΜΕΛΕΤΗ ΣΥΝΑΡΤΗΣΗΣ [Κεφ..9: Ασύμπτωτες Κανόνες de l Hospital Μέρος Β του σχολικού βιβλίου]. ΠΑΡΑΔΕΙΓΜΑΤΑ Παράδειγμα. ΘΕΜΑ

Διαβάστε περισσότερα

με παραμέτρους α, β, γ R α) Να επιλέξετε τιμές για τις παραμέτρους α, β, γ, ώστε το σύστημα αυτό να έχει μοναδική λύση το ζεύγος (1,-4).

με παραμέτρους α, β, γ R α) Να επιλέξετε τιμές για τις παραμέτρους α, β, γ, ώστε το σύστημα αυτό να έχει μοναδική λύση το ζεύγος (1,-4). Δίνεται το σύστημα: x 2y= 9 ax+ βy= γ με παραμέτρους α, β, γ R α) Να επιλέξετε τιμές για τις παραμέτρους α, β, γ, ώστε το σύστημα αυτό να έχει μοναδική λύση το ζεύγος (1,-4). (Μονάδες 13) β) Να επιλέξετε

Διαβάστε περισσότερα

ΘΕΜΑ 2 α) Να κατασκευάσετε ένα γραμμικό σύστημα δυο εξισώσεων με δυο αγνώστους με συντελεστές διάφορους του μηδενός, το οποίο να είναι αδύνατο.

ΘΕΜΑ 2 α) Να κατασκευάσετε ένα γραμμικό σύστημα δυο εξισώσεων με δυο αγνώστους με συντελεστές διάφορους του μηδενός, το οποίο να είναι αδύνατο. α) Να κατασκευάσετε ένα γραμμικό σύστημα δυο εξισώσεων με δυο αγνώστους με συντελεστές διάφορους του μηδενός, το οποίο να είναι αδύνατο. (Μονάδες 10) β) Να παραστήσετε γραφικά στο επίπεδο τις δυο εξισώσεις

Διαβάστε περισσότερα

Σενάριο µαθήµατος µε τίτλο: «Μελέτη του 2 ου νόµου του Newton στο περιβάλλον του Interactive Physics»

Σενάριο µαθήµατος µε τίτλο: «Μελέτη του 2 ου νόµου του Newton στο περιβάλλον του Interactive Physics» Σενάριο µαθήµατος µε τίτλο: «Μελέτη του 2 ου νόµου του Newton στο περιβάλλον του Interactive Physics» ΣΧΟΛΕΙΟ Π.Π.Λ.Π.Π. ΤΑΞΗ: Α ΜΑΘΗΜΑ: Β Νόµος του Νεύτωνα ΚΑΘΗΓΗΤΗΣ: Σφαέλος Ιωάννης Συνοπτική Παρουσίαση

Διαβάστε περισσότερα

6 η ΣΥΝΕΔΡΙΑ. Διδακτικές δραστηριότητες και μικροσενάρια Εισαγωγή στο Φωτόδεντρο

6 η ΣΥΝΕΔΡΙΑ. Διδακτικές δραστηριότητες και μικροσενάρια Εισαγωγή στο Φωτόδεντρο 6 η ΣΥΝΕΔΡΙΑ Διδακτικές δραστηριότητες και μικροσενάρια Εισαγωγή στο Φωτόδεντρο ΣΤΟΧΟΙ Οι επιμορφούμενοι μετά το πέρας της Συνεδρίας θα πρέπει: να γνωρίζουν τις δυνατότητες που τους προσφέρει το Φωτόδεντρο.

Διαβάστε περισσότερα

Τράπεζα Θεμάτων Διαβαθμισμένης Δυσκολίας- Άλγεβρα Β ΓΕ.Λ.-Σχολικό έτος 2014-2015 ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ ΔΙΑΒΑΘΜΙΣΜΕΝΗΣ ΔΥΣΚΟΛΙΑΣ. Σχολικό έτος: 2014-2015

Τράπεζα Θεμάτων Διαβαθμισμένης Δυσκολίας- Άλγεβρα Β ΓΕ.Λ.-Σχολικό έτος 2014-2015 ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ ΔΙΑΒΑΘΜΙΣΜΕΝΗΣ ΔΥΣΚΟΛΙΑΣ. Σχολικό έτος: 2014-2015 ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ ΔΙΑΒΑΘΜΙΣΜΕΝΗΣ ΔΥΣΚΟΛΙΑΣ Α Λ Γ Ε Β Ρ Α Β Λ Υ Κ Ε Ι Ο Υ Σχολικό έτος: 014-015 Τα θέματα εμπλουτίζονται με την δημοσιοποίηση και των νέων θεμάτων από το Ι.Ε.Π. Γ ε ν ι κ ή Ε π ι μ έ λ ε ι

Διαβάστε περισσότερα

4.3 Δραστηριότητα: Θεώρημα Fermat

4.3 Δραστηριότητα: Θεώρημα Fermat 4.3 Δραστηριότητα: Θεώρημα Fermat Θέμα της δραστηριότητας Η δραστηριότητα αυτή εισάγει το Θεώρημα Fermat και στη συνέχεια την απόδειξή του. Ακολούθως εξετάζεται η χρήση του στον εντοπισμό πιθανών τοπικών

Διαβάστε περισσότερα

Πρότυπο Πειραματικό Γυμνάσιο Πανεπιστημίου Πατρών. Αθανασία Μπαλωμένου ΠΕ03 Βασιλική Ρήγα ΠΕ03 Λαμπρινή Βουτσινά ΠΕ04.01

Πρότυπο Πειραματικό Γυμνάσιο Πανεπιστημίου Πατρών. Αθανασία Μπαλωμένου ΠΕ03 Βασιλική Ρήγα ΠΕ03 Λαμπρινή Βουτσινά ΠΕ04.01 Πρότυπο Πειραματικό Γυμνάσιο Πανεπιστημίου Πατρών Αθανασία Μπαλωμένου ΠΕ03 Βασιλική Ρήγα ΠΕ03 Λαμπρινή Βουτσινά ΠΕ04.01 Τα ερωτήματα που προκύπτουν από την εισαγωγή της Φυσικής στην Α γυμνασίου είναι :

Διαβάστε περισσότερα

Φεργαδιώτης Αθανάσιος ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ ΣΤΗΝ ΑΛΓΕΒΡΑ Β ΛΥΚΕΙΟΥ. Θέμα 2 ο (42)

Φεργαδιώτης Αθανάσιος ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ ΣΤΗΝ ΑΛΓΕΒΡΑ Β ΛΥΚΕΙΟΥ. Θέμα 2 ο (42) Φεργαδιώτης Αθανάσιος ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ ΣΤΗΝ ΑΛΓΕΒΡΑ Β ΛΥΚΕΙΟΥ Θέμα ο (4) -- Τράπεζα θεμάτων Άλγεβρας Β Λυκείου - Φεργαδιώτης Αθανάσιος -3- Τράπεζα θεμάτων Άλγεβρας Β Λυκείου - Φεργαδιώτης Αθανάσιος ΚΕΦΑΛΑΙΟ

Διαβάστε περισσότερα

Σενάριο 1. Σκιτσάροντας µε παραλληλόγραµµα. (χρήση λογισµικού Χελωνόκοσµος)

Σενάριο 1. Σκιτσάροντας µε παραλληλόγραµµα. (χρήση λογισµικού Χελωνόκοσµος) Σενάριο 1 Σκιτσάροντας µε παραλληλόγραµµα (χρήση λογισµικού Χελωνόκοσµος) Βασική ιδέα του σεναρίου Οι µαθητές σκιτσάρουν παραλληλόγραµµα και τα «ζωντανεύουν» κινώντας τα δυναµικά µε χρήση της Logo. Με

Διαβάστε περισσότερα

1ο Κεφάλαιο: Συστήματα

1ο Κεφάλαιο: Συστήματα ο Κεφάλαιο: Συστήματα Γραμμικά συστήματα i. Ποια εξίσωση λέγεται γραμμική; ii. Πως μεταβάλλεται η ευθεία y, 0 ή 0 για τις διάφορες τιμές των α,β,γ; iii. Τι ονομάζεται λύση μιας γραμμικής εξίσωσης; iv.

Διαβάστε περισσότερα

ΤΟ MODELUS ΚΑΙ ΟΙ ΔΥΝΑΤΟΤΗΤΕΣ ΤΟΥ

ΤΟ MODELUS ΚΑΙ ΟΙ ΔΥΝΑΤΟΤΗΤΕΣ ΤΟΥ 268 1 ο ΣΥΝΕΔΡΙΟ ΣΤΗ ΣΥΡΟ ΤΠΕ ΣΤΗΝ ΕΚΠΑΙΔΕΥΣΗ ΤΟ MODELUS ΚΑΙ ΟΙ ΔΥΝΑΤΟΤΗΤΕΣ ΤΟΥ Σ. Τσοβόλας Φυσικός, Επιμορφωτής ΤΠΕ Θ. Μαστρογιάννης Επιμορφωτής ΤΠΕ Στον πυρήνα του προγράμματος υπάρχει μια περιοχή εργασίας

Διαβάστε περισσότερα

ΜΕΘΟΔΟΣ ΕΛΑΧΙΣΤΩΝ ΤΕΤΡΑΓΩΝΩΝ

ΜΕΘΟΔΟΣ ΕΛΑΧΙΣΤΩΝ ΤΕΤΡΑΓΩΝΩΝ ΜΕΘΟΔΟΣ ΕΛΑΧΙΣΤΩΝ ΤΕΤΡΑΓΩΝΩΝ ΧΑΡΑΞΗ ΓΡΑΦΙΚΗΣ ΠΑΡΑΣΤΑΣΗΣ Δημήτρης Στεφανάκης Η Μέθοδος των Ελαχίστων Τετραγώνων (ΜΕΤ) χρησιμοποιείται για την κατασκευή της γραφικής παράστασης που περιγράφει ένα φαινόμενο,

Διαβάστε περισσότερα

Τα δομικά στοιχεία ενός σεναρίου και η βαθμολόγηση τους κατά τις εξετάσεις πιστοποίησης

Τα δομικά στοιχεία ενός σεναρίου και η βαθμολόγηση τους κατά τις εξετάσεις πιστοποίησης Τα δομικά στοιχεία ενός σεναρίου και η βαθμολόγηση τους κατά τις εξετάσεις πιστοποίησης Α. Αξιολόγηση επιμέρους παιδαγωγικών και διδακτικών πτυχών του σεναρίου (40) 1 Τίτλος γνωστική περιοχή και θέμα (5)

Διαβάστε περισσότερα

Σ.Ε.Π. (Σύνθετο Εργαστηριακό Περιβάλλον)

Σ.Ε.Π. (Σύνθετο Εργαστηριακό Περιβάλλον) ΔΡΑΣΤΗΡΙΟΤΗΤΑ: ΝΟΜΟΙ ΙΔΑΝΙΚΩΝ ΑΕΡΙΩΝ με τη βοήθεια του λογισμικού Σ.Ε.Π. (Σύνθετο Εργαστηριακό Περιβάλλον) Φυσική Β Λυκείου Θετικής & Τεχνολογικής Κατεύθυνσης Νοέμβριος 2013 0 ΤΙΤΛΟΣ ΝΟΜΟΙ ΙΔΑΝΙΚΩΝ ΑΕΡΙΩΝ

Διαβάστε περισσότερα