Διδακτικές ενότητες Στόχος

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "Διδακτικές ενότητες Στόχος"

Transcript

1

2 Η διδασκαλία του τριγωνομετρικού κύκλου με τον παραδοσιακό τρόπο στον πίνακα, είναι μία διαδικασία όχι εύκολα κατανοητή για τους μαθητές, με αποτέλεσμα τη μηχανική παπαγαλίστικη χρήση των τύπων της τριγωνομετρίας. Η ανίχνευση, διερεύνηση, ανακάλυψη των εννοιών και διατύπωση των σχετικών κανόνων με χρήση εφαρμογής σε περιβάλλον εκπαιδευτικού λογισμικού (CAS GeoGebra) από τους ίδιους τους μαθητές (τριμελής ομάδα μαθητών σε κάθε Η/Υ), που καθοδηγούνται με οδηγίες χρήσης της εφαρμογής και κατάλληλες ερωτήσεις από το φύλλο εργασίας, προσφέρει την πλήρη κατανόηση αφομοίωση και εφαρμογή όλων των εννοιών της τριγωνομετρίας, με χρήση της κίνησης, των πολλαπλών αναπαραστάσεων και την απειρία μετασχηματισμών απλά με ένα κλικ ή ένα σύρσιμο του ποντικιού και το κυριότερο την εκμάθηση των εννοιών με βάση την εικόνα του τριγωνομετρικού κύκλου. Έτσι η μετωπική δασκαλοκεντρική διδασκαλία μετατρέπεται σε μαθητοκεντρική ανακαλυπτική διαδικασία με πρωταγωνιστή το μαθητή. Σελίδα 2 από 17

3 Διδακτικές ενότητες: ακτίνιο αριθμός π Μήκος του κύκλου σε ακτίνια Αντιστοιχία μοιρών ακτινίων Τρόποι κίνησης πάνω στον κύκλο (θετική αρνητική φορά) Στοιχεία του τριγωνομετρικού κύκλου Θετικές αρνητικές γωνίες τόξα Γωνίες μεγαλύτερες των 360ο και μικρότερες των -360ο και αντίστοιχα τόξα Άπειρα τόξα με ίδιο πέρας Τριγωνομετρικοί αριθμοί γωνιών τόξων Τριγωνομετρικοί αριθμοί των τόξων: α+β=0, α±β=± π 2, α±β=± Τριγωνομετρικές συναρτήσεις με τις γραφικές τους παραστάσεις Λύση τριγωνομετρικών εξισώσεων πάνω στον τριγωνομετρικό κύκλο Στόχος η γνωσιοθεωρητική προσέγγιση του μαθήματος να γίνει με σύγχρονες κοινωνικές και εποικοδομιστικές προσεγγίσεις, δηλαδή με δυναμικό τρόπο, απειρία μετασχηματισμών και πολλαπλές αναπαραστάσεις, με ομαδοσυνεργατική δουλειά για τη διαπραγμάτευση των απόψεων και τελικών συμπερασμάτων από τους μαθητές (ομάδα με 3 μαθητές ανά Η/Υ), με φύλλα εργασίας με προσεκτικά σχεδιασμένες οδηγίες χρήσης της εφαρμογής και μαθηματικές ερωτήσεις και ο διδάσκων στο ρόλο του εξυπηρετητή της μάθησης του μαθητή, μέσα από το σχεδιασμό κατάλληλων περιβαλλόντων μάθησης και όχι στο ρόλο του πομπού γνώσεων, που συνήθως συμβαίνει στο περιβάλλον μιας παραδοσιακής τάξης. Σελίδα 3 από 17

4 Οι μαθητές πρέπει: Να κατανοήσουν την σημασία του αριθμού π. Να συνδέσουν την έννοια του ακτινίου με την έννοια της μοίρας Να αξιοποιήσουν την έννοια της θετικής και αρνητικής φοράς κίνησης στον κύκλο στην κατανόηση των θετικών αρνητικών γωνιών Να κατανοήσουν ότι κάθε πραγματικός αριθμός μπορεί να θεωρηθεί γωνία ή τόξο Να αξιοποιήσουν στα επόμενα μαθήματα την αλγεβρική σχέση που συνδέει τα τόξα με ίδιο πέρας για να κατανοήσουν την περιοδικότητα των τριγωνομετρικών συναρτήσεων και να λύσουν τριγωνομετρικές εξισώσεις Να οικοδομήσουν όλη την φιλοσοφία που διέπει την χρήση του τριγωνομετρικού κύκλου για όλες τις σχετικές μ αυτόν έννοιες θεωρήματα τύπους Να πειραματιστούν με διάφορους μετασχηματισμούς και πολλαπλές αναπαραστάσεις ώστε να αφομοιώσουν όσο το δυνατόν καλύτερα τις έννοιες και τους κανόνες της τριγωνομετρίας Να αναπτύξουν σχέσεις μεταξύ τους ως αποτέλεσμα της ομαδικής τους εργασίας. Να μάθουν να οργανώνουν καλύτερα τον τρόπο εργασίας τους ατομικής ή ομαδικής Να γίνει περισσότερο φιλικό προς αυτούς το περιβάλλον του εκπαιδευτικού λογισμικού Σελίδα 4 από 17

5 Προτείνεται οι μαθητές να εργαστούν εξ ολοκλήρου στο εργαστήριο υπολογιστών. Ο εκπαιδευτικός θα ελέγχει τα συμπεράσματα των μαθητών, θα συνεργάζεται μαζί τους και τους καθοδηγεί ώστε να αντιλαμβάνονται καλύτερα τα αποτελέσματά τους και θα τους ενθαρρύνει να συνεχίσουν την διερεύνηση. Εναλλακτικά, το μάθημα μπορεί να γίνει σε αίθουσα με βιντεοπροβολέα, αλλά ο διδάσκων πρέπει να είναι κατάλληλα προετοιμασμένος, ώστε απευθυνόμενος στο σύνολο της τάξης, οι ερωτήσεις του να οδηγούν τους μαθητές στην ανακάλυψη των προς μάθηση εννοιών και διατύπωση των σχετικών κανόνων. Επιλέξτε από την παρακάτω λίστα την τάξη στην οποία εφαρμόστηκε η ανοιχτή εκπαιδευτική πρακτική. Αν η δραστηριότητα είναι συνεργατική μπορείτε να επιλέξετε παραπάνω από μία τάξεις. Νηπιαγωγείο A γυμνασίου Α δημοτικού Β γυμνασίου Β δημοτικού Γ γυμνασίου Γ δημοτικού Α λυκείου Δ δημοτικού Χ Β λυκείου Ε δημοτικού Γ λυκείου ΣΤ δημοτικού Σελίδα 5 από 17

6 Προσδιορίστε παρακάτω τη διάρκεια πραγματοποίησης της ανοιχτής εκπαιδευτικής πρακτικής. Ώρες διδασκαλίας Διδακτική ενότητα ωρών μαθητικής δραστηριότητας Άλλη: Προσδιορίστε την διάρκεια: 8 10 διδακτικές ώρες π.χ. 12 ώρες δραστηριότητας σε διάστημα ενός τριμήνου Οι μαθητές: Θα εργαστούν σε ομάδες των 3 ατόμων σε κάθε Η/Υ (ομαδοσυνεργατική μάθηση). Η σύνθεση κάθε ομάδας είναι ανομοιογενής ως προς την επίδοση στο συγκεκριμένο μάθημα, τις διαπροσωπικές σχέσεις των μαθητών, την κοινωνική τους προέλευση και τη δυσκολία με την οποία εκδηλώνονται απέναντι σε καθηγητή, συμμαθητές. Ο ένας χειρίζεται την εφαρμογή, ο δεύτερος υπαγορεύει τις οδηγίες ερωτήσεις του φύλλου εργασίας, ο τρίτος παρακολουθεί τη σωστή εφαρμογή τους και όλοι μαζί συζητούν, αποφασίζουν και διατυπώνουν τις απαντήσεις. Φυσικά οι ρόλοι αυτοί μπορούν να εναλλάσσονται. Θα συμπληρώσουν ένα κοινό φύλλο εργασίας που περιέχει ερωτήσεις σχετικές με το θέμα. Μπορεί το φύλλο εργασίας να αφήνει μια σχετική ελευθερία στους μαθητές ώστε να θέτουν τα δικά τους ερωτήματα και να απαντούν σ αυτά. Σελίδα 6 από 17

7 Δραστηριότητα 1: Ακτίνιο, Αριθμός, Μήκος Κύκλου Ακολουθώντας τις οδηγίες του φύλλου εργασίας, μετατρέπουμε την καμπύλη του κύκλου σε ευθύγραμμο τμήμα, μετράμε το μήκος του μισού ευθύγραμμου τμήματος με μέτρο την ακτίνα του κύκλου, εφαρμόζουμε το μετρημένο ευθύγραμμο τμήμα στο ημικύκλιο και αλλάζοντας το μήκος της ακτίνας σε διαδοχικές τιμές μαθαίνουμε τον αριθμό π, το ακτίνιο και την αντιστοιχία ακτινίων μοιρών. Δραστηριότητα 2: Τρόποι κίνησης πάνω στον κύκλο Ακολουθώντας τις οδηγίες του φύλλου εργασίας πατάμε διαδοχικά τα κουμπιά από πάνω προς τα κάτω αφήνοντας κάποιο χρονικό διάστημα μεταξύ τους, π.χ. 10 δευτερολέπτων, οπότε παρατηρώντας τα κινητά, την κίνηση των δεικτών του ρολογιού και τα βέλη, καταλήγουμε στον ορισμό της θετικής φοράς κίνησης πάνω στον κύκλο Σελίδα 7 από 17

8 Δραστηριότητα 3: Τριγωνομετρικός κύκλος, θετική αρνητική γωνία τόξο, Γωνίες μεγαλύτερες των 360 ο και μικρότερες των -360 ο, Γωνίες τόξα με το ίδιο πέρας Ακολουθώντας τις οδηγίες του φύλλου εργασίας, παρατηρούμε τα χαρακτηριστικά του τριγωνομετρικού κύκλου, δημιουργούμε τα τεταρτημόριά του, δίνουμε θετικές ή αρνητικές τιμές μεταξύ των -360ο και 360ο και παρακολουθούμε τον σχηματισμό των γωνιών αντίστοιχων τόξων με κίνηση για να καταλάβουμε τι συμβολίζει το πρόσημο στη γωνία, Σελίδα 8 από 17

9 δίνουμε τιμές μεγαλύτερες του 360 ή μικρότερες του -360 και με κίνηση δημιουργείται γωνία τόξο με μέτρο τον δοθέντα αριθμό, δίνουμε οποιαδήποτε γωνία μεταξύ των -360ο και 360ο και παρατηρούμε ότι άπειρα θετικά και αρνητικά τόξα έχουν το ίδιο πέρας με το αντίστοιχο τόξο της δοθείσας γωνίας και μαθαίνουμε την αλγεβρική σχέση μεταξύ αυτών των τόξων και μεταξύ των αντιστοίχων επίκεντρων γωνιών τους. Σελίδα 9 από 17

10 Δραστηριότητα 4: Τριγωνομετρικοί αριθμοί γωνίας - τόξου Ακολουθώντας τις οδηγίες του φύλλου εργασίας, ανακαλύπτουμε τις έννοιες και τους αντίστοιχους άξονες των τριγωνομετρικών αριθμών, παρατηρώντας για μεν το ημίτονο και το συνημίτονο τις συντεταγμένες των προβολών του πέρατος του τόξου πάνω στους άξονες του ορθοκανονικού συστήματος, για δε την εφαπτομένη και συνεφαπτομένη τις τομές της επιβατικής ακτίνας του πέρατος με τους άξονες εφαπτομένων συνεφαπτομένων αντίστοιχα. Το πέρας του τόξου διαγράφει τον κύκλο κατά την θετική και την αρνητική φορά. Επίσης με κλικ στα αντίστοιχα κουμπιά εμφανίζονται τα ορθογώνια τρίγωνα που επιτρέπουν το μαθητή να ανακαλύψει το βασικό θεώρημα της τριγωνομετρίας και τις αλγεβρικές σχέσεις των τριγωνομετρικών αριθμών. Σελίδα 10 από 17

11 Δραστηριότητα 5: Τριγωνομετρικοί αριθμοί τόξων: α+β=0, α±β=± π 2, α±β=± Ακολουθώντας τις οδηγίες του φύλλου εργασίας, δημιουργούμε τα τόξα α, β που πληρούν τις σχέσεις α+β=0, α±β=± π, α±β=±, με κλικ στο κατάλληλο σημείο μετακινούμε το τόξο 2 β (αν χρειάζεται) ώστε η αρχή του να ταυτιστεί με την αρχή του τριγωνομετρικού κύκλου, εμφανίζουμε τους τριγωνομετρικούς αριθμούς και ανακαλύπτουμε τις σχέσεις τους. Σελίδα 11 από 17

12 Δραστηριότητα 6: Τριγωνομετρικές συναρτήσεις, γραφικές παραστάσεις Ακολουθώντας τις οδηγίες του φύλλου εργασίας, παρακολουθούμε ταυτόχρονα την εναλλαγή των τιμών των τριγωνομετρικών αριθμών, που προκαλεί η κίνηση του πέρατος του τόξου στον τριγωνομετρικό κύκλο στο αριστερό παράθυρο της οθόνης, τη δημιουργία των αντίστοιχων γραφικών παραστάσεων στο δεξί παράθυρο της οθόνης και ανακαλύπτουμε τις τριγωνομετρικές συναρτήσεις, την περιοδικότητά τους, τα τόξα που συμπίπτουν οι τιμές των τριγωνομετρικών αριθμών, κλπ. Σελίδα 12 από 17

13 Δραστηριότητα 7: Τριγωνομετρικές εξισώσεις Ακολουθώντας τις οδηγίες του φύλλου εργασίας, εντοπίζουμε το σημείο πάνω στον αντίστοιχο άξονα με συντεταγμένη την τιμή του τριγωνομετρικού της εξίσωσης και με διαδοχικά κλικ επάνω στα κατάλληλα σημεία, βρίσκουμε τα πέρατα των τόξων που οι αντίστοιχοι τριγωνομετρικοί αριθμοί επαληθεύουν την εξίσωση. Γνωρίζοντας δε από τη δραστηριότητα 3 τις αλγεβρικές σχέσεις των άπειρων τόξων με το ίδιο πέρας, βρίσκουμε τη μορφή των άπειρων λύσεων της αντίστοιχης εξίσωσης. Επιλέξτε από την παρακάτω λίστα τα βασικά χαρακτηριστικά του ρόλου του διδάσκοντα. Υπάρχει η δυνατότητα πολλαπλών επιλογών. Διδακτικός Προπονητικός Ενθαρρυντικός Υποστηρικτικός Συμβουλευτικός Διευκολυντικός Συντονιστικός Ηγετικός Διαχειριστικός Μέντωρ Υποκινητικός Κριτικός Επιμελητής περιεχομένου (curator) Τεχνική υποστήριξη Διαμεσολαβητικός Άλλος ρόλος:.. Εποπτικός Σελίδα 13 από 17

14 Πηγές του Ψηφιακού Εκπαιδευτικού Περιεχόμενου που αξιοποιήθηκαν κατά τον σχεδιασμό της ανοιχτής εκπαιδευτικής πρακτικής Τίτλος ψηφιακού πόρου: Καινοτομίες: Η γνωσιοθεωρητική προσέγγιση του μαθήματος γίνεται με σύγχρονες κοινωνικές και εποικοδομιστικές προσεγγίσεις, δηλαδή με δυναμικό τρόπο, απειρία μετασχηματισμών και πολλαπλές αναπαραστάσεις. Ομαδοσυνεργατική δουλειά για τη διαπραγμάτευση των απόψεων και τελικών συμπερασμάτων από τους μαθητές. Φύλλα εργασίας με προσεκτικά σχεδιασμένες οδηγίες χρήσης της εφαρμογής και ερωτήσεις. Καθηγητής στο ρόλο του εξυπηρετητή της μάθησης του μαθητή και όχι στο ρόλο του πομπού γνώσεων, που συνήθως συμβαίνει στο περιβάλλον μιας παραδοσιακής τάξης. Προστιθέμενη αξία: Με τη χρήση των εφαρμογών των εκπαιδευτικών λογισμικών κάθε ομάδα μαθητών θα αλληλεπιδράσει, θα μετασχηματίσει δυναμικά, θα διερευνήσει και θα ανακαλύψει τις εξής έννοιες: Ακτίνιο, αριθμός π, μήκος κύκλου, αντιστοιχία μοιρών ακτινίων: στο συμβατικό βιβλίο ο μαθητής διαβάζει και βλέπει μια στατική εικόνα, όπου περιγράφεται πως ο κύκλος καλύπτεται με μία κλωστή, η οποία κατόπιν μετατρέπεται σε ευθύγραμμο τμήμα και μετριέται με μονάδα την εκάστοτε ακτίνα του. Στην εφαρμογή του λογισμικού, ο μαθητής μετασχηματίζει την καμπύλη που καλύπτει τον κύκλο σε εφαπτόμενο στον κύκλο Σελίδα 14 από 17

15 ευθύγραμμο τμήμα, μετράει το μισό αυτού με μονάδα την ακτίνα του κύκλου και κατόπιν μετασχηματίζει πάλι το ευθύγραμμο τμήμα σε ημικύκλιο, ανακαλύπτοντας ότι το μήκος του ημικυκλίου είναι π = 3, ακτίνες, ανεξάρτητα από το εκάστοτε μήκος της ακτίνας. Κατόπιν δίνονται στις ομάδες των μαθητών γωνίες σε μοίρες και τόξα σε ακτίνια και τους ζητείται να βρουν αλγεβρικά την αντιστοιχία μοιρών ακτινίων και να επαληθεύσουν τις απαντήσεις τους με χρήση της εφαρμογής. Τρόποι κίνησης πάνω στον κύκλο (ορισμός θετικής αρνητικής φοράς): Η χρήση της ε- φαρμογής η οποία δείχνει δύο κινητά κινούμενα με αντίθετη φορά πάνω σε κυκλικές ομόκεντρες τροχιές και ταυτόχρονα την κίνηση των δεικτών ρολογιού, επιτρέπει στον μαθητή να ανακαλύψει τους διαφορετικούς τρόπους κίνησης πάνω στον κύκλο και να ορίσει τη θετικής και αρνητική φορά περιστροφής. Ορισμός κατασκευή του τριγωνομετρικού κύκλου: Παρουσιάζεται ο τριγωνομετρικός κύκλος, ως κύκλος ακτίνας 1, με προσαρτημένο ορθοκανονικό σύστημα συντεταγμένων, το σημείο τομής κύκλου θετικού οριζόντιου ημιάξονα με την επισήμανση «αρχή τόξων», βέλος θετικής φοράς κίνησης και ζητείται από τους μαθητές η περιγραφή των χαρακτηριστικών του και ο τρόπος που καθορίζονται τα τεταρτημόριά του. Θετικές αρνητικές γωνίες τόξα: Ο μαθητής δίνοντας στον άξονα (δρομέα): αντίθετες γωνίες (π.χ. 30ο,-30ο,125ο,-125ο, 225ο,-225ο, κλπ) και κάνοντας κλικ στο κουμπί κίνησης, κατανοεί τι συμβολίζει το πρόσημο μπροστά από το μέτρο της γωνίας ή του αντιστοίχου τόξου. Γωνίες μεγαλύτερες των 360 και μικρότερες των -360: Ο μαθητής δίνοντας στον άξονα (δρομέα): τιμές μεγαλύτερες του 360 ή μικρότερες του -360 και με κλικ στο κουμπί κίνησης, παρατηρεί ότι κάθε πραγματικός αριθμός μπορεί να θεωρηθεί γωνία ή τόξο και του ζητείται η εύρεση αλγεβρικά του πέρατος αυτού του τόξου. Άπειρα τόξα με το ίδιο πέρας και αλγεβρική σχέση μεταξύ τους: Δίνοντας πάνω στον άξονα: τιμές θετικές ή αρνητικές και κάνοντας κλικ στο κουμπί κίνησης, ο μαθητής ανακαλύπτει, άπειρες γωνίες τόξα κατά την θετική και κατά την αρνητική φορά με πέρας το πέρας του αντίστοιχου τόξου της δοθείσης γωνίας και την αλγεβρική σχέση γωνιών τόξων με το ίδιο πέρας. Τριγωνομετρικοί αριθμοί γωνιών τόξων: Ο μαθητής κάνοντας κλικ στο κουμπί κίνησης, παρατηρεί τις τιμές των τριγωνομετρικών αριθμών πάνω στους αντίστοιχους άξονες, διατυπώνει τους ορισμούς στο φύλλο εργασίας και από την ομοιότητα των αντίστοιχων τριγώνων ανακαλύπτει τις αλγεβρικές σχέσεις μεταξύ των τριγωνομετρικών αριθμών. Σελίδα 15 από 17

16 Τριγωνομετρικοί αριθμοί των τόξων: α+β=0, α±β=± π, α±β=± : Ο μαθητής δημιουργώντας στον τριγωνομετρικό κύκλο τόξα α, β που ικανοποιούν κάποια από τις παραπάνω 2 σχέσεις, μετακινεί τα τόξα ώστε να έχουν αρχή την αρχή μέτρησης τόξων του τριγωνομετρικού κύκλου και παρατηρώντας τις τιμές των τριγωνομετρικών τους αριθμών ανακαλύπτει τις σχέσεις μεταξύ τους. Τριγωνομετρικές συναρτήσεις, γραφικές παραστάσεις: Ο μαθητής με κλικ στο κουμπί κίνησης παρακολουθεί ταυτόχρονα, στην πρώτη οθόνη τις τιμές των τριγωνομετρικών αριθμών στον τριγωνομετρικό κύκλο και στη δεύτερη οθόνη το σχηματισμό των αντίστοιχων γραφικών παραστάσεων των τριγωνομετρικών συναρτήσεων. Λύση τριγωνομετρικών εξισώσεων πάνω στον τριγωνομετρικό κύκλο: Ο μαθητής, για κάθε τριγωνομετρική εξίσωση των μορφών: ημx = α, συνx = α, -1 α 1, εφx = β, σφx = β, β R, βρίσκει μετακινώντας σημείο πάνω στους άξονες, το σημείο με τετμημένη ή τεταγμένη την τιμή α ή β και με κλικ στα αντίστοιχα σημεία εντοπίζει τα πέρατα των δύο τόξων του ικανοποιούν την αντίστοιχη ισότητα. Ο σχεδιασμός και η εφαρμογή αυτής της ανοιχτής εκπαιδευτικής πρακτικής δεν βασίστηκε σε άλλη πρακτική. Το σενάριο θα λέγαμε ότι αποτελεί ένα «πρότυπο» της ανακαλυπτικής μαθητοκεντρικής διδασκαλίας με χρήση Τ.Π.Ε. Με την ίδια φιλοσοφία μπορούμε να ανακαλύψουμε όλες τις έννοιες των μαθηματικών και της γεωμετρίας που απαιτούν σχήματα και χρειάζονται πολλαπλές αναπαραστάσεις για να γίνουν κατανοητές. Αξιολόγηση μετά την εφαρμογή: Ως προς τις επιδιώξεις του σεναρίου: Ο εκπαιδευτικός ελέγχει κατά πόσο επιτεύχθηκαν οι στόχοι του σεναρίου και εξετάζει του λόγους για τους οποίους κάποιοι δεν επιτεύχθηκαν ώστε να παρέμβει ανάλογα στο σενάριο. Ως προς τα εργαλεία: Ο εκπαιδευτικός ελέγχει την ευκολία με την οποία οι μαθητές αξιοποίησαν τα εργαλεία του προτεινόμενου λογισμικού σε συνδυασμό με την σαφήνεια των οδηγιών και των περιγραφών των φύλλων εργασίας. Αφού αξιολογήσει τα δεδομένα του επεμβαίνει ανάλογα στο σενάριο για την επόμενη εφαρμογή. Ως προς την διαδικασία υλοποίησης: Ο εκπαιδευτικός αξιολογεί την διαδικασία υλοποίησης του σεναρίου αξιολογώντας τα στοιχεία που δεν δούλεψαν καλά και αναπροσαρμόζει το σενάριο. Σελίδα 16 από 17

17 Ως προς την προσαρμογή και επεκτασιμότητα: Η δυνατότητα επέκτασης του σεναρίου και η ευκολία προσαρμογής σε ένα σχολικό περιβάλλον ή στην διδακτική ατζέντα ενός εκπαιδευτικού ή στην κουλτούρα μιας σχολικής τάξης είναι ένα από τα στοιχεία που το καθιστούν σημαντικό. Ο εκπαιδευτικός πρέπει να λάβει σοβαρά υπόψη του αυτές τις παραμέτρους και να προσαρμόσει το σενάριο ανάλογα. Ιδιαίτερα αν εφαρμόσει το σενάριο πολλές φορές και σε διαφορετικές τάξεις ή ανταλλάξει ιδέες με άλλους συναδέλφους του θα έχει δεδομένα με τα οποία θα μπορεί να κάνει ουσιαστικές προσαρμογές. Όλες οι προς μάθηση έννοιες παρουσιάζονται με επτά εφαρμογές του εκπαιδευτικού λογισμικού CAS GeoGebra, οι οποίες είναι κατασκευασμένες με τέτοιο τρόπο, ώστε ο μαθητής να τις χειρίζεται μόνο σύροντας ή επιλέγοντας αντικείμενα με το δείκτη του ποντικιού, χωρίς ιδιαίτερες γνώσεις χρήσης του λογισμικού. Απαιτούμενα βοηθητικά υλικά και εργαλεία: τετράδιο για να κρατούν σημειώσεις κατά την πορεία της διερεύνησης, να καταγράφουν τα συμπεράσματά τους και να εκτελούν τις αλγεβρικές διαδικασίες όπου απαιτείται. Βιβλίο για να ανατρέχουν σε προηγούμενες έννοιες. Φύλλα εργασίας τα οποία δίνονται από τον διδάσκοντα και έχουν ως στόχο να καθοδηγούν τους μαθητές στη διερεύνηση - ανακάλυψη των προς μάθηση εννοιών και διατύπωση των σχετικών κανόνων. Γεωμετρικά όργανα για κατασκευές στο τετράδιο Σελίδα 17 από 17

«Εισαγωγή στον Τριγωνομετρικό Κύκλο» Διδάσκοντας Μαθηματικά με Τ.Π.Ε.

«Εισαγωγή στον Τριγωνομετρικό Κύκλο» Διδάσκοντας Μαθηματικά με Τ.Π.Ε. «Εισαγωγή στον Τριγωνομετρικό Κύκλο» Διδάσκοντας Μαθηματικά με Τ.Π.Ε. Μπολοτάκης Γιώργος Μαθηματικός, Επιμορφωτής Β επιπέδου, Διευθυντής Γυμνασίου Αγ. Αθανασίου Δράμας, Τραπεζούντος 7, Άγιος Αθανάσιος,

Διαβάστε περισσότερα

ΔΙΔΑΣΚΑΛΙΑ ΤΗΣ ΕΝΝΟΙΑΣ ΤΟΥ ΟΡΙΟΥ ΣΥΝΑΡΤΗΣΗΣ

ΔΙΔΑΣΚΑΛΙΑ ΤΗΣ ΕΝΝΟΙΑΣ ΤΟΥ ΟΡΙΟΥ ΣΥΝΑΡΤΗΣΗΣ ΕΠΙΜΟΡΦΩΣΗ ΤΩΝ ΕΚΠΑΙΔΕΥΤΙΚΩΝ ΓΙΑ ΤΗΝ ΑΞΙΟΠΟΙΗΣΗ ΚΑΙ ΕΦΑΡΜΟΓΗ ΤΩΝ ΤΠΕ ΣΤΗ ΔΙΔΑΚΤΙΚΗ ΠΡΑΞΗ ΔΙΔΑΣΚΑΛΙΑ ΤΗΣ ΕΝΝΟΙΑΣ ΤΟΥ ΟΡΙΟΥ ΣΥΝΑΡΤΗΣΗΣ ΟΡΙΟ ΣΥΝΑΡΤΗΣΗΣ ΕΞ ΑΡΙΣΤΕΡΩΝ ΚΑΙ ΕΚ ΔΕΞΙΩΝ ΣΥΓΓΡΑΦΕΑΣ: ΚΟΥΤΙΔΗΣ ΙΩΑΝΝΗΣ

Διαβάστε περισσότερα

Η παραγωγή της επιχείρησης και το κόστος ΟΜΑΔΑ ΑΝΑΠΤΥΞΗΣ

Η παραγωγή της επιχείρησης και το κόστος ΟΜΑΔΑ ΑΝΑΠΤΥΞΗΣ Η παραγωγή της επιχείρησης και το κόστος ΟΜΑΔΑ ΑΝΑΠΤΥΞΗΣ Δημήτριος Βουδούρης, Οικονομολόγος ΣΧΟΛΕΙΟ Γυμνάσιο Γουμέρου Πύργος, 22/03/2015 1. Συνοπτική περιγραφή της ανοιχτής εκπαιδευτικής πρακτικής Η παρούσα

Διαβάστε περισσότερα

Πιο αναλυτικά, δημιουργήθηκε, μια ιστοσελίδα τύπου wiki όπου προστέθηκαν οι ανάλογες αναφορές σε δραστηριότητες από το Φωτόδεντρο.

Πιο αναλυτικά, δημιουργήθηκε, μια ιστοσελίδα τύπου wiki όπου προστέθηκαν οι ανάλογες αναφορές σε δραστηριότητες από το Φωτόδεντρο. ΣΧΟΛΕΙΟ Στα πλαίσια της ευέλικτης ζώνης, με θέμα την διατροφή, οι μαθητές με την χρήση των Τ.Π.Ε, εξερευνούν, πειραματίζονται και δοκιμάζουν τις γνώσεις τους σε μια σειρά από ψηφιακές δραστηριότητες. Οι

Διαβάστε περισσότερα

Εισαγωγή στην έννοια του Αλγορίθμου

Εισαγωγή στην έννοια του Αλγορίθμου Εισαγωγή στην έννοια του Αλγορίθμου ΟΜΑΔΑ ΑΝΑΠΤΥΞΗΣ Νίκος Μιχαηλίδης, Πληροφορικός ΠΕ19 ΣΧΟΛΕΙΟ 2 ο Πρότυπο Πειραματικό Γυμνάσιο Θεσσαλονίκης Θεσσαλονίκη, 24 Φεβρουαρίου 2015 1. Συνοπτική περιγραφή της

Διαβάστε περισσότερα

ΑΣΦΑΛΗΣ ΠΛΟΗΓΗΣΗ ΣΤΟΔΙΑΔΙΚΤΥΟ

ΑΣΦΑΛΗΣ ΠΛΟΗΓΗΣΗ ΣΤΟΔΙΑΔΙΚΤΥΟ ΑΣΦΑΛΗΣ ΠΛΟΗΓΗΣΗ ΣΤΟΔΙΑΔΙΚΤΥΟ ΟΜΑΔΑ ΑΝΑΠΤΥΞΗΣ Ειρήνη Τζοβλά, Δασκάλα ΣΧΟΛΕΙΟ 4 ο Δημοτικό Σχολείο Πεύκης Πεύκη, Φεβρουάριος 2015 1. Συνοπτική περιγραφή της ανοιχτής εκπαιδευτικής πρακτικής Η συγκεκριμένη

Διαβάστε περισσότερα

Λογισμικό διδασκαλίας των μαθηματικών της Γ Τάξης Γυμνασίου

Λογισμικό διδασκαλίας των μαθηματικών της Γ Τάξης Γυμνασίου Λογισμικό διδασκαλίας των μαθηματικών της Γ Τάξης Γυμνασίου Δρ. Βασίλειος Σάλτας 1, Αλέξης Ηλιάδης 2, Ιωάννης Μουστακέας 3 1 Διδάκτωρ Διδακτικής Μαθηματικών, Επιστημονικός Συνεργάτης ΑΣΠΑΙΤΕ Σαπών coin_kav@otenet.gr

Διαβάστε περισσότερα

ΔΟΣΟΛΟΓΙΑ ΦΑΡΜΑΚΩΝ ΓΙΑ ΠΑΙΔΙΑ ΕΩΣ 12 ΕΤΩΝ ΟΜΑΔΑ ΑΝΑΠΤΥΞΗΣ

ΔΟΣΟΛΟΓΙΑ ΦΑΡΜΑΚΩΝ ΓΙΑ ΠΑΙΔΙΑ ΕΩΣ 12 ΕΤΩΝ ΟΜΑΔΑ ΑΝΑΠΤΥΞΗΣ ΔΟΣΟΛΟΓΙΑ ΦΑΡΜΑΚΩΝ ΓΙΑ ΠΑΙΔΙΑ ΕΩΣ 12 ΕΤΩΝ ΟΜΑΔΑ ΑΝΑΠΤΥΞΗΣ Αγγελική Γριβοπούλου, ΤΕ01.13-ΠΕ20 ΣΧΟΛΕΙΟ 1 ο Ε.Κ. Μεσολογγίου Μεσολόγγι, 14/07/2015 1. Συνοπτική περιγραφή της ανοιχτής εκπαιδευτικής πρακτικής

Διαβάστε περισσότερα

Οδηγίες για το Geogebra Μωυσιάδης Πολυχρόνης Δόρτσιος Κώστας

Οδηγίες για το Geogebra Μωυσιάδης Πολυχρόνης Δόρτσιος Κώστας Οδηγίες για το Geogebra Μωυσιάδης Πολυχρόνης Δόρτσιος Κώστας Η πρώτη οθόνη μετά την εκτέλεση του προγράμματος διαφέρει κάπως από τα προηγούμενα λογισμικά, αν και έχει αρκετά κοινά στοιχεία. Αποτελείται

Διαβάστε περισσότερα

ΤΙΤΛΟΣ ΑΝΟΙΧΤΗΣ ΕΚΠΑΙΔΕΥΤΙΚΗΣ ΠΡΑΚΤΙΚΗΣ

ΤΙΤΛΟΣ ΑΝΟΙΧΤΗΣ ΕΚΠΑΙΔΕΥΤΙΚΗΣ ΠΡΑΚΤΙΚΗΣ ΤΙΤΛΟΣ ΑΝΟΙΧΤΗΣ ΕΚΠΑΙΔΕΥΤΙΚΗΣ ΠΡΑΚΤΙΚΗΣ ΔΗΜΟΤΙΚΟ ΣΧΟΛΕΙΟ ΣΚΥΔΡΑΣ Ομάδα ανάπτυξης Μαρία Τσικαλοπούλου, Μαθηματικός Σ Κ Υ Δ Ρ Α / 2 0 1 5 Το αντικείμενο με το οποίο θα ασχοληθούμε είναι τα μαθηματικά της

Διαβάστε περισσότερα

ΒΡΙΣΚΩ ΤΟ ΜΙΣΟ ΚΑΙ ΤΟ ΟΛΟΚΛΗΡΟ

ΒΡΙΣΚΩ ΤΟ ΜΙΣΟ ΚΑΙ ΤΟ ΟΛΟΚΛΗΡΟ ΒΡΙΣΚΩ ΤΟ ΜΙΣΟ ΚΑΙ ΤΟ ΟΛΟΚΛΗΡΟ ΟΜΑΔΑ ΑΝΑΠΤΥΞΗΣ ΜΑΡΙΑ ΤΣΙΚΑΛΟΠΟΥΛΟΥ,ΜΑΘΗΜΑΤΙΚΟΣ ΣΧΟΛΕΙΟ Δημοτικό σχολείο Σκύδρας ΣΚΥΔΡΑ,2015 1. Συνοπτική περιγραφή της ανοιχτής εκπαιδευτικής Το αντικείμενο με το οποίο

Διαβάστε περισσότερα

ΣΧΕΔΙΟ ΜΑΘΗΜΑΤΟΣ: ΜΑΘΗΜΑΤΙΚΑ ΣΤ ΔΗΜΟΤΙΚΟΥ «ΤΑ ΚΛΑΣΜΑΤΑ»

ΣΧΕΔΙΟ ΜΑΘΗΜΑΤΟΣ: ΜΑΘΗΜΑΤΙΚΑ ΣΤ ΔΗΜΟΤΙΚΟΥ «ΤΑ ΚΛΑΣΜΑΤΑ» ΣΧΕΔΙΟ ΜΑΘΗΜΑΤΟΣ: ΜΑΘΗΜΑΤΙΚΑ ΣΤ ΔΗΜΟΤΙΚΟΥ «ΤΑ ΚΛΑΣΜΑΤΑ» Νικόλαος Μπαλκίζας 1. ΕΙΣΑΓΩΓΗ Σκοπός του σχεδίου μαθήματος είναι να μάθουν όλοι οι μαθητές της τάξης τις έννοιες της ισοδυναμίας των κλασμάτων,

Διαβάστε περισσότερα

Γρήγορη Εκκίνηση. Όταν ξεκινήσετε το GeoGebra, εμφανίζεται το παρακάτω παράθυρο:

Γρήγορη Εκκίνηση. Όταν ξεκινήσετε το GeoGebra, εμφανίζεται το παρακάτω παράθυρο: Τι είναι το GeoGebra; Γρήγορη Εκκίνηση Λογισμικό Δυναμικών Μαθηματικών σε ένα - απλό στη χρήση - πακέτο Για την εκμάθηση και τη διδασκαλία σε όλα τα επίπεδα της εκπαίδευσης Συνδυάζει διαδραστικά γεωμετρία,

Διαβάστε περισσότερα

0 0 30 π/6 45 π/4 60 π/3 90 π/2

0 0 30 π/6 45 π/4 60 π/3 90 π/2 Βασικός Πίνακας Μοίρες (Degrees) Ακτίνια (Radians) ΓΩΝΙΕΣ 0 0 30 π/6 45 π/4 60 π/3 90 π/2 Έστω ότι θέλω να μετατρέψω μοίρες σε ακτίνια : Έχω μία γωνία σε φ μοίρες. Για να την κάνω σε ακτίνια, πολλαπλασιάζω

Διαβάστε περισσότερα

Στρατηγική επίλυσης προβλημάτων: Διερεύνηση περιμέτρου κι εμβαδού με τη βοήθεια του Ms Excel.

Στρατηγική επίλυσης προβλημάτων: Διερεύνηση περιμέτρου κι εμβαδού με τη βοήθεια του Ms Excel. Στρατηγική επίλυσης προβλημάτων: Διερεύνηση περιμέτρου κι εμβαδού με τη βοήθεια του Ms Excel. Έντυπο Α Φύλλα εργασίας Μαθητή Διαμαντής Κώστας Τερζίδης Σωτήρης 31/1/2008 Φύλλο εργασίας 1. Ομάδα: Ημερομηνία:

Διαβάστε περισσότερα

Η ώρα του κώδικα (Hour of code)

Η ώρα του κώδικα (Hour of code) Η ώρα του κώδικα (Hour of code) ΟΜΑΔΑ ΑΝΑΠΤΥΞΗΣ Ράλια Θωμά, ΠΕ 70 ΣΧΟΛΕΙΟ Δημοτικό Σχολείο Βασιλικών Σαλαμίνας Σαλαμίνα, Απρίλιος 2015 1. Συνοπτική περιγραφή της ανοιχτής εκπαιδευτικής πρακτικής Η συγκεκριμένη

Διαβάστε περισσότερα

ΜΕΛΕΤΗ ΤΟΥ ΦΑΙΝΟΜΕΝΟΥ ΤΗΣ ΔΙΑΘΛΑΣΗΣ ΣΕ «ΕΙΚΟΝΙΚΟ ΕΡΓΑΣΤΗΡΙΟ»

ΜΕΛΕΤΗ ΤΟΥ ΦΑΙΝΟΜΕΝΟΥ ΤΗΣ ΔΙΑΘΛΑΣΗΣ ΣΕ «ΕΙΚΟΝΙΚΟ ΕΡΓΑΣΤΗΡΙΟ» 1 ο ΣΥΝΕΔΡΙΟ ΣΤΗ ΣΥΡΟ ΤΠΕ ΣΤΗΝ ΕΚΠΑΙΔΕΥΣΗ 217 ΜΕΛΕΤΗ ΤΟΥ ΦΑΙΝΟΜΕΝΟΥ ΤΗΣ ΔΙΑΘΛΑΣΗΣ ΣΕ «ΕΙΚΟΝΙΚΟ ΕΡΓΑΣΤΗΡΙΟ» Λουκία Μαρνέλη Εκπαιδευτικός Δευτεροβάθμιας Εκπαίδευσης Διεύθυνση: Μονής Κύκκου 1, 15669 Παπάγου

Διαβάστε περισσότερα

«Η μικρή ιστορία μιας βιώσιμης Ελληνικής επιχείρησης: μια προσέγγιση της ανίσωσης 2 ου βαθμού»

«Η μικρή ιστορία μιας βιώσιμης Ελληνικής επιχείρησης: μια προσέγγιση της ανίσωσης 2 ου βαθμού» «Η μικρή ιστορία μιας βιώσιμης Ελληνικής επιχείρησης: μια προσέγγιση της ανίσωσης 2 ου βαθμού» Ματοσσιάν Αλμπέρ-Ντικράν 1, Κουτσκουδής Παναγιώτης 2 1 Καθηγητής Μαθηματικών, Πρότυπο Πειραματικό Γενικό Λύκειο

Διαβάστε περισσότερα

Εργαστηριακή εισήγηση

Εργαστηριακή εισήγηση Εργαστηριακή εισήγηση «Διδακτικό Σενάριο: Προσεγγίζοντας Κωνικές Τομές με τη βοήθεια της Μεσοκαθέτου στο Δυναμικό Περιβάλλον του Geometer s Sketchpad» Σάββας Πιπίνος 1, Σταύρος Κοκκαλίδης 2, Χρήστος Ηρακλείδης

Διαβάστε περισσότερα

ΕΚΠΑΙΔΕΥΤΙΚΟ ΣΕΝΑΡΙΟ Τρίγωνα - Είδη τριγώνων ως προς τις γωνίες και τις πλευρές - Ύψη τριγώνου

ΕΚΠΑΙΔΕΥΤΙΚΟ ΣΕΝΑΡΙΟ Τρίγωνα - Είδη τριγώνων ως προς τις γωνίες και τις πλευρές - Ύψη τριγώνου ΕΠΙΜΟΡΦΩΣΗ ΕΚΠΑΙΔΕΥΤΙΚΩΝ ΓΙΑ ΤΗΝ ΑΞΙΟΠΟΙΗΣΗ ΚΑΙ ΕΦΑΡΜΟΓΗ ΤΩΝ ΤΠΕ ΣΤΗ ΔΙΔΑΚΤΙΚΗ ΠΡΑΞΗ ΕΚΠΑΙΔΕΥΤΙΚΟ ΣΕΝΑΡΙΟ Τρίγωνα - Είδη τριγώνων ως προς τις γωνίες και τις πλευρές - Ύψη τριγώνου Κανέλλα Κούτση ΚΣΕ 7ο

Διαβάστε περισσότερα

ΒΑΣΙΚΕΣ ΓΝΩΣΕΙΣ ΓΙΑ ΤΗΝ ΑΞΙΟΠΟΙΗΣΗ ΤΟΥ ΓΕΩΜΕΤΡΙΚΟΥ ΜΕΡΟΥΣ ΤΟΥ ΛΟΓΙΣΜΙΚΟΥ GEOGEBRA

ΒΑΣΙΚΕΣ ΓΝΩΣΕΙΣ ΓΙΑ ΤΗΝ ΑΞΙΟΠΟΙΗΣΗ ΤΟΥ ΓΕΩΜΕΤΡΙΚΟΥ ΜΕΡΟΥΣ ΤΟΥ ΛΟΓΙΣΜΙΚΟΥ GEOGEBRA ΒΑΣΙΚΕΣ ΓΝΩΣΕΙΣ ΓΙΑ ΤΗΝ ΑΞΙΟΠΟΙΗΣΗ ΤΟΥ ΓΕΩΜΕΤΡΙΚΟΥ ΜΕΡΟΥΣ ΤΟΥ ΛΟΓΙΣΜΙΚΟΥ GEOGEBRA ΒΑΣΙΚΑ ΕΡΓΑΛΕΙΑ Για να κάνουμε Γεωμετρία χρειαζόμαστε εργαλεία κατασκευής, εργαλεία μετρήσεων και εργαλεία μετασχηματισμών.

Διαβάστε περισσότερα

Η ΒΙΟΠΟΙΚΙΛΟΤΗΤΑ ΣΤΗ ΓΕΙΤΟΝΙΑ ΜΟΥ, ΤΗ ΧΩΡΑ ΜΟΥ, ΤΗΝ ΕΥΡΩΠΗ

Η ΒΙΟΠΟΙΚΙΛΟΤΗΤΑ ΣΤΗ ΓΕΙΤΟΝΙΑ ΜΟΥ, ΤΗ ΧΩΡΑ ΜΟΥ, ΤΗΝ ΕΥΡΩΠΗ Η ΒΙΟΠΟΙΚΙΛΟΤΗΤΑ ΣΤΗ ΓΕΙΤΟΝΙΑ ΜΟΥ, ΤΗ ΧΩΡΑ ΜΟΥ, ΤΗΝ ΕΥΡΩΠΗ ΟΜΑΔΑ ΑΝΑΠΤΥΞΗΣ Χριστίνα Νομικού ΠΕ 70 Αμαλία Ταπραντζή ΠΕ 70 Ουρανία Σωτηρίου ΠΕ 70 ΣΧΟΛΕΙΟ 7ο Δημοτικό Σχολείο Αγίου Δημητρίου ΑΓΙΟΣ ΔΗΜΗΤΡΙΟΣ

Διαβάστε περισσότερα

«Δημιουργία Ψηφιακών Διαθεματικών Εφαρμογών Συνεργατικά από Μαθητές στα Πλαίσια του Μαθήματος Πληροφορικής στο Λύκειο»

«Δημιουργία Ψηφιακών Διαθεματικών Εφαρμογών Συνεργατικά από Μαθητές στα Πλαίσια του Μαθήματος Πληροφορικής στο Λύκειο» 2o Πανελλήνιο Εκπαιδευτικό Συνέδριο Ημαθίας ΠΡΑΚΤΙΚΑ «Δημιουργία Ψηφιακών Διαθεματικών Εφαρμογών Συνεργατικά από Μαθητές στα Πλαίσια του Μαθήματος Πληροφορικής στο Λύκειο» Χριστίνα Τίκβα 1, Αθανάσιος Πέρδος

Διαβάστε περισσότερα

ΕΠΑΝΑΛΗΨΗ ΤΡΙΓΩΝΟΜΕΤΡΙΑΣ Α ΛΥΚΕΙΟΥ

ΕΠΑΝΑΛΗΨΗ ΤΡΙΓΩΝΟΜΕΤΡΙΑΣ Α ΛΥΚΕΙΟΥ ΚΕΦΑΛΑΙΟ Ο ΕΠΑΝΑΛΗΨΗ ΤΡΙΓΩΝΟΜΕΤΡΙΑΣ Α ΛΥΚΕΙΟΥ Το ακτίνιο ως μονάδα μέτρησης γωνιών: Το ακτίνιο (ή rad) είναι η γωνία που, όταν γίνει επίκεντρη κύκλου (Ο, ρ), βαίνει σε τόξο που έχει μήκος ίσο με την ακτίνα

Διαβάστε περισσότερα

ημερήσιων και εσπερινών ΕΠΑ.Λ. για το σχολικό έτος 2011-2012.

ημερήσιων και εσπερινών ΕΠΑ.Λ. για το σχολικό έτος 2011-2012. ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ ΔΙΑ ΒΙΟΥ ΜΑΘΗΣΗΣ ΚΑΙ ΘΡΗΣΚΕΥΜΑΤΩΝ ----- ΕΝΙΑΙΟΣ ΔΙΟΙΚΗΤΙΚΟΣ ΤΟΜΕΑΣ Π/ΘΜΙΑΣ & Δ/ΘΜΙΑΣ ΕΚΠ/ΣΗΣ Δ/ΝΣΗ ΣΠΟΥΔΩΝ Δ/ΘΜΙΑΣ ΕΚΠ/ΣΗΣ ΤΜΗΜΑ B ----- Να διατηρηθεί μέχρι... Βαθμός

Διαβάστε περισσότερα

Επαναλαμβάνοντας το Ισόπλευρο Τρίγωνο με Δύο Κώδικες

Επαναλαμβάνοντας το Ισόπλευρο Τρίγωνο με Δύο Κώδικες Επαναλαμβάνοντας το Ισόπλευρο Τρίγωνο με Δύο Κώδικες Λουμπαρδιά Αγγελική 1, Ναστάκου Μαρία 2 1 Καθηγήτρια Μαθηματικών, 2 o Γενικό Λύκειο Τρίπολης loumpardia@sch.gr 2 Διευθύντρια, ΙΕΚ Σπάρτης marynasta@sch.gr

Διαβάστε περισσότερα

Τίτλος Εργασίας: Εικονογραφήματα. Μάθημα: Εκθετική συνάρτηση. Λυκείου Αγίου Νεοφύτου. Αριθμός μαθητών στην τάξη: 16

Τίτλος Εργασίας: Εικονογραφήματα. Μάθημα: Εκθετική συνάρτηση. Λυκείου Αγίου Νεοφύτου. Αριθμός μαθητών στην τάξη: 16 Τίτλος Εργασίας: Εικονογραφήματα Μάθημα: Εκθετική συνάρτηση Τάξη στην οποία διδάχθηκε το μάθημα: Β6 κατεύθυνσης Λυκείου Αγίου Νεοφύτου Αριθμός μαθητών στην τάξη: 16 Καθηγητής: Γιώργος Ανδρονίκου Εισαγωγή:

Διαβάστε περισσότερα

ΦΥΛΛΑΔΙΟ ΑΣΚΗΣΕΩΝ ΤΗΣ ΑΛΓΕΒΡΑΣ Β ΛΥΚΕΙΟΥ

ΦΥΛΛΑΔΙΟ ΑΣΚΗΣΕΩΝ ΤΗΣ ΑΛΓΕΒΡΑΣ Β ΛΥΚΕΙΟΥ ΦΥΛΛΑΔΙΟ ΑΣΚΗΣΕΩΝ ΤΗΣ ΑΛΓΕΒΡΑΣ Β ΛΥΚΕΙΟΥ ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ ΣΥΣΤΗΜΑΤΑ ΓΡΑΜΜΙΚΑ ΣΥΣΤΗΜΑΤΑ ΘΕΜΑ ο _6950 α) Να κατασκευάσετε ένα γραμμικό σύστημα δυο εξισώσεων με δυο αγνώστους με συντελεστές διάφορους του

Διαβάστε περισσότερα

Πρότυπο Πειραματικό Γυμνάσιο Πανεπιστημίου Πατρών. Αθανασία Μπαλωμένου ΠΕ03 Βασιλική Ρήγα ΠΕ03 Λαμπρινή Βουτσινά ΠΕ04.01

Πρότυπο Πειραματικό Γυμνάσιο Πανεπιστημίου Πατρών. Αθανασία Μπαλωμένου ΠΕ03 Βασιλική Ρήγα ΠΕ03 Λαμπρινή Βουτσινά ΠΕ04.01 Πρότυπο Πειραματικό Γυμνάσιο Πανεπιστημίου Πατρών Αθανασία Μπαλωμένου ΠΕ03 Βασιλική Ρήγα ΠΕ03 Λαμπρινή Βουτσινά ΠΕ04.01 Τα ερωτήματα που προκύπτουν από την εισαγωγή της Φυσικής στην Α γυμνασίου είναι :

Διαβάστε περισσότερα

3ο Πανελλήνιο Εκπαιδευτικό Συνέδριο Ημαθίας. «Το Φως» Παναγιωτάκης Χαράλαμπος 1, Βενιώτη Ανθή 2

3ο Πανελλήνιο Εκπαιδευτικό Συνέδριο Ημαθίας. «Το Φως» Παναγιωτάκης Χαράλαμπος 1, Βενιώτη Ανθή 2 3ο Πανελλήνιο Εκπαιδευτικό Συνέδριο Ημαθίας ΠΡΑΚΤΙΚΑ «Το Φως» Παναγιωτάκης Χαράλαμπος 1, Βενιώτη Ανθή 2 1 Καθηγητής, Φυσικός, 2 ο Γενικό Λύκειο Αγ. Νικολάου Κρήτης xaralpan@gmail.com 2 Καθηγήτρια, Φυσικός,

Διαβάστε περισσότερα

Τριγωνομετρία ΓΙΩΡΓΟΣ ΚΑΡΙΠΙΔΗΣ 2 ΑΝΘΟΥΛΑ ΣΟΦΙΑΝΟΠΟΥΛΟΥ

Τριγωνομετρία ΓΙΩΡΓΟΣ ΚΑΡΙΠΙΔΗΣ 2 ΑΝΘΟΥΛΑ ΣΟΦΙΑΝΟΠΟΥΛΟΥ ΕΥΚΛΕΙΔΗΣ ΤΡΙΓΩΝΟΜΕΤΡΙΚΕΣ ΤΑΥΤΟΤΗΤΕΣ ΤΟ ΒΑΣΙΚΟ ΘΕΩΡΗΜΑ: ημ χ+συν χ= ημ χ=-συν χ συν χ=- ημ χ εφχ + σφ χ = εφχ ημχ συνχ = σφχ = ημ χ εφχσφχ σφχ = = συνχ ημχ + εφ χ = συν χ Γωνία χ Τριγωνομετρικοί Αριθμοί

Διαβάστε περισσότερα

ΠΑΡΑΔΕΙΓΜΑΤΑ ΘΕΜΑ Β. Να εξετάσετε αν ισχύουν οι υποθέσεις του Θ.Μ.Τ. για την συνάρτηση στο διάστημα [ 1,1] τέτοιο, ώστε: C στο σημείο (,f( ))

ΠΑΡΑΔΕΙΓΜΑΤΑ ΘΕΜΑ Β. Να εξετάσετε αν ισχύουν οι υποθέσεις του Θ.Μ.Τ. για την συνάρτηση στο διάστημα [ 1,1] τέτοιο, ώστε: C στο σημείο (,f( )) ΚΕΦΑΛΑΙΟ ο: ΔΙΑΦΟΡΙΚΟΣ ΛΟΓΙΣΜΟΣ ΕΝΟΤΗΤΑ 6: ΘΕΩΡΗΜΑ ΜΕΣΗΣ ΤΙΜΗΣ ΔΙΑΦΟΡΙΚΟΥ ΛΟΓΙΣΜΟΥ (Θ.Μ.Τ.) [Θεώρημα Μέσης Τιμής Διαφορικού Λογισμού του κεφ..5 Μέρος Β του σχολικού βιβλίου]. ΠΑΡΑΔΕΙΓΜΑΤΑ Παράδειγμα. ΘΕΜΑ

Διαβάστε περισσότερα

Γενική οργάνωση σεναρίου. 1. Προαπαιτούμενες γνώσεις και πρότερες γνώσεις των μαθητών

Γενική οργάνωση σεναρίου. 1. Προαπαιτούμενες γνώσεις και πρότερες γνώσεις των μαθητών Παράρτημα 1: Τεχνική έκθεση τεκμηρίωσης σεναρίου Το εκπαιδευτικό σενάριο που θα σχεδιαστεί πρέπει να συνοδεύεται από μια τεχνική έκθεση τεκμηρίωσής του. Η τεχνική αυτή έκθεση (με τη μορφή του παρακάτω

Διαβάστε περισσότερα

ΕΚΠΑΙΔΕΥΤΙΚΟ ΣΕΝΑΡΙΟ. pagioti@sch.gr

ΕΚΠΑΙΔΕΥΤΙΚΟ ΣΕΝΑΡΙΟ. pagioti@sch.gr ΕΚΠΑΙΔΕΥΤΙΚΟ ΣΕΝΑΡΙΟ Αγιώτης Πέτρος pagioti@sch.gr Εκπαιδευτικός Πληροφορικής Τίτλος διδακτικού σεναρίου Η έννοια των σταθερών και της καταχώρησης στη Visual Basic Εμπλεκόμενες γνωστικές περιοχές Στοιχεία

Διαβάστε περισσότερα

ΕΠΙΜΟΡΦΩΣΗ ΤΩΝ ΕΚΠΑΙΔΕΥΤΙΚΩΝ ΓΙΑ ΤΗΝ ΑΞΙΟΠΟΙΗΣΗ ΚΑΙ ΕΦΑΡΜΟΓΗ ΤΩΝ ΤΠΕ ΣΤΗ ΔΙΔΑΚΤΙΚΗ ΠΡΑΞΗ

ΕΠΙΜΟΡΦΩΣΗ ΤΩΝ ΕΚΠΑΙΔΕΥΤΙΚΩΝ ΓΙΑ ΤΗΝ ΑΞΙΟΠΟΙΗΣΗ ΚΑΙ ΕΦΑΡΜΟΓΗ ΤΩΝ ΤΠΕ ΣΤΗ ΔΙΔΑΚΤΙΚΗ ΠΡΑΞΗ ΞΑΝΘΗ 2013, 2 ο ΣΕΚ ΞΑΝΘΗΣ ΕΠΙΜΟΡΦΩΣΗ ΤΩΝ ΕΚΠΑΙΔΕΥΤΙΚΩΝ ΓΙΑ ΤΗΝ ΑΞΙΟΠΟΙΗΣΗ ΚΑΙ ΕΦΑΡΜΟΓΗ ΤΩΝ ΤΠΕ ΣΤΗ ΔΙΔΑΚΤΙΚΗ ΠΡΑΞΗ ΕΠΙΜΟΡΦΩΤΗΣ : ΓΙΑΝΝΗΣ ΚΟΥΤΙΔΗΣ Μαθηματικός www.kutidis.gr ΑΠΡΙΛΙΟΣ ΝΟΕΜΒΡΙΟΣ 2013 Τι

Διαβάστε περισσότερα

Έκδοση 1 η. Σταύρος Κόλλιας

Έκδοση 1 η. Σταύρος Κόλλιας Έκδοση 1 η Σταύρος Κόλλιας Το βιβλίο αυτό γράφτηκε στο πλαίσιο μιας ενημέρωσης, για το Geogebra, που οργάνωσε το παράρτημα της μαθηματικής εταιρείας του νομού Κορινθίας, στους συνάδελφους μαθηματικούς.

Διαβάστε περισσότερα

Εκπαιδευτικό σενάριο διδασκαλίας και μάθησης με την αξιοποίηση εκπαιδευτικού λογισμικού.

Εκπαιδευτικό σενάριο διδασκαλίας και μάθησης με την αξιοποίηση εκπαιδευτικού λογισμικού. Εκπαιδευτικό σενάριο διδασκαλίας και μάθησης με την αξιοποίηση εκπαιδευτικού λογισμικού. 1.ΣΥΝΟΠΤΙΚΗ ΠΑΡΟΥΣΙΑΣΗ ΤΟΥ ΣΕΝΑΡΙΟΥ Συγγραφέας: Μποζονέλου Κωνσταντίνα 1.1.Τίτλος διδακτικού σεναρίου Οι τέσσερις

Διαβάστε περισσότερα

ΘΕΩΡΙΑ Α ΓΥΜΝΑΣΙΟΥ. Η διαίρεση καλείται Ευκλείδεια και είναι τέλεια όταν το υπόλοιπο είναι μηδέν.

ΘΕΩΡΙΑ Α ΓΥΜΝΑΣΙΟΥ. Η διαίρεση καλείται Ευκλείδεια και είναι τέλεια όταν το υπόλοιπο είναι μηδέν. ΑΛΓΕΒΡΑ 1 ο ΚΕΦΑΛΑΙΟ ΘΕΩΡΙΑ Α ΓΥΜΝΑΣΙΟΥ 1. Τι είναι αριθμητική παράσταση; Με ποια σειρά εκτελούμε τις πράξεις σε μια αριθμητική παράσταση ώστε να βρούμε την τιμή της; Αριθμητική παράσταση λέγεται κάθε

Διαβάστε περισσότερα

Να υπολογίζουν αποστάσεις με τη βοήθεια ημ. και συν. Να είναι σε θέση να χρησιμοποιούν τους τριγωνομετρικούς πίνακες στους υπολογισμούς τους.

Να υπολογίζουν αποστάσεις με τη βοήθεια ημ. και συν. Να είναι σε θέση να χρησιμοποιούν τους τριγωνομετρικούς πίνακες στους υπολογισμούς τους. ΣΧΕΔΙΟ ΜΑΘΗΜΑΤΩΝ Νίκος Γ. Τόμπρος Ενότητα : ΤΡΙΓΩΝΟΜΕΤΡΙΑ Περιεχόμενα ενότητας Τριγωνομετρικοί οξείας γωνίας αριθμοί Διδακτικοί στόχοι Διδακτικές οδηγίες - επισημάνσεις Πρέπει οι μαθητές να γνωρίζουν:

Διαβάστε περισσότερα

Κεφάλαιο 1 o Εξισώσεις - Ανισώσεις

Κεφάλαιο 1 o Εξισώσεις - Ανισώσεις 2 ΕΡΩΤΗΣΕΙΙΣ ΘΕΩΡΙΙΑΣ ΑΠΟ ΤΗΝ ΥΛΗ ΤΗΣ Β ΤΑΞΗΣ ΜΕΡΟΣ Α -- ΑΛΓΕΒΡΑ Κεφάλαιο 1 o Εξισώσεις - Ανισώσεις Α. 1 1 1. Τι ονομάζεται Αριθμητική και τι Αλγεβρική παράσταση; Ονομάζεται Αριθμητική παράσταση μια παράσταση

Διαβάστε περισσότερα

αντισταθµίζονται µε τα πλεονεκτήµατα του άλλου, τρόπου βαθµολόγησης των γραπτών και της ερµηνείας των σχετικών αποτελεσµάτων, και

αντισταθµίζονται µε τα πλεονεκτήµατα του άλλου, τρόπου βαθµολόγησης των γραπτών και της ερµηνείας των σχετικών αποτελεσµάτων, και 1. ΕΙΣΑΓΩΓΗ Όλα τα είδη ερωτήσεων που αναφέρονται στο «Γενικό Οδηγό για την Αξιολόγηση των µαθητών στην Α Λυκείου» µπορούν να χρησιµοποιηθούν στα Μαθηµατικά, τόσο στην προφορική διδασκαλία/εξέταση, όσο

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ. Δημήτρης Σπαθάρας Σχολικός Σύμβουλος Μαθηματικών. Λαμία, 19 Απριλίου 2013 Αριθ. Πρωτ.: 317. Προς:

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ. Δημήτρης Σπαθάρας Σχολικός Σύμβουλος Μαθηματικών. Λαμία, 19 Απριλίου 2013 Αριθ. Πρωτ.: 317. Προς: ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ ΚΑΙ ΘΡΗΣΚΕΥΜΑΤΩΝ, ΠΟΛΙΤΙΣΜΟΥ ΚΑΙ ΑΘΛΗΤΙΣΜΟΥ ΠΕΡΙΦΕΡΕΙΑΚΗ Δ/ΝΣΗ Π/ΘΜΙΑΣ & Δ/ΘΜΙΑΣ ΕΚΠ/ΣΗΣ ΣΤΕΡΕΑΣ ΕΛΛΑΔΑΣ ΓΡΑΦΕΙΟ ΣΧΟΛΙΚΩΝ ΣΥΜΒΟΥΛΩΝ Δ/ΘΜΙΑΣ ΕΚΠ/ΣΗΣ ΝΟΜΟΥ ΦΘΙΩΤΙΔΑΣ

Διαβάστε περισσότερα

ΣΕΝΑΡΙΟ ΔΙΔΑΣΚΑΛΙΑΣ ΓΝΩΣΤΙΚΟ ΑΝΤΙΚΕΙΜΕΝΟ: ΙΣΤΟΡΙΑ

ΣΕΝΑΡΙΟ ΔΙΔΑΣΚΑΛΙΑΣ ΓΝΩΣΤΙΚΟ ΑΝΤΙΚΕΙΜΕΝΟ: ΙΣΤΟΡΙΑ ΣΕΝΑΡΙΟ ΔΙΔΑΣΚΑΛΙΑΣ ΓΝΩΣΤΙΚΟ ΑΝΤΙΚΕΙΜΕΝΟ: ΙΣΤΟΡΙΑ ΤΑΞΗ: Α ΓΥΜΝΑΣΙΟΥ, Α ΛΥΚΕΙΟΥ ΔΙΔΑΚΤΙΚΗ ΕΝΟΤΗΤΑ: Μυκηναϊκός Πολιτισμός ΕΙΣΗΓΗΤΗΣ: ΚΑΛΛΙΑΔΟΥ ΜΑΡΙΑ ΘΕΜΑ: «Η καθημερινή ζωή στον Μυκηναϊκό Κόσμο» Οι μαθητές

Διαβάστε περισσότερα

Σενάριο τεσσάρων 2ωρων μαθημάτων διδασκαλίας της Γ Λυκείου στα Μαθηματικά Κατεύθυνσης

Σενάριο τεσσάρων 2ωρων μαθημάτων διδασκαλίας της Γ Λυκείου στα Μαθηματικά Κατεύθυνσης Σενάριο τεσσάρων 2ωρων μαθημάτων διδασκαλίας της Γ Λυκείου στα Μαθηματικά Κατεύθυνσης Τίτλος σεναρίου: Διερεύνηση Θεωρήματος Bolzano (Θ.Β.) και Ενδιάμεσων Τιμών (Θ.Ε.Τ.) Τάξη : Γ Λυκείου Θετικής και Τεχνολογικής

Διαβάστε περισσότερα

Τριγωνομετρικός κύκλος Δ. Ε. ΚΟΝΤΟΚΩΣΤΑΣ ΜΑΘΗΜAΤΙΚΟΣ

Τριγωνομετρικός κύκλος Δ. Ε. ΚΟΝΤΟΚΩΣΤΑΣ ΜΑΘΗΜAΤΙΚΟΣ Τριγωνομετρικός κύκλος Δ. Ε. ΚΟΝΤΟΚΩΣΤΑΣ ΜΑΘΗΜAΤΙΚΟΣ ΤΡΙΓΩΝΟΜΕΤΡΙΚΟΣ ΚΥΚΛΟΣ Β ημφ, εφφ σφφ Μ Δ συνφ Α www.commonmaths.weebly.com Σελίδα 1 N Β, 90 ο Α, ο H O 1ο 3ο E Σ Δ, 180 ο 360 ο Ν, 70 ο 4ο 1 ο Τεταρτημόριο

Διαβάστε περισσότερα

ΤΡΟΠΟΙ ΑΞΙΟΠΟΙΗΣΗΣ ΕΚΠΑΙΔΕΥΤΙΚΩΝ ΨΗΦΙΑΚΩΝ ΚΟΜΙΚΣ ΣΤΗΝ ΤΑΞΗ «οι μύθοι του Αισώπου»

ΤΡΟΠΟΙ ΑΞΙΟΠΟΙΗΣΗΣ ΕΚΠΑΙΔΕΥΤΙΚΩΝ ΨΗΦΙΑΚΩΝ ΚΟΜΙΚΣ ΣΤΗΝ ΤΑΞΗ «οι μύθοι του Αισώπου» ΤΡΟΠΟΙ ΑΞΙΟΠΟΙΗΣΗΣ ΕΚΠΑΙΔΕΥΤΙΚΩΝ ΨΗΦΙΑΚΩΝ ΚΟΜΙΚΣ ΣΤΗΝ ΤΑΞΗ «οι μύθοι του Αισώπου» 6/Θ ΔΗΜ. ΣΧΟΛΕΙΟ ΚΙΤΡΟΥΣ ΠΙΕΡΙΑΣ Μαρία Υφαντή (ΠΕ 11) Δαμιανός Τσιλφόγλου (ΠΕ 20) Θέμα: Μύθοι Αισώπου και διδαχές του Τάξη

Διαβάστε περισσότερα

μαθηματικά β γυμνασίου

μαθηματικά β γυμνασίου μαθηματικά β γυμνασίου Κάθε αντίτυπο φέρει την υπογραφή ενός εκ των συγγραφέων Σειρά: Γυμνάσιο, Θετικές Επιστήμες Μαθηματικά Β Γυμνασίου, Βασίλης Διολίτσης Ιωάννα Κοσκινά Νικολέττα Μπάκου Θεώρηση Κειμένου:

Διαβάστε περισσότερα

ΕΚΦΩΝΗΣΗ ΕΛΕΥΘΕΡΟΥ ΘΕΜΑΤΟΣ (µικρές τάξεις ηµοτικού) Σχεδιασµός σεναρίου µε θέµα «Ο καιρός» µε τη χρήση λογισµικών γενικής χρήσης, οπτικοποίησης, διαδικτύου και λογισµικών εννοιολογικής χαρτογράφησης. ΑΠΑΝΤΗΣΗ

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΑΤΡΩΝ ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΗΛΕΚΤΡΟΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ ΚΑΙ ΠΛΗΡΟΦΟΡΙΚΗΣ. ΣΗΜΕΙΩΣΕΙΣ ΓΙΑ ΤΟ ΜΑΘΗΜΑ Διδακτική της Πληροφορικής

ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΑΤΡΩΝ ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΗΛΕΚΤΡΟΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ ΚΑΙ ΠΛΗΡΟΦΟΡΙΚΗΣ. ΣΗΜΕΙΩΣΕΙΣ ΓΙΑ ΤΟ ΜΑΘΗΜΑ Διδακτική της Πληροφορικής ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΑΤΡΩΝ ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΗΛΕΚΤΡΟΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ ΚΑΙ ΠΛΗΡΟΦΟΡΙΚΗΣ ΣΗΜΕΙΩΣΕΙΣ ΓΙΑ ΤΟ ΜΑΘΗΜΑ Διδακτική της Πληροφορικής Η Πληροφορική ως αντικείμενο και ως εργαλείο μάθησης

Διαβάστε περισσότερα

Περιεχόμενο διδασκαλίας Στόχοι Παρατηρήσεις. υπολογίζουν το λόγο δύο λόγο δύο τμημάτων

Περιεχόμενο διδασκαλίας Στόχοι Παρατηρήσεις. υπολογίζουν το λόγο δύο λόγο δύο τμημάτων Νίκος Γ. Τόμπρος ΣΧΕΔΙΟ ΜΑΘΗΜΑΤΩΝ Ενότητα : ΟΜΟΙΟΤΗΤΑ (ΛΟΓΟΣ ΑΝΑΛΟΓΙΑ) Σκοποί: Η ανάπτυξη ενδιαφέροντος για το θέμα, η εξοικείωση με τη χρήση τεχνολογίας, η παρότρυνση για αναζήτηση πληροφοριών (εδώ σε

Διαβάστε περισσότερα

εκπαίδευση Μαθηματικά Γ Λυκείου Κατεύθυνσης Λύκειο Ιδαλίου - Π.Ι. Κύπρου Μιχάλης

εκπαίδευση Μαθηματικά Γ Λυκείου Κατεύθυνσης Λύκειο Ιδαλίου - Π.Ι. Κύπρου Μιχάλης Ενσωμάτωση των ΤΠΕ στην εκπαίδευση Μαθηματικά Γ Λυκείου Κατεύθυνσης Λύκειο Ιδαλίου - Π.Ι. Κύπρου Τιμοθέου Σάββας & Χριστοφορίδης Μιχάλης Μελέτη και γραφική Παράσταση Συνάρτησης Τμήμα:Γ6 ( με 18 μαθητές)

Διαβάστε περισσότερα

Κεφάλαιο 4. GeoGebra

Κεφάλαιο 4. GeoGebra Κεφάλαιο 4 GeoGebra Στόχοι: Με τη βοήθεια του Οδηγού αυτού, ο εκπαιδευόμενος θα είναι σε θέση να: Εργαστεί με το λογισμικό Geogebra για τη δημιουργία γεωμετρικών σχημάτων Αξιοποιήσει τα εργαλεία του Geogebra

Διαβάστε περισσότερα

Τι ονομάζουμε Φυσική; Φυσική ονομάζουμε την επιστήμη η οποία μελετά τα φυσικά φαινόμενα. ΦΥΣΙΚΗ Α ΛΥΚΕΙΟΥ

Τι ονομάζουμε Φυσική; Φυσική ονομάζουμε την επιστήμη η οποία μελετά τα φυσικά φαινόμενα. ΦΥΣΙΚΗ Α ΛΥΚΕΙΟΥ ΦΥΣΙΚΗ Α ΛΥΚΕΙΟΥ Τι ονομάζουμε Φυσική; Φυσική ονομάζουμε την επιστήμη η οποία μελετά τα φυσικά φαινόμενα. ΦΥΣΙΚΗ Α ΛΥΚΕΙΟΥ ΠΡΟΛΟΓΟΣ Ξ εκινώντας τη προσπάθεια μου να γράψω αυτό το βιβλίο αναρωτιόμουν πως

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ ΚΑΙ ΘΡΗΣΚΕΥΜΑΤΩΝ

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ ΚΑΙ ΘΡΗΣΚΕΥΜΑΤΩΝ ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ ΚΑΙ ΘΡΗΣΚΕΥΜΑΤΩΝ ΠΕΡΙΦΕΡΕΙΑΚΗ ΔΙΕΥΘΥΝΣΗ Π/ΘΜΙΑΣ ΚΑΙ Δ/ΘΜΙΑΣ ΕΚΠΑΙΔΕΥΣΗΣ ΣΤΕΡΕΑΣ ΕΛΛΑΔΑΣ ΣΧΟΛΙΚΟΣ ΣΥΜΒΟΥΛΟΣ ΜΑΘΗΜΑΤΙΚΩΝ Δ/ΘΜΙΑΣ ΕΚΠ/ΣΗΣ ΠΕΡΙΦ. ΣΤΕΡΕΑΣ ΕΛΛΑΔΑΣ ΜΕ ΕΔΡΑ

Διαβάστε περισσότερα

Αφαίρεση και Γενίκευση στα Μαθηματικά

Αφαίρεση και Γενίκευση στα Μαθηματικά 1 Αφαίρεση και Γενίκευση στα Μαθηματικά Δρ. Παναγιώτης Λ. Θεοδωρόπουλος Σχολικός Σύμβουλος κλάδου ΠΕ3 www.p-theodoropoulos.gr ΠΕΡΙΛΗΨΗ Στην εργασία αυτή εξετάζεται εντός του πλαισίου της Διδακτικής των

Διαβάστε περισσότερα

O πύραυλος. Γνωστικό Αντικείμενο: Φυσική (Δύναμη Μορφές Ενέργειας) - Τεχνολογία Τάξη: Β Γυμνασίου

O πύραυλος. Γνωστικό Αντικείμενο: Φυσική (Δύναμη Μορφές Ενέργειας) - Τεχνολογία Τάξη: Β Γυμνασίου O πύραυλος Γνωστικό Αντικείμενο: Φυσική (Δύναμη Μορφές Ενέργειας) - Τεχνολογία Τάξη: Β Γυμνασίου Χρονική Διάρκεια Προτεινόμενη χρονική διάρκεια σχεδίου εργασίας: 5 διδακτικές ώρες Διδακτικοί Στόχοι Οι

Διαβάστε περισσότερα

Σταυρούλα Πατσιομίτου spatsiomitou@sch.gr. Σενάριο : Μοντελοποίηση ταυτοτήτων σε στατικά και δυναμικά μέσα παραγοντοποίηση πολυωνύμων

Σταυρούλα Πατσιομίτου spatsiomitou@sch.gr. Σενάριο : Μοντελοποίηση ταυτοτήτων σε στατικά και δυναμικά μέσα παραγοντοποίηση πολυωνύμων Σταυρούλα Πατσιομίτου spatsiomitou@sch.gr Τάξη: Γ Γυμνασίου A Λυκείου Μάθημα : Άλγεβρα Διδακτική ενότητα: Αξιοσημείωτες Ταυτότητες, Παραγοντοποίηση αλγεβρικών παραστάσεων Εισαγωγή Σενάριο : Μοντελοποίηση

Διαβάστε περισσότερα

Σενάριο Διδασκαλίας του Εσωτερικού του Ηλεκτρονικού Υπολογιστή

Σενάριο Διδασκαλίας του Εσωτερικού του Ηλεκτρονικού Υπολογιστή Σενάριο Διδασκαλίας του Εσωτερικού του Ηλεκτρονικού Υπολογιστή Αθανάσιος Βράντζας 1 vrantzas@sch.gr 1 Καθηγητής Πληροφορικής Περίληψη Στην εργασία αυτή θα επιχειρηθεί να παρουσιαστεί η διδασκαλία του εσωτερικού

Διαβάστε περισσότερα

ΓΕΩΓΡΑΦΙΑ ΜΕ ΤΟ GOOGLE EARTH: Η ΕΥΡΩΠΗ

ΓΕΩΓΡΑΦΙΑ ΜΕ ΤΟ GOOGLE EARTH: Η ΕΥΡΩΠΗ 1 ΓΕΩΓΡΑΦΙΑ ΜΕ ΤΟ GOOGLE EARTH: Η ΕΥΡΩΠΗ ΦΥΛΛΑ ΕΡΓΑΣΙΑΣ ΜΑΘΗΤΗ Κώστας Κύρος ΦΥΛΛΟ ΕΡΓΑΣΙΑΣ 1 1. Ανοίξτε το λογισμικό Google Earth και προσπαθήστε να εντοπίσετε τη θέση της Ευρώπης στη Γη. Κατόπιν για να

Διαβάστε περισσότερα

Κεφάλαιο 5. Θεμελιώδη προβλήματα της Τοπογραφίας

Κεφάλαιο 5. Θεμελιώδη προβλήματα της Τοπογραφίας Κεφάλαιο 5 Θεμελιώδη προβλήματα της Τοπογραφίας ΚΕΦΑΛΑΙΟ 5. 5 Θεμελιώδη προβλήματα της Τοπογραφίας. Στο Κεφάλαιο αυτό περιέχονται: 5.1 Γωνία διεύθυνσης. 5. Πρώτο θεμελιώδες πρόβλημα. 5.3 εύτερο θεμελιώδες

Διαβάστε περισσότερα

ΕΚΦΩΝΗΣΗ ΕΛΕΥΘΕΡΟΥ ΘΕΜΑΤΟΣ (µικρές τάξεις ηµοτικού) Σχεδιασµός σεναρίου µε θέµα «Η έννοια της ανακύκλωσης» µε τη χρήση λογισµικών γενικής χρήσης, οπτικοποίησης, διαδικτύου και λογισµικών εννοιολογικής

Διαβάστε περισσότερα

ΜΕΛΕΤΗ ΑΝΑΒΑΘΜΙΣΗΣ ΤΟΥ ΕΚΠΑΙΔΕΥΤΙΚΟΥ ΕΡΓΟΥ

ΜΕΛΕΤΗ ΑΝΑΒΑΘΜΙΣΗΣ ΤΟΥ ΕΚΠΑΙΔΕΥΤΙΚΟΥ ΕΡΓΟΥ ΚΕΕΠΕ ΤΟΜΕΑΣ ΙΙ.2.Α ΤΟΜΕΑΣ ΕΚΠΑΙΔΕΥΣΗΣ «ΤΟ ΣΥΓΧΡΟΝΟ ΣΧΟΛΕΙΟ» Δημητρίου Γ. Κούρτη ΜΕΛΕΤΗ ΑΝΑΒΑΘΜΙΣΗΣ ΤΟΥ ΕΚΠΑΙΔΕΥΤΙΚΟΥ ΕΡΓΟΥ ΒΑΣΙΚΟΙ ΣΥΝΤΕΛΕΣΤΕΣ ΠΟΙΟΤΙΚΗΣ ΑΝΑΒΑΘΜΙΣΗΣ ΤΗΣ ΕΚΠΑΙΔΕΥΣΗΣ ΠΙΛΟΤΙΚΑ ΠΡΟΓΡΑΜΜΑΤΑ

Διαβάστε περισσότερα

«Μια διδακτική προσέγγιση της γραμμικής συνάρτησης μέσω επίλυσης προβλήματος συνεργατικά και με τη χρήση του εκπαιδευτικού λογισμικού Function Probe»

«Μια διδακτική προσέγγιση της γραμμικής συνάρτησης μέσω επίλυσης προβλήματος συνεργατικά και με τη χρήση του εκπαιδευτικού λογισμικού Function Probe» «Ψηφιακές και Διαδικτυακές εφαρμογές στην Εκπαίδευση» «Μια διδακτική προσέγγιση της γραμμικής συνάρτησης μέσω επίλυσης προβλήματος συνεργατικά και με τη χρήση του εκπαιδευτικού λογισμικού Function Probe»

Διαβάστε περισσότερα

ΠΡΟΣ: ΚΟΙΝ.: ΘΕΜΑ: Οδηγίες για τη διδακτέα - εξεταστέα ύλη των µαθηµάτων Β τάξης Ηµερησίου Γενικού Λυκείου και Γ τάξης Εσπερινού Γενικού Λυκείου

ΠΡΟΣ: ΚΟΙΝ.: ΘΕΜΑ: Οδηγίες για τη διδακτέα - εξεταστέα ύλη των µαθηµάτων Β τάξης Ηµερησίου Γενικού Λυκείου και Γ τάξης Εσπερινού Γενικού Λυκείου ΕΛΛΗΝΙΚΗ ΗΜΟΚΡΑΤΙΑ ΥΠΟΥΡΓΕΙΟ ΠΑΙ ΕΙΑΣ ΚΑΙ ΘΡΗΣΚΕΥΜΑΤΩΝ ----- ΕΝΙΑΙΟΣ ΙΟΙΚΗΤΙΚΟΣ ΤΟΜΕΑΣ Π/ΘΜΙΑΣ & /ΘΜΙΑΣ ΕΚΠ/ΣΗΣ /ΝΣΗ ΣΠΟΥ ΩΝ /ΘΜΙΑΣ ΕΚΠ/ΣΗΣ ΤΜΗΜΑ Α ----- Ταχ. /νση: Ανδρέα Παπανδρέου 37 Τ.Κ. Πόλη: 15180

Διαβάστε περισσότερα

23 2011 ΘΕΜΑ Α A1. Έστω μια συνάρτηση f ορισμένη σε ένα διάστημα Δ και x 0 ένα εσωτερικό σημείο του Δ. Αν η f παρουσιάζει τοπικό ακρότατο στο x 0 και είναι παραγωγίσιμη στο σημείο αυτό, να αποδείξετε ότι:

Διαβάστε περισσότερα

Θεωρητικές και μεθοδολογικές προσεγγίσεις στη μελέτη της περιοδικότητας: Μια συστημική προσέγγιση. Δέσποινα Πόταρη, Τμήμα Μαθηματικών, ΕΚΠΑ

Θεωρητικές και μεθοδολογικές προσεγγίσεις στη μελέτη της περιοδικότητας: Μια συστημική προσέγγιση. Δέσποινα Πόταρη, Τμήμα Μαθηματικών, ΕΚΠΑ Θεωρητικές και μεθοδολογικές προσεγγίσεις στη μελέτη της περιοδικότητας: Μια συστημική προσέγγιση Δέσποινα Πόταρη, Τμήμα Μαθηματικών, ΕΚΠΑ Δομή της παρουσίασης Δυσκολίες μαθητών γύρω από την έννοια της

Διαβάστε περισσότερα

ΑΛΓΕΒΡΑ. Α' τάξης Γενικού Λυκείου

ΑΛΓΕΒΡΑ. Α' τάξης Γενικού Λυκείου ΑΛΓΕΒΡΑ Α' τάξης Γενικού Λυκείου ΣΥΓΓΡΑΦΕΙΣ Ανδρεαδάκης Στυλιανός Κατσαργύρης Βασίλειος Παπασταυρίδης Σταύρος Πολύζος Γεώργιος Σβέρκος Ανδρέας ΟΜΑΔΑ ΑΝΑΜΟΡΦΩΣΗΣ Ανδρεαδάκης Στυλιανός Κατσαργύρης Βασίλειος

Διαβάστε περισσότερα

Μιγαδική ανάλυση Μέρος Α Πρόχειρες σημειώσεις 1. Μιγαδικοί αριθμοί. ΤΕΤΥ Εφαρμοσμένα Μαθηματικά Μιγαδική Ανάλυση Α 1

Μιγαδική ανάλυση Μέρος Α Πρόχειρες σημειώσεις 1. Μιγαδικοί αριθμοί. ΤΕΤΥ Εφαρμοσμένα Μαθηματικά Μιγαδική Ανάλυση Α 1 ΤΕΤΥ Εφαρμοσμένα Μαθηματικά Μιγαδική Ανάλυση Α 1 Μιγαδική ανάλυση Μέρος Α Πρόχειρες σημειώσεις 1 Μιγαδικοί αριθμοί Τι είναι και πώς τους αναπαριστούμε Οι μιγαδικοί αριθμοί είναι μια επέκταση του συνόλου

Διαβάστε περισσότερα

Μαθηματικα Γ Γυμνασιου

Μαθηματικα Γ Γυμνασιου Μαθηματικα Γ Γυμνασιου Θεωρια και παραδειγματα livemath.eu σελ. απο 9 Περιεχομενα Α ΜΕΡΟΣ: ΑΛΓΕΒΡΑ ΚΑΙ ΠΙΘΑΝΟΤΗΤΕΣ 4 ΣΥΣΤΗΜΑΤΑ Χ 4 ΜΟΝΩΝΥΜΑ & ΠΟΛΥΩΝΥΜΑ 5 ΜΟΝΩΝΥΜΑ 5 ΠΟΛΥΩΝΥΜΑ 5 ΡΙΖΑ ΠΟΛΥΩΝΥΜΟΥ 5 ΠΟΛΛΑΠΛΑΣΙΑΣΜΟΣ

Διαβάστε περισσότερα

ΘΕΜΑ: ιαχείριση διδακτέας - εξεταστέας ύλης των Μαθηµατικών Γ τάξης Ηµερήσιου και τάξης Εσπερινού Γενικού Λυκείου, για το σχολικό έτος 2010 2011.

ΘΕΜΑ: ιαχείριση διδακτέας - εξεταστέας ύλης των Μαθηµατικών Γ τάξης Ηµερήσιου και τάξης Εσπερινού Γενικού Λυκείου, για το σχολικό έτος 2010 2011. ΕΛΛΗΝΙΚΗ ΗΜΟΚΡΑΤΙΑ ΥΠΟΥΡΓΕΙΟ ΠΑΙ ΕΙΑΣ ΙΑ ΒΙΟΥ ΜΑΘΗΣΗΣ ΚΑΙ ΘΡΗΣΚΕΥΜΑΤΩΝ ----- ΕΝΙΑΙΟΣ ΙΟΙΚΗΤΙΚΟΣ ΤΟΜΕΑΣ Π/ΘΜΙΑΣ & /ΘΜΙΑΣ ΕΚΠΑΙ ΕΥΣΗΣ /ΥΝΣΗ ΣΠΟΥ ΩΝ /ΘΜΙΑΣ ΕΚΠ/ΣΗΣ ΤΜΗΜΑ Α Να διατηρηθεί µέχρι... Βαθµός Ασφαλείας...

Διαβάστε περισσότερα

Ιπτάμενες Μηχανές. Οδηγός για το Μαθητή

Ιπτάμενες Μηχανές. Οδηγός για το Μαθητή Ιπτάμενες Μηχανές Οδηγός για το Μαθητή Το ελικόπτερο Αφού βεβαιωθείτε ότι βρίσκεστε στο περιβάλλον του εκπαιδευτικού προγράμματος, επιλέξτε «Έναυσμα». Ακολουθώντας τις οδηγίες που παρουσιάζονται στην οθόνη

Διαβάστε περισσότερα

1 Διαθεματικό Ενιαίο Πλαίσιο Προγράμματος Σπουδών Μαθηματικών

1 Διαθεματικό Ενιαίο Πλαίσιο Προγράμματος Σπουδών Μαθηματικών 1.Τίτλος: «Ολυμπιακοί αγώνες» 2.Εμπλεκόμενες γνωστικές περιοχές: Το σενάριο απευθύνεται σε μαθητές της Ε τάξης. Στο συγκεκριμένο σενάριο εμπλέκονται οι γνωστικές περιοχές των Μαθηματικών (Γεωμετρία), της

Διαβάστε περισσότερα

Η διαπολιτισμική διάσταση των φιλολογικών βιβλίων του Γυμνασίου: διδακτικές προσεγγίσεις

Η διαπολιτισμική διάσταση των φιλολογικών βιβλίων του Γυμνασίου: διδακτικές προσεγγίσεις Έργο: «Ένταξη παιδιών παλιννοστούντων και αλλοδαπών στο σχολείο - για τη Δευτεροβάθμια Εκπαίδευση (Γυμνάσιο)» Επιμορφωτικό Σεμινάριο Η διαπολιτισμική διάσταση των φιλολογικών βιβλίων του Γυμνασίου: διδακτικές

Διαβάστε περισσότερα

«Μαθαίνοντας τα μέρη του Υπολογιστή στο Δημοτικό»

«Μαθαίνοντας τα μέρη του Υπολογιστή στο Δημοτικό» «Αξιοποίηση των Τεχνολογιών της Πληροφορίας και Επικοινωνιών στη διδακτική πράξη» «Μαθαίνοντας τα μέρη του Υπολογιστή στο Δημοτικό» Γίδας Γεώργιος Εκπαιδευτικός Πληροφορικής, 3ο Πιλοτικό Δημοτικό Σχολείο

Διαβάστε περισσότερα

Χρήσιμες Οδηγίες για την Πλοήγηση στο Υποστηρικτικό Υλικό. Περιεχόμενα

Χρήσιμες Οδηγίες για την Πλοήγηση στο Υποστηρικτικό Υλικό. Περιεχόμενα Χρήσιμες Οδηγίες για την Πλοήγηση στο Υποστηρικτικό Υλικό Περιεχόμενα Βασικές απαιτήσεις... 2 Εγκατάσταση και Εκκίνηση... 2 Παράθυρο Πλοήγησης... 8 Πλήκτρα Ενεργειών του Πίνακα Πλοήγησης... 13 Πλήκτρα

Διαβάστε περισσότερα

Όταν κοιτάς από ψηλά Σχήµα-Ανάγλυφο της Γης

Όταν κοιτάς από ψηλά Σχήµα-Ανάγλυφο της Γης ΕΚΦΩΝΗΣΗ ΕΛΕΥΘΕΡΟΥ ΘΕΜΑΤΟΣ (µεγάλες τάξεις ηµοτικού) Σχεδιασµός σεναρίου µε θέµα «Η γη από το διάστηµα» µε τη χρήση λογισµικών γενικής χρήσης, οπτικοποίησης, διαδικτύου και λογισµικών εννοιολογικής χαρτογράφησης.

Διαβάστε περισσότερα

Σενάριο με το λογισμικό modellus Πηγή: http://www.dapontes.gr/index.php?option=com_content&task=view&id=229&itemid=50 ΠΡΟΛΟΓΟΣ

Σενάριο με το λογισμικό modellus Πηγή: http://www.dapontes.gr/index.php?option=com_content&task=view&id=229&itemid=50 ΠΡΟΛΟΓΟΣ Σενάριο με το λογισμικό modellus Τίτλος: Πότε δύο τρένα έχουν την ελάχιστη απόσταση μεταξύ τους; Πηγή: http://www.dapontes.gr/index.php?option=com_content&task=view&id=229&itemid=50 ΠΡΟΛΟΓΟΣ Σε μια πρώτη

Διαβάστε περισσότερα

B) Από το βιβλίο «Άλγεβρα Β Γενικού Λυκείου» των Σ. Ανδρεαδάκη, Β. Κατσαργύρη, Σ. Παπασταυρίδη, Γ. Πολύζου και Α. Σβέρκου, έκδοση Ο.Ε..Β. 2010.

B) Από το βιβλίο «Άλγεβρα Β Γενικού Λυκείου» των Σ. Ανδρεαδάκη, Β. Κατσαργύρη, Σ. Παπασταυρίδη, Γ. Πολύζου και Α. Σβέρκου, έκδοση Ο.Ε..Β. 2010. Β Τάξη Ηµερήσιου Γενικού Λυκείου Μ α θ ή µ α τ α Γ ε ν ι κ ή ς Π α ι δ ε ί α ς Άλγεβρα Γενικής Παιδείας I. ιδακτέα ύλη A) Από το βιβλίο «Άλγεβρα Α Γενικού Λυκείου» των Σ. Ανδρεαδάκη, Β. Κατσαργύρη, Σ.

Διαβάστε περισσότερα

Γεωμετρία, Αριθμοί και Μέτρηση Μαθαίνω Γεωμετρία και Μετρώ Παίζω με τους αριθμούς Βρίσκω τα πολλαπλάσια

Γεωμετρία, Αριθμοί και Μέτρηση Μαθαίνω Γεωμετρία και Μετρώ Παίζω με τους αριθμούς Βρίσκω τα πολλαπλάσια Γεωμετρία, Αριθμοί και Μέτρηση Μαθαίνω Γεωμετρία και Μετρώ Παίζω με τους αριθμούς Βρίσκω τα πολλαπλάσια Οδηγίες Εγκατάστασης & Εγχειρίδιο Χρήσης Πίνακας περιεχομένων 1. Εισαγωγή... 3 2. Οδηγίες εγκατάστασης...

Διαβάστε περισσότερα

ΠΑΥΛΙΔΟΥ ΣΟΦΙΑ,ΔΑΣΚΑΛΑ

ΠΑΥΛΙΔΟΥ ΣΟΦΙΑ,ΔΑΣΚΑΛΑ , ΣΧΟΛΕΙΟ 1,2014-2015 1. Στόχος του προγράμματος είναι η βελτίωση του τρόπου ζωής παιδιών και γονέων. Αυτό μπορεί να επιτευχθεί με την υιοθέτηση σωστών διατροφικών συνηθειών και με την αύξηση της φυσικής

Διαβάστε περισσότερα

ΠΑΥΛΙΔΟΥ ΣΟΦΙΑ,ΔΑΣΚΑΛΑ

ΠΑΥΛΙΔΟΥ ΣΟΦΙΑ,ΔΑΣΚΑΛΑ , ΣΧΟΛΕΙΟ 1,2014-2015 1. Στόχος του προγράμματος είναι η βελτίωση του τρόπου ζωής παιδιών και γονέων. Αυτό μπορεί να επιτευχθεί με την υιοθέτηση σωστών διατροφικών συνηθειών και με την αύξηση της φυσικής

Διαβάστε περισσότερα

Περιοχή εργασίας. Τμ. Γραφιστικής (Γραφιστική με Η/Υ - In Design) 2

Περιοχή εργασίας. Τμ. Γραφιστικής (Γραφιστική με Η/Υ - In Design) 2 Περιοχή εργασίας A. Παράθυρο εγγράφου B. Συγκέντρωση πινάκων συμπτυγμένων σε εικονίδια Γ. Γραμμή τίτλου πίνακα Δ. Γραμμή μενού E. Γραμμή επιλογών Στ. Παλέτα εργαλείων Ζ. Κουμπί σύμπτυξης σε εικονίδια Η.

Διαβάστε περισσότερα

ΠΛΑΙΣΙΟ ΠΡΟΓΡΑΜΜΑΤΩΝ ΣΠΟΥΔΩΝ (ΠΣ) Χρίστος Δούκας Αντιπρόεδρος του ΠΙ

ΠΛΑΙΣΙΟ ΠΡΟΓΡΑΜΜΑΤΩΝ ΣΠΟΥΔΩΝ (ΠΣ) Χρίστος Δούκας Αντιπρόεδρος του ΠΙ ΠΛΑΙΣΙΟ ΠΡΟΓΡΑΜΜΑΤΩΝ ΣΠΟΥΔΩΝ (ΠΣ) Χρίστος Δούκας Αντιπρόεδρος του ΠΙ Οι Δ/τές ως προωθητές αλλαγών με κέντρο τη μάθηση Χαράσσουν τις κατευθύνσεις Σχεδιάσουν την εφαρμογή στη σχολική πραγματικότητα Αναπτύσσουν

Διαβάστε περισσότερα

Μία σύντομη εισαγωγή στην Τριγωνομετρία με Ενδεικτικές Ασκήσεις

Μία σύντομη εισαγωγή στην Τριγωνομετρία με Ενδεικτικές Ασκήσεις Μία σύντομη εισαγωγή στην Τριγωνομετρία με Ενδεικτικές Ασκήσεις. Ονομασίες Ορισμοί Ο τριγωνομετρικός κύκλος έχει ακτίνα R. Αρχή μέτρησης των τόξων (γωνιών) είναι το Α, είτε κατά τη θετική φορά (αριστερόστροφα)

Διαβάστε περισσότερα

ΥΠΕΥΘΥΝΗ ΑΠΟΣΠΑΣΜΕΝΗ: ΚΑΠΠΑΤΟΥ ΝΑΤΑΣΑ

ΥΠΕΥΘΥΝΗ ΑΠΟΣΠΑΣΜΕΝΗ: ΚΑΠΠΑΤΟΥ ΝΑΤΑΣΑ ΟΝΟΜΑΤΕΠΩΝΥΜΟ:ΙΜΣΙΡΙΔΟΥ ΜΑΡΙΑ Α.Ε.Μ: 1986 ΕΞΑΜΗΝΟ: Ε ΘΕΜΑ: «ΣΤΑΤΙΣΤΙΚΗ-ΜΕΣΟΣ ΟΡΟΣ» ΣΧΟΛΕΙΟ: 1 Ο ΠΕΙΡΑΜΑΤΙΚΟ ΔΗΜΟΤΙΚΟ ΣΧΟΛΕΙΟ ΦΛΩΡΙΝΑΣ ΤΑΞΗ: Ε ΤΜΗΜΑ: Ε 2 ΥΠΕΥΘΥΝΟΣ ΚΑΘΗΓΗΤΗΣ: ΛΕΜΟΝΙΔΗΣ ΧΑΡΑΛΑΜΠΟΣ ΥΠΕΥΘΥΝΗ

Διαβάστε περισσότερα

SMART Notebook 11.1 Math Tools

SMART Notebook 11.1 Math Tools SMART Ntebk 11.1 Math Tls Λειτουργικά συστήματα Windws Οδηγός χρήστη Δήλωση προϊόντος Αν δηλώσετε το προϊόν SMART, θα σας ειδοποιήσουμε για νέα χαρακτηριστικά και αναβαθμίσεις λογισμικού. Κάντε τη δήλωση

Διαβάστε περισσότερα

ΠΕΡΙΕΧΟΜΕΝΑ... 2 ΠΡΟΛΟΓΟΣ... 3 ΕΙΣΑΓΩΓΗ... 4 ΤΑ ΚΟΥΜΠΙΑ ΚΑΙ ΤΑ ΜΠΛΟΚ... 6 ΧΡΗΣΙΜΟΠΟΙΩΝΤΑΣ ΤΟΥΣ ΚΙΝΗΤΗΡΕΣ... 9 ΚΙΝΗΣΕΙΣ ΚΙΝΗΤΗΡΑ...

ΠΕΡΙΕΧΟΜΕΝΑ... 2 ΠΡΟΛΟΓΟΣ... 3 ΕΙΣΑΓΩΓΗ... 4 ΤΑ ΚΟΥΜΠΙΑ ΚΑΙ ΤΑ ΜΠΛΟΚ... 6 ΧΡΗΣΙΜΟΠΟΙΩΝΤΑΣ ΤΟΥΣ ΚΙΝΗΤΗΡΕΣ... 9 ΚΙΝΗΣΕΙΣ ΚΙΝΗΤΗΡΑ... ΒΑΣΙΚΑ ΜΑΘΗΜΑΤΑ ΠΕΡΙΕΧΟΜΕΝΑ ΠΕΡΙΕΧΟΜΕΝΑ... 2 ΠΡΟΛΟΓΟΣ... 3 ΕΙΣΑΓΩΓΗ... 4 Η ΑΝΑΠΤΥΞΗ ΤΗΣ ΟΘΟΝΗΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΥ... 4 Ο ΕΚΠΑΙΔΕΥΤΗΣ ΡΟΜΠΟΤ... 5 ΤΟ ΠΑΡΑΘΥΡΟ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΥ... 5 ΤΑ ΚΟΥΜΠΙΑ ΚΑΙ ΤΑ ΜΠΛΟΚ...

Διαβάστε περισσότερα

Η ΔΙΔΑΣΚΑΛΙΑ ΤΗΣ ΦΥΣΙΚΗΣ ΜΕ ΤΗ ΒΟΗΘΕΙΑ ΤΟΥ ΗΛΕΚΤΡΟΝΙΚΟΥ ΥΠΟΛΟΓΙΣΤΗ. Καραβελάκη Μαρία, Παπαναγιώτου Γιώργος, Γρηγοριάδης Στάθης

Η ΔΙΔΑΣΚΑΛΙΑ ΤΗΣ ΦΥΣΙΚΗΣ ΜΕ ΤΗ ΒΟΗΘΕΙΑ ΤΟΥ ΗΛΕΚΤΡΟΝΙΚΟΥ ΥΠΟΛΟΓΙΣΤΗ. Καραβελάκη Μαρία, Παπαναγιώτου Γιώργος, Γρηγοριάδης Στάθης Η ΔΙΔΑΣΚΑΛΙΑ ΤΗΣ ΦΥΣΙΚΗΣ ΜΕ ΤΗ ΒΟΗΘΕΙΑ ΤΟΥ ΗΛΕΚΤΡΟΝΙΚΟΥ ΥΠΟΛΟΓΙΣΤΗ Καραβελάκη Μαρία, Παπαναγιώτου Γιώργος, Γρηγοριάδης Στάθης ΕΙΣΑΓΩΓΗ Η ραγδαία και συνεχής εξέλιξη των υπολογιστών και της πληροφορικής

Διαβάστε περισσότερα

Η διδασκαλία της φυσικής με τη βοήθεια προσομοιώσεων

Η διδασκαλία της φυσικής με τη βοήθεια προσομοιώσεων Η διδασκαλία της φυσικής με τη βοήθεια προσομοιώσεων Ζαφειριάδης Φώτιος Καθηγητής Φυσικής, Γενικό Λύκειο Σκουτάρεως του Ν. Σερρών fotiszaf@sch.gr ΠΕΡΙΛΗΨΗ Η φυσική είναι ένα μάθημα που στηρίζεται στην

Διαβάστε περισσότερα

ΣΥΣΤΗΜΑΤΑ. 6.1 ΓΡΑΜΜΙΚΑ ΣΥΣΤΗΜΑΤΑ (Επαναλήψεις-Συμπληρώσεις)

ΣΥΣΤΗΜΑΤΑ. 6.1 ΓΡΑΜΜΙΚΑ ΣΥΣΤΗΜΑΤΑ (Επαναλήψεις-Συμπληρώσεις) 6 ΣΥΣΤΗΜΑΤΑ 6.1 ΓΡΑΜΜΙΚΑ ΣΥΣΤΗΜΑΤΑ (Επαναλήψεις-Συμπληρώσεις) Η εξίσωση αx βy γ Στο Γυμνάσιο διαπιστώσαμε με την βοήθεια παραδειγμάτων ότι η εξίσωση αx βy γ, με α 0 ή β 0, που λέγεται γραμμική εξίσωση,

Διαβάστε περισσότερα

Κεφάλαιο 4: Διαφορικός Λογισμός

Κεφάλαιο 4: Διαφορικός Λογισμός ΣΥΓΧΡΟΝΗ ΠΑΙΔΕΙΑ ΦΡΟΝΤΙΣΤΗΡΙΟ ΜΕΣΗΣ ΕΚΠΑΙΔΕΥΣΗΣ Κεφάλαιο 4: Διαφορικός Λογισμός Μονοτονία Συνάρτησης Tζουβάλης Αθανάσιος Κεφάλαιο 4: Διαφορικός Λογισμός Περιεχόμενα Μονοτονία συνάρτησης... Λυμένα παραδείγματα...

Διαβάστε περισσότερα

Τίτλος διδακτικού σεναρίου: Ας ταξιδέψουμε στο βουνό των 12 θεών του Ολύμπου κι ας τους γνωρίσουμε από κοντά.

Τίτλος διδακτικού σεναρίου: Ας ταξιδέψουμε στο βουνό των 12 θεών του Ολύμπου κι ας τους γνωρίσουμε από κοντά. ΕΚΠΑΙΔΕΥΤΙΚΟ ΣΕΝΑΡΙΟ ΣΥΝΟΠΤΙΚΗ ΠΑΡΟΥΣΙΑΣΗ ΤΟΥ ΣΕΝΑΡΙΟΥ Τίτλος διδακτικού σεναρίου: Ας ταξιδέψουμε στο βουνό των 12 θεών του Ολύμπου κι ας τους γνωρίσουμε από κοντά. Τάξη/εις στις οποίες απευθύνεται: Το

Διαβάστε περισσότερα

Βασικές Αρχές Ψηφιακής Τεχνολογίας: Πρακτικές ιδέες για τη διδασκαλία ενός θεωρητικού μαθήματος

Βασικές Αρχές Ψηφιακής Τεχνολογίας: Πρακτικές ιδέες για τη διδασκαλία ενός θεωρητικού μαθήματος Βασικές Αρχές Ψηφιακής Τεχνολογίας: Πρακτικές ιδέες για τη διδασκαλία ενός θεωρητικού μαθήματος Πάσχου Αικατερίνη 1 katpas@sch.gr 1 Εκπαιδευτικός Πληροφορικής, 2 ο ΕΠΑ.Λ. Καρδίτσας Περίληψη Το μάθημα Βασικές

Διαβάστε περισσότερα

ΠΡΑΚΤΙΚΗ ΑΣΚΗΣΗ ΜΑΘΗΜΑΤΙΚΩΝ Β ΦΑΣΗ

ΠΡΑΚΤΙΚΗ ΑΣΚΗΣΗ ΜΑΘΗΜΑΤΙΚΩΝ Β ΦΑΣΗ ΠΑΝΕΠΙΣΤΗΜΙΟ ΔΥΤΙΚΗΣ ΜΑΚΕΔΟΝΙΑΣ ΠΑΙΔΑΓΩΓΙΚΗ ΣΧΟΛΗ ΔΗΜΟΤΙΚΗΣ ΕΚΠΑΙΔΕΥΣΗΣ ΥΠΕΥΘΥΝΟΣ ΚΑΘΗΓΗΤΗΣ : ΛΕΜΟΝΙΔΗΣ ΧΑΡΑΛΑΜΠΟΣ ΑΠΟΣΠΑΣΜΕΝΗ ΕΚΠΑΙΔΕΥΤΙΚΟΣ : ΚΑΠΠΑΤΟΥ ΝΑΤΑΣΣΑ ΠΡΑΚΤΙΚΗ ΑΣΚΗΣΗ ΜΑΘΗΜΑΤΙΚΩΝ Β ΦΑΣΗ ΘΕΜΑ ΔΙΔΑΣΚΑΛΙΑΣ:

Διαβάστε περισσότερα

(c) EΠΑΦΟΣ ΑΘΗΝΑ Νοέµβριος 2013 Απαγορεύεται η αντιγραφή του παρόντος χωρίς την έγγραφη άδεια της ΕΠΑΦΟΣ ΕΠΕ.

(c) EΠΑΦΟΣ ΑΘΗΝΑ Νοέµβριος 2013 Απαγορεύεται η αντιγραφή του παρόντος χωρίς την έγγραφη άδεια της ΕΠΑΦΟΣ ΕΠΕ. (c) EΠΑΦΟΣ ΑΘΗΝΑ Νοέµβριος 2013 Απαγορεύεται η αντιγραφή του παρόντος χωρίς την έγγραφη άδεια της ΕΠΑΦΟΣ ΕΠΕ. 2 4teachers Γρήγορος οδηγός χρήσης (Βασικά βήματα) Για να αρχίσεις κι εσύ να χρησιμοποιείς

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ

ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ 00 ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ ΘΕΜΑ Α A. Έστω μια συνάρτηση ορισμένη σε ένα διάστημα. Αν F είναι μια παράγουσα της στο, τότε να αποδείξετε ότι:

Διαβάστε περισσότερα

Κεφάλαιο 1.Εντολές κίνησης

Κεφάλαιο 1.Εντολές κίνησης Προγραμματίζω με το ΒΥΟΒ 1 Κεφάλαιο 1.Εντολές κίνησης Από το μάθημα της Φυσικής γνωρίζουμε ότι κίνηση σημαίνει αλλαγή της θέσης ενός αντικειμένου. Οι εντολές κίνησης που μας παρέχει το ΒΥΟΒ χωρίζονται

Διαβάστε περισσότερα

ΕΚΦΩΝΗΣΗ ΕΛΕΥΘΕΡΟΥ ΘΕΜΑΤΟΣ (µεγάλες τάξεις ηµοτικού) Σχεδιασµός σεναρίου µε θέµα «Αγωγοί και µονωτές» µε τη χρήση λογισµικών γενικής χρήσης, οπτικοποίησης, διαδικτύου και λογισµικών εννοιολογικής χαρτογράφησης.

Διαβάστε περισσότερα

ΕΥΡΩΠΑΪΚΗ ΕΝΩΣΗ ΕΥΡΩΠΑΪΚΟ ΚΟΙΝΩΝΙΚΟ ΤΑΜΕΙΟ ΚΥΠΡΙΑΚΗ ΔΗΜΟΚΡΑΤΙΑ ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ ΚΑΙ ΠΟΛΙΤΙΣΜΟΥ

ΕΥΡΩΠΑΪΚΗ ΕΝΩΣΗ ΕΥΡΩΠΑΪΚΟ ΚΟΙΝΩΝΙΚΟ ΤΑΜΕΙΟ ΚΥΠΡΙΑΚΗ ΔΗΜΟΚΡΑΤΙΑ ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ ΚΑΙ ΠΟΛΙΤΙΣΜΟΥ ΕΥΡΩΠΑΪΚΗ ΕΝΩΣΗ ΕΥΡΩΠΑΪΚΟ ΚΟΙΝΩΝΙΚΟ ΤΑΜΕΙΟ ΚΥΠΡΙΑΚΗ ΔΗΜΟΚΡΑΤΙΑ ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ ΚΑΙ ΠΟΛΙΤΙΣΜΟΥ Σχολείο: ΛΥΚΕΙΟ ΑΓΙΟΥ ΙΩΑΝΝΗ, ΛΕΜΕΣΟΣ Τάξη: Α ΛΥΚΕΙΟΥ Μάθημα: ΙΣΤΟΡΙΑ Θέμα: ΙΣΤΟΡΙΑ ΤΗΣ ΚΥΠΡΟΥ, ενότητα

Διαβάστε περισσότερα

ΟΜΑΔΑ ΑΝΑΠΤΥΞΗΣ ΣΧΟΛΕΙΟ

ΟΜΑΔΑ ΑΝΑΠΤΥΞΗΣ ΣΧΟΛΕΙΟ ΟΜΑΔΑ ΑΝΑΠΤΥΞΗΣ ΖΕΡΒΟΥ ΚΥΡΙΑΚΗ, ΔΑΣΚΑΛΑ ΣΧΟΛΕΙΟ Δ.Σ. ΦΛΟΓΗΤΩΝ/Ν.ΠΛΑΓΙΩΝ ΦΛΟΓΗΤΑ, 2015 1. Συνοπτική περιγραφή της ανοιχτής εκπαιδευτικής πρακτικής Οι μαθητές μας αποτελώντας το μέλλον έχουν κάθε λόγο να

Διαβάστε περισσότερα