Χημικές Διεργασίες: Χημική Ισορροπία η σύνδεση με τη Θερμοδυναμική

Save this PDF as:
 WORD  PNG  TXT  JPG

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "Χημικές Διεργασίες: Χημική Ισορροπία η σύνδεση με τη Θερμοδυναμική"

Transcript

1 : Χημική Ισορροπία η σύνδεση με τη Θερμοδυναμική

2 Η Θερμοδυναμική σε μία τάξη Θεμελιώδης συνάρτηση: F(U, S, V) = 0 Ενέργεια, ικανότητα παραγωγής έργου Εντροπία, μη ικανότητα παραγωγής έργου, μη διαθεσιμότητα Όγκος του συστήματος γενικά, άγνωστη, εξαρτώμενη από το σύστημα.

3 Η Θερμοδυναμική σε μία τάξη Θεμελιώδης συνάρτηση: F(U, S, V) = 0 Ενεργειακή απεικόνιση: U = F U (S, V) ή απλά, U = U(S, V) Εντροπική απεικόνιση: S = F S (U, V) ή απλά, S = S(U, V) Θερμοδυναμικά δυναμικά : συναρτήσεις μόνο αρχικής και τελικής κατάστασης (όχι... του δρόμου) Η μία αντίστροφη της άλλης: S τείνει να αυξηθεί U τείνει να ελαττωθεί Σε Ισορροπία:: U = min (ή du = 0) S = max (και πάλι, ds = 0) Προσθέστε ένα αξίωμα διατήρησης (βλ. πρώτος νόμος) και... τέλος!

4 Η Θερμοδυναμική σε μία τάξη Θεμελιώδης συνάρτηση: F(U, S, V) = 0 Ενεργειακή απεικόνιση: U = F U (S, V) ή απλά, U = U(S, V) Εντροπική απεικόνιση: S = F S (U, V) ή απλά, S = S(U, V) Δε βολεύουν!!! S μη μετρήσιμη U συσχετίζεται με Q, W δεδομένων των συνθηκών (Ρ, Τ) V μετρήσιμος αλλά συνήθως θέλουμε V(Ρ, Τ). Πρόβλημα: μετασχηματισμός σε απεικόνιση με ίδια πληροφορία ίδιες ιδιότητες (ακρότατα στην ισορροπία) συνάρτηση μόνο αρχικής και τελικής κατάστασης συνάρτηση εύκολα μετρήσιμων μεγεθών Λύση: Μετασχηματισμός Legendre

5 Από γνωστές σχέσεις Μετασχηματισμός Legendre du =TdS pdv, T = U S V η ιδέα της παραγώγου., p= U V S Πρώτο βήμα: σε κάθε σημείο της y = f(x) df/dx x (κλίση) Αλλά, άπειρες ευθείες // στην κλίση. Λείπει κάτι... Δεύτερο βήμα: τομή με κατακόρυφο άξονα y. Μία για κάθε (x, f(x))!

6 Μετασχηματισμός Legendre Αν s = f '(x) y = f(x) τότε Ψ + f(x) = sx f(x) Αν φ(x) = f ' (x) τότε x = φ -1 (s) y = f '(x) x Ψ x Ψ Μετασχηματισμός: Ψ(s) = sx f(x) ή ακριβέστερα: Ψ(s) = sx(s) f(x(s)) Σημείωση: συνήθως x, s > 0 αλλά ο μετασχηματισμός γενικεύεται για όλα

7 Από γνωστές σχέσεις Μετασχηματισμός Legendre du =TdS pdv, T = U S V η ιδέα της παραγώγου., p= U V S Πρώτο βήμα: σε κάθε σημείο της y = f(x) df/dx x (κλίση) Αλλά, άπειρες ευθείες // στην κλίση. Λείπει κάτι... Δεύτερο βήμα: τομή με κατακόρυφο άξονα y. Μία για κάθε (x, f(x))! Αυτό είναι! Ψ(s) + f(x) = sx Από εδώ οι μετασχηματισμοί της ενεργειακής απεικόνισης: H = U + pv F = U TS G = U + pv TS (μερικά πρόσημα έχουν επικρατήσει παραδοσιακά αντίθετα) Ανάλογα και για εντροπική απεικόνιση (ελεύθερη εντροπία Massieu, Planck κλπ) αλλά όχι συχνά χρησιμοποιούμενα.

8 Μετασχηματισμός Legendre Ιδιότητες: Αμοιβαίος μετασχηματισμός: αν Ψ = L(f) => f = L(Ψ) Στο ελάχιστο x min της f, είναι m = df/dx = 0, άρα Ψ(0) = -f(x min ) που είναι και αυτό ελάχιστο. Συμπεράσματα: Άρα, U, H, F, G ουσιαστικά το ίδιο = ενέργειες Για ισορροπία: τείνουν στο ελάχιστο. Όλα: S, U, H, F, G = θερμοδυναμικά δυναμικά Εξαρτώνται από αρχική και τελική κατάσταση (εκφρασμένων βάσει αντίστοιχων μεταβλητών). Άσχετο αλλά καλό: όλες οι εξισώσεις Maxwell = εξίσωση μικτών παραγώγων δεύτερης τάξης ενός θ.δ. + διάφοροι ορισμοί βάσει πρώτωνπαραγώγων

9 Χημική Θερμοδυναμική Τώρα, προσθέτουμε συστατικά: F(U, S, V, Ν 1, Ν 2,... Ν c ) = 0 Διαφορικό της εντροπίας: ds= du T pdv T i dn i S n i Ορισμός χημικού δυναμικού: άρα: i = T S n i U,V, n j j du =TdS pdv 1 dn 1 2 dn 2... και μπορούμε να γράψουμε: i = U n S,V, n j i i Παρόμοια και με Η, F, G!!! Φυσική σημασία: έργο για προσθήκη ή αφαίρεση μορίων ή moles

10 Χημική Θερμοδυναμική Χημικές αντιδράσεις: αα + ββ +... κκ + λλ +... Παρόμοια: ελαχιστοποίηση ενεργειακών θ.δ., μεγιστοποίηση εντροπικών. Στο διαφορικό κάθε θ.δ. προστίθεται (επί -1/Τ για εντροπία) Ισορροπία: i i dn i dφ = 0 όπου Φοποιοδήποτε θ.δ. Για απειροστή μεταβολή σύστασης (υπό σταθερές συνθήκες) => i i dn i =0

ΘΕΡΜΟΔΥΝΑΜΙΚΗ Ι. Ενότητα 6: Εντροπία. Σογομών Μπογοσιάν Πολυτεχνική Σχολή Τμήμα Χημικών Μηχανικών

ΘΕΡΜΟΔΥΝΑΜΙΚΗ Ι. Ενότητα 6: Εντροπία. Σογομών Μπογοσιάν Πολυτεχνική Σχολή Τμήμα Χημικών Μηχανικών ΘΕΡΜΟΔΥΝΑΜΙΚΗ Ι Ενότητα 6: Εντροπία Σογομών Μπογοσιάν Πολυτεχνική Σχολή Τμήμα Χημικών Μηχανικών Σκοποί ενότητας Σκοπός της ενότητας αυτής είναι η περιγραφή των ορισμών και των θεμελιωδών εννοιών και η

Διαβάστε περισσότερα

ΚΛΑΣΙΚΗ ΘΕΡΜΟ ΥΝΑΜΙΚΗ ΜΑΘΗΜΑ-IV ΘΕΡΜΟ ΥΝΑΜΙΚΑ ΥΝΑΜΙΚΑ - ΙΣΟΡΡΟΠΙΑ ΦΑΣΕΩΝ

ΚΛΑΣΙΚΗ ΘΕΡΜΟ ΥΝΑΜΙΚΗ ΜΑΘΗΜΑ-IV ΘΕΡΜΟ ΥΝΑΜΙΚΑ ΥΝΑΜΙΚΑ - ΙΣΟΡΡΟΠΙΑ ΦΑΣΕΩΝ ΚΛΑΣΙΚΗ ΘΕΡΜΟ ΥΝΑΜΙΚΗ ΜΑΘΗΜΑ-IV ΘΕΡΜΟ ΥΝΑΜΙΚΑ ΥΝΑΜΙΚΑ - ΙΣΟΡΡΟΠΙΑ ΦΑΣΕΩΝ Σταύρος Κ. Φαράντος Τµήµα Χηµείας, Πανεπιστήµιο Κρήτης, και Ινστιτούτο Ηλεκτρονικής οµής και Λέιζερ, Ιδρυµα Τεχνολογίας και Ερευνας,

Διαβάστε περισσότερα

ΚΛΑΣΙΚΗ ΘΕΡΜΟ ΥΝΑΜΙΚΗ ΕΝΟΤΗΤΑ-3 ΘΕΡΜΟ ΥΝΑΜΙΚΑ ΥΝΑΜΙΚΑ - ΙΣΟΡΡΟΠΙΑ ΦΑΣΕΩΝ

ΚΛΑΣΙΚΗ ΘΕΡΜΟ ΥΝΑΜΙΚΗ ΕΝΟΤΗΤΑ-3 ΘΕΡΜΟ ΥΝΑΜΙΚΑ ΥΝΑΜΙΚΑ - ΙΣΟΡΡΟΠΙΑ ΦΑΣΕΩΝ ΚΛΑΣΙΚΗ ΘΕΡΜΟ ΥΝΑΜΙΚΗ ΕΝΟΤΗΤΑ-3 ΘΕΡΜΟ ΥΝΑΜΙΚΑ ΥΝΑΜΙΚΑ - ΙΣΟΡΡΟΠΙΑ ΦΑΣΕΩΝ Σταύρος Κ. Φαράντος Τµήµα Χηµείας, Πανεπιστήµιο Κρήτης, και Ινστιτούτο Ηλεκτρονικής οµής και Λέιζερ, Ιδρυµα Τεχνολογίας και Ερευνας,

Διαβάστε περισσότερα

3 ος ΘΕΜΟΔΥΝΑΜΙΚΟΣ ΝΟΜΟΣ- ΘΕΡΜΟΔΥΝΑΜΙΚΑ ΔΥΝΑΜΙΚΑ ΘΕΩΡΙΑ

3 ος ΘΕΜΟΔΥΝΑΜΙΚΟΣ ΝΟΜΟΣ- ΘΕΡΜΟΔΥΝΑΜΙΚΑ ΔΥΝΑΜΙΚΑ ΘΕΩΡΙΑ ΦΡΟΝΤΙΣΤΗΡΙΑΚΑ ΜΑΘΗΜΑΤΑ ΦΥΣΙΚΗΣ Π.Φ. ΜΟΙΡΑ 6932 946778 3 ος ΘΕΜΟΔΥΝΑΜΙΚΟΣ ΝΟΜΟΣ- ΘΕΡΜΟΔΥΝΑΜΙΚΑ ΔΥΝΑΜΙΚΑ ΘΕΩΡΙΑ Περιεχόμενα 1. Ο τρίτος θερμοδυναμικός Νόμος 2. Συστήματα με αρνητικές θερμοκρασίες 3. Θερμοδυναμικά

Διαβάστε περισσότερα

ΚΛΑΣΙΚΗ ΘΕΡΜΟ ΥΝΑΜΙΚΗ ΜΑΘΗΜΑ-ΙΙΙ ΤΑ ΘΕΡΜΟ ΥΝΑΜΙΚΑ ΑΞΙΩΜΑΤ

ΚΛΑΣΙΚΗ ΘΕΡΜΟ ΥΝΑΜΙΚΗ ΜΑΘΗΜΑ-ΙΙΙ ΤΑ ΘΕΡΜΟ ΥΝΑΜΙΚΑ ΑΞΙΩΜΑΤ ΚΛΑΣΙΚΗ ΘΕΡΜΟ ΥΝΑΜΙΚΗ ΜΑΘΗΜΑ-ΙΙΙ ΤΑ ΘΕΡΜΟ ΥΝΑΜΙΚΑ ΑΞΙΩΜΑΤΑ Τµήµα Χηµείας, Πανεπιστήµιο Κρήτης, και Ινστιτούτο Ηλεκτρονικής οµής και Λέιζερ, Ιδρυµα Τεχνολογίας και Ερευνας, Ηράκλειο, Κρήτη http://tccc.iesl.forth.gr/education/local.html

Διαβάστε περισσότερα

ΚΛΑΣΙΚΗ ΘΕΡΜΟ ΥΝΑΜΙΚΗ ΕΝΟΤΗΤΑ-1 ΟΡΙΣΜΟΙ

ΚΛΑΣΙΚΗ ΘΕΡΜΟ ΥΝΑΜΙΚΗ ΕΝΟΤΗΤΑ-1 ΟΡΙΣΜΟΙ ΚΛΑΣΙΚΗ ΘΕΡΜΟ ΥΝΑΜΙΚΗ ΕΝΟΤΗΤΑ-1 ΟΡΙΣΜΟΙ Σταύρος Κ. Φαράντος Τµήµα Χηµείας, Πανεπιστήµιο Κρήτης, και Ινστιτούτο Ηλεκτρονικής οµής και Λέιζερ, Ιδρυµα Τεχνολογίας και Ερευνας, Ηράκλειο, Κρήτη http://tccc.iesl.forth.gr/education/local.html

Διαβάστε περισσότερα

2 ος ΘΕΡΜΟΔΥΝΑΜΙΚΟΣ ΝΟΜΟΣ - ΕNTΡΟΠΙΑ ΘΕΩΡΙΑ & ΑΣΚΗΣΕΙΣ

2 ος ΘΕΡΜΟΔΥΝΑΜΙΚΟΣ ΝΟΜΟΣ - ΕNTΡΟΠΙΑ ΘΕΩΡΙΑ & ΑΣΚΗΣΕΙΣ ΦΡΟΝΤΙΣΤΗΡΙΑΚΑ ΜΑΘΗΜΑΤΑ ΦΥΣΙΚΗΣ Π.Φ. ΜΟΙΡΑ 693 946778 ος ΘΕΡΜΟΔΥΝΑΜΙΚΟΣ ΝΟΜΟΣ - ΕNΡΟΠΙΑ ΘΕΩΡΙΑ & ΑΣΚΗΣΕΙΣ Περιεχόμενα. O ος Θερμοδυναμικός Νόμος. Η Εντροπία 3. Εντροπία και αταξία 4. Υπολογισμός Εντροπίας

Διαβάστε περισσότερα

ΑΝΩΤΕΡΗ ΘΕΡΜΟΔΥΝΑΜΙΚΗ ΘΕΡΜΟΔΥΝΑΜΙΚΕΣ ΣΧΕΣΕΙΣ

ΑΝΩΤΕΡΗ ΘΕΡΜΟΔΥΝΑΜΙΚΗ ΘΕΡΜΟΔΥΝΑΜΙΚΕΣ ΣΧΕΣΕΙΣ ΑΝΩΤΕΡΗ ΘΕΡΜΟΔΥΝΑΜΙΚΗ ΘΕΡΜΟΔΥΝΑΜΙΚΕΣ ΣΧΕΣΕΙΣ Η ΚΑΤΑΣΤΑΤΙΚΗ ΕΞΙΣΩΣΗ ΣΤΟ ΠΡΟΗΓΟΥΜΕΝΟ ΜΑΘΗΜΑ ΑΝΑΦΕΡΘΗΚΑΜΕ ΣΤΙΣ ΚΑΤΑΣΤΑΤΙΚΕΣ ΕΞΙΣΩΣΕΙΣ ΤΗΣ ΜΟΡΦΗΣ f(p,v,t)=0 ΠΟΥ ΧΡΗΣΙΜΟΠΟΙΟΥΝΤΑΙ ΓΙΑ ΝΑ ΣΥΝΔΕΟΥΝ ΤΗΝ ΠΙΕΣΗ,

Διαβάστε περισσότερα

ΚΛΑΣΙΚΗ ΘΕΡΜΟ ΥΝΑΜΙΚΗ ΜΑΘΗΜΑ-V ΑΣΚΗΣΗ Α2 - JOULE-THOMSON

ΚΛΑΣΙΚΗ ΘΕΡΜΟ ΥΝΑΜΙΚΗ ΜΑΘΗΜΑ-V ΑΣΚΗΣΗ Α2 - JOULE-THOMSON ΚΛΑΣΙΚΗ ΘΕΡΜΟ ΥΝΑΜΙΚΗ ΜΑΘΗΜΑ-V ΑΣΚΗΣΗ Α2 - JOULE-THOMSON Τµήµα Χηµείας, Πανεπιστήµιο Κρήτης, και Ινστιτούτο Ηλεκτρονικής οµής και Λέιζερ, Ιδρυµα Τεχνολογίας και Ερευνας, Ηράκλειο, Κρήτη http://tccc.iesl.forth.gr/education/local.html

Διαβάστε περισσότερα

ΚΛΑΣΙΚΗ (ΧΗΜΙΚΗ) ΘΕΡΜΟ ΥΝΑΜΙΚΗ

ΚΛΑΣΙΚΗ (ΧΗΜΙΚΗ) ΘΕΡΜΟ ΥΝΑΜΙΚΗ ΚΛΑΣΙΚΗ (ΧΗΜΙΚΗ) ΘΕΡΜΟ ΥΝΑΜΙΚΗ Σταύρος Κ. Φαράντος Τµήµα Χηµείας, Πανεπιστήµιο Κρήτης, και Ινστιτούτο Ηλεκτρονικής οµής και Λέιζερ, Ιδρυµα Τεχνολογίας και Ερευνας, Ηράκλειο, Κρήτη http://tccc.iesl.forth.gr/education/local.html

Διαβάστε περισσότερα

Εφαρμοσμένη Θερμοδυναμική: Εξετάζει σχέσεις θερμότητας, μηχανικού έργου και ιδιοτήτων των διαφόρων θερμοδυναμικών

Εφαρμοσμένη Θερμοδυναμική: Εξετάζει σχέσεις θερμότητας, μηχανικού έργου και ιδιοτήτων των διαφόρων θερμοδυναμικών Στοιχεία Χημικής Θερμοδυναμικής Κλάδοι της Θερμοδυναμικής Θερμοδυναμική: Ο κλάδος της επιστήμης που μελετά τις μετατροπές ενέργειας. Στην πραγματικότητα μετρά μεταβολές ενέργειας. Μελετά τη σχέση μεταξύ

Διαβάστε περισσότερα

τριώνυμο Η εξίσωση δευτέρου βαθμού στην πλήρη της μορφή ονομάζεται τριώνυμο, γιατί αποτελείται από τρία μονώνυμα. Η γενική μορφή της είναι:

τριώνυμο Η εξίσωση δευτέρου βαθμού στην πλήρη της μορφή ονομάζεται τριώνυμο, γιατί αποτελείται από τρία μονώνυμα. Η γενική μορφή της είναι: κεφάλαιο 4 Α τριώνυμο επίλυση της εξίσωσης δευτέρου βαθμού Η εξίσωση δευτέρου βαθμού στην πλήρη της μορφή ονομάζεται τριώνυμο, γιατί αποτελείται από τρία μονώνυμα. Η γενική μορφή της είναι: αx + βx + γ

Διαβάστε περισσότερα

ΘΕΡΜΟΔΥΝΑΜΙΚΗ Ι. Ενότητα 4: Πρώτος Θερμοδυναμικός Νόμος. Σογομών Μπογοσιάν Πολυτεχνική Σχολή Τμήμα Χημικών Μηχανικών

ΘΕΡΜΟΔΥΝΑΜΙΚΗ Ι. Ενότητα 4: Πρώτος Θερμοδυναμικός Νόμος. Σογομών Μπογοσιάν Πολυτεχνική Σχολή Τμήμα Χημικών Μηχανικών ΘΕΡΜΟΔΥΝΑΜΙΚΗ Ι Ενότητα 4: Πρώτος Θερμοδυναμικός Νόμος Σογομών Μπογοσιάν Πολυτεχνική Σχολή Τμήμα Χημικών Μηχανικών Σκοποί ενότητας Σκοπός της ενότητας αυτής είναι η περιγραφή των ορισμών και των θεμελιωδών

Διαβάστε περισσότερα

f(x) = 2x+ 3 / Α f Α.

f(x) = 2x+ 3 / Α f Α. ΣΥΝΑΡΤΗΣΕΙΣ 8 ο ΜΑΘΗΜΑ.7. Σύνολο τιμών f(a) της f / A B Ορισμός: Το σύνολο τιμών της συνάρτησης f / Α Β περιλαμβάνει εκείνα τα y Β για τα οποία υπάρχει x Α : «Η εξίσωση y= f ( x) να έχει λύση ως προς x»

Διαβάστε περισσότερα

εύτερος Θερμοδυναμικός Νόμος Εντροπία ιαθέσιμη ενέργεια Εξέργεια

εύτερος Θερμοδυναμικός Νόμος Εντροπία ιαθέσιμη ενέργεια Εξέργεια εύτερος Θερμοδυναμικός Νόμος Εντροπία ιαθέσιμη ενέργεια Εξέργεια Χαρακτηριστικά Θερμοδυναμικών Νόμων 0 ος Νόμος Εισάγει την έννοια της θερμοκρασίας Αν Α Γ και Β Γ τότε Α Β, όπου : θερμική ισορροπία ος

Διαβάστε περισσότερα

du đ Q đw đ E m (1) και στον 2 ο Νόμο, (2) Συνήθως χρησιμοποιείται η γνωστή από τη Μηχανική

du đ Q đw đ E m (1) και στον 2 ο Νόμο, (2) Συνήθως χρησιμοποιείται η γνωστή από τη Μηχανική KΕΦΑΛΑΙΟ 3 Aπό τις διαλέξεις το τελευταίο μέρος της δίωρης της 17/10 (4 ο VIDEO) και όλη η διάλεξη της 18/10 (5 ο VIDEO) αφορούν στο τρίτο κεφάλαιο με περισσότερες λεπτομέρειες και διευκρινήσεις από τα

Διαβάστε περισσότερα

Στις εξισώσεις σχεδιασμού υπεισέρχεται ο ρυθμός της αντίδρασης. Επομένως, είναι βασικό να γνωρίζουμε την έκφραση που περιγράφει το ρυθμό.

Στις εξισώσεις σχεδιασμού υπεισέρχεται ο ρυθμός της αντίδρασης. Επομένως, είναι βασικό να γνωρίζουμε την έκφραση που περιγράφει το ρυθμό. Βασικές Εξισώσεις Σχεδιασμού (ΣΔΟΥΚΟΣ 2-, 2-) t = n i dn i V n i R και V = n i dn i t n i R Στις εξισώσεις σχεδιασμού υπεισέρχεται ο ρυθμός της αντίδρασης. Επομένως, είναι βασικό να γνωρίζουμε την έκφραση

Διαβάστε περισσότερα

Υπολογισμός & Πρόρρηση. Θερμοδυναμικών Ιδιοτήτων

Υπολογισμός & Πρόρρηση. Θερμοδυναμικών Ιδιοτήτων Υπολογισμός & Πρόρρηση Θερμοδυναμικών Ιδιοτήτων d du d Θερμοδυναμικές Ιδιότητες d dh d d d du d d dh U A H G d d da d d dg d du dq dq d / d du dq Θεμελιώδεις Συναρτήσεις περιέχουν όλες τις πληροφορίες

Διαβάστε περισσότερα

ΕΥΣΤΑΘΗΣ ΙΣΟΡΡΟΠΙΑ ΚΑΙ ΕΛΑΧΙΣΤΟΠΟΙΗΣΗ ΤΗΣ (ΕΛΕΥΘΕΡΗΣ) ΕΝΕΡΓΕΙΑΣ

ΕΥΣΤΑΘΗΣ ΙΣΟΡΡΟΠΙΑ ΚΑΙ ΕΛΑΧΙΣΤΟΠΟΙΗΣΗ ΤΗΣ (ΕΛΕΥΘΕΡΗΣ) ΕΝΕΡΓΕΙΑΣ 43 ΚΕΦΑΛΑΙΟ 3 ΕΥΣΤΑΘΗΣ ΙΣΟΡΡΟΠΙΑ ΚΑΙ ΕΛΑΧΙΣΤΟΠΟΙΗΣΗ ΤΗΣ (ΕΛΕΥΘΕΡΗΣ) ΕΝΕΡΓΕΙΑΣ Στο ανώτατο βάθρο των φυσικών εννοιών και νόμων διεκδικεί ασφαλώς μια θέση και η ακόλουθη βασική αρχή. Οι ευσταθείς δομές της

Διαβάστε περισσότερα

ΦΥΣ Διαλ Σήμερα...? q Λογισμό μεταβολών (calculus of variations)

ΦΥΣ Διαλ Σήμερα...? q Λογισμό μεταβολών (calculus of variations) ΦΥΣ 11 - Διαλ.09 1 Σήμερα...? q Λογισμό μεταβολών (calculus of variations) Λογισμός μεταβολών - εισαγωγικά ΦΥΣ 11 - Διαλ.09 q Εύρεση του ελάχιστου ή μέγιστου μιας ποσότητας που εκφράζεται με τη μορφή ενός

Διαβάστε περισσότερα

ΚΛΑΣΙΚΗ ΘΕΡΜΟ ΥΝΑΜΙΚΗ ΜΑΘΗΜΑ-ΙΙ ΟΡΙΣΜΟΙ

ΚΛΑΣΙΚΗ ΘΕΡΜΟ ΥΝΑΜΙΚΗ ΜΑΘΗΜΑ-ΙΙ ΟΡΙΣΜΟΙ ΚΛΑΣΙΚΗ ΘΕΡΜΟ ΥΝΑΜΙΚΗ ΜΑΘΗΜΑ-ΙΙ ΟΡΙΣΜΟΙ Σταύρος Κ. Φαράντος Τµήµα Χηµείας, Πανεπιστήµιο Κρήτης, και Ινστιτούτο Ηλεκτρονικής οµής και Λέιζερ, Ιδρυµα Τεχνολογίας και Ερευνας, Ηράκλειο, Κρήτη http://tccc.iesl.forth.gr/education/local.html

Διαβάστε περισσότερα

Εφαρμοσμένη Θερμοδυναμική: Εξετάζει σχέσεις θερμότητας,

Εφαρμοσμένη Θερμοδυναμική: Εξετάζει σχέσεις θερμότητας, Στοιχεία Χημικής Θερμοδυναμικής Κλάδοι της Θερμοδυναμικής Θερμοδυναμική: Ο κλάδος της επιστήμης που μελετά τις μετατροπές ενέργειας. Στην πραγματικότητα μετρά μεταβολές ενέργειας. Μελετά τη σχέση μεταξύ

Διαβάστε περισσότερα

9. Γενικευμένα Στατιστικά Σύνολα

9. Γενικευμένα Στατιστικά Σύνολα 9. Γενικευμένα Στατιστικά Σύνολα Περίληψη Γενικεύεται η κατασκευή στατιστικών συνόλων για κάθε θερμοδυναμικό σύστημα με οποιεσδήποτε χαρακτηριστικές μακροσκοπικές μεταβλητές. Παράγεται η πιθανότητα μιας

Διαβάστε περισσότερα

Παππάς Χρήστος. Επίκουρος καθηγητής

Παππάς Χρήστος. Επίκουρος καθηγητής Παππάς Χρήστος Επίκουρος καθηγητής 1 ΑΝΤΙΚΕΙΜΕΝΟ ΤΗΣ ΧΗΜΙΚΗΣ ΘΕΡΜΟ ΥΝΑΜΙΚΗΣ Η χημική θερμοδυναμική ασχολείται με τις ενεργειακές μεταβολές που συνοδεύουν μια χημική αντίδραση. Προβλέπει: ΠΛΕΟΝΕΚΤΗΜΑΤΑ

Διαβάστε περισσότερα

ΘΕΡΜΟΔΥΝΑΜΙΚΗ Ι. Ενότητα 8: Θερμοχωρητικότητα Χημικό δυναμικό και ισορροπία. Σογομών Μπογοσιάν Πολυτεχνική Σχολή Τμήμα Χημικών Μηχανικών

ΘΕΡΜΟΔΥΝΑΜΙΚΗ Ι. Ενότητα 8: Θερμοχωρητικότητα Χημικό δυναμικό και ισορροπία. Σογομών Μπογοσιάν Πολυτεχνική Σχολή Τμήμα Χημικών Μηχανικών ΘΕΡΜΟΔΥΝΑΜΙΚΗ Ι Ενότητα 8: Θερμοχωρητικότητα Χημικό δυναμικό και ισορροπία Σογομών Μπογοσιάν Πολυτεχνική Σχολή Τμήμα Χημικών Μηχανικών Σκοποί ενότητας Σκοπός της ενότητας αυτής είναι η ανάπτυξη μαθηματικών

Διαβάστε περισσότερα

EΡΓΟ-ΘΕΡΜΟΤΗΤΑ-ΕΣΩΤΕΡΙΚΗ ΕΝΕΡΓΕΙΑ

EΡΓΟ-ΘΕΡΜΟΤΗΤΑ-ΕΣΩΤΕΡΙΚΗ ΕΝΕΡΓΕΙΑ EΡΓΟ-ΘΕΡΜΟΤΗΤΑ-ΕΣΩΤΕΡΙΚΗ ΕΝΕΡΓΕΙΑ ΠΑΡΑΤΗΡΗΣΕΙΣ 1. Διαδοση θερμοτητας και εργο είναι δυο τροποι με τους οποιους η ενεργεια ενός θερμοδυναμικου συστηματος μπορει να αυξηθει ή να ελαττωθει. Δεν εχει εννοια

Διαβάστε περισσότερα

ΕΣΩΤΕΡΙΚΗ ΕΝΕΡΓΕΙΑ. κινητική + + δυναμική

ΕΣΩΤΕΡΙΚΗ ΕΝΕΡΓΕΙΑ. κινητική + + δυναμική ΕΣΩΤΕΡΙΚΗ ΕΝΕΡΓΕΙΑ Εσωτερική ενέργεια: Το άθροισμα της κινητικής (εσωτερική κινητική ενέργεια ή θερμική ενέργεια τυχαία, μη συλλογική κίνηση) και δυναμικής ενέργειας (δεσμών κλπ) όλων των σωματιδίων (ατόμων

Διαβάστε περισσότερα

Έργο παραγώμενο στο τοίχωμα

Έργο παραγώμενο στο τοίχωμα Έργο παραγώμενο στο τοίχωμα δw =F x dx= p S dx= pdv Εξαρτάται από την αρχική κατάσταση, την τελική κατάσταση και από το είδος της μεταβολής C:\Users\Nicholas\Documents\PhysicsIV-Lectures\Thermodynamics\gas-properties_en.jar

Διαβάστε περισσότερα

ΘΕΡΜΟΔΥΝΑΜΙΚΗ Ι. Ενότητα 11: Μεταπτώσεις πρώτης και δεύτερης τάξης. Σογομών Μπογοσιάν Πολυτεχνική Σχολή Τμήμα Χημικών Μηχανικών

ΘΕΡΜΟΔΥΝΑΜΙΚΗ Ι. Ενότητα 11: Μεταπτώσεις πρώτης και δεύτερης τάξης. Σογομών Μπογοσιάν Πολυτεχνική Σχολή Τμήμα Χημικών Μηχανικών ΘΕΡΜΟΔΥΝΑΜΙΚΗ Ι Ενότητα 11: Μεταπτώσεις πρώτης και δεύτερης τάξης Σογομών Μπογοσιάν Πολυτεχνική Σχολή Τμήμα Χημικών Μηχανικών Σκοποί ενότητας Σκοπός της ενότητας αυτής είναι η εισαγωγή του παράγοντα της

Διαβάστε περισσότερα

O δεύτερος νόµος της θερµοδυναµικής

O δεύτερος νόµος της θερµοδυναµικής O δεύτερος νόµος της θερµοδυναµικής O δεύτερος νόµος της θερµοδυναµικής Γιατί χρειαζόµαστε ένα δεύτερο νόµο ; Ζεστό, Τζ Κρύο, Τκ Ζεστό, Τζ Κρύο, Τκ q Tε Τε Ζεστό, Τζ Κρύο, Τκ q q Tε Τε Πιο ζεστό Πιο κρύο

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα. Θερμοδυναμική

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα. Θερμοδυναμική ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα Θερμοδυναμική Ενότητα 7 : Εντροπία Δρ Γεώργιος Αλέξης Τμήμα Μηχανολόγων Μηχανικών Τ.Ε. Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό

Διαβάστε περισσότερα

ΘΕΡΜΟ ΥΝΑΜΙΚΗ ΧΗΜΙΚΗΣ ΜΗΧΑΝΙΚΗΣ (ΘΧΜ) 1. ΣΚΟΠΟΣ και ΑΝΤΙΚΕΙΜΕΝΟ 2. ΘΕΜΕΛΙΑ

ΘΕΡΜΟ ΥΝΑΜΙΚΗ ΧΗΜΙΚΗΣ ΜΗΧΑΝΙΚΗΣ (ΘΧΜ) 1. ΣΚΟΠΟΣ και ΑΝΤΙΚΕΙΜΕΝΟ 2. ΘΕΜΕΛΙΑ ΘΕΡΜΟ ΥΝΑΜΙΚΗ ΧΗΜΙΚΗΣ ΜΗΧΑΝΙΚΗΣ (ΘΧΜ) 1. ΣΚΟΠΟΣ και ΑΝΤΙΚΕΙΜΕΝΟ 2. ΘΕΜΕΛΙΑ 1 1. ΣΚΟΠΟΣ και ΑΝΤΙΚΕΙΜΕΝΟ Σκοπός της θερμοδυναμικής χημικής μηχανικής είναι η παροχή των κατάλληλων θεωρητικών γνώσεων και των

Διαβάστε περισσότερα

Γεωχημεία. Ενότητα 1: Γεωχημικές διεργασίες στο εσωτερικό της γης. Χριστίνα Στουραϊτη Σχολή Θετικών Επιστημών Τμήμα Γεωλογίας και Γεωπεριβάλλοντος

Γεωχημεία. Ενότητα 1: Γεωχημικές διεργασίες στο εσωτερικό της γης. Χριστίνα Στουραϊτη Σχολή Θετικών Επιστημών Τμήμα Γεωλογίας και Γεωπεριβάλλοντος Γεωχημεία Ενότητα 1: Γεωχημικές διεργασίες στο εσωτερικό της γης Χριστίνα Στουραϊτη Σχολή Θετικών Επιστημών Τμήμα Γεωλογίας και Γεωπεριβάλλοντος Γεωχημικές διεργασίες στο εσωτερικό της γης Στοιχεία Θερμοδυναμικής

Διαβάστε περισσότερα

min f(x) x R n b j - g j (x) = s j - b j = 0 g j (x) + s j = 0 - b j ) min L(x, s, λ) x R n λ, s R m L x i = 1, 2,, n (1) m L(x, s, λ) = f(x) +

min f(x) x R n b j - g j (x) = s j - b j = 0 g j (x) + s j = 0 - b j ) min L(x, s, λ) x R n λ, s R m L x i = 1, 2,, n (1) m L(x, s, λ) = f(x) + KΕΦΑΛΑΙΟ 4 Κλασσικές Μέθοδοι Βελτιστοποίησης Με Περιορισµούς Ανισότητες 4. ΠΡΟΒΛΗΜΑΤΑ ΜΕ ΠΕΡΙΟΡΙΣΜΟΥΣ ΑΝΙΣΟΤΗΤΕΣ Ζητούνται οι τιµές των µεταβλητών απόφασης που ελαχιστοποιούν την αντικειµενική συνάρτηση

Διαβάστε περισσότερα

Φυσική ΜΕΤΑΛΛΟΥΡΓΙΑ. Ενότητα 4: Θερμοδυναμική και Κινητική της Δομής. Γρηγόρης Ν. Χαϊδεμενόπουλος Πολυτεχνική Σχολή Μηχανολόγων Μηχανικών

Φυσική ΜΕΤΑΛΛΟΥΡΓΙΑ. Ενότητα 4: Θερμοδυναμική και Κινητική της Δομής. Γρηγόρης Ν. Χαϊδεμενόπουλος Πολυτεχνική Σχολή Μηχανολόγων Μηχανικών Φυσική ΜΕΤΑΛΛΟΥΡΓΙΑ Ενότητα 4: Θερμοδυναμική και Κινητική της Δομής Γρηγόρης Ν. Χαϊδεμενόπουλος Πολυτεχνική Σχολή Μηχανολόγων Μηχανικών Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης

Διαβάστε περισσότερα

Φάση ονοµάζεται ένα τµήµα της ύλης, οµοιογενές σε όλη την έκτασή του τόσο από άποψη χηµικής σύστασης όσο και φυσικής κατάστασης.

Φάση ονοµάζεται ένα τµήµα της ύλης, οµοιογενές σε όλη την έκτασή του τόσο από άποψη χηµικής σύστασης όσο και φυσικής κατάστασης. Φάση ονοµάζεται ένα τµήµα της ύλης, οµοιογενές σε όλη την έκτασή του τόσο από άποψη χηµικής σύστασης όσο και φυσικής κατάστασης. Ανεξάρτητα συστατικά ή συνιστώσες ενός ετερογενούς συστήµατος σε ισορροπία

Διαβάστε περισσότερα

Φυσικοχημεία για Βιολόγους. Εργ. Φυσικοχημείας. Τηλ

Φυσικοχημεία για Βιολόγους. Εργ. Φυσικοχημείας. Τηλ Ιωάννης Πούλιος, Καθηγητής Εργ. Φυσικοχημείας Α.Π.Θ. Τηλ. 2310 997785 poulios@chem.auth.gr http://photocatalysisgroup.web.auth.gr/ ΘΕΡΜΟΔΥΝΑΜΙΚΗ ΓΕΝΙΚΕΣ ΕΝΟΙΕΣ ΠΡΩΤΟ ΘΕΡΜΟΔΥΝΑΜΙΚΟ ΑΞΙΩΜΑ ΘΕΡΜΟΧΗΜΕΙΑ ΔΕΥΤΕΡΟ

Διαβάστε περισσότερα

ΠΟΛΥΧΡΟΝΙΑΔΗΣ ΝΙΚΟΣ ΤΑΥΤΟΤΗΤΕΣ

ΠΟΛΥΧΡΟΝΙΑΔΗΣ ΝΙΚΟΣ ΤΑΥΤΟΤΗΤΕΣ ΘΕΩΡΙΑ Α ΛΥΚΕΙΟΥ ΤΑΥΤΟΤΗΤΕΣ ). (α + β) = α +αβ + β ). (α β) = α αβ + β. 3). (α + β) 3 = α 3 + 3α β +3αβ + β 3 ). (α β) 3 = α 3 3α β +3αβ β 3. 5). α β = (α β)(α + β) 6). α + β = (α + β) αβ. 6). α 3 β 3

Διαβάστε περισσότερα

ΠΡΟΧΩΡΗΜΕΝΗ ΘΕΡΜΟΔΥΝΑΜΙΚΗ

ΠΡΟΧΩΡΗΜΕΝΗ ΘΕΡΜΟΔΥΝΑΜΙΚΗ ΠΡΟΧΩΡΗΜΕΝΗ ΘΕΡΜΟΔΥΝΑΜΙΚΗ Δ. Τσιπλακίδης Πρόγραμμα Μεταπτυχιακών Σπουδών Κατεύθυνση: «Φυσική Χημεία Υλικών και Ηλεκτροχημεία» ΠΡΟΧΩΡΗΜΕΝΗ ΘΕΡΜΟΔΥΝΑΜΙΚΗ ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ ΚΑΙ ΠΡΩΤΟΣ ΘΕΡΜΟΔΥΝΑΜΙΚΟΣ ΝΟΜΟΣ Βασικές

Διαβάστε περισσότερα

Ελεύθερη ενέργεια. Ελεύθερη ενέργεια Gibbs. Αποτελείται από δύο όρους: την ενθαλπία H και την εντροπία S.

Ελεύθερη ενέργεια. Ελεύθερη ενέργεια Gibbs. Αποτελείται από δύο όρους: την ενθαλπία H και την εντροπία S. Κεφάλαιο 5: Θερµοδυναµικές και κινητικές έννοιες Οι µεταβολές στα στερεά άρα και στα κεραµικά, κυρίως αυτές που προέρχονται από θέρµανση ή ψύξη, προκύπτουν επειδή οδηγούν σε µείωση της ελεύθερης ενέργειας

Διαβάστε περισσότερα

ΕΣΩΤΕΡΙΚΗ ΕΝΕΡΓΕΙΑ. κινητική + + δυναμική

ΕΣΩΤΕΡΙΚΗ ΕΝΕΡΓΕΙΑ. κινητική + + δυναμική ΕΣΩΤΕΡΙΚΗ ΕΝΕΡΓΕΙΑ Εσωτερική ενέργεια: Το άθροισμα της κινητικής (εσωτερική κινητική ενέργεια ή θερμική ενέργεια τυχαία, μη συλλογική κίνηση) και δυναμικής ενέργειας (δεσμών κλπ) όλων των σωματιδίων (ατόμων

Διαβάστε περισσότερα

Κατακόρυφη - Οριζόντια μετατόπιση καμπύλης

Κατακόρυφη - Οριζόντια μετατόπιση καμπύλης 1 Κατακόρυφη - Οριζόντια μετατόπιση καμπύλης Έστω ότι έχουμε την συνάρτηση: f(x) = x + 3x 1 H γραφική της παράσταση είναι: Και την συνάρτηση f(x) = x + 3x + η οποία έχει προκύψει από την προηγούμενη αφού

Διαβάστε περισσότερα

* Επειδή μόνο η μεταφορά θερμότητας έχει νόημα, είτε συμβολίζεται με dq, είτε με Q, είναι το ίδιο.

* Επειδή μόνο η μεταφορά θερμότητας έχει νόημα, είτε συμβολίζεται με dq, είτε με Q, είναι το ίδιο. ΘΕΡΜΙΔΟΜΕΤΡΙΑ ΘΕΡΜΟΚΡΑΣΙΑ ΜΗΔΕΝΙΚΟΣ ΝΟΜΟΣ Μονάδες - Τάξεις μεγέθους Μονάδες ενέργειας 1 cal = 4,19 J Πυκνότητα νερού 1 g/cm 3 = 1000 Kg/m 3. Ειδική θερμότητα νερού c = 4190 J/Kg.K = 1Kcal/Kg.K = 1 cal/g.k

Διαβάστε περισσότερα

2. Θερμοδυναμική. 2.1 Γενική Θεώρηση

2. Θερμοδυναμική. 2.1 Γενική Θεώρηση . Θερμοδυναμική Περίληψη Η θερμοδυναμική θεωρία παρουσιάζεται μέσω βασικών αρχών που διέπουν τις φυσικές ποσότητες ή μεταβλητές οι οποίες χαρακτηρίζουν τις καταστάσεις ισορροπίας των μακροσκοπικών συστημάτων.

Διαβάστε περισσότερα

Βασικές έννοιες και ορισµοί. Ευθεία

Βασικές έννοιες και ορισµοί. Ευθεία Βασικές έννοιες και ορισµοί Ευθεία a R n, a 0 = {x R n x = λa} Βασικές έννοιες και ορισµοί Ευθεία a R n, a 0 = {x R n x = λa} Υπερεπίπεδο α R, a R n P = {x R n ax = α} Βασικές έννοιες και ορισµοί Ευθεία

Διαβάστε περισσότερα

Επειδή Μ>m, θα είναι: (1), (2) α 1 <α 2, δηλαδή ο πατέρας έχει μεγαλύτερη μάζα από την κόρη του και θα αποκτήσει μικρότερη επιτάχυνση από αυτήν.

Επειδή Μ>m, θα είναι: (1), (2) α 1 <α 2, δηλαδή ο πατέρας έχει μεγαλύτερη μάζα από την κόρη του και θα αποκτήσει μικρότερη επιτάχυνση από αυτήν. ΘΕΜΑ 1 ο (10 μονάδες): Λύση α) Ο πατέρας ασκεί δύναμη F στην κόρη του και η κόρη του ασκεί δύναμη F σε αυτόν. Θα ισχύει F=F (3 ος νόμος του Νεύτωνα) β) Σύμφωνα με το ο νόμο του Νεύτωνα θα ισχύει: επιτάχυνση

Διαβάστε περισσότερα

Enrico Fermi, Thermodynamics, 1937

Enrico Fermi, Thermodynamics, 1937 I. Θερµοδυναµικά συστήµατα Enrico Feri, herodynaics, 97. Ένα σώµα διαστέλλεται από αρχικό όγκο. L σε τελικό όγκο 4. L υπό πίεση.4 at. Να υπολογισθεί το έργο που παράγεται. W - -.4 at 5 a at - (4..) - -

Διαβάστε περισσότερα

Φυσική ΜΕΤΑΛΛΟΥΡΓΙΑ. Ενότητα 5: Διαγράμματα φάσεων και ελεύθερη ενέργεια Gibbs. Γρηγόρης Ν. Χαϊδεμενόπουλος Πολυτεχνική Σχολή Μηχανολόγων Μηχανικών

Φυσική ΜΕΤΑΛΛΟΥΡΓΙΑ. Ενότητα 5: Διαγράμματα φάσεων και ελεύθερη ενέργεια Gibbs. Γρηγόρης Ν. Χαϊδεμενόπουλος Πολυτεχνική Σχολή Μηχανολόγων Μηχανικών Φυσική ΜΕΤΑΛΛΟΥΡΓΙΑ Ενότητα 5: Διαγράμματα φάσεων και ελεύθερη Γρηγόρης Ν. Χαϊδεμενόπουλος Πολυτεχνική Σχολή Μηχανολόγων Μηχανικών Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative

Διαβάστε περισσότερα

ΦΥΣΙΚΟΧΗΜΕΙΑ ΤΡΟΦΙΜΩΝ Ι

ΦΥΣΙΚΟΧΗΜΕΙΑ ΤΡΟΦΙΜΩΝ Ι ΦΥΣΙΚΟΧΗΜΕΙΑ ΤΡΟΦΙΜΩΝ Ι Ενότητα 4 η - Γ ΜΕΡΟΣ ΘΕΡΜΟΔΥΝΑΜΙΚΗ Όνομα καθηγητή: ΕΥΑΓΓΕΛΙΟΥ ΒΑΣΙΛΙΚΗ Τμήμα: Επιστήμης Τροφίμων και Διατροφής του Ανθρώπου ΣΤΟΧΟΙ ΤΟΥ ΜΑΘΗΜΑΤΟΣ Στόχος (1) Κατανόηση των εννοιών:

Διαβάστε περισσότερα

Παράρτημα Αʹ. Ασκησεις. Αʹ.1 Ασκήσεις Κεϕαλαίου 1: Εισαγωγή στη κβαντική ϕύση του ϕωτός.

Παράρτημα Αʹ. Ασκησεις. Αʹ.1 Ασκήσεις Κεϕαλαίου 1: Εισαγωγή στη κβαντική ϕύση του ϕωτός. Παράρτημα Αʹ Ασκησεις Αʹ.1 Ασκήσεις Κεϕαλαίου 1: Εισαγωγή στη κβαντική ϕύση του ϕωτός. Άσκηση 1. Συμβατικά στην περιοχή του ηλεκτρομαγνητικού ϕάσματος μακρινό υπέρυθρο (far infrared, FIR) έχουμε μήκος

Διαβάστε περισσότερα

ΘΕΡΜΟΔΥΝΑΜΙΚΗ. Χαροκόπειο Πανεπιστήμιο. 11 Μαΐου 2006

ΘΕΡΜΟΔΥΝΑΜΙΚΗ. Χαροκόπειο Πανεπιστήμιο. 11 Μαΐου 2006 ΘΕΡΜΟΔΥΝΑΜΙΚΗ Χαροκόπειο Πανεπιστήμιο 11 Μαΐου 2006 Κλάδοι της Θερμοδυναμικής Χημική Θερμοδυναμική: Μελετά τις μετατροπές ενέργειας που συνοδεύουν φυσικά ή χημικά φαινόμενα Θερμοχημεία: Κλάδος της Χημικής

Διαβάστε περισσότερα

ΑΝΩΤΕΡΗ ΘΕΡΜΟΔΥΝΑΜΙΚΗ

ΑΝΩΤΕΡΗ ΘΕΡΜΟΔΥΝΑΜΙΚΗ ΑΝΩΤΕΡΗ ΘΕΡΜΟΔΥΝΑΜΙΚΗ Διδάσκοντες: Κώστας Περράκης, Δημοσθένης Γεωργίου http://eclass.upatras.gr/ p Βιβλιογραφία Advanced Thermodynamics for Engineers, Kenneth, Jr. Wark Advanced thermodynamics engineering

Διαβάστε περισσότερα

ΕΦΑΡΜΟΓΕΣ - ΑΣΚΗΣΕΙΣ ΘΕΡΜΙΚΗΣ ΚΑΙ ΣΤΑΤΙΣΤΙΚΗΣ ΦΥΣΙΚΗΣ

ΕΦΑΡΜΟΓΕΣ - ΑΣΚΗΣΕΙΣ ΘΕΡΜΙΚΗΣ ΚΑΙ ΣΤΑΤΙΣΤΙΚΗΣ ΦΥΣΙΚΗΣ ΕΦΑΡΜΟΓΕΣ - ΑΣΚΗΣΕΙΣ ΘΕΡΜΙΚΗΣ ΚΑΙ ΣΤΑΤΙΣΤΙΚΗΣ ΦΥΣΙΚΗΣ 1. Ένα κιλό νερού σε θερμοκρασία 0 C έρχεται σε επαφή με μιά μεγάλη θερμική δεξαμενή θερμοκρασίας 100 C. Όταν το νερό φτάσει στη θερμοκρασία της δεξαμενής,

Διαβάστε περισσότερα

ΘΕΡΜΟΔΥΝΑΜΙΚΗ ΘΕΩΡΙΑ & ΑΣΚΗΣΕΙΣ

ΘΕΡΜΟΔΥΝΑΜΙΚΗ ΘΕΩΡΙΑ & ΑΣΚΗΣΕΙΣ ΦΡΟΝΤΙΣΤΗΡΙΑΚΑ ΜΑΘΗΜΑΤΑ ΦΥΣΙΚΗΣ Π.Φ. ΜΟΙΡΑ 693 946778 ΘΕΡΜΟΔΥΝΑΜΙΚΗ ΘΕΩΡΙΑ & ΑΣΚΗΣΕΙΣ Περιεχόμενα 1. Θερμοδυναμική Ορισμοί. Έργο 3. Θερμότητα 4. Εσωτερική ενέργεια 5. Ο Πρώτος Θερμοδυναμικός Νόμος 6. Αντιστρεπτή

Διαβάστε περισσότερα

υ Β = υ cm - υ στρ(β) = υ cm - ω R 2 = υ cm cm - υ2 υ υcm Β = 2. ιαιρώντας κατά µέλη παίρνουµε ότι: Β3. ΣΣωσσττήή ααππάάννττηησσηη εεί ίίννααι ιι ηη β

υ Β = υ cm - υ στρ(β) = υ cm - ω R 2 = υ cm cm - υ2 υ υcm Β = 2. ιαιρώντας κατά µέλη παίρνουµε ότι: Β3. ΣΣωσσττήή ααππάάννττηησσηη εεί ίίννααι ιι ηη β ΑΠΑΝΤΗΣΕΙΙΣ ΣΤΟ ΙΙΑΓΓΩ ΩΝΙΙΣΜΑ ΦΥΣΙΙΚΗΣ ΠΡΡΟΣΑΝΑΤΟΛΙΙΣ ΣΜΟΥ ΓΓ ΛΥΚΕΙΙΟΥ 1133 1122 -- 22001155 Θέµα Α Α1. δ Α2. β Α3. β Α4. δ Α5. α) Σ β) Λ γ) Σ δ) Σ ε) Λ Θέµα Β Β1. Σωστή απάντηση η (β). Εφόσον παρατηρούνται

Διαβάστε περισσότερα

ΘΕΜΑΤΑ ΧΗΜΕΙΑΣ Β ΛΥΚΕΙΟΥ ΘΕΤΙΚΗ ΚΑΤΕΥΘΥΝΣΗ ÑÏÌÂÏÓ

ΘΕΜΑΤΑ ΧΗΜΕΙΑΣ Β ΛΥΚΕΙΟΥ ΘΕΤΙΚΗ ΚΑΤΕΥΘΥΝΣΗ ÑÏÌÂÏÓ ΘΕΜΑ ο ΘΕΜΑΤΑ ΧΗΜΕΙΑΣ Β ΛΥΚΕΙΟΥ ΘΕΤΙΚΗ ΚΑΤΕΥΘΥΝΣΗ - Στις ερωτήσεις, να γράψετε στο τετράδιό σας τον αριθµό της ερώτησης και δίπλα το γράµµα που αντιστοιχεί στη σωστή απάντηση.. Σε καθαρό νερό διαλύεται

Διαβάστε περισσότερα

Κύλινδρος κοιμώμενος εντός κώνου

Κύλινδρος κοιμώμενος εντός κώνου Κύλινδρος κοιμώμενος εντός κώνου Γιώργος Μπαλόγλου gbaloglou@gmail.com 7 η Μαθηματική Εβδομάδα, 18- Μαρτίου 015, Θεσσαλονίκη Εισαγωγή Περίληψη: Υπολογίζεται ο μέγιστος όγκος οριζοντίου κυλίνδρου εγγεγραμμένου

Διαβάστε περισσότερα

Kόλλιας Σταύρος 1

Kόλλιας Σταύρος  1 Kόλλιας Σταύρος http://usersschgr/stkollias Θέμα ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Β ΤΑΞΗΣ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ ΑΠΕΡΙΟΥ ΔΕΥΤΕΡΑ 4 ΙΟΥΝΙΟΥ 007 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Αα ) Τι ονομάζουμε εσωτερικό γινόμενο

Διαβάστε περισσότερα

14. ΘΕΡΜΟΔΥΝΑΜΙΚΗ ΚΑΙ ΙΣΟΡΡΟΠΙΑ ΠΕΡΙΕΧΟΜΕΝΑ

14. ΘΕΡΜΟΔΥΝΑΜΙΚΗ ΚΑΙ ΙΣΟΡΡΟΠΙΑ ΠΕΡΙΕΧΟΜΕΝΑ 14. ΘΕΡΜΟΔΥΝΑΜΙΚΗ ΚΑΙ ΙΣΟΡΡΟΠΙΑ ΠΕΡΙΕΧΟΜΕΝΑ Πρώτος νόμος της θερμοδυναμικής-ενθαλπία Εντροπία και ο δεύτερος νόμος της θερμοδυναμικής Πρότυπες εντροπίες και ο τρίτος νόμος της θερμοδυναμικής Ελεύθερη ενέργεια

Διαβάστε περισσότερα

Βασικές έννοιες και ορισµοί. Ευθεία

Βασικές έννοιες και ορισµοί. Ευθεία Βασικές έννοιες και ορισµοί Ευθεία a R n, a 0 = {x R n x = λa} Βασικές έννοιες και ορισµοί Ευθεία a R n, a 0 = {x R n x = λa} Υπερεπίπεδο α R, a R n P = {x R n ax = α} Βασικές έννοιες και ορισµοί Ευθεία

Διαβάστε περισσότερα

Τίτλος Μαθήματος: Διαφορική Γεωμετρία

Τίτλος Μαθήματος: Διαφορική Γεωμετρία 71 Τίτλος Μαθήματος: Διαφορική Γεωμετρία Ενότητα: Λσμένα Παραδείγματα Όνομα Καθηγητή: Ανδρέας Αρβανιτογεώργος Τμήμα: Μαθηματικών 71 72 Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης

Διαβάστε περισσότερα

cos t dt = 0. t cos t 2 dt = 1 8 f(x, y, z) = (2xyz, x 2 z, x 2 y) (2xyz) = (x2 z) (x 2 z) = (x2 y) 1 u du =

cos t dt = 0. t cos t 2 dt = 1 8 f(x, y, z) = (2xyz, x 2 z, x 2 y) (2xyz) = (x2 z) (x 2 z) = (x2 y) 1 u du = ΛΥΣΕΙΣ. Οι ασκήσεις από το βιβλίο των Marsden - Tromba. 1. 7.1.()(b) σ (t) (cos t sin t 1) οπότε σ (t) και σ f(x y z) ds π (c) σ (t) i + tj οπότε σ (t) 1 + 4t και σ f(x y z) ds 1 t cos 1 + 4t dt 1 8 cos

Διαβάστε περισσότερα

Ακρίβεια αποτελεσμάτων σχεδιασμού διεργασιών ΜΑΔ, 2013

Ακρίβεια αποτελεσμάτων σχεδιασμού διεργασιών ΜΑΔ, 2013 Ακρίβεια αποτελεσμάτων σχεδιασμού διεργασιών ΜΑΔ, 2013 1 ΣΚΟΠΟΣ και ΑΝΤΙΚΕΙΜΕΝΟ ΘΧΜ Σκοπός της θερμοδυναμικής χημικής μηχανικής είναι η παροχή των κατάλληλων θεωρητικών γνώσεων και των απαραίτητων υπολογιστικών-μεθοδολογικών

Διαβάστε περισσότερα

ΒΟΗΘΗΤΙΚΕΣ ΣΗΜΕΙΩΣΕΙΣ ΣΤΑ ΓΕΝΙΚΑ ΜΑΘΗΜΑΤΙΚΑ

ΒΟΗΘΗΤΙΚΕΣ ΣΗΜΕΙΩΣΕΙΣ ΣΤΑ ΓΕΝΙΚΑ ΜΑΘΗΜΑΤΙΚΑ ΤΜΗΜΑ ΔΙΕΘΝΟΥΣ ΕΜΠΟΡΙΟΥ ΒΟΗΘΗΤΙΚΕΣ ΣΗΜΕΙΩΣΕΙΣ ΣΤΑ ΓΕΝΙΚΑ ΜΑΘΗΜΑΤΙΚΑ ΚΕΦΑΛΑΙΑ: ) ΠΙΝΑΚΕΣ ) ΟΡΙΖΟΥΣΕΣ ) ΓΡΑΜΜΙΚΑ ΣΥΣΤΗΜΑΤΑ 4) ΠΑΡΑΓΩΓΟΙ ΜΑΡΙΑ ΡΟΥΣΟΥΛΗ ΚΕΦΑΛΑΙΟ ΠΙΝΑΚEΣ ΠΡΑΓΜΑΤΙΚΩΝ ΑΡΙΘΜΩΝ ΟΡΙΣΜΟΣ Πίνακας

Διαβάστε περισσότερα

Για την τοπική μελέτη μιας συνάρτησης f ενδιαφέρον έχει η συμπεριφορά της συνάρτησης γύρω απο κάποια θέση x 0

Για την τοπική μελέτη μιας συνάρτησης f ενδιαφέρον έχει η συμπεριφορά της συνάρτησης γύρω απο κάποια θέση x 0 5 Όριο συνάρτησης Α ΑΠΑΡΑΙΤΗΤΕΣ ΓΝΩΣΕΙΣ ΘΕΩΡΙΑΣ Για την τοπική μελέτη μιας συνάρτησης f ενδιαφέρον έχει η συμπεριφορά της συνάρτησης γύρω απο κάποια θέση (δηλαδή όταν το βρίσκεται πολύ κοντά στο ) ή στο

Διαβάστε περισσότερα

Εφηρμοσμένη Θερμοδυναμική

Εφηρμοσμένη Θερμοδυναμική ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Εφηρμοσμένη Θερμοδυναμική Ενότητα 7: Εντροπία - Ισοζύγια εντροπίας Χατζηαθανασίου Βασίλειος Καδή Στυλιανή Τμήμα Ηλεκτρολόγων Μηχανικών

Διαβάστε περισσότερα

( ) ( ) ( ) ( ) Παράγωγος-Κλίση-Μονοτονία ( ) ( ) β = Άσκηση 1 η : Να βρεθούν οι παράγωγοι των συναρτήσεων: log x. 2 x. ln(x, ( ) 2 x x. Έχουμε.

( ) ( ) ( ) ( ) Παράγωγος-Κλίση-Μονοτονία ( ) ( ) β = Άσκηση 1 η : Να βρεθούν οι παράγωγοι των συναρτήσεων: log x. 2 x. ln(x, ( ) 2 x x. Έχουμε. Παράγωγος-Κλίση-Μονοτονία Άσκηση η : Να βρεθούν οι παράγωγοι των συναρτήσεων:, log, ) ln(, e, Λύση: Έχουμε ln ln ( ), f = = e = e R ln ln f ( ) = ( e ) = e ( ln ) = ln = ln, R Γενικά ισχύει: ( a ) = ln

Διαβάστε περισσότερα

ΦΡΟΝΤΙΣΤΗΡΙΑΚΑ ΜΑΘΗΜΑΤΑ ΦΥΣΙΚΗΣ Π.Φ. ΜΟΙΡΑ ΑΕΡΙΟ VAN DER WAALS ΛΥΜΕΝΕΣ ΑΣΚΗΣΕΙΣ

ΦΡΟΝΤΙΣΤΗΡΙΑΚΑ ΜΑΘΗΜΑΤΑ ΦΥΣΙΚΗΣ Π.Φ. ΜΟΙΡΑ ΑΕΡΙΟ VAN DER WAALS ΛΥΜΕΝΕΣ ΑΣΚΗΣΕΙΣ ΦΡΟΝΤΙΣΤΗΡΙΑΚΑ ΜΑΘΗΜΑΤΑ ΦΥΣΙΚΗΣ Π.Φ. ΜΟΙΡΑ 693 946778 ΑΕΡΙΟ AN DER WAALS ΛΥΜΕΝΕΣ ΑΣΚΗΣΕΙΣ ΦΡΟΝΤΙΣΤΗΡΙΑΚΑ ΜΑΘΗΜΑΤΑ ΦΥΣΙΚΗΣ Π.Φ. ΜΟΙΡΑ 693 946778 ΑΣΚΗΣΗ Αέριο an der Waals ν moles συμπιέζεται ισόθερμα από

Διαβάστε περισσότερα

B6. OΜΟΓΕΝΕΙΑ-ΔΙΑΦΟΡΙΚΑ

B6. OΜΟΓΕΝΕΙΑ-ΔΙΑΦΟΡΙΚΑ B6. OΜΟΓΕΝΕΙΑ-ΔΙΑΦΟΡΙΚΑ 1.Διαφορικά.Σχετικά ή ποσοστιαία διαφορικά 3.Λογισμός Διαφορικών 4.Ομογενείς συναρτήσεις μιας μεταβλητής 5.Ελαστικότητα κλίμακας 6.Ομογενής μηδενικού βαθμού 7.Ομογενής βαθμού κ

Διαβάστε περισσότερα

ΑΤΜΟΣΦΑΙΡΙΚΗ ΘΕΡΜΟΔΥΝΑΜΙΚΗ. Η ατμόσφαιρα συμπεριφέρεται σαν ιδανικό αέριο (ειδικά για z>10 km)

ΑΤΜΟΣΦΑΙΡΙΚΗ ΘΕΡΜΟΔΥΝΑΜΙΚΗ. Η ατμόσφαιρα συμπεριφέρεται σαν ιδανικό αέριο (ειδικά για z>10 km) ΑΤΜΟΣΦΑΙΡΙΚΗ ΘΕΡΜΟΔΥΝΑΜΙΚΗ Η ατμόσφαιρα συμπεριφέρεται σαν ιδανικό αέριο (ειδικά για z>1 km) Οι αποστάσεις μεταξύ των μορίων είναι πολύ μεγάλες σχετικά με τον όγκο που κατέχουν Οι συγκρούσεις μεταξύ τους

Διαβάστε περισσότερα

ΛΥΜΕΝΕΣ ΑΣΚΗΣΕΙΣ ΣΤΗ ΣΤΑΤΙΣΤΙΚΗ ΘΕΡΜΟΔΥΝΑΜΙΚΗ ΦΥΣΙΚΟΧΗΜΕΙΑ ΦΥΕ22

ΛΥΜΕΝΕΣ ΑΣΚΗΣΕΙΣ ΣΤΗ ΣΤΑΤΙΣΤΙΚΗ ΘΕΡΜΟΔΥΝΑΜΙΚΗ ΦΥΣΙΚΟΧΗΜΕΙΑ ΦΥΕ22 Λυμένες ασκήσεις Στατιστική Θερμοδυναμική Οκτώβριος ΛΥΜΕΝΕΣ ΑΣΚΗΣΕΙΣ ΣΤΗ ΣΤΑΤΙΣΤΙΚΗ ΘΕΡΜΟΔΥΝΑΜΙΚΗ ΦΥΣΙΚΟΧΗΜΕΙΑ ΦΥΕ Άσκηση.: Το άθροισμα καταστάσεων της δονητικής κίνησης των μορίων του Ι αποτελείται από

Διαβάστε περισσότερα

f f 2 0 B f f 0 1 B 10.3 Ακρότατα υπό συνθήκες Πολλαπλασιαστές του Lagrange

f f 2 0 B f f 0 1 B 10.3 Ακρότατα υπό συνθήκες Πολλαπλασιαστές του Lagrange Μέγιστα και ελάχιστα 39 f f B f f yx y x xy Οι ιδιοτιμές του πίνακα Β είναι λ =-, λ =- και οι δυο αρνητικές, άρα το κρίσιμο σημείο (,) είναι σημείο τοπικού μεγίστου. Εφαρμογή 6: Στο παράδειγμα 3 ο αντίστοιχος

Διαβάστε περισσότερα

6.1 Η ΕΝΝΟΙΑ ΤΗΣ ΣΥΝΑΡΤΗΣΗΣ

6.1 Η ΕΝΝΟΙΑ ΤΗΣ ΣΥΝΑΡΤΗΣΗΣ ΟΡΙΣΜΟΣ 6. ΣΥΝΑΡΤΗΣΕΙΣ 6.1 Η ΕΝΝΟΙΑ ΤΗΣ ΣΥΝΑΡΤΗΣΗΣ Ονομάζουμε συνάρτηση από ένα σύνολο Α σε ένα σύνολο Β μια διαδικασία (κανόνα) f, με την οποία κάθε στοιχείο του συνόλου Α αντιστοιχίζεται σε ένα ακριβώς

Διαβάστε περισσότερα

1. Να προσδιορίσετε το πεδίο ορισμού των συναρτήσεων με τύπους. 2. Να βρεθεί ο λ R ώστε f(x) = ln ( x 2 +2λx+9) να έχει πεδίο ορισμού Α = R

1. Να προσδιορίσετε το πεδίο ορισμού των συναρτήσεων με τύπους. 2. Να βρεθεί ο λ R ώστε f(x) = ln ( x 2 +2λx+9) να έχει πεδίο ορισμού Α = R ΠΕΡΙΣΤΕΡΙΟΥ Α. ΠΕΔΙΟ ΟΡΙΣΜΟΥ. Να προσδιορίσετε το πεδίο ορισμού των συναρτήσεων με τύπους 4 ι) () = 6 + 6 iv) () = log ( log4(- )) v) () = ii) () = iii) () = log ( + ) 5 log 4 vii) () = 5 + 4 viii) ()

Διαβάστε περισσότερα

Θέμα 1 ο (Μονάδες 25)

Θέμα 1 ο (Μονάδες 25) ΙΙΑΓΓΩΝΙΙΣΜΑ ΦΦΥΥΣΙΙΚΚΗΣ ΚΚΑΤΤΕΕΥΥΘΥΥΝΣΗΣ ΓΓ ΛΛΥΥΚΚΕΕΙΙΟΥΥ (ΑΠΟΦΦΟΙΙΤΤΟΙΙ) ( ) εευυττέέρραα 1144 ΙΙααννοουυααρρί ίοουυ 22001133 Θέμα 1 ο (Μονάδες 25) 1. Κατά τη συμβολή δύο αρμονικών κυμάτων που δημιουργούνται

Διαβάστε περισσότερα

Να βρείτε ποιες από τις παρακάτω συναρτήσεις είναι γνησίως αύξουσες και ποιες γνησίως φθίνουσες. i) f(x) = 1 x. ii) f(x) = 2ln(x 2) 1 = (, 1] 1 x

Να βρείτε ποιες από τις παρακάτω συναρτήσεις είναι γνησίως αύξουσες και ποιες γνησίως φθίνουσες. i) f(x) = 1 x. ii) f(x) = 2ln(x 2) 1 = (, 1] 1 x . Ασκήσεις σχολικού βιβλίου σελίδας 56 57 A µάδας. Να βρείτε ποιες από τις παρακάτω συναρτήσεις είναι γνησίως αύξουσες και ποιες γνησίως φθίνουσες. i) () = ii) () = ln( ) iii) () = e + iv) () = ( ), i)

Διαβάστε περισσότερα

α. Ηλεκτρικού πεδίου του πυκνωτή σε ενέργεια μαγνητικού πεδίου

α. Ηλεκτρικού πεδίου του πυκνωτή σε ενέργεια μαγνητικού πεδίου ΙΙΑΓΓΩΝΙΙΣΜΑ ΦΦΥΥΣΙΙΚΚΗΣ ΚΚΑΤΕΕΥΥΘΥΥΝΣΗΣ ΓΓ ΛΥΥΚΚΕΕΙΙΟΥΥ ((Α ΟΜΑ Α)) 77 1111 -- 22001100 Θέμα 1 ο (Μονάδες 25) 1. Η εξίσωση που δίνει την ένταση του ρεύματος σε ιδανικό κύκλωμα ηλεκτρικών ταλαντώσεων LC

Διαβάστε περισσότερα

ΚΛΑΣΙΚΗ ΘΕΡΜΟ ΥΝΑΜΙΚΗ ΕΝΟΤΗΤΑ - 5 ΙΣΟΡΡΟΠΙΑ ΦΑΣΕΩΝ ΚΑΙ ΧΗΜΙΚΩΝ ΑΝΤΙ ΡΑΣΕΩΝ

ΚΛΑΣΙΚΗ ΘΕΡΜΟ ΥΝΑΜΙΚΗ ΕΝΟΤΗΤΑ - 5 ΙΣΟΡΡΟΠΙΑ ΦΑΣΕΩΝ ΚΑΙ ΧΗΜΙΚΩΝ ΑΝΤΙ ΡΑΣΕΩΝ ΚΛΑΣΙΚΗ ΘΕΡΜΟ ΥΝΑΜΙΚΗ ΕΝΟΤΗΤΑ - 5 ΙΣΟΡΡΟΠΙΑ ΦΑΣΕΩΝ ΚΑΙ ΧΗΜΙΚΩΝ ΑΝΤΙ ΡΑΣΕΩΝ Σταύρος Κ. Φαράντος Τµήµα Χηµείας, Πανεπιστήµιο Κρήτης, και Ινστιτούτο Ηλεκτρονικής οµής και Λέιζερ, Ιδρυµα Τεχνολογίας και Ερευνας,

Διαβάστε περισσότερα

Το σύστημα των μη αλληλεπιδραστικών ροών και η σημασία του στην ερμηνεία των ιδιοτήτων των ιδανικών αερίων.

Το σύστημα των μη αλληλεπιδραστικών ροών και η σημασία του στην ερμηνεία των ιδιοτήτων των ιδανικών αερίων. Το σύστημα των μη αλληλεπιδραστικών ροών και η σημασία του στην ερμηνεία των ιδιοτήτων των ιδανικών αερίων. Θεωρώντας τα αέρια σαν ουσίες αποτελούμενες από έναν καταπληκτικά μεγάλο αριθμό μικροσκοπικών

Διαβάστε περισσότερα

Η συνάρτηση y = αχ 2. Βρέντζου Τίνα Φυσικός Μεταπτυχιακός τίτλος: «Σπουδές στην εκπαίδευση» ΜEd

Η συνάρτηση y = αχ 2. Βρέντζου Τίνα Φυσικός Μεταπτυχιακός τίτλος: «Σπουδές στην εκπαίδευση» ΜEd Η συνάρτηση y = αχ Βρέντζου Τίνα Φυσικός Μεταπτυχιακός τίτλος: «Σπουδές στην εκπαίδευση» ΜEd 1 Η συνάρτηση y = αχ με α 0 Μια συνάρτηση της μορφής y = α + β + γ με α 0 ονομάζεται τετραγωνική συνάρτηση.

Διαβάστε περισσότερα

Περιεχόμενα. Κεφάλαιο 1 ΣΥΣΤΗΜΑΤΑ ΣΥΝΤΕΤΑΓΜΕΝΩΝ ΣΕ ΜΙΑ ΕΥΘΕΙΑ... 13 1.1 Οι συντεταγμένες ενός σημείου...13 1.2 Απόλυτη τιμή...14

Περιεχόμενα. Κεφάλαιο 1 ΣΥΣΤΗΜΑΤΑ ΣΥΝΤΕΤΑΓΜΕΝΩΝ ΣΕ ΜΙΑ ΕΥΘΕΙΑ... 13 1.1 Οι συντεταγμένες ενός σημείου...13 1.2 Απόλυτη τιμή...14 Περιεχόμενα Κεφάλαιο 1 ΣΥΣΤΗΜΑΤΑ ΣΥΝΤΕΤΑΓΜΕΝΩΝ ΣΕ ΜΙΑ ΕΥΘΕΙΑ... 13 1.1 Οι συντεταγμένες ενός σημείου...13 1.2 Απόλυτη τιμή...14 Κεφάλαιο 2 ΣΥΣΤΗΜΑΤΑ ΣΥΝΤΕΤΑΓΜΕΝΩΝ ΣΕ ΕΝΑ ΕΠΙΠΕΔΟ 20 2.1 Οι συντεταγμένες

Διαβάστε περισσότερα

ΠΑΡΟΡΑΜΑΤΑ ΜΗΧΑΝΙΚΗ ΧΗΜΙΚΩΝ ΔΙΕΡΓΑΣΙΩΝ,

ΠΑΡΟΡΑΜΑΤΑ ΜΗΧΑΝΙΚΗ ΧΗΜΙΚΩΝ ΔΙΕΡΓΑΣΙΩΝ, ΠΑΡΟΡΑΜΑΤΑ ΜΗΧΑΝΙΚΗ ΧΗΜΙΚΩΝ ΔΙΕΡΓΑΣΙΩΝ, Octave Levenspiel ΚΕΦΑΛΑΙΟ : Εισαγωγή στις Χημικές Διεργασίες Σελίδα Λανθασμένη Έκφραση Σωστή Έκφραση 2 6 Σχήμα 2 Μοντέλο ροής η κατάσταση συσσώρευσης Σχήμα 3 Εκθέτης:

Διαβάστε περισσότερα

ΘΕΡΜΟΔΥΝΑΜΙΚΕΣ ΜΕΤΑΒΟΛΕΣ Η ΚΑΤΑΣΤΑΤΙΚΗ ΕΞΙΣΩΣΗ ΤΩΝ ΤΕΛΕΙΩΝ ΑΕΡΙΩΝ

ΘΕΡΜΟΔΥΝΑΜΙΚΕΣ ΜΕΤΑΒΟΛΕΣ Η ΚΑΤΑΣΤΑΤΙΚΗ ΕΞΙΣΩΣΗ ΤΩΝ ΤΕΛΕΙΩΝ ΑΕΡΙΩΝ ΘΕΡΜΟΔΥΝΑΜΙΚΕΣ ΜΕΤΑΒΟΛΕΣ Η ΚΑΤΑΣΤΑΤΙΚΗ ΕΞΙΣΩΣΗ ΤΩΝ ΤΕΛΕΙΩΝ ΑΕΡΙΩΝ Η εξίσωση αυτή εκφράζει μια σχέση μεταξύ της πίεσης, της θερμοκρασίας και του ειδικού όγκου. P v = R Όπου P = πίεση σε Pascal v = Ο ειδικός

Διαβάστε περισσότερα

F 2 ( F / T ) T T. (β) Να δείξετε ότι µετασχηµατισµός Legendre της J(1/T,V) που δίνει το

F 2 ( F / T ) T T. (β) Να δείξετε ότι µετασχηµατισµός Legendre της J(1/T,V) που δίνει το [1] Να αποδειχθούν οι παρακάτω εξισώσεις: F ( F / T ) U = F T = T T T V F CV T = T V G G T H = G T = T ( / ) T P T P G CP T = T P [] Μπορούµε να ορίσουµε ένα άλλο σετ χαρακτηριστικών συναρτήσεων καθαρής

Διαβάστε περισσότερα

ΑΡΧΕΣ ΜΕΤΑΦΟΡΑΣ ΘΕΡΜΟΤΗΤΑΣ

ΑΡΧΕΣ ΜΕΤΑΦΟΡΑΣ ΘΕΡΜΟΤΗΤΑΣ 1 ΑΡΧΕΣ ΜΕΤΑΦΟΡΑΣ ΘΕΡΜΟΤΗΤΑΣ Προβλήματα μεταφοράς θερμότητας παρουσιάζονται σε κάθε βήμα του μηχανικού της χημικής βιομηχανίας. Ο υπολογισμός των θερμικών απωλειών, η εξοικονόμηση ενέργειας και ο σχεδιασμός

Διαβάστε περισσότερα

Γενική Ανταγωνιστική Ισορροπία και Αποτελεσματικές κατά Pareto Κατανομές σε Ανταλλακτική Οικονομία

Γενική Ανταγωνιστική Ισορροπία και Αποτελεσματικές κατά Pareto Κατανομές σε Ανταλλακτική Οικονομία Γενική Ανταγωνιστική Ισορροπία και Αποτελεσματικές κατά Pareto Κατανομές σε Ανταλλακτική Οικονομία Βασικές Υποθέσεις (i) Οι αγορές όλων των αγαθών είναι τέλεια ανταγωνιστικές. Οι καταναλωτές και οι επιχειρήσεις

Διαβάστε περισσότερα

Θερμότητα - διαφάνειες , Σειρά 1

Θερμότητα - διαφάνειες , Σειρά 1 Θερμότητα - διαφάνειες 007-8, Σειρά Βιβλιογραφία (ενδεικτική) H.D. Young, Πανεπιστημιακή Φυσική Τόμος Α, (5-, 5-, 5-3, 5-5, 5-6, 6-, 6-, 6-4, 7-, 7-, 7-3, 7-4, 7-5, 7-6, 7-7,7-8) Σημειώσεις καθ. Κου Δ.

Διαβάστε περισσότερα

ΑΣΚΗΣΕΙΣ. 4. Για την αντίδραση 2Α + Β Γ βρέθηκαν τα παρακάτω πειραματικά δεδομένα:

ΑΣΚΗΣΕΙΣ. 4. Για την αντίδραση 2Α + Β Γ βρέθηκαν τα παρακάτω πειραματικά δεδομένα: ΑΣΚΗΣΕΙΣ 1. Αν είναι γνωστό ότι οι παρακάτω αντιδράσεις είναι απλές (ενός μόνον σταδίου), να βρεθεί η τάξη καθεμίας από αυτές, καθώς επίσης οι διαστάσεις (μονάδες) της σταθεράς της ταχύτητας. α) Α Π β)

Διαβάστε περισσότερα

z = c 1 x 1 + c 2 x c n x n

z = c 1 x 1 + c 2 x c n x n Τεχνολογικό Εκπαιδευτικό Ιδρυμα Κεντρικής Μακεδονίας - Σέρρες Τμήμα Μηχανικών Πληροφορικής Γραμμικός Προγραμματισμός & Βελτιστοποίηση Δρ. Δημήτρης Βαρσάμης Καθηγητής Εφαρμογών Δρ. Δημήτρης Βαρσάμης Μάρτιος

Διαβάστε περισσότερα

ΠΑΡΑΡΤΗΜΑ 3 ΥΠΟΛΟΓΙΣΜΟΣ ΔΙΑΓΡΑΜΜΑΤΩΝ ΦΑΣΕΩΝ ΑΠΟ ΘΕΡΜΟΔΥΝΑΜΙΚΑ ΔΕΔΟΜΕΝΑ

ΠΑΡΑΡΤΗΜΑ 3 ΥΠΟΛΟΓΙΣΜΟΣ ΔΙΑΓΡΑΜΜΑΤΩΝ ΦΑΣΕΩΝ ΑΠΟ ΘΕΡΜΟΔΥΝΑΜΙΚΑ ΔΕΔΟΜΕΝΑ ΠΑΡΑΡΤΗΜΑ 3-ΥΠΟΛΟΓΙΣΜΟΣ ΔΙΑΓΡΑΜΜΑΤΩΝ ΦΑΣΕΩΝ ΠΑΡΑΡΤΗΜΑ 3 ΥΠΟΛΟΓΙΣΜΟΣ ΔΙΑΓΡΑΜΜΑΤΩΝ ΦΑΣΕΩΝ ΑΠΟ ΘΕΡΜΟΔΥΝΑΜΙΚΑ ΔΕΔΟΜΕΝΑ 1 Εισαγωγή Τα διαγράμματα φάσεων δεν είναι εμπειρικά σχήματα αλλά είναι ουσιαστικής σημασίας

Διαβάστε περισσότερα

ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ. λέγεται κατακόρυφη ασύμπτωτη της γραφικής παράστασης της f; Μονάδες 5

ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ. λέγεται κατακόρυφη ασύμπτωτη της γραφικής παράστασης της f; Μονάδες 5 ΘΕΜΑ Α ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ ΓΕΝΙΚΟ ΔΙΑΓΩΝΙΣΜΑ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΓΙΑ ΤΟ ΕΤΟΣ 216 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ - ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΠΛΗΡΟΦΟΡΙΚΗΣ ΣΥΝΟΛΟ ΣΕΛΙΔΩΝ:

Διαβάστε περισσότερα

ΤΕΣΤ Α2 ΟΜΑΔΑ Ι. παράγωγος είναι αρνητική: f (x) = 1 2x, f

ΤΕΣΤ Α2 ΟΜΑΔΑ Ι. παράγωγος είναι αρνητική: f (x) = 1 2x, f ΤΕΣΤ Α ΟΜΑΔΑ Ι Θεωρούμε την συνάρτηση: f() = pln(+ ) για, με p>. Να διερευνηθεί αν είναι κυρτή η κοίλη. Να βρεθούν οι τιμές της παραμέτρου p για τις οποίες η μέγιστη τιμή της βρίσκεται στο =.. Η συνάρτηση

Διαβάστε περισσότερα

ΑΝΤΙΣΤΡΕΠΤΕΣ ΘΕΡΜΟΔΥΝΑΜΙΚΕΣ ΜΕΤΑΒΟΛΕΣ ΘΕΩΡΙΑ

ΑΝΤΙΣΤΡΕΠΤΕΣ ΘΕΡΜΟΔΥΝΑΜΙΚΕΣ ΜΕΤΑΒΟΛΕΣ ΘΕΩΡΙΑ ΦΡΟΝΤΙΣΤΗΡΙΑΚΑ ΜΑΘΗΜΑΤΑ ΦΥΣΙΚΗΣ Π.Φ. ΜΟΙΡΑ 6932 946778 ΑΝΤΙΣΤΡΕΠΤΕΣ ΘΕΡΜΟΔΥΝΑΜΙΚΕΣ ΜΕΤΑΒΟΛΕΣ ΘΕΩΡΙΑ Περιεχόμενα 1. Μελέτη Ισόχωρης μεταβολής 2. Μελέτη Ισοβαρής μεταβολής 3. Μελέτη Ισόθερμης μεταβολής 4.

Διαβάστε περισσότερα

4 η ΕΚΑ Α. = g(t)dt, x [0, 1] i) είξτε ότι F(x) > 0 για κάθε x (0, 1] ii) είξτε ότι f(x)g(x) > F(x) για κάθε x (0, 1] και G(x) για κάθε x (0, 1]

4 η ΕΚΑ Α. = g(t)dt, x [0, 1] i) είξτε ότι F(x) > 0 για κάθε x (0, 1] ii) είξτε ότι f(x)g(x) > F(x) για κάθε x (0, 1] και G(x) για κάθε x (0, 1] ΜΑΘΗΜΑ 48 ΓΕΝΙΚΕΣ ΑΣΚΗΣΕΙΣ 4 η ΕΚΑ Α 3. Έστω f συνεχής και γνησίως αύξουσα συνάρτηση στο [, ], µε f() >. ίνεται επίσης συνάρτηση g συνεχής στο [, ], για την οποία ισχύει g() > για κάθε [, ] Ορίζουµε τις

Διαβάστε περισσότερα

Οργάνωση και Αλληλεπιδράσεις σε Μοριακό Επίπεδο

Οργάνωση και Αλληλεπιδράσεις σε Μοριακό Επίπεδο Οργάνωση και Αλληλεπιδράσεις σε Μοριακό Επίπεδο Αναδευτήρας Θερμόμετρο Μονωτικό κάλυμμα Μείγμα αντιδρώντων Συσκευή θερμιδομέτρου Δημήτριος Γαβριήλ Λέκτορας Αριστοτελείου Πανεπιστημίου Θεσσαλονίκης Γεώργιος

Διαβάστε περισσότερα

ΛΥΣΕΙΣ ΤΟΥ ΔΙΑΓΩΝΙΣΜΑΤΟΣ ΣΤΙΣ ΣΥΝΑΡΤΗΣΕΙΣ (Α)

ΛΥΣΕΙΣ ΤΟΥ ΔΙΑΓΩΝΙΣΜΑΤΟΣ ΣΤΙΣ ΣΥΝΑΡΤΗΣΕΙΣ (Α) ΛΥΣΕΙΣ ΤΟΥ ΔΙΑΓΩΝΙΣΜΑΤΟΣ ΣΤΙΣ ΣΥΝΑΡΤΗΣΕΙΣ (Α) 1. Τι ξέρετε για τη γραφική παράσταση της οικογένειας συναρτήσεων με εξίσωση ; H γραφική παράσταση της για κάθε πραγματική τιμή του είναι ευθεία γραμμή η οποία

Διαβάστε περισσότερα

ΘΕΡΜΟΧΗΜΕΙΑ. Είδη ενέργειας ΘΕΡΜΟΔΥΝΑΜΙΚΟΙ ΟΡΙΣΜΟΙ

ΘΕΡΜΟΧΗΜΕΙΑ. Είδη ενέργειας ΘΕΡΜΟΔΥΝΑΜΙΚΟΙ ΟΡΙΣΜΟΙ ΘΕΡΜΟΧΗΜΕΙΑ Όλες οι χημικές αντιδράσεις περιλαμβάνουν έκλυση ή απορρόφηση ενέργειας υπό μορφή θερμότητας. Η γνώση του ποσού θερμότητας που συνδέεται με μια χημική αντίδραση έχει και πρακτική και θεωρητική

Διαβάστε περισσότερα

ΑΝΩΤΕΡΗ ΘΕΡΜΟΔΥΝΑΜΙΚΗ ΜΕΡΟΣ Β Η ΚΑΤΑΣΤΑΤΙΚΗ ΕΞΙΣΩΣΗ ΤΩΝ ΑΠΛΩΝ ΥΛΙΚΩΝ

ΑΝΩΤΕΡΗ ΘΕΡΜΟΔΥΝΑΜΙΚΗ ΜΕΡΟΣ Β Η ΚΑΤΑΣΤΑΤΙΚΗ ΕΞΙΣΩΣΗ ΤΩΝ ΑΠΛΩΝ ΥΛΙΚΩΝ ΑΝΩΤΕΡΗ ΘΕΡΜΟΔΥΝΑΜΙΚΗ ΜΕΡΟΣ Β Η ΚΑΤΑΣΤΑΤΙΚΗ ΕΞΙΣΩΣΗ ΤΩΝ ΑΠΛΩΝ ΥΛΙΚΩΝ ΟΙ ΕΛΕΥΘΕΡΕΣ ΜΕΤΑΒΛΗΤΕΣ ΣΤΗΝ ΘΕΡΜΟΔΥΝΑΜΙΚΗ ΑΝΑΛΥΣΗ ΕΝ ΓΕΝΕΙ, ΟΛΕΣ ΟΙ ΠΑΡΑΜΕΤΡΟΙ ΕΝΟΣ ΑΠΛΟΥ, ΔΟΜΙΚΑ ΟΜΟΙΟΜΟΡΦΟΥ ΥΛΙΚΟΥ (ΔΗΛΑΔΗ ΟΤΑΝ ΟΛΗ

Διαβάστε περισσότερα

Α. Ιοντισμός ασθενούς οξέος και ασθενούς βάσης - Σταθερές ιοντισμού Κα και Κβ.

Α. Ιοντισμός ασθενούς οξέος και ασθενούς βάσης - Σταθερές ιοντισμού Κα και Κβ. Α. Ιοντισμός ασθενούς οξέος και ασθενούς βάσης - Σταθερές ιοντισμού Κα και Κβ. Ο ιοντισμός ασθενούς μονοπρωτικού οξέος ΗΑ, σε αραιό υδατικό διάλυμα, περιγράφεται από τη χημική εξίσωση: ΗΑ + Η 2 Ο Α + Η

Διαβάστε περισσότερα

Στατιστική, Άσκηση 2. (Κανονική κατανομή)

Στατιστική, Άσκηση 2. (Κανονική κατανομή) Στατιστική, Άσκηση 2 (Κανονική κατανομή) Στον πίνακα που ακολουθεί δίνονται οι μέσες παροχές όπως προέκυψαν από μετρήσεις πεδίου σε μια διατομή ενός ποταμού. Ζητείται: 1. Να αποδειχθεί ότι το δείγμα προσαρμόζεται

Διαβάστε περισσότερα