Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download ""

Transcript

1

2

3

4

5

6

7

8 ϕ n n

9 n

10

11 n = 1,..., N

12 n n

13 {X I, Y I } {X r, Y r }

14 (x c, y c ) q r = x a y a θ X r = [x r, y r, θ r ] X I = [x I, y I, θ I ] X I = R(θ)X r R(θ) R(θ) = cosθ sinθ 0 sinθ cosθ Ẋ I = R(θ)Ẋr

15 y r ẏa r = 0 ẋ a sinθ + ẏ a cosθ = 0 θ R, θ L u DR = R θ R u DL = R θ L R ẋ DR = ẋ a + L θcosθ ẋ DL = ẋ a L θcosθ ẏ DR = ẏ a + L θsinθ ẏ DL = ẏ a L θsinθ

16 ẋ a cosθ + ẏ a sinθ + θl R θ R = 0 ẋ a cosθ + ẏ a sinθ θl R θ L = 0 sinθ cosθ cosθ sinθ L R 0 cosθ sinθ L 0 R ẋ a ẏ ȧ θ θ R θ L = Λ(q) q = 0 u = u r + u L 2 = R θ R + θ L 2 ω = u r u L 2L = R θ R θ L. 2 ẋ r a = u, ẏ r a = 0, θ = ω q I = R cosθ R cosθ 2 2 R sinθ R sinθ 2 2 R 2L R 2L [ ] θr θ L

17 q I = ẋ r a ẏ r a θ = cosθ 0 [ sinθ 0 u ω 0 1 ] u [ u max, u max ] ω [ u max, u max ] ω = u r L L L u L ω max ux = ±ω max u x L u max ωx = ±u max L ω x (ω u) = ± 1 L (u ± u max)

18 C I X c Y c f C Z c P = (X, Y, Z) p = (x, y) x = f X Z, y = f Y Z (R 3 R 2 ) I P p CP I W H (w, h) (x, y) I (X, Y, Z) w = x p w + w 0 = f p w X Z + w 0 h = y p h + h 0 = f p h Y Z + h 0 p w, p h (w 0, h 0 ) Z c I

19 I w, p w, f X c Z c θ w W θ w 2 = arctan p 2 w f W 2 θ w = 2arctan p w f (X i, Y i, Z i ) P i P j P j C P i p i

20 p i p i I P i (w i, h i ) P i X i = (w i w 0 )p w Z i f Y i = (h i h 0 )p h Z i f CP i P i C Y i Y 0 Z i = fy 0 (h i h 0 )p h X i = (w i w 0 )p w Z i f

21 R j R i R j l ij β ij (u i, ω i ) R i l ij P i, P j ϕ ij R j P I, P j l ij = Z 2 i + X2 i ϕ ij = atan2(z i, X i ) π 2 l ij = (x i x j ) 2 + (y i y j ) 2 ϕ ij = atan2(y i y j, x i x j ) θ j l ij = u i cos(ϕ ij + θ j θ i ) u j cosϕ ij ϕ ij = u isin(ϕ ij + θ j θ i ) u j cosϕ ij l ij ω j

22 l ij ϕ ij θ i θ j u i ω i = u i cos(ϕ ij + θ j θ i ) u j cosϕ ij u i sin(ϕ ij +θ j θ i ) u j cosϕ ij l ij ω i ω j 0 0 ω j + m(t) ẋ(t) = f[x(t), υ(t)] + m(t) ] z(t) = [ lij ϕ ij = h[x(t)] + s(t) m N(0, M) s N(0, S) x M, S x[k + 1] = f(ˆx[k], υ[k]) + F x (x[k] ˆx[k k]) + F υ υ[k] + F m m[k] z[k + 1] = h(ˆx[k]) + H x (ˆx[k + 1 k] x[k]) + H s s[k] F x, F υ, F m, H x, H s f h x[k + 1] z[k + 1] x[k + 1 k] = x[k] ˆx[k + 1 k] = F x x[k k] + F υ υ[k] + F m m[k] z[k + 1 k] = z[k + 1] h[k + 1 k] = H x x + H s s[k] ˆx[k] x[k + 1] ˆx[k + 1 k] = f(ˆx[k], υ[k])

23 ˆP [k + 1 k] = F x ˆP [k k]f x + F m ˆM[k]F m [k + 1] = z[k + 1] h(ˆx[k + 1 k]) ˆx[k + 1 k] K[k + 1] = ˆP [k + 1 k]h x (H x ˆP [k + 1 k]h x + H s ŜH S ) 1 ˆx[k + 1 k + 1] = ˆx[k + 1 k] + K[k + 1][k + 1] ˆP [k + 1 k + 1] = ˆP [k + 1 k] K[k + 1]H x ˆP [k + 1 k] M S f, h R j R i

24 rc max 2a c u l < 0 l ψ l = (x l x f ) 2 + (y l y f ) 2 ψ = π arctan2(y f y l, x l x f ) θ l

25 x l, y l x f, y f θ l l = 1 2l [2(x l x f )(ẋ l x f ) + 2(y l y f )(ẏ l y f )] = 1 l [(x l x f )(u l cosθ l u f cosθ f ) + (y l y f )(u l sinθ l u f sinθ f )] = u f [ x f x l l cosθ f + y f yl sinθ f ] + u l [ x l x f l l cosθ l + y l yf sinθ l ] l l (x l x f ) (y l y f ) x l x f l y l y f l = cos(θ l + ψ) = sin(θ l + ψ) l = u f (cos(θ l + ψ)cosθ f + sin(θ l + ψ)sinθ f ) u l (cos(θ l + ψ)cosθ l + sin(θ l + ψ)sinθ l ) = u f cos(θ l + ψ θ f ) u l cos(θ l + ψ θ l ) = u f cos(ψ + θ l θ f ) u l cosψ

26 ψ = θ d dt arctan2(y f y l, x l x f ) 1 ( y f ẏ l )(x l x f ) (y f y l )(ẋ l x f ) = ω l 1 + ( y f y l x l x f ) 2 (x l x f ) 2 = ω l 1 l 2 [u f(cosθ f (y f y l ) + sinθ f (x l x f )) + u l (sinθ l (x f x l ) + cosθ l (y l y f ))] = ω l 1 l [u f(cosθ f sin(θ l + ψ) sinθ f cos(θ l + ψ)) + u l (sinθ l cos(θ l + ψ) cosθ l sin(θ l + ψ) = ω l u f sin(ψ + θ l θ f ) l + u l sinψ l l ψ β = cosγ 0 γ l [ uf ω f ] + cosψ 0 ψ l [ ul ω l ] ż = Aυ f + Bυ l υ l = [ u l ω l ] υ f = [ u f ω f ] z = [ l ψ β ] R 3 β = θ l θ f γ = β + ψ

27 ż = Aυ f + Bυ l y = Cz [ ] C = y y d z y υ f [ ] z = l ψ R 2 z = Ãυ f + Bυ l β = ω l ω f y = z ẏ = Ãυ f + Bυ l. υ f = Ã 1 (R Bυ l ) R

28 y R ẏ = R ω f z x r A Ã = [ cosγ d γ γ l d γ l ( sina c a = arctan cosa c r max = d 2 + r max c ] d r max c ) 2 2dr max cosa c c

29 R R = ke z = [ k1 e l k 2 e ψ k 1 k 2 e z = ] [ e l e ψ ] = [ l d l ψ d ψ z z d = [ l d ψ d ] ] z = k( z d z), β = ω l ω f y = z υ f υ f = [ uf ω f ] = [ ul β + k 1 e l γ (k 2 e ψ + ω l )l γ u l β + k 1e l γ + (k d d 2e ψ + ω l ) l γ d ] z = z d e l e ψ ė l = k 1 (l d l) = k 1 e l e ψ = k 2 (ψ d ψ) = k 2 e ψ V 1 (e z ) = 1 2 (e2 l + e 2 ψ) > 0, e z 0 V 1 (0) = 0

30 V 1 (e z ) = e l ė l + e ψ e ψ = k 1 e 2 l k 2 e 2 ψ < 0, e z 0 V 1 (0) = 0 a 1 e z λ V 1 (e z ) a 2 e z λ V 1 (e z ) a 3 e z λ a 1 = a 2 = 1, a 2 3 = k 1 + k 2, λ = 2 β = ω l ω f y = k( z d z) l ψ β β C = {l ψ β} R 3 K

31 C = {l ψ} R 2 K = { z C l < r max, ψ < a} z z d z(t = 0), z d K z K t 0 l r max ϕ a ϕ = β +ψ +π M C R 3 M = {z C h i (z) 0, i = 1, 2} h 1 = l r max h 2 = ϕ a h 1 0 h 2 0 β

32 u f u l θ f θ l + π e β = β + π e β = ω l ω f = u l d sine β + δ(e β, e tildez, ω l ) δ = ω l [1 + l d cos(e β + ψ)] + 1 d [k 1e l sin(e β + ψ) + k 2 e ψ lcos(e β + ψ)] l ψ e z = 0 e β (e z = 0) = u l d sine β + δ(e β, 0, ω l ) ṅ = A 0 n A 0 H(s) e β = ω l + 1 d [u lsine β + ω l l d cos(e β + ψ d )] = ω l + u l ω l l d sinψ d sine β + ω ll d cosψ d cose β d d = ω l + ρ 1 cos(e β ρ 2 ) (ul ) 2 ( ) 2 ( ) ω l l d sinψ d ωl l d cosψ d ul ω l l d sinψ d ρ 1 = +, ρ 2 = arctan. d d ω l l d cosψ d e eq β = ρ 2 +arccos( ω l ρ 1 )

33 e eq β e β = f(e β ) e β = f(e eq β ) + f e β (e eq β )(e β e eq β ) = ρ 1sin e β = ρ 1 1 ( ωl ρ 1 ( ( arccos ω )) l e β ρ 1 2 ) e β V 2 ( e β ) = e β > 0 e β 0 V 2 (0) = 0 V 2 ( e β ) = ρ 1 1 ( ωl ρ 1 V 2 (0) = 0 2 ) 2 e β < 0 e β 0 ρ 1 > 0 e eq β u l = U ω l = 0 e β = U l sine β e eq β = 0 β π ϕ = ψ + β + π ψ d z d K ψ d < a ϕ < a h 2 < 0 ρ 1 0 u l < 0

34 t > 0 u l = U ω l = Ω ϕ ϕ eq = e eq β ) + ψeq = ρ 2 + arccos ( Ωρ1 + ψ d h 2 < 0 ϕ eq < a ψ d ψ d = 0 ψ d = π 6 ψ d = π 6 l d = 3 l d l d = 3 l d = 1 l d = 6 ψ d = 0 ϕ ϕ ω l κ = ω l u l u l ( 1 ϕ eq κ = arctan l ) dsinψ d d + arccos l d cosψ d ( 1 l ) + ψ d 2 κ dsinψ d + (ld cosψ d ) 2 κ

35 ψ d ϕ eq 0 = ψ d l d h 2 < 0 δ(e β, e z, ω l ) δ(e β, e z, ω l ) = 0 e β = f(t, e β ) = u l d sine β V 3 (e β ) = 1 2 e2 β > 0 0, V 3 (0) = 0 V 3 (e β ) = e β e β = u l d e βsine β e β u l < 0 e β 0 e β = 0 e β sine β > 0 e β < π V 3 (t, e β ) : [0, ] D R D = {e β R e β < r}

36 [0, ] D c 1 e 2 β V 3 (t, e β ) c 2 e 2 β V t + V f(t, e β ) c 3 e 2 β e β V e β c 4 e β c 1 = c 2 = 1 2, c 4 = 1 c 3 = u l d r2 3! + r4 5! c 3 D r c 3 u l d e β = 0 D ω l δ(t, e β, e z, ω l ) ϵ < c 3 c1 θr u l θr c 4 c 2 d t > 0 θ < 1 e β (t 0 ) < c1 c 2 r = r e β (t) k ( ζ(t t 0 )) e β (t 0 ) t 0 t < t 1 e β (t) b t t 1 t 1 k = c2 c 1 = 1 ζ = (1 θ)c 3 (1 θ) u l 2c 2 2d b = c 4 c2 ϵ c 3 c 1 θ d ϵ u l θ V (t, ) [0, ] D D = { R 3 e < c} c > 0 V (t, ) 0

37 h 1 h 2 M z(t) M M ż T z C T z C C z M z(t) M h i, i 1, 2 M dh i dt = h iż < 0 {z C h i (z) = 0} h i J h (z) h = (h 1, h 2 ) : R 3 R 2 J h (z)ż < 0, J h (z) = [ h1 l h 2 l h 1 ψ h 2 ψ h 1 β h 2 β ] M l = r max ϕ = ±a t = 0

38 l = r max h 1 = 0 ϕ = a h 2 = 0 h 2 ḣ 2 ϕ=a,l=rmax < 0 d(ψ + e β a) ϕ=a,l=rmax < 0 dt k 1 (l d r max )sina d + (k 2 e ψ + ω l )(1 + r max d cosa) + u l d sine β < 0 l d < r max a (0, π) k 1 > (k 2e ψ + ω l )(d + r max cosa) + u l sin(a ψ) (r max l d )sina h 1 < 0 l l d ḣ1 < 0 l = r max, ϕ = a ḣ 2 ϕ= a,l=rmax < 0 d( ψ e β a) ϕ= a,l=rmax < 0 dt k 1 > (k 2e ψ + ω l )(d + r max cosa) u l sin(a + ψ) (l d r max )sina M z(t = 0) M κ ψ d κ < 0 ω l > 0 κ > 0 ω l < 0 ϕ

39 κ = 0 κ = 0.3 κ = 0.6 ψ d = a 3 κ = 0 κ = 0.3 κ = 0.6 ψ d = a 3 κ = 0 κ = 0.3 κ = 0.6 ψ d = a 3 κ = 0 κ = 0.3 κ = 0.6 ψ d = a 3 k 1 ψ [ a, a] d = 0.5, a = π 4, r max = 5, l d = 2 k 2 = 0.4

40 d = 0.5 r max = 6 2a a = π 3 L F 1, F 2 l d = 4 ψ d = ± a 3 u l = 2 κ l ϕ κ l ( ϕ a) 0.26 κ l κ l 0.26 F 1 F 2 κ l = 1 κ 10 l = 1 5 κ l = 1 10 κ l = 1 5 L F 1, F 2

41 e l = l d l, e ψ = ψ d ψ ϕ F 1 F 2 ψ F 1 F 2 F 1 F 2 l d, ψ d ϕ L l ψ ϕ

42 F 1 F 2 ϕ

43 O i i = 1,..., n q s = [x s, y s, θ s ] q g = [x g, y g, θ g ] q(τ) τ [0, T ] κ max ω u = ẏ d(atan ẋ) dt ẋ2 + ẏ = 1 2 (1 + ( ) ẏ 2)(ẋ ẋ + ẏ) 1/2 ẋÿ ẍẏ (ẋ 2 + ẏ 2 ) 1 3/2 ρ min d( ẏ ẋ ) dt

44 ρ min = 1 κ max q(τ) I( q( )) = T 0 ẋ2 (τ) + ẏ 2 (τ)dτ q(0) = q s q(t ) = q g A( q(τ)) O i =, τ [0, T ] Λ( q) q = 0, τ [0, T ] ẋÿ ẍẏ (ẋ 2 + ẏ 2 ) 1 3/2 ρ min A(q(t)) t q = f(q, υ) ẋ = ucosθ x(0) = x s x(t ) = x g ẏ = usinθ y(0) = y s y(t ) = y g θ = κu θ(0) = θ s θ(t ) = θ g ṡ = ẋ 2 + ẏ 2 s(0) = 0 υ = (u, ω) U R 2 U = { 1, +1} [ 1 ρ min, 1 ρ min ] I(ω) = T 0 ṡdτ

45 O i K i (q) 0, i = 1,..., m q H(q, s, υ, p, λ, m) = pṡ + λ f(q, υ) + m K(q) m i = 0, K i (q) < 0 0, K i (q) = 0. K i (q) = 0 K i (q) < 0 H(q, s, υ, λ) = pṡ + λ 1 ucosθ + λ 2 usinθ + λ 3 κu λ = (λ, p) λ = Hq (q, υ, λ) λ 1 = 0 λ 2 = 0 λ 3 = λ 1 usinθ λ 2 ucosθ ṗ = 0 δ = λ λ 2 2 α = arctan( λ 2 λ 1 ) H(q, s, υ, λ) = pṡ + δucos(θ α) + λ 3 κu λ 3 = δusin(θ α)

46 υ H(q, s, υ, λ) H(q, s, υ, λ) δucos(θ α) 0 λ 3 κ 0. H = λ κ 3 = 0 λ 3 = 0 θ = α α + π α H κ 0 κ = ± 1 ρ min ρ min ρ min X r d A 1 (q) C = R 2 S 1 S = {(x, y) R 2 x 2 + y 2 = 1} C obs C C obs = {q C A 1 (q) O }

47 q A 1 (q) O = {O 1,..., O n } C free = C \ C obs ( 2 {q C obs = {q C A i (q) O }) C A1 (q) A 2 (q) } i=1 {q C A 1 (q) A 2 (q) } l d d A(q) h = rmax c + d rmax c C obs = {q C A(q) O } = {q C c(x l, y l, h) O } ψ A(q) ψ [ a, a] n ( π, π ) ψ 2 2 C obs C obs R 2 θ l

48 O i A(q) (x l, y l ) C obs q int(o) int(a(q)) = q int(c obs ) int q C obs C obs C free C free C free C obs q(τ) C free q s

49 q g ( υ = [u max, 0] ) ( υ = [u max, ω max ] ) θ s θ s ρ min (x s, y s ) θ s C obs n h n n 1 ω max = u max h < ρ h min ω max = u max ρ min ρ min ρ = max(ρ min, h) ρ min (x s, y s ) θ s (x s, y s ) q g (x g, y g ) θ g (x g, y g )

50 h A(q) ρ min G G i j

51 L F 1, F 2 L l d = 3 L κ l = 1 3 F 1 F 2 L F 1 F 2 L L F 1, F 2 h = r c max+d = 6.5 ρ min = 3 Ω max = V max h = 2 6.5

52 C obs A(q) F 1 F 2 L l d < h L h = l d + d

53 n G(V, A) V = {r 1,..., r n } A = {(i, j) i, j V, i j l ij r max, ϕ ij a} (i, j) A r j r i G r i N i = {j V (i, j) A} R i V, i = 1,..., m n R 1 = {r 1 } r j R i, i > 1 L k F j r k R i 1 R i

54 R 1 = {r 1 } R 2 = {r 2, r 3 } R 3 = {r 4, r 5, r 6 } R 4 = {r 7, r 8, r 9 } [ π, π] A(q) ν G h = ν rc max + d, ν h = νr c maxsina + d, ν A(q) e i l = l d i l i, e i ψ = ψd i ψ i e i β = β i+π V i = 1 2 ( (e i l ) 2 + (e i ψ) 2 + (e i β) 2)

55 L k F i u k < 0 ω k < Ω max k V = n i=2 V i n u j < 0 ω j < Ω max j j V \ R m u k > 0 R 2 r 1 R 1 d l ψ R j j {1,..., m 2 < m n} ( i = 0 (ω 1 = 0) i [2, n]) r 1 ω 1 = ±Ω max 1 r i R 2

56 L 1 F 2 L 2 F 3 β i r 1 r j R 3 L k F j r k R 2 c j = l j 2(1 cosbk ) b k = e k β eq r j R 4 L k F j, r k R 3 c j = l 2 j + α2 2l j αcosδ α = c 2 k + l2 j 2c kl j cos(ψ j ϕ eq k + ζ) ζ = arccos c k 2l k δ = ζ + ϕ 0 k ψ j λ λ = arccos α2 + c 2 k l2 j 2αc k ϕ 0 k = ψ k ϕ eq k

57 r 3 R 3 r 4 R 4 s ij r i r j L lead(i) F i L lead(j) F j s ij > c i + c j + 2d c c i = l 2 i + α2 i 2l iα i cosδ i, r i R j, j [3, m] c i = 0, r i R 1 R 2

58 α i = c 2 lead(i) + l2 i 2c lead(i)l i cos(ψ i ϕ eq lead(i) + ζ i) ζ i = arccos c lead(i) 2l lead(i) λ i = arccos α2 i + c 2 lead(i) l2 i 2α i c lead(i) δ i = ζ i + ψ lead(i) ψ i λ i, r i R j, j [4, m] δ i = e lead(i) β eq, r i R 3 u j, ω j r j L i F j u j = u i cosβ j ω i l d j sinγ j = u i (cosβ j κ i l d j sinγ j ) ω j = u i d sinβ j + ω i l d j d cosγ j = u i d (sinβ j + κ i l d j cosγ j ) κ i = ω i u i r i r j R 2 r i υ = [Vi max, 0] υ =, V max ] ω j u j [V max i i κ max i r i V max j ( ) = Vi max κ max i lj d sin(e j β eq + π + ψj d ) cos(e j β eq + π) Ω max j = V id max κmax i lj d cos(π + ψj d ) ( V i max κ max i e j β eq = ρ j 2 + arccos ρ j 1 r k r j ) V max k = V max j cos(e k β eq + π) ω j ( β k =e k βeq +π ) l d ksin(e k β eq + π + ψ d k) Ω max k = Ω max j l d k d cos(π + ψd k)

59 (ω u) = ± 1 (u ± u L max) { u max, u max } { ω max, ω max } R m ϕ i a i V \ r 1 r 1 m d = 0.5 r max = 6 2a a = π 3 R 1 = {r 1 } R 2 = {r 2, r 3 } R 3 = {r 4, r 5 } R 2 R 3 l d = [4, 2] ψ d = ±[ π 5, π 6 ] r 1 u 1 = 1 κ l = 0.1 ρ min = 10 h = 2r max sina = 10.4

60 r 1 r 2 r 3 r 4 r 5 e l = l d l, e ψ = ψ d ψ ϕ

61 n n G(V, A) G

62 n

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

Π Ο Λ Ι Τ Ι Κ Α Κ Α Ι Σ Τ Ρ Α Τ Ι Ω Τ Ι Κ Α Γ Ε Γ Ο Ν Ο Τ Α

Π Ο Λ Ι Τ Ι Κ Α Κ Α Ι Σ Τ Ρ Α Τ Ι Ω Τ Ι Κ Α Γ Ε Γ Ο Ν Ο Τ Α Α Ρ Χ Α Ι Α Ι Σ Τ Ο Ρ Ι Α Π Ο Λ Ι Τ Ι Κ Α Κ Α Ι Σ Τ Ρ Α Τ Ι Ω Τ Ι Κ Α Γ Ε Γ Ο Ν Ο Τ Α Σ η µ ε ί ω σ η : σ υ ν ά δ ε λ φ ο ι, ν α µ ο υ σ υ γ χ ω ρ ή σ ε τ ε τ ο γ ρ ή γ ο ρ ο κ α ι α τ η µ έ λ η τ ο ύ

Διαβάστε περισσότερα

l 1 p r i = ρ ij α j + w i j=1 ρ ij λ α j j p w i p α j = 1, α j 0, j = 1,..., p j=1 R B B B m j [ρ 1j, ρ 2j,..., ρ Bj ] T = }{{} α + [,,..., ] R B p p α [α 1,..., α p ] [w 1,..., w p ] M m 1 m 2,

Διαβάστε περισσότερα

m i N 1 F i = j i F ij + F x

m i N 1 F i = j i F ij + F x N m i i = 1,..., N m i Fi x N 1 F ij, j = 1, 2,... i 1, i + 1,..., N m i F i = j i F ij + F x i mi Fi j Fj i mj O P i = F i = j i F ij + F x i, i = 1,..., N P = i F i = N F ij + i j i N i F x i, i = 1,...,

Διαβάστε περισσότερα

F (x) = kx. F (x )dx. F = kx. U(x) = U(0) kx2

F (x) = kx. F (x )dx. F = kx. U(x) = U(0) kx2 F (x) = kx x k F = F (x) U(0) U(x) = x F = kx 0 F (x )dx U(x) = U(0) + 1 2 kx2 x U(0) = 0 U(x) = 1 2 kx2 U(x) x 0 = 0 x 1 U(x) U(0) + U (0) x + 1 2 U (0) x 2 U (0) = 0 U(x) U(0) + 1 2 U (0) x 2 U(0) =

Διαβάστε περισσότερα

ΜΗΧΑΝΙΣΜΟΙ & ΕΙΣΑΓΩΓΗ ΣΤΟ ΣΧΕ ΙΑΣΜΟ ΜΗΧΑΝΩΝ. Ενότητα 5 η : Παραδείγµατα 3 µηχανισµών. χώρο (3 )

ΜΗΧΑΝΙΣΜΟΙ & ΕΙΣΑΓΩΓΗ ΣΤΟ ΣΧΕ ΙΑΣΜΟ ΜΗΧΑΝΩΝ. Ενότητα 5 η : Παραδείγµατα 3 µηχανισµών. χώρο (3 ) ΜΗΧΑΝΙΣΜΟΙ & ΕΙΣΑΓΩΓΗ ΣΤΟ ΣΧΕ ΙΑΣΜΟ ΜΗΧΑΝΩΝ Ενότητα 5 η Παραδείγµατα µηχανισµών στο χώρο (3 ) Παράδειγµα 1 ο : Ροµποτικός βραχίονας RPPRR R: revolute pair P: prismatic pair Βραχίονας Τηλεσκοπικός βραχίονας

Διαβάστε περισσότερα

! " # $ % & $ % & $ & # " ' $ ( $ ) * ) * +, -. / # $ $ ( $ " $ $ $ % $ $ ' ƒ " " ' %. " 0 1 2 3 4 5 6 7 8 9 : ; ; < = : ; > : 0? @ 8? 4 A 1 4 B 3 C 8? D C B? E F 4 5 8 3 G @ H I@ A 1 4 D G 8 5 1 @ J C

Διαβάστε περισσότερα

Α Ρ Ι Θ Μ Ο Σ : 6.913

Α Ρ Ι Θ Μ Ο Σ : 6.913 Α Ρ Ι Θ Μ Ο Σ : 6.913 ΠΡΑΞΗ ΚΑΤΑΘΕΣΗΣ ΟΡΩΝ ΔΙΑΓΩΝΙΣΜΟΥ Σ τ η ν Π ά τ ρ α σ ή μ ε ρ α σ τ ι ς δ ε κ α τ έ σ σ ε ρ ι ς ( 1 4 ) τ ο υ μ ή ν α Ο κ τ ω β ρ ί ο υ, η μ έ ρ α Τ ε τ ά ρ τ η, τ ο υ έ τ ο υ ς δ

Διαβάστε περισσότερα

χ (1) χ (3) χ (1) χ (3) L x, L y, L z ( ) ħ2 2 2m x + 2 2 y + 2 ψ (x, y, z) = E 2 z 2 x,y,z ψ (x, y, z) E x,y,z E x E y E z ħ2 2m 2 x 2ψ (x) = E xψ (x) ħ2 2m 2 y 2ψ (y) = E yψ (y) ħ2 2m 2 z 2ψ (z)

Διαβάστε περισσότερα

2. Α ν ά λ υ σ η Π ε ρ ι ο χ ή ς. 3. Α π α ι τ ή σ ε ι ς Ε ρ γ ο δ ό τ η. 4. Τ υ π ο λ ο γ ί α κ τ ι ρ ί ω ν. 5. Π ρ ό τ α σ η. 6.

2. Α ν ά λ υ σ η Π ε ρ ι ο χ ή ς. 3. Α π α ι τ ή σ ε ι ς Ε ρ γ ο δ ό τ η. 4. Τ υ π ο λ ο γ ί α κ τ ι ρ ί ω ν. 5. Π ρ ό τ α σ η. 6. Π Ε Ρ Ι Ε Χ Ο Μ Ε Ν Α 1. Ε ι σ α γ ω γ ή 2. Α ν ά λ υ σ η Π ε ρ ι ο χ ή ς 3. Α π α ι τ ή σ ε ι ς Ε ρ γ ο δ ό τ η 4. Τ υ π ο λ ο γ ί α κ τ ι ρ ί ω ν 5. Π ρ ό τ α σ η 6. Τ ο γ ρ α φ ε ί ο 1. Ε ι σ α γ ω

Διαβάστε περισσότερα

.. ntsets ofa.. d ffeom.. orp ism.. na s.. m ooth.. man iod period I n open square. n t s e t s ofa \quad d ffeom \quad orp ism \quad na s \quad m o

.. ntsets ofa.. d ffeom.. orp ism.. na s.. m ooth.. man iod period I n open square. n t s e t s ofa \quad d ffeom \quad orp ism \quad na s \quad m o G G - - -- - W - - - R S - q k RS ˆ W q q k M G W R S L [ RS - q k M S 4 R q k S [ RS [ M L ˆ L [M O S 4] L ˆ ˆ L ˆ [ M ˆ S 4 ] ˆ - O - ˆ q k ˆ RS q k q k M - j [ RS ] [ M - j - L ˆ ˆ ˆ O ˆ [ RS ] [ M

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ Τμήμα Φυσικής Πτυχιακή εξέταση στη Μηχανική ΙI 20 Σεπτεμβρίου 2007

ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ Τμήμα Φυσικής Πτυχιακή εξέταση στη Μηχανική ΙI 20 Σεπτεμβρίου 2007 ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ Τμήμα Φυσικής Πτυχιακή εξέταση στη Μηχανική ΙI 0 Σεπτεμβρίου 007 Τμήμα Π. Ιωάννου & Θ. Αποστολάτου Απαντήστε στα ερωτήματα που ακολουθούν με σαφήνεια, ακρίβεια και απλότητα. Όλα τα

Διαβάστε περισσότερα

!!" #7 $39 %" (07) ..,..,.. $ 39. ) :. :, «(», «%», «%», «%» «%». & ,. ). & :..,. '.. ( () #*. );..,..'. + (# ).

!! #7 $39 % (07) ..,..,.. $ 39. ) :. :, «(», «%», «%», «%» «%». & ,. ). & :..,. '.. ( () #*. );..,..'. + (# ). 1 00 3 !!" 344#7 $39 %" 6181001 63(07) & : ' ( () #* ); ' + (# ) $ 39 ) : : 00 %" 6181001 63(07)!!" 344#7 «(» «%» «%» «%» «%» & ) 4 )&-%/0 +- «)» * «1» «1» «)» ) «(» «%» «%» + ) 30 «%» «%» )1+ / + : +3

Διαβάστε περισσότερα

1.1.1 Εσωτερικό και Εξωτερικό Γινόμενο Διανυσμάτων

1.1.1 Εσωτερικό και Εξωτερικό Γινόμενο Διανυσμάτων 3 1.1 Διανύσματα 1.1.1 Εσωτερικό και Εξωτερικό Γινόμενο Διανυσμάτων ΑΣΚΗΣΗ 1.1 Να βρεθεί η γωνία που σχηματίζουν τα διανύσματα î + ĵ + ˆk και î + ĵ ˆk. z k i j y x Τα δύο διανύσματα που προκύπτουν από

Διαβάστε περισσότερα

Gapso t e q u t e n t a g ebra P open parenthesis N closing parenthesis fin i s a.. pheno mno nd iscovere \ centerline

Gapso t e q u t e n t a g ebra P open parenthesis N closing parenthesis fin i s a.. pheno mno nd iscovere \ centerline G q v v G q v H 4 q 4 q v v ˆ ˆ H 4 ] 4 ˆ ] W q K j q G q K v v W v v H 4 z ] q 4 K ˆ 8 q ˆ j ˆ O C W K j ˆ [ K v ˆ [ [; 8 ] q ˆ K O C v ˆ ˆ z q [ R ; ˆ 8 ] R [ q v O C ˆ ˆ v - - ˆ - ˆ - v - q - - v -

Διαβάστε περισσότερα

1 + t + s t. 1 + t + s

1 + t + s t. 1 + t + s Κεφάλαιο 1 Μετρικοί χώροι Ομάδα Α 1.1. Εστω (X, ) χώρος με νόρμα. Δείξτε ότι η νόρμα είναι άρτια συνάρτηση και ικανοποιεί την ανισότητα x y x y για κάθε x, y X. Υπόδειξη. Για κάθε x X έχουμε x = ( 1)x

Διαβάστε περισσότερα

Q π (/) ^ ^ ^ Η φ. <f) c>o. ^ ο. ö ê ω Q. Ο. o 'c. _o _) o U 03. ,,, ω ^ ^ -g'^ ο 0) f ο. Ε. ιη ο Φ. ο 0) κ. ο 03.,Ο. g 2< οο"" ο φ.

Q π (/) ^ ^ ^ Η φ. <f) c>o. ^ ο. ö ê ω Q. Ο. o 'c. _o _) o U 03. ,,, ω ^ ^ -g'^ ο 0) f ο. Ε. ιη ο Φ. ο 0) κ. ο 03.,Ο. g 2< οο ο φ. II 4»» «i p û»7'' s V -Ζ G -7 y 1 X s? ' (/) Ζ L. - =! i- Ζ ) Η f) " i L. Û - 1 1 Ι û ( - " - ' t - ' t/î " ι-8. Ι -. : wî ' j 1 Τ J en " il-' - - ö ê., t= ' -; '9 ',,, ) Τ '.,/,. - ϊζ L - (- - s.1 ai

Διαβάστε περισσότερα

k k ΚΕΦΑΛΑΙΟ 1 G = (V, E) V E V V V G E G e = {v, u} E v u e v u G G V (G) E(G) n(g) = V (G) m(g) = E(G) G S V (G) S G N G (S) = {u V (G)\S v S : {v, u} E(G)} G v S v V (G) N G (v) = N G ({v}) x V (G)

Διαβάστε περισσότερα

Ó³ Ÿ , º 1(130).. 7Ä ±μ. Ñ Ò É ÉÊÉ Ö ÒÌ ² μ, Ê

Ó³ Ÿ , º 1(130).. 7Ä ±μ. Ñ Ò É ÉÊÉ Ö ÒÌ ² μ, Ê Ó³ Ÿ. 006.. 3, º 1(130).. 7Ä16 Š 530.145 ˆ ƒ ˆ ˆŒ ˆŸ Š ƒ.. ±μ Ñ Ò É ÉÊÉ Ö ÒÌ ² μ, Ê É μ ² Ö Ó μ μ Ö μ μ²õ μ É μ ÌÉ ±ÊÎ É ² ³ É μ - Î ±μ μ ÊÌ ±μ Ëμ ³ μ- ±² μ ÒÌ ³μ ²ÖÌ Ê ±. ³ É ÔÉμ μ μ μ Ö, Ö ²ÖÖ Ó ±μ³

Διαβάστε περισσότερα

ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΤΜΗΜΑ ΜΗΧΑΝΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΤΟΜΕΑΣ ΒΙΟΜΗΧΑΝΙΚΗΣ ΔΙΟΙΚΗΣΗΣ ΚΑΙ ΕΠΙΧΕΙΡΗΣΙΑΚΗΣ ΕΡΕΥΝΑΣ

ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΤΜΗΜΑ ΜΗΧΑΝΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΤΟΜΕΑΣ ΒΙΟΜΗΧΑΝΙΚΗΣ ΔΙΟΙΚΗΣΗΣ ΚΑΙ ΕΠΙΧΕΙΡΗΣΙΑΚΗΣ ΕΡΕΥΝΑΣ ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΤΜΗΜΑ ΜΗΧΑΝΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΤΟΜΕΑΣ ΒΙΟΜΗΧΑΝΙΚΗΣ ΔΙΟΙΚΗΣΗΣ ΚΑΙ ΕΠΙΧΕΙΡΗΣΙΑΚΗΣ ΕΡΕΥΝΑΣ ΑΕΡΟΔΥΝΑΜΙΚΗ Διδάσκων: Δρ. Ριζιώτης Βασίλης Μόνιμη ΆκυκληΡοή Άδεια Χρήσης Το παρόν εκπαιδευτικό

Διαβάστε περισσότερα

ΗλιακήΓεωµετρία. Γιάννης Κατσίγιαννης

ΗλιακήΓεωµετρία. Γιάννης Κατσίγιαννης ΗλιακήΓεωµετρία Γιάννης Κατσίγιαννης ΗηλιακήενέργειαστηΓη Φασµατικήκατανοµήτηςηλιακής ακτινοβολίας ΗκίνησητηςΓηςγύρωαπότονήλιο ΗκίνησητηςΓηςγύρωαπότονήλιοµπορεί να αναλυθεί σε δύο κύριες συνιστώσες: Περιφορά

Διαβάστε περισσότερα

Z L L L N b d g 5 * " # $ % $ ' $ % % % ) * + *, - %. / / + 3 / / / / + * 4 / / 1 " 5 % / 6, 7 # * $ 8 2. / / % 1 9 ; < ; = ; ; >? 8 3 " #

Z L L L N b d g 5 *  # $ % $ ' $ % % % ) * + *, - %. / / + 3 / / / / + * 4 / / 1  5 % / 6, 7 # * $ 8 2. / / % 1 9 ; < ; = ; ; >? 8 3  # Z L L L N b d g 5 * " # $ % $ ' $ % % % ) * + *, - %. / 0 1 2 / + 3 / / 1 2 3 / / + * 4 / / 1 " 5 % / 6, 7 # * $ 8 2. / / % 1 9 ; < ; = ; ; >? 8 3 " # $ % $ ' $ % ) * % @ + * 1 A B C D E D F 9 O O D H

Διαβάστε περισσότερα

2?nom. Bacc. 2 nom. acc. S <u. >nom. 7acc. acc >nom < <

2?nom. Bacc. 2 nom. acc. S <u. >nom. 7acc. acc >nom < < K+P K+P PK+ K+P - _+ l Š N K - - a\ Q4 Q + hz - I 4 - _+.P k - G H... /.4 h i j j - 4 _Q &\\ \\ ` J K aa\ `- c -+ _Q K J K -. P.. F H H - H - _+ 4 K4 \\ F &&. P H.4 Q+ 4 G H J + I K/4 &&& && F : ( -+..

Διαβάστε περισσότερα

V r,k j F k m N k+1 N k N k+1 H j n = 7 n = 16 Ṽ r ñ,ñ j Ṽ Ṽ j x / Ṽ W 2r V r D N T T 2r 2r N k F k N 2r Ω R 2 n Ω I n = { N: n} n N R 2 x R 2, I n Ω R 2 u R 2, I n x k+1 = x k + u k, u, x R 2,

Διαβάστε περισσότερα

Γενικά Μαθηματικά ΙΙ

Γενικά Μαθηματικά ΙΙ ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΙΚΑ ΜΑΘΗΜΑΤΑ Ενότητα 3 η : Εισαγωγικές Ένvοιες ΙI Λουκάς Βλάχος Καθηγητής Αστροφυσικής Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες

Διαβάστε περισσότερα

(product-operator) I I cos ω ( t sin ω ( t x x ) + Iy )

(product-operator) I I cos ω ( t sin ω ( t x x ) + Iy ) (product-operator) I I cos( t) + I sin( t) x x y z 2π (rad) y 1 y t x = 2πν x t (rad) sin t Iy# cos t t Ix# Ix# (t ) z Ix# Iy# Ix# (t ) z Ix cos (t ) + Iy sin (t ) -x -y t y I-y# I-y# (t ) z (t ) z x I-y#

Διαβάστε περισσότερα

( )U 1 ( θ )U 3 ( ) = U 3. ( ) όπου U j περιγράφει περιστροφή ως προς! e j. Γωνίες Euler. ω i. ω = ϕ ( ) = ei = U ij ej j

( )U 1 ( θ )U 3 ( ) = U 3. ( ) όπου U j περιγράφει περιστροφή ως προς! e j. Γωνίες Euler. ω i. ω = ϕ ( ) = ei = U ij ej j Γωνίες Euler ΦΥΣ 11 - Διαλ.3 1 q Όλοι σχεδόν οι υπολογισµοί που έχουµε κάνει για την κίνηση ενός στερεού στο σύστηµα συντεταγµένων του στερεού σώµατος Ø Για παράδειγµα η γωνιακή ταχύτητα είναι: ω = i ω

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ- ΤΜΗΜΑ ΦΥΣΙΚΗΣ- ΤΟΜΕΑΣ ΘΕΩΡΗΤΙΚΗΣ ΦΥΣΙΚΗΣ ΜΑΘΗΜΑ: ΚΛΑΣΙΚΗ ΜΗΧΑΝΙΚΗ Ι(ΤΜΗΜΑ ΑΡΤΙΩΝ) ΔΙΔΑΣΚΩΝ: Αν. Καθηγητής Ι.

ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ- ΤΜΗΜΑ ΦΥΣΙΚΗΣ- ΤΟΜΕΑΣ ΘΕΩΡΗΤΙΚΗΣ ΦΥΣΙΚΗΣ ΜΑΘΗΜΑ: ΚΛΑΣΙΚΗ ΜΗΧΑΝΙΚΗ Ι(ΤΜΗΜΑ ΑΡΤΙΩΝ) ΔΙΔΑΣΚΩΝ: Αν. Καθηγητής Ι. ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ- ΤΜΗΜΑ ΦΥΣΙΚΗΣ- ΤΟΜΕΑΣ ΘΕΩΡΗΤΙΚΗΣ ΦΥΣΙΚΗΣ ΜΑΘΗΜΑ: ΚΛΑΣΙΚΗ ΜΗΧΑΝΙΚΗ ΙΤΜΗΜΑ ΑΡΤΙΩΝ) ΔΙΔΑΣΚΩΝ: Αν. Καθηγητής Ι. ΡΙΖΟΣ ΛΥΣΕΙΣ ΘΕΜΑΤΩΝ ΕΞΕΤΑΣΕΩΝ ΠΕΡΙΟΔΟΥ ΦΕΒΡΟΥΑΡΙΟΥ 9 ΘΕΜΑ.4 μονάδες)

Διαβάστε περισσότερα

f a o gy s m a l nalg d co h n to h e y o m ia lalg e br coh the oogy lagebr

f a o gy s m a l nalg d co h n to h e y o m ia lalg e br coh the oogy lagebr - - - * k ˆ v ˆ k ˆ ˆ E x ˆ ˆ [ v ˆ ˆ ˆ ˆ ˆ E x ˆ ˆ ˆ ˆ v ˆ Ex U U ˆ ˆ ˆ ˆ ˆ ˆ v ˆ M v ˆ v M v ˆ ˆ I U ˆ I 9 70 k k ˆ ˆ - I I 9ˆ 70 ˆ [ ˆ - v - - v k k k ˆ - ˆ k ˆ k [ ˆ ˆ D M ˆ k k 0 D M k [ 0 M v M ˆ

Διαβάστε περισσότερα

ˆ ˆ Œ Ÿ Š Œ ƒˆ Šˆ ˆ Ÿ ˆ ˆ Š ˆˆ ƒ ˆ ˆˆ

ˆ ˆ Œ Ÿ Š Œ ƒˆ Šˆ ˆ Ÿ ˆ ˆ Š ˆˆ ƒ ˆ ˆˆ Ó³ Ÿ. 2015.. 12, º 2(193).. 281Ä298 ˆ ˆŠ Œ ˆ ˆ Œ ƒ Ÿ. ˆŸ ˆ ˆ Œ Ÿ Š Œ ƒˆ Šˆ ˆ Ÿ ˆ ˆ Š ˆˆ ƒ ˆ ˆˆ.. Ê 1 Œμ ±μ ± μ Ê É Ò Ê É É ³. Œ.. μ³μ μ μ, Œμ ± Í Œ Ì ²ÖÉ É ±μ É μ É Í ( ƒ) μ μ²ö É μ μ ÉÓ É ²Ó- ÊÕ ² ±Í

Διαβάστε περισσότερα

) * +, -. + / - 0 1 2 3 4 5 6 7 8 9 6 : ; < 8 = 8 9 >? @ A 4 5 6 7 8 9 6 ; = B? @ : C B B D 9 E : F 9 C 6 < G 8 B A F A > < C 6 < B H 8 9 I 8 9 E ) * +, -. + / J - 0 1 2 3 J K 3 L M N L O / 1 L 3 O 2,

Διαβάστε περισσότερα

Problem 3.16 Given B = ˆx(z 3y) +ŷ(2x 3z) ẑ(x+y), find a unit vector parallel. Solution: At P = (1,0, 1), ˆb = B

Problem 3.16 Given B = ˆx(z 3y) +ŷ(2x 3z) ẑ(x+y), find a unit vector parallel. Solution: At P = (1,0, 1), ˆb = B Problem 3.6 Given B = ˆxz 3y) +ŷx 3z) ẑx+y), find a unit vector parallel to B at point P =,0, ). Solution: At P =,0, ), B = ˆx )+ŷ+3) ẑ) = ˆx+ŷ5 ẑ, ˆb = B B = ˆx+ŷ5 ẑ = ˆx+ŷ5 ẑ. +5+ 7 Problem 3.4 Convert

Διαβάστε περισσότερα

Pathological synchronization in neuronal populations : a control theoretic perspective

Pathological synchronization in neuronal populations : a control theoretic perspective Pathological synchronization in neuronal populations : a control theoretic perspective Alessio Franci To cite this version: Alessio Franci. Pathological synchronization in neuronal populations : a control

Διαβάστε περισσότερα

Το ελαστικο κωνικο εκκρεμε ς

Το ελαστικο κωνικο εκκρεμε ς Το ελαστικο κωνικο εκκρεμε ς 1. Εξισώσεις Euler -Lagrange x 0 φ θ z F l 0 y r m B Το ελαστικό κωνικό εκκρεμές αποτελείται από ένα ελατήριο με σταθερά επαναφοράς k, το οποίο αναρτάται από ένα σταθερό σημείο,

Διαβάστε περισσότερα

... 5 A.. RS-232C ( ) RS-232C ( ) RS-232C-LK & RS-232C-MK RS-232C-JK & RS-232C-KK

... 5 A.. RS-232C ( ) RS-232C ( ) RS-232C-LK & RS-232C-MK RS-232C-JK & RS-232C-KK RS-3C WIWM050 014.1.9 P1 :8... 1... 014.0.1 1 A... 014.0. 1... RS-3C()...01.08.03 A.. RS-3C()...01.08.03 3... RS-3C()... 003.11.5 4... RS-3C ()... 00.10.01 5... RS-3C().008.07.16 5 A.. RS-3C().0 1.08.

Διαβάστε περισσότερα

A 1 A 2 A 3 B 1 B 2 B 3

A 1 A 2 A 3 B 1 B 2 B 3 16 0 17 0 17 0 18 0 18 0 19 0 20 A A = A 1 î + A 2 ĵ + A 3ˆk A (x, y, z) r = xî + yĵ + zˆk A B A B B A = A 1 B 1 + A 2 B 2 + A 3 B 3 = A B θ θ A B = ˆn A B θ A B î ĵ ˆk = A 1 A 2 A 3 B 1 B 2 B 3 W = F

Διαβάστε περισσότερα

ΘΕΜΑ 1. Στο φορέα του σχήματος ζητούνται να χαραχθούν τα διαγράμματα M, Q, N. (3 μονάδες)

ΘΕΜΑ 1. Στο φορέα του σχήματος ζητούνται να χαραχθούν τα διαγράμματα M, Q, N. (3 μονάδες) ΘΕΜΑ ΔΕΔΟΜΕΝΑ: Στο φορέα του σχήματος ζητούνται να χαραχθούν τα διαγράμματα M, Q, N. (3 μονάδες) ΕΠΙΛΥΣΗ: Ο φορέας χωρίζεται στα τμήματα Α και Β. Το τμήμα Α είναι τριαρθρωτό τόξο. Απομονώνοντας το Α και

Διαβάστε περισσότερα

Τριγωνοµετρική (ή πολική) µορφή µιγαδικού αριθµού. Έστω z = x+ yi ένας µη µηδενικός µιγαδικός αριθµός και OM

Τριγωνοµετρική (ή πολική) µορφή µιγαδικού αριθµού. Έστω z = x+ yi ένας µη µηδενικός µιγαδικός αριθµός και OM 1 Τριγωνοµετρική (ή πολική µορφή µιγαδικού αριθµού Έστω z = x+ yi ένας µη µηδενικός µιγαδικός αριθµός και OM η αντίστοιχη διανυσµατική ακτίνα του Ονοµάζοµε όρισµα του µιγαδικού αριθµού z κάθε µια από τις

Διαβάστε περισσότερα

A Two-Sided Laplace Inversion Algorithm with Computable Error Bounds and Its Applications in Financial Engineering

A Two-Sided Laplace Inversion Algorithm with Computable Error Bounds and Its Applications in Financial Engineering Electronic Companion A Two-Sie Laplace Inversion Algorithm with Computable Error Bouns an Its Applications in Financial Engineering Ning Cai, S. G. Kou, Zongjian Liu HKUST an Columbia University Appenix

Διαβάστε περισσότερα

Ax = b. 7x = 21. x = 21 7 = 3.

Ax = b. 7x = 21. x = 21 7 = 3. 3 s st 3 r 3 t r 3 3 t s st t 3t s 3 3 r 3 3 st t t r 3 s t t r r r t st t rr 3t r t 3 3 rt3 3 t 3 3 r st 3 t 3 tr 3 r t3 t 3 s st t Ax = b. s t 3 t 3 3 r r t n r A tr 3 rr t 3 t n ts b 3 t t r r t x 3

Διαβάστε περισσότερα

ΜΗΧΑΝΙΣΜΟΙ ΕΙΣΑΓΩΓΗ ΣΤΟ ΣΧΕΔΙΑΣΜΟ ΜΗΧΑΝΩΝ

ΜΗΧΑΝΙΣΜΟΙ ΕΙΣΑΓΩΓΗ ΣΤΟ ΣΧΕΔΙΑΣΜΟ ΜΗΧΑΝΩΝ Μηχανισμοί & Εισαγωγή στο Σχεδιασμό Μηχανών Ακαδημαϊκό έτος: 214-215 ΜΗΧΑΝΙΣΜΟΙ & ΕΙΣΑΓΩΓΗ ΣΤΟ ΣΧΕΔΙΑΣΜΟ ΜΗΧΑΝΩΝ - 7.1 - Μηχανισμοί & Εισαγωγή στο Σχεδιασμό Μηχανών Ακαδημαϊκό έτος: 214-215 Copyright ΕΜΠ

Διαβάστε περισσότερα

( ) ) V(x, y, z) Παραδείγματα. dt + "z ˆk + z d ˆk. v 2 =!x 2 +!y 2 +!z 2. F =! "p. T = 1 2 m (!x2 +!y 2 +!z 2

( ) ) V(x, y, z) Παραδείγματα. dt + z ˆk + z d ˆk. v 2 =!x 2 +!y 2 +!z 2. F =! p. T = 1 2 m (!x2 +!y 2 +!z 2 ΦΥΣ 211 - Διαλ.04 1 Παραδείγματα Κίνηση ενός και μόνο σωματιδίου, χρησιμοποιώντας Καρτεσιανές συντεταγμένες και συντηρητικές δυνάμεις. Οι εξισώσεις Lagrange θα πρέπει να επιστρέφουν τα ίδια αποτελέσματα

Διαβάστε περισσότερα

Radio détection des rayons cosmiques d ultra-haute énergie : mise en oeuvre et analyse des données d un réseau de stations autonomes.

Radio détection des rayons cosmiques d ultra-haute énergie : mise en oeuvre et analyse des données d un réseau de stations autonomes. Radio détection des rayons cosmiques d ultra-haute énergie : mise en oeuvre et analyse des données d un réseau de stations autonomes. Diego Torres Machado To cite this version: Diego Torres Machado. Radio

Διαβάστε περισσότερα

m 1, m 2 F 12, F 21 F12 = F 21

m 1, m 2 F 12, F 21 F12 = F 21 m 1, m 2 F 12, F 21 F12 = F 21 r 1, r 2 r = r 1 r 2 = r 1 r 2 ê r = rê r F 12 = f(r)ê r F 21 = f(r)ê r f(r) f(r) < 0 f(r) > 0 m 1 r1 = f(r)ê r m 2 r2 = f(r)ê r r = r 1 r 2 r 1 = 1 m 1 f(r)ê r r 2 = 1 m

Διαβάστε περισσότερα

ITU-R P (2012/02) &' (

ITU-R P (2012/02) &' ( ITU-R P.530-4 (0/0) $ % " "#! &' ( P ITU-R P. 530-4 ii.. (IPR) (ITU-T/ITU-R/ISO/IEC).ITU-R http://www.itu.int/itu-r/go/patents/en. ITU-T/ITU-R/ISO/IEC (http://www.itu.int/publ/r-rec/en ) () ( ) BO BR BS

Διαβάστε περισσότερα

x(t) = (x 1 (t), x 1 (t),..., x n (t)) R n R [a, b] t 1:1 c 2 : x(t) = (x(t), y(t)) = (cos t, sin t), t 0, π ]

x(t) = (x 1 (t), x 1 (t),..., x n (t)) R n R [a, b] t 1:1 c 2 : x(t) = (x(t), y(t)) = (cos t, sin t), t 0, π ] συνεχές τόξο (arc) - τροχιά R [a, b] t 1:1 επί x(t) = (x 1 (t), x 1 (t),..., x n (t)) R n x i (t), i = 1, 2,..., n συνεχείς συναρτήσεις, π.χ c 1 : x(t) = (x(t), y(t)) = (1 t, 1 t), t [0, 1] [ c 2 : x(t)

Διαβάστε περισσότερα

Θεωρητική μηχανική ΙΙ

Θεωρητική μηχανική ΙΙ ΟΣΑ ΓΡΑΦΟΝΤΑΙ ΕΔΩ ΝΑ ΤΑ ΔΙΑΒΑΖΕΤΕ ΜΕ ΣΚΕΠΤΙΚΟ ΒΛΕΜΜΑ. ΜΠΟΡΕΙ ΝΑ ΠΕΡΙΕΧΟΥΝ ΛΑΘΗ. Θεωρητική μηχανική ΙΙ Να δειχθεί ότι αν L x, L y αποτελούν ολοκληρώματα της κίνησης τότε και η L z αποτελεί ολοκλήρωμα της

Διαβάστε περισσότερα

N/m, k 2 = k 4 = 6 N/m και m=2 kgr. (α) k 1 m k 3 k 4. (β) k 12 m k 34. k 12 = k 1 +k 2 = 3+6 = 9 N/m (1) k k = = = = 2 N/m (2) (3) k 2.

N/m, k 2 = k 4 = 6 N/m και m=2 kgr. (α) k 1 m k 3 k 4. (β) k 12 m k 34. k 12 = k 1 +k 2 = 3+6 = 9 N/m (1) k k = = = = 2 N/m (2) (3) k 2. ΚΕΦΑΛΑΙΟ ΤΑΛΑΝΤΩΣΗ ΥΝΑΜΙΚΏΝ ΣΥΣΤΗΜΑΤΩΝ ΜΕ ΕΝΑ ΒΑΘΜΟ ΕΛΕΥΘΕΡΙΑΣ. Ελεύθερη ταλάντωση χωρίς απόσβεση. Να βρεθεί η ιδιοσυχνότητα του συστήµατος στο σχήµα (α). ίνεται 3 3 N/m, 4 6 N/m και m gr. (α) m 3 4 (β)

Διαβάστε περισσότερα

ΜΗΧΑΝΙΣΜΟΙ ΕΙΣΑΓΩΓΗ ΣΤΟ ΣΧΕΔΙΑΣΜΟ ΜΗΧΑΝΩΝ

ΜΗΧΑΝΙΣΜΟΙ ΕΙΣΑΓΩΓΗ ΣΤΟ ΣΧΕΔΙΑΣΜΟ ΜΗΧΑΝΩΝ ΜΗΧΑΝΙΣΜΟΙ & ΕΙΣΑΓΩΓΗ ΣΤΟ ΣΧΕΔΙΑΣΜΟ ΜΗΧΑΝΩΝ - 8. - opyright ΕΜΠ - Σχολή Μηχανολόγων Μηχανικών - Εργαστήριο Δυναμικής και Κατασκευών - 202. Με επιφύλαξη παντός δικαιώµατος. ll rights reserved. Απαγορεύεται

Διαβάστε περισσότερα

Θεωρία μετασχηματισμών

Θεωρία μετασχηματισμών Μήτρα Μετασχηματισμού Η γεωμετρία ενός αντικειμένου μπορεί να παρουσιαστεί από ένα σύνολο σημείων κατανεμημένων σε διάφορα επίπεδα. Έτσι λοιπόν ένα πλήθος δεδομένων για κάποιο αντικείμενο μπορεί να αναπαρασταθεί

Διαβάστε περισσότερα

ITU-R P (2009/10)

ITU-R P (2009/10) ITU-R.45-4 (9/) % # GHz,!"# $$ # ITU-R.45-4.. (IR) (ITU-T/ITU-R/ISO/IEC).ITU-R http://www.tu.t/itu-r/go/patets/e. (http://www.tu.t/publ/r-rec/e ) () ( ) BO BR BS BT F M RA S RS SA SF SM SNG TF V.ITU-R

Διαβάστε περισσότερα

298 Appendix A Selected Answers

298 Appendix A Selected Answers A Selected Answers 1.1.1. (/3)x +(1/3) 1.1.. y = x 1.1.3. ( /3)x +(1/3) 1.1.4. y = x+,, 1.1.5. y = x+6, 6, 6 1.1.6. y = x/+1/, 1/, 1.1.7. y = 3/, y-intercept: 3/, no x-intercept 1.1.8. y = ( /3)x,, 3 1.1.9.

Διαβάστε περισσότερα

( ) ( ) ( ) ( ) ( ) λ = 1 + t t. θ = t ε t. Continuum Mechanics. Chapter 1. Description of Motion dt t. Chapter 2. Deformation and Strain

( ) ( ) ( ) ( ) ( ) λ = 1 + t t. θ = t ε t. Continuum Mechanics. Chapter 1. Description of Motion dt t. Chapter 2. Deformation and Strain Continm Mechanics. Official Fom Chapte. Desciption of Motion χ (,) t χ (,) t (,) t χ (,) t t Chapte. Defomation an Stain s S X E X e i ij j i ij j F X X U F J T T T U U i j Uk U k E ( F F ) ( J J J J)

Διαβάστε περισσότερα

Κεραίες & Ασύρματες Ζεύξεις

Κεραίες & Ασύρματες Ζεύξεις Κεραίες & Ασύρματες Ζεύξεις Εισαγωγή στις ΣΤΟΙΧΕΙΟΚΕΡΑΙΕΣ Το μάθημα αυτό πραγματεύεται το αντικείμενο των κεραιών και των Ασύρματων Ζεύξεων. Περιέχει τη θεμελίωση και τις βασικές έννοιες /αρχές που διέπουν

Διαβάστε περισσότερα

Das Pentagramma Mirificum von Gauß

Das Pentagramma Mirificum von Gauß Wissenschaftliche Prüfungsarbeit gemäß 1 der Landesverordnung über die Erste Staatsprüfung für das Lehramt an Gymnasien vom 07. Mai 198, in der derzeit gültigen Fassung Kandidatin: Jennifer Romina Pütz

Διαβάστε περισσότερα

Homework#13 Trigonometry Honors Study Guide for Final Test#3

Homework#13 Trigonometry Honors Study Guide for Final Test#3 Homework#13 Trigonometry Honors Study Guide for Final Test#3 1. Στο παρακάτω σχήμα δίνεται ο μοναδιαίος κύκλος: Να γράψετε τις συντεταγμένες του σημείου ή το όνομα του άξονα: 1. (ε 1) είναι ο άξονας 11.

Διαβάστε περισσότερα

(ii) x[y (x)] 4 + 2y(x) = 2x. (vi) y (x) = x 2 sin x

(ii) x[y (x)] 4 + 2y(x) = 2x. (vi) y (x) = x 2 sin x ΕΥΓΕΝΙΑ Ν. ΠΕΤΡΟΠΟΥΛΟΥ ΕΠΙΚ. ΚΑΘΗΓΗΤΡΙΑ ΤΜΗΜΑ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΑΤΡΩΝ ΑΣΚΗΣΕΙΣ ΓΙΑ ΤΟ ΜΑΘΗΜΑ «ΕΦΑΡΜΟΣΜΕΝΑ ΜΑΘΗΜΑΤΙΚΑ ΙΙΙ» ΠΑΤΡΑ 2015 1 Ασκήσεις 1η ομάδα ασκήσεων 1. Να χαρακτηρισθούν πλήρως

Διαβάστε περισσότερα

ÒÄÆÉÖÌÄ. ÀÒÀßÒ ÉÅÉ ÓÀÌÀÒÈÉ ÖÍØÝÉÏÍÀËÖÒ-ÃÉ ÄÒÄÍÝÉÀËÖÒÉ ÂÀÍÔÏËÄÁÄÁÉÓÈÅÉÓ ÃÀÌÔÊÉ- ÝÄÁÖËÉÀ ÀÌÏÍÀáÓÍÉÓ ÅÀÒÉÀÝÉÉÓ ÏÒÌÖËÄÁÉ, ÒÏÌËÄÁÛÉÝ ÂÀÌÏÅËÄÍÉËÉÀ ÓÀßÚÉÓÉ

ÒÄÆÉÖÌÄ. ÀÒÀßÒ ÉÅÉ ÓÀÌÀÒÈÉ ÖÍØÝÉÏÍÀËÖÒ-ÃÉ ÄÒÄÍÝÉÀËÖÒÉ ÂÀÍÔÏËÄÁÄÁÉÓÈÅÉÓ ÃÀÌÔÊÉ- ÝÄÁÖËÉÀ ÀÌÏÍÀáÓÍÉÓ ÅÀÒÉÀÝÉÉÓ ÏÒÌÖËÄÁÉ, ÒÏÌËÄÁÛÉÝ ÂÀÌÏÅËÄÍÉËÉÀ ÓÀßÚÉÓÉ ÒÄÆÉÖÌÄ. ÀÒÀßÒ ÉÅÉ ÓÀÌÀÒÈÉ ÖÍØÝÉÏÍÀËÖÒ-ÃÉ ÄÒÄÍÝÉÀËÖÒÉ ÂÀÍÔÏËÄÁÄÁÉÓÈÅÉÓ ÃÀÌÔÊÉ- ÝÄÁÖËÉÀ ÀÌÏÍÀáÓÍÉÓ ÅÀÒÉÀÝÉÉÓ ÏÒÌÖËÄÁÉ, ÒÏÌËÄÁÛÉÝ ÂÀÌÏÅËÄÍÉËÉÀ ÓÀßÚÉÓÉ ÌÏÌÄÍÔÉÓÀ ÃÀ ÃÀÂÅÉÀÍÄÁÄÁÉÓ ÛÄÛ ÏÈÄÁÉÓ Ä ÄØÔÉ, ÀÂÒÄÈÅÄ

Διαβάστε περισσότερα

Déformation et quantification par groupoïde des variétés toriques

Déformation et quantification par groupoïde des variétés toriques Défomation et uantification pa goupoïde de vaiété toiue Fédéic Cadet To cite thi veion: Fédéic Cadet. Défomation et uantification pa goupoïde de vaiété toiue. Mathématiue [math]. Univeité d Oléan, 200.

Διαβάστε περισσότερα

ΑΠΑΝΤΗΣΕΙΣ ΓΡΑΠΤΗΣ ΕΞΕΤΑΣΗΣ ΣΤΗ ΦΥΣΙΚΗ

ΑΠΑΝΤΗΣΕΙΣ ΓΡΑΠΤΗΣ ΕΞΕΤΑΣΗΣ ΣΤΗ ΦΥΣΙΚΗ ΑΤΕΙ ΠΕΙΡΑΙΑ/ ΣΤΕΦ 4// ΤΜΗΜΑ ΗΛΕΚΤΡΟΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΙΚΩΝ ΣΥΣΤΗΜΑΤΩΝ ΑΠΑΝΤΗΣΕΙΣ ΓΡΑΠΤΗΣ ΕΞΕΤΑΣΗΣ ΣΤΗ ΦΥΣΙΚΗ ΕΞΕΤΑΣΤΗΣ: ΒΑΡΣΑΜΗΣ ΧΡΗΣΤΟΣ ΔΙΑΡΚΕΙΑ ΩΡΕΣ ΑΣΚΗΣΗ α) Για δεδομένη αρχική ταχύτητα υ, με ποια γωνία

Διαβάστε περισσότερα

η η η η GAR = 1 F RR η F RR F AR F AR F RR η F RR F AR µ µ µ µ µ µ Γ R N=mxn W T X x mean X W T x g W P x = W T (x g x mean ) X = X x mean P x = W T X d P x P i, i = 1, 2..., G M s t t

Διαβάστε περισσότερα

( ) = ( ) Μάθημα 2 ο ΒΑΘΜΟΣ ΠΙΝΑΚΑ. Θεωρία : Γραμμική Άλγεβρα : εδάφιο 4, σελ. 63, Πρόταση 4.9, σελ. 90. Βασικές ιδιότητες

( ) = ( ) Μάθημα 2 ο ΒΑΘΜΟΣ ΠΙΝΑΚΑ. Θεωρία : Γραμμική Άλγεβρα : εδάφιο 4, σελ. 63, Πρόταση 4.9, σελ. 90. Βασικές ιδιότητες Ανάλυση Πινάκων και Εφαρμογές Σελίδα 1 από 6 Μάθημα 2 ο ΒΑΘΜΟΣ ΠΙΝΑΚΑ Θεωρία : Γραμμική Άλγεβρα : εδάφιο 4, σελ. 63, Πρόταση 4.9, σελ. 90. Βασικές ιδιότητες Έστω A είναι μ ν πίνακας. Τότε 1. ranka= ranka

Διαβάστε περισσότερα

Αρµονικοί ταλαντωτές

Αρµονικοί ταλαντωτές Αρµονικοί ταλαντωτές ΦΥΣ 111 - Διαλ. 38 Εκκρεµή - Απλό εκκρεµές θ T mg r F τ = r F = mgsinθ τ = I M d θ α, Ι = M dt = Mgsinθ d θ dt = g sinθ θ = g sinθ Διαφορική εξίσωση Αυτή η εξίσωση είναι δύσκολο να

Διαβάστε περισσότερα

apj1 SSGA* hapla P6 _1G hao1 1Lh_PSu AL..AhAo1 *PJ"AL hp_a*a

apj1 SSGA* hapla P6 _1G hao1 1Lh_PSu AL..AhAo1 *PJAL hp_a*a n n 1/2 n (n 1) 0/1 l 2 E x X X x X E x X g(x) := 1 g(x). X f : X C L p f p := (E x X f(x) p ) 1/p f,g := E x X f(x)g(x) x X X X X := {f : X [0, ) : f 1 =1}. X µ A A X x X µ A (x) :=α 1 1 A (x) 1 A A α

Διαβάστε περισσότερα

Παραγωγος στον Διανυσματικο Χωρο {Παράγωγος Διανύσματος, Ο Τελεστής και οι Τρεις Βασικές Διεργασίες: Κλίση- Απόκλιση- Στροβιλισμός}

Παραγωγος στον Διανυσματικο Χωρο {Παράγωγος Διανύσματος, Ο Τελεστής και οι Τρεις Βασικές Διεργασίες: Κλίση- Απόκλιση- Στροβιλισμός} Κεφάλαιο 1 ΜΑΘΗΜΑΤΙΚΗ ΕΙΣΑΓΩΓΗ Εσωτερικο & Εξωτερικο Γινομενο Διανυσματων {Ορισμοί} Δυναμεις {Διανυσματικός Χαρακτήρας Δυνάμεων, Σύνθεση Δυνάμεων} Ροπη {Η Εννοια της Ροπής, Ροπή Πολλών Δυνάμεων, Ζεύγος

Διαβάστε περισσότερα

Formulario Básico ( ) ( ) ( ) ( ) ( 1) ( 1) ( 2) ( 2) λ = 1 + t t. θ = t ε t. Mecánica de Medios Continuos. Grado en Ingeniería Civil.

Formulario Básico ( ) ( ) ( ) ( ) ( 1) ( 1) ( 2) ( 2) λ = 1 + t t. θ = t ε t. Mecánica de Medios Continuos. Grado en Ingeniería Civil. Mecánica e Meios Continos. Gao en Ingenieía Ciil. Fomlaio Básico Tema. Descipción el moimiento χ (,) t χ (,) t (,) t χ (,) t t t Tema. Defomación s S X E X e i ij j i ij j F X X U F J T T T U U i j Uk

Διαβάστε περισσότερα

!"#$ % &# &%#'()(! $ * +

!#$ % &# &%#'()(! $ * + ,!"#$ % &# &%#'()(! $ * + ,!"#$ % &# &%#'()(! $ * + 6 7 57 : - - / :!", # $ % & :'!(), 5 ( -, * + :! ",, # $ %, ) #, '(#,!# $$,',#-, 4 "- /,#-," -$ '# &",,#- "-&)'#45)')6 5! 6 5 4 "- /,#-7 ",',8##! -#9,!"))

Διαβάστε περισσότερα

ΦΥΣ. 131 Τελική Εξέταση: 13-Δεκεμβρίου-2006

ΦΥΣ. 131 Τελική Εξέταση: 13-Δεκεμβρίου-2006 Σειρά Θέση ΦΥΣ. 3 Τελική Εξέταση: 3-Δεκεμβρίου-6 Πριν αρχίσετε συμπληρώστε τα στοιχεία σας (ονοματεπώνυμο και αριθμό ταυτότητας). Ονοματεπώνυμο Αριθμός ταυτότητας Σας δίνονται ισότιμα προβλήματα ( βαθμοί

Διαβάστε περισσότερα

Ταλαντώσεις 6.1 Απλή Αρµονική Ταλάντωση σε µία ιάσταση Ελατήριο σε οριζόντιο επίπεδο Σχήµα 6.1

Ταλαντώσεις 6.1 Απλή Αρµονική Ταλάντωση σε µία ιάσταση Ελατήριο σε οριζόντιο επίπεδο Σχήµα 6.1 6 Ταλαντώσεις 6.1 Απλή Αρµονική Ταλάντωση σε µία ιάσταση 6.1.1 Ελατήριο σε οριζόντιο επίπεδο Υποθέτουµε ότι το ελατήριο έχει αρχικό µήκος µηδέν, ιδανικό ελατήριο. F=-kx x K M x Σχήµα 6.1 ιαστάσεις µεγεθών

Διαβάστε περισσότερα

Επίλυση Δ.Ε. με Laplace

Επίλυση Δ.Ε. με Laplace Επίλυση Δ.Ε. με Laplace Ν. Παπαδάκης 24 Οκτωβρίου 2015 Ν. Παπαδάκης Επίλυση Δ.Ε. με Laplace 24 Οκτωβρίου 2015 1 / 78 Περιεχόμενα 1 Παρουσίαση Προβλήματος Επίλυση διαϕορικής εξίσωσης Ορισμός Άλλες μορϕή

Διαβάστε περισσότερα

m 2 (ż2 + R 2 θ2 )dt ż = a/t + ζ, θ = η m 2 ( ζ 2 + R 2 η 2 )dt m

m 2 (ż2 + R 2 θ2 )dt ż = a/t + ζ, θ = η m 2 ( ζ 2 + R 2 η 2 )dt m Λύσεις Μηχ. ΙΙ Σεπτεµβριος 9 Πρόβληµα 1 Η Λαγκραντζιανή είναι L = (ż + R θ ) Η δράση που αντιστοιχεί στη διαδροµή z(t), θ(t) που αρχίζει στο z() =, θ() = και καταλήγει στο θ( ) = z( ) = είναι: S = (ż +

Διαβάστε περισσότερα

Solutions - Chapter 4

Solutions - Chapter 4 Solutions - Chapter Kevin S. Huang Problem.1 Unitary: Ût = 1 ī hĥt Û tût = 1 Neglect t term: 1 + hĥ ī t 1 īhĥt = 1 + hĥ ī t ī hĥt = 1 Ĥ = Ĥ Problem. Ût = lim 1 ī ] n hĥ1t 1 ī ] hĥt... 1 ī ] hĥnt 1 ī ]

Διαβάστε περισσότερα

B G [0; 1) S S # S y 1 ; y 3 0 t 20 y 2 ; y 4 0 t 20 y 1 y 2 h n t: r = 10 5 ; a = 10 6 ei n = ỹi n y i t n ); i = 1; 3: r = 10 5 ; a = 10 6 ei n = ỹi n y i t n ); i = 2; 4: r = 10 5 ; a = 10 6 t = 20

Διαβάστε περισσότερα

2742/ 207/ /07.10.1999 «&»

2742/ 207/ /07.10.1999 «&» 2742/ 207/ /07.10.1999 «&» 1,,,. 2 1. :.,,,..,..,,. 2., :.,....,, ,,..,,..,,,,,..,,,,,..,,,,,,..,,......,,. 3., 1. ' 3 1.., : 1. T,, 2., 3. 2 4. 5. 6. 7. 8. 9..,,,,,,,,, 1 14. 2190/1994 ( 28 ),,..,, 4.,,,,

Διαβάστε περισσότερα

Œˆ ˆ ƒ ˆŸ Ÿ ˆ ˆ Ÿ Œˆ ˆ

Œˆ ˆ ƒ ˆŸ Ÿ ˆ ˆ Ÿ Œˆ ˆ Ó³ Ÿ. 2017.. 14, º 1(206).. 176Ä189 ˆ ˆŠ ˆ ˆŠ Š ˆ Œˆ ˆ ƒ ˆŸ Ÿ ˆ ˆ Ÿ Œˆ ˆ.. Š μ,. ˆ. Š Î 1 Ñ Ò É ÉÊÉ Ö ÒÌ ² μ, Ê μé ³ É É Ö μ²êî μ μ μ μ μ ² Ö Êα ÉÖ ²ÒÌ μ μ ÊÐ Ö ³ Ï μ³μðóõ ± μ Ö Êα μ μ Ì μ É. ± μ μ ÊÐ

Διαβάστε περισσότερα

Δορυφορικές Επικοινωνίες

Δορυφορικές Επικοινωνίες Δορυφορικές Επικοινωνίες Διάλεξη #3 Μηχανική των Τροχιών - 2 ο Μέρος Διδάσκων: Αθανάσιος Κανάτας Καθηγητής Πανεπιστηµίου Πειραιώς Περιεχόμενα Διάλεξης #3 Παρεκκλίσεις Τροχιών Τροχιές Σύγχρονες στον Ήλιο

Διαβάστε περισσότερα

K K 1 2 1 K M N M(2 N 1) K K K K K f f(x 1, x 2,..., x K ) = K f xk (x k ), x 1, x 2,..., x K K K K f Yk (y k x 1, x 2,..., x k ) k=1 M i, i = 1, 2 Xi n n Yi n Xn 1 Xn 2 ˆM i P (n) e = {( ˆM 1, ˆM2 )

Διαβάστε περισσότερα

( () () ()) () () ()

( () () ()) () () () ΑΝΑΛΥΣΗ ΙΙ- ΠΟΛΙΤΙΚΟΙ ΜΗΧΑΝΙΚΟΙ ΦΥΛΛΑΔΙΟ /011 1 Έστω r = r( t = ( x( t ( t z( t t I = [ a b] συνάρτηση C τάξης και r = r( t = r ( t = x ( t + ( t z ( t είναι μία διανυσματική + Nα αποδείξετε ότι: d 1 1

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ Τμήμα Φυσικής Εξέταση στη Μηχανική ΙI 11 Ιουνίου 2012

ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ Τμήμα Φυσικής Εξέταση στη Μηχανική ΙI 11 Ιουνίου 2012 ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ Τμήμα Φυσικής Εξέταση στη Μηχανική ΙI Ιουνίου 202 Απαντήστε και στα 4 Θέματα με σαφήνεια και απλότητα. Οι ολοκληρωμένες απαντήσεις στα ερωτήματα εκτιμώνται ιδιαιτέρως. Καλή σας επιτυχία.

Διαβάστε περισσότερα

HMY 799 1: Αναγνώριση Συστημάτων

HMY 799 1: Αναγνώριση Συστημάτων HMY 799 : Αναγνώριση Συστημάτων Διάλεξη 5 Εκτίμηση φάσματος ισχύος Συνάφεια Παραδείγματα Στοχαστικά Διανύσματα Autoregressive model with exogenous inputs (ARX y( t + a y( t +... + a y( t n = bu( t +...

Διαβάστε περισσότερα

Περιεχόμενα. A(x 1, x 2 )

Περιεχόμενα. A(x 1, x 2 ) Περιεχόμενα A(x 1, x 2 7 Ολοκληρώματα της Μαγνητοϋδροδυναμικής και Μαγνητοϋδροδυναμικά Κύματα Σχήμα 7.1: Οι τριδιάστατες ελικοειδείς μαγνητικές γραμμές στις οποίες εφάπτεται το διάνυσμα του μαγνητικού

Διαβάστε περισσότερα

Παρεμβολή πραγματικού χρόνου σε συστήματα CNC

Παρεμβολή πραγματικού χρόνου σε συστήματα CNC Παρεμβολή πραγματικού χρόνου σε συστήματα CNC Γραμμική Κυκλική Spline Γ.Βοσνιάκος-ΕΡΓΑΛΕΙΟΜΗΧΑΝΕΣ Παρεμβολή πραγματικού χρόνου σε συστήματα CNC Άδεια Χρήσης Το παρόν υλικό υπόκειται σε άδειες χρήσης Creative

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ Τμήμα Φυσικής Εξέταση στη Μηχανική ΙΙ 8 Ιουλίου 2013

ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ Τμήμα Φυσικής Εξέταση στη Μηχανική ΙΙ 8 Ιουλίου 2013 ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ Τμήμα Φυσικής Εξέταση στη Μηχανική ΙΙ 8 Ιουλίου 013 ΘΕΜΑ Α [35 μόρια] Θεωρήστε τη Λαγκραντζιανή L(x, ẋ, t που εξαρτάται απο τη θέση x ενός σωματιδίου πάνω σε μια ευθεία, το χρόνο t,

Διαβάστε περισσότερα

Κεφάλαιο 1 ΣΥΝΗΘΕΙΣ ΔΙΑΦΟΡΙΚΕΣ ΕΞΙΣΩΣΕΙΣ. 1.1 Βασικές έννοιες και ορισμοί

Κεφάλαιο 1 ΣΥΝΗΘΕΙΣ ΔΙΑΦΟΡΙΚΕΣ ΕΞΙΣΩΣΕΙΣ. 1.1 Βασικές έννοιες και ορισμοί Κεφάλαιο 1 ΣΥΝΗΘΕΙΣ ΔΙΑΦΟΡΙΚΕΣ ΕΞΙΣΩΣΕΙΣ Η έννοια της διαφορικής εξίσωσης εμφανίστηκε για πρώτη φορά στο νόμο του Νεύτωνα. Από τότε διαφορικές εξισώσεις ανακύπτουν σε όλες τις φυσικές επιστήμες, αλλά και

Διαβάστε περισσότερα

Ó³ Ÿ , º 7(156).. 62Ä69. Š Œ œ ƒˆˆ ˆ ˆŠ. .. ŠÊ²Ö μ 1,. ƒ. ²ÓÖ μ 2. μ ± Ê É É Ê Ò μ μ, Œμ ±

Ó³ Ÿ , º 7(156).. 62Ä69. Š Œ œ ƒˆˆ ˆ ˆŠ. .. ŠÊ²Ö μ 1,. ƒ. ²ÓÖ μ 2. μ ± Ê É É Ê Ò μ μ, Œμ ± Ó³ Ÿ. 009.. 6, º 7(156.. 6Ä69 Š Œ œ ƒˆˆ ˆ ˆŠ ˆŒ ˆ - ˆ ƒ ˆ ˆ ˆŸ Š -Œ ˆ Šˆ ˆ.. ŠÊ²Ö μ 1,. ƒ. ²ÓÖ μ μ ± Ê É É Ê Ò μ μ, Œμ ± É ÉÓ μ Ò ÕÉ Ö ²μ Í Ò - μ Ò ² É Ö ³ ÖÉÓ Ì ÒÎ ² ÖÌ, μ²ó ÊÕÐ Ì ±μ ± 4- μ Ò. This paper

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ Τμήμα Φυσικής Μηχανική Ι 22 Ιανουαρίου, 2019

ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ Τμήμα Φυσικής Μηχανική Ι 22 Ιανουαρίου, 2019 ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ Τμήμα Φυσικής Μηχανική Ι Ιανουαρίου, 9 Καλή σας επιτυχία. Πρόβλημα Α Ένα σωματίδιο μάζας m κινείται υπό την επίδραση του πεδίου δύο σημειακών ελκτικών κέντρων, το ένα εκ των οποίων

Διαβάστε περισσότερα

Απαντήσεις Θεμάτων Πανελληνίων Εξετάσεων Ημερησίων Γενικών Λυκείων

Απαντήσεις Θεμάτων Πανελληνίων Εξετάσεων Ημερησίων Γενικών Λυκείων 0 Ιουνίου 04 ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ Θετικής & Τεχνολογικής Κατεύθυνσης Απαντήσεις Θεμάτων Πανελληνίων Εξετάσεων Ημερησίων Γενικών Λυκείων ΘΕΜΑ Α Α.. (γ) Α.. (β). Α.3. (γ). Α.4. (β). Α.5. α. Σωστό β. Σωστό

Διαβάστε περισσότερα

( () () ()) () () ()

( () () ()) () () () ΑΝΑΛΥΣΗ ΙΙ- ΜΗΧΑΝΟΛΟΓΟΙ ΜΗΧΑΝΙΚΟΙ ΦΥΛΛΑΔΙΟ /011 1 Έστω r = r( t = ( x( t, ( t, z( t, t I = [ a, b] συνάρτηση C τάξης και r = r( t = r ( t = x ( t + ( t z ( t είναι μία διανυσματική + Nα αποδείξετε ότι:

Διαβάστε περισσότερα

(1.1) y (t) = f ( t, y(t) ), a t b, y(a) = y 0.

(1.1) y (t) = f ( t, y(t) ), a t b, y(a) = y 0. 1. Προβλήματα αρχικών τιμών Στο μεγαλύτερο μέρος αυτού του βιβλίου θα ασχοληθούμε με μεθόδους αριθμητικής επίλυσης προβλημάτων αρχικών τιμών για Συνήθεις Διαφορικές Εξισώσεις (Σ.Δ.Ε.). Στο πρώτο κεφάλαιο

Διαβάστε περισσότερα

ΑΠΑΝΤΗΣΕΙΣ ΓΡΑΠΤΗΣ ΕΞΕΤΑΣΗΣ ΣΤΗ ΦΥΣΙΚΗ

ΑΠΑΝΤΗΣΕΙΣ ΓΡΑΠΤΗΣ ΕΞΕΤΑΣΗΣ ΣΤΗ ΦΥΣΙΚΗ ΑΤΕΙ ΠΕΙΡΑΙΑ/ ΣΤΕΦ 4// ΤΜΗΜΑ ΗΛΕΚΤΡΟΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΙΚΩΝ ΣΥΣΤΗΜΑΤΩΝ ΑΠΑΝΤΗΣΕΙΣ ΓΡΑΠΤΗΣ ΕΞΕΤΑΣΗΣ ΣΤΗ ΦΥΣΙΚΗ ΕΞΕΤΑΣΤΗΣ: ΒΑΡΣΑΜΗΣ ΧΡΗΣΤΟΣ ΔΙΑΡΚΕΙΑ ΩΡΕΣ ΑΣΚΗΣΗ α) Για δεδομένη αρχική ταχύτητα υ, με ποια γωνία

Διαβάστε περισσότερα

1 2 3 4 C n a k max 1 = 92% max 1 = 70% max 1 = 60% max 1 = 50% min(p) = 180 max(p) = 180 min(p) = 90 max(p) = 145 min(p) = 0 max(p) = 90 min(w) = w q min(w) = 2 w q min(w) = 3 w q 1 2 3 X L R Z δ

Διαβάστε περισσότερα

E fficient computational tools for the statistical analysis of shape and asymmetryof 3D point sets

E fficient computational tools for the statistical analysis of shape and asymmetryof 3D point sets E fficient computational tools for the statistical analysis of shape and asymmetryof 3D point sets Benoît Combès To cite this version: Benoît Combès. E fficient computational tools for the statistical

Διαβάστε περισσότερα

ΚΥΚΛΩΜΑΤΑ ΣΤΗ ΜΟΝΙΜΗ ΗΜΙΤΟΝΟΕΙΔΗ ΚΑΤΑΣΤΑΣΗ

ΚΥΚΛΩΜΑΤΑ ΣΤΗ ΜΟΝΙΜΗ ΗΜΙΤΟΝΟΕΙΔΗ ΚΑΤΑΣΤΑΣΗ Διανυσματική παράσταση μεταβλητών 1 υ = υ R + υ L υ = V m cos(ωt+θ υ V m = R + ( ωl Im ωl R θ υ = arctan ( Παράσταση μιγαδικού αριθμού Α στο μιγαδικό επίπεδο θ Α Α = ReIAI +jimiai = Α r + ja j ΙΑΙ = A

Διαβάστε περισσότερα

a; b 2 R; a < b; f : [a; b] R! R y 2 R: y : [a; b]! R; ( y (t) = f t; y(t) ; a t b; y(a) = y : f (t; y) 2 [a; b]r: f 2 C ([a; b]r): y 2 C [a; b]; y(a) = y ; f y ỹ ỹ y ; jy ỹ j ky ỹk [a; b]; f y; ( y (t)

Διαβάστε περισσότερα

Problem 3.1 Vector A starts at point (1, 1, 3) and ends at point (2, 1,0). Find a unit vector in the direction of A. Solution: A = 1+9 = 3.

Problem 3.1 Vector A starts at point (1, 1, 3) and ends at point (2, 1,0). Find a unit vector in the direction of A. Solution: A = 1+9 = 3. Problem 3.1 Vector A starts at point (1, 1, 3) and ends at point (, 1,0). Find a unit vector in the direction of A. Solution: A = ˆx( 1)+ŷ( 1 ( 1))+ẑ(0 ( 3)) = ˆx+ẑ3, A = 1+9 = 3.16, â = A A = ˆx+ẑ3 3.16

Διαβάστε περισσότερα

2. Οι νόµοι της κίνησης, οι δυνάµεις και οι εξισώσεις κίνησης

2. Οι νόµοι της κίνησης, οι δυνάµεις και οι εξισώσεις κίνησης Οι νόµοι της κίνησης, οι δυνάµεις και οι εξισώσεις κίνησης Βιβλιογραφία C Kittel, W D Knight, A Rudeman, A C Helmholz και B J oye, Μηχανική (Πανεπιστηµιακές Εκδόσεις ΕΜΠ, 1998) Κεφ, 3 R Spiegel, Θεωρητική

Διαβάστε περισσότερα

ΦΥΣ. 211 Τελική Εξέταση 20-Μάη-2016

ΦΥΣ. 211 Τελική Εξέταση 20-Μάη-2016 ΦΥΣ. 11 Τελική Εξέταση 0-Μάη-016 Πριν ξεκινήσετε συµπληρώστε τα στοιχεία σας (ονοµατεπώνυµο, αριθµό ταυτότητας) στο πάνω µέρος της σελίδας αυτής. Για τις λύσεις των ασκήσεων θα πρέπει να χρησιµοποιήσετε

Διαβάστε περισσότερα

ˆ ˆŠ Œ ˆ ˆ Œ ƒ Ÿ Œ Œ ˆ ˆ ˆŠ ˆˆ 58. ˆ. Œ. ƒμ É. Œμ ±μ ± μ Ê É Ò É ÉÊÉ Ô² ±É μ ± ³ É ³ É ± (É Ì Î ± Ê É É), Œμ ±

ˆ ˆŠ Œ ˆ ˆ Œ ƒ Ÿ Œ Œ ˆ ˆ ˆŠ ˆˆ 58. ˆ. Œ. ƒμ É. Œμ ±μ ± μ Ê É Ò É ÉÊÉ Ô² ±É μ ± ³ É ³ É ± (É Ì Î ± Ê É É), Œμ ± ˆ ˆŠ Œ ˆ ˆ Œ ƒ Ÿ 2010.. 41.. 1 Œ ˆ ˆ ˆŠ ˆˆ ƒ ˆ Šˆ š Š ƒ Œ ˆ Š Š Ÿ ˆˆ ˆ. Œ. ƒμ É Œμ ±μ ± μ Ê É Ò É ÉÊÉ Ô² ±É μ ± ³ É ³ É ± (É Ì Î ± Ê É É), Œμ ± ˆ 49 ˆ ˆ Šˆ Šˆ 50 ˆ ˆ Œ ˆ ˆˆ ˆ Š 54 Œ Œ ˆ ˆ ˆŠ ˆˆ 58 ˆ ˆ

Διαβάστε περισσότερα

M p f(p, q) = (p + q) O(1)

M p f(p, q) = (p + q) O(1) l k M = E, I S = {S,..., S t } E S i = p i {,..., t} S S q S Y E q X S X Y = X Y I X S X Y = X Y I S q S q q p+q p q S q p i O q S pq p i O S 2 p q q p+q p q p+q p fp, q AM S O fp, q p + q p p+q p AM

Διαβάστε περισσότερα

y(t) S x(t) S dy dx E, E E T1 T2 T1 T2 1 T 1 T 2 2 T 2 1 T 2 2 3 T 3 1 T 3 2... V o R R R T V CC P F A P g h V ext V sin 2 S f S t V 1 V 2 V out sin 2 f S t x 1 F k q K x q K k F d F x d V

Διαβάστε περισσότερα

Κεφάλαιο 1 Πραγματικοί Αριθμοί 1.1 Σύνολα

Κεφάλαιο 1 Πραγματικοί Αριθμοί 1.1 Σύνολα x + = 0 N = {,, 3....}, Z Q, b, b N c, d c, d N + b = c, b = d. N = =. < > P n P (n) P () n = P (n) P (n + ) n n + P (n) n P (n) n P n P (n) P (m) P (n) n m P (n + ) P (n) n m P n P (n) P () P (), P (),...,

Διαβάστε περισσότερα