Mate Vijuga: Rijeseni zadaci iz matematike za srednju skolu

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "Mate Vijuga: Rijeseni zadaci iz matematike za srednju skolu"

Transcript

1 5. TRIGONOMETRIJA 5. Definicija trigonometrijskih funkcija Naj jednostavnija definicija trigonometrijskih funkcija dobije se promatranjem pravokutnog ( ) ( r) ( ) trokuta. Svaki takav trokut, za promatrani kut α, ima: prilezecu stranicu, suprotnu stranicu i hipotenuzu. suprotna stranica prilezeca stranica sinα cosα hipotenuza r hipotenuza r suprotna stranica prilezeca stranica tanα cotα prilezeca stranica suprotna stranica hipotenuza r hipotenuza secα cosecα prilezeca stranica suprotna stranica Na donjoj slici, prikazan je jedinicna kruznica, sa radijusom r. To je pomagalo pomocu kojeg se jednostavnim putem mogu prikazati vrijednosi za trigonometrijske funkcije. Promatrajmo slijedece trokute u kruznici: Trokut OCE za kut od α i trokut OAB za kut α 6 sin CE cos OC tan DF cot JG sin 6 AB cos 6 OA tan 6 DH cot 6 JK r Triginometrija

2 Vrijednosti za kut α 45 nije nacrtana radi preglednosti. Lako je zakljuciti, da je presjeciste tangens i kotangens pravaca u tocki L. Promatrajmo kvadrat ODLJ. Dijagonala (nije nartana), je duzina OL. Nagib dijagonale kvadrata je α 45. Vrijednosti za funkcije su slijedece: sin 45 nije nacrtano cos 45 tan 45 DL cot 45 JL U praksi se najcesce koriste funkcije : sin, cos i tan. Ostale funkcije se lako izvedu iz osnovnih. 5. Trigonometrijske funkcije specificnih kuteva Promatrajmo donju jedinicnu kruznicu i odredimo pojednie trigonometrijske funkcije : ( α) Analizirajmo kut ϕ 9 + : Iz sukladnosti trokuta OCE i OPT vrijedi i OVP moze se definirati: TP OC sinϕ TP sin 9 + α OC cosα CE OT cosϕ OT cos 9 + α CE sinα DW JG tanϕ DW tan 9 + α JG cotα DF JM cotϕ JM cot 9 + α DF tanα ili nakon sto sredimo, funkcije imaju slijedeci oblik: ( ) ( ) ( + ) ( ) ( + ) ( ) ( + ) ( ) sin 9 + α cosα odnosno:sin 9 α cosα cos 9 α sinα cos 9 α sinα tan 9 α cotα tan 9 α cotα cot 9 α tanα cot 9 α tanα Slicnim putem dolazimo do slijedecih izraza: ( α) α ( α) α ( α) ( α) α ( α) α ( α) ( α) α ( α) α ( α) ( ± α) ± α ( α) α ( α) sin 8 ± sin sin 7 ± cos sin 6 sinα cos 8 ± cos cos 7 ± ± sin cos 6 cosα tan 8 ± ± tan tan 7 ± cot tan 6 tanα cot 8 cot cot 7 ± tan cot 6 cotα Triginometrija

3 5. Funkcije slozenih kuteva, duzina luka, povrsina kruznog isjecka. sin sin ( 8 + ) sin. cos 5 cos sin 45. tan tan 8 7 tan π π radijana se u pravilu ne pise π π π π 8 6 π 7. π π π 8. 5π 5π π 9. 7π 7π π. π Nadji duzinu kruznog luka koji pripada kruznici radijusa r m i kuta α 6 π π l r ϕ(u radijanima).57m 6. π Nadji radijus kruznice koja ima duzinu luka l 7. cm, koji pripada kutu od α 6 l r ϕ 5 7. π π 6. Nadji pvrsinu kruznog isjecka, odredjenog kutem α 8 i radijusa r 5.5 cm π P r ϕ cm 8. Odredi kut koji pripada kruznom isjecku povrsine 75.5 cm i radijusa r. cm P P r. π r ϕ ϕ 4. Nadji duzinu centralne crte na autoputu, koji ima radijus r m i zatvara π kut od α6 l r ϕ 6 46 m 8 Triginometrija

4 5. Nadji povrsinu koju poda koju zahvate vrata kada se otvore za α a imaju sirinu r75. cm. 76. π c P r ϕ m 8 6. Plinovod duzine l.5 km ima oblik kruznog luka radijusa r 8.5 km. Odredi koji kut zahvata taj luk. l.5 8 ϕ r 8.5 π 7. Rotirajuci rasprsivac za zalijevanje trave zahvaca kut od α5 i baca vodu na udaljenost od r5 m. Odredi povrsinu trave koju zalijeva. π P r ϕ m 8 8. Zeljeznicka pruga ima oblik luka, pod kutem od α 8.Ako je radijus unutarnjeg ruba r 8.55 m a sirina pruge.44 m, nadji razmak u duzini izmedju vanjskog i unutarnjeg dijela pruge: π lu ruϕ m 8 π lv rvϕ ( ) m 8 l m 9. Komunikacijski satelit je uvijek iznad iste tocke ekvatora, na visini od h 59 km. Ako je radijus zemlje r 67 km odredi brzinu satelita. z ( ω ) [ ], ω[ ] Odnos obodne brzine v i kutne brzine v ω r v m s rad s, je definirana sa okret π Odredimo kutnu brzinu zemlje: ω.68 rad / h dan 4sata Radijus na kome se krece satelit: r r + h km Brzina satelita je: v ω r km/ h z. Automobil napravi "U" zaokret u vremenu t 6 s. Izracunaj kutnu brzinu ω automobila. rπ Put je jednak polovici opsega kruznice, rπ: rπ v t v t rπ π π Brzina iznosi: v ω r Izjednacimo: ω r ω.5 rad/s t t 6 Triginometrija 4

5 . Dionica ceste ima oblik kruznog luka, radijusa r 85 m, i zatvara kut od α 5.6. Izracunaj kolicinu potrosenog asfalta, ako je sirina ceste 5. m a debljina asfalta δ.5 m. Povrsina isjecka iznosi: P r ϕ; Cesta ima dvije mjere: unutarnji radijus r 85 m i vanjski radijus r m u π Povrsina isjecka: P ( rv ru ) ϕ (. 85) m 8 Volumen asfalta iznosi: V P v δ m 5.4 Trigonometrijski identiteti Iz ranije izlozene jedinicne kruznice, mogu se izvesti slijedece identicnosti: α + α sinα α α α cscα secα cosα cosα sinα sin cos sin cos tan cotα tanα cotα + tan α sec α + cot α csc α Identicnosti za zbroj i razliku trigonometrijskih funkcija sin i cos : α + β α β α + β α β sinα + sin β sin cos sinα sin β cos sin α + β α β α + β α β cosα + cos β cos cos cosα cos β sin sin Identicnosti za produkt trigonometrijskih funkcija sin i cos : sinαcos β sin sin cos sin sin sin α + β + α β α β α + β α β cosαcos β cos( α + β) + cos( α β) sinαsin β cos( α + β) cos( α β ) Ne ulazeci u dokazivanje istinitosti, u nastavku su identiteti za gornje spomenute funkcije: sin α ± β sinαcos β ± cosαsin β cos α ± β cosαcos β sinαsin β tan tanα + tan β ± tanαtanβ ( α β) sin α sinαcosα cos α cos α sin α ta cos cos cos sin α α α α α cosα α + cosα sin ± cos ± tanα nα tan α Triginometrija 5

6 α + β α β sinα cos β sin sin sin sin sin cos α + β + α β α + β α + β α β cosα sin β sin ( α β) sin ( α β) sinα sin β cos sin + α + β α β cosα cos β cos( α + β) + cos( α β) cosα + cos β cos cos α + β α β sinα sin β cos( α + β) sin ( α β) cosα cos β sin sin cos csc. Dokazi da je: tan cot cos cos csc sin cos sin sin tan cot cos sin cos cos sin sec ϕ cotϕ. tan ϕ tan ϕ sec ϕ sec ϕ tan ϕ tan ϕ sec ϕtanϕ tan ϕ cotϕ tanϕ tanϕ sec ϕ tan ϕ tanϕ ϕ ϕ sec tan po gornjoj definiciji 4. sinϕ cosϕ sinϕcotϕ + sinϕ ( + ) ( + ) ( sinϕ) sinϕ ( sinϕ) ( + sinϕ) ( + ) ( + ) sinϕ sinϕ sin ϕ sinϕcotϕ cosϕ sinϕcosϕ cosϕ sinϕ cosϕ sinϕ sinϕ sinϕ cos ϕ cosϕ cosϕ sinϕ sinϕ csc 5. cos tan + cot csc sin sin tan + cot sin cos sin + cos + cos sin sin cos sin cos cos sin Triginometrija 6

7 6. sec csc sec + csc sin ( + tan ) csc csc + csc tan csc + csc + cos sin cos sec + csc 7. sin csc sin cos sin ( csc sin ) sin csc sin sin sin sin cos sin 8. sin tan + cos sec sin sin + cos sin tan + cos sin + cos sec cos cos cos 9. sec tan csc tan + sin cos csc sec tan csc sec csc sec csc sec sec tan +. tan cos + cot sin sin cos tan cos + cot sin cos + sin sin + cos cos sin ( α β) sin. cotα cot β sinαsin β ( ) sin α β sinαcos β cos βsinα sinαcos β cos βsinα cot β cot β sinαsin β sinαsin β sinαsin β sinαsin β π π. sin + cos + ( cos sin ) 4 4 π π π π π π sin + cos + sin cos + cos sin cos cos sin sin π π π π π π sin cos cos sin sin cos + cos sin cos sin sin cos cos sin cos sin cos sin cos sin ( cos sin ) + Triginometrija 7

8 . sec + cos + cos + cos + cos cos cos ( ) sec sin cos cos sin cos sin cos sin cos+ cossin sin + sin 4 + sin cos sin cos sin sin ( sincos) 4cos sin α α sin + cos α α 5. sec + csc sinα α α α α sin cos sin cos α α + + sin cos + + sinα α α α α α α α α sin cos sin cos sin cos cos sin α α sec + csc sec tan 6. cos cot sec tan sec tan sec tan po definiciji sec + tan cos cot sec tan cos 7. tan cot sin cos sin cos cos cos + sin cos sin cos sin cos sin cos sin cos sin cos sin cos sin cos tan cot cos sin 8. cos csc tan csc cot Triginometrija 8

9 sin po definiciji csc sin cos cos csc tan cos + cot + sin 9. sec + tan + cot sin cos sin cos sin sin cos sin sec + tan + cot + + cos cos sin sin cos sin cos cos + sin 4. cos + tan cos + sin cos + sin cos + sin cos + tan sin cos + sin + cos cos 4. tan + cot sin cos sin cos sin cos sin + cos tan + cot sin cos + sin cos sin cos cos sin sin cos sin cos 4 4. sin 4 cot sin cos sin cos sin cos sin cos sin sin cot cos sin cos sin cos sin 4 4 sin 4 4 cos sin 4. sec ( sec cos ) + + tan sec cos cos sin sin cos sin sec sec cos + + cos + + cos cos cos cos cos sin cos + cos + cos sin + cos sin + sec cos cos cos ( + ) + ( + ) 44. cos cos sin sin cos + cos + sin + sin cos cos sin sin cos + + sin cos + cos sin sin cos cos sin sin cos + sin sin cos cos sin cos cos sin cos Triginometrija 9

10 ( π) ( π) ( ( π π) 45. sin cos cos sin sin cos π cossin π sin coscosπ + sin sinπ cos sin cos cossin sin cos+ cossin cosπ sinπ 46. sin cos cos sin sin sin cos cos 48 sin sin 48 cos + 48 cos6 π sin + cos 48. sin + 4 π π π sin + sin cos + cos sin cos + sin cos + sin cos + sin ) ( + ) ( ) ( ) ( ) ( )( ) 49. sin sin sin sin sin + sin sin cos + cos sin sin cos cos sin sin cos sin cos cos sin + sin cos cos sin cos sin sin cos cos sin sin ( sin ) sin ( sin ) sin sin sin sin + sin sin sin sin 5. sin cos + cos sin sin + cos + csc + cos sin ( + cos) sin cos cos cos cos csc + cos sin + cos sin + cos sin sin 5. Izrazi sin sa faktorima jednostrukog kuta : sin sin + sin cos + cos sin cos cos ( sin ) sin sin cos sin cos + + sin sin sin sin + sin sin sin sin + sin sin sin 4sin Triginometrija

11 5. Dokazi identicnost: + cos α + cos 4α + cos 6α 4 cosα cos α cos α 4α + α 4α α + cos α + cos 4α + cos 6α + cos 6α + cos cos + cos cos cos cos cos cos cos cos α α + α α α + α α + α α α cosαcos cos 4cosαcos αcosα sin 4+ sin 5. Dokazi identicnost: tan cos4+ cos 4+ 4 sin cos sin 4+ sin sin cos sin tan cos 4+ cos 4+ 4 coscos cos cos cos 5. Dokazi identicnost: cos sin ( cos cos cos 5) 6 ( sin cos ) cos sin cos sin cos sin cos 4 sin sin cos sin ( sin cos ) sin ( sin + sin ) ( sin sin + sin sin ) ( c os 5 cos ) + ( cos cos ) 8 ( cos 5+ cos cos + cos ) ( cos cos cos 5) 6 6 tan sin sin 5 4. Dokazi identicnost: sin + sin + tan + cos sin tan tan sin sin + cot tan sin + sin sin cos tan tan Dokazi jednakost: cos 465 cos cos 465 cos65 cos cos cos 5 cos5 6 cos( 7 45 ) cos( 8 ) cos 45 cos Triginometrija

12 sin 75 sin Dokazi jednakost: cos 75 + cos cos sin sin 75 sin5 sin tan cos 75 + cos cos cos cos 5.5 Trigonometrijske jednadzbe Rijesiti trigonometrijsku jednadzbu podrazumijeva pronaci odgovarajuce vrijednosti funkcije za zadani interval nezavisne promijenjive, obicno zadane u radijanima. Dobijena rjesenja imaju, opcenito gledano, beskonacno mnogo rjesenja, jer su trigonometrijske funkcije periodicne, sa slijedecom periodom: Funkcije sin i cos imaju periodu π odnosno ( ) π odnosno kπ; ( k,,,... n) kπ; k,,,... n,funkcije tan i cot imaju periodu U nastavku, sva rjesenja trigonometrijskih jednadzbi, biti ce za interval < π. 5. Rijesi jednadzbu: cosϕ - π 5π cosϕ cosϕ ϕ ( 6 ), ( ) π 5π Rjesenje jednadzbe je: ϕ ( 6 ), ( ) jer zadovoljava postavljene uvjete. 5. Rijesi jednadzbu: cos - sin ϕ ( ) (-) sin sin sin sin + + sin sin sin sin π 5π 6 6 π π 5π π Rjesenje jednadzbe je:, 5, ( sin ) sin ( ), ( 5 ) ( sin + ) sin ( 7 ) 54. Rijesi jednadzbu: sec + tan 6 + tan + + tan 6 tan tan 5 ± 4 4 ± 4 tan, ±.4495 Triginometrija

13 tan , tan , Rjesenje jednadzbe je: , , , ( ) 55. Rijesi jednadzbu: 7sin sin 7sin 6 + sin sin 8 sin Rjesenje jednadzbe je: Rijesi jednadzbu: 4sin sin sin, ± 4 π π 4π 5π sin 6, sin 4, π π 4π 5π Rjesenje jednadzbe je: ( 6 ), ( ), ( 4 ), ( ) 57. Rijesi jednadzbu: sin 4 cos sincos cos cos sin π π π π cos, ( 45 ), ( 5 ) 4 4 π 5π π 5π sin sin, 5, π π 4π 5π Rjesenje jednadzbe je: ( 6 ), ( ), ( 4 ), ( ) 58. Rijesi jednadzbu: sin sin + cos sin cos sin + cos cos sin + π π cos 9, 7 π π Rjesenje jednadzbe je: 9, 7 sin + sin, ± Nema smisla. Rjesenje je imaginarni broj. Triginometrija

14 59. Rijesi jednadzbu: cos ( cos sin ) cos cos cos cos sin sin + π π 5π 7π sin, ± ± 45, 5 5, π π Rjesenje jednadzbe je: ( 9 ), ( 7 ) 6. Rijesi jednadzbu: cos sin + sin sin + cos sin sin sin sin k ± k k k k, sin nema smisla π 5π k sin, π 5π Rjesenje jednadzbe je: ( ), b b 4ac a 6. Rijesi jednadzbu: sin csc sin sin sin sin sin 7π π sin sin, b± b 4ac 6 6 sin, a π sin sin ( 9 ) 7π π π Rjesenje jednadzbe je: ( ), ( ) ( 9 ) Rijesi jednadzbu: tan + sin sin sin cos + sin + sin cos cos cos cos + cos sin, π ( 8 ) sin + sin cos cos sin cos + cos b± b 4ac cos cos + cos cos, a cos Triginometrija 4

15 π 5π, ( 6 ), ( ) Rjesenje jednadzbe je:, π 8 π 5π, 6, 5.6 Graficki prikaz trigonometrijskih funkcija Funkcije asin d + c acos b + c Graficki prikaz trigonometrijskih funkcija se u pravilu daje u pravokutnom koordinatnom sistemu, u radijanima, kao jedinici mjere. Na taj nacin funkcijske vrijednosti, zavisne promijenjive, poprimaju realne vrijednosti. Svaka trigonometrijska funkcija ima osnovne karakteristike, za podrucje koje se obicno zadaje u domeni nezavisne promijenjive od π : AMPLITUDA a Maksimalna vrijednost funkcije koja moze biti pozitivna ili negativna. Ta je vrijednost jednaka apsolutnoj vrijednosti a. Promatrajmo funkcije acos 4cos Amplituda funkcije iznosi a 4 asin sin Amplituda funkcije iznosi a PERIODA P Perioda funkcije je definirana kao udaljenost dviju tocaka nezavisno promijenjive, kada funkcija ponavlja svoju vrijednost. Za funkcije sin i cos, perioda iznosi π. To znaci da se vrijdn e osti funkcije ponavljaju svakih π odnosno nakon punog okretaja. π π π Promatranmo funkcije: a sin b sin 4 a, P b 4 π π a cosb cos a, P b Triginometrija 5

16 FAZNI POMAK faza Fazni pomak funkcije je definirana kao pomak pocetne tocke funkcije u odnosu na ishodiste. Taj pomak moze biti pozitivan ili negativan a izrazen je u radijanima ili stupnjevima. c Fazni pomak se racuna faza b π π c Promatrajmo funkcije: sin sin 4 π a b+ c + faza 4 b 8 c π π asin ( b+ c) sin ( π ) faza b π Za zadanu funkciju a cos( b + c) cos odredi amplitudu, periodu i fazni pomak. 6 π π π c Amplituda iznosi: a Perioda iznosi: P 4 faza 6 π π b b Triginometrija 6

17 π π Vodeni val ima oblik funkcije asin ( b+ c).7sin + 4 Odredi amplitudu, periodu i fazni pomak izrazenu u metrima. π π Amplituda iznosi: a.7 m Perioda iznosi: P 4 m b π π c faza 4.5 m b π Funkcije tan; cot; sec; csc Ove trigonometrijske funkcije imaju periodu π, sto znaci da se funkcijska vrijednost ponavlja svakih pola kruga (vidi jedinicnu kruznicu). Triginometrija 7

18 ( ϕ) ( ϕ + ϕ) ( ϕ ) ( ϕ) 6. Izraz sin + 4cos preuredi u oblik acos i potom izracunaj maksimalnu i minimalnu vrijednost izraza sin + 4cos acos u intervalu π. acos a cos cos sin sin 4 a cosϕ 4 cosϕ a sin + 4cos asinϕ sinϕ a 4 cos ϕ + sin ϕ + a 5 a ± 5 a a 4 4 a 5 cosϕ ϕ cos a 5 cosϕ ϕ cos sin 4cos 5cos.645 Nase jednadzbe inaju slijedeci izgled: sin + 4cos 5cos(.785) + Triginometrija 8

19 Maksimalna vrijednost: 5cos.645 je za: i ma : 5cos 5 Minimalna vrijednost: 5cos.645 je za:.645 π.785 min : 5cosπ 5 ( ϕ) ( ϕ ϕ) ( ϕ ) 64. Izraz 5sin + sin preuredi u oblik acos i potom izracunaj maksimalnu i minimalnu vrijednost izraza u intervalu π. acos a coscos + sin sin 5sin + sin 5 a cosϕ 5 cosϕ a 5 cos ϕ + sin ϕ + a a a sinϕ sinϕ a + + ± cos ϕ sin ϕ 5 44 a a 5 5 Jednadzba izgledaju ovako: acos cos.76 cosϕ ϕ cos.76 ( ϕ ) ( ).76 Ma: cos(.76 ) je za:.76.9 ma π +.76 Min: cos(.76 ) je za:.76 π.49 min Triginometrija 9

20 66. Izraz sin cos preuredi u oblik asin ( ϕ) ( ϕ ϕ ) cos ϕ + ( ϕ ) i potom izracunaj maksimalnu i minimalnu vrijednost izraza u intervalu π. asin a sin cos cos sin sin cos a cosϕ cosϕ a asinϕ sinϕ a ϕ + ϕ ± cos sin a a sin + ϕ a a π asin ( ϕ) sin ( ϕ) ϕ sin ϕ 4 π Jednadzba izgledaju ovako: asin ( ϕ ) sin 4 π π π π Maksimum: sin je za: ma π π π 7π Minimum: sin je za: min U nastavku su prikazani grafovi za razlicite kombinacije krivulja. Radi lakseg razumijevanja, svaka krivulja je prikazana drugacijom bojom. Eventualni pomak u fazi, se moze vidjeti na mjestu. Rezultirajuca funkcija nacrtana je plavom bojom. Triginometrija

21 sin cos sin + π sin sin + cos sin cos tan cos cosπ sin Triginometrija

22 sin+ cos 5.7 Inverzne trigonometrijske funkcije Za trigonometrijsku funkciju sin kazemo da je sinus luka koji zatvara kut. Inverzna funkcija toj funkciji je arcsin, Arcus sinus. To znaci, da je luk kome je sinus jednak. Trigonometrijska funkcija sin Inverzna funkcija arcsin obicno se pise, arcsin 75. arctan je kut ciji je tangens 76. arccot je kut ciji je cotangens 77. arcsin je dvaput kut ciji je sinus π 78. arccos koji luk ima cosinus α arcsin koji luk ima sinus α π ( ) α ( ) 8. arctan koji luk ima je tangens - 6 π π 8. arctan koji luk ima tangens ( ), jer je tan 6 6 π π 8. arcsin koji luk ima tangens ( 45 ), jer je tan 4 4 π 8. arccsc koji luk ima kosecans ( 45 ), jer je csc 4 sin π sin π π arcsin koji luk ima sinus ( 6 ), jer je sin 85. π cos arctan ( ) koji luk ima tangens( -) ( 45 ), 4 Triginometrija

23 π koliko iznosi cos 4 π π 86. cos( arcsin) koji luk ima je sinus ( 9 ),koliko iznosi cos 87. Rijesi zadanu jednadzbu po : arcsin sin arcsin 88. arctan arctan 4 tan 4 4 arcsec sec sec arc sec( ) 9. arccos cos cos ( ω ϕ) 9. Rijesi pomocu arcus funkcije, po t: Acos t + cos( ωt + ϕ) ( ωt+ ϕ) arccos ωt + ϕ arccos A A A ϕ ϕ t arccos t arccos ω A ω ω A ω 9. Rijesi po t: i Ima sin ωt + α cosϕ + cos ωt+ α sinϕ i i Ima sin ( ωt + α + ϕ) I sin ( ωt+ α + ϕ) i i ωt + α + ϕ arcsin t arcsin α ϕ Ima ω Ima cos 9. Rijesi na nacin koji znas: sec + tan sin ( ) ( ) ma ) ( ) ( ) sin + sin sin ( sin sec + tan + cos cos cos sin cos sin cos cos cos sin sin 94. tan + tan 7 tan 6 tan tan 7 tan , Triginometrija

24 ( ) 95. sin, ± 4 π 5π 7π π sin sin sin 96. cos ( ), ( 5 ), ( ), ( ) cos cos, ±, π 8 9, cos π π π 5π 7π π ± cos cos, 5,, 98. cos sin sin cos sin sin cos π 5π sin,π 6 cos cos 6, 99. sin cos + sin cos sin + sin cos + sin sin + sin + sin + sin. Rijesi jednadzbu ako je cos : sin 4 sin 4 cos 4 4cos cos sin. Rijesi jednadzbu ako je sec : 4 tan sec 4 4sec 4 sec tan. Rijesi jednadzbu ako je tan : sin + Triginometrija 4

25 sin tan tan tan cos sin cos + + ( tan) + tan sec cos cos sin 5.8 Sinusov i kosinusov poucak Sinusov poucak: Omjer izmedju stranice trokuta i sinusa kuta suprotnog toj stranici, je konstantan. a b c sinα sin β sinγ Dodajmo jos slijedece: Zbroj stranica s a+ b+ c Povrsina trokuta Upisana kruznica Opisana kruznica Kosinusov poucak: P s s a s b s c P ρ s P abc r sinα 4P Kvadrat nad stranicom trokuta jednak je zbroju kvadrata drugih dviju stranica, umanjenog za dvostruki produkt tih dviju stranica i kosinusa kuta izmedju tih stranica. a b + c bccos( bc, ) Prilikom rjesavanja zadataka, posebno treba voditi racuna o kutu izmedju stranica, kada je kut o veci od ϕ > 9. Tada funkcija cos ϕ mijenja vrijednost i predznak pa se dvostruki produkt zbroji kvadratima drugih dviju stranica.. Dva promatraca medjusobno udaljena 7,45 m, promatraju helikopter istocno od njih, pod kutem: prvi promatrac α, drugi promatrac β v 44. Odredi udaljenost helikoptera od prvog promatraca i visinu helikoptera. α, unutarnji kut drugog promatraca iznosi β 8 β Kut na vrhu, gdje je helikopter iznosi γ 8 α + β 8 + a b c 754sin6 Iz sinusovog poucka: b sin α sin β sin γ si n Visina helikoptera iznosi: h bsin 5,9sin,9 m v 5,9 m Triginometrija 5

26 4. Rijesi trokut: a 45.7, α 65, β 49 γ 8 α + β Iz sinusovog poucka: a b c 45.7 b c sin α sin β sin γ sin65 sin49 sin sin sin 66 b 8.55 c 46.6 sin 65 sin Stol u obliku peterokuta ima dijagonalu duzine. m. Kolika je duzuna stranice. 6 Kut pri vrhu peterokuta iznosi α 7 5 a b c d a Iz sinusovog poucka: a.8 m sinα sin β sinγ sin 7 7 sin 6. Stup je usidren sa dva uzeta. Sila u desnom je 85 kp. Kut koji uzad cine na vrhu stupa je α5 a kut desnog uzeta prema zemlji iznosi β5.7. Odredi silu u lijevom uzetu. Treci kut iznosi γ 8 ( α β) a b c F 85 F kp sinα sin β sinγ sin 7.8 sin Rijesi trokut: a.76, c.54, β 9. b a + c ac β b a + c ac Iz kosinusovog poucka: cos cos9. b ac b cos a b c Iz sinusovog poucka: sin α sin β sin γ sinα sin9. sinγ.76sin9. sinα.68 α sin9. sinγ.696 γ Rijesi trokut: a 9.5, b 45., c 67.5 b + c a Iz kosinusovog poucka: a b + c bccosα cosα bc cosα.888 α a b bsinα Iz sinusovog poucka: sin β 45.sin sinα sin β a 9.5 Triginometrija 6

27 β 4.65 γ 8 α + β γ Cjevovod je zbog prirodne prepreke mijenjao pravac. Prvi dio je dug,756 km a drugi 4,675 km. Kut skretanja trase iznosi γ Koliko je povecana duzina cjevovoda zbog te prepreke. c a + b c ab 7, 48,87.5 cosγ, , 675, 765 4, 675cos68.85 Duzina zamisljene trase iznosi: c 8,9.59 km Duzina trase iznosi:, , 675 8, 4 km Razlika u duzini iznosi: l 8,4 8, km. Rijecni brod putuje brzinom.5 km/h ali zbog strujanja vode, ta je brzina.7 km/h u odnosu na obalu. Koja je brzina vode, ako brod putuje pod kutem γ.6. c a b abcosγ cos.6 c 5.87 c 5.86 Brzina vode iznosi: 5.86 km/h 5.9 Trigonometrijske funkcije u parametarskom i polarnom obliku Trigonometrijske funkcije zadane u parametarskom obliku ( ) () () Ako se tocka, moze zadati u ovisnosti o trecoj promjenjivoj t, tada se jednadzbe f t i f t zovu parametarske jednadzbe a parametar je t.. Izrazi parametarski zadanu jednadzbu cos t, sin t u pravokutnom koordinatnom sistemu: cost cost t + t sint sint Rjesenje predstavlja jednadzbu elipse. cos sin. Izrazi parametarski zadanu jednadzbu + t, + t u pravokutnom koordinatnom sistemu: + t t t t Rjesenje predstavlja jednadzbu pravca Triginometrija 7

28 . Izrazi parametarski zadanu jednadzbu t, t + u pravokutnom koordinatnom sistemu: + + ( ) + + t + t t t Rjesenje predstavlja jednadzbu parabole t t 4. Izrazi parametarski zadanu jednadzbu e, e u pravokutnom koordinatnom sistemu: t e t t e e t e Rjesenje predstavlja jednadzbu hiperbole 5. Izrazi parametarski zadanu jednadzbu cos ϕ, sin ϕ u pravokutnom koordinatnom sistemu: cosϕ cosϕ cos ϕ + sin ϕ + sinϕ sinϕ Rjesenje predstavlja jednadzbu kruznice Triginometrija 8

29 6. Izrazi parametarski zadanu jednadzbu 4 + tan ϕ, + sec ϕ u pravokutnom koordinatnom sistemu: 4 4+ tanϕ tanϕ 4 tan ϕ + sec ϕ secϕ secϕ ( 4) ( + ) Rjesenje predstavlja jednadzbu hiperbole 7. Izrazi parametarski zadanu jednadzbu tan ϕ, cot ϕ u pravokutnom koordinatnom sistemu: tanϕ tanϕ cotϕ tanϕ cotϕ Rjesenje predstavlja jednadzbu hiperbole Trigonometrijske funkcije zadane u polarnim koordinatama Polarni koordinatni sistem ima dvije koordinate sa kojima je odredjen polozaj tocke u ravnini. r udaljenost tocke od ishodsta ili r radijvektor. Ishodiste se zove i pol polarnog koordinatnog sistema. ϕ kut rotacije, kut izmedju nultog polozaja r (pozitivni dio osi) Na slici je prikazan odnos velicina u pravokutnom i polarnom koordinatnom sustavu. Za pretvaranje jednog sistema u drugi koristimo slijedece relacije: rcosϕ rsinϕ r + ϕ Arc tan Triginometrija 9

30 8. Odredi pravokutne koordinate tocke zadane u polarnom obliku. T 4, 4 r 4, ϕ4 r cosϕ 4 cos 4 4( cos 6 ) 4 rsinϕ 4sin 4 4( sin 6 ) 4 T ( 4, 4 ) T(, ) 9. Pretvori pravokutne koordinate tocke T T,, (, ) (,9 ), (, 7 ) ( ), u polarne ± ϕ tan tan ϕ 9 r r Arc Arc T T T ( ). Pretvori pravokutne koordinate tocke T, u polarne. T,, r r ± ϕ Arc tan Arc tan 5 ϕ 5 (,) (,5 ), (, ) T T T ( + i ). Pretvori u polarne koordinate:, 4 + i + i r + + ϕ Arc tan Arc tan 6 ( ϕ ) (,6 ), T(,4 ) + i + i r cos + isin ± cos6 + isin 6 + i T. Pretvori u pravokutne koordinate: rsinϕ rcosϕ Rjesenje je: T, Triginometrija

31 ( + i ). Pretvori u pravokutne koordinate: 6 cos sin rcosϕ 6 cos 6 ( sin ) 6 6 rsinϕ 6 sin 6 cos 6 8 ( + i ) ( + i ) 6 cos sin 6 Triginometrija

5. FUNKCIJE ZADANE U PARAMETARSKOM OBLIKU I POLARNIM KORDINATAMA

5. FUNKCIJE ZADANE U PARAMETARSKOM OBLIKU I POLARNIM KORDINATAMA 5. FUNKCIJE ZADANE U PARAMEARSKOM OBLIKU I POLARNIM KORDINAAMA 5. Funkcije zadane u paametaskom obliku Ako se koodinate neke tocke,, zadaju u obliku funkcije neke tece pomjenjive, koja se tada naziva paameta,

Διαβάστε περισσότερα

Mate Vijuga: Rijeseni zadaci iz matematike za srednju skolu

Mate Vijuga: Rijeseni zadaci iz matematike za srednju skolu 5. GEOMETRIJA 5.1 Opcenito o kutevima Poznate su slijedece vrste kuteva: siljasti kut α < 90 pravi kut α = 90 tupi kut 90 < α < 180 ravni kut α = 180 izboceni kut 180 < α < 360 puni kut α = 360 Komplementi

Διαβάστε περισσότερα

Zadaci iz trigonometrije za seminar

Zadaci iz trigonometrije za seminar Zadaci iz trigonometrije za seminar FON: 1. Vrednost izraza sin 1 cos 6 jednaka je: ; B) 1 ; V) 1 1 + 1 ; G) ; D). 16. Broj rexea jednaqine sin x cos x + cos x = sin x + sin x na intervalu π ), π je: ;

Διαβάστε περισσότερα

- pravac n je zadan s točkom T(2,0) i koeficijentom smjera k=2. (30 bodova)

- pravac n je zadan s točkom T(2,0) i koeficijentom smjera k=2. (30 bodova) MEHANIKA 1 1. KOLOKVIJ 04/2008. grupa I 1. Zadane su dvije sile F i. Sila F = 4i + 6j [ N]. Sila je zadana s veličinom = i leži na pravcu koji s koordinatnom osi x zatvara kut od 30 (sve komponente sile

Διαβάστε περισσότερα

2.7 Primjene odredenih integrala

2.7 Primjene odredenih integrala . INTEGRAL 77.7 Primjene odredenih integrala.7.1 Računanje površina Pořsina lika omedenog pravcima x = a i x = b te krivuljama y = f(x) i y = g(x) je b P = f(x) g(x) dx. a Zadatak.61 Odredite površinu

Διαβάστε περισσότερα

IZVODI ZADACI (I deo)

IZVODI ZADACI (I deo) IZVODI ZADACI (I deo) Najpre da se podsetimo tablice i osnovnih pravila:. C`=0. `=. ( )`= 4. ( n )`=n n-. (a )`=a lna 6. (e )`=e 7. (log a )`= 8. (ln)`= ` ln a (>0) 9. = ( 0) 0. `= (>0) (ovde je >0 i a

Διαβάστε περισσότερα

2. KOLOKVIJ IZ MATEMATIKE 1

2. KOLOKVIJ IZ MATEMATIKE 1 2 cos(3 π 4 ) sin( + π 6 ). 2. Pomoću linearnih transformacija funkcije f nacrtajte graf funkcije g ako je, g() = 2f( + 3) +. 3. Odredite domenu funkcije te odredite f i njenu domenu. log 3 2 + 3 7, 4.

Διαβάστε περισσότερα

18. listopada listopada / 13

18. listopada listopada / 13 18. listopada 2016. 18. listopada 2016. 1 / 13 Neprekidne funkcije Važnu klasu funkcija tvore neprekidne funkcije. To su funkcije f kod kojih mala promjena u nezavisnoj varijabli x uzrokuje malu promjenu

Διαβάστε περισσότερα

Zadaci sa prethodnih prijemnih ispita iz matematike na Beogradskom univerzitetu

Zadaci sa prethodnih prijemnih ispita iz matematike na Beogradskom univerzitetu Zadaci sa prethodnih prijemnih ispita iz matematike na Beogradskom univerzitetu Trigonometrijske jednačine i nejednačine. Zadaci koji se rade bez upotrebe trigonometrijskih formula. 00. FF cos x sin x

Διαβάστε περισσότερα

Veleučilište u Rijeci Stručni studij sigurnosti na radu Akad. god. 2011/2012. Matematika. Monotonost i ekstremi. Katica Jurasić. Rijeka, 2011.

Veleučilište u Rijeci Stručni studij sigurnosti na radu Akad. god. 2011/2012. Matematika. Monotonost i ekstremi. Katica Jurasić. Rijeka, 2011. Veleučilište u Rijeci Stručni studij sigurnosti na radu Akad. god. 2011/2012. Matematika Monotonost i ekstremi Katica Jurasić Rijeka, 2011. Ishodi učenja - predavanja Na kraju ovog predavanja moći ćete:,

Διαβάστε περισσότερα

(P.I.) PRETPOSTAVKA INDUKCIJE - pretpostavimo da tvrdnja vrijedi za n = k.

(P.I.) PRETPOSTAVKA INDUKCIJE - pretpostavimo da tvrdnja vrijedi za n = k. 1 3 Skupovi brojeva 3.1 Skup prirodnih brojeva - N N = {1, 2, 3,...} Aksiom matematičke indukcije Neka je N skup prirodnih brojeva i M podskup od N. Ako za M vrijede svojstva: 1) 1 M 2) n M (n + 1) M,

Διαβάστε περισσότερα

4.1 Elementarne funkcije

4.1 Elementarne funkcije . Elementarne funkcije.. Polinomi Funkcija f : R R zadana formulom f(x) = a n x n + a n x n +... + a x + a 0 gdje je n N 0 te su a n, a n,..., a, a 0 R, zadani brojevi takvi da a n 0 naziva se polinom

Διαβάστε περισσότερα

radni nerecenzirani materijal za predavanja

radni nerecenzirani materijal za predavanja Matematika 1 Funkcije radni nerecenzirani materijal za predavanja Definicija 1. Kažemo da je funkcija f : a, b R u točki x 0 a, b postiže lokalni minimum ako postoji okolina O(x 0 ) broja x 0 takva da je

Διαβάστε περισσότερα

Mate Vijuga: Rijeseni zadaci iz matematike za srednju skolu

Mate Vijuga: Rijeseni zadaci iz matematike za srednju skolu 16. UVOD U STATISTIKU Statistika je nauka o sakupljanju i analizi sakupljenih podatka u cilju donosenja zakljucaka o mogucem toku ili obliku neizvjesnosti koja se obradjuje. Frekventna distribucija - je

Διαβάστε περισσότερα

0 = 5x 20 => 5x = 20 / : 5 => x = 4.

0 = 5x 20 => 5x = 20 / : 5 => x = 4. Zadatak 00 (Denis, ekonomska škola) U kojoj točki pravac s jednadžbom = 8 siječe os? Rješenje 00 Svaka točka koja pripada osi ima koordinate T(0, ). Budući da točka pripada i pravcu = 8, uvrstit ćemo njezine

Διαβάστε περισσότερα

Osnovni primer. (Z, +,,, 0, 1) je komutativan prsten sa jedinicom: množenje je distributivno prema sabiranju

Osnovni primer. (Z, +,,, 0, 1) je komutativan prsten sa jedinicom: množenje je distributivno prema sabiranju RAČUN OSTATAKA 1 1 Prsten celih brojeva Z := N + {} N + = {, 3, 2, 1,, 1, 2, 3,...} Osnovni primer. (Z, +,,,, 1) je komutativan prsten sa jedinicom: sabiranje (S1) asocijativnost x + (y + z) = (x + y)

Διαβάστε περισσότερα

Mate Vijuga: Rijeseni zadaci iz matematike za srednju skolu

Mate Vijuga: Rijeseni zadaci iz matematike za srednju skolu 7. KOMPLEKSNI BROJEVI 7. Opc pojmov Kompleksn brojev su sastavljen dva djela: Realnog djela (Re) magnarnog djela (Im) Promatrajmo broj a+ b = + 3 Realn do jednak je Re : Imagnarna jednca: = - l = (U elektrotehnc

Διαβάστε περισσότερα

MATRICE I DETERMINANTE - formule i zadaci - (Matrice i determinante) 1 / 15

MATRICE I DETERMINANTE - formule i zadaci - (Matrice i determinante) 1 / 15 MATRICE I DETERMINANTE - formule i zadaci - (Matrice i determinante) 1 / 15 Matrice - osnovni pojmovi (Matrice i determinante) 2 / 15 (Matrice i determinante) 2 / 15 Matrice - osnovni pojmovi Matrica reda

Διαβάστε περισσότερα

I. dio. Zadaci za ponavljanje

I. dio. Zadaci za ponavljanje I. dio Zadaci za ponavljanje ZADACI ZA PONAVLJANJE. BROJEVI: Prirodni, cijeli, racionalni i realni brojevi. Izgradnja skupova N, Z, Q, R.. Odredi najveću zajedničku mjeru M(846, 46).. Napiši broj u sustavu

Διαβάστε περισσότερα

POTPUNO RIJEŠENIH ZADATAKA PRIRUČNIK ZA SAMOSTALNO UČENJE

POTPUNO RIJEŠENIH ZADATAKA PRIRUČNIK ZA SAMOSTALNO UČENJE **** MLADEN SRAGA **** 011. UNIVERZALNA ZBIRKA POTPUNO RIJEŠENIH ZADATAKA PRIRUČNIK ZA SAMOSTALNO UČENJE SKUP REALNIH BROJEVA α Autor: MLADEN SRAGA Grafički urednik: BESPLATNA - WEB-VARIJANTA Tisak: M.I.M.-SRAGA

Διαβάστε περισσότερα

( ) ( ) ( ) ( ) x y

( ) ( ) ( ) ( ) x y Zadatak 4 (Vlado, srednja škola) Poprečni presjek rakete je u obliku elipse kojoj je velika os 4.8 m, a mala 4. m. U nju treba staviti meteorološki satelit koji je u presjeku pravokutnog oblika. Koliko

Διαβάστε περισσότερα

Pitanja za usmeni dio ispita iz matematike

Pitanja za usmeni dio ispita iz matematike PITANJA ZA MATURALNI ISPIT Pitanja za usmeni dio ispita iz matematike. Dokazati da je zbroj unutarnjih kutova u trokutu 80 0,a spoljnjih 60 0.. Dokazati da je spoljnji kut trokuta jednak zbroju dva nesusjedna

Διαβάστε περισσότερα

Funkcije Materijali za nastavu iz Matematike 1

Funkcije Materijali za nastavu iz Matematike 1 Funkcije Materijali za nastavu iz Matematike 1 Kristina Krulić Himmelreich i Ksenija Smoljak 2012/13 1 / 76 Definicija funkcije Funkcija iz skupa X u skup Y je svako pravilo f po kojemu se elementu x X

Διαβάστε περισσότερα

Grafičko prikazivanje atributivnih i geografskih nizova

Grafičko prikazivanje atributivnih i geografskih nizova Grafičko prikazivanje atributivnih i geografskih nizova Biserka Draščić Ban Pomorski fakultet u Rijeci 17. veljače 2011. Grafičko prikazivanje atributivnih nizova Atributivni nizovi prikazuju se grafički

Διαβάστε περισσότερα

x + t x 2 x t x 2 t x = + x + = + x + = t 2. 3 y y [x množi cijelu zagradu] y y 2 x [na lijevu stranu prebacimo nepoznanicu y] [izlučimo 3 y ] x x x

x + t x 2 x t x 2 t x = + x + = + x + = t 2. 3 y y [x množi cijelu zagradu] y y 2 x [na lijevu stranu prebacimo nepoznanicu y] [izlučimo 3 y ] x x x Zadatak 00 (Sanja, gimnazija) Odredi realnu funkciju f() ako je f ( ) = Rješenje 00 Uvedemo supstituciju (zamjenu varijabli) = t Kvadriramo: t t t = = = = t Uvrstimo novu varijablu u funkciju: f(t) = t

Διαβάστε περισσότερα

Racionalni algebarski izrazi

Racionalni algebarski izrazi . Skratimo razlomak Racionalni algebarski izrazi [MM.4-()6] 5 + 6 +. Ako je a + b + c = dokazati da je a + b + c = abc [MM.4-()] 5 6 5. Reši jednačinu: y y y + + = 7 4 y = [MM.4-(4)] 4. Reši jednačinu:

Διαβάστε περισσότερα

( pol funkcije), horizontalna ili kosa.

( pol funkcije), horizontalna ili kosa. 4. ANALIZA TOKA FUNKCIJE, EKSTREMI 4. Opci pojmovi Nultocke funkcije - su tocke u kojima je funkcija jednak nula. Za razlomljenu racionalnu funkciju, je kada je brojnik nula. Polovi funkcije - su tocke

Διαβάστε περισσότερα

Geometrijske karakteristike poprenih presjeka nosaa. 9. dio

Geometrijske karakteristike poprenih presjeka nosaa. 9. dio Geometrijske karakteristike poprenih presjeka nosaa 9. dio 1 Sile presjeka (unutarnje sile): Udužna sila N Poprena sila T Moment uvijanja M t Moment savijanja M Napreanja 1. Normalno napreanje σ. Posmino

Διαβάστε περισσότερα

I.13. Koliki je napon između neke tačke A čiji je potencijal 5 V i referentne tačke u odnosu na koju se taj potencijal računa?

I.13. Koliki je napon između neke tačke A čiji je potencijal 5 V i referentne tačke u odnosu na koju se taj potencijal računa? TET I.1. Šta je Kulonova sila? elektrostatička sila magnetna sila c) gravitaciona sila I.. Šta je elektrostatička sila? sila kojom međusobno eluju naelektrisanja u mirovanju sila kojom eluju naelektrisanja

Διαβάστε περισσότερα

4 Sukladnost i sličnost trokuta

4 Sukladnost i sličnost trokuta 4 Sukladnost i sličnost trokuta 4.1 Sukladnost trokuta Neka su ABC i A B C trokuti sa stranicama duljina a b c odnosno a b c. Kažemo da su ti trokuti sukladni ako postoji bijekcija f : {A B C} {A B C }

Διαβάστε περισσότερα

x M kazemo da je slijed ogranicen. Weierstrass-Bolzano-v teorem tvrdi da svaki ograniceni slijed ima barem jednu granicnu tocku.

x M kazemo da je slijed ogranicen. Weierstrass-Bolzano-v teorem tvrdi da svaki ograniceni slijed ima barem jednu granicnu tocku. 1. FUNKCIJE, LIMES, NEPREKINUTOST 1.1 Brojevi - slijed, interval, limes Slijed realnih brojeva je postava brojeva na primjer u obliku 1,,3..., nn, + 1... koji na realnoj osi imaju oznaceno mjesto odgovarajucom

Διαβάστε περισσότερα

Analitička geometrija i linearna algebra

Analitička geometrija i linearna algebra 1. VEKTORI POJAM VEKTORA Svakodnevno se susrećemo s veličinama za čije je određivanje potrean samo jedan roj. Na primjer udaljenost, površina, volumen,. Njih zovemo skalarnim veličinama. Međutim, postoje

Διαβάστε περισσότερα

Unipolarni tranzistori - MOSFET

Unipolarni tranzistori - MOSFET nipolarni tranzistori - MOSFET ZT.. Prijenosna karakteristika MOSFET-a u području zasićenja prikazana je na slici. oboaćeni ili osiromašeni i obrazložiti. b olika je struja u točki, [m] 0,5 0,5,5, [V]

Διαβάστε περισσότερα

9. PREGLED ELEMENTARNIH FUNKCIJA

9. PREGLED ELEMENTARNIH FUNKCIJA 9. PREGLED ELEMENTARNIH FUNKCIJA Pod elementarnim funkcijama najčešće ćemo podrazumijevati realne funkcije realne varijable Detaljnije ćemo u Matematici II analizirati funkcije koje se najčešće koriste

Διαβάστε περισσότερα

Tehnologija bušenja II

Tehnologija bušenja II INŽENJERSTVO NAFTE I GASA Tehnologija bušenja II 1. Vežba V - 1 Tehnologija bušenja II Slide 1 of 44 Algebra i trigonometrija V - 1 Tehnologija bušenja II Slide 2 of 44 Jednačine Pitanje: Ako je a = 3b

Διαβάστε περισσότερα

Temeljni pojmovi o trokutu

Temeljni pojmovi o trokutu 1. Temeljni pojmovi o trokutu U ovom poglavlju upoznat ćemo osnovne elemente trokuta i odnose medu - njima. Zatim ćemo definirati težišnice, visine, srednjice, simetrale stranica i simetrale kutova trokuta.

Διαβάστε περισσότερα

Geometrija (I smer) deo 1: Vektori

Geometrija (I smer) deo 1: Vektori Geometrija (I smer) deo 1: Vektori Srdjan Vukmirović Matematički fakultet, Beograd septembar 2013. Vektori i linearne operacije sa vektorima Definicija Vektor je klasa ekvivalencije usmerenih duži. Kažemo

Διαβάστε περισσότερα

Ekstremi funkcije jedne varijable

Ekstremi funkcije jedne varijable maksimum funkcije y = f(x) je vrijednost f(x 0 ) za koju vrijedi f(x 0 + h) < f(x 0 ) (1) za po volji male vrijednosti h minimum funkcije y = f(x) je vrijednost f(x 0 ) za koju vrijedi f(x 0 + h) > f(x

Διαβάστε περισσότερα

Kotne in krožne funkcije

Kotne in krožne funkcije Kotne in krožne funkcije Kotne funkcije v pravokotnem trikotniku Avtor: Rok Kralj, 4.a Gimnazija Vič, 009/10 β a c γ b α sin = a c cos= b c tan = a b cot = b a Sinus kota je razmerje kotu nasprotne katete

Διαβάστε περισσότερα

( ) π. I slučaj-štap sa zglobovima na krajevima F. Opšte rešenje diferencijalne jednačine (1): min

( ) π. I slučaj-štap sa zglobovima na krajevima F. Opšte rešenje diferencijalne jednačine (1): min Kritična sia izvijanja Kritična sia je ona najmanja vrednost sie pritisa pri ojoj nastupa gubita stabinosti, odnosno, pri ojoj štap iz stabine pravoinijse forme ravnoteže preazi u nestabinu rivoinijsu

Διαβάστε περισσότερα

Dijagrami: Greda i konzola. Prosta greda. II. Dijagrami unutarnjih sila. 2. Popre nih sila TZ 3. Momenata savijanja My. 1. Uzdužnih sila N. 11.

Dijagrami: Greda i konzola. Prosta greda. II. Dijagrami unutarnjih sila. 2. Popre nih sila TZ 3. Momenata savijanja My. 1. Uzdužnih sila N. 11. Dijagrami:. Udužnih sia N Greda i konoa. Popre nih sia TZ 3. Momenata savijanja My. dio Prosta greda. Optere ena koncentriranom siom F I. Reaktivne sie:. M A = 0 R B F a = 0. M B = 0 R A F b = 0 3. F =

Διαβάστε περισσότερα

ASIMPTOTE FUNKCIJA. Dakle: Asimptota je prava kojoj se funkcija približava u beskonačno dalekoj tački. Postoje tri vrste asimptota:

ASIMPTOTE FUNKCIJA. Dakle: Asimptota je prava kojoj se funkcija približava u beskonačno dalekoj tački. Postoje tri vrste asimptota: ASIMPTOTE FUNKCIJA Naš savet je da najpre dobro proučite granične vrednosti funkcija Neki profesori vole da asimptote funkcija ispituju kao ponašanje funkcije na krajevima oblasti definisanosti, pa kako

Διαβάστε περισσότερα

DIFERENCIJALNE JEDNADŽBE

DIFERENCIJALNE JEDNADŽBE 9 Diferencijalne jednadžbe 6 DIFERENCIJALNE JEDNADŽBE U ovom poglavlju: Direktna integracija Separacija varijabli Linearna diferencijalna jednadžba Bernoullijeva diferencijalna jednadžba Diferencijalna

Διαβάστε περισσότερα

OPĆINSKO/ŠKOLSKO NATJECANJE IZ MATEMATIKE 4. veljače razred-rješenja

OPĆINSKO/ŠKOLSKO NATJECANJE IZ MATEMATIKE 4. veljače razred-rješenja OPĆINSKO/ŠKOLSKO NATJECANJE IZ MATEMATIKE 4. veljače 00. 4. razred-rješenja. 00 + 00 + 00 3 + 00 4 + 00 = 00 ( + + 3 + 4 + ) = 00 = 300... UKUPNO 4 BODA. 96 8 : 4 + 0 ( 68 66 ) = 96 7 + 0 = 89 + 0 = 09...

Διαβάστε περισσότερα

ZBIRKA POTPUNO RIJEŠENIH ZADATAKA

ZBIRKA POTPUNO RIJEŠENIH ZADATAKA **** IVANA SRAGA **** 1992.-2011. ZBIRKA POTPUNO RIJEŠENIH ZADATAKA PRIRUČNIK ZA SAMOSTALNO UČENJE POTPUNO RIJEŠENI ZADACI PO ŽUTOJ ZBIRCI INTERNA SKRIPTA CENTRA ZA PODUKU α M.I.M.-Sraga - 1992.-2011.

Διαβάστε περισσότερα

!"#$ % &# &%#'()(! $ * +

!#$ % &# &%#'()(! $ * + ,!"#$ % &# &%#'()(! $ * + ,!"#$ % &# &%#'()(! $ * + 6 7 57 : - - / :!", # $ % & :'!(), 5 ( -, * + :! ",, # $ %, ) #, '(#,!# $$,',#-, 4 "- /,#-," -$ '# &",,#- "-&)'#45)')6 5! 6 5 4 "- /,#-7 ",',8##! -#9,!"))

Διαβάστε περισσότερα

Funkcije. Matematika 1. Gregor Dolinar. Fakulteta za elektrotehniko Univerza v Ljubljani. 21. november Gregor Dolinar Matematika 1

Funkcije. Matematika 1. Gregor Dolinar. Fakulteta za elektrotehniko Univerza v Ljubljani. 21. november Gregor Dolinar Matematika 1 Matematika 1 Gregor Dolinar Fakulteta za elektrotehniko Univerza v Ljubljani 21. november 2013 Hiperbolične funkcije Hiperbolični sinus sinhx = ex e x 2 20 10 3 2 1 1 2 3 10 20 hiperbolični kosinus coshx

Διαβάστε περισσότερα

MATEMATIKA 7. razred osnovne škole

MATEMATIKA 7. razred osnovne škole Matematika 7. razred osnovne škole 1 MATEMATIKA 7. razred osnovne škole KOORDINATNI SUSTAV 1. Koordinatni sustav na pravcu Koordinatni sustav na pravcu, ishodište, jedinična dužina koordinata točke. Pridruživanje

Διαβάστε περισσότερα

Neprekinute funkcije i limesi Definicija neprekinute funkcije i njen odnos prema limesu Asimptote Svojstva neprekinutih funkcija

Neprekinute funkcije i limesi Definicija neprekinute funkcije i njen odnos prema limesu Asimptote Svojstva neprekinutih funkcija Sadržaj: Nizovi brojeva Pojam niza Limes niza. Konvergentni nizovi Neki važni nizovi. Broj e. Limes funkcije Definicija esa Računanje esa Jednostrani esi Neprekinute funkcije i esi Definicija neprekinute

Διαβάστε περισσότερα

dužina usmjerena (orijentirana) dužina (zna se koja je točka početna, a koja krajnja) vektor

dužina usmjerena (orijentirana) dužina (zna se koja je točka početna, a koja krajnja) vektor I. VEKTORI d. sc. Min Rodić Lipnović 009./010. 1 Pojm vekto A B dužin A B usmjeen (oijentin) dužin (n se koj je točk početn, koj kjnj) A B vekto - kls ( skup ) usmjeenih dužin C D E F AB je epeentnt vekto

Διαβάστε περισσότερα

Geodetski fakultet, dr. sc. J. Beban-Brkić Predavanja iz Matematike DERIVACIJA

Geodetski fakultet, dr. sc. J. Beban-Brkić Predavanja iz Matematike DERIVACIJA Geodetski akultet dr sc J Beban-Brkić Predavanja iz Matematike DERIVACIJA Pojam derivacije Glavne ideje koje su vodile do današnjeg shvaćanja derivacije razvile su se u 7 stoljeću kada i započinje razvoj

Διαβάστε περισσότερα

Odred eni integrali. Osnovne osobine odred enog integrala: f(x)dx = 0, f(x)dx = f(x)dx + f(x)dx.

Odred eni integrali. Osnovne osobine odred enog integrala: f(x)dx = 0, f(x)dx = f(x)dx + f(x)dx. Odred eni integrli Osnovne osobine odred enog integrl: fx), fx) fx) b c fx), fx) + c fx), 4 ) b αfx) + βgx) α fx) + β gx), 5 fx) F x) b F b) F ), gde je F x) fx), 6 Ako je f prn funkcij fx) f x), x R ),

Διαβάστε περισσότερα

9. Loksodroma i ortodroma

9. Loksodroma i ortodroma Loksodroma 9. Loksodroma i ortodroma Loksodroma 1 je krivulje na površini Zemlje koja sve meridijane sijece pod istim kutom. Osim u posebnim slucajevima ima oblik spirale cije ishodište i završnica teže

Διαβάστε περισσότερα

SKUP REALNIH BROJEVA BROJEVI I RAČUNSKE OPERACIJE. Koja je vrijednost izraza : ? A. B. C. 5 D. 7. Koja je od navedenih tvrdnji istinita?

SKUP REALNIH BROJEVA BROJEVI I RAČUNSKE OPERACIJE. Koja je vrijednost izraza : ? A. B. C. 5 D. 7. Koja je od navedenih tvrdnji istinita? SŠ AMBROZA HARAČIĆA MALI LOŠINJ ZBIRKA ZADATAKA IZ MATEMATIKE Viša (A) razina Zadaci i rješenja sa nacionalnih ispita i državnih matura 006.-0. Prikupio i obradio: Ivan Brzović,prof. Mali Lošinj,rujan

Διαβάστε περισσότερα

FUNKCIJE DVIJU VARIJABLI (ZADACI)

FUNKCIJE DVIJU VARIJABLI (ZADACI) FUNKCIJE DVIJU VARIJABLI (ZADACI) Rozarija Jak²i 5. travnja 03. UVOD U FUNKCIJE DVIJU VARIJABLI.. Domena funkcija dviju varijabli Jedno od osnovnih pitanja koje se moºe postaviti za realnu funkciju dvije

Διαβάστε περισσότερα

RJEŠENJA ZA 4. RAZRED

RJEŠENJA ZA 4. RAZRED RJEŠENJA ZA 4. RAZRED OVDJEJEDANJEDANNAČIN RJEŠAVANJA ZADATAKA. UKOLIKO UČENIK IMA DRUGA- ČIJI POSTUPAK RJEŠAVANJA, ČLAN POVJERENSTVA DUŽAN JE I TAJ POSTUPAK OCI- JENITI I BODOVATI NA ODGOVARAJUĆI NAČIN..

Διαβάστε περισσότερα

Funkcije više varijabli

Funkcije više varijabli VJEŽBE IZ MATEMATIKE 2 Ivana Baranović Miroslav Jerković Lekcija 7 Pojam funkcije dviju varijabla, grafa i parcijalnih derivacija Poglavlje 1 Funkcije više varijabli 1.1 Domena Jedno od osnovnih pitanja

Διαβάστε περισσότερα

Zbirka oglednih zadataka iz matematike za pripreme za upis na Ekonomski fakultet

Zbirka oglednih zadataka iz matematike za pripreme za upis na Ekonomski fakultet X. GIMNAZIJA Zbirka oglednih zadataka iz matematike za pripreme za upis na Ekonomski fakultet Pripremila Vesna Skočir PREDGOVOR Zbirka sadrži zadatke koji su se zadnjih nekoliko godina pojavljivali na

Διαβάστε περισσότερα

DIMENZIONISANJE PRAVOUGAONIH POPREČNIH PRESEKA NAPREGNUTIH NA PRAVO SLOŽENO SAVIJANJE

DIMENZIONISANJE PRAVOUGAONIH POPREČNIH PRESEKA NAPREGNUTIH NA PRAVO SLOŽENO SAVIJANJE TEORIJA ETONSKIH KONSTRUKCIJA T- DIENZIONISANJE PRAVOUGAONIH POPREČNIH PRESEKA NAPREGNUTIH NA PRAVO SLOŽENO SAVIJANJE 3.5 f "2" η y 2 D G N z d y A "" 0 Z a a G - tačka presek koja određje položaj sistemne

Διαβάστε περισσότερα

Program za tablično računanje Microsoft Excel

Program za tablično računanje Microsoft Excel Program za tablično računanje Microsoft Excel Teme Formule i funkcije Zbrajanje Oduzimanje Množenje Dijeljenje Izračun najveće vrijednosti Izračun najmanje vrijednosti 2 Formule i funkcije Naravno da je

Διαβάστε περισσότερα

Ministarstvo prosvete i sporta Republike Srbije Druxtvo matematiqara Srbije OPXTINSKO TAKMIQENjE IZ MATEMATIKE Prvi razred A kategorija

Ministarstvo prosvete i sporta Republike Srbije Druxtvo matematiqara Srbije OPXTINSKO TAKMIQENjE IZ MATEMATIKE Prvi razred A kategorija 18.1200 Prvi razred A kategorija Neka je K sredixte teжixne duжi CC 1 trougla ABC ineka je AK BC = {M}. Na i odnos CM : MB. Na i sve proste brojeve p, q i r, kao i sve prirodne brojeve n, takve da vaжi

Διαβάστε περισσότερα

Matematika Zbirka zadataka

Matematika Zbirka zadataka Matematika Zbirka zadataka Kristina Devčić Božidar Ivanković Veleučilište Nikola Tesla u Gospiću Uvod Unaprijed se zahvaljujemo na svakom komentaru o propustima i nedosljednostima, a svaka primjedba glede

Διαβάστε περισσότερα

Ovo nam govori da funkcija nije ni parna ni neparna, odnosno da nije simetrična ni u odnosu na y osu ni u odnosu na

Ovo nam govori da funkcija nije ni parna ni neparna, odnosno da nije simetrična ni u odnosu na y osu ni u odnosu na . Ispitati tok i skicirati grafik funkcij = Oblast dfinisanosti (domn) Ova funkcija j svuda dfinisana, jr nma razlomka a funkcija j dfinisana za svako iz skupa R. Dakl (, ). Ovo nam odmah govori da funkcija

Διαβάστε περισσότερα

Fakultet tehničkih nauka, Softverske i informacione tehnologije, Matematika 2 KOLOKVIJUM 1. Prezime, ime, br. indeksa:

Fakultet tehničkih nauka, Softverske i informacione tehnologije, Matematika 2 KOLOKVIJUM 1. Prezime, ime, br. indeksa: Fakultet tehničkih nauka, Softverske i informacione tehnologije, Matematika KOLOKVIJUM 1 Prezime, ime, br. indeksa: 4.7.1 PREDISPITNE OBAVEZE sin + 1 1) lim = ) lim = 3) lim e + ) = + 3 Zaokružiti tačne

Διαβάστε περισσότερα

ANALIZA SA ALGEBROM I razred MATEMATI^KA LOGIKA I TEORIJA SKUPOVA. p q r F

ANALIZA SA ALGEBROM I razred MATEMATI^KA LOGIKA I TEORIJA SKUPOVA. p q r F ANALIZA SA ALGEBROM I razred MATEMATI^KA LOGIKA I TEORIJA SKUPOVA. Istinitosna tablica p q r F odgovara formuli A) q p r p r). B) q p r p r). V) q p r p r). G) q p r p r). D) q p r p r). N) Ne znam. Date

Διαβάστε περισσότερα

EKSPONENCIJALNE i LOGARITAMSKE FUNKCIJE

EKSPONENCIJALNE i LOGARITAMSKE FUNKCIJE **** MLADEN SRAGA **** 0. UNIVERZALNA ZBIRKA POTPUNO RIJEŠENIH ZADATAKA PRIRUČNIK ZA SAMOSTALNO UČENJE EKSPONENCIJALNE i LOGARITAMSKE FUNKCIJE α LOGARITMI Autor: MLADEN SRAGA Grafički urednik: Mladen Sraga

Διαβάστε περισσότερα

ORTODROMSKA, LOKSODROMSKA I KOMBINIRANA PLOVIDBA

ORTODROMSKA, LOKSODROMSKA I KOMBINIRANA PLOVIDBA David Brčić ORTODROMSKA, LOKSODROMSKA I KOMBINIRANA PLOVIDBA Riješeni zadaci DAVID BRČIĆ LOKSODROMSKA PLOVIDBA I. Loksodromski zadatak (kurs i udaljenost): tgk= II. Loksodromski zadatak (relativne koordinate):

Διαβάστε περισσότερα

GEOMETRIJA KUGLE I SFERE

GEOMETRIJA KUGLE I SFERE Sveučilište u Zagrebu Prirodoslovno-matematički fakultet Matematički odsjek Ružica Korać GEOMETRIJA KUGLE I SFERE Diplomski rad Voditelj rada: doc.dr.sc. Maja Starčević Zagreb, rujan 2015. Svaki dan je

Διαβάστε περισσότερα

Zadatak 2 Odrediti tačke grananja, Riemann-ovu površ, opisati sve grane funkcije f(z) = z 3 z 4 i objasniti prelazak sa jedne na drugu granu.

Zadatak 2 Odrediti tačke grananja, Riemann-ovu površ, opisati sve grane funkcije f(z) = z 3 z 4 i objasniti prelazak sa jedne na drugu granu. Kompleksna analiza Zadatak Odrediti tačke grananja, Riemann-ovu površ, opisati sve grane funkcije f(z) = z z 4 i objasniti prelazak sa jedne na drugu granu. Zadatak Odrediti tačke grananja, Riemann-ovu

Διαβάστε περισσότερα

Zadaci iz Osnova matematike

Zadaci iz Osnova matematike Zadaci iz Osnova matematike 1. Riješiti po istinitosnoj vrijednosti iskaza p, q, r jednačinu τ(p ( q r)) =.. Odrediti sve neekvivalentne iskazne formule F = F (p, q) za koje je iskazna formula p q p F

Διαβάστε περισσότερα

Zadatke trebate rjesiti potpuno samostalno. Tek ako nesto "zapne" odnosno za kontrolu rezultata koristite ove upute.

Zadatke trebate rjesiti potpuno samostalno. Tek ako nesto zapne odnosno za kontrolu rezultata koristite ove upute. 1 OE 11/12 Zadaci za pripremu III. ciklusa laboratorijskih vjezbi PTA ZA RJESAVANJE Zadatke trebate rjesiti potpuno samostalno. Tek ako nesto "zapne" odnosno za kontrolu rezultata koristite ove upute.

Διαβάστε περισσότερα

TAČKA i PRAVA. , onda rastojanje između njih računamo po formuli C(1,5) d(b,c) d(a,b)

TAČKA i PRAVA. , onda rastojanje između njih računamo po formuli C(1,5) d(b,c) d(a,b) TAČKA i PRAVA Najpre ćemo se upoznati sa osnovnim formulama i njihovom primenom.. Rastojanje između dve tačke Ako su nam date tačke Ax (, y) i Bx (, y ), onda rastojanje između njih računamo po formuli

Διαβάστε περισσότερα

VJEROJATNOST I STATISTIKA Popravni kolokvij - 1. rujna 2016.

VJEROJATNOST I STATISTIKA Popravni kolokvij - 1. rujna 2016. Broj zadataka: 5 Vrijeme rješavanja: 120 min Ukupan broj bodova: 100 Zadatak 1. (a) Napišite aksiome vjerojatnosti ako je zadan skup Ω i σ-algebra F na Ω. (b) Dokažite iz aksioma vjerojatnosti da za A,

Διαβάστε περισσότερα

Na grafiku bi to značilo :

Na grafiku bi to značilo : . Ispitati tok i skicirati grafik funkcije + Oblast definisanosti (domen) Kako zadata funkcija nema razlomak, to je (, ) to jest R Nule funkcije + to jest Ovo je jednačina trećeg stepena. U ovakvim situacijama

Διαβάστε περισσότερα

INTEGRALI Zadaci sa kolokvijuma

INTEGRALI Zadaci sa kolokvijuma INTEGRALI Zadaci sa kolokvijuma ragan ori Sadrжaj Neodređeni integral Određeni integral 6 Nesvojstveni integral 9 4 vojni integral 5 Redovi 5 Studentima generacije / (grupe A9, A i A) Ovo je jox jedna

Διαβάστε περισσότερα

Matematika. Viša razina. Marina Ninković, prof. Vesna Ovčina, prof. Zagreb, 2015.

Matematika. Viša razina. Marina Ninković, prof. Vesna Ovčina, prof. Zagreb, 2015. Matematika Viša razina Marina Ninković, prof. Vesna Ovčina, prof. Zagreb, 2015. Autor: Marina Ninković, prof. Vesna Ovčina, prof. Naslov: Matematika Viša razina Izdanje: 4. izdanje Urednica: Ana Belin,

Διαβάστε περισσότερα

Pojam funkcije. Funkcija, preslikavanje, pridruživanje, transformacija

Pojam funkcije. Funkcija, preslikavanje, pridruživanje, transformacija Funkcije Pojam unkcije Funkcija, preslikavanje, pridruživanje, transormacija Primjer.: a) Odredite površinu kvadrata kojem je stranica 5cm. b) Odredite površinu pravokutnika sa stranicama duljine 7 i 5.

Διαβάστε περισσότερα

ZBIRKA - TESTOVA 1. dio

ZBIRKA - TESTOVA 1. dio **** IVANA SRAGA **** 03. UNIVERZALNA ZBIRKA POTPUNO RIJEŠENIH ZADATAKA PRIRUČNIK ZA SAMOSTALNO UČENJE ZBIRKA - TESTOVA. dio. polugodište α Autori: IVANA SRAGA Grafički urednik: Mladen Sraga Ivana Sraga

Διαβάστε περισσότερα

OPĆINSKO/ŠKOLSKO NATJECANJE IZ MATEMATIKE 4. razred osnovna škola 29. siječnja 2007.

OPĆINSKO/ŠKOLSKO NATJECANJE IZ MATEMATIKE 4. razred osnovna škola 29. siječnja 2007. Ministarstvo prosvjete i športa Republike Hrvatske Agencija za odgoj i obrazovanje Hrvatsko matematičko društvo OPĆINSKO/ŠKOLSKO NATJECANJE IZ MATEMATIKE 4. razred osnovna škola 9. siječnja 007.. U brojevnom

Διαβάστε περισσότερα

ΤΡΟΠΟΣ ΑΡΙΘΜΗΤΙΚΗ ΠΑΡΕΜΒΟΛΗ (INTERPOL ATION)

ΤΡΟΠΟΣ ΑΡΙΘΜΗΤΙΚΗ ΠΑΡΕΜΒΟΛΗ (INTERPOL ATION) . 1 (INTERPOLATION) A a 1x1 [ ] Sin[ A] [ Sin[ a]], Cos[ A] [ Cos[ a]], Tan[ A] [ Tan[ a]], Cot[ A] [ Cot[ a]]. a x + yi x, y R Sin[ a] Cosh[ y] Sin[ x] + Cos[ x] Sinh[ y] i Cos[ a] Cos[ x] Cosh[ y] Sin[

Διαβάστε περισσότερα

Matematika 1. Marcela Hanzer. Department of Mathematics, University of Zagreb. Marcela Hanzer (Dept of Math, Uni Zagreb) Matematika 1 1 / 135

Matematika 1. Marcela Hanzer. Department of Mathematics, University of Zagreb. Marcela Hanzer (Dept of Math, Uni Zagreb) Matematika 1 1 / 135 Matematika 1 Marcela Hanzer Department of Mathematics, University of Zagreb Marcela Hanzer (Dept of Math, Uni Zagreb) Matematika 1 1 / 135 Skupovi; brojevi Skupovi osnovni pojam u matematici (ne svodi

Διαβάστε περισσότερα

Nacionalni centar za vanjsko vrednovanje obrazovanja MATEMATIKA. viša razina MAT A D-S001

Nacionalni centar za vanjsko vrednovanje obrazovanja MATEMATIKA. viša razina MAT A D-S001 Nacionalni centar za vanjsko vrednovanje obrazovanja MATEMATIKA viša razina MAT A D-S Prazna stranica MAT A D-S 99 UPUTE Pozorno slijedite sve upute. Ne okrećite stranicu i ne rješavajte test dok to ne

Διαβάστε περισσότερα

Kompleksni brojevi. Algebarski oblik kompleksnog broja je. z = x + iy, x, y R, pri čemu je: x = Re z realni deo, y = Im z imaginarni deo.

Kompleksni brojevi. Algebarski oblik kompleksnog broja je. z = x + iy, x, y R, pri čemu je: x = Re z realni deo, y = Im z imaginarni deo. Kompleksni brojevi Algebarski oblik kompleksnog broja je z = x + iy, x, y R, pri čemu je: x = Re z realni deo, y = Im z imaginarni deo Trigonometrijski oblik kompleksnog broja je z = rcos θ + i sin θ,

Διαβάστε περισσότερα

OBLAST DEFINISANOSTI FUNKCIJE (DOMEN) Pre nego što krenete sa proučavanjem ovog fajla, obavezno pogledajte fajl ELEMENTARNE FUNKCIJE, jer se na

OBLAST DEFINISANOSTI FUNKCIJE (DOMEN) Pre nego što krenete sa proučavanjem ovog fajla, obavezno pogledajte fajl ELEMENTARNE FUNKCIJE, jer se na OBLAST DEFINISANOSTI FUNKCIJE (DOMEN) Prva tačka u ispitivanju toka unkcije je odredjivanje oblasti deinisanosti, u oznaci Pre nego što krenete sa proučavanjem ovog ajla, obavezno pogledajte ajl ELEMENTARNE

Διαβάστε περισσότερα

ΜΑΣ002: Μαθηματικά ΙΙ ΑΣΚΗΣΕΙΣ (για εξάσκηση)

ΜΑΣ002: Μαθηματικά ΙΙ ΑΣΚΗΣΕΙΣ (για εξάσκηση) ΜΑΣ: Μαθηματικά ΙΙ ΑΣΚΗΣΕΙΣ (για εξάσκηση) ΟΛΟΚΛΗΡΩΜΑΤΑ:. Να υπολογιστούν τα ολοκληρώματα: 5 d d csc cot d (β) Απάντησεις: C (β) ln C C. Να υπολογιστούν τα ορισμένα ολοκληρώματα: d csc( ) C C d d (β) /5

Διαβάστε περισσότερα

56. TAKMIČENJE MLADIH MATEMATIČARA BOSNE I HERCEGOVINE FEDERALNO PRVENSTVO UČENIKA SREDNJIH ŠKOLA. Sarajevo, godine

56. TAKMIČENJE MLADIH MATEMATIČARA BOSNE I HERCEGOVINE FEDERALNO PRVENSTVO UČENIKA SREDNJIH ŠKOLA. Sarajevo, godine 56. TAKMIČENJE MLADIH MATEMATIČARA BOSNE I HERCEGOVINE FEDERALNO PRVENSTVO UČENIKA SREDNJIH ŠKOLA Sarajevo, 3.04.016. godine 56. TAKMIČENJE MLADIH MATEMATIČARA BOSNE I HERCEGOVINE FEDERALNO PRVENSTVO UČENIKA

Διαβάστε περισσότερα

Vježbe iz matematike 1

Vježbe iz matematike 1 Vježbe iz matematike B. Ivanković N. Kapetanović 8. rujna 005. Uvod Vježbe su tijekom dugog niza održavanja nadopunjavane. Osnovu vježbi napravila je Nataša Kapetanović, ing. matematike, a podebljao ih

Διαβάστε περισσότερα

Katedra za matematiku (FSB, Zagreb) Matematika 2 Poglavlje-2 1 / 43

Katedra za matematiku (FSB, Zagreb) Matematika 2 Poglavlje-2 1 / 43 Katedra za matematiku (FSB, Zagreb) Matematika Poglavlje- / 43 Ciljevi učenja Ciljevi učenja za predavanja i vježbe: Integral kao antiderivacija Prepoznavanje očiglednih supstitucija Metoda supstitucije-složeniji

Διαβάστε περισσότερα

LANCI & ELEMENTI ZA KAČENJE

LANCI & ELEMENTI ZA KAČENJE LANCI & ELEMENTI ZA KAČENJE 0 4 0 1 Lanci za vešanje tereta prema standardu MSZ EN 818-2 Lanci su izuzetno pogodni za obavljanje zahtevnih operacija prenošenja tereta. Opseg radne temperature se kreće

Διαβάστε περισσότερα

MINISTARSTVO ZNANOSTI, OBRAZOVANJA I SPORTA REPUBLIKE HRVATSKE AGENCIJA ZA ODGOJ I OBRAZOVANJE HRVATSKO MATEMATIČKO DRUŠTVO

MINISTARSTVO ZNANOSTI, OBRAZOVANJA I SPORTA REPUBLIKE HRVATSKE AGENCIJA ZA ODGOJ I OBRAZOVANJE HRVATSKO MATEMATIČKO DRUŠTVO MINISTARSTVO ZNANOSTI, OBRAZOVANJA I SPORTA REPUBLIKE HRVATSKE AGENCIJA ZA ODGOJ I OBRAZOVANJE HRVATSKO MATEMATIČKO DRUŠTVO ŠKOLSKO/GRADSKO NATJECANJE IZ MATEMATIKE 21. siječnja 2016. 4. razred-osnovna

Διαβάστε περισσότερα

Prvi pismeni zadatak iz Analize sa algebrom novembar Ispitati znak funkcije f(x) = tgx x x3. 2. Naći graničnu vrednost lim x a

Prvi pismeni zadatak iz Analize sa algebrom novembar Ispitati znak funkcije f(x) = tgx x x3. 2. Naći graničnu vrednost lim x a Testovi iz Analize sa algebrom 4 septembar - oktobar 009 Ponavljanje izvoda iz razreda (f(x) = x x ) Ispitivanje uslova Rolove teoreme Ispitivanje granične vrednosti f-je pomoću Lopitalovog pravila 4 Razvoj

Διαβάστε περισσότερα

1 DIFERENCIJALNI RAČUN Granična vrijednost i neprekidnost funkcije Derivacija realne funkcije jedne varijable

1 DIFERENCIJALNI RAČUN Granična vrijednost i neprekidnost funkcije Derivacija realne funkcije jedne varijable Sadržaj 1 DIFERENCIJALNI RAČUN 3 1.1 Granična vrijednost i neprekidnost funkcije........... 3 1.2 Derivacija realne funkcije jedne varijable............ 4 1.2.1 Pravila deriviranja....................

Διαβάστε περισσότερα

Odvod. Matematika 1. Gregor Dolinar. Fakulteta za elektrotehniko Univerza v Ljubljani. 10. december Gregor Dolinar Matematika 1

Odvod. Matematika 1. Gregor Dolinar. Fakulteta za elektrotehniko Univerza v Ljubljani. 10. december Gregor Dolinar Matematika 1 Matematika 1 Gregor Dolinar Fakulteta za elektrotehniko Univerza v Ljubljani 10. december 2013 Izrek (Rolleov izrek) Naj bo f : [a,b] R odvedljiva funkcija in naj bo f(a) = f(b). Potem obstaja vsaj ena

Διαβάστε περισσότερα

Diferencijalni račun

Diferencijalni račun ni račun October 28, 2008 ni račun Uvod i motivacija Točka infleksije ni račun Realna funkcija jedne realne varijable Neka je X neprazan podskup realnih brojeva. Ako svakom elementu x X po postupku f pridružimo

Διαβάστε περισσότερα

Preporuke za rješavanje ispita iz Matematike

Preporuke za rješavanje ispita iz Matematike Preporuke za rješavanje ispita iz Matematike Tijekom ocjenjivanja nacionalnih ispita i ispita državne mature, neovisno o razini, uvidjeli smo neke probleme pri rješavanju zadataka. Ovdje želimo navesti

Διαβάστε περισσότερα

ZBIRKA - TESTOVA 1. dio

ZBIRKA - TESTOVA 1. dio **** IVANA SRAGA **** 03. UNIVERZALNA ZBIRKA POTPUNO RIJEŠENIH ZADATAKA PRIRUČNIK ZA SAMOSTALNO UČENJE ZBIRKA - TESTOVA. dio. polugodište α Autori: IVANA SRAGA Grafički urednik: Mladen Sraga Ivana Sraga

Διαβάστε περισσότερα

λ λ ν =. Zadatak 021 (Zoki, elektrotehnička škola) Dva zvučna vala imaju intenzitete 10 i 600 mw/cm 2. Za koliko se decibela razlikuju ta dva zvuka?

λ λ ν =. Zadatak 021 (Zoki, elektrotehnička škola) Dva zvučna vala imaju intenzitete 10 i 600 mw/cm 2. Za koliko se decibela razlikuju ta dva zvuka? Zadatak (Zoki, elektrotehnička škola) Da zučna ala iaju intenzitete i 5 W/c. Za koliko e decibela razlikuju ta da zuka? Rješenje I = W/c = W/, I = 5 W/c = 5 W/, I = - W/, L L =? Tražio razliku intenziteta

Διαβάστε περισσότερα

f[n] = f[n]z n = F (z). (9.2) n=0

f[n] = f[n]z n = F (z). (9.2) n=0 9. Z transformacija 9.. Z transformacija Z transformacija nia brojeva {f[n]} a koje vrijedi je Z [ f[n] ] = f[n] = 0, n < 0 9.) f[n] n = F ). 9.) Ovom transformacijom niu brojeva {f[n]} pridružuje se funkcija

Διαβάστε περισσότερα

OSNOVI AUTOMATSKOG UPRAVLJANJA PROCESIMA. Vežba br. 6: Dinamika sistema u frekventnom domenu u MATLABu

OSNOVI AUTOMATSKOG UPRAVLJANJA PROCESIMA. Vežba br. 6: Dinamika sistema u frekventnom domenu u MATLABu OSNOVI AUTOMATSKOG UPRAVLJANJA PROCESIMA Vežba br. 6: Dinamika sistema u frekventnom domenu u MATLABu I Definisanje frekventnih karakteristika Dinamički modeli sistema se definišu u vremenskom, Laplace-ovom

Διαβάστε περισσότερα

3.3. Sile koje se izučavaju u mehanici

3.3. Sile koje se izučavaju u mehanici 3.3. Sile koje se izučavaju u mehanici 3.3.1. Gravitaciona sila Prema Opštem zakonu gravitacije, dvije čestice masa m 1 i m 2 se međusobno privlače silom koja je proporcionalna proizvodu masa dvije čestice

Διαβάστε περισσότερα