ORIJENTACIJA NEBESKE SFERE (SVODA)

Save this PDF as:
 WORD  PNG  TXT  JPG

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "ORIJENTACIJA NEBESKE SFERE (SVODA)"

Transcript

1 OSNOVE ORIJENTACIJE ORIJENTACIJA NEBESKE SFERE (SVODA) ODREĐIVANJE OSNOVNIH TOČAKA, PRAVACA, KRUŽNICA I RAVNINA NEBESKE SFERE ORIJENTACIJA NA NEBESKOM SVODU ASTROGNOZIJA POZNAVANJE OBJEKATA NA NEBESKOM SVODU, RAZLIKOVANJE ZVIJEZDA I ZVIJEŽĐA I VJEŠTINA UOČAVANJA ODABRANIH OBJEKATA (ASTRON zvijezda, GNOSIS znanje) ORIJENTACIJA NA ZEMLJI ORIJENTACIJA NA ZEMLJI PREMA DNEVNIM I NOĆNIM PRIVIDNIM KRETANJIMA SUNCA, ZVIJEZDA I MJESECA NA NEBESKOM SVODU KOJE UOČAVAMO PROSTIM OKOM, ISKUSTVENO

2 ORIJENTACIJA NEBESKE SFERE (SVODA) STAJALIŠTE, ZENIT, OBZOR MOTRITELJA I DNEVNE PUTANJE NEBESKIH TIJELA sjeverni pol dnevne putanje h tijela (nebeske paralele) ZENIT (mjesni) meridijan ekvator smjer prividne rotacije nebeske sfere sjeverni pol Polarnica Velika kola Cassiopeia smjer Zemljine rotacije Blizanci Orion ϕ obzor - horizont Djevica sjeverni pol južni pol Ribe Lira ekvator Južni križ nebeska sfera (svod) Strijelac južni pol

3 ORIJENTACIJA NA ZEMLJI ORIJENTACIJA POMOĆU SUNCA ORIJENTACIJA PREMA PRIVIDNOJ DNEVNOJ PUTANJI SUNCA U TOKU GODINE h 12 ljeti h 12 u proljeće i jesen h 12 zimi I J Z

4 NAJJEDNOSTAVNIJA ORIJENTACIJA POMOĆU SJENE ŠTAPA (GNOMON) 1º do 2º Sunce prijepodne Sunce poslijepodne štap sjena T 2 T 1 krug oko štapa sjever smjer meridijana

5 SMJER JUGA α/2 α/2 ORIJENTACIJA POMOĆU URE I SUNCA (±10º) h 12 podne h I, 6 jutro h Z, 18 večer h h, 24 α/2 α/2 SMJER SJEVERA

6 ORIJENTACIJA NA ZEMLJI ORIJENTACIJA POMOĆU ZVIJEZDA PRIBLIŽNA MJERENJA LUKA (KUTA) NA NEBESKOM SVODU kutni razmak između krajnjih zvijezda Velikih Kola je oko 5º, prividni promjer Sunca ili punog Mjeseca je oko 30' ,5 0

7 ODREĐIVANJE SJEVERNOG I JUŽNOG NEBESKOG POLA 1º do 2º SJEVERNJAČA MALA KOLA JUŽNI KRIŽ η ξ ε γ δ α β VELIKA KOLA a 4,5a sjeverna točka obzora juž na točka obzora

8 ODREĐIVANJE NEBESKOG EKVATORA POMOĆU ZVIJEŽĐA ORION ORION ekvator SIRIUS I jesen zima J proljeće Z kroz Orionov pojas Jakovljev štap (Kosci) proteže se ekvator (zvijezde δ Mintaka, ε Alnilam i ζ Alnitak) položaji Oriona prema obzoru pri izlazu, kulminaciji i zalazu i u različita godišnja doba

9 ODREĐIVANJA DOBA NOĆI I ( ZVJEZDANE( URE ) IZ POLOŽAJA I KRETANJA VELIKIH KOLA (VELIKOG MEDVJEDA) OKO SJEVERNJAČE Travanj (2º do 5º) Lipanj Veljača SJEVERNJAČA Kolovoz Listopad Prosinac položaji Velikih Kola u 21 sat u različita doba godine

10 IZ POLOŽAJA I KRETANJA KASIOPEJE (POSEBICE ZVIJEZDE β) OKO SJEVERNJAČE (1º do 2º) ZMAJ VELIKI MEDVJED MALI MEDVJED β α 6 Sjevernjača CEFEJ β 12 KASIOPEJA β Kasiopeje je u nultom nebeskom meridijanu (njena gornja kulminacija - najviši položaj na nebeskom svodu je početkom jeseni u ponoć, tj. u 24 sata zvjezdanog vremena)

11 ODREĐIVANJE KOLURNE LINIJE (nultog nebeskog meridijana) POMOĆU β KASIOPEJE I SJEVERNJAČE (1º do 2º) VELIKA KOLA β α γ δ ε ξ η MALA KOLA SJEVERNJAČA PERZEJ ε δ β α γ γ ε η δ γ KASIOPEJA α ϕ M31 kolurna linija β ANDROMEDA β δ π α β PEGAZ γ α

12 PRIVIDNO DNEVNO I GODIŠNJE GIBANJE SUNCA ZEMLJINA ROTACIJA prividna dnevna rotacija nebeske sfere (prividno dnevno gibanje Sunca i zvijezda od istoka prema zapadu) h 12 ljeti (22.VI.) h 12 u proljeće i jesen (21.III. i 23.IX.) h 12 zim i (22.XII.) (mjesni) meridijan I J Z

13 SJEVERNI NEBESKI POL dnevne putanje h tijela (nebeske paralele) ZENIT (mjesni) meridijan ekvator o b z o r (h o r i z o n t) najviša točka neb. ekvatora najviša točka neb. ekvatora prividna rotacija nebeske sfere gledana s različitih itih mjesta na Zemlji na geogr. širini ϕ = 45º na Ekvatoru ϕ = 0º i na polu ϕ = 90º ekvator SJEVERNI NEBESKI ZENIT = o b z o r (h o r i z o n t) POL JUŽNI NEBESKI POL ZENIT = sjeverni pol o b z o r = n e b e s k i e k v a t o r

14 sjeverna strana neba VELIKA KOLA sjeverni pol (mjesni) meridijan južna strana neba S ORION ekvator SIRIUS (mjesni) meridijan I J Z

15 PRIVIDNO GODIŠNJE GIBANJE SUNCA sjeverni pol nebeska sfera Djevica Blizanci S analema J 23,5 0 Strijelac Ribe ekvator ekliptika južni pol

16 sjeverni ekliptički pol sjeverni pol ε = 23,5 ekvator ZEMLJINA REVOLUCIJA 0 Zemljino godišnje gibanje po ekliptici JESENSKI EKVINOCIJ Djevica K III. PROLJEĆE Strijelac N ZIMSKI SOLSTICIJ VI. LJETO IX. JESEN ekliptika LJETNI SOLSTICIJ XII. ZIMA ERibe ε = 23,50 H Blizanci SA KO E N A IC K I JEV I N D RE a d N BE iz n PROLJETNI EKVINOCIJ K H E N Vaga M ZMAJ (P. K O ol a L A N rni N c a) zima Ovan Jarac južni pol ka t ič k la na ga vni ra smjer promje ne godišnjih doba prem a istoku Rak smjer preces ijskog gibanja nebeskog pola prema zapadu galaktičke referentne točke 0 79 ekliptička ravnina ,5 proljet ni ekv inocij 23, (59,5 + 23,5 ) 0 S S ZLATNA RIBA ljeto ra v neb nina ekv esk og at o ra S R PA KI

17 ZIMA, 22. XII. LJETO, 22. VI. ZAGREB sjeverna polarnica južna (Jarčeva) obratnica ravnina ekliptike ZAGREB sjeverna (Rakova) obratnica φ južna polarnica GODIŠNJA DOBA visina Sunca u mjesnom meridijanu Zagreb, ljeto, 22. VI. ε ϕ ϕ Ekvator

18 SOLSTICIJSKA I APSIDNA LINIJA ŠKORPION VAGA DJEVICA ZMIJONOSAC III. LAV STRIJELAC VI. solsticijska linija apsidna linija 2-3. I. RAK XII VII. JARAC IX. BLIZANCI VODENJAK BIK RIBE OVAN 3-4. VII. srednja udaljenost od Sunca 152 mil. km 2-3. I. srednja udaljenost od Sunca 147 mil. km

19 GODIŠNJA PROMJENA NOĆNOGA NOGA NEBA prividno godišnje gibanje neba od istoka prema zapadu ZMIJONOSAC ŠKORPION PROJEKCIJA PRIVIDNE VAGA SUNČEVE PUTANJE III. JESENSKA DJEVICA TOČKA LAV STRIJELAC VI. S RAK ZIMSKA TOČKA ε LJETNA TOČKA XII. J JARAC ZEMLJINA PUTANJA BLIZANCI VODENJAK PROLJETNA TOČKA RIBE IX. OVAN BIK Vaga Rak Ovan Jarac

20 PRIVIDNO GODIŠNJE GIBANJE PLANETA MEĐUSOBNI RAZMJEŠTAJ PLANETA KONJUNKCIJA MAKSIMALNE ELONGACIJE KVADRATURA GORNJA KONJUNKCIJA DONJA KONJUNKCIJA MERKUR VENERA ZEMLJA OPOZICIJA MARS KVADRATURA

21 RETROGRADNO GIBANJE PLANETA fiksne zvijezde Marsova retrogradna putanja Marsova putanja Zemljina putanja

Prividni položaji nebeskih tela

Prividni položaji nebeskih tela Prividni položaji nebeskih tela 1 Osnovni elementi nebeske sfere, horizontski koordinatni sistem Nebeska sfera predstavlja sferu jediničnog poluprečnika na koju se projektuju likovi svih nebeskih tela.

Διαβάστε περισσότερα

ZEMLJINA KRETANJA REVOLUCIJA ZEMLJE

ZEMLJINA KRETANJA REVOLUCIJA ZEMLJE ZEMLJINA KRETANJA REVOLUCIJA ZEMLJE KEPLEROVI ZAKONI PLANETARNIH KRETANJA Johan Kepler (1571-1630) nemaĉki matematiĉar i astronom nasledio Tiho Brehea na mestu kraljevskog matematiĉara. Ĉetiri godine je

Διαβάστε περισσότερα

Pitanja i zadaci za Školsko natjecanje iz astronomije 2012/ razred osnovne škole. 5. veljače ODGOVORI

Pitanja i zadaci za Školsko natjecanje iz astronomije 2012/ razred osnovne škole. 5. veljače ODGOVORI Pitanja i zadaci za Školsko natjecanje iz astronomije 01/013. 5. razred osnovne škole 5. veljače 013. ODGOVORI Zaokruži slovo ispred točnog odgovora (svaki točan odgovor boda): 1. Na našim geografskim

Διαβάστε περισσότερα

21. ŠKOLSKO/OPĆINSKO/GRADSKO NATJECANJE IZ GEOGRAFIJE GODINE 8. RAZRED TOČNI ODGOVORI

21. ŠKOLSKO/OPĆINSKO/GRADSKO NATJECANJE IZ GEOGRAFIJE GODINE 8. RAZRED TOČNI ODGOVORI 21. ŠKOLSKO/OPĆINSKO/GRADSKO NATJECANJE IZ GEOGRAFIJE 2014. GODINE 8. RAZRED TOČNI ODGOVORI Bodovanje za sve zadatke: - boduju se samo točni odgovori - dodatne upute navedene su za pojedine skupine zadataka

Διαβάστε περισσότερα

Znašli? 1. Što je astronomska jedinica i koliko ona iznosi kilometara? Za ostale astronomske jedinice pogledaj pitanja 257. i 258.

Znašli? 1. Što je astronomska jedinica i koliko ona iznosi kilometara? Za ostale astronomske jedinice pogledaj pitanja 257. i 258. Znašli? 1. Što je astronomska jedinica i koliko ona iznosi kilometara? Za ostale astronomske jedinice pogledaj pitanja 257. i 258. 2. Da li zvijezde koje promatramo bilo s južnog, bilo sa sjevernog pola

Διαβάστε περισσότερα

Gravitacija. Gravitacija. Newtonov zakon gravitacije. Odredivanje gravitacijske konstante. Keplerovi zakoni. Gravitacijsko polje. Troma i teška masa

Gravitacija. Gravitacija. Newtonov zakon gravitacije. Odredivanje gravitacijske konstante. Keplerovi zakoni. Gravitacijsko polje. Troma i teška masa Claudius Ptolemeus (100-170) - geocentrični sustav Nikola Kopernik (1473-1543) - heliocentrični sustav Tycho Brahe (1546-1601) precizno bilježio putanje nebeskih tijela 1600. Johannes Kepler (1571-1630)

Διαβάστε περισσότερα

1. OSNOVE ASTROMETRIJE

1. OSNOVE ASTROMETRIJE POSEBNE METODE GEODETSKE ASTRONOMIJE 1. OSNOVE ASTROMETRIJE 1.2 ASTROMETRIJSKI INSTRUMENTI predavanja, VII. semestar oko 2800. g. pr. Kr. izgrađen STONEHENGE prvotna se građevina sastojala od jarka, zemljanog

Διαβάστε περισσότερα

Mali vodič kroz astrognoziju

Mali vodič kroz astrognoziju AAD Rijeka Martina Šupak Mali vodič kroz astrognoziju Rijeka, 2013. 0. Uvod U ovom vodiču bit će govora o promatranju neba, no ne nekim skupim teleskopima već golim okom, a ponekad i dalekozorom. Astrognozija

Διαβάστε περισσότερα

ODREĐIVANJE POLOŽAJA NA ZEMLJI

ODREĐIVANJE POLOŽAJA NA ZEMLJI ODREĐIVANJE POLOŽAJA NA ZEMLJI KOORDINATNI SUSTAVI Matematički instrument koji omogućuje određivanje položaja u prostoru temelji se na pojmu koordinatnog sustava Koordinate (lat. co- zajedno i ordinatus

Διαβάστε περισσότερα

5. razred osnovne škole

5. razred osnovne škole 5. razred osnovne škole PITANJA Odgovori: 1. Kako se zove točka na nebeskoj sferi koja je suprotna zenitu? Nadir. Navedi planete u čijem imenu ima manje od 6 slova! Zemlja, Mars, Uran 3. Oko kojeg planeta

Διαβάστε περισσότερα

DODIR ZEMALJSKIH GEOSFERA

DODIR ZEMALJSKIH GEOSFERA 8 DODIR ZEMALJSKIH GEOSFERA Uvod Ud benik Fizi ka geografija prva je knjiga serije koja se sastoji od etiri sveska. Ostali dijelovi serije: Zemljopis Maœarske, Drußtvena geografija i Regionalna geografija.

Διαβάστε περισσότερα

4. razred osnovne škole

4. razred osnovne škole 4. razred osnovne škole Zaokruži slovo ispred točnog odgovora! PITANJA. Zviježđa koja su uvijek iznad obzora (nikad ne zalaze) nazivaju se a) cirkumpolarna zviježđa b) zviježđa zodijaka c) zviježđa južnog

Διαβάστε περισσότερα

DIMENZIONISANJE PRAVOUGAONIH POPREČNIH PRESEKA NAPREGNUTIH NA PRAVO SLOŽENO SAVIJANJE

DIMENZIONISANJE PRAVOUGAONIH POPREČNIH PRESEKA NAPREGNUTIH NA PRAVO SLOŽENO SAVIJANJE TEORIJA ETONSKIH KONSTRUKCIJA T- DIENZIONISANJE PRAVOUGAONIH POPREČNIH PRESEKA NAPREGNUTIH NA PRAVO SLOŽENO SAVIJANJE 3.5 f "2" η y 2 D G N z d y A "" 0 Z a a G - tačka presek koja određje položaj sistemne

Διαβάστε περισσότερα

Metode i instrumenti za određivanje visinskih razlika. Zdravka Šimić

Metode i instrumenti za određivanje visinskih razlika. Zdravka Šimić Metode i instrumenti za određivanje visinskih razlika Zdravka Šimić Visinski prikaz terena - konfiguracija dio plana dio karte 2 Visinski prikaz terena Izohipse ili slojnice povezuju točke iste visine.

Διαβάστε περισσότερα

PITANJA. A - zaokruži slovo ispred točnog odgovora! (svaki točan odgovor 2 boda)

PITANJA. A - zaokruži slovo ispred točnog odgovora! (svaki točan odgovor 2 boda) HRVATSKO ASTRONOMSKO DRUŠTVO Državno povjerenstvo za školska natjecanja i susrete iz astronomije Pitanja i zadaci iz astronomije za županijsko natjecanje 003. 4. razred osnovne škole PITANJA A - zaokruži

Διαβάστε περισσότερα

- pravac n je zadan s točkom T(2,0) i koeficijentom smjera k=2. (30 bodova)

- pravac n je zadan s točkom T(2,0) i koeficijentom smjera k=2. (30 bodova) MEHANIKA 1 1. KOLOKVIJ 04/2008. grupa I 1. Zadane su dvije sile F i. Sila F = 4i + 6j [ N]. Sila je zadana s veličinom = i leži na pravcu koji s koordinatnom osi x zatvara kut od 30 (sve komponente sile

Διαβάστε περισσότερα

1. razred srednje škole

1. razred srednje škole Zaokruži točan odgovor ili odgovori! 1. razred srednje škole PITANJA 1. Pomrčina Sunca je pojava koja može nastati samo kada je mjesec u fazi: a) uštapa b) mlađaka c) u zadnjoj četvrti. Poznati komet koji

Διαβάστε περισσότερα

Mala škola. Koprivnica, 2002., izdanje br. 20

Mala škola. Koprivnica, 2002., izdanje br. 20 Mala škola astronomije Koprivnica, 2002., izdanje br. 20 SADRŽAJ 1. Zemlja i nebo...3 1.1. Uvod... 3 1.1.1. Osnovno snalaženje na zvjezdanom nebu...5 1.1.2. Utjecaj optičkih i drugih pojava na promatranja

Διαβάστε περισσότερα

Matematika 1 - vježbe. 11. prosinca 2015.

Matematika 1 - vježbe. 11. prosinca 2015. Matematika - vježbe. prosinca 5. Stupnjevi i radijani Ako je kut φ jednak i rad, tada je veza između i 6 = Zadatak.. Izrazite u stupnjevima: a) 5 b) 7 9 c). d) 7. a) 5 9 b) 7 6 6 = = 5 c). 6 8.5 d) 7.

Διαβάστε περισσότερα

PITANJA. RJEŠENJA pitanja i zadataka za Županijsko natjecanje iz astronomije razred osnovne škole. 18. ožujka 2011.

PITANJA. RJEŠENJA pitanja i zadataka za Županijsko natjecanje iz astronomije razred osnovne škole. 18. ožujka 2011. RJEŠENJA pitanja i zadataka za Županijsko natjecanje iz astronomije 011. 4. razred osnovne škole 18. ožujka 011. PITANJA Zaokruži slovo ispred točnog odgovora ( svaki točan odgovor boda ) 1. Jedina zvijezda

Διαβάστε περισσότερα

Apsolutno neprekidne raspodele Raspodele apsolutno neprekidnih sluqajnih promenljivih nazivaju se apsolutno neprekidnim raspodelama.

Apsolutno neprekidne raspodele Raspodele apsolutno neprekidnih sluqajnih promenljivih nazivaju se apsolutno neprekidnim raspodelama. Apsolutno neprekidne raspodele Raspodele apsolutno neprekidnih sluqajnih promenljivih nazivaju se apsolutno neprekidnim raspodelama. a b Verovatno a da sluqajna promenljiva X uzima vrednost iz intervala

Διαβάστε περισσότερα

TIPOVI PROJEKCIJA SFERNA PROJEKCIJA

TIPOVI PROJEKCIJA SFERNA PROJEKCIJA TIPOVI PROJEKCIJA SFERNA PROJEKCIJA Perspektivna projekcija, po definiciji, podrazumeva premeštanje tačaka, koje se posmatraju iz neke fiksne tačke prostora, na površinu. Pod projektovanjem se podrazumevaju

Διαβάστε περισσότερα

Mehanika je temeljna i najstarija grana fizike koja proučava zakone gibanja i meñudjelovanja tijela. kinematika, dinamika i statika

Mehanika je temeljna i najstarija grana fizike koja proučava zakone gibanja i meñudjelovanja tijela. kinematika, dinamika i statika 1. Kinematika Mehanika je temeljna i najstarija grana fizike koja proučava zakone gibanja i meñudjelovanja tijela. kinematika, dinamika i statika Kinematika (grč. kinein = gibati) je dio mehanike koji

Διαβάστε περισσότερα

NAUTI»KI GODI NJAK 2018.

NAUTI»KI GODI NJAK 2018. HI-N-31 ISSN 0490-4567 NAUTI»KI GODI NJAK 2018. Hrvatski hidrografski institut, Split IZDAVAČ Hrvatski hidrografski institut GLAVNI UREDNIK Vinka Kolić ODGOVORNI UREDNIK Danijel Pušić ZAMJENIK ODGOVORNOG

Διαβάστε περισσότερα

Novi Sad god Broj 1 / 06 Veljko Milković Bulevar cara Lazara 56 Novi Sad. Izveštaj o merenju

Novi Sad god Broj 1 / 06 Veljko Milković Bulevar cara Lazara 56 Novi Sad. Izveštaj o merenju Broj 1 / 06 Dana 2.06.2014. godine izmereno je vreme zaustavljanja elektromotora koji je radio u praznom hodu. Iz gradske mreže 230 V, 50 Hz napajan je monofazni asinhroni motor sa dva brusna kamena. Kada

Διαβάστε περισσότερα

ASTRONOMIJA 1 web izdanje

ASTRONOMIJA 1 web izdanje dr. sc. Dragan Roša Arijana Valečić, prof. Zvonimir Drvar, mag. geol., mag. educ. geogr. Damir Hržina, dipl. ing. mr. sc. Ivan Romštajn dr. sc. Darije Maričić Matija Bašić, mag. educ. phys. ASTRONOMIJA

Διαβάστε περισσότερα

Općenito, iznos normalne deformacije u smjeru normale n dan je izrazom:

Općenito, iznos normalne deformacije u smjeru normale n dan je izrazom: Otporost mterijl. Zdtk ZDTK: U točki čeliče kostrukije postvlje su tri osjetil z mjereje deformij prem slii. ri opterećeju kostrukije izmjeree su reltive ormle (dužiske deformije: b ( - b 3 - -6 - ( b

Διαβάστε περισσότερα

INTELIGENTNO UPRAVLJANJE

INTELIGENTNO UPRAVLJANJE INTELIGENTNO UPRAVLJANJE Fuzzy sistemi zaključivanja Vanr.prof. Dr. Lejla Banjanović-Mehmedović Mehmedović 1 Osnovni elementi fuzzy sistema zaključivanja Fazifikacija Baza znanja Baze podataka Baze pravila

Διαβάστε περισσότερα

3. MJESEC Nastanak Mjeseca Sustav Zemlja - Mjesec

3. MJESEC Nastanak Mjeseca Sustav Zemlja - Mjesec MAGNITUDA MJESECA Rad izradio: Fabijan Čakanić, 8.razred Osnovna škola Bogumila Tonija, Samobor Mentor: Ivana Matić, prof., VII. stupanj ivana.matic7@skole.hr Samobor, šk.god.2013./2014. ZAHVALA Zahvaljujem

Διαβάστε περισσότερα

Dinamika tijela. a g A mg 1 3cos L 1 3cos 1

Dinamika tijela. a g A mg 1 3cos L 1 3cos 1 Zadatak, Štap B duljine i mase m pridržan užetom u točki B, miruje u vertikalnoj ravnini kako je prikazano na skii. reba odrediti reakiju u ležaju u trenutku kad se presječe uže u točki B. B Rješenje:

Διαβάστε περισσότερα

OM2 V3 Ime i prezime: Index br: I SAVIJANJE SILAMA TANKOZIDNIH ŠTAPOVA

OM2 V3 Ime i prezime: Index br: I SAVIJANJE SILAMA TANKOZIDNIH ŠTAPOVA OM V me i preime: nde br: 1.0.01. 0.0.01. SAVJANJE SLAMA TANKOZDNH ŠTAPOVA A. TANKOZDN ŠTAPOV PROZVOLJNOG OTVORENOG POPREČNOG PRESEKA Preposavka: Smičući napon je konsanan po debljini ida (duž pravca upravnog

Διαβάστε περισσότερα

Rješenja PITANJA. A - zaokruži slovo ispred točnog odgovora! (svaki točan odgovor 2 boda)

Rješenja PITANJA. A - zaokruži slovo ispred točnog odgovora! (svaki točan odgovor 2 boda) HRVATSKO ASTRONOMSKO DRUŠTVO Državno povjerenstvo za školska natjecanja i susrete iz astronomije Pitanja i zadaci iz astronomije za županijsko natjecanje 00. 1. &. razred srednje škole Rješenja PITANJA

Διαβάστε περισσότερα

INŽENJERSTVO NAFTE I GASA. 2. vežbe. 2. vežbe Tehnologija bušenja II Slide 1 of 50

INŽENJERSTVO NAFTE I GASA. 2. vežbe. 2. vežbe Tehnologija bušenja II Slide 1 of 50 INŽENJERSTVO NAFTE I GASA Tehnologija bušenja II 2. vežbe 2. vežbe Tehnologija bušenja II Slide 1 of 50 Proračuni trajektorija koso-usmerenih bušotina 2. vežbe Tehnologija bušenja II Slide 2 of 50 Proračun

Διαβάστε περισσότερα

Dinamika krutog tijela. 14. dio

Dinamika krutog tijela. 14. dio Dnaka kutog tjela 14. do 1 Pojov: 1. Vekto sle F (tanslacja). Moent sle (otacja) 3. Moent toost asa 4. Rad kutog tjela A 5. Knetka enegja E k 6. Moent kolna gbanja 7. u oenta kolne gbanja oenta sle M (

Διαβάστε περισσότερα

Fizika 1. Auditorne vježbe 3 Kružna gibanja. Dunja Polić. Fakultet elektrotehnike, strojarstva i brodogradnje Studij računarstva. 17. listopada 2008.

Fizika 1. Auditorne vježbe 3 Kružna gibanja. Dunja Polić. Fakultet elektrotehnike, strojarstva i brodogradnje Studij računarstva. 17. listopada 2008. Fakultet elektrotehnike, strojarstva i brodogradnje Studij računarstva Školska godina 008/009 Fizika 1 Auditorne vježbe 3 Kružna gibanja 17. listopada 008. Dunja Polić dunja.polic@fesb.hr Ponavljanje jednoliko

Διαβάστε περισσότερα

1 UPUTSTVO ZA IZRADU GRAFIČKOG RADA IZ MEHANIKE II

1 UPUTSTVO ZA IZRADU GRAFIČKOG RADA IZ MEHANIKE II 1 UPUTSTVO ZA IZRADU GRAFIČKOG RADA IZ MEHANIKE II Zadatak: Klipni mehanizam se sastoji iz krivaje (ekscentarske poluge) OA dužine R, klipne poluge AB dužine =3R i klipa kompresora B (ukrsne glave). Krivaja

Διαβάστε περισσότερα

Kontrolni zadatak (Tačka, prava, ravan, diedar, poliedar, ortogonalna projekcija), grupa A

Kontrolni zadatak (Tačka, prava, ravan, diedar, poliedar, ortogonalna projekcija), grupa A Kontrolni zadatak (Tačka, prava, ravan, diedar, poliedar, ortogonalna projekcija), grupa A Ime i prezime: 1. Prikazane su tačke A, B i C i prave a,b i c. Upiši simbole Î, Ï, Ì ili Ë tako da dobijeni iskazi

Διαβάστε περισσότερα

Pošto pretvaramo iz veće u manju mjernu jedinicu broj 2.5 množimo s 1000,

Pošto pretvaramo iz veće u manju mjernu jedinicu broj 2.5 množimo s 1000, PRERAČUNAVANJE MJERNIH JEDINICA PRIMJERI, OSNOVNE PRETVORBE, POTENCIJE I ZNANSTVENI ZAPIS, PREFIKSKI, ZADACI S RJEŠENJIMA Primjeri: 1. 2.5 m = mm Pretvaramo iz veće u manju mjernu jedinicu. 1 m ima dm,

Διαβάστε περισσότερα

M086 LA 1 M106 GRP. Tema: Baza vektorskog prostora. Koordinatni sustav. Norma. CSB nejednakost

M086 LA 1 M106 GRP. Tema: Baza vektorskog prostora. Koordinatni sustav. Norma. CSB nejednakost M086 LA 1 M106 GRP Tema: CSB nejednakost. 19. 10. 2017. predavač: Rudolf Scitovski, Darija Marković asistent: Darija Brajković, Katarina Vincetić P 1 www.fizika.unios.hr/grpua/ 1 Baza vektorskog prostora.

Διαβάστε περισσότερα

Dijagrami: Greda i konzola. Prosta greda. II. Dijagrami unutarnjih sila. 2. Popre nih sila TZ 3. Momenata savijanja My. 1. Uzdužnih sila N. 11.

Dijagrami: Greda i konzola. Prosta greda. II. Dijagrami unutarnjih sila. 2. Popre nih sila TZ 3. Momenata savijanja My. 1. Uzdužnih sila N. 11. Dijagrami:. Udužnih sia N Greda i konoa. Popre nih sia TZ 3. Momenata savijanja My. dio Prosta greda. Optere ena koncentriranom siom F I. Reaktivne sie:. M A = 0 R B F a = 0. M B = 0 R A F b = 0 3. F =

Διαβάστε περισσότερα

I PARCIJALNI ISPIT IZ INŽENJERSKE FIZIKE 1

I PARCIJALNI ISPIT IZ INŽENJERSKE FIZIKE 1 I PARCIJALNI ISPIT IZ INŽENJERSKE FIZIKE 1 Grupa A 1. Definisati šta je jednoliko kružno kretanje i naći vezu između linearne i ugaone brzine i izvesti izraz za ugaoni pomak i ukupno ubrzanje (ako ga ima).

Διαβάστε περισσότερα

2.7 Primjene odredenih integrala

2.7 Primjene odredenih integrala . INTEGRAL 77.7 Primjene odredenih integrala.7.1 Računanje površina Pořsina lika omedenog pravcima x = a i x = b te krivuljama y = f(x) i y = g(x) je b P = f(x) g(x) dx. a Zadatak.61 Odredite površinu

Διαβάστε περισσότερα

Problematika svjetlosnog onečišćenja dio 2

Problematika svjetlosnog onečišćenja dio 2 Problematika svjetlosnog onečišćenja dio 2 prof. Željko Andreić Rudarsko-geološko-naftni fakultet Sveučilište u Zagrebu zandreic@rgn.hr http://rgn.hr/~zandreic/ Željko Andreić: Problematika svjetlosnog

Διαβάστε περισσότερα

1 2 3 4 5 6 7 8 9 10 2 12,999,976 km 9,136,765 km 1,276,765 km 499,892 km 245,066 km 112,907 km 36,765 km 24,159 km 7899 km 2408 km 76 km 12 14 16 3 6 11 1 12 7 1 2 5 4 3 9 10 8 18 20 21 22 23 24 25 26

Διαβάστε περισσότερα

2 3 4 5 6 7 8 9 10 12,999,976 km 9,136,765 km 1,276,765 km 499,892 km 245,066 km 112,907 km 36,765 km 24,159 km 7899 km 2408 km 76 km 12 14 16 9 10 1 8 12 7 3 1 6 2 5 4 3 11 18 20 21 22 23 24 26 28 30

Διαβάστε περισσότερα

OBRTNA TELA. Vladimir Marinkov OBRTNA TELA VALJAK

OBRTNA TELA. Vladimir Marinkov OBRTNA TELA VALJAK OBRTNA TELA VALJAK P = 2B + M B = r 2 π M = 2rπH V = BH 1. Zapremina pravog valjka je 240π, a njegova visina 15. Izračunati površinu valjka. Rešenje: P = 152π 2. Površina valjka je 112π, a odnos poluprečnika

Διαβάστε περισσότερα

RIJEŠENI ZADACI I TEORIJA IZ

RIJEŠENI ZADACI I TEORIJA IZ RIJEŠENI ZADACI I TEORIJA IZ LOGARITAMSKA FUNKCIJA SVOJSTVA LOGARITAMSKE FUNKCIJE OSNOVE TRIGONOMETRIJE PRAVOKUTNOG TROKUTA - DEFINICIJA TRIGONOMETRIJSKIH FUNKCIJA - VRIJEDNOSTI TRIGONOMETRIJSKIH FUNKCIJA

Διαβάστε περισσότερα

FTN Novi Sad Katedra za motore i vozila. Teorija kretanja drumskih vozila Vučno-dinamičke performanse vozila: MAKSIMALNA BRZINA

FTN Novi Sad Katedra za motore i vozila. Teorija kretanja drumskih vozila Vučno-dinamičke performanse vozila: MAKSIMALNA BRZINA : MAKSIMALNA BRZINA Maksimalna brzina kretanja F O (N) F OI i m =i I i m =i II F Oid Princip određivanja v MAX : Drugi Njutnov zakon Dokle god je: F O > ΣF otp vozilo ubrzava Kada postane: F O = ΣF otp

Διαβάστε περισσότερα

OPTIMIRANJE KORIŠTENJA SOLARNE ENERGIJE FOTONAPONSKOM PRETVORBOM

OPTIMIRANJE KORIŠTENJA SOLARNE ENERGIJE FOTONAPONSKOM PRETVORBOM SVEUČILIŠTE U ZAGREBU FAKULTET ELEKTROTEHNIKE I RAČUNARSTVA DIPLOMSKI RAD br.125 OPTIMIRANJE KORIŠTENJA SOLARNE ENERGIJE FOTONAPONSKOM PRETVORBOM Ivan Cvrk Zagreb, ožujak 2011. Ivan Cvrk 0036400493 ii

Διαβάστε περισσότερα

ZEMLJINA SKUPINA PLANETA ASTEROIDI ASTEROIDI ASTEROIDI ASTEROIDI ASTEROIDI ASTEROIDI ASTEROIDI

ZEMLJINA SKUPINA PLANETA ASTEROIDI ASTEROIDI ASTEROIDI ASTEROIDI ASTEROIDI ASTEROIDI ASTEROIDI PLANETI ZEMLJINA SKUPINA PLANETA ASTEROIDI ASTEROIDI ASTEROIDI ASTEROIDI ASTEROIDI ASTEROIDI ASTEROIDI Građa terestričkih planeta stjenovito središte, tanka atmosfera km ρ 4880 5,43 12104 5,24 12756 5,52

Διαβάστε περισσότερα

Dinamika krutog tijela ( ) Gibanje krutog tijela. Gibanje krutog tijela. Pojmovi: C. Složeno gibanje. A. Translacijsko gibanje krutog tijela. 14.

Dinamika krutog tijela ( ) Gibanje krutog tijela. Gibanje krutog tijela. Pojmovi: C. Složeno gibanje. A. Translacijsko gibanje krutog tijela. 14. Pojmo:. Vektor se F (transacja). oment se (rotacja) Dnamka krutog tjea. do. oment tromost masa. Rad krutog tjea A 5. Knetka energja k 6. oment kona gbanja 7. u momenta kone gbanja momenta se f ( ) Gbanje

Διαβάστε περισσότερα

Prvi kolokvijum. y 4 dy = 0. Drugi kolokvijum. Treći kolokvijum

Prvi kolokvijum. y 4 dy = 0. Drugi kolokvijum. Treći kolokvijum 27. septembar 205.. Izračunati neodredjeni integral cos 3 x (sin 2 x 4)(sin 2 x + 3). 2. Izračunati zapreminu tela koje nastaje rotacijom dela površi ograničene krivama y = 3 x 2, y = x + oko x ose. 3.

Διαβάστε περισσότερα

Osnove elektrotehnike I popravni parcijalni ispit VARIJANTA A

Osnove elektrotehnike I popravni parcijalni ispit VARIJANTA A Osnove elektrotehnike I popravni parcijalni ispit 1..014. VARIJANTA A Prezime i ime: Broj indeksa: Profesorov prvi postulat: Što se ne može pročitati, ne može se ni ocijeniti. A C 1.1. Tri naelektrisanja

Διαβάστε περισσότερα

Νόµοςπεριοδικότητας του Moseley:Η χηµική συµπεριφορά (οι ιδιότητες) των στοιχείων είναι περιοδική συνάρτηση του ατοµικού τους αριθµού.

Νόµοςπεριοδικότητας του Moseley:Η χηµική συµπεριφορά (οι ιδιότητες) των στοιχείων είναι περιοδική συνάρτηση του ατοµικού τους αριθµού. Νόµοςπεριοδικότητας του Moseley:Η χηµική συµπεριφορά (οι ιδιότητες) των στοιχείων είναι περιοδική συνάρτηση του ατοµικού τους αριθµού. Περιοδικός πίνακας: α. Είναι µια ταξινόµηση των στοιχείων κατά αύξοντα

Διαβάστε περισσότερα

( , 2. kolokvij)

( , 2. kolokvij) A MATEMATIKA (0..20., 2. kolokvij). Zadana je funkcija y = cos 3 () 2e 2. (a) Odredite dy. (b) Koliki je nagib grafa te funkcije za = 0. (a) zadanu implicitno s 3 + 2 y = sin y, (b) zadanu parametarski

Διαβάστε περισσότερα

Odabrana poglavlja astronomije: 3. Objasniti šta je cirkumpolarna zvezda i naći uslov da zvezda bude cirkumpolarna.

Odabrana poglavlja astronomije: 3. Objasniti šta je cirkumpolarna zvezda i naći uslov da zvezda bude cirkumpolarna. Ime i prezime: Broj dosijea: Smer: Datum: Ukupno poena: Ocena: Odabrana poglavlja astronomije: pismeni ispit 1 Definisati rektascenziju α Obavezno nacrtati sliku 2 Definisati paralaktički ugao q Obavezno

Διαβάστε περισσότερα

1 - KROVNA KONSTRUKCIJA : * krovni pokrivač, daska, letva: = 0,60 kn/m 2 * sneg, vetar : = 1,00 kn/m 2

1 - KROVNA KONSTRUKCIJA : * krovni pokrivač, daska, letva: = 0,60 kn/m 2 * sneg, vetar : = 1,00 kn/m 2 OPTEREĆENJE KROVNE KONSTRUKCIJE : * krovni pokrivač, daska, letva: = 0,60 kn/m 2 * sneg, vetar : = 1,00 kn/m 2 1.1. ROGOVI : * nagib krovne ravni : α = 35 º * razmak rogova : λ = 80 cm 1.1.1. STATIČKI

Διαβάστε περισσότερα

Rotacija krutog tijela

Rotacija krutog tijela Rotacija krutog tijela 6. Rotacija krutog tijela Djelovanje sile na tijelo promjena oblika tijela (deformacija) promjena stanja gibanja tijela Kruto tijelo pod djelovanjem vanjskih sila ne mijenja svoj

Διαβάστε περισσότερα

Vrijedi relacija: Suma kvadrata cosinusa priklonih kutova sile prema koordinatnim osima jednaka je jedinici.

Vrijedi relacija: Suma kvadrata cosinusa priklonih kutova sile prema koordinatnim osima jednaka je jedinici. Za adani sustav prostornih sila i j k () oktant i j k () oktant koje djeluju na materijalnu toku odredite: a) reultantu silu? b) ravnotežnu silu? a) eultanta sila? i j k 8 Vektor reultante: () i 8 j k

Διαβάστε περισσότερα

PROSTORNI STATIČKI ODREĐENI SUSTAVI

PROSTORNI STATIČKI ODREĐENI SUSTAVI PROSTORNI STATIČKI ODREĐENI SUSTAVI - svi elementi ne leže u istoj ravnini q 1 Z F 1 F Y F q 5 Z 8 5 8 1 7 Y y z x 7 X 1 X - svi elementi su u jednoj ravnini a opterećenje djeluje izvan te ravnine Z Y

Διαβάστε περισσότερα

PRILOG. Tab. 1.a. Dozvoljena trajna opterećenja bakarnih pravougaonih profila u(a) za θ at =35 C i θ=30 C, (θ tdt =65 C)

PRILOG. Tab. 1.a. Dozvoljena trajna opterećenja bakarnih pravougaonih profila u(a) za θ at =35 C i θ=30 C, (θ tdt =65 C) PRILOG Tab. 1.a. Dozvoljena trajna opterećenja bakarnih pravougaonih profila u(a) za θ at =35 C i θ=30 C, (θ tdt =65 C) Tab 3. Vrednosti sačinilaca α i β za tipične konstrukcije SN-sabirnica Tab 4. Minimalni

Διαβάστε περισσότερα

Pregled tema. Uvod Lansiranje i održavanje Globalni i uski snopovi Kut satelit Zemlja. FER-Zagreb, Satelitske komunikacijske tehnologije 2016/17

Pregled tema. Uvod Lansiranje i održavanje Globalni i uski snopovi Kut satelit Zemlja. FER-Zagreb, Satelitske komunikacijske tehnologije 2016/17 3. Satelit Pregled tema Uvod Lansiranje i održavanje Globalni i uski snopovi Kut satelit Zemlja 1 Uvod Treba razlikovati dvije osnovne funkcije satelitskog sustava. Komunikacijski moduli: antena i transponder

Διαβάστε περισσότερα

Znaš li zapovijed što vlada nebesima? Možeš li postaviti njihova pravila na Zemlji? Knjiga o Jobu

Znaš li zapovijed što vlada nebesima? Možeš li postaviti njihova pravila na Zemlji? Knjiga o Jobu Znaš li zapovijed što vlada nebesima? Možeš li postaviti njihova pravila na Zemlji? Knjiga o Jobu Mjerih nebesa, sada sjene mjerim. Um mi visinama težaše, tijelo na Zemlji prikovano osta. Johannes Kepler

Διαβάστε περισσότερα

T O P L I N A. Termičko širenje čvrstih tijela i tekućina

T O P L I N A. Termičko širenje čvrstih tijela i tekućina Termičko širenje čvrstih tijela i tekućina 1. Tijelo A ima temperaturu 0 C. Tijelo B ima dva puta višu temperaturu. Kolika je temperatura tijela B iskazana u C? 2. Brownovo gibanje dokazuje: a) kaotično

Διαβάστε περισσότερα

2 tg x ctg x 1 = =, cos 2x Zbog četvrtog kvadranta rješenje je: 2 ctg x

2 tg x ctg x 1 = =, cos 2x Zbog četvrtog kvadranta rješenje je: 2 ctg x Zadatak (Darjan, medicinska škola) Izračunaj vrijednosti trigonometrijskih funkcija broja ako je 6 sin =,,. 6 Rješenje Ponovimo trigonometrijske funkcije dvostrukog kuta! Za argument vrijede sljedeće formule:

Διαβάστε περισσότερα

Uvod. Pregled povijesnog razvoja navigacije. Navigacija 1 je vještina vodenja broda, zrakoplova ili svemirske letjelice najpovoljnijim (najkracim

Uvod. Pregled povijesnog razvoja navigacije. Navigacija 1 je vještina vodenja broda, zrakoplova ili svemirske letjelice najpovoljnijim (najkracim Navigacija 1 je vještina vodenja broda, zrakoplova ili svemirske letjelice najpovoljnijim (najkracim i najsigurnijim) putem izmedu dviju tocaka. U pocecima u navigaciji je prevladavala sigurnost plovnog

Διαβάστε περισσότερα

Inženjerska grafika geometrijskih oblika (5. predavanje, tema1)

Inženjerska grafika geometrijskih oblika (5. predavanje, tema1) Inženjerska grafika geometrijskih oblika (5. predavanje, tema1) Prva godina studija Mašinskog fakulteta u Nišu Predavač: Dr Predrag Rajković Mart 19, 2013 5. predavanje, tema 1 Simetrija (Symmetry) Simetrija

Διαβάστε περισσότερα

ΝΟΜΟΣ ΤΗΣ ΠΕΡΙΟ ΙΚΟΤΗΤΑΣ : Οι ιδιότητες των χηµικών στοιχείων είναι περιοδική συνάρτηση του ατοµικού τους αριθµού.

ΝΟΜΟΣ ΤΗΣ ΠΕΡΙΟ ΙΚΟΤΗΤΑΣ : Οι ιδιότητες των χηµικών στοιχείων είναι περιοδική συνάρτηση του ατοµικού τους αριθµού. 1. Ο ΠΕΡΙΟ ΙΚΟΣ ΠΙΝΑΚΑΣ Οι άνθρωποι από την φύση τους θέλουν να πετυχαίνουν σπουδαία αποτελέσµατα καταναλώνοντας το λιγότερο δυνατό κόπο και χρόνο. Για το σκοπό αυτό προσπαθούν να οµαδοποιούν τα πράγµατα

Διαβάστε περισσότερα

PRORAČUN GLAVNOG KROVNOG NOSAČA

PRORAČUN GLAVNOG KROVNOG NOSAČA PRORAČUN GLAVNOG KROVNOG NOSAČA STATIČKI SUSTAV, GEOMETRIJSKE KARAKTERISTIKE I MATERIJAL Statički sustav glavnog krovnog nosača je slobodno oslonjena greda raspona l11,0 m. 45 0 65 ZAŠTITNI SLOJ BETONA

Διαβάστε περισσότερα

Ispitivanje toka i skiciranje grafika funkcija

Ispitivanje toka i skiciranje grafika funkcija Ispitivanje toka i skiciranje grafika funkcija Za skiciranje grafika funkcije potrebno je ispitati svako od sledećih svojstava: Oblast definisanosti: D f = { R f R}. Parnost, neparnost, periodičnost. 3

Διαβάστε περισσότερα

Računarska grafika. Rasterizacija linije

Računarska grafika. Rasterizacija linije Računarska grafika Osnovni inkrementalni algoritam Drugi naziv u literaturi digitalni diferencijalni analizator (DDA) Pretpostavke (privremena ograničenja koja se mogu otkloniti jednostavnim uopštavanjem

Διαβάστε περισσότερα

A N A L I S I S K U A L I T A S A I R D I K A L I M A N T A N S E L A T A N S E B A G A I B A H A N C A M P U R A N B E T O N

A N A L I S I S K U A L I T A S A I R D I K A L I M A N T A N S E L A T A N S E B A G A I B A H A N C A M P U R A N B E T O N I N F O T E K N I K V o l u m e 1 5 N o. 1 J u l i 2 0 1 4 ( 61-70) A N A L I S I S K U A L I T A S A I R D I K A L I M A N T A N S E L A T A N S E B A G A I B A H A N C A M P U R A N B E T O N N o v i

Διαβάστε περισσότερα

π π ELEKTROTEHNIČKI ODJEL i) f (x) = x 3 x 2 x + 1, a = 1, b = 1;

π π ELEKTROTEHNIČKI ODJEL i) f (x) = x 3 x 2 x + 1, a = 1, b = 1; 1. Provjerite da funkcija f definirana na segmentu [a, b] zadovoljava uvjete Rolleova poučka, pa odredite barem jedan c a, b takav da je f '(c) = 0 ako je: a) f () = 1, a = 1, b = 1; b) f () = 4, a =,

Διαβάστε περισσότερα

Mate Vijuga: Rijeseni zadaci iz matematike za srednju skolu

Mate Vijuga: Rijeseni zadaci iz matematike za srednju skolu 7. KOMPLEKSNI BROJEVI 7. Opc pojmov Kompleksn brojev su sastavljen dva djela: Realnog djela (Re) magnarnog djela (Im) Promatrajmo broj a+ b = + 3 Realn do jednak je Re : Imagnarna jednca: = - l = (U elektrotehnc

Διαβάστε περισσότερα

PREDNAPETI BETON Primjer nadvožnjaka preko autoceste

PREDNAPETI BETON Primjer nadvožnjaka preko autoceste PREDNAPETI BETON Primjer nadvožnjaka preko autoceste 7. VJEŽBE PLAN ARMATURE PREDNAPETOG Dominik Skokandić, mag.ing.aedif. PLAN ARMATURE PREDNAPETOG 1. Rekapitulacija odabrane armature 2. Određivanje duljina

Διαβάστε περισσότερα

Opis: Učenici mere obim Zemlje pomoću Eratostenovog eksperimenta iz trećeg veka p.n.e

Opis: Učenici mere obim Zemlje pomoću Eratostenovog eksperimenta iz trećeg veka p.n.e Projekat Eratosten 2015 - merenje obima Zemlje Opis: Učenici mere obim Zemlje pomoću Eratostenovog eksperimenta iz trećeg veka p.n.e Mesto Kikinda OŠ Sveti Sava Datum 19.03.2015 Vreme : solarno podne 11.46

Διαβάστε περισσότερα

18. listopada listopada / 13

18. listopada listopada / 13 18. listopada 2016. 18. listopada 2016. 1 / 13 Neprekidne funkcije Važnu klasu funkcija tvore neprekidne funkcije. To su funkcije f kod kojih mala promjena u nezavisnoj varijabli x uzrokuje malu promjenu

Διαβάστε περισσότερα

3525$&8158&1(',=$/,&(6$1$92-1,095(7(120

3525$&8158&1(',=$/,&(6$1$92-1,095(7(120 Srednja masinska skola OSOVE KOSTRUISAJA List1/8 355$&8158&1(',=$/,&(6$1$9-1,095(7(10 3ROD]QLSRGDFL maksimalno opterecenje Fa := 36000 visina dizanja h := 440 mm Rucna sila Fr := 350 1DYRMQRYUHWHQR optereceno

Διαβάστε περισσότερα

Kvalifikacijski ispit za upis na Diplomski studij geodezije i geoinformatike u ak. god. 2016/17. c cos sin 2 sin,

Kvalifikacijski ispit za upis na Diplomski studij geodezije i geoinformatike u ak. god. 2016/17. c cos sin 2 sin, Kvalifikacijski ispit za upis na Diplomski studij geodezije i geoinformatike u ak. god. 016/17. 0. 9. 016. Kvalifikacijski ispit za upis na Diplomski studij geodezije i geoinformatike u ak. god. 016/17.

Διαβάστε περισσότερα

TERESTRIČKA NAVIGACIJA UVODNO PREDAVANJE

TERESTRIČKA NAVIGACIJA UVODNO PREDAVANJE TERESTRIČKA NAVIGACIJA UVODNO PREDAVANJE POMORSKA NAVIGACIJA lat.navis=brod, agare=voditi Znanost i vještina vođenja broda odnosno plovnog objekta najpovoljnijim i najsigurnijim putem od jedne polazne

Διαβάστε περισσότερα

a) Kosi hitac Krivolinijsko gibanje materijalne toke Sastavljeno gibanje Specijalni sluajevi kosog hica: b) Horizontalni hitac c) Vertikalni hitac

a) Kosi hitac Krivolinijsko gibanje materijalne toke Sastavljeno gibanje Specijalni sluajevi kosog hica: b) Horizontalni hitac c) Vertikalni hitac ) Kosi hic Kriolinijsko ibnje merijlne oke Ssljeno ibnje 5. dio 3 4 Specijlni slujei koso hic: b) orizonlni hic c) Veriklni hic b) orizonlni hic c) Veriklni hic 5 6 7 ) Kosi hic 8 Kosi hic (bez opor zrk)

Διαβάστε περισσότερα

ELEKTROTEHNIČKI ODJEL

ELEKTROTEHNIČKI ODJEL MATEMATIKA. Neka je S skup svih živućih državljana Republike Hrvatske..04., a f preslikavanje koje svakom elementu skupa S pridružuje njegov horoskopski znak (bez podznaka). a) Pokažite da je f funkcija,

Διαβάστε περισσότερα

Dimenzioniranje nosaa. 1. Uvjeti vrstoe

Dimenzioniranje nosaa. 1. Uvjeti vrstoe Dimenzioniranje nosaa 1. Uvjeti vrstoe 1 Otpornost materijala prouava probleme 1. vrstoe,. krutosti i 3. elastine stabilnosti konstrukcija i dijelova konstrukcija od vrstog deformabilnog materijala. Moraju

Διαβάστε περισσότερα

OSNOVI ELEKTRONIKE VEŽBA BROJ 1 OSNOVNA KOLA SA DIODAMA

OSNOVI ELEKTRONIKE VEŽBA BROJ 1 OSNOVNA KOLA SA DIODAMA ELEKTROTEHNIČKI FAKULTET U BEOGRADU KATEDRA ZA ELEKTRONIKU OSNOVI ELEKTRONIKE SVI ODSECI OSIM ODSEKA ZA ELEKTRONIKU LABORATORIJSKE VEŽBE VEŽBA BROJ 1 OSNOVNA KOLA SA DIODAMA Autori: Goran Savić i Milan

Διαβάστε περισσότερα

Opšte KROVNI POKRIVAČI I

Opšte KROVNI POKRIVAČI I 1 KROVNI POKRIVAČI I FASADNE OBLOGE 2 Opšte Podela prema zaštitnim svojstvima: Hladne obloge - zaštita hale od atmosferskih padavina, Tople obloge - zaštita hale od atmosferskih padavina i prodora hladnoće

Διαβάστε περισσότερα

ТЕМПЕРАТУРА СВЕЖЕГ БЕТОНА

ТЕМПЕРАТУРА СВЕЖЕГ БЕТОНА ТЕМПЕРАТУРА СВЕЖЕГ БЕТОНА empertur sežeg beton menj se tokom remen i zisi od ećeg broj utijnih prmetr: Početne temperture mešine (n izsku iz mešie), emperture sredine, opote hidrtije ement, Rzmene topote

Διαβάστε περισσότερα

Antene. Srednja snaga EM zračenja se dobija na osnovu intenziteta fluksa Pointingovog vektora kroz sferu. Gustina snage EM zračenja:

Antene. Srednja snaga EM zračenja se dobija na osnovu intenziteta fluksa Pointingovog vektora kroz sferu. Gustina snage EM zračenja: Anene Transformacija EM alasa u elekrični signal i obrnuo Osnovne karakerisike anena su: dijagram zračenja, dobiak (Gain), radna učesanos, ulazna impedansa,, polarizacija, efikasnos, masa i veličina, opornos

Διαβάστε περισσότερα

MATEMATIKA I 1.kolokvij zadaci za vježbu I dio

MATEMATIKA I 1.kolokvij zadaci za vježbu I dio MATEMATIKA I kolokvij zadaci za vježbu I dio Odredie c 0 i kosinuse kueva koje s koordinanim osima čini vekor c = a b ako je a = i + j, b = i + k Odredie koliki je volumen paralelepipeda, čiji se bridovi

Διαβάστε περισσότερα

ISPITNI ZADACI FORMULE. A, B i C koeficijenti (barem jedan A ili B različiti od nule)

ISPITNI ZADACI FORMULE. A, B i C koeficijenti (barem jedan A ili B različiti od nule) FORMULE Implicitni oblik jednadžbe pravca A, B i C koeficijenti (barem jedan A ili B različiti od nule) Eksplicitni oblik jednadžbe pravca ili Pravci paralelni s koordinatnim osima - Kada je u općoj jednadžbi

Διαβάστε περισσότερα

KONVEKSNI SKUPOVI. Definicije: potprostor, afin skup, konveksan skup, konveksan konus. 1/5. Back FullScr

KONVEKSNI SKUPOVI. Definicije: potprostor, afin skup, konveksan skup, konveksan konus. 1/5. Back FullScr KONVEKSNI SKUPOVI Definicije: potprostor, afin skup, konveksan skup, konveksan konus. 1/5 KONVEKSNI SKUPOVI Definicije: potprostor, afin skup, konveksan skup, konveksan konus. 1/5 1. Neka su x, y R n,

Διαβάστε περισσότερα

IZVORI DEPRESIJE U VJETRENOJ MREŽI

IZVORI DEPRESIJE U VJETRENOJ MREŽI IZVORI DEPRESIJE U VJETRENOJ MREŽI Svladavanjeotporatrenja strujanja zraka jamskih provodnika dovodi dogubitkatlaka (tlačne visine, depresije). Gubitke tlaka treba nadoknaditi izvorima depresija. Izvoridepresije

Διαβάστε περισσότερα

Moguća i virtuelna pomjeranja

Moguća i virtuelna pomjeranja Dnamka sstema sa vezama Moguća vrtuelna pomjeranja f k ( r 1,..., r N, t) = 0 (k = 1, 2,..., K ) df k dt = r + t = 0 d r = r dt moguća pomjeranja zadovoljavaju uvjet: df k = d r + dt = 0. t δ r = δx +

Διαβάστε περισσότερα

ΕΛΤΙΟ ΤΥΠΟΥ. ΕΙΚΤΗΣ ΤΙΜΩΝ ΥΛΙΚΩΝ ΚΑΤΑΣΚΕΥΗΣ ΝΕΩΝ ΚΤΙΡΙΩΝ ΚΑΤΟΙΚΙΩΝ: εκέµβριος 2015 (2010=100,0)

ΕΛΤΙΟ ΤΥΠΟΥ. ΕΙΚΤΗΣ ΤΙΜΩΝ ΥΛΙΚΩΝ ΚΑΤΑΣΚΕΥΗΣ ΝΕΩΝ ΚΤΙΡΙΩΝ ΚΑΤΟΙΚΙΩΝ: εκέµβριος 2015 (2010=100,0) ΕΛΛΗΝΙΚΗ ΗΜΟΚΡΑΤΙΑ ΕΛΛΗΝΙΚΗ ΣΤΑΤΙΣΤΙΚΗ ΑΡΧΗ Πειραιάς, 22 Ιανουαρίου 2016 ΕΛΤΙΟ ΤΥΠΟΥ ΕΙΚΤΗΣ ΤΙΜΩΝ ΥΛΙΚΩΝ ΚΑΤΑΣΚΕΥΗΣ ΝΕΩΝ ΚΤΙΡΙΩΝ ΚΑΤΟΙΚΙΩΝ: εκέµβριος 2015 (2010=100,0) Ο Γενικός είκτης Τιµών Υλικών Κατασκευής

Διαβάστε περισσότερα

UNIVERZITET U NIŠU ELEKTRONSKI FAKULTET SIGNALI I SISTEMI. Zbirka zadataka

UNIVERZITET U NIŠU ELEKTRONSKI FAKULTET SIGNALI I SISTEMI. Zbirka zadataka UNIVERZITET U NIŠU ELEKTRONSKI FAKULTET Goran Stančić SIGNALI I SISTEMI Zbirka zadataka NIŠ, 014. Sadržaj 1 Konvolucija Literatura 11 Indeks pojmova 11 3 4 Sadržaj 1 Konvolucija Zadatak 1. Odrediti konvoluciju

Διαβάστε περισσότερα

Site-ul AstroInfo &

Site-ul AstroInfo   & Site-ul AstroInfo www.astro-info.ro & prezintă 20 Hotea Sorin Toate drepturile rezervate. HărŃile pot fi folosite sau transmise doar cu precizarea sursei şi a autorului. Altfel se încalcă legea privind

Διαβάστε περισσότερα

Rad, snaga, energija. Tehnička fizika 1 03/11/2017 Tehnološki fakultet

Rad, snaga, energija. Tehnička fizika 1 03/11/2017 Tehnološki fakultet Rad, snaga, energija Tehnička fizika 1 03/11/2017 Tehnološki fakultet Rad i energija Da bi rad bio izvršen neophodno je postojanje sile. Sila vrši rad: Pri pomjeranju tijela sa jednog mjesta na drugo Pri

Διαβάστε περισσότερα

ORTODROMSKA, LOKSODROMSKA I KOMBINIRANA PLOVIDBA

ORTODROMSKA, LOKSODROMSKA I KOMBINIRANA PLOVIDBA David Brčić ORTODROMSKA, LOKSODROMSKA I KOMBINIRANA PLOVIDBA Riješeni zadaci DAVID BRČIĆ LOKSODROMSKA PLOVIDBA I. Loksodromski zadatak (kurs i udaljenost): tgk= II. Loksodromski zadatak (relativne koordinate):

Διαβάστε περισσότερα

Funkcije dviju varjabli (zadaci za vježbu)

Funkcije dviju varjabli (zadaci za vježbu) Funkcije dviju varjabli (zadaci za vježbu) Vidosava Šimić 22. prosinca 2009. Domena funkcije dvije varijable Ako je zadano pridruživanje (x, y) z = f(x, y), onda se skup D = {(x, y) ; f(x, y) R} R 2 naziva

Διαβάστε περισσότερα

Veleučilište u Rijeci Stručni studij sigurnosti na radu Akad. god. 2011/2012. Matematika. Monotonost i ekstremi. Katica Jurasić. Rijeka, 2011.

Veleučilište u Rijeci Stručni studij sigurnosti na radu Akad. god. 2011/2012. Matematika. Monotonost i ekstremi. Katica Jurasić. Rijeka, 2011. Veleučilište u Rijeci Stručni studij sigurnosti na radu Akad. god. 2011/2012. Matematika Monotonost i ekstremi Katica Jurasić Rijeka, 2011. Ishodi učenja - predavanja Na kraju ovog predavanja moći ćete:,

Διαβάστε περισσότερα