E[x 2 ] = E[(an+b) 2 ] = E[a 2 n 2 +2nab+b 2 ] = n 2 E[a 2 ]+2nE[ab]+E[b 2 ] = n 2 E[a 2 ]+E[b 2 ] E[x 2 ] = n 2 σ 2 a+σ 2 b
|
|
- Ευθαλία Λαμέρας
- 8 χρόνια πριν
- Προβολές:
Transcript
1 Πανεπιστήµιο Κρήτης - Τµήµα Επιστήµης Υπολογιστών ΗΥ-57: Στατιστική Επεξεργασία Σήµατος 15 ιδάσκων : Α. Μουχτάρης Πρώτη Σειρά Ασκήσεων Λύσεις Ασκηση Since a and b are independent and have zero mean, we have E[a] = and E[b] = and E[ab] =. Therefore, E[x ] = E[(an+b) ] = E[a n +nab+b ] = n E[a ]+ne[ab]+e[b ] = n E[a ]+E[b ] E[x ] = n σ a+σ b. x(n) is not stationary since its variance E[x ] depends on the absolute time n. For this reason it is not ergodic since ergodicity depends on stationarity. Ασκηση. H(z) = 1 3.5z 1 + 6z + 4z z H(z) = z3 (1 3.5z 1 + 6z + 4z 3 ) 4 z z 3 (1 1 z z ) H(z) = z3 3.5z + 6z + 4 z 3 1 z z H(z) = z3 3.5z + 6z + 4 z(z 1 z ) Poles: z(z 1 z ) = z 1 = and z 1 z = z = j.3536, z 3 =.3536 j.3536 Zeros: z 3 3.5z + 6z + 4 = z 1 =.5, z = + j, z 3 = j. Zeros and poles can be found either using the matlab function roots() or solving algebraically the equations (for the zeros of a 3rd order linear equation see: So the pole-zero map for H(z) is shown in Fig. 1
2 ΗΥ-57: Στατιστική Επεξεργασία Σήµατος Πρώτη Σειρά Ασκήσεων Λύσεις Imaginary Part Real Part Figure 1: Pole-zero map for H(z) Magnitude and Phase of H(z)(see Figs and 3) % matlab code for the magnitude and phase of H(z) B=[1, -3.5, 6, 4]; A=[1, -1/sqrt(), 1/4]; fr=-pi:pi/1:pi; plot(fr/pi, *log1(abs(freqz(b, A, fr))));%magnitude plot(fr/pi, angle(freqz(b, A, fr)));%phase
3 ΗΥ-57: Στατιστική Επεξεργασία Σήµατος Πρώτη Σειρά Ασκήσεων Λύσεις H(z) Magnitude (db) normalized frequency Figure : Magnitude of H(z) 4 H(ω) 3 Phase (rads) normalized frequency Figure 3: Phase of H(z)
4 ΗΥ-57: Στατιστική Επεξεργασία Σήµατος Πρώτη Σειρά Ασκήσεων Λύσεις 15 4 H(z) as a cascade connection of a minimum phase and an all-pass system. H(z) = z3 3.5z + 6z + 4 z(z 1 z ) H(z) = (z +.5)(z j)(z + j) z(z.3536 j.3536)(z j.3536) z +.5 (z j)(z + j) H(z) = z(z.3536 j.3536)(z j.3536) 1 z +.5 (z j)(z + j) H(z) = z(z.3536 j.3536)(z j.3536) ( j 1 4 )( 1 4 j 1 4 ) ( j 1 4 )(1 4 j 1 4 ) (z +.5)( 1 4 H(z) = + j 1 4 )( 1 4 j 1 4 ) (z j)(z + j) z(z.3536 j.3536)(z j.3536) ( j 1 4 )( 1 4 j 1 4 ) where H min (z) = (z +.5)( j 1 4 )( 1 4 j 1 4 ) z(z.3536 j.3536)(z j.3536) and H ap (z) = (z j)(z + j) ( j 1 4 )( 1 4 j 1 4 ) Pole-zero plot of H min (z) and H ap (z) (see Figs 4 and 5) % matlab code for Pole-zero plot of H_min(z) and H_ap(z) ZerosHmin=[-.5, 1/4+1j*1/4, 1/4-1j*1/4]; A=[1, -1/sqrt(), 1/4]; zplane(poly(zeroshmin), A); ZerosHap=[+1j*, -1j*]; PolesHap=[1/4+1j*1/4, 1/4-1j*1/4]; zplane(poly(zeroshap), poly(poleshap)); Magnitude and Phase of H min (z)(see Figs 6 and 7) % matlab code for the magnitude and phase of H_min(z) fr=-pi:pi/1:pi; plot(fr/pi, *log1(abs(freqz(poly(zeroshmin), A, fr)))); figure; plot(fr/pi, angle(freqz(poly(zeroshmin), A, fr)))
5 ΗΥ-57: Στατιστική Επεξεργασία Σήµατος Πρώτη Σειρά Ασκήσεων Λύσεις 15 5 Pole zero map of H min Imaginary Part Real Part Figure 4: Pole-zero map of H min (z) Pole zero map of H ap Imaginary Part Real Part Figure 5: Pole-zero map of H ap (z)
6 ΗΥ-57: Στατιστική Επεξεργασία Σήµατος Πρώτη Σειρά Ασκήσεων Λύσεις H min (ω) 4 magnitude (db) normalized frequency Figure 6: Magnitude of H min (z).8 H min (ω).6.4. Phase (rads) normalized frequency Figure 7: Phase of H min (z)
7 ΗΥ-57: Στατιστική Επεξεργασία Σήµατος Πρώτη Σειρά Ασκήσεων Λύσεις H ap (ω) magnitude (db) normalized frequency Figure 8: Magnitude of H ap (z) Magnitude and Phase of H ap (z)(see Figs 8 and 9) % matlab code for the magnitude and phase of H_ap(z) fr=-pi:pi/1:pi; plot(fr/pi, *log1(abs(freqz(poly(zeroshap), poly(poleshap), fr)))); figure; plot(fr/pi, angle(freqz(poly(zeroshap), poly(poleshap), fr)));
8 ΗΥ-57: Στατιστική Επεξεργασία Σήµατος Πρώτη Σειρά Ασκήσεων Λύσεις H ap (ω) 3 1 Phase (rads) normalized frequency Figure 9: Phase of H ap (z) Ασκηση This is an AR process since the input (driving noise) is the signal ɛ(n) and the output y(n) is a linear combination of past output values and the input.. (a) For the first realization: This is an AR system of order M = 1, so from the Yule-Walker equations with M = 1 we get r()w 1 = r (1) w 1 = r (1) r() w 1 = w 1 =.9644 ˆα = Also for the variance of the driving white noise we have (see also Eq..71 Haykin): 1 σɛ = a k r(k) = 1 r() ˆαr(1) = σɛ = k= (b) For the second realization: This is an AR system of order M = 1, so from the Yule-Walker equations with M = 1 we get r()w 1 = r (1) w 1 = r (1) r() w 1 = w 1 =.949 ˆα =.949. Also for the variance of the driving white noise we have (see also Eq..71 Haykin): 1 σɛ = a k r(k) = 1 r() ˆαr(1) = σɛ =.715 k=
9 ΗΥ-57: Στατιστική Επεξεργασία Σήµατος Πρώτη Σειρά Ασκήσεων Λύσεις First Realization 3 Power Spectrum (db) 1 1 Estimated Power Spectrum True Power Spectrum Periodogram ω (rad) Figure 1: Power spectra for the first realization 3. Ŝ yy (ω) = ˆσ ɛ 1 âe jω, with ˆα =.9654 and σ ɛ = for the first realization and ˆα =.949 and σ ɛ =.715 for the second realization. For the plot see below. 4. The true power spectrum, with {a, σ ɛ } = {.95, 1}. 5. The periodogram spectrum ˆΣ yy (ω) = 1 N S yy (ω) = σ ɛ 1 ae jω, N 1 n= y ne jωn We plot all three spectra for the first realization in Fig. 1 and for the second realization in Fig For the results please refer to part 5. %Matlab code for parts -6
10 ΗΥ-57: Στατιστική Επεξεργασία Σήµατος Πρώτη Σειρά Ασκήσεων Λύσεις Second Realization 1 Power Spectrum (db) 1 Estimated Power Spectrum True Power Spectrum Periodogram ω (rad) Figure 11: Power spectra for the second realization y1=[3.848, 3.5, 5.55, 4.976, 6.599,6.17,6.57, 6.388, 6.5, 5.564, , 5.55, 4.53, 3.95, 3.668,3.668, 3.6, 1.945,.4,.14].'; R1=xcorr(y1, 'biased'); a_hat1=r1(1)/r1(); sigma_square1=r1()-r1(1)/r1()*r1(1); y=[5.431, 5.55, 4.873, 5.1, 5.7, 5.86, 6.133, 5.68, 6.479, 4.31, , 4.79, 5.469, 5.87, 3.819,.968,.751, 3.36, 3.13, 3.694].'; R=xcorr(y, 'biased'); a_hat=r(1)/r(); sigma_square=r()-r(1)/r()*r(1); omega=linspace(, pi, ); Spectrum1=sigma_square1./(abs(1-a_hat1*exp(-1i*omega)).ˆ); Spectrum1true=1./(abs(1-.95*exp(-1i*omega)).ˆ);
11 ΗΥ-57: Στατιστική Επεξεργασία Σήµατος Πρώτη Σειρά Ασκήσεων Λύσεις n=(:length(y1)-1).'; for iomeg=1:length(omega) Periodogram1(iomeg)=1/(length(y1))*abs(sum(y1.*exp(-1i*omega(iomeg)*n))).ˆ; end Spectrum=sigma_square./(abs(1-a_hat*exp(-1i*omega)).ˆ); Spectrumtrue=1./(abs(1-.95*exp(-1i*omega)).ˆ); for iomeg=1:length(omega) Periodogram(iomeg)=1/(length(y))*abs(sum(y.*exp(-1i*omega(iomeg)*n))).ˆ; end figurea(1,8,4); hold on; box('on'); plot(omega, 1*log1(Spectrum1)); plot(omega, 1*log1(Spectrum1true), 'r'); plot(omega, 1*log1(Periodogram), 'g'); title('first Realization'); xlabel('\omega (rad)'); ylabel('power Spectrum (db)'); legend({'estimated Power Spectrum'; 'True Power Spectrum'; 'Periodogram'}, 'Location', 'Best'); saveas(gcf, 'FirstRealization.fig','fig'); print(gcf,'-depsc',['firstrealization.eps']); hold off; close; figurea(,8,4); hold on; box('on'); plot(omega, 1*log1(Spectrum)); plot(omega, 1*log1(Spectrumtrue), 'r'); plot(omega, 1*log1(Periodogram), 'g');
12 ΗΥ-57: Στατιστική Επεξεργασία Σήµατος Πρώτη Σειρά Ασκήσεων Λύσεις N=56 Power Spectrum (db) 1 1 Estimated Power Spectrum True Power Spectrum Periodogram ω (rad) Figure 1: Power spectra for N = 56 samples title('second Realization'); xlabel('\omega (rad)'); ylabel('power Spectrum (db)'); legend({'estimated Power Spectrum'; 'True Power Spectrum'; 'Periodogram'}, 'Location', 'Best'); saveas(gcf, 'SecondRealization.fig','fig'); print(gcf,'-depsc',['secondrealization.eps']); hold off; close; 7. For N = 56 ˆα =.934 and σ ɛ = For N = 14 ˆα =.959 and σ ɛ = The corresponding plots can be seen in Fig. 1 and Fig. 13. Ασκηση The filter output is
13 ΗΥ-57: Στατιστική Επεξεργασία Σήµατος Πρώτη Σειρά Ασκήσεων Λύσεις N=14 Power Spectrum (db) 1 1 Estimated Power Spectrum True Power Spectrum Periodogram ω (rad) Figure 13: Power spectra for N = 14 samples x(n) = w H u(n), where u(n) is the tap-input vector. The average power of the filter output is therefore E[ x(n) ] = E[w H u(n)u H (n)w] = w H E[u(n)u H (n)]w = w H Rw.. If u(n) is extracted from a zero mean white noise of variance σ, we have R = σ I, where I is the identity matrix. Hence, E[ x(n) ] = σ w H w
14 ΗΥ-57: Στατιστική Επεξεργασία Σήµατος Πρώτη Σειρά Ασκήσεων Λύσεις u(n) N=3 5 5 v(n) N= n (samples) n (samples) 4 u(n) N= v(n) N= n (samples) n (samples) 4 4 u(n) N=48 v(n) N= n (samples) n (samples) Figure 14: Driving noise and 4th order AR process for N = {3, 56, 48} samples Ασκηση For all N cases plots of the driving noise and the AR process are shown in Fig. 14. The sample autocorrelation is given by: ˆr u (k) = 1 N N k 1 n= u (n)u(n + k), k =, 1,,..., N 1 For the true autocorrelation sequence, r u (k), from he definition of the autocorrelation and the definition of the 4th order AR process we are given, it holds: r u (k) = E[u(n)u (n k)] = E[(a 1 u(n 1) + a u(n ) + a 3 u(n 3) + a 4 u(n 4) + v(n)) u(n k)] = a 1 E[u(n 1)u(n k)]+a E[u(n )u(n k)]+a 3 E[u(n 3)u(n k)]+a 4 E[u)n 4)u(n k)]+e[v(n)u(n k)] The term E[v(n)u(n k)] is zero for k >, since u(n k) involves samples of the white noise process up to time n k, that is u(n k) is uncorrelated to v(n), so r u (k) becomes:
15 ΗΥ-57: Στατιστική Επεξεργασία Σήµατος Πρώτη Σειρά Ασκήσεων Λύσεις r u (k) = a 1 E[u(n 1)u(nk)]+a E[u(n )u(n k)]+a 3 E[u(n 3)u(n k)]+a 4 E[u)n 4)u(n k)] r u (k) = a 1 r u (k 1) + a r u (k ) + a 3 r u (k 3) + a 4 r u (k 4). (1) Since the autocorrelation function is a recurrence relation we have to estimate the initial conditions, i.e., r u (k) for k =, 1,, 3, 4. The autocorrelation at lag k = is equal to : r u () = E[u(n)u (n)] = E[(a 1 u(n 1) + a u(n ) + a 3 u(n 3) + a 4 u(n 4) + v(n)) u(n)] = a 1 r u ( 1) + a r u ( ) + a 3 r u ( 3) + a 4 r u ( 4) + E[v(n)u(n)] = a 1 r u (1) + a r u () + a 3 r u (3) + a 4 r u (4) + E[v(n) (a 1 u(n 1) + a u(n ) + a 3 u(n 3) + a 4 u(n 4) + v(n))] = a 1 r u (1) + a r u () + a 3 r u (3) + a 4 r u (4)+ a 1 E[v(n)u(n 1)] + a E[v(n)u(n )] + a 3 E[v(n)u(n 3)] + a 4 E[v(n)u(n 4)] + E[v(n)v(n)] = a 1 r u (1) + a r u () + a 3 r u (3) + a 4 r u (4) + σv r u () = a 1 r u (1) + a r u () + a 3 r u (3) + a 4 r u (4) + σ v r u () a 1 r u (1) a r u () a 3 r u (3) a 4 r u (4) = σ v, () since terms of the form a k E[v(n)u(n k)], k > are equal to zero. From Eq. (1) The autocorrelation at lag k = 1 is equal to : r u (1) = a 1 r u () + a r u ( 1) + a 3 r u ( ) + a 4 r u ( 3) r u (1) = a 1 r u () + a r u (1) + a 3 r u () + a 4 r u (3) a 1 r u () + (a 1)r u (1) + a 3 r u () + a 4 r u (3) + r u (4) =. (3) The autocorrelation at lag k = is equal to : r u () = a 1 r u (1) + a r u () + a 3 r u ( 1) + a 4 r u ( ) r u () = a 1 r u (1) + a r u () + a 3 r u (1) + a 4 r u () a r u () + (a 1 + a 3 )r u (1) + (a 4 1)r u () + r u (3) + r u (4) =. (4)
16 ΗΥ-57: Στατιστική Επεξεργασία Σήµατος Πρώτη Σειρά Ασκήσεων Λύσεις Estimated r u (k) True r u (k) 1 N= n (samples) Figure 15: Estimated and true autocorrelation sequence of the 4th order AR process for N = 3 samples The autocorrelation at lag k = 3 is equal to : r u (3) = a 1 r u () + a r u (1) + a 3 r u () + a 4 r u ( 1) r u (3) = a 1 r u () + a r u (1) + a 3 r u () + a 4 r u (1) a 3 r u () + (a + a 4 )r u (1) + a 1 r u () r u (3) + r u (4) =. (5) Finally, the autocorrelation at lag k = 4 is equal to : r u (4) = a 1 r u (3) + a r u () + a 3 r u (1) + a 4 r u () a 4 r u () + a 3 r u (1) + a r u () + a 1 r u (3) r u (4) =. (6) Equations () to (6) form a system of linear equations. Solving the system we get: r u () = , r u (1) = 5.178, r u () = 3, 7887, r u (3) = 1, 5576 and r u (4) = 3, 6389 and from Eq. (1) r u (k) = a 1 r u (k 1) + a r u (k ) + a 3 r u (k 3) + a 4 r u (k 4), k = 1,,..., N 1. The estimate and true autocorrelation functions for N = {3, 56, 48} can be seen in Fig
17 ΗΥ-57: Στατιστική Επεξεργασία Σήµατος Πρώτη Σειρά Ασκήσεων Λύσεις N= Estimated r u (k) True r u (k) n (samples) Figure 16: Estimated and true autocorrelation sequence of the 4th order AR process for N = 56 samples N= Estimated r u (k) True r u (k) n (samples) Figure 17: Estimated and true autocorrelation sequence of the 4th order AR process for N = 48 samples
18 ΗΥ-57: Στατιστική Επεξεργασία Σήµατος Πρώτη Σειρά Ασκήσεων Λύσεις PSD (db) Blackman & Tukey PSD Parametric PSD True PSD ω (rad) Figure 18: Blackman-Tukey, Parametric AR and True Power Spectral Density for the 4th order AR process for N = 3 samples 3. For the Blackman-Tukey method a hamming window of size N/5 samples has been used. All spectra have been normalized to 1 ( db in db scale). We see the comparative plots in Fig. 18- Ασκηση 6. We are given x(n) = v(n) +.75v(n 1) +.5v(n ). Taking the z-transform of both sides: X(z) = (1 +.75z 1 +.5z )V (z). Hence, the transfer function of the MA model is: X(z) V (z) = z 1 +.5z = 1 (1 +.75z 1 +.5z 1. (7) )
19 ΗΥ-57: Στατιστική Επεξεργασία Σήµατος Πρώτη Σειρά Ασκήσεων Λύσεις PSD (db) Blackman & Tukey PSD Parametric PSD True PSD ω (rad) Figure 19: Blackman-Tukey, Parametric AR and True Power Spectral Density for the 4th order AR process for N = 56 samples
20 ΗΥ-57: Στατιστική Επεξεργασία Σήµατος Πρώτη Σειρά Ασκήσεων Λύσεις 15 PSD (db) Blackman & Tukey PSD Parametric PSD True PSD ω (rad) Figure : Blackman-Tukey, Parametric AR and True Power Spectral Density for the 4th order AR process for N = 48 samples
21 ΗΥ-57: Στατιστική Επεξεργασία Σήµατος Πρώτη Σειρά Ασκήσεων Λύσεις 15 1 Using long division, we may perform the following expansion of the denominator in Eq. (7): ( z 1 +.5z ) 1 = z z 3 64 z z z z z z z z z z.469z 3.43z z 5.z z z 8.4z z 1. (8) 1. M= Retaining terms in Eq. (8) up to z, we may approximate the MA model with an AR model of order two as follows: X(z) V (z) z z. Retaining terms in Eq. (8) up to z 5, we obtain the following approximation in the form of an AR model of order five: X(z) V (z) z z.469z 3.43z z 5 3. M=1 Finally, retaining terms in Eq. (8) up to z 1, we obtain the following approximation in the form of an AR model of order ten: X(z) V (z) 1 D(z), where D(z) = 1.75z z.469z 3.43z z 5.z z z 8.4z z 1.
w o = R 1 p. (1) R = p =. = 1
Πανεπιστήµιο Κρήτης - Τµήµα Επιστήµης Υπολογιστών ΗΥ-570: Στατιστική Επεξεργασία Σήµατος 205 ιδάσκων : Α. Μουχτάρης Τριτη Σειρά Ασκήσεων Λύσεις Ασκηση 3. 5.2 (a) From the Wiener-Hopf equation we have:
Probability and Random Processes (Part II)
Probability and Random Processes (Part II) 1. If the variance σ x of d(n) = x(n) x(n 1) is one-tenth the variance σ x of a stationary zero-mean discrete-time signal x(n), then the normalized autocorrelation
Homework 3 Solutions
Homework 3 Solutions Igor Yanovsky (Math 151A TA) Problem 1: Compute the absolute error and relative error in approximations of p by p. (Use calculator!) a) p π, p 22/7; b) p π, p 3.141. Solution: For
CHAPTER 25 SOLVING EQUATIONS BY ITERATIVE METHODS
CHAPTER 5 SOLVING EQUATIONS BY ITERATIVE METHODS EXERCISE 104 Page 8 1. Find the positive root of the equation x + 3x 5 = 0, correct to 3 significant figures, using the method of bisection. Let f(x) =
HW 3 Solutions 1. a) I use the auto.arima R function to search over models using AIC and decide on an ARMA(3,1)
HW 3 Solutions a) I use the autoarima R function to search over models using AIC and decide on an ARMA3,) b) I compare the ARMA3,) to ARMA,0) ARMA3,) does better in all three criteria c) The plot of the
HOMEWORK 4 = G. In order to plot the stress versus the stretch we define a normalized stretch:
HOMEWORK 4 Problem a For the fast loading case, we want to derive the relationship between P zz and λ z. We know that the nominal stress is expressed as: P zz = ψ λ z where λ z = λ λ z. Therefore, applying
ECE 308 SIGNALS AND SYSTEMS FALL 2017 Answers to selected problems on prior years examinations
ECE 308 SIGNALS AND SYSTEMS FALL 07 Answers to selected problems on prior years examinations Answers to problems on Midterm Examination #, Spring 009. x(t) = r(t + ) r(t ) u(t ) r(t ) + r(t 3) + u(t +
DERIVATION OF MILES EQUATION FOR AN APPLIED FORCE Revision C
DERIVATION OF MILES EQUATION FOR AN APPLIED FORCE Revision C By Tom Irvine Email: tomirvine@aol.com August 6, 8 Introduction The obective is to derive a Miles equation which gives the overall response
Second Order RLC Filters
ECEN 60 Circuits/Electronics Spring 007-0-07 P. Mathys Second Order RLC Filters RLC Lowpass Filter A passive RLC lowpass filter (LPF) circuit is shown in the following schematic. R L C v O (t) Using phasor
4.6 Autoregressive Moving Average Model ARMA(1,1)
84 CHAPTER 4. STATIONARY TS MODELS 4.6 Autoregressive Moving Average Model ARMA(,) This section is an introduction to a wide class of models ARMA(p,q) which we will consider in more detail later in this
2 Composition. Invertible Mappings
Arkansas Tech University MATH 4033: Elementary Modern Algebra Dr. Marcel B. Finan Composition. Invertible Mappings In this section we discuss two procedures for creating new mappings from old ones, namely,
6.1. Dirac Equation. Hamiltonian. Dirac Eq.
6.1. Dirac Equation Ref: M.Kaku, Quantum Field Theory, Oxford Univ Press (1993) η μν = η μν = diag(1, -1, -1, -1) p 0 = p 0 p = p i = -p i p μ p μ = p 0 p 0 + p i p i = E c 2 - p 2 = (m c) 2 H = c p 2
Matrices and Determinants
Matrices and Determinants SUBJECTIVE PROBLEMS: Q 1. For what value of k do the following system of equations possess a non-trivial (i.e., not all zero) solution over the set of rationals Q? x + ky + 3z
6.3 Forecasting ARMA processes
122 CHAPTER 6. ARMA MODELS 6.3 Forecasting ARMA processes The purpose of forecasting is to predict future values of a TS based on the data collected to the present. In this section we will discuss a linear
Example Sheet 3 Solutions
Example Sheet 3 Solutions. i Regular Sturm-Liouville. ii Singular Sturm-Liouville mixed boundary conditions. iii Not Sturm-Liouville ODE is not in Sturm-Liouville form. iv Regular Sturm-Liouville note
Module 5. February 14, h 0min
Module 5 Stationary Time Series Models Part 2 AR and ARMA Models and Their Properties Class notes for Statistics 451: Applied Time Series Iowa State University Copyright 2015 W. Q. Meeker. February 14,
Problem Set 9 Solutions. θ + 1. θ 2 + cotθ ( ) sinθ e iφ is an eigenfunction of the ˆ L 2 operator. / θ 2. φ 2. sin 2 θ φ 2. ( ) = e iφ. = e iφ cosθ.
Chemistry 362 Dr Jean M Standard Problem Set 9 Solutions The ˆ L 2 operator is defined as Verify that the angular wavefunction Y θ,φ) Also verify that the eigenvalue is given by 2! 2 & L ˆ 2! 2 2 θ 2 +
Statistical Inference I Locally most powerful tests
Statistical Inference I Locally most powerful tests Shirsendu Mukherjee Department of Statistics, Asutosh College, Kolkata, India. shirsendu st@yahoo.co.in So far we have treated the testing of one-sided
Jesse Maassen and Mark Lundstrom Purdue University November 25, 2013
Notes on Average Scattering imes and Hall Factors Jesse Maassen and Mar Lundstrom Purdue University November 5, 13 I. Introduction 1 II. Solution of the BE 1 III. Exercises: Woring out average scattering
ST5224: Advanced Statistical Theory II
ST5224: Advanced Statistical Theory II 2014/2015: Semester II Tutorial 7 1. Let X be a sample from a population P and consider testing hypotheses H 0 : P = P 0 versus H 1 : P = P 1, where P j is a known
Section 8.3 Trigonometric Equations
99 Section 8. Trigonometric Equations Objective 1: Solve Equations Involving One Trigonometric Function. In this section and the next, we will exple how to solving equations involving trigonometric functions.
University of Illinois at Urbana-Champaign ECE 310: Digital Signal Processing
University of Illinois at Urbana-Champaign ECE : Digital Signal Processing Chandra Radhakrishnan PROBLEM SET : SOLUTIONS Peter Kairouz Problem Solution:. ( 5 ) + (5 6 ) + ( ) cos(5 ) + 5cos( 6 ) + cos(
EE512: Error Control Coding
EE512: Error Control Coding Solution for Assignment on Finite Fields February 16, 2007 1. (a) Addition and Multiplication tables for GF (5) and GF (7) are shown in Tables 1 and 2. + 0 1 2 3 4 0 0 1 2 3
Forced Pendulum Numerical approach
Numerical approach UiO April 8, 2014 Physical problem and equation We have a pendulum of length l, with mass m. The pendulum is subject to gravitation as well as both a forcing and linear resistance force.
Srednicki Chapter 55
Srednicki Chapter 55 QFT Problems & Solutions A. George August 3, 03 Srednicki 55.. Use equations 55.3-55.0 and A i, A j ] = Π i, Π j ] = 0 (at equal times) to verify equations 55.-55.3. This is our third
Durbin-Levinson recursive method
Durbin-Levinson recursive method A recursive method for computing ϕ n is useful because it avoids inverting large matrices; when new data are acquired, one can update predictions, instead of starting again
Concrete Mathematics Exercises from 30 September 2016
Concrete Mathematics Exercises from 30 September 2016 Silvio Capobianco Exercise 1.7 Let H(n) = J(n + 1) J(n). Equation (1.8) tells us that H(2n) = 2, and H(2n+1) = J(2n+2) J(2n+1) = (2J(n+1) 1) (2J(n)+1)
3.4 SUM AND DIFFERENCE FORMULAS. NOTE: cos(α+β) cos α + cos β cos(α-β) cos α -cos β
3.4 SUM AND DIFFERENCE FORMULAS Page Theorem cos(αβ cos α cos β -sin α cos(α-β cos α cos β sin α NOTE: cos(αβ cos α cos β cos(α-β cos α -cos β Proof of cos(α-β cos α cos β sin α Let s use a unit circle
( ) 2 and compare to M.
Problems and Solutions for Section 4.2 4.9 through 4.33) 4.9 Calculate the square root of the matrix 3!0 M!0 8 Hint: Let M / 2 a!b ; calculate M / 2!b c ) 2 and compare to M. Solution: Given: 3!0 M!0 8
Areas and Lengths in Polar Coordinates
Kiryl Tsishchanka Areas and Lengths in Polar Coordinates In this section we develop the formula for the area of a region whose boundary is given by a polar equation. We need to use the formula for the
Appendix to On the stability of a compressible axisymmetric rotating flow in a pipe. By Z. Rusak & J. H. Lee
Appendi to On the stability of a compressible aisymmetric rotating flow in a pipe By Z. Rusak & J. H. Lee Journal of Fluid Mechanics, vol. 5 4, pp. 5 4 This material has not been copy-edited or typeset
Introduction to Time Series Analysis. Lecture 16.
Introduction to Time Series Analysis. Lecture 16. 1. Review: Spectral density 2. Examples 3. Spectral distribution function. 4. Autocovariance generating function and spectral density. 1 Review: Spectral
Second Order Partial Differential Equations
Chapter 7 Second Order Partial Differential Equations 7.1 Introduction A second order linear PDE in two independent variables (x, y Ω can be written as A(x, y u x + B(x, y u xy + C(x, y u u u + D(x, y
DESIGN OF MACHINERY SOLUTION MANUAL h in h 4 0.
DESIGN OF MACHINERY SOLUTION MANUAL -7-1! PROBLEM -7 Statement: Design a double-dwell cam to move a follower from to 25 6, dwell for 12, fall 25 and dwell for the remader The total cycle must take 4 sec
Areas and Lengths in Polar Coordinates
Kiryl Tsishchanka Areas and Lengths in Polar Coordinates In this section we develop the formula for the area of a region whose boundary is given by a polar equation. We need to use the formula for the
CHAPTER 48 APPLICATIONS OF MATRICES AND DETERMINANTS
CHAPTER 48 APPLICATIONS OF MATRICES AND DETERMINANTS EXERCISE 01 Page 545 1. Use matrices to solve: 3x + 4y x + 5y + 7 3x + 4y x + 5y 7 Hence, 3 4 x 0 5 y 7 The inverse of 3 4 5 is: 1 5 4 1 5 4 15 8 3
Απόκριση σε Μοναδιαία Ωστική Δύναμη (Unit Impulse) Απόκριση σε Δυνάμεις Αυθαίρετα Μεταβαλλόμενες με το Χρόνο. Απόστολος Σ.
Απόκριση σε Δυνάμεις Αυθαίρετα Μεταβαλλόμενες με το Χρόνο The time integral of a force is referred to as impulse, is determined by and is obtained from: Newton s 2 nd Law of motion states that the action
Πανεπιστήµιο Κρήτης - Τµήµα Επιστήµης Υπολογιστών. ΗΥ-570: Στατιστική Επεξεργασία Σήµατος. ιδάσκων : Α. Μουχτάρης. εύτερη Σειρά Ασκήσεων.
Πανεπιστήµιο Κρήτης - Τµήµα Επιστήµης Υπολογιστών ΗΥ-570: Στατιστική Επεξεργασία Σήµατος 2015 ιδάσκων : Α. Μουχτάρης εύτερη Σειρά Ασκήσεων Λύσεις Ασκηση 1. 1. Consder the gven expresson for R 1/2 : R 1/2
F19MC2 Solutions 9 Complex Analysis
F9MC Solutions 9 Complex Analysis. (i) Let f(z) = eaz +z. Then f is ifferentiable except at z = ±i an so by Cauchy s Resiue Theorem e az z = πi[res(f,i)+res(f, i)]. +z C(,) Since + has zeros of orer at
Introduction to the ML Estimation of ARMA processes
Introduction to the ML Estimation of ARMA processes Eduardo Rossi University of Pavia October 2013 Rossi ARMA Estimation Financial Econometrics - 2013 1 / 1 We consider the AR(p) model: Y t = c + φ 1 Y
Inverse trigonometric functions & General Solution of Trigonometric Equations. ------------------ ----------------------------- -----------------
Inverse trigonometric functions & General Solution of Trigonometric Equations. 1. Sin ( ) = a) b) c) d) Ans b. Solution : Method 1. Ans a: 17 > 1 a) is rejected. w.k.t Sin ( sin ) = d is rejected. If sin
Exercises 10. Find a fundamental matrix of the given system of equations. Also find the fundamental matrix Φ(t) satisfying Φ(0) = I. 1.
Exercises 0 More exercises are available in Elementary Differential Equations. If you have a problem to solve any of them, feel free to come to office hour. Problem Find a fundamental matrix of the given
C.S. 430 Assignment 6, Sample Solutions
C.S. 430 Assignment 6, Sample Solutions Paul Liu November 15, 2007 Note that these are sample solutions only; in many cases there were many acceptable answers. 1 Reynolds Problem 10.1 1.1 Normal-order
SOLUTIONS TO MATH38181 EXTREME VALUES AND FINANCIAL RISK EXAM
SOLUTIONS TO MATH38181 EXTREME VALUES AND FINANCIAL RISK EXAM Solutions to Question 1 a) The cumulative distribution function of T conditional on N n is Pr T t N n) Pr max X 1,..., X N ) t N n) Pr max
Numerical Analysis FMN011
Numerical Analysis FMN011 Carmen Arévalo Lund University carmen@maths.lth.se Lecture 12 Periodic data A function g has period P if g(x + P ) = g(x) Model: Trigonometric polynomial of order M T M (x) =
Section 7.6 Double and Half Angle Formulas
09 Section 7. Double and Half Angle Fmulas To derive the double-angles fmulas, we will use the sum of two angles fmulas that we developed in the last section. We will let α θ and β θ: cos(θ) cos(θ + θ)
Approximation of distance between locations on earth given by latitude and longitude
Approximation of distance between locations on earth given by latitude and longitude Jan Behrens 2012-12-31 In this paper we shall provide a method to approximate distances between two points on earth
derivation of the Laplacian from rectangular to spherical coordinates
derivation of the Laplacian from rectangular to spherical coordinates swapnizzle 03-03- :5:43 We begin by recognizing the familiar conversion from rectangular to spherical coordinates (note that φ is used
Homework 8 Model Solution Section
MATH 004 Homework Solution Homework 8 Model Solution Section 14.5 14.6. 14.5. Use the Chain Rule to find dz where z cosx + 4y), x 5t 4, y 1 t. dz dx + dy y sinx + 4y)0t + 4) sinx + 4y) 1t ) 0t + 4t ) sinx
Outline Analog Communications. Lecture 05 Angle Modulation. Instantaneous Frequency and Frequency Deviation. Angle Modulation. Pierluigi SALVO ROSSI
Outline Analog Communications Lecture 05 Angle Modulation 1 PM and FM Pierluigi SALVO ROSSI Department of Industrial and Information Engineering Second University of Naples Via Roma 9, 81031 Aversa (CE),
SCHOOL OF MATHEMATICAL SCIENCES G11LMA Linear Mathematics Examination Solutions
SCHOOL OF MATHEMATICAL SCIENCES GLMA Linear Mathematics 00- Examination Solutions. (a) i. ( + 5i)( i) = (6 + 5) + (5 )i = + i. Real part is, imaginary part is. (b) ii. + 5i i ( + 5i)( + i) = ( i)( + i)
Partial Differential Equations in Biology The boundary element method. March 26, 2013
The boundary element method March 26, 203 Introduction and notation The problem: u = f in D R d u = ϕ in Γ D u n = g on Γ N, where D = Γ D Γ N, Γ D Γ N = (possibly, Γ D = [Neumann problem] or Γ N = [Dirichlet
k A = [k, k]( )[a 1, a 2 ] = [ka 1,ka 2 ] 4For the division of two intervals of confidence in R +
Chapter 3. Fuzzy Arithmetic 3- Fuzzy arithmetic: ~Addition(+) and subtraction (-): Let A = [a and B = [b, b in R If x [a and y [b, b than x+y [a +b +b Symbolically,we write A(+)B = [a (+)[b, b = [a +b
The Simply Typed Lambda Calculus
Type Inference Instead of writing type annotations, can we use an algorithm to infer what the type annotations should be? That depends on the type system. For simple type systems the answer is yes, and
Main source: "Discrete-time systems and computer control" by Α. ΣΚΟΔΡΑΣ ΨΗΦΙΑΚΟΣ ΕΛΕΓΧΟΣ ΔΙΑΛΕΞΗ 4 ΔΙΑΦΑΝΕΙΑ 1
Main source: "Discrete-time systems and computer control" by Α. ΣΚΟΔΡΑΣ ΨΗΦΙΑΚΟΣ ΕΛΕΓΧΟΣ ΔΙΑΛΕΞΗ 4 ΔΙΑΦΑΝΕΙΑ 1 A Brief History of Sampling Research 1915 - Edmund Taylor Whittaker (1873-1956) devised a
ΗΜΥ 220: ΣΗΜΑΤΑ ΚΑΙ ΣΥΣΤΗΜΑΤΑ Ι Ακαδημαϊκό έτος Εαρινό Εξάμηνο Κατ οίκον εργασία αρ. 2
ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΚΑΙ ΜΗΧΑΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΗΜΥ 220: ΣΗΜΑΤΑ ΚΑΙ ΣΥΣΤΗΜΑΤΑ Ι Ακαδημαϊκό έτος 2007-08 -- Εαρινό Εξάμηνο Κατ οίκον εργασία αρ. 2 Ημερομηνία Παραδόσεως: Παρασκευή
Other Test Constructions: Likelihood Ratio & Bayes Tests
Other Test Constructions: Likelihood Ratio & Bayes Tests Side-Note: So far we have seen a few approaches for creating tests such as Neyman-Pearson Lemma ( most powerful tests of H 0 : θ = θ 0 vs H 1 :
Chapter 6: Systems of Linear Differential. be continuous functions on the interval
Chapter 6: Systems of Linear Differential Equations Let a (t), a 2 (t),..., a nn (t), b (t), b 2 (t),..., b n (t) be continuous functions on the interval I. The system of n first-order differential equations
Notes on the Open Economy
Notes on the Open Econom Ben J. Heijdra Universit of Groningen April 24 Introduction In this note we stud the two-countr model of Table.4 in more detail. restated here for convenience. The model is Table.4.
Solutions to Exercise Sheet 5
Solutions to Eercise Sheet 5 jacques@ucsd.edu. Let X and Y be random variables with joint pdf f(, y) = 3y( + y) where and y. Determine each of the following probabilities. Solutions. a. P (X ). b. P (X
Ordinal Arithmetic: Addition, Multiplication, Exponentiation and Limit
Ordinal Arithmetic: Addition, Multiplication, Exponentiation and Limit Ting Zhang Stanford May 11, 2001 Stanford, 5/11/2001 1 Outline Ordinal Classification Ordinal Addition Ordinal Multiplication Ordinal
Math221: HW# 1 solutions
Math: HW# solutions Andy Royston October, 5 7.5.7, 3 rd Ed. We have a n = b n = a = fxdx = xdx =, x cos nxdx = x sin nx n sin nxdx n = cos nx n = n n, x sin nxdx = x cos nx n + cos nxdx n cos n = + sin
Finite Field Problems: Solutions
Finite Field Problems: Solutions 1. Let f = x 2 +1 Z 11 [x] and let F = Z 11 [x]/(f), a field. Let Solution: F =11 2 = 121, so F = 121 1 = 120. The possible orders are the divisors of 120. Solution: The
1.8 Paul Mother Wavelet Real Part Imaginary Part Magnitude.6.4 Amplitude.2.2.4.6.8 1 8 6 4 2 2 4 6 8 1 t .8.6 Real Part of Three Scaled Wavelets a = 1 a = 5 a = 1 1.2 1 Imaginary Part of Three Scaled Wavelets
Econ Spring 2004 Instructor: Prof. Kiefer Solution to Problem set # 5. γ (0)
Cornell University Department of Economics Econ 60 - Spring 004 Instructor: Prof. Kiefer Solution to Problem set # 5. Autocorrelation function is defined as ρ h = γ h γ 0 where γ h =Cov X t,x t h =E[X
Quadratic Expressions
Quadratic Expressions. The standard form of a quadratic equation is ax + bx + c = 0 where a, b, c R and a 0. The roots of ax + bx + c = 0 are b ± b a 4ac. 3. For the equation ax +bx+c = 0, sum of the roots
Solution Series 9. i=1 x i and i=1 x i.
Lecturer: Prof. Dr. Mete SONER Coordinator: Yilin WANG Solution Series 9 Q1. Let α, β >, the p.d.f. of a beta distribution with parameters α and β is { Γ(α+β) Γ(α)Γ(β) f(x α, β) xα 1 (1 x) β 1 for < x
Differentiation exercise show differential equation
Differentiation exercise show differential equation 1. If y x sin 2x, prove that x d2 y 2 2 + 2y x + 4xy 0 y x sin 2x sin 2x + 2x cos 2x 2 2cos 2x + (2 cos 2x 4x sin 2x) x d2 y 2 2 + 2y x + 4xy (2x cos
Problem Set 3: Solutions
CMPSCI 69GG Applied Information Theory Fall 006 Problem Set 3: Solutions. [Cover and Thomas 7.] a Define the following notation, C I p xx; Y max X; Y C I p xx; Ỹ max I X; Ỹ We would like to show that C
Math 6 SL Probability Distributions Practice Test Mark Scheme
Math 6 SL Probability Distributions Practice Test Mark Scheme. (a) Note: Award A for vertical line to right of mean, A for shading to right of their vertical line. AA N (b) evidence of recognizing symmetry
Ψηφιακή Επεξεργασία Φωνής
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Ψηφιακή Επεξεργασία Φωνής Ενότητα 1η: Ψηφιακή Επεξεργασία Σήματος Στυλιανού Ιωάννης Τμήμα Επιστήμης Υπολογιστών CS578- Speech Signal Processing Lecture 1: Discrete-Time
= 0.927rad, t = 1.16ms
P 9. [a] ω = 2πf = 800rad/s, f = ω 2π = 27.32Hz [b] T = /f = 7.85ms [c] I m = 25mA [d] i(0) = 25cos(36.87 ) = 00mA [e] φ = 36.87 ; φ = 36.87 (2π) = 0.6435 rad 360 [f] i = 0 when 800t + 36.87 = 90. Now
10.7 Performance of Second-Order System (Unit Step Response)
Lecture Notes on Control Systems/D. Ghose/0 57 0.7 Performance of Second-Order System (Unit Step Response) Consider the second order system a ÿ + a ẏ + a 0 y = b 0 r So, Y (s) R(s) = b 0 a s + a s + a
Lanczos and biorthogonalization methods for eigenvalues and eigenvectors of matrices
Lanzos and iorthogonalization methods for eigenvalues and eigenvetors of matries rolem formulation Many prolems are redued to solving the following system: x x where is an unknown numer А a matrix n n
Assignment 1 Solutions Complex Sinusoids
Assignment Solutions Complex Sinusoids ECE 223 Signals and Systems II Version. Spring 26. Eigenfunctions of LTI systems. Which of the following signals are eigenfunctions of LTI systems? a. x[n] =cos(
SOLUTIONS TO MATH38181 EXTREME VALUES AND FINANCIAL RISK EXAM
SOLUTIONS TO MATH38181 EXTREME VALUES AND FINANCIAL RISK EXAM Solutions to Question 1 a) The cumulative distribution function of T conditional on N n is Pr (T t N n) Pr (max (X 1,..., X N ) t N n) Pr (max
Estimation for ARMA Processes with Stable Noise. Matt Calder & Richard A. Davis Colorado State University
Estimation for ARMA Processes with Stable Noise Matt Calder & Richard A. Davis Colorado State University rdavis@stat.colostate.edu 1 ARMA processes with stable noise Review of M-estimation Examples of
CRASH COURSE IN PRECALCULUS
CRASH COURSE IN PRECALCULUS Shiah-Sen Wang The graphs are prepared by Chien-Lun Lai Based on : Precalculus: Mathematics for Calculus by J. Stuwart, L. Redin & S. Watson, 6th edition, 01, Brooks/Cole Chapter
1. A fully continuous 20-payment years, 30-year term life insurance of 2000 is issued to (35). You are given n A 1
Chapter 7: Exercises 1. A fully continuous 20-payment years, 30-year term life insurance of 2000 is issued to (35). You are given n A 1 35+n:30 n a 35+n:20 n 0 0.068727 11.395336 10 0.097101 7.351745 25
CHAPTER 101 FOURIER SERIES FOR PERIODIC FUNCTIONS OF PERIOD
CHAPTER FOURIER SERIES FOR PERIODIC FUNCTIONS OF PERIOD EXERCISE 36 Page 66. Determine the Fourier series for the periodic function: f(x), when x +, when x which is periodic outside this rge of period.
ME 374, System Dynamics Analysis and Design Homework 9: Solution (June 9, 2008) by Jason Frye
ME 374, System Dynamics Analysis and Design Homewk 9: Solution June 9, 8 by Jason Frye Problem a he frequency response function G and the impulse response function ht are Fourier transfm pairs herefe,
Πανεπιστήµιο Κύπρου Πολυτεχνική Σχολή
Πανεπιστήµιο Κύπρου Πολυτεχνική Σχολή Τµήµα Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών ΗΜΥ 220: ΣΗΜΑΤΑ ΚΑΙ ΣΥΣΤΗΜΑΤΑ Ι Ακαδηµαϊκό έτος 2011-12 Εαρινό Εξάµηνο Ενδιάµεση Εξέταση 1 Παρασκευή 17 Φεβρουαρίου
ECE Spring Prof. David R. Jackson ECE Dept. Notes 2
ECE 634 Spring 6 Prof. David R. Jackson ECE Dept. Notes Fields in a Source-Free Region Example: Radiation from an aperture y PEC E t x Aperture Assume the following choice of vector potentials: A F = =
Variational Wavefunction for the Helium Atom
Technische Universität Graz Institut für Festkörperphysik Student project Variational Wavefunction for the Helium Atom Molecular and Solid State Physics 53. submitted on: 3. November 9 by: Markus Krammer
Derivation of Optical-Bloch Equations
Appendix C Derivation of Optical-Bloch Equations In this appendix the optical-bloch equations that give the populations and coherences for an idealized three-level Λ system, Fig. 3. on page 47, will be
Section 9.2 Polar Equations and Graphs
180 Section 9. Polar Equations and Graphs In this section, we will be graphing polar equations on a polar grid. In the first few examples, we will write the polar equation in rectangular form to help identify
ANSWERSHEET (TOPIC = DIFFERENTIAL CALCULUS) COLLECTION #2. h 0 h h 0 h h 0 ( ) g k = g 0 + g 1 + g g 2009 =?
Teko Classes IITJEE/AIEEE Maths by SUHAAG SIR, Bhopal, Ph (0755) 3 00 000 www.tekoclasses.com ANSWERSHEET (TOPIC DIFFERENTIAL CALCULUS) COLLECTION # Question Type A.Single Correct Type Q. (A) Sol least
( y) Partial Differential Equations
Partial Dierential Equations Linear P.D.Es. contains no owers roducts o the deendent variables / an o its derivatives can occasionall be solved. Consider eamle ( ) a (sometimes written as a ) we can integrate
Econ 2110: Fall 2008 Suggested Solutions to Problem Set 8 questions or comments to Dan Fetter 1
Eon : Fall 8 Suggested Solutions to Problem Set 8 Email questions or omments to Dan Fetter Problem. Let X be a salar with density f(x, θ) (θx + θ) [ x ] with θ. (a) Find the most powerful level α test
= λ 1 1 e. = λ 1 =12. has the properties e 1. e 3,V(Y
Stat 50 Homework Solutions Spring 005. (a λ λ λ 44 (b trace( λ + λ + λ 0 (c V (e x e e λ e e λ e (λ e by definition, the eigenvector e has the properties e λ e and e e. (d λ e e + λ e e + λ e e 8 6 4 4
Tridiagonal matrices. Gérard MEURANT. October, 2008
Tridiagonal matrices Gérard MEURANT October, 2008 1 Similarity 2 Cholesy factorizations 3 Eigenvalues 4 Inverse Similarity Let α 1 ω 1 β 1 α 2 ω 2 T =......... β 2 α 1 ω 1 β 1 α and β i ω i, i = 1,...,
Τελικό Project Εργαστηρίου Ηλεκτρονικών Φίλτρων Χειµερινό Εξάµηνο
Τελικό Project Εργαστηρίου Ηλεκτρονικών Φίλτρων Χειµερινό Εξάµηνο 2015-16 Ονοµατεπώνυµο: ΚΑΡΑΜΗΤΡΟΣ ΘΕΜΙΣΤΟΚΛΗΣ ώστε τον Αριθµό Μητρώου σας εδώ ==> AM := 99999 Το φύλλο εργασίας αυτό δέχεται προδιαγραφές
SCITECH Volume 13, Issue 2 RESEARCH ORGANISATION Published online: March 29, 2018
Journal of rogressive Research in Mathematics(JRM) ISSN: 2395-028 SCITECH Volume 3, Issue 2 RESEARCH ORGANISATION ublished online: March 29, 208 Journal of rogressive Research in Mathematics www.scitecresearch.com/journals
Strain gauge and rosettes
Strain gauge and rosettes Introduction A strain gauge is a device which is used to measure strain (deformation) on an object subjected to forces. Strain can be measured using various types of devices classified
Reminders: linear functions
Reminders: linear functions Let U and V be vector spaces over the same field F. Definition A function f : U V is linear if for every u 1, u 2 U, f (u 1 + u 2 ) = f (u 1 ) + f (u 2 ), and for every u U
Multi-dimensional Central Limit Theorem
Mult-dmensonal Central Lmt heorem Outlne () () () t as () + () + + () () () Consder a sequence of ndependent random proceses t, t, dentcal to some ( t). Assume t 0. Defne the sum process t t t t () t tme
A Note on Intuitionistic Fuzzy. Equivalence Relation
International Mathematical Forum, 5, 2010, no. 67, 3301-3307 A Note on Intuitionistic Fuzzy Equivalence Relation D. K. Basnet Dept. of Mathematics, Assam University Silchar-788011, Assam, India dkbasnet@rediffmail.com
EE101: Resonance in RLC circuits
EE11: Resonance in RLC circuits M. B. Patil mbatil@ee.iitb.ac.in www.ee.iitb.ac.in/~sequel Deartment of Electrical Engineering Indian Institute of Technology Bombay I V R V L V C I = I m = R + jωl + 1/jωC
2. THEORY OF EQUATIONS. PREVIOUS EAMCET Bits.
EAMCET-. THEORY OF EQUATIONS PREVIOUS EAMCET Bits. Each of the roots of the equation x 6x + 6x 5= are increased by k so that the new transformed equation does not contain term. Then k =... - 4. - Sol.
Phys460.nb Solution for the t-dependent Schrodinger s equation How did we find the solution? (not required)
Phys460.nb 81 ψ n (t) is still the (same) eigenstate of H But for tdependent H. The answer is NO. 5.5.5. Solution for the tdependent Schrodinger s equation If we assume that at time t 0, the electron starts