Καθορισμός του μηχανισμού γένεσης

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "Καθορισμός του μηχανισμού γένεσης"

Transcript

1 Καθορισμός του μηχανισμού γένεσης Σκοπός Σκοπός της άσκησης αυτής είναι ο καθορισμός του μηχανισμού γένεσης ενός σεισμού με βάση τις πρώτες αποκλίσεις των επιμήκων κυμάτων όπως αυτές καταγράφονται στους σεισμολογικούς σταθμούς. Με τον τρόπο αυτό παρέχεται η δυνατότητα του προσδιορισμού των χαρακτηριστικών της διάρρηξης (είδος διάρρηξης, γεωμετρικά χαρακτηριστικά του επιπέδου του ρήγματος, καθορισμός των αξόνων μέγιστης συμπίεσης και μέγιστου εφελκυσμού), πληροφορίες οι οποίες είναι απαραίτητες για τη γνώση του πεδίου των τάσεων σε μία περιοχή και οι οποίες είναι πολλές φορές αδύνατον να αποκτηθούν με άλλο τρόπο. Δεδομένα παρατήρησης Για τον καθορισμό του μηχανισμού γένεσης είναι απαραίτητες οι ακόλουθες πληροφορίες: 1. Καταγραφή των πρώτων αποκλίσεων των επιμήκων κυμάτων σε αρκετούς σεισμολογικούς σταθμούς 2. Υπολογισμός των επικεντρικών αποστάσεων και των αζιμουθίων ως προς την εστία των σεισμολογικών σταθμών που παρέχουν την παραπάνω πληροφορία 3. Υπολογισμός των γωνιών αναχώρησης για τις ακτίνες των επιμήκων κυμάτων τα οποία διαδίδονται από την εστία προς το σταθμό. Αυτό απαιτεί τη γνώση του εστιακού βάθους και τις ταχύτητες διάδοσης των επιμήκων κυμάτων. Οι τελευταίες πληροφορίες βασίζονται σε γνωστά μοντέλα του φλοιού της Γης και δίνονται είτε γραφικά (Σχήμα 1) είτε υπό μορφή πίνακα. Δείτε τον πίνακα που ακολουθεί όπου οι γωνίες αναχώρησης δίνονται σε συνάρτηση με την επικεντρική απόσταση. 1

2 Σχ. 1. Μεταβολή της γωνίας αναχώρησης, i, της σεισμικής ακτίνας από την εστία του σεισμού σε συνάρτηση με την επικεντρική απόσταση, Δ, για εστιακό βάθος ίσο με 10 km και ταχύτητα επιμήκων κυμάτων στην εστία του σεισμού ίση με 6.8 km/sec. Πίνακας 1. Τιμές της γωνίας αναχώρησης σε συνάρτηση με την επικεντρική απόσταση. Γνωρίζοντας το αζιμούθιο του σταθμού και την αντίστοιχη γωνία αναχώρησης, το επόμενο βήμα είναι να τοποθετήσουμε τη θέση του συγκεκριμένου σταθμού πάνω σε δίκτυο στερεογραφικής προβολής. Χρησιμοποιούμε για το σκοπό αυτό δίκτυο προβολής ίσων εμβαδών (δίκτυο Lambert Schmidt). Θεωρούμε ένα σύνολο σταθμών, ο καθένας από τους οποίους έχει ένα αζιμούθιο και μία γωνία αναχώρησης η οποία αντιστοιχεί στην ακτίνα που αναδύεται σε αυτόν. Εφόσον οι γωνίες αναχώρησης μετρώνται από την 2

3 κατακόρυφη, η αντίστοιχη κλίση είναι απλά 90 ο i. Για να τοποθετήσουμε ένα σταθμό ο οποίος έχει αζιμούθιο 40 ο και η αντίστοιχη γωνία αναχώρησης είναι 60 ο, στρέφουμε το δίκτυο ώστε το σημείο της περιφέρειας που αντιστοιχεί στο αζιμούθιο να τοποθετηθεί στον ισημερινό και μετράμε από την περιφέρεια προς το κέντρο του κύκλου 90 ο 60 ο = 30 ο. Έχουμε έτσι ουσιαστικά τοποθετήσει ένα σημείο με κλίση 30 ο. Εναλλακτικά, μετράμε από το κέντρο προς την περιφέρεια 60 ο (Σχήμα 2). Μετά την εύρεση της θέσης του συγκεκριμένου σταθμού επαναφέρουμε το δίκτυο σε θέση Β Ν, και σημειώνουμε στη θέση αυτή το σύμβολο όταν η πρώτη απόκλιση είναι συμπίεση (C, compression) και το σύμβολο όταν η πρώτη απόκλιση είναι αραίωση (D, dilatation). Επαναλαμβάνουμε την ίδια διαδικασία έως ότου τοποθετηθούν όλοι οι σταθμοί με το κατάλληλο σύμβολο. 3

4 Σχ. 2. Απεικόνιση σε δίκτυο στερεογραφικής προβολής σεισμολογικού σταθμού με αζιμούθιο 40 ο ως προς το επίκεντρο του σεισμού και γωνία αναχώρησης 60 ο. Εκτέλεση της άσκησης Βήμα 1 Δίνεται πίνακας σεισμολογικών σταθμών οι οποίοι κατέγραψαν την πρώτη κίνηση του σεισμού της Θεσσαλονίκης της 20 ης Ιουνίου 1978 (Μ6.5), οι επικεντρικές αποστάσεις, Δ, τα αζιμούθιά τους, Α, ως προς το επίκεντρο και οι πρώτες αποκλίσεις (C ή D) των επιμήκων, Ρ, κυμάτων. Με βάση το σχήμα 1 ή τον πίνακα 1, βρείτε τις γωνίες αναχώρησης και συμπληρώστε τον παρακάτω πίνακα. Σταθμός Επικεντρική Αζιμούθιο Γωνία Πρώτη Απόσταση Αναχώρησης Απόκλιση ΑΤΗ o 60 o C TIR o 40 o D SAR o 57 o D VIE o 54 o C FIR o 53 o D 4

5 Βήμα 2 Τοποθετείστε ένα διαφανές χαρτί πάνω σε δίκτυο στερεογραφικής προβολής Lambert Schmidt. Σημειώστε πάνω στο χαρτί το κέντρο και την περίμετρο, καθώς και τις θέσεις των Β, Α, Ν και Δ. Βήμα 3 Σημειώστε το αζιμούθιο του πρώτου σταθμού στην περίμετρο του διαφανούς χαρτιού και στρέψτε το δίκτυο ώστε το σημείο αυτό να συμπέσει με το σημείο με αζιμούθιο 0, 90, 180 ή 270. Μετρείστε τη γωνία αναχώρησης από το κέντρο του δικτύου για το συγκεκριμένο αζιμούθιο. Το τελευταίο σημείο δίνει την τομή της συγκεκριμένης ακτίνας του επιμήκους κύματος με το κάτω ημισφαίριο στερεογραφικής προβολής. Σημειώστε στο σημείο αυτό τη θέση του συγκεκριμένου σταθμού με το κατάλληλο σύμβολο ( για συμπίεση (C) και για αραίωση (D). Μπορείτε να χρησιμοποιήσετε και διαφορετικά χρώματα για καλύτερη διάκριση. Σημείωση: Η κατάλληλη απόσταση, d, της θέσης κάθε σταθμού από το κέντρο του δικτύου είναι: δικτύου. d = 2 Rsin i όπου R είναι η ακτίνα του συγκεκριμένου 2 Βήμα 4 Περιστρέφοντας το δίκτυο πάνω στα χαρτογραφημένα δεδομένα προσπαθείστε να βρείτε ένα μέγιστο κύκλο (μεσημβρινό) ο οποίος να διαχωρίζει με τον καλύτερο δυνατό τρόπο τα τεταρτημόρια των συμπιέσεων και αραιώσεων (Επίπεδο 1). Αυτός ο μέγιστος κύκλος αντιπροσωπεύει το ίχνος τομής του πιθανού επιπέδου του ρήγματος και του βοηθητικού επιπέδου με το κάτω ημισφαίριο της εστιακής σφαίρας. Σημείωση 1: Όλοι οι μεσημβρινοί είναι μέγιστοι κύκλοι (γραμμές που ενώνουν Β και Ν). Σημείωση 2: Διαφορετικές πρώτες αποκλίσεις κοντά η μία στην άλλη πιθανόν να οφείλονται στην μη ευκρινή πρώτη απόκλιση λόγω του μικρού πλάτους της πρώτης απόκλισης. Αυτό συμβαίνει κοντά στα δύο ορικά επίπεδα (ρήγματος και βοηθητικού) λόγω της μετάβασης από το ένα τεταρτημόριο στο άλλο. Από 5

6 την άλλη μεριά αυτή η παρατήρηση ενισχύει τον καθορισμό των επιπέδων αυτών και οδηγούμαστε έτσι στην καλύτερη λύση. Βήμα 5 Διατηρώντας το επίπεδο 1 σε θέση Β Ν, μετρείστε σε απόσταση 90 o πάνω στον ισημερινό και σημειώστε τη θέση του πόλου του επιπέδου αυτού (Πόλος 1). Όλοι οι μέγιστοι κύκλοι που διέρχονται από τον σημείο αυτό είναι κάθετοι στο πρώτο επίπεδο. Εφόσον το δεύτερο πιθανό επίπεδο (Επίπεδο 2) πρέπει να είναι κάθετο στο πρώτο, πρέπει να διέρχεται από τον πόλο 1. Βρείτε πάλι το κατάλληλο επίπεδο που διαχωρίζει αραιώσεις από συμπιέσεις. Βήμα 6 Βρείτε τον πόλο του δεύτερου επιπέδου και χαράξτε το επίπεδο δράσης (Επίπεδο 3, καλύτερα με διακεκομμένη γραμμή). Το τελευταίο αυτό επίπεδο είναι κάθετο στα δύο πρώτα, δηλαδή είναι ένας μέγιστος κύκλος ο οποίος διέρχεται από τους πόλους των δύο πρώτων επιπέδων. Βήμα 7 Σημειώστε τις θέσεις των αξόνων μέγιστης συμπίεσης (Ρ) και μέγιστου εφελκυσμού (Τ) πάνω στο επίπεδο δράσης και δείξτε τη διεύθυνσή τους προς (Ρ) και από (Τ) το κέντρο της εστιακής σφαίρας. Οι θέσεις τους στο επίπεδο δράσης βρίσκονται στο κέντρο των αντίστοιχων τεταρτημορίων συμπιέσεων και εφελκυσμού, δηλαδή 45 από τα σημεία τομής των δύο πρώτων επιπέδων με το επίπεδο δράσης. Σημείωση: Όλες οι γωνίες στο δίκτυο προβολής πρέπει να μετρούνται πάνω σε μέγιστους κύκλους! Βήμα 8 Σημειώστε το διάνυσμα ολίσθησης, ενώνοντας το σημείο τομής του επιπέδου του ρήγματος με το βοηθητικό επίπεδο, με το κέντρο του δικτύου. Εάν το κέντρο βρίσκεται σε τεταρτημόριο εφελκυσμού τότε το διάνυσμα ολίσθησης κατευθύνεται προς το κέντρο. Εάν το κέντρο του δικτύου βρίσκεται σε τεταρτημόριο συμπιέσεων τότε το διάνυσμα ολίσθησης έχει την αντίθετη κατεύθυνση. Το διάνυσμα ολίσθησης δείχνει τη φορά ολίσθησης στο πάνω τέμαχος του ρήγματος. 6

7 Βήμα 9 Βρείτε το αζιμούθιο (γωνία παράταξης) των δύο πρώτων επιπέδων. Οι γωνίες αυτές μετρώνται δεξιόστροφα από το Βορρά μέχρι το σημείο όπου το συγκεκριμένο επίπεδο τέμνει την περιφέρεια κλίνοντας προς τα δεξιά. Βήμα 10 Μετρείστε τις γωνίες κλίσης των δύο πρώτων επιπέδων τοποθετώντας τα σε θέση μέγιστου κύκλου. Η γωνία αυτή είναι η διαφορά από την περιφέρεια μέχρι το ίχνος του επιπέδου (μέτρηση γωνίας πάνω στον ισημερινό). Βήμα 11 Καθορίστε τη διεύθυνση της ολίσθησης (δηλαδή την κίνηση) πάνω στα δύο πρώτα επίπεδα, τα οποία είναι πιθανά επίπεδα ρήγματος. Επιτυγχάνεται χαράζοντας ένα διάνυσμα από το κέντρο του δικτύου προς τους πόλους 1 και 2 (ή αντίθετα από τους πόλους προς το κέντρο, όπως αναφέρθηκε παραπάνω). Το διάνυσμα από το κέντρο προς τον πόλο 1 (2) δείχνει τη διεύθυνση ολίσθησης πάνω στο επίπεδο 2 (1). Η γωνία ολίσθησης είναι θετική όταν το κέντρο του δικτύου βρίσκεται μέσα σε συμπιέσεις (δηλαδή ανάστροφη διάρρηξη) και αρνητική όταν το κέντρο του δικτύου βρίσκεται μέσα σε αραιώσεις (δηλαδή κανονική διάρρηξη). Στην πρώτη περίπτωση (0 ο έως 180 ) η γωνία ολίσθησης μετριέται πάνω στο επίπεδο τοποθετημένο σε θέση μεσημβρινού από το Νότο προς το Βορά. Στην πρώτη περίπτωση ( 180 έως 0 ο ) η γωνία ολίσθησης μετριέται πάνω στο επίπεδο από το Βορρά προς το Νότο. Σημείωση: Για τη διάκριση του είδους της διάρρηξης σύμφωνα με τη γωνία ολίσθησης δείτε τον πίνακα που ακολουθεί. Είδος λ διάρρηξης Δεξιόστροφη Δεξιόστροφη με κανονική συνιστώσα κλίσης Κλίσης Κανονική Κλίσης Κανονική με αριστερόστροφη συνιστώσα Αριστερόστροφη Κλίσης Ανάστροφη με αριστερόστροφη συνιστώσα Κλίσης Ανάστροφη Δεξιόστροφη με ανάστροφη συνιστώσα κλίσης Δεξιόστροφη Βήμα 12 Το αζιμούθιο του άξονα μέγιστης συμπίεσης και μέγιστου εφελκυσμού, αντίστοιχα, είναι ίσο με το αζιμούθιο της ακτίνας που διέρχεται από τα σημεία όπου προβάλλονται οι άξονες αυτοί. Η κλίση τους είναι η αντίστοιχη γωνία κλίσης αυτών των διανυσμάτων (μετριέται πάνω στον ισημερινό από την περιφέρεια προς το κέντρο). 7

8 Βήμα 13 Υπολογίστε τις παραμέτρους του επιπέδου του ρήγματος και του βοηθητικού επιπέδου, καθώς και των αξόνων τάσης και τοποθετείστε τα αποτελέσματα στον παρακάτω πίνακα. Διεύθυνση Κλίση Γωνία Ολίσθησης Επίπεδο 1 Επίπεδο 2 Αζιμούθιο Κλίση Άξονας συμπίεσης Άξονας εφελκυσμού Σημείωση: Οι γωνίες παίρνουν τιμές στα παρακάτω διαστήματα: 0 < αζιμούθιο < < κλίση < < γωνία ολίσθησης < 180 Βήμα 14 Η ερώτηση για το ποιό από τα δύο επίπεδα είναι το επίπεδο του ρήγματος και ποιο το βοηθητικό επίπεδο, δεν μπορεί να απαντηθεί από τη λύση του μηχανισμού γένεσης μόνο. Απαιτούνται επί πλέον πληροφορίες, όπως η χωρική κατανομή των μετασεισμών, το σεισμοτεκτονικό καθεστώς της περιοχής όπου έγινε ο σεισμός ή οποιαδήποτε άλλη πληροφορία όπως η επιφανειακή εμφάνιση του ρήγματος. Δεδομένου ότι γνωρίζουμε ότι το ρήγμα το οποίο προκάλεσε το σεισμό είναι αυτό που κλίνει προς το Βορρά, μπορούμε να απαντήσουμε στις παρακάτω ερωτήσεις: a. Αποφασίστε ποιο είναι το επίπεδο του ρήγματος (Επίπεδο 1 ή Επίπεδο 2)? b. Ποιος είναι ο τύπος της διάρρηξης? c. Ποια είναι η διεύθυνση ολίσθησης? d. Είναι η λύση συμβατή με τη διεύθυνση των ενεργών ρηγμάτων στην περιοχή και τον προσανατολισμό του επικρατούντος πεδίου των τάσεων? 8

ΣΤΕΡΕΟΓΡΑΦΙΚΗ ΑΠΕΙΚΟΝΙΣΗ ΤΟΥ ΕΠΙΠΕΔΟΥ ΤΟΥ ΡΗΓΜΑΤΟΣ ΚΑΙ ΤΩΝ ΚΙΝΗΜΑΤΙΚΩΝ ΑΞΟΝΩΝ

ΣΤΕΡΕΟΓΡΑΦΙΚΗ ΑΠΕΙΚΟΝΙΣΗ ΤΟΥ ΕΠΙΠΕΔΟΥ ΤΟΥ ΡΗΓΜΑΤΟΣ ΚΑΙ ΤΩΝ ΚΙΝΗΜΑΤΙΚΩΝ ΑΞΟΝΩΝ ΣΤΕΡΕΟΓΡΑΦΙΚΗ ΑΠΕΙΚΟΝΙΣΗ ΤΟΥ ΕΠΙΠΕΔΟΥ ΤΟΥ ΡΗΓΜΑΤΟΣ ΚΑΙ ΤΩΝ ΚΙΝΗΜΑΤΙΚΩΝ ΑΞΟΝΩΝ Σκοπός Σκοπός της άσκησης αυτής είναι η στερεογραφική απεικόνιση του επιπέδου του ρήγματος, καθώς και του βοηθητικού επιπέδου

Διαβάστε περισσότερα

ΜΕΘΟΔΟΙ ΚΑΘΟΡΙΣΜΟΥ ΤΟΥ ΜΗΧΑΝΙΣΜΟΥ ΓΕΝΕΣΗΣ ΤΩΝ ΣΕΙΣΜΩΝ

ΜΕΘΟΔΟΙ ΚΑΘΟΡΙΣΜΟΥ ΤΟΥ ΜΗΧΑΝΙΣΜΟΥ ΓΕΝΕΣΗΣ ΤΩΝ ΣΕΙΣΜΩΝ ΜΕΘΟΔΟΙ ΚΑΘΟΡΙΣΜΟΥ ΤΟΥ ΜΗΧΑΝΙΣΜΟΥ ΓΕΝΕΣΗΣ ΤΩΝ ΣΕΙΣΜΩΝ Η μέθοδος των πρώτων αποκλίσεων των επιμήκων κυμάτων sin i = υ V υ : ταχύτητα του κύματος στην εστία V: μέγιστη αποκτηθείσα ταχύτητα Μέθοδος της προβολής

Διαβάστε περισσότερα

ΚΑΘΟΡΙΣΜΟΣ ΤΟΥ ΠΕΔΙΟΥ ΤΩΝ ΤΑΣΕΩΝ

ΚΑΘΟΡΙΣΜΟΣ ΤΟΥ ΠΕΔΙΟΥ ΤΩΝ ΤΑΣΕΩΝ ΚΑΘΟΡΙΣΜΟΣ ΤΟΥ ΠΕΔΙΟΥ ΤΩΝ ΤΑΣΕΩΝ Εισαγωγή: Η σεισμικότητα μιας περιοχής χρησιμοποιείται συχνά για την εξαγωγή συμπερασμάτων σχετικών με τις τεκτονικές διαδικασίες που λαμβάνουν χώρα εκεί. Από τα τέλη του

Διαβάστε περισσότερα

Στην στερεογραφική προβολή δεν μπορούν να μετρηθούν αποστάσεις αλλά μόνο γωνιώδεις σχέσεις.

Στην στερεογραφική προβολή δεν μπορούν να μετρηθούν αποστάσεις αλλά μόνο γωνιώδεις σχέσεις. ΔΙΚΤΥΑ SCHMIDT Στερεογραφική προβολή Η στερεογραφική προβολή είναι μια μέθοδος που προσφέρει το πλεονέκτημα της ταχύτατης λύσης προβλημάτων που λύνονται πολύπλοκα με άλλες μεθόδους. Με την στερεογραφική

Διαβάστε περισσότερα

Μέθοδος των γραμμών πόλωσης των εγκαρσίων κυμάτων

Μέθοδος των γραμμών πόλωσης των εγκαρσίων κυμάτων Μέθοδος των γραμμών πόλωσης των εγκαρσίων κυμάτων Πρώτες αποκλίσεις των SH και SV κυμάτων καθορισμός των ορικών επιφανειών u V =0 και u H =0 Μειονέκτημα : η ανάλυση της πρώτης απόκλισης δεν είναι εύκολη

Διαβάστε περισσότερα

Μάθημα 6 ο. Σεισμομετρία. Γεωγραφικές Συντεταγμένες του Επικέντρου

Μάθημα 6 ο. Σεισμομετρία. Γεωγραφικές Συντεταγμένες του Επικέντρου Μάθημα 6 ο Σεισμομετρία Χρόνος Γένεσης Σεισμού Γεωγραφικές Συντεταγμένες του Επικέντρου Εστιακό Βάθος Μάθημα 6 ο Σεισμομετρία Στο μάθημα αυτό περιγράφονται οι τρόποι μέτρησης των φυσικών μεγεθών που μετριούνται

Διαβάστε περισσότερα

Κεφάλαιο 6 ΣΕΙΣΜΟΜΕΤΡΙΑ

Κεφάλαιο 6 ΣΕΙΣΜΟΜΕΤΡΙΑ Κεφάλαιο 6 ΣΕΙΣΜΟΜΕΤΡΙΑ Στην σεισμολογία μετρούμε πάντα μήκος πάνω στα σεισμογράμματα. -Κατά την διεύθυνση του άξονα Χ μετρούμε χρόνο ή περίοδο -Κατά την διεύθυνση του άξονα Υ μετρούμε μετάθεση ή ταχύτητα

Διαβάστε περισσότερα

ΑΣΚΗΣΕΙΣ 11 η -12 η ΤΕΧΝΙΚΗ ΓΕΩΛΟΓΙΑ Ι

ΑΣΚΗΣΕΙΣ 11 η -12 η ΤΕΧΝΙΚΗ ΓΕΩΛΟΓΙΑ Ι ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΜΗΧΑΝΙΚΩΝ ΜΕΤΑΛΛΕΙΩΝ MΕΤΑΛΛΟΥΡΓΩΝ ΤΟΜΕΑΣ ΓΕΩΛΟΓΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΕΡΓΑΣΤΗΡΙΟ ΤΕΧΝ. ΓΕΩΛΟΓΙΑΣ & ΥΔΡΟΓΕΩΛΟΓΙΑΣ ΗΡΩΩΝ ΠΟΛΥΤΕΧΝΕΙΟΥ 9, 157 80 ΖΩΓΡΑΦΟΥ, ΑΘΗΝΑ NATIONAL TECHNICAL

Διαβάστε περισσότερα

ΑΣΚΗΣΕΙΣ ΔΙΚΤΥΟ SCHMIDT ΚΑΙ ΟΙ ΧΡΗΣΕΙΣ ΤΟΥ ΣΤΗ ΓΕΩΤΕΧΝΙΚΗ ΜΗΧΑΝΙΚΗ ΔΗΜΗΤΡΙΟΣ Ε. ΡΟΖΟΣ ΕΠ. ΚΑΘ. ΕΜΠ

ΑΣΚΗΣΕΙΣ ΔΙΚΤΥΟ SCHMIDT ΚΑΙ ΟΙ ΧΡΗΣΕΙΣ ΤΟΥ ΣΤΗ ΓΕΩΤΕΧΝΙΚΗ ΜΗΧΑΝΙΚΗ ΔΗΜΗΤΡΙΟΣ Ε. ΡΟΖΟΣ ΕΠ. ΚΑΘ. ΕΜΠ ΑΣΚΗΣΕΙΣ ΔΙΚΤΥΟ SCHMIDT ΚΑΙ ΟΙ ΧΡΗΣΕΙΣ ΤΟΥ ΣΤΗ ΓΕΩΤΕΧΝΙΚΗ ΜΗΧΑΝΙΚΗ ΔΗΜΗΤΡΙΟΣ Ε. ΡΟΖΟΣ ΕΠ. ΚΑΘ. ΕΜΠ 0 Απεικόνιση των γεωμετρικών στοιχείων προσανατολισμού ασυνεχειών. Η γεωλογική πυξίδα. Στη μικρή εικόνα

Διαβάστε περισσότερα

ΤΟ ΣΧΗΜΑ ΚΑΙ ΤΟ ΜΕΓΕΘΟΣ ΤΗΣ ΓΗΣ

ΤΟ ΣΧΗΜΑ ΚΑΙ ΤΟ ΜΕΓΕΘΟΣ ΤΗΣ ΓΗΣ ΤΟ ΣΧΗΜΑ ΚΑΙ ΤΟ ΜΕΓΕΘΟΣ ΤΗΣ ΓΗΣ Χαρτογραφία Ι 1 Το σχήμα και το μέγεθος της Γης [Ι] Σφαιρική Γη Πυθαγόρεια & Αριστοτέλεια αντίληψη παρατηρήσεις φυσικών φαινομένων Ομαλότητα γεωμετρικού σχήματος (Διάμετρος

Διαβάστε περισσότερα

Το Πρώτο Δίκτυο Σεισμολογικών Σταθμών στη Σελήνη. Ιδιότητες των Σεισμικών Αναγραφών στη Σελήνη. Μηχανισμός και Αίτια Γένεσης των Σεισμών της Σελήνης

Το Πρώτο Δίκτυο Σεισμολογικών Σταθμών στη Σελήνη. Ιδιότητες των Σεισμικών Αναγραφών στη Σελήνη. Μηχανισμός και Αίτια Γένεσης των Σεισμών της Σελήνης Μάθημα 12ο Σεισμολογία της Σελήνης Το Πρώτο Δίκτυο Σεισμολογικών Σταθμών στη Σελήνη Ιδιότητες των Σεισμικών Αναγραφών στη Σελήνη Μέθοδοι Διάκρισης των Δονήσεων της Σελήνης Σεισμικότητα της Σελήνης Μηχανισμός

Διαβάστε περισσότερα

Σεισμικά κύματα και διάδοση στο εσωτερικό της Γης. Κεφ.6, 9

Σεισμικά κύματα και διάδοση στο εσωτερικό της Γης. Κεφ.6, 9 Σεισμικά κύματα και διάδοση στο εσωτερικό της Γης Κεφ.6, 9 Τι ξέρουμε για τα P, S και τα επιφανειακά κύματα Κύματα Χώρου P Συμπίεσης- Εφελκυσμού 6 8 km/s Παράλληλα στη διεύθυνση μετάδοσης S Διάτμησης -

Διαβάστε περισσότερα

Κλίση ενός στρώματος είναι η διεύθυνση κλίσης και η γωνία κλίσης με το οριζόντιο επίπεδο.

Κλίση ενός στρώματος είναι η διεύθυνση κλίσης και η γωνία κλίσης με το οριζόντιο επίπεδο. ΓΕΩΛΟΓΙΚΗ ΤΟΜΗ ΚΕΚΛΙΜΕΝΑ ΣΤΡΩΜΜΑΤΑ 6.1 ΚΛΙΣΗ ΣΤΡΩΜΑΤΟΣ Κλίση ενός στρώματος είναι η διεύθυνση κλίσης και η γωνία κλίσης με το οριζόντιο επίπεδο. Πραγματική κλίση στρώματος Η διεύθυνση μέγιστης κλίσης,

Διαβάστε περισσότερα

Κεφάλαιο 5 ΣΕΙΣΜΙΚΑ ΚΥΜΑΤΑ ΚΑΙ ΔΙΑΔΟΣΗ ΑΥΤΩΝ ΜΕΣΑ ΣΤΗ ΓΗ. Για την μελέτη της διάδοσης των σεισμικών κυμάτων μέσα στη Γη γίνονται 3 υποθέσεις.

Κεφάλαιο 5 ΣΕΙΣΜΙΚΑ ΚΥΜΑΤΑ ΚΑΙ ΔΙΑΔΟΣΗ ΑΥΤΩΝ ΜΕΣΑ ΣΤΗ ΓΗ. Για την μελέτη της διάδοσης των σεισμικών κυμάτων μέσα στη Γη γίνονται 3 υποθέσεις. Κεφάλαιο 5 ΣΕΙΣΜΙΚΑ ΚΥΜΑΤΑ ΚΑΙ ΔΙΑΔΟΣΗ ΑΥΤΩΝ ΜΕΣΑ ΣΤΗ ΓΗ Για την μελέτη της διάδοσης των σεισμικών κυμάτων μέσα στη Γη γίνονται 3 υποθέσεις. 1) Τα πετρώματα μέσα από τα οποία διαδίδονται τα κύματα έχουν

Διαβάστε περισσότερα

ΗλιακήΓεωµετρία. Γιάννης Κατσίγιαννης

ΗλιακήΓεωµετρία. Γιάννης Κατσίγιαννης ΗλιακήΓεωµετρία Γιάννης Κατσίγιαννης ΗηλιακήενέργειαστηΓη Φασµατικήκατανοµήτηςηλιακής ακτινοβολίας ΗκίνησητηςΓηςγύρωαπότονήλιο ΗκίνησητηςΓηςγύρωαπότονήλιοµπορεί να αναλυθεί σε δύο κύριες συνιστώσες: Περιφορά

Διαβάστε περισσότερα

Κεφάλαιο 9 ΤΡΟΠΟΙ ΚΑΙ ΑΙΤΙΑ ΓΕΝΕΣΗΣ ΣΕΙΣΜΩΝ

Κεφάλαιο 9 ΤΡΟΠΟΙ ΚΑΙ ΑΙΤΙΑ ΓΕΝΕΣΗΣ ΣΕΙΣΜΩΝ Κεφάλαιο 9 ΤΡΟΠΟΙ ΚΑΙ ΑΙΤΙΑ ΓΕΝΕΣΗΣ ΣΕΙΣΜΩΝ Οι δυνάμεις που ασκούνται στη πάνω στη Γη εξαιτίας των φυσικών αιτίων που βρίσκονται στο εσωτερικό της Γης είναι τεράστιες. Σαν αποτέλεσμα των δυνάμεων αυτών

Διαβάστε περισσότερα

Κεφάλαιο 3 TΑΣΗ ΚΑΙ ΠΑΡΑΜΟΡΦΩΣΗ

Κεφάλαιο 3 TΑΣΗ ΚΑΙ ΠΑΡΑΜΟΡΦΩΣΗ Κεφάλαιο 3 TΑΣΗ ΚΑΙ ΠΑΡΑΜΟΡΦΩΣΗ ΚΑΤΑ ΤΗΝ ΔΙΑΔΟΣΗ ΤΩΝ ΣΕΙΣΜΙΚΩΝ ΚΥΜΑΤΩΝ ΜΕΣΑ ΣΤΗ ΓΗ ΔΕΧΟΜΑΣΤΕ: ΟΤΙ ΤΟ ΥΛΙΚΟ ΔΙΑΔΟΣΗΣ ΕΧΕΙ ΑΠΟΛΥΤΑ ΕΛΑΣΤΙΚΕΣ ΙΔΙΟΤΗΤΕΣ ΔΕΧΟΜΑΣΤΕ ΜΕ ΑΛΛΑ ΛΟΓΙΑ ΟΤΙ ΤΑ ΣΕΙΣΜΙΚΑ ΚΥΜΑΤΑ ΕΙΝΑΙ

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ

ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ ΘΕΜΑ 1 ο Δίνεται η ευθεία (ε) με εξίσωση: 2x y1 0 καθώς και το σημείο Μ(3,0). α. Να βρείτε την εξίσωση μιας ευθείας (η) που περνά από το Μ και είναι κάθετη στην ευθεία (ε). β. Να

Διαβάστε περισσότερα

Κεφάλαιο 7 ΜΕΓΕΘΟΣ ΚΑΙ ΕΝΕΡΓΕΙΑ ΣΕΙΣΜΩΝ

Κεφάλαιο 7 ΜΕΓΕΘΟΣ ΚΑΙ ΕΝΕΡΓΕΙΑ ΣΕΙΣΜΩΝ Κεφάλαιο 7 ΜΕΓΕΘΟΣ ΚΑΙ ΕΝΕΡΓΕΙΑ ΣΕΙΣΜΩΝ Κατά την γένεση ενός σεισμού υπάρχει έκλυση ενέργειας λόγω παραμόρφωσης και μετατροπή της σε κυματική ενέργεια που είναι τα σεισμικά κύματα. ΜΕΓΕΘΟΣ Μ, ενός σεισμού

Διαβάστε περισσότερα

Μάθηµα 4 ο : ορυφορικές τροχιές

Μάθηµα 4 ο : ορυφορικές τροχιές Μάθηµα 4 ο : ορυφορικές τροχιές Στόχοι: Στο τέλος αυτού του µαθήµατος ο σπουδαστής θα γνωρίζει: Tις σηµαντικότερες κατηγορίες δορυφορικών τροχιών Τους παράγοντες που οδηγούν στην επιλογή συγκεκριµένης

Διαβάστε περισσότερα

Μέτρηση της επιτάχυνσης της βαρύτητας με τη βοήθεια του απλού εκκρεμούς.

Μέτρηση της επιτάχυνσης της βαρύτητας με τη βοήθεια του απλού εκκρεμούς. Μ2 Μέτρηση της επιτάχυνσης της βαρύτητας με τη βοήθεια του απλού εκκρεμούς. 1 Σκοπός Η εργαστηριακή αυτή άσκηση αποσκοπεί στη μέτρηση της επιτάχυνσης της βαρύτητας σε ένα τόπο. Αυτή η μέτρηση επιτυγχάνεται

Διαβάστε περισσότερα

ΣΕΙΡΑ: 3 Κύματα: αρμονικό έως στάσιμο, Στερεό: κινηματική έως διατήρηση στροφορμής

ΣΕΙΡΑ: 3 Κύματα: αρμονικό έως στάσιμο, Στερεό: κινηματική έως διατήρηση στροφορμής ΜΑΘΗΜΑ /ΤΑΞΗ: Φυσική Κατεύθυνσης Γ Λυκείου ΟΝΟΜΑΤΕΠΩΝΥMΟ: ΗΜΕΡΟΜΗΝΙΑ: 16/03/014 ΣΕΙΡΑ: 3 ΕΞΕΤΑΣΤΕΑ ΥΛΗ: Κύματα: αρμονικό έως στάσιμο, Στερεό: κινηματική έως διατήρηση στροφορμής ΘΕΜΑ Α Να γράψετε στο τετράδιό

Διαβάστε περισσότερα

ΘΕΩΡΙΑ ΜΗΧΑΝΙΚΩΝ ΤΑΛΑΝΤΩΣΕΩΝ ΚΑΙ ΕΛΑΣΤΙΚΑ ΚΥΜΑΤΑ

ΘΕΩΡΙΑ ΜΗΧΑΝΙΚΩΝ ΤΑΛΑΝΤΩΣΕΩΝ ΚΑΙ ΕΛΑΣΤΙΚΑ ΚΥΜΑΤΑ ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΧΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ ΘΕΩΡΙΑ ΜΗΧΑΝΙΚΩΝ ΤΑΛΑΝΤΩΣΕΩΝ ΚΑΙ ΕΛΑΣΤΙΚΑ ΚΥΜΑΤΑ Ενότητα 4: Ελαστικά Κύματα Σκορδύλης Εμμανουήλ Καθηγητής Σεισμολογίας, Τομέας Γεωφυσικής,

Διαβάστε περισσότερα

Ερµηνεία Τοπογραφικού Υποβάθρου στη Σύνταξη και Χρήση Γεωλoγικών Χαρτών

Ερµηνεία Τοπογραφικού Υποβάθρου στη Σύνταξη και Χρήση Γεωλoγικών Χαρτών ΤΜΗΜΑ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΤΟΜΕΑΣ ΓΕΩΤΕΧΝΙΚΗΣ ΜΗΧΑΝΙΚΗΣ ΕΡΓΑΣΤΗΡΙΟ ΤΕΧΝΙΚΗΣ ΓΕΩΛΟΓΙΑΣ Επιµέλεια: ηµάδη Αγόρω Ερµηνεία Τοπογραφικού Υποβάθρου στη Σύνταξη και Χρήση Γεωλoγικών Χαρτών ΙΣΟΫΨΕΙΣ ΚΑΜΠΥΛΕΣ: είναι

Διαβάστε περισσότερα

ΣΕΙΣΜΟΣ ΛΕΥΚΑΔΑΣ 17/11/2015

ΣΕΙΣΜΟΣ ΛΕΥΚΑΔΑΣ 17/11/2015 ΣΕΙΣΜΟΣ ΛΕΥΚΑΔΑΣ 17/11/2015 Στις 07:10 UTC (09:10 ώρα Ελλάδας) της 17/11/2015 εκδηλώθηκε ισχυρή σεισμική δόνηση μεγέθους M W =6.4 βαθμών Νοτιοδυτικά της πόλης της Λευκάδας. Την δόνηση ακολούθησε μετασεισμική

Διαβάστε περισσότερα

ΣΕΙΣΜΟΣ ΙΩΑΝΝΙΝΩΝ 15/10/2016

ΣΕΙΣΜΟΣ ΙΩΑΝΝΙΝΩΝ 15/10/2016 ΣΕΙΣΜΟΣ ΙΩΑΝΝΙΝΩΝ 15/10/2016 Στις 20:14 UTC (23:14 ώρα Ελλάδας) της 15/10/2016 εκδηλώθηκε ισχυρή σεισμική δόνηση μεγέθους M W =5.3 βαθμών Βορειοδυτικά της πόλης των Ιωαννίνων. Την δόνηση ακολούθησε μετασεισμική

Διαβάστε περισσότερα

Στοιχεία και εµβαδόν πρίσµατος και κυλίνδρου. ρ. Σ.Πατσιοµίτου

Στοιχεία και εµβαδόν πρίσµατος και κυλίνδρου. ρ. Σ.Πατσιοµίτου Στοιχεία και εµβαδόν πρίσµατος και κυλίνδρου ρ. Σ.Πατσιοµίτου Το ορθό πρίσµα και τα στοιχεία του Στη Στερεοµετρία τα παρακάτω στερεά σώµατα ονοµάζονται ορθά πρίσµατα. Οι δύο παράλληλες έδρες του λέγονταιβάσεις

Διαβάστε περισσότερα

ΘΕΩΡΙΑ Β ΓΥΜΝΑΣΙΟΥ. Μια παράσταση που περιέχει πράξεις με μεταβλητές (γράμματα) και αριθμούς καλείται αλγεβρική, όπως για παράδειγμα η : 2x+3y-8

ΘΕΩΡΙΑ Β ΓΥΜΝΑΣΙΟΥ. Μια παράσταση που περιέχει πράξεις με μεταβλητές (γράμματα) και αριθμούς καλείται αλγεβρική, όπως για παράδειγμα η : 2x+3y-8 ΘΕΩΡΙΑ Β ΓΥΜΝΑΣΙΟΥ Άλγεβρα 1 ο Κεφάλαιο 1. Τι ονομάζουμε αριθμητική και τι αλγεβρική παράσταση; Να δώσετε από ένα παράδειγμα. Μια παράσταση που περιέχει πράξεις με αριθμούς, καλείται αριθμητική παράσταση,

Διαβάστε περισσότερα

ΑΣΚΗΣΕΙΣ ΥΠΟΛΟΓΙΣΜΟΥ ΜΑΖΑΣ ΘΕΣΗΣ ΚΕΝΤΡΟΥ ΜΑΖΑΣ ΡΟΠΗΣ ΑΔΡΑΝΕΙΑΣ ΣΩΜΑΤΩΝ

ΑΣΚΗΣΕΙΣ ΥΠΟΛΟΓΙΣΜΟΥ ΜΑΖΑΣ ΘΕΣΗΣ ΚΕΝΤΡΟΥ ΜΑΖΑΣ ΡΟΠΗΣ ΑΔΡΑΝΕΙΑΣ ΣΩΜΑΤΩΝ ΑΣΚΗΣΕΙΣ ΥΠΟΛΟΓΙΣΜΟΥ ΜΑΖΑΣ ΘΕΣΗΣ ΚΕΝΤΡΟΥ ΜΑΖΑΣ ΡΟΠΗΣ ΑΔΡΑΝΕΙΑΣ ΣΩΜΑΤΩΝ ΓΕΝΙΚΕΣ ΠΑΡΑΤΗΡΗΣΕΙΣ Α. Υπολογισμός της θέσης του κέντρου μάζας συστημάτων που αποτελούνται από απλά διακριτά μέρη. Τα απλά διακριτά

Διαβάστε περισσότερα

Γκύζη 14-Αθήνα Τηλ :

Γκύζη 14-Αθήνα Τηλ : Γκύζη 14-Αθήνα Τηλ : 10.64.5.777 ΘΕΜΑ Α ΠΑΝΕΛΛΑΔΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΚΑΙ ΕΠΑΛ (ΟΜΑΔΑ Β ) ΤΡΙΤΗ 10 ΙΟΥΝΙΟΥ 014 ΦΥΣΙΚΗ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ (ΚΑΙ ΤΩΝ ΔΥΟ ΚΥΚΛΩΝ)

Διαβάστε περισσότερα

ΓΕΩΔΑΙΣΙΑ Ι Μάθημα 1 0. Ι.Μ. Δόκας Επικ. Καθηγητής

ΓΕΩΔΑΙΣΙΑ Ι Μάθημα 1 0. Ι.Μ. Δόκας Επικ. Καθηγητής ΓΕΩΔΑΙΣΙΑ Ι Μάθημα 1 0 Ι.Μ. Δόκας Επικ. Καθηγητής Γεωδαισία Μοιράζω τη γη (Γη + δαίομαι) Ακριβής Έννοια: Διαίρεση, διανομή /μέτρηση της Γής. Αντικείμενο της γεωδαισίας: Ο προσδιορισμός της μορφής, του

Διαβάστε περισσότερα

1o ΕΡΓΑΣΤΗΡΙΟ ΜΑΘΗΜΑΤΟΣ «ΜΗΧΑΝΙΚΗ ΤΩΝ ΩΚΕΑΝΩΝ» Χάρτες: Προσδιορισμός θέσης

1o ΕΡΓΑΣΤΗΡΙΟ ΜΑΘΗΜΑΤΟΣ «ΜΗΧΑΝΙΚΗ ΤΩΝ ΩΚΕΑΝΩΝ» Χάρτες: Προσδιορισμός θέσης 1o ΕΡΓΑΣΤΗΡΙΟ ΜΑΘΗΜΑΤΟΣ «ΜΗΧΑΝΙΚΗ ΤΩΝ ΩΚΕΑΝΩΝ» Χάρτες: Προσδιορισμός θέσης Απαραίτητο όλων των ωκεανογραφικών ερευνών και μελετών Προσδιορισμός θέσης & πλοήγηση σκάφους Σε αυτό το εργαστήριο.. Τι περιλαμβάνει

Διαβάστε περισσότερα

ΣΕΙΣΜΟΣ ΙΩΑΝΝΙΝΩΝ 15/10/2016

ΣΕΙΣΜΟΣ ΙΩΑΝΝΙΝΩΝ 15/10/2016 ΣΕΙΣΜΟΣ ΙΩΑΝΝΙΝΩΝ 15/10/2016 Στις 20:14 UTC (23:14 ώρα Ελλάδας) της 15/10/2016 εκδηλώθηκε ισχυρή σεισμική δόνηση μεγέθους MW=5.3 βαθμών Βορειοδυτικά της πόλης των Ιωαννίνων. Την δόνηση ακολούθησε μετασεισμική

Διαβάστε περισσότερα

Κεφάλαιο Βασικές έννοιες χαρτογραφικών προβολών Το σχήμα της Γης

Κεφάλαιο Βασικές έννοιες χαρτογραφικών προβολών Το σχήμα της Γης Κεφάλαιο 1 Σύνοψη Στο κεφάλαιο αυτό εισάγονται οι βασικές έννοιες που διέπουν τις χαρτογραφικές προβολές. Αρχικά ορίζονται οι επιφάνειες που προσομοιώνουν την επιφάνεια της Γης για τις ανάγκες της Χαρτογραφίας.

Διαβάστε περισσότερα

Μαθηματικά Προσανατολισμού Β Λυκείου Ασκήσεις από την Τράπεζα θεμάτων Ευθεία Εξίσωση ευθείας

Μαθηματικά Προσανατολισμού Β Λυκείου Ασκήσεις από την Τράπεζα θεμάτων Ευθεία Εξίσωση ευθείας Μαθηματικά Προσανατολισμού Β Λυκείου Ασκήσεις από την Τράπεζα θεμάτων Ευθεία - 1-1. 2-18575 Εξίσωση ευθείας Δίνονται τα σημεία Α(1,2) και Β (5,6 ). α) Να βρείτε την εξίσωση της ευθείας που διέρχεται από

Διαβάστε περισσότερα

5. Συμμετρία, Πολικότητα και Οπτική Ενεργότητα των μορίων

5. Συμμετρία, Πολικότητα και Οπτική Ενεργότητα των μορίων 5. Συμμετρία, Πολικότητα και Οπτική Ενεργότητα των μορίων ιδακτικοί στόχοι Μετά την ολοκλήρωση της μελέτης του κεφαλαίου αυτού θα μπορείτε να... o προβλέπετε με βάση τη συμμετρία αν ένα μόριο έχει μόνιμη

Διαβάστε περισσότερα

ΥΛΙΚΑ ΓΙΑ ΕΝΕΡΓΕΙΑΚΕΣ ΕΦΑΡΜΟΓΕΣ

ΥΛΙΚΑ ΓΙΑ ΕΝΕΡΓΕΙΑΚΕΣ ΕΦΑΡΜΟΓΕΣ ΥΛΙΚΑ ΓΙΑ ΕΝΕΡΓΕΙΑΚΕΣ ΕΦΑΡΜΟΓΕΣ ΗΛΙΑΚΗ ΕΝΕΡΓΕΙΑ ΑΚΤΙΝΟΒΟΛΙΑ ΗΛΙΑΚΗ ΜΗΧΑΝΙΚΗ Μάθημα 2o Διδάσκων: Επ. Καθηγητής Ε. Αμανατίδης ΔΕΥΤΕΡΑ 6/3/2017 Τμήμα Χημικών Μηχανικών Πανεπιστήμιο Πατρών Περίληψη Ηλιακή

Διαβάστε περισσότερα

ΦΥΛΛΟ ΕΡΓΑΣΙΑΣ: ΔΥΝΑΜΕΙΣ ΚΑΙ ΡΟΠΕΣ

ΦΥΛΛΟ ΕΡΓΑΣΙΑΣ: ΔΥΝΑΜΕΙΣ ΚΑΙ ΡΟΠΕΣ ΦΥΛΛΟ ΕΡΓΑΣΙΑΣ: ΔΥΝΑΜΕΙΣ ΚΑΙ ΡΟΠΕΣ Σ ένα στερεό ασκούνται ομοεπίπεδες δυνάμεις. Όταν το στερεό ισορροπεί, δηλαδή ισχύει ότι F 0 και δεν περιστρέφεται τότε το αλγεβρικό άθροισμα των ροπών είναι μηδέν Στ=0,

Διαβάστε περισσότερα

Ο χώρος. 1.Μονοδιάστατη κίνηση

Ο χώρος. 1.Μονοδιάστατη κίνηση Ο χώρος Τα χελιδόνια έρχονται και ξανάρχονται. Κάθε χρόνο βρίσκουν μια γωνιά για να χτίσουν τη φωλιά, που θα γίνει το επίκεντρο του χώρου τους. Ο χώρος είναι ένας οργανικός χώρος, όπως εκείνος που αφορά

Διαβάστε περισσότερα

ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ ΔΙΑΓΩΝΙΣΜΑ ΣΤΗ ΜΗΧΑΝΙΚΗ ΣΤΕΡΕΟΥ 2013

ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ ΔΙΑΓΩΝΙΣΜΑ ΣΤΗ ΜΗΧΑΝΙΚΗ ΣΤΕΡΕΟΥ 2013 ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ ΔΙΑΓΩΝΙΣΜΑ ΣΤΗ ΜΗΧΑΝΙΚΗ ΣΤΕΡΕΟΥ 2013 ΘΕΜΑ Α Να γράψετε στο τετράδιό σας τον αριθμό καθεμιάς από τις παρακάτω ερωτήσεις Α1- Α4 και δίπλα το γράμμα που αντιστοιχεί στη σωστή

Διαβάστε περισσότερα

Β.Π. Ουράνιος Ισηµερινός Ν.Π.

Β.Π. Ουράνιος Ισηµερινός Ν.Π. Β.Π. Ουράνιος Ισηµερινός Ν.Π. Ανάδροµη Φορά Ορθή Φορά Η ορθή και ανάδροµη φορά περιστροφής της Ουράνιας Σφαίρας, όπως φαίνονται από το Βόρειο και το Νότιο ηµισφαίριο, αντίστοιχα Κύκλος Απόκλισης Μεσηµβρινός

Διαβάστε περισσότερα

ΠΡΟΚΑΤΑΡΚΤΙΚΗ ΑΝΑΚΟΙΝΩΣΗ

ΠΡΟΚΑΤΑΡΚΤΙΚΗ ΑΝΑΚΟΙΝΩΣΗ ΠΡΟΚΑΤΑΡΚΤΙΚΗ ΑΝΑΚΟΙΝΩΣΗ Για το Σεισμό Μ=6.4 της 15/7/2008 στη Νοτιοανατολική Ακτή της Ρόδου Το πρωί της 15 ης Ιουλίου 2008 και ώρα Ελλάδας 06:26:35.50 σημειώθηκε στη περιοχή της Νοτιανατολικής Ρόδου ισχυρή

Διαβάστε περισσότερα

ΑΠΟΛΥΤΗΡΙΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ ΑΠΡΙΛΙΟΣ 2009 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΦΥΣΙΚΗ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ

ΑΠΟΛΥΤΗΡΙΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ ΑΠΡΙΛΙΟΣ 2009 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΦΥΣΙΚΗ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ ΑΠΟΛΥΤΗΡΙΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ ΑΠΡΙΛΙΟΣ 2009 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΦΥΣΙΚΗ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Ονοµατεπώνυµο: ΘΕΜΑ 1ο Να γράψετε στο τετράδιο σας

Διαβάστε περισσότερα

ΣΕΙΣΜΟΣ ΚΕΦΑΛΟΝΙΑΣ 26/01/2014

ΣΕΙΣΜΟΣ ΚΕΦΑΛΟΝΙΑΣ 26/01/2014 ΣΕΙΣΜΟΣ ΚΕΦΑΛΟΝΙΑΣ 26/01/2014 Στις 13:55 UTC (15:55 ώρα Ελλάδας) της 26/1/2014 εκδηλώθηκε ισχυρή σεισμική δόνηση μεγέθους M W =6.1 βαθμών στις δυτικές ακτές της Κεφαλονιάς. Την δόνηση ακολούθησε μετασεισμική

Διαβάστε περισσότερα

Βασικές διαδικασίες παραγωγής πολωμένου φωτός

Βασικές διαδικασίες παραγωγής πολωμένου φωτός Πόλωση του φωτός Βασικές διαδικασίες παραγωγής πολωμένου φωτός πόλωση λόγω επιλεκτικής απορρόφησης - διχρωισμός πόλωση λόγω ανάκλασης από μια διηλεκτρική επιφάνεια πόλωση λόγω ύπαρξης δύο δεικτών διάθλασης

Διαβάστε περισσότερα

Εσωτερικού της Γης. Κεφάλαιο 2. Αναστασία Α Κυρατζή Τοµέας Γεωφυσικής. Κυρατζή Α.. "Φυσική" της Λιθόσφαιρας" 1

Εσωτερικού της Γης. Κεφάλαιο 2. Αναστασία Α Κυρατζή Τοµέας Γεωφυσικής. Κυρατζή Α.. Φυσική της Λιθόσφαιρας 1 οµή και Σύσταση του Εσωτερικού της Γης Μάθηµα: Φυσική της Λιθόσφαιρας Κεφάλαιο 2 Αναστασία Α Κυρατζή Τοµέας Γεωφυσικής της Λιθόσφαιρας" 1 Μάθηµα 1 ο Εισαγωγή Ορισµοί Ελαστικά κύµατα Ταχύτητες ιδιότητες

Διαβάστε περισσότερα

ΑΞΟΝΟΜΕΤΡΙΑ. Εισαγωγή

ΑΞΟΝΟΜΕΤΡΙΑ. Εισαγωγή ΑΞΟΝΟΜΕΤΡΙΑ Εισαγωγή Η προβολή τρισδιάστατου αντικειμένου πάνω σε δισδιάστατη επιφάνεια αποτέλεσε μια από τις βασικές αναζητήσεις μεθόδων απεικόνισης και απασχόλησε από πολύ παλιά τους ανθρώπους. Με την

Διαβάστε περισσότερα

7.1 ΜΕΤΡΗΣΗ ΤΗΣ ΕΣΤΙΑΚΗΣ ΑΠΟΣΤΑΣΗΣ ΦΑΚΩΝ

7.1 ΜΕΤΡΗΣΗ ΤΗΣ ΕΣΤΙΑΚΗΣ ΑΠΟΣΤΑΣΗΣ ΦΑΚΩΝ 7.1 ΑΣΚΗΣΗ 7 ΜΕΤΡΗΣΗ ΤΗΣ ΕΣΤΙΑΚΗΣ ΑΠΟΣΤΑΣΗΣ ΦΑΚΩΝ ΘΕΩΡΙΑ Όταν φωτεινή παράλληλη δέσμη διαδιδόμενη από οπτικό μέσο α με δείκτη διάθλασης n 1 προσπίπτει σε άλλο οπτικό μέσο β με δείκτη διάθλασης n 2 και

Διαβάστε περισσότερα

ΘΕΩΡΗΤΙΚΗ ΠΡΟΣΕΓΓΙΣΗ

ΘΕΩΡΗΤΙΚΗ ΠΡΟΣΕΓΓΙΣΗ ΘΕΩΡΗΤΙΚΗ ΠΡΟΣΕΓΓΙΣΗ 1. Τι είναι σεισμός; Σεισμός είναι η δόνηση του εδάφους που οφείλεται στη θραύση (σπάσιμο) των πετρωμάτων. 2. Πως δημιουργείται ο σεισμός; Ο σεισμός στον πλανήτη μας συνήθως προκαλείται

Διαβάστε περισσότερα

A3. Στο στιγμιότυπο αρμονικού μηχανικού κύματος του Σχήματος 1, παριστάνονται οι ταχύτητες ταλάντωσης δύο σημείων του.

A3. Στο στιγμιότυπο αρμονικού μηχανικού κύματος του Σχήματος 1, παριστάνονται οι ταχύτητες ταλάντωσης δύο σημείων του. ΕΠΑΝΑΛΗΠΤΙΚΕΣ ΠΑΝΕΛΛΗΝΙΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΔΕΥΤΕΡΑ 15 ΙΟΥΝΙΟΥ 2015 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΦΥΣΙΚΗ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Θέμα Α Στις ερωτήσεις Α1-Α4 να γράψετε στο

Διαβάστε περισσότερα

Συναρτήσεις. 5.1 Η έννοια της συνάρτησης. 1. Να συμπληρώσετε τις τιμές των παρακάτω συναρτήσεων : α) ψ = 2χ + 6 o Για χ = -1,5 : ψ =..=..

Συναρτήσεις. 5.1 Η έννοια της συνάρτησης. 1. Να συμπληρώσετε τις τιμές των παρακάτω συναρτήσεων : α) ψ = 2χ + 6 o Για χ = -1,5 : ψ =..=.. Συναρτήσεις. 5.1 Η έννοια της συνάρτησης. 1. Να συμπληρώσετε τις τιμές των παρακάτω συναρτήσεων : α) ψ = 2χ + 6 o Για χ = 1 : ψ =..=.. = o Για χ = -1 : ψ =..=.. = o Για χ = 0 : ψ =..=.. = o Για χ = 2 :

Διαβάστε περισσότερα

ΣΕΙΣΜΟΣ ΙΩΑΝΝΙΝΩΝ 15/10/2016

ΣΕΙΣΜΟΣ ΙΩΑΝΝΙΝΩΝ 15/10/2016 ΣΕΙΣΜΟΣ ΙΩΑΝΝΙΝΩΝ 15/10/2016 Στις 20:14 UTC (23:14 ώρα Ελλάδας) της 15/10/2016 εκδηλώθηκε ισχυρή σεισμική δόνηση μεγέθους M W =5.3 βαθμών Βορειοδυτικά της πόλης των Ιωαννίνων. Την δόνηση ακολούθησε μετασεισμική

Διαβάστε περισσότερα

ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ ΕΣΠΕΡΙΝΩΝ

ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ ΕΣΠΕΡΙΝΩΝ ΑΡΧΗ ΗΣ ΣΕΛΙ ΑΣ ΕΣΠΕΡΙΝΩΝ ΠΑΝΕΛΛΑΔΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Δ ΤΑΞΗΣ ΕΣΠΕΡΙΝΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΚΑΙ ΕΠΑΛ (ΟΜΑΔΑ Β ) ΤΡΙΤΗ 0 ΙΟΥΝΙΟΥ 04 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΦΥΣΙΚΗ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ (ΚΑΙ ΤΩΝ ΔΥΟ ΚΥΚΛΩΝ)

Διαβάστε περισσότερα

25 Ιανουαρίου 2014 ΛΥΚΕΙΟ:... ΟΜΑΔΑ ΜΑΘΗΤΩΝ: ΜΟΝΑΔΕΣ:

25 Ιανουαρίου 2014 ΛΥΚΕΙΟ:... ΟΜΑΔΑ ΜΑΘΗΤΩΝ: ΜΟΝΑΔΕΣ: ΠΑΝΕΛΛΗΝΙΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΦΥΣΙΚΗ 25 Ιανουαρίου 2014 ΛΥΚΕΙΟ:..... ΟΜΑΔΑ ΜΑΘΗΤΩΝ: 1.. 2..... 3..... ΜΟΝΑΔΕΣ: Το πρόβλημα Ένας φίλος σας βρήκε ένα μικρό, πολύ όμορφο τεμάχιο διαφανούς στερεού και ζητά τη γνώμη

Διαβάστε περισσότερα

ΕΠΑΝΑΛΗΨΗ Β ΓΥΜΝΑΣΙΟΥ ΑΛΓΕΒΡΑ

ΕΠΑΝΑΛΗΨΗ Β ΓΥΜΝΑΣΙΟΥ ΑΛΓΕΒΡΑ ΕΠΑΝΑΛΗΨΗ Β ΓΥΜΝΑΣΙΟΥ ΑΛΓΕΒΡΑ Να βρείτε στην αντίστοιχη σελίδα του σχολικού σας βιβλίου το ζητούμενο της κάθε ερώτησης που δίνεται παρακάτω και να το γράψετε στο τετράδιό σας. ΚΕΦΑΛΑΙΟ 1 1. Να συμπληρώσετε

Διαβάστε περισσότερα

Τάξη B. Μάθημα: Η Θεωρία σε Ερωτήσεις. Επαναληπτικά Θέματα. Επαναληπτικά Διαγωνίσματα. Επιμέλεια: Κώστας Κουτσοβασίλης. α Ε

Τάξη B. Μάθημα: Η Θεωρία σε Ερωτήσεις. Επαναληπτικά Θέματα. Επαναληπτικά Διαγωνίσματα. Επιμέλεια: Κώστας Κουτσοβασίλης. α Ε Ν β K C Ε -α Ο α Ε Τάξη B Μ -β Λ Μάθημα: Η Θεωρία σε Ερωτήσεις Επαναληπτικά Θέματα Επαναληπτικά Διαγωνίσματα Επιμέλεια: Διανύσματα Ερωτήσεις θεωρίας 1. Πως ορίζεται το διάνυσμα;. Τι λέγεται μηδενικό διάνυσμα;

Διαβάστε περισσότερα

Ευρασιατική, Αφρικανική και Αραβική

Ευρασιατική, Αφρικανική και Αραβική Έχει διαπιστωθεί διεθνώς ότι τα περιθώρια τεκτονικών πλακών σε ηπειρωτικές περιοχές είναι πολύ ευρύτερα από τις ωκεάνιες (Ευρασία: π.χ. Ελλάδα, Κίνα), αναφορικά με την κατανομή των σεισμικών εστιών. Στην

Διαβάστε περισσότερα

ΑΣΚΗΣΕΙΣ ΚΥΜΑΤΙΚΗΣ ΟΠΤΙΚΗΣ

ΑΣΚΗΣΕΙΣ ΚΥΜΑΤΙΚΗΣ ΟΠΤΙΚΗΣ ΑΣΚΗΣΕΙΣ ΚΥΜΑΤΙΚΗΣ ΟΠΤΙΚΗΣ ΑΣΚΗΣΗ 1: Ένα οπτικό φράγμα με δυο σχισμές που απέχουν μεταξύ τους απόσταση d=0.20 mm είναι τοποθετημένο σε απόσταση =1,20 m από μια οθόνη. Το οπτικό φράγμα με τις δυο σχισμές

Διαβάστε περισσότερα

ΓΕΩΓΡΑΦΙΚΑ ΣΥΣΤΗΜΑΤΑ ΠΛΗΡΟΦΟΡΙΩΝ-2 (ο χάρτης)

ΓΕΩΓΡΑΦΙΚΑ ΣΥΣΤΗΜΑΤΑ ΠΛΗΡΟΦΟΡΙΩΝ-2 (ο χάρτης) ΓΕΩΓΡΑΦΙΚΑ ΣΥΣΤΗΜΑΤΑ ΠΛΗΡΟΦΟΡΙΩΝ-2 (ο χάρτης) Ο χάρτης ως υπόβαθρο των ΓΣΠ Tα ΓΣΠ βασίζονται στη διαχείριση πληροφοριών που έχουν άμεση σχέση με το γεωγραφικό χώρο, περιέχουν δηλαδή δεδομένα με γεωγραφική

Διαβάστε περισσότερα

A4. Η δύναμη επαναφοράς που ασκείται σε ένα σώμα μάζας m που εκτελεί

A4. Η δύναμη επαναφοράς που ασκείται σε ένα σώμα μάζας m που εκτελεί ΠΑΝΕΛΛΑΔΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΚΑΙ ΕΠΑΛ (ΟΜΑΔΑ Β ) ΤΡΙΤΗ 0 ΙΟΥΝΙΟΥ 04 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΦΥΣΙΚΗ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ (ΚΑΙ ΤΩΝ ΔΥΟ ΚΥΚΛΩΝ) ΣΥΝΟΛΟ ΣΕΛΙΔΩΝ: ΕΞΙ

Διαβάστε περισσότερα

ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ Γ ΗΜΕΡΗΣΙΩΝ

ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ Γ ΗΜΕΡΗΣΙΩΝ ΑΡΧΗ ΗΣ ΣΕΛΙ ΑΣ Γ ΗΜΕΡΗΣΙΩΝ ΠΑΝΕΛΛΑΔΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΚΑΙ ΕΠΑΛ (ΟΜΑΔΑ Β ) ΤΡΙΤΗ 0 ΙΟΥΝΙΟΥ 04 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΦΥΣΙΚΗ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ (ΚΑΙ ΤΩΝ ΔΥΟ

Διαβάστε περισσότερα

ΠΟΛΩΣΗ ΤΟΥ ΦΩΤΟΣ. H γραφική αναπαράσταση ενός κύματος φωτός δίνεται στο Σχήμα 1(α) που ακολουθεί: ΣΧΗΜΑ 1

ΠΟΛΩΣΗ ΤΟΥ ΦΩΤΟΣ. H γραφική αναπαράσταση ενός κύματος φωτός δίνεται στο Σχήμα 1(α) που ακολουθεί: ΣΧΗΜΑ 1 ΠΟΛΩΣΗ ΤΟΥ ΦΩΤΟΣ 1. ΟΡΙΣΜΟΙ Το φως είναι ένα σύνθετο κύμα. Με εξαίρεση την ακτινοβολία LASER, τα κύματα φωτός δεν είναι επίπεδα κύματα. Κάθε κύμα φωτός είναι ένα ηλεκτρομαγνητικό κύμα στο οποίο τα διανύσματα

Διαβάστε περισσότερα

ΦΥΣΙΚΗ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ (ΝΕΟ ΣΥΣΤΗΜΑ) 23 ΜΑΪOY 2016 ΕΚΦΩΝΗΣΕΙΣ

ΦΥΣΙΚΗ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ (ΝΕΟ ΣΥΣΤΗΜΑ) 23 ΜΑΪOY 2016 ΕΚΦΩΝΗΣΕΙΣ ΘΕΜΑ Α ΦΥΣΙΚΗ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ (ΝΕΟ ΣΥΣΤΗΜΑ) 3 ΜΑΪOY 016 ΕΚΦΩΝΗΣΕΙΣ Στις ερωτήσεις Α1-Α4 να γράψετε στο τετράδιό σας τον αριθµό της ερώτησης και, δίπλα, το γράµµα που αντιστοιχεί στη φράση η οποία συµπληρώνει

Διαβάστε περισσότερα

ΑΣΚΗΣΗ-1: ΗΛΕΚΤΡΙΚΑ ΠΕΔΙΑ

ΑΣΚΗΣΗ-1: ΗΛΕΚΤΡΙΚΑ ΠΕΔΙΑ ΑΣΚΗΣΗ-1: ΗΛΕΚΤΡΙΚΑ ΠΕΔΙΑ Ημερομηνία:. ΤΜΗΜΑ:.. ΟΜΑΔΑ:. Ονομ/νυμο: Α.Μ. Συνεργάτες Ονομ/νυμο: Α.Μ. Ονομ/νυμο: Α.Μ. ΠΕΡΙΛΗΨΗ ΤΗΣ ΑΣΚΗΣΗΣ (καθένας με δικά του λόγια, σε όλες τις γραμμές) ΒΑΘΜΟΣ#1: ΥΠΟΓΡΑΦΗ:

Διαβάστε περισσότερα

ΜΑΘΗΜΑ / ΤΑΞΗ : ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ / Γ ΛΥΚΕΙΟΥ (ΑΠΟΦΟΙΤΟΙ) ΗΜΕΡΟΜΗΝΙΑ: 28/02/16 ΕΠΙΜΕΛΕΙΑ ΔΙΑΓΩΝΙΣΜΑΤΟΣ: ΑΡΧΩΝ ΜΑΡΚΟΣ ΘΕΜΑ Α

ΜΑΘΗΜΑ / ΤΑΞΗ : ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ / Γ ΛΥΚΕΙΟΥ (ΑΠΟΦΟΙΤΟΙ) ΗΜΕΡΟΜΗΝΙΑ: 28/02/16 ΕΠΙΜΕΛΕΙΑ ΔΙΑΓΩΝΙΣΜΑΤΟΣ: ΑΡΧΩΝ ΜΑΡΚΟΣ ΘΕΜΑ Α ΜΑΘΗΜΑ / ΤΑΞΗ : ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ / Γ ΛΥΚΕΙΟΥ (ΑΠΟΦΟΙΤΟΙ) ΗΜΕΡΟΜΗΝΙΑ: 28/02/16 ΕΠΙΜΕΛΕΙΑ ΔΙΑΓΩΝΙΣΜΑΤΟΣ: ΑΡΧΩΝ ΜΑΡΚΟΣ ΘΕΜΑ Α Οδηγία: Να γράψετε στο τετράδιό σας τον αριθμό καθεμιάς από τις παρακάτω ερωτήσεις

Διαβάστε περισσότερα

Κεφάλαιο Αρχές των απεικονίσεων - προβολών Αναπτυκτές επιφάνειες και ο προσανατολισμός τους

Κεφάλαιο Αρχές των απεικονίσεων - προβολών Αναπτυκτές επιφάνειες και ο προσανατολισμός τους Κεφάλαιο 2 Σύνοψη Οι απεικονίσεις στη χαρτογραφία αναφέρονται στην προβολή ή απεικόνιση της επιφάνειας αναφοράς, δηλαδή, του ελλειψοειδούς εκ περιστροφής (ή της σφαίρας) στο επίπεδο στο επίπεδο του χάρτη.

Διαβάστε περισσότερα

Κεφάλαιο 5. 5 Συστήματα συντεταγμένων

Κεφάλαιο 5. 5 Συστήματα συντεταγμένων Κεφάλαιο 5 5 Συστήματα συντεταγμένων Στις Γεωεπιστήμες η μορφή της γήινης επιφάνειας προσομοιώνεται από μια επιφάνεια, που ονομάζεται γεωειδές. Το γεωειδές είναι μια ισοδυναμική επιφάνεια του βαρυτικού

Διαβάστε περισσότερα

ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ & ΕΠΑ.Λ. Β 29 ΜΑΪOY 2015 ΕΚΦΩΝΗΣΕΙΣ

ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ & ΕΠΑ.Λ. Β 29 ΜΑΪOY 2015 ΕΚΦΩΝΗΣΕΙΣ ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ & ΕΠΑ.Λ. Β 9 ΜΑΪOY 01 ΕΚΦΩΝΗΣΕΙΣ Θέµα Α Στις ερωτήσεις Α1-Α4 να γράψετε στο τετράδιό σας τον αριθµό της ερώτησης και, δίπλα, το γράµµα που αντιστοιχεί στη φράση η οποία συµπληρώνει

Διαβάστε περισσότερα

ταχύτητα μέτρου. Με την άσκηση κατάλληλης σταθερής ροπής, επιτυγχάνεται

ταχύτητα μέτρου. Με την άσκηση κατάλληλης σταθερής ροπής, επιτυγχάνεται ΚΕΦΑΛΑΙΟ 4 ο : ΜΗΧΑΝΙΚΗ ΣΤΕΡΕΟΥ ΣΩΜΑΤΟΣ ΕΝΟΤΗΤΑ 4: ΣΤΡΟΦΟΡΜΗ 26. Δύο σημειακές σφαίρες που η καθεμιά έχει μάζα συνδέονται μεταξύ τους με οριζόντια αβαρή ράβδο. Το σύστημα περιστρέφεται γύρω από κατακόρυφο

Διαβάστε περισσότερα

ΔΙΑΧΕΙΡΙΣΗ ΦΥΣΙΚΩΝ ΚΑΙ ΑΝΘΡΩΠΟΓΕΝΩΝ ΚΑΤΑΣΡΟΦΩΝ -ΤΟ ΣΕΙΣΜΙΚΟ ΤΟΞΟ ΠΟΥ ΜΑΣ ΕΝΩΝΕΙ- Ρήγματα

ΔΙΑΧΕΙΡΙΣΗ ΦΥΣΙΚΩΝ ΚΑΙ ΑΝΘΡΩΠΟΓΕΝΩΝ ΚΑΤΑΣΡΟΦΩΝ -ΤΟ ΣΕΙΣΜΙΚΟ ΤΟΞΟ ΠΟΥ ΜΑΣ ΕΝΩΝΕΙ- Ρήγματα ΔΙΑΧΕΙΡΙΣΗ ΦΥΣΙΚΩΝ ΚΑΙ ΑΝΘΡΩΠΟΓΕΝΩΝ ΚΑΤΑΣΡΟΦΩΝ -ΤΟ ΣΕΙΣΜΙΚΟ ΤΟΞΟ ΠΟΥ ΜΑΣ ΕΝΩΝΕΙ- Ρήγματα Σχολική μονάδα: 3 ο Γυμνάσιο Γέρακα Συντονιστές: Παναγιωτοπούλου Κωνσταντίνα,Τόγια Αντωνία, Κοσμίδης Παύλος Τι είναι

Διαβάστε περισσότερα

Κεφάλαιο 2 ο Ενότητα 1 η : Μηχανικά Κύματα Θεωρία Γ Λυκείου

Κεφάλαιο 2 ο Ενότητα 1 η : Μηχανικά Κύματα Θεωρία Γ Λυκείου Κεφάλαιο 2 ο Ενότητα 1 η : Μηχανικά Κύματα Θεωρία Γ Λυκείου Τρέχοντα Κύματα Κύμα ονομάζεται η διάδοση μιας διαταραχής σε όλα τα σημεία του ελαστικού μέσου με ορισμένη ταχύτητα. Κατά τη διάδοση ενός κύματος

Διαβάστε περισσότερα

Τηλεπισκόπηση - Φωτοερμηνεία

Τηλεπισκόπηση - Φωτοερμηνεία ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΙΑΣ Τηλεπισκόπηση - Φωτοερμηνεία Ενότητα 9: Συστήματα Συντεταγμένων. Κωνσταντίνος Περάκης Ιωάννης Φαρασλής Τμήμα Μηχανικών Χωροταξίας, Πολεοδομίας και Περιφερειακής Ανάπτυξης Άδειες

Διαβάστε περισσότερα

Στο προοπτικό ανάγλυφο για τη ευθεία του ορίζοντα χρησιμοποιούμε ένα δεύτερο κατακόρυφο επίπεδο Π 1

Στο προοπτικό ανάγλυφο για τη ευθεία του ορίζοντα χρησιμοποιούμε ένα δεύτερο κατακόρυφο επίπεδο Π 1 ΠΡΟΟΠΤΙΚΟ ΑΝΑΓΛΥΦΟ Το προοπτικό ανάγλυφο, όπως το επίπεδο προοπτικό, η στερεοσκοπική εικόνα κ.λπ. είναι τρόποι παρουσίασης και απεικόνισης των αρχιτεκτονικών συνθέσεων. Το προοπτικό ανάγλυφο είναι ένα

Διαβάστε περισσότερα

Σεισμογενείς περιοχές και ηφαίστεια της Ελλάδας

Σεισμογενείς περιοχές και ηφαίστεια της Ελλάδας Σεισμογενείς περιοχές και ηφαίστεια της Ελλάδας Λέκκα Ευγενία, Μαγγίρα Ιωάννα, Πάπας Χρήστος, Σουλιάδης Δημήτρης, Τσαγκαρόπουλος Ιορδάνης Μαθητές της Α Λυκείου Αριστοτελείου Κολλεγίου Επιβλέπουσες : κα.

Διαβάστε περισσότερα

Δρ. Απόστολος Ντάνης. Σχολικός Σύμβουλος Φυσικής Αγωγής

Δρ. Απόστολος Ντάνης. Σχολικός Σύμβουλος Φυσικής Αγωγής Δρ. Απόστολος Ντάνης Σχολικός Σύμβουλος Φυσικής Αγωγής *Βασικές μορφές προσανατολισμού *Προσανατολισμός με τα ορατά σημεία προορισμού στη φύση *Προσανατολισμός με τον ήλιο *Προσανατολισμός από τη σελήνη

Διαβάστε περισσότερα

1.2 Συντεταγμένες στο Επίπεδο

1.2 Συντεταγμένες στο Επίπεδο 1 Συντεταγμένες στο Επίπεδο Τι εννοούμε με την έννοια άξονας; ΑΠΑΝΤΗΣΗ Πάνω σε μια ευθεία επιλέγουμε δύο σημεία και Ι έτσι ώστε το διάνυσμα OI να έχει μέτρο 1 και να βρίσκεται στην ημιευθεία O Λέμε τότε

Διαβάστε περισσότερα

ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ ΜΟΝΟ ΝΕΟ ΣΥΣΤΗΜΑ Γ ΗΜΕΡΗΣΙΩΝ

ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ ΜΟΝΟ ΝΕΟ ΣΥΣΤΗΜΑ Γ ΗΜΕΡΗΣΙΩΝ ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ ΜΟΝΟ ΝΕΟ ΣΥΣΤΗΜΑ Γ ΗΜΕΡΗΣΙΩΝ ΠΑΝΕΛΛΑΔΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΔΕΥΤΕΡΑ 23 ΜΑΪΟΥ 2016 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΦΥΣΙΚΗ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ (ΝΕΟ ΣΥΣΤΗΜΑ) ΣΥΝΟΛΟ ΣΕΛΙΔΩΝ: ΕΞΙ

Διαβάστε περισσότερα

1ο τεταρτημόριο x>0,y>0 Ν Β

1ο τεταρτημόριο x>0,y>0 Ν Β ΓΡΑΦΙΚΗ ΠΑΡΑΣΤΑΣΗ ΣΥΝΑΡΤΗΣΗΣ( 6.2 ) Καρτεσιανό σύστημα συντεταγμένων ονομάζεται ένα επίπεδο εφοδιασμένο με δύο κάθετους άξονες οι οποίοι έχουν κοινή αρχή Ο και είναι αριθμημένοι με τις ίδιες μονάδες μήκους.

Διαβάστε περισσότερα

2 Η ΠΡΟΟΔΟΣ. Ενδεικτικές λύσεις κάποιων προβλημάτων. Τα νούμερα στις ασκήσεις είναι ΤΥΧΑΙΑ και ΟΧΙ αυτά της εξέταση

2 Η ΠΡΟΟΔΟΣ. Ενδεικτικές λύσεις κάποιων προβλημάτων. Τα νούμερα στις ασκήσεις είναι ΤΥΧΑΙΑ και ΟΧΙ αυτά της εξέταση 2 Η ΠΡΟΟΔΟΣ Ενδεικτικές λύσεις κάποιων προβλημάτων Τα νούμερα στις ασκήσεις είναι ΤΥΧΑΙΑ και ΟΧΙ αυτά της εξέταση Ένας τροχός εκκινεί από την ηρεμία και επιταχύνει με γωνιακή ταχύτητα που δίνεται από την,

Διαβάστε περισσότερα

Διαγώνισμα Γ Λυκείου Θετικού προσανατολισμού. Διαγώνισμα Μηχανική Στερεού Σώματος. Τετάρτη 12 Απριλίου Θέμα 1ο

Διαγώνισμα Γ Λυκείου Θετικού προσανατολισμού. Διαγώνισμα Μηχανική Στερεού Σώματος. Τετάρτη 12 Απριλίου Θέμα 1ο Διαγώνισμα Μηχανική Στερεού Σώματος Τετάρτη 12 Απριλίου 2017 Θέμα 1ο Στις παρακάτω προτάσεις 1.1 1.4 να επιλέξτε την σωστή απάντηση (4 5 = 20 μονάδες ) 1.1. Η γωνιακή επιτάχυνση ενός ομογενούς δίσκου που

Διαβάστε περισσότερα

ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ ΜΟΝΟ ΝΕΟ ΣΥΣΤΗΜΑ Γ ΗΜΕΡΗΣΙΩΝ

ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ ΜΟΝΟ ΝΕΟ ΣΥΣΤΗΜΑ Γ ΗΜΕΡΗΣΙΩΝ ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ ΜΟΝΟ ΝΕΟ ΣΥΣΤΗΜΑ Γ ΗΜΕΡΗΣΙΩΝ ΠΑΝΕΛΛΑΔΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΔΕΥΤΕΡΑ 23 ΜΑΪΟΥ 2016 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΦΥΣΙΚΗ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ (ΝΕΟ ΣΥΣΤΗΜΑ) ΣΥΝΟΛΟ ΣΕΛΙΔΩΝ: ΕΞΙ

Διαβάστε περισσότερα

α. 2 β. 4 γ. δ. 4 2 Μονάδες 5

α. 2 β. 4 γ. δ. 4 2 Μονάδες 5 ΜΑΘΗΜΑ / ΤΑΞΗ : ΦΥΣΙΚΗ ΟΠ Β Λ (ΠΡΟΕΤΟΙΜΑΣΙΑ) - ΑΠΑΝΤΗΣΕΙΣ ΗΜΕΡΟΜΗΝΙΑ: 04/01/017 ΕΠΙΜΕΛΕΙΑ ΔΙΑΓΩΝΙΣΜΑΤΟΣ: ΑΡΧΩΝ ΜΑΡΚΟΣ ΘΕΜΑ Α Οδηγία: Να γράψετε στο τετράδιό σας τον αριθμό καθεμιάς από τις παρακάτω ερωτήσεις

Διαβάστε περισσότερα

Συμβολή κυμάτων και σύνθεση ταλαντώσεων.

Συμβολή κυμάτων και σύνθεση ταλαντώσεων. Συμβολή κυμάτων και σύνθεση ταλαντώσεων. Δύο σύγχρονες πηγές κυμάτων Π και Π αρχίζουν τη χρονική στιγμή t = 0 να εκτελούν στην αρχικά ήρεμη επιφάνεια υγρού αρμονική ταλάντωση της μορφής 0,4 4 t, (SI).

Διαβάστε περισσότερα

ΚΟΝΤΟΚΩΣΤΑΣ ΔΗΜΗΤΡΙΟΣ. ΠΑΡΑΔΕΙΓΜΑΤΑ-ΑΣΚΗΣΕΙΣ ΠΑΡΑΣΤΑΤΙΚΗΣ ΜΕ ΠΡΟΒΟΛΕΣ ΣΕ 2 ΕΠΙΠΕΔΑ (εκδοχή Σεπτεμβρίου 2014) Ε.Μ.Π.

ΚΟΝΤΟΚΩΣΤΑΣ ΔΗΜΗΤΡΙΟΣ. ΠΑΡΑΔΕΙΓΜΑΤΑ-ΑΣΚΗΣΕΙΣ ΠΑΡΑΣΤΑΤΙΚΗΣ ΜΕ ΠΡΟΒΟΛΕΣ ΣΕ 2 ΕΠΙΠΕΔΑ (εκδοχή Σεπτεμβρίου 2014) Ε.Μ.Π. ΚΟΝΤΟΚΩΣΤΑΣ ΔΗΜΗΤΡΙΟΣ ΠΑΡΑΔΕΙΓΜΑΤΑ-ΑΣΚΗΣΕΙΣ ΠΑΡΑΣΤΑΤΙΚΗΣ ΜΕ ΠΡΟΒΟΛΕΣ ΣΕ ΕΠΙΠΕΔΑ (εκδοχή Σεπτεμβρίου 04) Ε.Μ.Π. (παρατηρήσεις για τη βελτίωση των σημειώσεων ευπρόσδεκτες) Παράσταση σημείου. Σχήμα Σχήμα

Διαβάστε περισσότερα

2. Σε κύκλωμα αμείωτων ηλεκτρικών ταλαντώσεων LC α. η ενέργεια του ηλεκτρικού πεδίου δίνεται από τη σχέση U E = 2

2. Σε κύκλωμα αμείωτων ηλεκτρικών ταλαντώσεων LC α. η ενέργεια του ηλεκτρικού πεδίου δίνεται από τη σχέση U E = 2 ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ ΕΠΑΝΑΛΗΠΤΙΚΕΣ ΑΠΟΛΥΤΗΡΙΕΣ ΕΞΕΤΑΣΕΙΣ ΗΜΕΡΗΣΙΟΥ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ ΠΑΡΑΣΚΕΥΗ 7 ΙΟΥΛΙΟΥ 2006 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΦΥΣΙΚΗ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ (ΚΑΙ ΤΩΝ ΥΟ ΚΥΚΛΩΝ) ΣΥΝΟΛΟ ΣΕΛΙ ΩΝ:

Διαβάστε περισσότερα

ΕΦΑΠΤΟΜΕΝΗ ΓΡΑΦΙΚΗΣ ΠΑΡΑΣΤΑΣΗΣ ΣΥΝΑΡΤΗΣΗΣ

ΕΦΑΠΤΟΜΕΝΗ ΓΡΑΦΙΚΗΣ ΠΑΡΑΣΤΑΣΗΣ ΣΥΝΑΡΤΗΣΗΣ ΕΦΑΠΤΟΜΕΝΗ ΓΡΑΦΙΚΗΣ ΠΑΡΑΣΤΑΣΗΣ ΣΥΝΑΡΤΗΣΗΣ Ορισμός εφαπτομένης καμπύλης Αν μία συνάρτηση f είναι παραγωγίσιμη στο x, τότε ορίζουμε ως εφαπτομένη της γραφικής παράστασης της f στο σημείο Α(x, f(x )) την

Διαβάστε περισσότερα

ΑΡΧΗ 1ΗΣ ΣΕΛΙΔΑΣ Δ ΕΣΠΕΡΙΝΩΝ

ΑΡΧΗ 1ΗΣ ΣΕΛΙΔΑΣ Δ ΕΣΠΕΡΙΝΩΝ ΑΡΧΗ ΗΣ ΣΕΛΙΔΑΣ Δ ΕΣΠΕΡΙΝΩΝ ΕΠΑΝΑΛΗΠΤΙΚΕΣ ΠΑΝΕΛΛΗΝΙΕΣ ΕΞΕΤΑΣΕΙΣ Δ ΤΑΞΗΣ ΕΣΠΕΡΙΝΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΔΕΥΤΕΡΑ 5 ΙΟΥΝΙΟΥ 05 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΦΥΣΙΚΗ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΣΥΝΟΛΟ ΣΕΛΙΔΩΝ: ΕΠΤΑ

Διαβάστε περισσότερα

πάχος 0 πλάτος 2a μήκος

πάχος 0 πλάτος 2a μήκος B1) Δεδομένου του τύπου E = 2kλ/ρ που έχει αποδειχθεί στο μάθημα και περιγράφει το ηλεκτρικό πεδίο Ε μιας άπειρης γραμμής φορτίου με γραμμική πυκνότητα φορτίου λ σε σημείο Α που βρίσκεται σε απόσταση ρ

Διαβάστε περισσότερα

ΑΡΧΗ 1ΗΣ ΣΕΛΙΔΑΣ Γ ΗΜΕΡΗΣΙΩΝ

ΑΡΧΗ 1ΗΣ ΣΕΛΙΔΑΣ Γ ΗΜΕΡΗΣΙΩΝ ΑΡΧΗ ΗΣ ΣΕΛΙΔΑΣ Γ ΗΜΕΡΗΣΙΩΝ ΠΑΝΕΛΛΑΔΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΚΑΙ ΕΠΑΛ (ΟΜΑΔΑ Β ) ΠΑΡΑΣΚΕΥΗ 9 ΜΑΪΟΥ 0 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΦΥΣΙΚΗ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ (ΚΑΙ ΤΩΝ ΔΥΟ

Διαβάστε περισσότερα

Γκύζη 14-Αθήνα Τηλ :

Γκύζη 14-Αθήνα Τηλ : ΘΕΜΑ Α ΠΑΝΕΛΛΑΔΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΚΑΙ ΕΠΑΛ (ΟΜΑΔΑ Β ) ΤΕΤΑΡΤΗ 22 ΜΑΪΟΥ 2013 ΦΥΣΙΚΗ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ (ΚΑΙ ΤΩΝ ΔΥΟ ΚΥΚΛΩΝ) Στις ερωτήσεις Α1-Α4 να γράψετε

Διαβάστε περισσότερα

ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ ΤΩΝ ΜΑΘΗΜΑΤΙΚΩΝ ΘΕΤΙΚΟΥ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΤΗΣ Β ΛΥΚΕΙΟΥ

ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ ΤΩΝ ΜΑΘΗΜΑΤΙΚΩΝ ΘΕΤΙΚΟΥ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΤΗΣ Β ΛΥΚΕΙΟΥ ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ ΤΩΝ ΜΑΘΗΜΑΤΙΚΩΝ ΘΕΤΙΚΟΥ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΤΗΣ Β ΛΥΚΕΙΟΥ Διανύσματα Πολλαπλασιασμός αριθμού με διάνυσμα ο Θέμα _8603 Δίνεται τρίγωνο ΑΒΓ και σημεία Δ και Ε του επιπέδου τέτοια, ώστε 5 και

Διαβάστε περισσότερα

ΜΑΘΗΜΑ / ΤΑΞΗ : ΦΥΣΙΚΗ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ Γ ΛΥΚΕΙΟΥ ΗΜΕΡΟΜΗΝΙΑ: 05/01/2016 ΕΠΙΜΕΛΕΙΑ ΔΙΑΓΩΝΙΣΜΑΤΟΣ: ΑΡΧΩΝ ΜΑΡΚΟΣ

ΜΑΘΗΜΑ / ΤΑΞΗ : ΦΥΣΙΚΗ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ Γ ΛΥΚΕΙΟΥ ΗΜΕΡΟΜΗΝΙΑ: 05/01/2016 ΕΠΙΜΕΛΕΙΑ ΔΙΑΓΩΝΙΣΜΑΤΟΣ: ΑΡΧΩΝ ΜΑΡΚΟΣ ΜΑΘΗΜΑ / ΤΑΞΗ : ΦΥΣΙΚΗ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ Γ ΛΥΚΕΙΟΥ ΗΜΕΡΟΜΗΝΙΑ: 05/01/2016 ΕΠΙΜΕΛΕΙΑ ΔΙΑΓΩΝΙΣΜΑΤΟΣ: ΑΡΧΩΝ ΜΑΡΚΟΣ ΘΕΜΑ Α Οδηγία: Να γράψετε στο τετράδιό σας τον αριθμό καθεμιάς από τις παρακάτω ερωτήσεις Α1-Α4

Διαβάστε περισσότερα

ΑΝΙΧΝΕΥΣΗ ΠΡΟΔΡΟΜΩΝ ΣΕΙΣΜΙΚΩΝ ΦΑΙΝΟΜΕΝΩΝ ΕΥΡΥΤΕΡΗΣ ΠΕΡΙΟΧΗΣ ΚΕΦΑΛΛΗΝΙΑΣ

ΑΝΙΧΝΕΥΣΗ ΠΡΟΔΡΟΜΩΝ ΣΕΙΣΜΙΚΩΝ ΦΑΙΝΟΜΕΝΩΝ ΕΥΡΥΤΕΡΗΣ ΠΕΡΙΟΧΗΣ ΚΕΦΑΛΛΗΝΙΑΣ ΑΝΙΧΝΕΥΣΗ ΠΡΟΔΡΟΜΩΝ ΣΕΙΣΜΙΚΩΝ ΦΑΙΝΟΜΕΝΩΝ ΕΥΡΥΤΕΡΗΣ ΠΕΡΙΟΧΗΣ ΚΕΦΑΛΛΗΝΙΑΣ Επιστημονικός Υπεύθυνος: Καθηγητής Νικ. Δελήμπασης Τομέας Γεωφυσικής Γεωθερμίας Πανεπιστημίου Αθηνών Η έρευνα για την ανίχνευση τυχόν

Διαβάστε περισσότερα

1 Ο ΕΠΑΝΑΛΗΠΤΙΚΟ ΔΙΑΓΩΝΙΣΜΑ - ΕΚΦΩΝΗΣΕΙΣ

1 Ο ΕΠΑΝΑΛΗΠΤΙΚΟ ΔΙΑΓΩΝΙΣΜΑ - ΕΚΦΩΝΗΣΕΙΣ Ο ΕΠΑΝΑΛΗΠΤΙΚΟ ΔΙΑΓΩΝΙΣΜΑ - ΕΚΦΩΝΗΣΕΙΣ ΘΕΜΑ Α Στις ημιτελείς προτάσεις - 4 να γράψετε στο τετράδιό σας τον αριθμό της πρότασης και δίπλα το γράμμα που αντιστοιχεί στη φράση, η οποία τη συμπληρώνει σωστά

Διαβάστε περισσότερα

ΑΡΧΗ 1ΗΣ ΣΕΛΙΔΑΣ Γ ΗΜΕΡΗΣΙΩΝ

ΑΡΧΗ 1ΗΣ ΣΕΛΙΔΑΣ Γ ΗΜΕΡΗΣΙΩΝ ΑΡΧΗ 1ΗΣ ΣΕΛΙΔΑΣ Γ ΗΜΕΡΗΣΙΩΝ ΕΠΑΝΑΛΗΠΤΙΚΕΣ ΠΑΝΕΛΛΗΝΙΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΔΕΥΤΕΡΑ 15 ΙΟΥΝΙΟΥ 015 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΦΥΣΙΚΗ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΣΥΝΟΛΟ ΣΕΛΙΔΩΝ:

Διαβάστε περισσότερα

3.5 Η ΣΥΝΑΡΤΗΣΗ y=α/x-η ΥΠΕΡΒΟΛΗ Ποσά αντιστρόφως ανάλογα- Η υπερβολή

3.5 Η ΣΥΝΑΡΤΗΣΗ y=α/x-η ΥΠΕΡΒΟΛΗ Ποσά αντιστρόφως ανάλογα- Η υπερβολή ΣΥΝΑΡΤΗΣΗ y=α/ Η ΥΠΕΡΒΟΛΗ.5 Η ΣΥΝΑΡΤΗΣΗ y=α/-η ΥΠΕΡΒΟΛΗ Ποσά αντιστρόφως ανάλογα- Η υπερβολή Δύο ποσά λέγονται αντιστρόφως ανάλογα, όταν η τιμή του ενός πολλαπλασιαστεί επί έναν αριθµό, τότε η τιµή του

Διαβάστε περισσότερα

ΑΣΚΗΣΕΙΣ ΚΥΜΑΤΙΚΗΣ ΟΠΤΙΚΗΣ

ΑΣΚΗΣΕΙΣ ΚΥΜΑΤΙΚΗΣ ΟΠΤΙΚΗΣ ΑΣΚΗΣΕΙΣ ΚΥΜΑΤΙΚΗΣ ΟΠΤΙΚΗΣ ΑΣΚΗΣΗ 1: Ένα οπτικό φράγμα με δυο σχισμές που απέχουν μεταξύ τους απόσταση =0.0 mm είναι τοποθετημένο σε απόσταση =1,0 m από μια οθόνη. Το οπτικό φράγμα με τις δυο σχισμές φωτίζεται

Διαβάστε περισσότερα

ΘΕΜΑ Α Ι. Στις ερωτήσεις 1-4 να γράψετε στο τετράδιο σας τον αριθμό της ερώτησης και το γράμμα που αντιστοιχεί στη σωστή απάντηση.

ΘΕΜΑ Α Ι. Στις ερωτήσεις 1-4 να γράψετε στο τετράδιο σας τον αριθμό της ερώτησης και το γράμμα που αντιστοιχεί στη σωστή απάντηση. ΔΙΑΓΩΝΙΣΜΑ ΠΡΟΣΟΜΟΙΩΣΗΣ ΦΥΣΙΚΗ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΘΕΜΑ Α Ι. Στις ερωτήσεις 1-4 να γράψετε στο τετράδιο σας τον αριθμό της ερώτησης και το γράμμα που αντιστοιχεί στη σωστή απάντηση. 1.

Διαβάστε περισσότερα

Γ. Λούντος Π. Ασβεστάς Τμήμα Τεχνολογίας Ιατρικών Οργάνων

Γ. Λούντος Π. Ασβεστάς Τμήμα Τεχνολογίας Ιατρικών Οργάνων Γ. Λούντος Π. Ασβεστάς Τμήμα Τεχνολογίας Ιατρικών Οργάνων Χρήσιμοι Σύνδεσμοι Σημειώσεις μαθήματος: http://www.teiath.gr/stef/tio/medisp/gr_downloads.htm E-mail: gloudos@teiath.gr Ροπή Η τάση για περιστροφή

Διαβάστε περισσότερα

Πρόβλημα 4.9.

Πρόβλημα 4.9. Πρόβλημα 4.9. Να βρεθεί το δυναμικό V() παντού στο χώρο ενός θετικά φορτισμένου φύλλου απείρων διαστάσεων με επιφανειακή πυκνότητα φορτίου σ. Πάρτε τον άξονα κάθετα στο φύλλο και θεωρήστε ότι το φύλλο

Διαβάστε περισσότερα