Καθορισμός του μηχανισμού γένεσης

Save this PDF as:
 WORD  PNG  TXT  JPG

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "Καθορισμός του μηχανισμού γένεσης"

Transcript

1 Καθορισμός του μηχανισμού γένεσης Σκοπός Σκοπός της άσκησης αυτής είναι ο καθορισμός του μηχανισμού γένεσης ενός σεισμού με βάση τις πρώτες αποκλίσεις των επιμήκων κυμάτων όπως αυτές καταγράφονται στους σεισμολογικούς σταθμούς. Με τον τρόπο αυτό παρέχεται η δυνατότητα του προσδιορισμού των χαρακτηριστικών της διάρρηξης (είδος διάρρηξης, γεωμετρικά χαρακτηριστικά του επιπέδου του ρήγματος, καθορισμός των αξόνων μέγιστης συμπίεσης και μέγιστου εφελκυσμού), πληροφορίες οι οποίες είναι απαραίτητες για τη γνώση του πεδίου των τάσεων σε μία περιοχή και οι οποίες είναι πολλές φορές αδύνατον να αποκτηθούν με άλλο τρόπο. Δεδομένα παρατήρησης Για τον καθορισμό του μηχανισμού γένεσης είναι απαραίτητες οι ακόλουθες πληροφορίες: 1. Καταγραφή των πρώτων αποκλίσεων των επιμήκων κυμάτων σε αρκετούς σεισμολογικούς σταθμούς 2. Υπολογισμός των επικεντρικών αποστάσεων και των αζιμουθίων ως προς την εστία των σεισμολογικών σταθμών που παρέχουν την παραπάνω πληροφορία 3. Υπολογισμός των γωνιών αναχώρησης για τις ακτίνες των επιμήκων κυμάτων τα οποία διαδίδονται από την εστία προς το σταθμό. Αυτό απαιτεί τη γνώση του εστιακού βάθους και τις ταχύτητες διάδοσης των επιμήκων κυμάτων. Οι τελευταίες πληροφορίες βασίζονται σε γνωστά μοντέλα του φλοιού της Γης και δίνονται είτε γραφικά (Σχήμα 1) είτε υπό μορφή πίνακα. Δείτε τον πίνακα που ακολουθεί όπου οι γωνίες αναχώρησης δίνονται σε συνάρτηση με την επικεντρική απόσταση. 1

2 Σχ. 1. Μεταβολή της γωνίας αναχώρησης, i, της σεισμικής ακτίνας από την εστία του σεισμού σε συνάρτηση με την επικεντρική απόσταση, Δ, για εστιακό βάθος ίσο με 10 km και ταχύτητα επιμήκων κυμάτων στην εστία του σεισμού ίση με 6.8 km/sec. Πίνακας 1. Τιμές της γωνίας αναχώρησης σε συνάρτηση με την επικεντρική απόσταση. Γνωρίζοντας το αζιμούθιο του σταθμού και την αντίστοιχη γωνία αναχώρησης, το επόμενο βήμα είναι να τοποθετήσουμε τη θέση του συγκεκριμένου σταθμού πάνω σε δίκτυο στερεογραφικής προβολής. Χρησιμοποιούμε για το σκοπό αυτό δίκτυο προβολής ίσων εμβαδών (δίκτυο Lambert Schmidt). Θεωρούμε ένα σύνολο σταθμών, ο καθένας από τους οποίους έχει ένα αζιμούθιο και μία γωνία αναχώρησης η οποία αντιστοιχεί στην ακτίνα που αναδύεται σε αυτόν. Εφόσον οι γωνίες αναχώρησης μετρώνται από την 2

3 κατακόρυφη, η αντίστοιχη κλίση είναι απλά 90 ο i. Για να τοποθετήσουμε ένα σταθμό ο οποίος έχει αζιμούθιο 40 ο και η αντίστοιχη γωνία αναχώρησης είναι 60 ο, στρέφουμε το δίκτυο ώστε το σημείο της περιφέρειας που αντιστοιχεί στο αζιμούθιο να τοποθετηθεί στον ισημερινό και μετράμε από την περιφέρεια προς το κέντρο του κύκλου 90 ο 60 ο = 30 ο. Έχουμε έτσι ουσιαστικά τοποθετήσει ένα σημείο με κλίση 30 ο. Εναλλακτικά, μετράμε από το κέντρο προς την περιφέρεια 60 ο (Σχήμα 2). Μετά την εύρεση της θέσης του συγκεκριμένου σταθμού επαναφέρουμε το δίκτυο σε θέση Β Ν, και σημειώνουμε στη θέση αυτή το σύμβολο όταν η πρώτη απόκλιση είναι συμπίεση (C, compression) και το σύμβολο όταν η πρώτη απόκλιση είναι αραίωση (D, dilatation). Επαναλαμβάνουμε την ίδια διαδικασία έως ότου τοποθετηθούν όλοι οι σταθμοί με το κατάλληλο σύμβολο. 3

4 Σχ. 2. Απεικόνιση σε δίκτυο στερεογραφικής προβολής σεισμολογικού σταθμού με αζιμούθιο 40 ο ως προς το επίκεντρο του σεισμού και γωνία αναχώρησης 60 ο. Εκτέλεση της άσκησης Βήμα 1 Δίνεται πίνακας σεισμολογικών σταθμών οι οποίοι κατέγραψαν την πρώτη κίνηση του σεισμού της Θεσσαλονίκης της 20 ης Ιουνίου 1978 (Μ6.5), οι επικεντρικές αποστάσεις, Δ, τα αζιμούθιά τους, Α, ως προς το επίκεντρο και οι πρώτες αποκλίσεις (C ή D) των επιμήκων, Ρ, κυμάτων. Με βάση το σχήμα 1 ή τον πίνακα 1, βρείτε τις γωνίες αναχώρησης και συμπληρώστε τον παρακάτω πίνακα. Σταθμός Επικεντρική Αζιμούθιο Γωνία Πρώτη Απόσταση Αναχώρησης Απόκλιση ΑΤΗ o 60 o C TIR o 40 o D SAR o 57 o D VIE o 54 o C FIR o 53 o D 4

5 Βήμα 2 Τοποθετείστε ένα διαφανές χαρτί πάνω σε δίκτυο στερεογραφικής προβολής Lambert Schmidt. Σημειώστε πάνω στο χαρτί το κέντρο και την περίμετρο, καθώς και τις θέσεις των Β, Α, Ν και Δ. Βήμα 3 Σημειώστε το αζιμούθιο του πρώτου σταθμού στην περίμετρο του διαφανούς χαρτιού και στρέψτε το δίκτυο ώστε το σημείο αυτό να συμπέσει με το σημείο με αζιμούθιο 0, 90, 180 ή 270. Μετρείστε τη γωνία αναχώρησης από το κέντρο του δικτύου για το συγκεκριμένο αζιμούθιο. Το τελευταίο σημείο δίνει την τομή της συγκεκριμένης ακτίνας του επιμήκους κύματος με το κάτω ημισφαίριο στερεογραφικής προβολής. Σημειώστε στο σημείο αυτό τη θέση του συγκεκριμένου σταθμού με το κατάλληλο σύμβολο ( για συμπίεση (C) και για αραίωση (D). Μπορείτε να χρησιμοποιήσετε και διαφορετικά χρώματα για καλύτερη διάκριση. Σημείωση: Η κατάλληλη απόσταση, d, της θέσης κάθε σταθμού από το κέντρο του δικτύου είναι: δικτύου. d = 2 Rsin i όπου R είναι η ακτίνα του συγκεκριμένου 2 Βήμα 4 Περιστρέφοντας το δίκτυο πάνω στα χαρτογραφημένα δεδομένα προσπαθείστε να βρείτε ένα μέγιστο κύκλο (μεσημβρινό) ο οποίος να διαχωρίζει με τον καλύτερο δυνατό τρόπο τα τεταρτημόρια των συμπιέσεων και αραιώσεων (Επίπεδο 1). Αυτός ο μέγιστος κύκλος αντιπροσωπεύει το ίχνος τομής του πιθανού επιπέδου του ρήγματος και του βοηθητικού επιπέδου με το κάτω ημισφαίριο της εστιακής σφαίρας. Σημείωση 1: Όλοι οι μεσημβρινοί είναι μέγιστοι κύκλοι (γραμμές που ενώνουν Β και Ν). Σημείωση 2: Διαφορετικές πρώτες αποκλίσεις κοντά η μία στην άλλη πιθανόν να οφείλονται στην μη ευκρινή πρώτη απόκλιση λόγω του μικρού πλάτους της πρώτης απόκλισης. Αυτό συμβαίνει κοντά στα δύο ορικά επίπεδα (ρήγματος και βοηθητικού) λόγω της μετάβασης από το ένα τεταρτημόριο στο άλλο. Από 5

6 την άλλη μεριά αυτή η παρατήρηση ενισχύει τον καθορισμό των επιπέδων αυτών και οδηγούμαστε έτσι στην καλύτερη λύση. Βήμα 5 Διατηρώντας το επίπεδο 1 σε θέση Β Ν, μετρείστε σε απόσταση 90 o πάνω στον ισημερινό και σημειώστε τη θέση του πόλου του επιπέδου αυτού (Πόλος 1). Όλοι οι μέγιστοι κύκλοι που διέρχονται από τον σημείο αυτό είναι κάθετοι στο πρώτο επίπεδο. Εφόσον το δεύτερο πιθανό επίπεδο (Επίπεδο 2) πρέπει να είναι κάθετο στο πρώτο, πρέπει να διέρχεται από τον πόλο 1. Βρείτε πάλι το κατάλληλο επίπεδο που διαχωρίζει αραιώσεις από συμπιέσεις. Βήμα 6 Βρείτε τον πόλο του δεύτερου επιπέδου και χαράξτε το επίπεδο δράσης (Επίπεδο 3, καλύτερα με διακεκομμένη γραμμή). Το τελευταίο αυτό επίπεδο είναι κάθετο στα δύο πρώτα, δηλαδή είναι ένας μέγιστος κύκλος ο οποίος διέρχεται από τους πόλους των δύο πρώτων επιπέδων. Βήμα 7 Σημειώστε τις θέσεις των αξόνων μέγιστης συμπίεσης (Ρ) και μέγιστου εφελκυσμού (Τ) πάνω στο επίπεδο δράσης και δείξτε τη διεύθυνσή τους προς (Ρ) και από (Τ) το κέντρο της εστιακής σφαίρας. Οι θέσεις τους στο επίπεδο δράσης βρίσκονται στο κέντρο των αντίστοιχων τεταρτημορίων συμπιέσεων και εφελκυσμού, δηλαδή 45 από τα σημεία τομής των δύο πρώτων επιπέδων με το επίπεδο δράσης. Σημείωση: Όλες οι γωνίες στο δίκτυο προβολής πρέπει να μετρούνται πάνω σε μέγιστους κύκλους! Βήμα 8 Σημειώστε το διάνυσμα ολίσθησης, ενώνοντας το σημείο τομής του επιπέδου του ρήγματος με το βοηθητικό επίπεδο, με το κέντρο του δικτύου. Εάν το κέντρο βρίσκεται σε τεταρτημόριο εφελκυσμού τότε το διάνυσμα ολίσθησης κατευθύνεται προς το κέντρο. Εάν το κέντρο του δικτύου βρίσκεται σε τεταρτημόριο συμπιέσεων τότε το διάνυσμα ολίσθησης έχει την αντίθετη κατεύθυνση. Το διάνυσμα ολίσθησης δείχνει τη φορά ολίσθησης στο πάνω τέμαχος του ρήγματος. 6

7 Βήμα 9 Βρείτε το αζιμούθιο (γωνία παράταξης) των δύο πρώτων επιπέδων. Οι γωνίες αυτές μετρώνται δεξιόστροφα από το Βορρά μέχρι το σημείο όπου το συγκεκριμένο επίπεδο τέμνει την περιφέρεια κλίνοντας προς τα δεξιά. Βήμα 10 Μετρείστε τις γωνίες κλίσης των δύο πρώτων επιπέδων τοποθετώντας τα σε θέση μέγιστου κύκλου. Η γωνία αυτή είναι η διαφορά από την περιφέρεια μέχρι το ίχνος του επιπέδου (μέτρηση γωνίας πάνω στον ισημερινό). Βήμα 11 Καθορίστε τη διεύθυνση της ολίσθησης (δηλαδή την κίνηση) πάνω στα δύο πρώτα επίπεδα, τα οποία είναι πιθανά επίπεδα ρήγματος. Επιτυγχάνεται χαράζοντας ένα διάνυσμα από το κέντρο του δικτύου προς τους πόλους 1 και 2 (ή αντίθετα από τους πόλους προς το κέντρο, όπως αναφέρθηκε παραπάνω). Το διάνυσμα από το κέντρο προς τον πόλο 1 (2) δείχνει τη διεύθυνση ολίσθησης πάνω στο επίπεδο 2 (1). Η γωνία ολίσθησης είναι θετική όταν το κέντρο του δικτύου βρίσκεται μέσα σε συμπιέσεις (δηλαδή ανάστροφη διάρρηξη) και αρνητική όταν το κέντρο του δικτύου βρίσκεται μέσα σε αραιώσεις (δηλαδή κανονική διάρρηξη). Στην πρώτη περίπτωση (0 ο έως 180 ) η γωνία ολίσθησης μετριέται πάνω στο επίπεδο τοποθετημένο σε θέση μεσημβρινού από το Νότο προς το Βορά. Στην πρώτη περίπτωση ( 180 έως 0 ο ) η γωνία ολίσθησης μετριέται πάνω στο επίπεδο από το Βορρά προς το Νότο. Σημείωση: Για τη διάκριση του είδους της διάρρηξης σύμφωνα με τη γωνία ολίσθησης δείτε τον πίνακα που ακολουθεί. Είδος λ διάρρηξης Δεξιόστροφη Δεξιόστροφη με κανονική συνιστώσα κλίσης Κλίσης Κανονική Κλίσης Κανονική με αριστερόστροφη συνιστώσα Αριστερόστροφη Κλίσης Ανάστροφη με αριστερόστροφη συνιστώσα Κλίσης Ανάστροφη Δεξιόστροφη με ανάστροφη συνιστώσα κλίσης Δεξιόστροφη Βήμα 12 Το αζιμούθιο του άξονα μέγιστης συμπίεσης και μέγιστου εφελκυσμού, αντίστοιχα, είναι ίσο με το αζιμούθιο της ακτίνας που διέρχεται από τα σημεία όπου προβάλλονται οι άξονες αυτοί. Η κλίση τους είναι η αντίστοιχη γωνία κλίσης αυτών των διανυσμάτων (μετριέται πάνω στον ισημερινό από την περιφέρεια προς το κέντρο). 7

8 Βήμα 13 Υπολογίστε τις παραμέτρους του επιπέδου του ρήγματος και του βοηθητικού επιπέδου, καθώς και των αξόνων τάσης και τοποθετείστε τα αποτελέσματα στον παρακάτω πίνακα. Διεύθυνση Κλίση Γωνία Ολίσθησης Επίπεδο 1 Επίπεδο 2 Αζιμούθιο Κλίση Άξονας συμπίεσης Άξονας εφελκυσμού Σημείωση: Οι γωνίες παίρνουν τιμές στα παρακάτω διαστήματα: 0 < αζιμούθιο < < κλίση < < γωνία ολίσθησης < 180 Βήμα 14 Η ερώτηση για το ποιό από τα δύο επίπεδα είναι το επίπεδο του ρήγματος και ποιο το βοηθητικό επίπεδο, δεν μπορεί να απαντηθεί από τη λύση του μηχανισμού γένεσης μόνο. Απαιτούνται επί πλέον πληροφορίες, όπως η χωρική κατανομή των μετασεισμών, το σεισμοτεκτονικό καθεστώς της περιοχής όπου έγινε ο σεισμός ή οποιαδήποτε άλλη πληροφορία όπως η επιφανειακή εμφάνιση του ρήγματος. Δεδομένου ότι γνωρίζουμε ότι το ρήγμα το οποίο προκάλεσε το σεισμό είναι αυτό που κλίνει προς το Βορρά, μπορούμε να απαντήσουμε στις παρακάτω ερωτήσεις: a. Αποφασίστε ποιο είναι το επίπεδο του ρήγματος (Επίπεδο 1 ή Επίπεδο 2)? b. Ποιος είναι ο τύπος της διάρρηξης? c. Ποια είναι η διεύθυνση ολίσθησης? d. Είναι η λύση συμβατή με τη διεύθυνση των ενεργών ρηγμάτων στην περιοχή και τον προσανατολισμό του επικρατούντος πεδίου των τάσεων? 8

ΗλιακήΓεωµετρία. Γιάννης Κατσίγιαννης

ΗλιακήΓεωµετρία. Γιάννης Κατσίγιαννης ΗλιακήΓεωµετρία Γιάννης Κατσίγιαννης ΗηλιακήενέργειαστηΓη Φασµατικήκατανοµήτηςηλιακής ακτινοβολίας ΗκίνησητηςΓηςγύρωαπότονήλιο ΗκίνησητηςΓηςγύρωαπότονήλιοµπορεί να αναλυθεί σε δύο κύριες συνιστώσες: Περιφορά

Διαβάστε περισσότερα

ΦΥΛΛΟ ΕΡΓΑΣΙΑΣ: ΔΥΝΑΜΕΙΣ ΚΑΙ ΡΟΠΕΣ

ΦΥΛΛΟ ΕΡΓΑΣΙΑΣ: ΔΥΝΑΜΕΙΣ ΚΑΙ ΡΟΠΕΣ ΦΥΛΛΟ ΕΡΓΑΣΙΑΣ: ΔΥΝΑΜΕΙΣ ΚΑΙ ΡΟΠΕΣ Σ ένα στερεό ασκούνται ομοεπίπεδες δυνάμεις. Όταν το στερεό ισορροπεί, δηλαδή ισχύει ότι F 0 και δεν περιστρέφεται τότε το αλγεβρικό άθροισμα των ροπών είναι μηδέν Στ=0,

Διαβάστε περισσότερα

Mάθημα 5 ο. Σεισμικά Κύματα και Διάδοση Αυτών στο Εσωτερικό της Γης

Mάθημα 5 ο. Σεισμικά Κύματα και Διάδοση Αυτών στο Εσωτερικό της Γης Mάθημα 5 ο Σεισμικά Κύματα και Διάδοση Αυτών στο Εσωτερικό της Γης Εστιακές παράμετροι του σεισμού (επίκεντρο, χρόνος γένεσης, κλπ.) Καμπύλες χρόνων διαδρομής κυμάτων χώρου Μεταβολή των ταχυτήτων διάδοσης

Διαβάστε περισσότερα

2. ΓΕΩΛΟΓΙΑ - ΝΕΟΤΕΚΤΟΝΙΚΗ

2. ΓΕΩΛΟΓΙΑ - ΝΕΟΤΕΚΤΟΝΙΚΗ 2. 2.1 ΓΕΩΛΟΓΙΑ ΤΗΣ ΕΥΡΥΤΕΡΗΣ ΠΕΡΙΟΧΗΣ Στο κεφάλαιο αυτό παρουσιάζεται συνοπτικά το Γεωλογικό-Σεισμοτεκτονικό περιβάλλον της ευρύτερης περιοχής του Π.Σ. Βόλου - Ν.Ιωνίας. Η ευρύτερη περιοχή της πόλης του

Διαβάστε περισσότερα

Θεσσαλονίκη 14/4/2006

Θεσσαλονίκη 14/4/2006 Θεσσαλονίκη 14/4/2006 ΘΕΜΑ: Καταγραφές δικτύου επιταχυνσιογράφων του ΙΤΣΑΚ από τη πρόσφατη δράση στη περιοχή της Ζακύνθου. Στις 01:05 (ώρα Ελλάδας) της 5 ης Απριλίου 2006 συνέβη στο θαλάσσιο χώρο της Ζακύνθου

Διαβάστε περισσότερα

Ο ΣΕΙΣΜΟΣ 7,1 της 4/9/2010 ΤΟΥ CANTERBURY ΝΕΑΣ ΖΗΛΑΝΔΙΑΣ ΣΥΝΤΟΜΗ ΑΝΑΦΟΡΑ ΚΑΙ ΕΠΙ ΤΟΠΟΥ ΠΑΡΑΤΗΡΗΣΕΙΣ

Ο ΣΕΙΣΜΟΣ 7,1 της 4/9/2010 ΤΟΥ CANTERBURY ΝΕΑΣ ΖΗΛΑΝΔΙΑΣ ΣΥΝΤΟΜΗ ΑΝΑΦΟΡΑ ΚΑΙ ΕΠΙ ΤΟΠΟΥ ΠΑΡΑΤΗΡΗΣΕΙΣ Ο ΣΕΙΣΜΟΣ 7,1 της 4/9/2010 ΤΟΥ CANTERBURY ΝΕΑΣ ΖΗΛΑΝΔΙΑΣ ΣΥΝΤΟΜΗ ΑΝΑΦΟΡΑ ΚΑΙ ΕΠΙ ΤΟΠΟΥ ΠΑΡΑΤΗΡΗΣΕΙΣ Μαρίνος 1 Π., Ροντογιάννη 1 Θ., Χρηστάρας 2 Β., Τσιαμπάος 1 Γ., Σαμπατακάκης 3 Ν. 1. Εθνικό Μετσόβιο

Διαβάστε περισσότερα

Generated by Foxit PDF Creator Foxit Software http://www.foxitsoftware.com For evaluation only. ΑΣΚΗΣΗ 10 ΜΕΤΡΗΣΗ ΤΗΣ ΕΣΤΙΑΚΗΣ ΑΠΟΣΤΑΣΗΣ ΦΑΚΟΥ

Generated by Foxit PDF Creator Foxit Software http://www.foxitsoftware.com For evaluation only. ΑΣΚΗΣΗ 10 ΜΕΤΡΗΣΗ ΤΗΣ ΕΣΤΙΑΚΗΣ ΑΠΟΣΤΑΣΗΣ ΦΑΚΟΥ ΑΣΚΗΣΗ 0 ΜΕΤΡΗΣΗ ΤΗΣ ΕΣΤΙΑΚΗΣ ΑΠΟΣΤΑΣΗΣ ΦΑΚΟΥ . Γεωμετρική οπτική ΜΕΡΟΣ ΠΡΩΤΟ ΒΑΣΙΚΕΣ ΘΕΩΡΗΤΙΚΕΣ ΓΝΩΣΕΙΣ Η Γεωμετρική οπτική είναι ένας τρόπος μελέτης των κυμάτων και χρησιμοποιείται για την εξέταση μερικών

Διαβάστε περισσότερα

ΣΚΙΑΓΡΑΦΙΑ. Γενικές αρχές και έννοιες

ΣΚΙΑΓΡΑΦΙΑ. Γενικές αρχές και έννοιες ΣΚΙΑΓΡΑΦΙΑ Γενικές αρχές και έννοιες Στο σύστημα προβολής κατά Monge δεν μας δίνεται η δυνατότητα ν αντιληφθούμε άμεσα τα αντικείμενα του χώρου, παρά μόνο αφού συνδυάσουμε τις δύο προβολές του αντικειμένου

Διαβάστε περισσότερα

Κατεύθυνση:«Τεχνικής Γεωλογία και Περιβαλλοντική Υδρογεωλογία»

Κατεύθυνση:«Τεχνικής Γεωλογία και Περιβαλλοντική Υδρογεωλογία» ΜΕΤΑΠΤΥΧΙΑΚΟ ΠΡΟΓΡΑΜΜΑ: «ΕΦΑΡΜΟΣΜΕΝΗ ΚΑΙ ΠΕΡΙΒΑΛΛΟΝΤΙΚΗ ΓΕΩΛΟΓΙΑ» Κατεύθυνση:«Τεχνικής Γεωλογία και Περιβαλλοντική Υδρογεωλογία» Βασικά εργαλεία Τεχνικής Γεωλογίας και Υδρογεωλογίας Επικ. Καθηγ. Μαρίνος

Διαβάστε περισσότερα

Να το πάρει το ποτάµι;

Να το πάρει το ποτάµι; Να το πάρει το ποτάµι; Είναι η σκιά ενός σώµατος που το φωτίζει ο Ήλιος. Όπως η σκιά του γνώµονα ενός ηλιακού ρολογιού που µε το αργό πέρασµά της πάνω απ τα σηµάδια των ωρών και µε το ύφος µιας άλλης εποχής

Διαβάστε περισσότερα

Ανάκλαση Είδωλα σε κοίλα και κυρτά σφαιρικά κάτοπτρα. Αντώνης Πουλιάσης Φυσικός M.Sc. 12 ο ΓΥΜΝΑΣΙΟ ΠΕΡΙΣΤΕΡΙΟΥ

Ανάκλαση Είδωλα σε κοίλα και κυρτά σφαιρικά κάτοπτρα. Αντώνης Πουλιάσης Φυσικός M.Sc. 12 ο ΓΥΜΝΑΣΙΟ ΠΕΡΙΣΤΕΡΙΟΥ Ανάκλαση Είδωλα σε κοίλα και κυρτά σφαιρικά κάτοπτρα Αντώνης Πουλιάσης Φυσικός M.Sc. 12 ο ΓΥΜΝΑΣΙΟ ΠΕΡΙΣΤΕΡΙΟΥ Πουλιάσης Αντώνης Φυσικός M.Sc. 2 Ανάκλαση Είδωλα σε κοίλα και κυρτά σφαιρικά κάτοπτρα Γεωμετρική

Διαβάστε περισσότερα

ΣΧΟΛΗ ΝΑΥΤΙΚΩΝ ΔΟΚΙΜΩΝ ΧΑΡΤΟΓΡΑΦΙΚΕΣ ΠΡΟΒΟΛΕΣ ΕΦΑΡΜΟΓΕΣ ΣΤΗ ΝΑΥΤΙΛΙΑ ΚΑΙ ΤΙΣ ΝΑΥΤΙΚΕΣ ΕΠΙΧΕΙΡΗΣΕΙΣ. Δρ. ΑΘΑΝΑΣΙΟΣ Η. ΠΑΛΛΗΚΑΡΗΣ Αν.

ΣΧΟΛΗ ΝΑΥΤΙΚΩΝ ΔΟΚΙΜΩΝ ΧΑΡΤΟΓΡΑΦΙΚΕΣ ΠΡΟΒΟΛΕΣ ΕΦΑΡΜΟΓΕΣ ΣΤΗ ΝΑΥΤΙΛΙΑ ΚΑΙ ΤΙΣ ΝΑΥΤΙΚΕΣ ΕΠΙΧΕΙΡΗΣΕΙΣ. Δρ. ΑΘΑΝΑΣΙΟΣ Η. ΠΑΛΛΗΚΑΡΗΣ Αν. ΣΧΟΛΗ ΝΑΥΤΙΚΩΝ ΔΟΚΙΜΩΝ ΧΑΡΤΟΓΡΑΦΙΚΕΣ ΠΡΟΒΟΛΕΣ ΕΦΑΡΜΟΓΕΣ ΣΤΗ ΝΑΥΤΙΛΙΑ ΚΑΙ ΤΙΣ ΝΑΥΤΙΚΕΣ ΕΠΙΧΕΙΡΗΣΕΙΣ Δρ. ΑΘΑΝΑΣΙΟΣ Η. ΠΑΛΛΗΚΑΡΗΣ Αν. καθηγητής ΣΝΔ ΠΕΙΡΑΙΑΣ 2011 Απαγορεύεται η αντιγραφή, αποθήκευση και διανομή

Διαβάστε περισσότερα

Τράπεζα Θεμάτων Διαβαθμισμένης Δυσκολίας-Μαθηματικά Ομάδας Προσανατολισμού Θετικών Σπουδών ΟΜΑΔΑΣ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ Β Λ Υ Κ Ε Ι Ο Υ

Τράπεζα Θεμάτων Διαβαθμισμένης Δυσκολίας-Μαθηματικά Ομάδας Προσανατολισμού Θετικών Σπουδών ΟΜΑΔΑΣ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ Β Λ Υ Κ Ε Ι Ο Υ Μ Α Θ Η Μ Α Τ Ι Κ Α ΟΜΑΔΑΣ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ Β Λ Υ Κ Ε Ι Ο Υ ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ ΔΙΑΒΑΘΜΙΣΜΕΝΗΣ ΔΥΣΚΟΛΙΑΣ Σχολικό έτος : 04-05 Τα θέματα εμπλουτίζονται με την δημοσιοποίηση και των νέων θεμάτων

Διαβάστε περισσότερα

ΤΕΧΝΙΚΗ ΓΕΩΛΟΓΙΑ ΕΡΓΑΣΤΗΡΙΟ 1 Ο ΤΟΠΟΓΡΑΦΙΚΟΙ ΧΑΡΤΕΣ Δρ. ΜΑΡΙΑ ΦΕΡΕΝΤΙΝΟΥ 2008-2009

ΤΕΧΝΙΚΗ ΓΕΩΛΟΓΙΑ ΕΡΓΑΣΤΗΡΙΟ 1 Ο ΤΟΠΟΓΡΑΦΙΚΟΙ ΧΑΡΤΕΣ Δρ. ΜΑΡΙΑ ΦΕΡΕΝΤΙΝΟΥ 2008-2009 ΤΕΧΝΙΚΗ ΓΕΩΛΟΓΙΑ ΕΡΓΑΣΤΗΡΙΟ 1 Ο ΤΟΠΟΓΡΑΦΙΚΟΙ ΧΑΡΤΕΣ Δρ. ΜΑΡΙΑ ΦΕΡΕΝΤΙΝΟΥ 2008-2009 Τοπογραφικοί Χάρτες Περίγραμμα - Ορισμοί - Χαρακτηριστικά Στοιχεία - Ισοϋψείς Καμπύλες - Κατασκευή τοπογραφικής τομής

Διαβάστε περισσότερα

της ΓΕΩΛΟΓΙΚΗΣ ΠΥΞΙΔΑΣ

της ΓΕΩΛΟΓΙΚΗΣ ΠΥΞΙΔΑΣ Οδηγίες Χρήσης της ΓΕΩΛΟΓΙΚΗΣ ΠΥΞΙΔΑΣ ΕΡΓΑΣΤΗΡΙΟ ΤΕΚΤΟΝΙΚΗΣ και ΓΕΩΛΟΓΙΚΩΝ ΧΑΡΤΟΓΡΑΦΗΣΕΩΝ Αθήνα 2010-1- Με τη γεωλογική πυξίδα μπορούμε να μετρήσουμε τα στοιχεία των επιπέδων των γεωλογικών επιφανειών

Διαβάστε περισσότερα

Σεισµός της 8 ης Ιουνίου 2008 (Μ 6.5), των Νοµών Αχαϊας & Ηλείας ΙΑΘΕΣΗ ΨΗΦΙΑΚΩΝ ΚΑΤΑΓΡΑΦΩΝ ΤΟΥ ΙΚΤΥΟΥ ΕΠΙΤΑΧΥΝΣΙΟΓΡΑΦΩΝ ΤΟΥ ΙΤΣΑΚ

Σεισµός της 8 ης Ιουνίου 2008 (Μ 6.5), των Νοµών Αχαϊας & Ηλείας ΙΑΘΕΣΗ ΨΗΦΙΑΚΩΝ ΚΑΤΑΓΡΑΦΩΝ ΤΟΥ ΙΚΤΥΟΥ ΕΠΙΤΑΧΥΝΣΙΟΓΡΑΦΩΝ ΤΟΥ ΙΤΣΑΚ Σεισµός της 8 ης Ιουνίου 28 (Μ 6.5), των Νοµών Αχαϊας & Ηλείας ΙΑΘΕΣΗ ΨΗΦΙΑΚΩΝ ΚΑΤΑΓΡΑΦΩΝ ΤΟΥ ΙΚΤΥΟΥ ΕΠΙΤΑΧΥΝΣΙΟΓΡΑΦΩΝ ΤΟΥ ΙΤΣΑΚ Το ίκτυο Επιταχυνσιογράφων του Ινστιτούτου Τεχνικής Σεισµολογίας και Αντισεισµικών

Διαβάστε περισσότερα

ΕΡΓΑΣΤΗΡΙΟ ΓΕΩΔΑΙΣΙΑΣ ΚΑΙ ΓΕΩΔΑΙΤΙΚΩΝ ΕΦΑΡΜΟΓΩΝ ΤΜΗΜΑ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΑΤΡΩΝ

ΕΡΓΑΣΤΗΡΙΟ ΓΕΩΔΑΙΣΙΑΣ ΚΑΙ ΓΕΩΔΑΙΤΙΚΩΝ ΕΦΑΡΜΟΓΩΝ ΤΜΗΜΑ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΑΤΡΩΝ ΕΡΓΑΣΤΗΡΙΟ ΓΕΩΔΑΙΣΙΑΣ ΚΑΙ ΓΕΩΔΑΙΤΙΚΩΝ ΕΦΑΡΜΟΓΩΝ ΤΜΗΜΑ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΑΤΡΩΝ Πρόγραμμα Ανάπτυξης τηλεμετρικών κλπ δικτύων GPS για διάφορες εφαρμογές (Ηφαιστειολογική έρευνα, έρευνα σεισμών,

Διαβάστε περισσότερα

1.5 ΕΣΩΤΕΡΙΚΟ ΓΙΝΟΜΕΝΟ ΔΙΑΝΥΣΜΑΤΩΝ

1.5 ΕΣΩΤΕΡΙΚΟ ΓΙΝΟΜΕΝΟ ΔΙΑΝΥΣΜΑΤΩΝ ΚΕΦΑΛΑΙΟ Ο : ΔΙΑΝΥΣΜΑΤΑ - ΕΝΟΤΗΤΑ.. ΕΣΩΤΕΡΙΚΟ ΓΙΝΟΜΕΝΟ ΔΙΑΝΥΣΜΑΤΩΝ ΣΤΟΙΧΕΙΑ ΘΕΩΡΙΑΣ Αν είναι δυο μη μηδενικά διανύσματα τότε ονομάζουμε εσωτερικό γινόμενο των και τον αριθμό : όπου φ είναι η γωνία των

Διαβάστε περισσότερα

ΠΡΟΚΑΤΑΡΚΤΙΚΟ ΔΕΛΤΙΟ Σεισμός της 8 ης Ιανουαρίου 2012 στο θαλάσσιο χώρο ΝΑ της Λήμνου Ι. Καλογεράς, Ν. Μελής & Χ. Ευαγγελίδης

ΠΡΟΚΑΤΑΡΚΤΙΚΟ ΔΕΛΤΙΟ Σεισμός της 8 ης Ιανουαρίου 2012 στο θαλάσσιο χώρο ΝΑ της Λήμνου Ι. Καλογεράς, Ν. Μελής & Χ. Ευαγγελίδης ΠΡΟΚΑΤΑΡΚΤΙΚΟ ΔΕΛΤΙΟ Σεισμός της 8 ης Ιανουαρίου 2012 στο θαλάσσιο χώρο ΝΑ της Λήμνου Ι. Καλογεράς, Ν. Μελής & Χ. Ευαγγελίδης Στις 16:16 τοπική ώρα της 8 ης Ιανουαρίου 2012 σημειώθηκε ισχυρή σεισμική δόνηση

Διαβάστε περισσότερα

ΑΡΧΗ 1ΗΣ ΣΕΛΙΔΑΣ Δ ΕΣΠΕΡΙΝΩΝ

ΑΡΧΗ 1ΗΣ ΣΕΛΙΔΑΣ Δ ΕΣΠΕΡΙΝΩΝ ΑΡΧΗ ΗΣ ΣΕΛΙΔΑΣ Δ ΕΣΠΕΡΙΝΩΝ ΕΠΑΝΑΛΗΠΤΙΚΕΣ ΠΑΝΕΛΛΗΝΙΕΣ ΕΞΕΤΑΣΕΙΣ Δ ΤΑΞΗΣ ΕΣΠΕΡΙΝΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΔΕΥΤΕΡΑ 5 ΙΟΥΝΙΟΥ 05 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΦΥΣΙΚΗ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΣΥΝΟΛΟ ΣΕΛΙΔΩΝ: ΕΠΤΑ

Διαβάστε περισσότερα

Ηλιακήενέργεια. Ηλιακή γεωµετρία. Εργαστήριο Αιολικής Ενέργειας Τ.Ε.Ι. Κρήτης. ηµήτρης Αλ. Κατσαπρακάκης

Ηλιακήενέργεια. Ηλιακή γεωµετρία. Εργαστήριο Αιολικής Ενέργειας Τ.Ε.Ι. Κρήτης. ηµήτρης Αλ. Κατσαπρακάκης Ηλιακήενέργεια Ηλιακή γεωµετρία Εργαστήριο Αιολικής Ενέργειας Τ.Ε.Ι. Κρήτης ηµήτρης Αλ. Κατσαπρακάκης Ηλιακήγεωµετρία Ηλιακήγεωµετρία Η Ηλιακή Γεωµετρία αναφέρεται στη µελέτη της θέσης του ήλιου σε σχέση

Διαβάστε περισσότερα

ΠΑΡΑΡΤΗΜΑ Α. Γεωμετρικές κατασκευές. 1. Μεσοκάθετος ευθυγράμμου τμήματος. 2. ιχοτόμος γωνίας. 3. ιχοτόμος γωνίας με άγνωστη κορυφή. 4.

ΠΑΡΑΡΤΗΜΑ Α. Γεωμετρικές κατασκευές. 1. Μεσοκάθετος ευθυγράμμου τμήματος. 2. ιχοτόμος γωνίας. 3. ιχοτόμος γωνίας με άγνωστη κορυφή. 4. ΠΑΡΑΡΤΗΜΑ Α Γεωμετρικές κατασκευές Σκοπός των σημειώσεων αυτών είναι να υπενθυμίζουν γεωμετρικές κατασκευές, που θα φανούν ιδιαίτερα χρήσιμες στο μάθημα της παραστατικής γεωμετρίας, της προοπτικής, αξονομετρίας

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ 5 ΠΕΡΙΟΔΩΝ

ΜΑΘΗΜΑΤΙΚΑ 5 ΠΕΡΙΟΔΩΝ ΕΥΡΩΠΑΙΚΟ ΑΠΟΛΥΤΗΡΙΟ 010 ΜΑΘΗΜΑΤΙΚΑ 5 ΠΕΡΙΟΔΩΝ ΗΜΕΡΟΜΗΝΙΑ: 4 Ιουνίου 010 ΔΙΑΡΚΕΙΑ ΕΞΕΤΑΣΗΣ: 4 ώρες (40 λεπτά) ΕΠΙΤΡΕΠΟΜΕΝΑ ΒΟΗΘΗΜΑΤΑ Ευρωπαικό τυπολόγιο Μη προγραμματιζόμενος υπολογιστής, χωρίς γραφικά

Διαβάστε περισσότερα

2 Η ΕΥΘΕΙΑ ΣΤΟ ΕΠΙΠΕΔΟ. Εισαγωγή

2 Η ΕΥΘΕΙΑ ΣΤΟ ΕΠΙΠΕΔΟ. Εισαγωγή Η ΕΥΘΕΙΑ ΣΤΟ ΕΠΙΠΕΔΟ Εισαγωγή Η ιδέα της χρησιμοποίησης ενός συστήματος συντεταγμένων για τον προσδιορισμό της θέσης ενός σημείου πάνω σε μια επιφάνεια προέρχεται από την Γεωγραφία και ήταν γνωστή στους

Διαβάστε περισσότερα

Ο ΣΕΙΣΜΟΣ ΤΟΥ ΒΟΡΕΙΟΥ ΑΙΓΑΙΟΥ ΤΗΣ 24/5/2014 12:25 Μw=6.9. ΠΡΟΚΑΤΑΡΚΤΙΚΑ ΣΤΟΙΧΕΙΑ ΑΠΟ ΟΑΣΠ - ΙΤΣΑΚ. ΓΕΝΙΚΑ

Ο ΣΕΙΣΜΟΣ ΤΟΥ ΒΟΡΕΙΟΥ ΑΙΓΑΙΟΥ ΤΗΣ 24/5/2014 12:25 Μw=6.9. ΠΡΟΚΑΤΑΡΚΤΙΚΑ ΣΤΟΙΧΕΙΑ ΑΠΟ ΟΑΣΠ - ΙΤΣΑΚ. ΓΕΝΙΚΑ Ο ΣΕΙΣΜΟΣ ΤΟΥ ΒΟΡΕΙΟΥ ΑΙΓΑΙΟΥ ΤΗΣ 24/5/2014 12:25 Μw=6.9. ΠΡΟΚΑΤΑΡΚΤΙΚΑ ΣΤΟΙΧΕΙΑ ΑΠΟ ΟΑΣΠ - ΙΤΣΑΚ. ΓΕΝΙΚΑ Στις 24 Μαΐου 2014 και τοπική ώρα 12:25 (09:25 GΜT) σημειώθηκε ισχυρή σεισμική δόνηση στο Βόρειο

Διαβάστε περισσότερα

ΜΕΡΟΣ 1 ΠΕΡΙΕΧΟΜΕΝΑ. 1. Γεωλογείν περί Σεισμών...3. 2. Λιθοσφαιρικές πλάκες στον Ελληνικό χώρο... 15. 3. Κλάδοι της Γεωλογίας των σεισμών...

ΜΕΡΟΣ 1 ΠΕΡΙΕΧΟΜΕΝΑ. 1. Γεωλογείν περί Σεισμών...3. 2. Λιθοσφαιρικές πλάκες στον Ελληνικό χώρο... 15. 3. Κλάδοι της Γεωλογίας των σεισμών... ΜΕΡΟΣ 1 1. Γεωλογείν περί Σεισμών....................................3 1.1. Σεισμοί και Γεωλογία....................................................3 1.2. Γιατί μελετάμε τους σεισμούς...........................................

Διαβάστε περισσότερα

ΙΚΤΥΑ ΚΙΝΗΤΩΝ ΚΑΙ ΠΡΟΣΩΠΙΚΩΝ ΕΠΙΚΟΙΝΩΝΙΩΝ. Ασκήσεις για τη διαχείριση ραδιοδιαύλων

ΙΚΤΥΑ ΚΙΝΗΤΩΝ ΚΑΙ ΠΡΟΣΩΠΙΚΩΝ ΕΠΙΚΟΙΝΩΝΙΩΝ. Ασκήσεις για τη διαχείριση ραδιοδιαύλων ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧ/ΚΩΝ ΚΑΙ ΜΗΧ. ΥΠΟΛΟΓΙΣΤΩΝ ΤΟΜΕΑΣ ΕΠΙΚΟΙΝΩΝΙΩΝ, ΗΛΕΚΤΡΟΝΙΚΗΣ ΚΑΙ ΣΥΣΤΗΜΑΤΩΝ ΠΛΗΡΟΦΟΡΙΚΗΣ ΙΚΤΥΑ ΚΙΝΗΤΩΝ ΚΑΙ ΠΡΟΣΩΠΙΚΩΝ ΕΠΙΚΟΙΝΩΝΙΩΝ Ασκήσεις για τη διαχείριση

Διαβάστε περισσότερα

ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΤΕΧΝΙΚΗ ΣΕΙΣΜΟΛΟΓΙΑ

ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΤΕΧΝΙΚΗ ΣΕΙΣΜΟΛΟΓΙΑ ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΤΜΗΜΑ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΕΡΓΑΣΤΗΡΙΟ ΑΝΤΙΣΕΙΣΜΙΚΗΣ ΤΕΧΝΟΛΟΓΙΑΣ ΤΕΧΝΙΚΗ ΣΕΙΣΜΟΛΟΓΙΑ ΠΑΡΑΔΟΣΕΙΣ 2006-2007 Π.Γ.ΚΑΡΥΔΗΣ Ι.Μ.ΤΑΦΛΑΜΠΑΣ ΜΑΙΟΣ 2007 ΠΕΡΙΕΧΟΜΕΝΑ 1. ΣΕΙΣΜΟΙ-ΜΗΧΑΝΙΣΜΟΙ

Διαβάστε περισσότερα

ΘΕΜΑ Α Ι. Στις ερωτήσεις 1-4 να γράψετε στο τετράδιο σας τον αριθμό της ερώτησης και το γράμμα που αντιστοιχεί στη σωστή απάντηση.

ΘΕΜΑ Α Ι. Στις ερωτήσεις 1-4 να γράψετε στο τετράδιο σας τον αριθμό της ερώτησης και το γράμμα που αντιστοιχεί στη σωστή απάντηση. ΔΙΑΓΩΝΙΣΜΑ ΠΡΟΣΟΜΟΙΩΣΗΣ ΦΥΣΙΚΗ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΘΕΜΑ Α Ι. Στις ερωτήσεις 1-4 να γράψετε στο τετράδιο σας τον αριθμό της ερώτησης και το γράμμα που αντιστοιχεί στη σωστή απάντηση. 1.

Διαβάστε περισσότερα

α) γνησίως αύξουσα σε ένα διάστημα Δ του πεδίου ορισμού της (Σχ.α), όταν β) γνησίως φθίνουσα σε ένα διάστημα Δ του πεδίου ορισμού της (Σχ.

α) γνησίως αύξουσα σε ένα διάστημα Δ του πεδίου ορισμού της (Σχ.α), όταν β) γνησίως φθίνουσα σε ένα διάστημα Δ του πεδίου ορισμού της (Σχ. ΜΟΝΟΤΟΝΙΑ. ΙΔΙΟΤΗΤΕΣ ΣΥΝΑΡΤΗΣΕΩΝ. ΜΟΝΟΤΟΝΙΑ - ΑΚΡΟΤΑΤΑ - ΣΥΜΜΕΤΡΙΕΣ Μια συνάρτηση f λέγεται: α) γνησίως αύξουσα σε ένα διάστημα Δ του πεδίου ορισμού της (Σχ.α), όταν για οποιαδήποτε χ,χ Δ με χ

Διαβάστε περισσότερα

Επιμέλεια: Σακαρίκος Ευάγγελος 108 Θέματα - 24/1/2015

Επιμέλεια: Σακαρίκος Ευάγγελος 108 Θέματα - 24/1/2015 Τράπεζα Θεμάτων Β Λυκείου Μαθηματικά Προσανατολισμού Επιμέλεια: Σακαρίκος Ευάγγελος 08 Θέματα - 4//05 Τράπεζα Θεμάτων Β Λυκείου Μαθηματικά Προσανατολισμού Τράπεζα Θεμάτων Β Λυκείου Μαθηματικά Προσαν. Κεφάλαιο

Διαβάστε περισσότερα

ΔΥΝΑΜΙΚΟ ΔΙΑΦΟΡΑ ΔΥΝΑΜΙΚΟΥ

ΔΥΝΑΜΙΚΟ ΔΙΑΦΟΡΑ ΔΥΝΑΜΙΚΟΥ ΔΥΝΑΜΙΚΟ ΔΙΑΦΟΡΑ ΔΥΝΑΜΙΚΟΥ Υποθέστε ότι έχουμε μερικά ακίνητα φορτισμένα σώματα (σχ.). Τα σώματα αυτά δημιουργούν γύρω τους ηλεκτρικό πεδίο. Αν σε κάποιο σημείο Α του ηλεκτρικού πεδίου τοποθετήσουμε ένα

Διαβάστε περισσότερα

ΚΙΝΗΣΗ ΠΛΑΝΗΤΩΝ - ΛΟΞΩΣΗ

ΚΙΝΗΣΗ ΠΛΑΝΗΤΩΝ - ΛΟΞΩΣΗ ΚΙΝΗΣΗ ΠΛΑΝΗΤΩΝ - ΛΟΞΩΣΗ Η κίνηση των πλανητών είναι το αποτέλεσμα της σύνθεσης 2 κινήσεων: μίας περιστροφής γύρω από τον Ήλιο, η περίοδος της οποίας μας δίνει το έτος κάθε πλανήτη, και πραγματοποιείται

Διαβάστε περισσότερα

1 ο ΔΙΑΓΩΝΙΣΜΑ ΦΥΣΙΚΗΣ ΘΕΤΙΚΗΣ-ΤΕΧΝΟΛΟΓΙΚΗΣ

1 ο ΔΙΑΓΩΝΙΣΜΑ ΦΥΣΙΚΗΣ ΘΕΤΙΚΗΣ-ΤΕΧΝΟΛΟΓΙΚΗΣ ο ΔΙΑΓΩΝΙΣΜΑ ΦΥΣΙΗΣ ΘΕΤΙΗΣ-ΤΕΧΝΟΛΟΓΙΗΣ ΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΕΙΟΥ Θέμα ο. ύλινδρος περιστρέφεται γύρω από άξονα που διέρχεται από το κέντρο μάζας του με γωνιακή ταχύτητα ω. Αν ο συγκεκριμένος κύλινδρος περιστρεφόταν

Διαβάστε περισσότερα

φυσική κατεύθυνσης γ λυκείου ΕΡΩΤΗΣΕΙΣ ΣΩΣΤΟΥ ΛΑΘΟΥΣ ΕΠΙΛΟΓΗΣ (κεφ.4) Γκότσης Θανάσης - Τερζής Πέτρος

φυσική κατεύθυνσης γ λυκείου ΕΡΩΤΗΣΕΙΣ ΣΩΣΤΟΥ ΛΑΘΟΥΣ ΕΠΙΛΟΓΗΣ (κεφ.4) Γκότσης Θανάσης - Τερζής Πέτρος 1 Ένα στερεό εκτελεί μεταφορική κίνηση όταν: α) η τροχιά κάθε σημείου είναι ευθεία γραμμή β) όλα τα σημεία του έχουν ταχύτητα που μεταβάλλεται με το χρόνο γ) μόνο το κέντρο μάζας του διαγράφει ευθύγραμμη

Διαβάστε περισσότερα

ΑΡΧΗ 1ΗΣ ΣΕΛΙΔΑΣ Δ ΕΣΠΕΡΙΝΩΝ

ΑΡΧΗ 1ΗΣ ΣΕΛΙΔΑΣ Δ ΕΣΠΕΡΙΝΩΝ Θέμα Α ΑΡΧΗ 1ΗΣ ΣΕΛΙΔΑΣ Δ ΕΣΠΕΡΙΝΩΝ ΠΑΝΕΛΛΑΔΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Δ ΤΑΞΗΣ ΕΣΠΕΡΙΝΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΚΑΙ ΕΠΑΛ (ΟΜΑΔΑ Β ) ΠΑΡΑΣΚΕΥΗ 9 ΜΑΪΟΥ 015 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΦΥΣΙΚΗ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ (ΚΑΙ

Διαβάστε περισσότερα

ΘΕΜΑ Α Παράδειγμα 1. Α1. Ο ρυθμός μεταβολής της ταχύτητας ονομάζεται και α. μετατόπιση. β. επιτάχυνση. γ. θέση. δ. διάστημα.

ΘΕΜΑ Α Παράδειγμα 1. Α1. Ο ρυθμός μεταβολής της ταχύτητας ονομάζεται και α. μετατόπιση. β. επιτάχυνση. γ. θέση. δ. διάστημα. ΘΕΜΑ Α Παράδειγμα 1 Α1. Ο ρυθμός μεταβολής της ταχύτητας ονομάζεται και α. μετατόπιση. β. επιτάχυνση. γ. θέση. δ. διάστημα. Α2. Για τον προσδιορισμό μιας δύναμης που ασκείται σε ένα σώμα απαιτείται να

Διαβάστε περισσότερα

Να αναγνωρίζουμε τις σχετικές θέσεις ευθειών και επιπέδων στον χώρο. Να υπολογίζουμε το εμβαδόν και τον όγκο ορθού πρίσματος.

Να αναγνωρίζουμε τις σχετικές θέσεις ευθειών και επιπέδων στον χώρο. Να υπολογίζουμε το εμβαδόν και τον όγκο ορθού πρίσματος. Ενότητα 5 Στερεομετρία Στην ενότητα αυτή θα μάθουμε: Να αναγνωρίζουμε τις σχετικές θέσεις ευθειών και επιπέδων στον χώρο. Να υπολογίζουμε το εμβαδόν και τον όγκο ορθού πρίσματος. Να υπολογίζουμε το εμβαδόν

Διαβάστε περισσότερα

ΑΡΧΗ 1ΗΣ ΣΕΛΙΔΑΣ Γ ΗΜΕΡΗΣΙΩΝ

ΑΡΧΗ 1ΗΣ ΣΕΛΙΔΑΣ Γ ΗΜΕΡΗΣΙΩΝ ΑΡΧΗ 1ΗΣ ΣΕΛΙΔΑΣ Γ ΗΜΕΡΗΣΙΩΝ ΠΑΝΕΛΛΑΔΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΚΑΙ ΕΠΑΛ (ΟΜΑΔΑ Β ) ΠΑΡΑΣΚΕΥΗ 9 ΜΑΪΟΥ 015 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΦΥΣΙΚΗ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ (ΚΑΙ ΤΩΝ

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 6 ΚΕΝΤΡΟ ΒΑΡΟΥΣ-ΡΟΠΕΣ Α ΡΑΝΕΙΑΣ

ΚΕΦΑΛΑΙΟ 6 ΚΕΝΤΡΟ ΒΑΡΟΥΣ-ΡΟΠΕΣ Α ΡΑΝΕΙΑΣ ΚΕΦΑΛΑΙΟ 6 ΚΕΝΤΡΟ ΒΑΡΟΥΣ-ΡΟΠΕΣ Α ΡΑΝΕΙΑΣ 6.. ΕΙΣΑΓΩΓΙΚΕΣ ΠΛΗΡΟΦΟΡΙΕΣ Για τον υπολογισµό των τάσεων και των παραµορφώσεων ενός σώµατος, που δέχεται φορτία, δηλ. ενός φορέα, είναι βασικό δεδοµένο ή ζητούµενο

Διαβάστε περισσότερα

1 ΦΕΠ 012 Φυσική και Εφαρμογές

1 ΦΕΠ 012 Φυσική και Εφαρμογές 1 ΦΕΠ 012 Φυσική και Εφαρμογές Διάλεξη 10 η Ομαλή κυκλική κίνηση Δθ = ω = σταθερό Δt X = Rσυν (ωt) => X 2 +Υ 2 = R 2 Υ = Rημ(ωt) Οι προβολές της κίνησης στους άξονες των x και y είναι αρμονικές ταλαντώσεις

Διαβάστε περισσότερα

ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ ΕΣΠΕΡΙΝΩΝ

ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ ΕΣΠΕΡΙΝΩΝ ΑΡΧΗ ΗΣ ΣΕΛΙ ΑΣ ΕΣΠΕΡΙΝΩΝ ΠΑΝΕΛΛΑΔΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Δ ΤΑΞΗΣ ΕΣΠΕΡΙΝΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΤΕΤΑΡΤΗ ΜΑΪΟΥ 03 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΦΥΣΙΚΗ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ (ΚΑΙ ΤΩΝ ΔΥΟ ΚΥΚΛΩΝ) ΣΥΝΟΛΟ ΣΕΛΙΔΩΝ:

Διαβάστε περισσότερα

Κεφάλαιο 32 Φως: Ανάκλασηκαι ιάθλαση. Copyright 2009 Pearson Education, Inc.

Κεφάλαιο 32 Φως: Ανάκλασηκαι ιάθλαση. Copyright 2009 Pearson Education, Inc. Κεφάλαιο 32 Φως: Ανάκλασηκαι ιάθλαση Γεωµετρική θεώρηση του Φωτός Ανάκλαση ηµιουργίαειδώλουαπόκάτοπτρα. είκτης ιάθλασης Νόµος του Snell Ορατό Φάσµα και ιασπορά Εσωτερική ανάκλαση Οπτικές ίνες ιάθλαση σε

Διαβάστε περισσότερα

Πεδίο, ονομάζεται μια περιοχή του χώρου, όπου σε κάθε σημείο της ένα ορισμένο φυσικό μέγεθος

Πεδίο, ονομάζεται μια περιοχή του χώρου, όπου σε κάθε σημείο της ένα ορισμένο φυσικό μέγεθος ΗΛΕΚΤΡΙΚΟ ΠΕΔΙΟ Πεδίο, ονομάζεται μια περιοχή του χώρου, όπου σε κάθε σημείο της ένα ορισμένο φυσικό μέγεθος παίρνει καθορισμένη τιμή. Ηλεκτρικό πεδίο Ηλεκτρικό πεδίο ονομάζεται ο χώρος, που σε κάθε σημείο

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 2Ο : Η ΕΥΘΕΙΑ ΣΤΟ ΕΠΙΠΕΔΟ ΒΑΣΙΚΗ ΜΕΘΟΔΟΛΟΓΙΑ

ΚΕΦΑΛΑΙΟ 2Ο : Η ΕΥΘΕΙΑ ΣΤΟ ΕΠΙΠΕΔΟ ΒΑΣΙΚΗ ΜΕΘΟΔΟΛΟΓΙΑ ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ & ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Β ΛΥΚΕΙΟΥ ΚΕΦΑΛΑΙΟ Ο : Η ΕΥΘΕΙΑ ΣΤΟ ΕΠΙΠΕΔΟ ΒΑΣΙΚΗ ΜΕΘΟΔΟΛΟΓΙΑ. Ένα σημείο Μ(x,y) ανήκει σε μια γραμμή C αν και μόνο αν επαληθεύει την εξίσωσή της. Π.χ. :

Διαβάστε περισσότερα

Μετατόπιση, είναι η αλλαγή (μεταβολή) της θέσης ενός κινητού. Η μετατόπιση εκφράζει την απόσταση των δύο θέσεων μεταξύ των οποίων κινήθηκε το κινητό.

Μετατόπιση, είναι η αλλαγή (μεταβολή) της θέσης ενός κινητού. Η μετατόπιση εκφράζει την απόσταση των δύο θέσεων μεταξύ των οποίων κινήθηκε το κινητό. Μετατόπιση, είναι η αλλαγή (μεταβολή) της θέσης ενός κινητού. Η μετατόπιση εκφράζει την απόσταση των δύο θέσεων μεταξύ των οποίων κινήθηκε το κινητό. Η ταχύτητα (υ), είναι το πηλίκο της μετατόπισης (Δx)

Διαβάστε περισσότερα

r r r r r r r r r r r Μονάδες 5 ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ Γ ΗΜΕΡΗΣΙΩΝ

r r r r r r r r r r r Μονάδες 5 ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ Γ ΗΜΕΡΗΣΙΩΝ ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ Γ ΗΜΕΡΗΣΙΩΝ ΠΑΝΕΛΛΗΝΙΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΚΑΙ Γ ΤΑΞΗΣ ΕΠΑΛ (ΟΜΑ Α Β ) ΠΑΡΑΣΚΕΥΗ 0 ΜΑÏΟΥ 011 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΦΥΣΙΚΗ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ (ΚΑΙ

Διαβάστε περισσότερα

Κυριακή, 17 Μαίου, 2009 Ώρα: 10:00-12:30 ΠΡΟΣΕΙΝΟΜΕΝΕ ΛΤΕΙ

Κυριακή, 17 Μαίου, 2009 Ώρα: 10:00-12:30 ΠΡΟΣΕΙΝΟΜΕΝΕ ΛΤΕΙ ΕΝΩΗ ΚΥΠΡΙΩΝ ΦΥΙΚΩΝ 5 Η ΠΑΓΚΥΠΡΙΑ ΟΛΥΜΠΙΑΔΑ ΦΥΙΚΗ Γ ΓΥΜΝΑΙΟΥ Κυριακή, 17 Μαίου, 2009 Ώρα: 10:00-12:30 ΠΡΟΣΕΙΝΟΜΕΝΕ ΛΤΕΙ 1. α) Ζεύγος δυνάμεων Δράσης Αντίδρασης είναι η δύναμη που ασκεί ο μαθητής στο έδαφος

Διαβάστε περισσότερα

ΘΕΜΑ: «ΦΟΙΤΗΤΙΚΗ ΚΑΤΟΙΚΙΑ»

ΘΕΜΑ: «ΦΟΙΤΗΤΙΚΗ ΚΑΤΟΙΚΙΑ» ΑΡΧΗ 1ης ΣΕΛΙ ΑΣ ΚΕΝΤΡΙΚΗ ΕΠΙΤΡΟΠΗ ΕΙΔΙΚΩΝ ΜΑΘΗΜΑΤΩΝ ΤΡΙΤΗ 30 ΙΟΥΝΙΟΥ 2009 ΚΟΙΝΗ ΕΞΕΤΑΣΗ ΟΛΩΝ ΤΩΝ ΥΠΟΨΗΦΙΩΝ ΣΤΟ ΓΡΑΜΜΙΚΟ ΣΧΕΔΙΟ ΣΥΝΟΛΟ ΣΕΛΙΔΩΝ ΠΕΝΤΕ (5) ΘΕΜΑ: «ΦΟΙΤΗΤΙΚΗ ΚΑΤΟΙΚΙΑ» ΠΕΡΙΓΡΑΦΗ: Πρόκειται

Διαβάστε περισσότερα

ΕΚΦΩΝΗΣΕΙΣ ΑΣΚΗΣΕΩΝ. Άσκηση 1. (Ροπή αδράνειας - Θεμελιώδης νόμος στροφικής κίνησης)

ΕΚΦΩΝΗΣΕΙΣ ΑΣΚΗΣΕΩΝ. Άσκηση 1. (Ροπή αδράνειας - Θεμελιώδης νόμος στροφικής κίνησης) ΕΚΦΩΝΗΣΕΙΣ ΑΣΚΗΣΕΩΝ Άσκηση. (Ροπή αδράνειας - Θεμελιώδης νόμος στροφικής κίνησης) Ένας ομογενής οριζόντιος δίσκος, μάζας Μ και ακτίνας R, περιστρέφεται γύρω από κατακόρυφο ακλόνητο άξονα z, ο οποίος διέρχεται

Διαβάστε περισσότερα

Κεφάλαιο 10 Περιστροφική Κίνηση. Copyright 2009 Pearson Education, Inc.

Κεφάλαιο 10 Περιστροφική Κίνηση. Copyright 2009 Pearson Education, Inc. Κεφάλαιο 10 Περιστροφική Κίνηση Περιεχόµενα Κεφαλαίου 10 Γωνιακές Ποσότητες Διανυσµατικός Χαρακτήρας των Γωνιακών Ποσοτήτων Σταθερή γωνιακή Επιτάχυνση Ροπή Δυναµική της Περιστροφικής Κίνησης, Ροπή και

Διαβάστε περισσότερα

Φυσικές ιδιότητες οδοντικών υλικών

Φυσικές ιδιότητες οδοντικών υλικών Φυσικές ιδιότητες οδοντικών υλικών Η γνώση των µηχανικών ιδιοτήτων των υλικών είναι ουσιώδης για την επιλογή ενδεδειγµένης χρήσης και την µακρόχρονη λειτουργικότητά τους. Στη στοµατική κοιλότητα διαµορφώνεται

Διαβάστε περισσότερα

1.1. ΓΕΙΝΙΚΑ ΟΡΙΣΜΟΙ Με ποιο τρόπο μπορούμε να σχεδιάσουμε έναν τρισδιάστατο χώρο ή αντικείμενο, πάνω σ ένα χαρτί δύο διαστάσεων?

1.1. ΓΕΙΝΙΚΑ ΟΡΙΣΜΟΙ Με ποιο τρόπο μπορούμε να σχεδιάσουμε έναν τρισδιάστατο χώρο ή αντικείμενο, πάνω σ ένα χαρτί δύο διαστάσεων? ΣΧΕΔΙΑΣΤΙΚΗ ΜΕΘΟΔΟΛΟΓΙΑ - Εξεταστέα ύλη Β εξαμήνου 2011 1.1. ΓΕΙΝΙΚΑ ΟΡΙΣΜΟΙ Με ποιο τρόπο μπορούμε να σχεδιάσουμε έναν τρισδιάστατο χώρο ή αντικείμενο, πάνω σ ένα χαρτί δύο διαστάσεων? Τρεις μέθοδοι προβολών

Διαβάστε περισσότερα

ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ Γ ΗΜΕΡΗΣΙΩΝ

ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ Γ ΗΜΕΡΗΣΙΩΝ ΑΡΧΗ ΗΣ ΣΕΛΙ ΑΣ Γ ΗΜΕΡΗΣΙΩΝ ΠΑΝΕΛΛΑΔΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΚΑΙ ΕΠΑΛ (ΟΜΑΔΑ Β ) ΤΕΤΑΡΤΗ ΜΑΪΟΥ 03 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΦΥΣΙΚΗ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ (ΚΑΙ ΤΩΝ ΔΥΟ ΚΥΚΛΩΝ)

Διαβάστε περισσότερα

Κεφάλαιο 15 Κίνηση Κυµάτων. Copyright 2009 Pearson Education, Inc.

Κεφάλαιο 15 Κίνηση Κυµάτων. Copyright 2009 Pearson Education, Inc. Κεφάλαιο 15 Κίνηση Κυµάτων Περιεχόµενα Κεφαλαίου 15 Χαρακτηριστικά των Κυµάτων Είδη κυµάτων: Διαµήκη και Εγκάρσια Μεταφορά ενέργειας µε κύµατα Μαθηµατική Περιγραφή της Διάδοσης κυµάτων Η Εξίσωση του Κύµατος

Διαβάστε περισσότερα

ΠΡΟΣΟΜΟΙΩΤΗΣ ΟΥΡΑΝΙΟΥ ΘΟΛΟΥ

ΠΡΟΣΟΜΟΙΩΤΗΣ ΟΥΡΑΝΙΟΥ ΘΟΛΟΥ Ερασιτεχνικής Αστρονομίας ΠΡΟΣΟΜΟΙΩΤΗΣ ΟΥΡΑΝΙΟΥ ΘΟΛΟΥ ΝΙΚΟΣ ΓΙΑΝΝΑΚΟΠΟΥΛΟΣ (Εκπαιδευτικός ΠΕ19-Μεταπτυχιακός φοιτητής ΕΑΠ- Μέλος Αστρονομικής Εταιρείας Πάτρας «Ωρίων») gianakop@gmail.com ΠΕΡΙΛΗΨΗ Η εργασία

Διαβάστε περισσότερα

ΠΡΟΩΘΗΣΗ ΠΥΡΑΥΛΩΝ. Η προώθηση των πυραύλων στηρίζεται στην αρχή διατήρησης της ορμής.

ΠΡΟΩΘΗΣΗ ΠΥΡΑΥΛΩΝ. Η προώθηση των πυραύλων στηρίζεται στην αρχή διατήρησης της ορμής. ΠΡΟΩΘΗΣΗ ΠΥΡΑΥΛΩΝ Η προώθηση των πυραύλων στηρίζεται στην αρχή διατήρησης της ορμής. Ο πύραυλος καίει τα καύσιμα που αρχικά βρίσκονται μέσα του και εκτοξεύει τα καυσαέρια προς τα πίσω. Τα καυσαέρια δέχονται

Διαβάστε περισσότερα

ΕΥΘΥΓΡΑΜΜΗ ΚΙΝΗΣΗ ΦΥΣΙΚΗ Α ΛΥΚΕΙΟΥ ΦΡΟΝΤΙΣΤΗΡΙΟ ΕΠΙΛΟΓΗ

ΕΥΘΥΓΡΑΜΜΗ ΚΙΝΗΣΗ ΦΥΣΙΚΗ Α ΛΥΚΕΙΟΥ ΦΡΟΝΤΙΣΤΗΡΙΟ ΕΠΙΛΟΓΗ ΕΥΘΥΓΡΑΜΜΗ ΚΙΝΗΣΗ ΕΡΩΤΗΣΕΙΣ ΘΕΩΡΙΑΣ 1. Τι ονομάζουμε κίνηση ενός κινητού; 2. Τι ονομάζουμε τροχιά ενός κινητού; 3. Τι ονομάζουμε υλικό σημείο; 4. Ποια μεγέθη ονομάζονται μονόμετρα και ποια διανυσματικά;

Διαβάστε περισσότερα

ΦΥΣΙΚΗ Γ ΛΥΚΕΙΟΥ ΠΑΝΕΛΛΗΝΙΕΣ ΘΕΜΑΤΑ

ΦΥΣΙΚΗ Γ ΛΥΚΕΙΟΥ ΠΑΝΕΛΛΗΝΙΕΣ ΘΕΜΑΤΑ ΦΥΣΙΚΗ Γ ΛΥΚΕΙΟΥ ΠΑΝΕΛΛΗΝΙΕΣ 2002 ΘΕΜΑΤΑ ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ ΑΠΟΛΥΤΗΡΙΕΣ ΕΞΕΤΑΣΕΙΣ Σ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ ΠΕΜΠΤΗ 6 ΙΟΥΝΙΟΥ 2002 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ (ΚΑΙ ΤΩΝ ΥΟ ΚΥΚΛΩΝ): ΦΥΣΙΚΗ

Διαβάστε περισσότερα

ΒΑΣΙΚΕΣ ΓΝΩΣΕΙΣ ΓΙΑ ΤΗΝ ΑΞΙΟΠΟΙΗΣΗ ΤΟΥ ΓΕΩΜΕΤΡΙΚΟΥ ΜΕΡΟΥΣ ΤΟΥ ΛΟΓΙΣΜΙΚΟΥ GEOGEBRA

ΒΑΣΙΚΕΣ ΓΝΩΣΕΙΣ ΓΙΑ ΤΗΝ ΑΞΙΟΠΟΙΗΣΗ ΤΟΥ ΓΕΩΜΕΤΡΙΚΟΥ ΜΕΡΟΥΣ ΤΟΥ ΛΟΓΙΣΜΙΚΟΥ GEOGEBRA ΒΑΣΙΚΕΣ ΓΝΩΣΕΙΣ ΓΙΑ ΤΗΝ ΑΞΙΟΠΟΙΗΣΗ ΤΟΥ ΓΕΩΜΕΤΡΙΚΟΥ ΜΕΡΟΥΣ ΤΟΥ ΛΟΓΙΣΜΙΚΟΥ GEOGEBRA ΒΑΣΙΚΑ ΕΡΓΑΛΕΙΑ Για να κάνουμε Γεωμετρία χρειαζόμαστε εργαλεία κατασκευής, εργαλεία μετρήσεων και εργαλεία μετασχηματισμών.

Διαβάστε περισσότερα

Το πείραμα του Ερατοσθένη και η μέτρηση της περιφέρειας της Γης

Το πείραμα του Ερατοσθένη και η μέτρηση της περιφέρειας της Γης Το πείραμα του Ερατοσθένη και η μέτρηση της περιφέρειας της Γης Οδηγός για τον εκπαιδευτικό Περιεχόμενα Προετοιμασία δραστηριότητας Α. Υλικά και φύλλα εργασίας 3 Β. Εγκατάσταση του προγράμματος "Google

Διαβάστε περισσότερα

3 o Πανελλήνιο Συνέδριο Αντισεισμικής Μηχανικής & Τεχνικής Σεισμολογίας 5 7 Νοεμβρίου, 2008 Άρθρο 1962

3 o Πανελλήνιο Συνέδριο Αντισεισμικής Μηχανικής & Τεχνικής Σεισμολογίας 5 7 Νοεμβρίου, 2008 Άρθρο 1962 3 o Πανελλήνιο Συνέδριο Αντισεισμικής Μηχανικής & Τεχνικής Σεισμολογίας 5 7 Νοεμβρίου, 2008 Άρθρο 1962 Πιθανολογική και Αιτιοκρατική Εκτίμηση της Σεισμικής Επικινδυνότητας στη Δ. Κρήτη με την Ολοκληρωμένη

Διαβάστε περισσότερα

ΒΑΣΙΚΕΣ ΑΡΧΕΣ ΤΗΣ ΟΠΤΙΚΗΣ

ΒΑΣΙΚΕΣ ΑΡΧΕΣ ΤΗΣ ΟΠΤΙΚΗΣ ΒΑΣΙΚΕΣ ΑΡΧΕΣ ΤΗΣ ΟΠΤΙΚΗΣ Μάθημα προς τους ειδικευόμενους γιατρούς στην Οφθαλμολογία, Στο Κ.Οφ.Κ.Α. την 18/11/2003. Υπό: Δρος Κων. Ρούγγα, Οφθαλμιάτρου. 1. ΑΝΑΚΛΑΣΗ ΤΟΥ ΦΩΤΟΣ Όταν μια φωτεινή ακτίνα ή

Διαβάστε περισσότερα

Η ΓΗ ΣΑΝ ΠΛΑΝΗΤΗΣ. Γεωγραφικά στοιχεία της Γης Σχήµα και µέγεθος της Γης - Κινήσεις της Γης Βαρύτητα - Μαγνητισµός

Η ΓΗ ΣΑΝ ΠΛΑΝΗΤΗΣ. Γεωγραφικά στοιχεία της Γης Σχήµα και µέγεθος της Γης - Κινήσεις της Γης Βαρύτητα - Μαγνητισµός Η ΓΗ ΣΑΝ ΠΛΑΝΗΤΗΣ Γεωγραφικά στοιχεία της Γης Σχήµα και µέγεθος της Γης - Κινήσεις της Γης Βαρύτητα - Μαγνητισµός ρ. Ε. Λυκούδη Αθήνα 2005 Γεωγραφικά στοιχεία της Γης Η Φυσική Γεωγραφία εξετάζει: τον γήινο

Διαβάστε περισσότερα

Πως διαδίδονται τα Η/Μ κύματα σε διαφανή διηλεκτρικά?

Πως διαδίδονται τα Η/Μ κύματα σε διαφανή διηλεκτρικά? Πως διαδίδονται τα Η/Μ κύματα σε διαφανή διηλεκτρικά? (Μη-μαγνητικά, μη-αγώγιμα, διαφανή στερεά ή υγρά με πυκνή, σχετικά κανονική διάταξη δομικών λίθων). Γραμμικά πολωμένο κύμα προσπίπτει σε ηλεκτρόνιο

Διαβάστε περισσότερα

Αντιµετώπιση των δυσκολιών που αφορούν τη διδασκαλία των σεισµικών κυµάτων

Αντιµετώπιση των δυσκολιών που αφορούν τη διδασκαλία των σεισµικών κυµάτων Αντιµετώπιση των δυσκολιών που αφορούν τη διδασκαλία των σεισµικών κυµάτων Αγγελική Ρόκκα, Παύλος Μίχας (*) ηµοκρίτειο Πανεπιστήµιο Θράκης, pmichas@eled.duth.gr Θεµατική Ενότητα: Ειδικά διδακτικά θέµατα,

Διαβάστε περισσότερα

Γ ΛΥΚΕΙΟΥ ΦΥΣΙΚΗ ΘΕΤΙΚΗΣ & ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ

Γ ΛΥΚΕΙΟΥ ΦΥΣΙΚΗ ΘΕΤΙΚΗΣ & ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ε π α ν α λ η π τ ι κ ά θ έ µ α τ α 0 0 5 Γ ΛΥΚΕΙΟΥ ΦΥΣΙΚΗ ΘΕΤΙΚΗΣ & ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ 1 ΘΕΜΑ 1 o Για τις ερωτήσεις 1 4, να γράψετε στο τετράδιο σας τον αριθµό της ερώτησης και δίπλα το γράµµα που

Διαβάστε περισσότερα

8. Σύνθεση και ανάλυση δυνάμεων

8. Σύνθεση και ανάλυση δυνάμεων 8. Σύνθεση και ανάλυση δυνάμεων Βασική θεωρία Σύνθεση δυνάμεων Συνισταμένη Σύνθεση δυνάμεων είναι η διαδικασία με την οποία προσπαθούμε να προσδιορίσουμε τη δύναμη εκείνη που προκαλεί τα ίδια αποτελέσματα

Διαβάστε περισσότερα

Διδάσκοντας Φυσικές Επιστήμες στο Γυμνάσιο και στο Λύκειο

Διδάσκοντας Φυσικές Επιστήμες στο Γυμνάσιο και στο Λύκειο Ο Γνώμονας, ένα απλό αστρονομικό όργανο και οι χρήσεις του στην εκπαίδευση Σοφία Γκοτζαμάνη και Σταύρος Αυγολύπης Ο Γνώμονας Ο Γνώμονας είναι το πιο απλό αστρονομικό όργανο και το πρώτο που χρησιμοποιήθηκε

Διαβάστε περισσότερα

ΙΑΝΥΣΜΑΤΑ ΘΕΩΡΙΑ ΘΕΜΑΤΑ ΘΕΩΡΙΑΣ. Τι ονοµάζουµε διάνυσµα; αλφάβητου επιγραµµισµένα µε βέλος. για παράδειγµα, Τι ονοµάζουµε µέτρο διανύσµατος;

ΙΑΝΥΣΜΑΤΑ ΘΕΩΡΙΑ ΘΕΜΑΤΑ ΘΕΩΡΙΑΣ. Τι ονοµάζουµε διάνυσµα; αλφάβητου επιγραµµισµένα µε βέλος. για παράδειγµα, Τι ονοµάζουµε µέτρο διανύσµατος; ΙΝΥΣΜΤ ΘΕΩΡΙ ΘΕΜΤ ΘΕΩΡΙΣ Τι ονοµάζουµε διάνυσµα; AB A (αρχή) B (πέρας) Στη Γεωµετρία το διάνυσµα ορίζεται ως ένα προσανατολισµένο ευθύγραµµο τµήµα, δηλαδή ως ένα ευθύγραµµο τµήµα του οποίου τα άκρα θεωρούνται

Διαβάστε περισσότερα

ΦΥΛΛΑΔΙΟ ΑΣΚΗΣΕΩΝ ΤΗΣ ΑΛΓΕΒΡΑΣ Β ΛΥΚΕΙΟΥ

ΦΥΛΛΑΔΙΟ ΑΣΚΗΣΕΩΝ ΤΗΣ ΑΛΓΕΒΡΑΣ Β ΛΥΚΕΙΟΥ ΦΥΛΛΑΔΙΟ ΑΣΚΗΣΕΩΝ ΤΗΣ ΑΛΓΕΒΡΑΣ Β ΛΥΚΕΙΟΥ ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ ΣΥΣΤΗΜΑΤΑ ΓΡΑΜΜΙΚΑ ΣΥΣΤΗΜΑΤΑ ΘΕΜΑ ο _6950 α) Να κατασκευάσετε ένα γραμμικό σύστημα δυο εξισώσεων με δυο αγνώστους με συντελεστές διάφορους του

Διαβάστε περισσότερα

Τεύχος B - Διδακτικών Σημειώσεων

Τεύχος B - Διδακτικών Σημειώσεων Τεύχος B - Διδακτικών Σημειώσεων ΟΙ ΚΙΝΗΣΕΙΣ ΤΗΣ ΓΗΣ ΚΑΙ ΟΙ ΕΠΙΠΤΩΣΕΙΣ ΣΤΑ ΣΥΣΤΗΜΑΤΑ ΑΝΑΦΟΡΑΣ Δημήτρης Δεληκαράογλου Αναπλ. Καθ., Σχολή Αγρονόμων και Τοπογράφων Μηχανικών, Εθνικό Μετσόβιο Πολυτεχνείο Επισκ.

Διαβάστε περισσότερα

από τον κατακόρυφο τοίχο, της οποίας ο φορέας είναι οριζόντιος και την δύναµη επα φής N!

από τον κατακόρυφο τοίχο, της οποίας ο φορέας είναι οριζόντιος και την δύναµη επα φής N! Οµογενής συµπαγής κύβος ακµής α και µάζας m, ισορροπεί ακουµπώντας µε µια ακµή του σε κατακόρυφο τοίχο και µε µια του έδρα σε κεκλιµένο επίπεδο γωνίας κλίσεως φ ως προς τον ορίζοντα, όπως φαίνεται στο

Διαβάστε περισσότερα

Σωματίδιο μάζας m κινείται στο οριζόντιο επίπεδο xy σε κυκλική τροχιά με σταθερή γωνιακή ταχύτητα ω. Τι συμπεραίνετε για τη στροφορμή του;

Σωματίδιο μάζας m κινείται στο οριζόντιο επίπεδο xy σε κυκλική τροχιά με σταθερή γωνιακή ταχύτητα ω. Τι συμπεραίνετε για τη στροφορμή του; Άσκηση Σωματίδιο μάζας m κινείται στο οριζόντιο επίπεδο xy σε κυκλική τροχιά με σταθερή γωνιακή ταχύτητα ω. Τι συμπεραίνετε για τη στροφορμή του; Απάντηση Έστω R n η ακτίνα του κύκλου. Αφού η κίνηση είναι

Διαβάστε περισσότερα

Τέκτων 10. for Windows. Εκπαιδευτική Έκδοση 5.4.0.104. Σύντομο αρχιτεκτονικό παράδειγμα. Αθήνα, Μάιος 2013. Version_1_0_1

Τέκτων 10. for Windows. Εκπαιδευτική Έκδοση 5.4.0.104. Σύντομο αρχιτεκτονικό παράδειγμα. Αθήνα, Μάιος 2013. Version_1_0_1 Τέκτων 10 for Windows Εκπαιδευτική Έκδοση 5.4.0.104 Σύντομο αρχιτεκτονικό παράδειγμα Αθήνα, Μάιος 2013 Version_1_0_1 2 Τέκτων 10 for Windows Εκπαιδευτική Έκδοση Σύντομο αρχιτεκτονικό παράδειγμα Εισαγωγή

Διαβάστε περισσότερα

ΔΙΑΦΟΡΙΚΟΣ ΛΟΓΙΣΜΟΣ. α) Το σημείο (-1,1) ανήκει στη γραφική παράσταση της f; α) Να βρεθεί η τιμή του α, ώστε η τιμή της f στο χ 0 =2 να είναι 1.

ΔΙΑΦΟΡΙΚΟΣ ΛΟΓΙΣΜΟΣ. α) Το σημείο (-1,1) ανήκει στη γραφική παράσταση της f; α) Να βρεθεί η τιμή του α, ώστε η τιμή της f στο χ 0 =2 να είναι 1. Γ ΛΥΚΕΙΟΥ ΜΑΘΗΜΑΤΙΚΑ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ ΔΙΑΦΟΡΙΚΟΣ ΛΟΓΙΣΜΟΣ 1.Δίνεται η συνάρτηση f()= 4 1 α) Το σημείο (-1,1) ανήκει στη γραφική παράσταση της f; β) Αν χ=, ποια είναι η τιμή της f; γ) Αν f()=1, ποια είναι

Διαβάστε περισσότερα

ΕΝΟΤΗΤΑ 7 7.0 ΚΕΡΑΙΕΣ ΕΙΣΑΓΩΓΗ

ΕΝΟΤΗΤΑ 7 7.0 ΚΕΡΑΙΕΣ ΕΙΣΑΓΩΓΗ ΕΝΟΤΗΤΑ 7 7.0 ΚΕΡΑΙΕΣ ΕΙΣΑΓΩΓΗ Οι κεραίες είναι βασικό εξάρτημα της ασύρματης επικοινωνίας. Στον πομπό του ασύρματου επικοινωνιακού συστήματος, υπάρχει η κεραία εκπομπής και στο δέκτη υπάρχει η κεραία

Διαβάστε περισσότερα

Κεφάλαιο 9 Ο κύκλος Ορισμός. Ο κύκλος (Κ, r) με κέντρο Κ και ακτίνα r είναι το σχήμα που αποτελείται από όλα τα σημεία του επιπέδου που απέχουν απόσταση r από το σημείο Κ. Σχήμα 9.1: Στοιχεία ενός κύκλου.

Διαβάστε περισσότερα

ΜΑΘΗΜΑ / ΤΑΞΗ : ΦΥΣΙΚΗ / Α ΛΥΚΕΙΟΥ ΣΕΙΡΑ: Α ΗΜΕΡΟΜΗΝΙΑ: 19/10/2014 ΕΠΙΜΕΛΕΙΑ ΔΙΑΓΩΝΙΣΜΑΤΟΣ: Άρχων Μάρκος, Γεράσης Δημήτρης, Τζαγκαράκης Γιάννης

ΜΑΘΗΜΑ / ΤΑΞΗ : ΦΥΣΙΚΗ / Α ΛΥΚΕΙΟΥ ΣΕΙΡΑ: Α ΗΜΕΡΟΜΗΝΙΑ: 19/10/2014 ΕΠΙΜΕΛΕΙΑ ΔΙΑΓΩΝΙΣΜΑΤΟΣ: Άρχων Μάρκος, Γεράσης Δημήτρης, Τζαγκαράκης Γιάννης ΔΙΑΓΩΝΙΣΜΑ ΕΚΠ. ΕΤΟΥΣ 214-2 ΜΑΘΗΜΑ / ΤΑΞΗ : ΦΥΣΙΚΗ / Α ΛΥΚΕΙΟΥ ΣΕΙΡΑ: Α ΗΜΕΡΟΜΗΝΙΑ: 19/1/214 ΕΠΙΜΕΛΕΙΑ ΔΙΑΓΩΝΙΣΜΑΤΟΣ: Άρχων Μάρκος, Γεράσης Δημήτρης, Τζαγκαράκης Γιάννης ΘΕΜΑ Α Οδηγία: Να γράψετε στο τετράδιό

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 11 Ο ΜΕΤΡΗΣΗ ΚΥΚΛΟΥ 11.3 ΕΓΓΡΑΦΗ ΒΑΣΙΚΩΝ ΚΑΝΟΝΙΚΩΝ ΠΟΛΥΓΩΝΩΝ ΣΕ ΚΥΚΛΟ ΚΑΙ ΤΑ ΣΤΟΙΧΕΙΑ ΤΟΥΣ

ΚΕΦΑΛΑΙΟ 11 Ο ΜΕΤΡΗΣΗ ΚΥΚΛΟΥ 11.3 ΕΓΓΡΑΦΗ ΒΑΣΙΚΩΝ ΚΑΝΟΝΙΚΩΝ ΠΟΛΥΓΩΝΩΝ ΣΕ ΚΥΚΛΟ ΚΑΙ ΤΑ ΣΤΟΙΧΕΙΑ ΤΟΥΣ ΚΕΦΑΛΑΙΟ 11 Ο ΜΕΤΡΗΣΗ ΚΥΚΛΟΥ 113 ΕΓΓΡΑΦΗ ΒΑΣΙΚΩΝ ΚΑΝΟΝΙΚΩΝ ΠΟΛΥΓΩΝΩΝ ΣΕ ΚΥΚΛΟ ΚΑΙ ΤΑ ΣΤΟΙΧΕΙΑ ΤΟΥΣ ΘΕΩΡΙΑ Θα ασχοληθούμε με την εγγραφή μερικών βασικών κανονικών πολυγώνων σε κύκλο και θα υπολογίσουμε

Διαβάστε περισσότερα

Μία σύντομη εισαγωγή στην Τριγωνομετρία με Ενδεικτικές Ασκήσεις

Μία σύντομη εισαγωγή στην Τριγωνομετρία με Ενδεικτικές Ασκήσεις Μία σύντομη εισαγωγή στην Τριγωνομετρία με Ενδεικτικές Ασκήσεις. Ονομασίες Ορισμοί Ο τριγωνομετρικός κύκλος έχει ακτίνα R. Αρχή μέτρησης των τόξων (γωνιών) είναι το Α, είτε κατά τη θετική φορά (αριστερόστροφα)

Διαβάστε περισσότερα

ΥΝΑΜΙΚΗ ΤΗΣ ΠΕΡΙΣΤΡΟΦΙΚΗΣ ΚΙΝΗΣΗΣ 18/11/2011 ΚΕΦ. 10

ΥΝΑΜΙΚΗ ΤΗΣ ΠΕΡΙΣΤΡΟΦΙΚΗΣ ΚΙΝΗΣΗΣ 18/11/2011 ΚΕΦ. 10 ΚΕΦΑΛΑΙΟ 10 ΥΝΑΜΙΚΗ ΤΗΣ ΠΕΡΙΣΤΡΟΦΙΚΗΣ ΚΙΝΗΣΗΣ 1 ΕΞΩΤΕΡΙΚΟ ΓΙΝΟΜΕΝΟ (ΕΠΑΝΑΛΗΨΗ) Μέτρο εξωτερικού γινομένου 2 C A B C ABsin διανυσμάτων A και B Ιδιότητες εξωτερικού γινομένου A B B A εν είναι αντιμεταθετικό.

Διαβάστε περισσότερα

ΤΕΛΟΣ 1ης ΑΠΟ 5 ΣΕΛΙ ΕΣ

ΤΕΛΟΣ 1ης ΑΠΟ 5 ΣΕΛΙ ΕΣ http://www.ikastiko.gr/ ΑΡΧΗ 1ης ΣΕΛΙ ΑΣ ΚΕΝΤΡΙΚΗ ΕΠΙΤΡΟΠΗ ΕΙΔΙΚΩΝ ΜΑΘΗΜΑΤΩΝ ΚΥΡΙΑΚΗ 24 ΙΟΥΝΙΟΥ 2012 ΚΟΙΝΗ ΕΞΕΤΑΣΗ ΟΛΩΝ ΤΩΝ ΥΠΟΨΗΦΙΩΝ ΣΤΟ ΓΡΑΜΜΙΚΟ ΣΧΕΔΙΟ ΣΥΝΟΛΟ ΣΕΛΙΔΩΝ ΠΕΝΤΕ (5) ΘΕΜΑ: «ΜΙΚΡΗ ΔΙΩΡΟΦΗ ΚΑΤΟΙΚΙΑ»

Διαβάστε περισσότερα

ΕΝΟΤΗΤΑ 1.2 ΔΥΝΑΜΙΚΗ ΣΕ ΜΙΑ ΔΙΑΣΤΑΣΗ

ΕΝΟΤΗΤΑ 1.2 ΔΥΝΑΜΙΚΗ ΣΕ ΜΙΑ ΔΙΑΣΤΑΣΗ ΕΝΟΤΗΤΑ 1.2 ΔΥΝΑΜΙΚΗ ΣΕ ΜΙΑ ΔΙΑΣΤΑΣΗ 1. Τι λέμε δύναμη, πως συμβολίζεται και ποια η μονάδα μέτρησής της. Δύναμη είναι η αιτία που προκαλεί τη μεταβολή της κινητικής κατάστασης των σωμάτων ή την παραμόρφωσή

Διαβάστε περισσότερα

1.3 ΠΟΛΛΑΠΛΑΣΙΑΣΜΟΣ ΑΡΙΘΜΟΥ ΜΕ ΔΙΑΝΥΣΜΑ

1.3 ΠΟΛΛΑΠΛΑΣΙΑΣΜΟΣ ΑΡΙΘΜΟΥ ΜΕ ΔΙΑΝΥΣΜΑ ΚΕΦΑΛΑΙΟ Ο : ΔΙΑΝΥΣΜΑΤΑ - ΕΝΟΤΗΤΑ ΠΟΛΛΑΠΛΑΣΙΑΣΜΟΣ ΑΡΙΘΜΟΥ ΜΕ ΔΙΑΝΥΣΜΑ ΣΤΟΙΧΕΙΑ ΘΕΩΡΙΑΣ Ορισμός : αν λ πραγματικός αριθμός με 0 και μη μηδενικό διάνυσμα τότε σαν γινόμενο του λ με το ορίζουμε ένα διάνυσμα

Διαβάστε περισσότερα

Μαθηματικά Θετικής Τεχνολογικής Κατεύθυνσης Β Λυκείου

Μαθηματικά Θετικής Τεχνολογικής Κατεύθυνσης Β Λυκείου Μαθηματικά Θετικής Τεχνολογικής Κατεύθυνσης Β Λυκείου Κεφάλαιο ο : Κωνικές Τομές Επιμέλεια : Παλαιολόγου Παύλος Μαθηματικός ΚΕΦΑΛΑΙΟ Ο : ΚΩΝΙΚΕΣ ΤΟΜΕΣ. Ο ΚΥΚΛΟΣ ΣΤΟΙΧΕΙΑ ΘΕΩΡΙΑΣ Ένας κύκλος ορίζεται αν

Διαβάστε περισσότερα

Προτεινόμενα θέματα Πανελλαδικών εξετάσεων. Φυσική Θετικής και Τεχνολογικής Κατεύθυνσης ΕΛΛΗΝΟΕΚΔΟΤΙΚΗ

Προτεινόμενα θέματα Πανελλαδικών εξετάσεων. Φυσική Θετικής και Τεχνολογικής Κατεύθυνσης ΕΛΛΗΝΟΕΚΔΟΤΙΚΗ Προτεινόμενα θέματα Πανελλαδικών εξετάσεων Φυσική Θετικής και Τεχνολογικής Κατεύθυνσης 3o ΕΛΛΗΝΟΕΚΔΟΤΙΚΗ ΕΛΛΗΝΟΕΚΔΟΤΙΚΗ ΘΕΜΑ 1ο Να γράψετε στο τετράδιό σας τον αριθμό καθεμίας από τις παρακάτω ερωτήσεις

Διαβάστε περισσότερα

Κεφάλαιο 15 ΚίνησηΚυµάτων. Copyright 2009 Pearson Education, Inc.

Κεφάλαιο 15 ΚίνησηΚυµάτων. Copyright 2009 Pearson Education, Inc. Κεφάλαιο 15 ΚίνησηΚυµάτων ΠεριεχόµεναΚεφαλαίου 15 Χαρακτηριστικά Κυµατικής Είδη κυµάτων: ιαµήκη και Εγκάρσια Μεταφορά ενέργειας µε κύµατα Μαθηµατική Περιγραφή της ιάδοσης κυµάτων ΗΕξίσωσητουΚύµατος Κανόνας

Διαβάστε περισσότερα

ΟΡΟΣΗΜΟ ΓΛΥΦΑΔΑΣ. 3.1 Στο σχήμα φαίνεται μία πόρτα και οι δυνάμεις που δέχεται. Ροπή ως προς τον άξονα z z έχει η δύναμη:

ΟΡΟΣΗΜΟ ΓΛΥΦΑΔΑΣ. 3.1 Στο σχήμα φαίνεται μία πόρτα και οι δυνάμεις που δέχεται. Ροπή ως προς τον άξονα z z έχει η δύναμη: 3.1 Στο σχήμα φαίνεται μία πόρτα και οι δυνάμεις που δέχεται. Ροπή ως προς τον άξονα z z έχει η δύναμη: α. F 1 β. F 2 γ. F 3 δ. F 4 3. 2 Ένα σώμα δέχεται πολλές ομοεπίπεδες δυνάμεις. Τότε: α. οι ροπές

Διαβάστε περισσότερα

AΣΤΡΟΝΟΜΙΚΕΣ ΠΑΡΑΝΟΗΣΕΙΣ ΙΙ: Ο ΗΛΙΟΣ

AΣΤΡΟΝΟΜΙΚΕΣ ΠΑΡΑΝΟΗΣΕΙΣ ΙΙ: Ο ΗΛΙΟΣ AΣΤΡΟΝΟΜΙΚΕΣ ΠΑΡΑΝΟΗΣΕΙΣ ΙΙ: Ο ΗΛΙΟΣ 1. Ο Ήλιος μας είναι ένας από τους μεγαλύτερους αστέρες της περιοχής μας, του Γαλαξία μας αλλά και του σύμπαντος (NASA Science, εικόνα 1), όντας ο μοναδικός στο ηλιακό

Διαβάστε περισσότερα

Αναλυτικά Λυμένες Βασικές Ασκήσεις κατάλληλες για την 1 η επανάληψη στα Μαθηματικά Κατεύθυνσης της Β ΛΥΚΕΙΟΥ

Αναλυτικά Λυμένες Βασικές Ασκήσεις κατάλληλες για την 1 η επανάληψη στα Μαθηματικά Κατεύθυνσης της Β ΛΥΚΕΙΟΥ Αναλυτικά Λυμένες Βασικές Ασκήσεις κατάλληλες για την η επανάληψη στα Μαθηματικά Κατεύθυνσης της Β ΛΥΚΕΙΟΥ Κάνε τα πράγματα με μεγαλοπρέπεια, σωστά και με στυλ. ΦΡΕΝΤ ΑΣΤΕΡ Θέμα Σε ένα σύστημα αξόνων οι

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 1 Ο ΔΙΑΝΥΣΜΑΤΑ

ΚΕΦΑΛΑΙΟ 1 Ο ΔΙΑΝΥΣΜΑΤΑ ΘΕΜΑΤΑ ΚΑΙ ΑΠΑΝΤΗΣΕΙΣ ΤΗΣ ΤΡΑΠΕΖΑΣ ΘΕΜΑΤΩΝ ΓΙΑ ΤΑ ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΟΥ Β ΛΥΚΕΙΟΥ ΣΧΟΛΙΚΟ ΕΤΟΣ 014-015 ΚΕΦΑΛΑΙΟ 1 Ο ΔΙΑΝΥΣΜΑΤΑ 1. ΘΕΜΑ ΚΩΔΙΚΟΣ_18556 Δίνονται τα διανύσματα α και β με ^, και,. α Να

Διαβάστε περισσότερα

- 17 Ερωτήσεις Αξιολόγησης για ΤΕΣΤ Θεωρίας.

- 17 Ερωτήσεις Αξιολόγησης για ΤΕΣΤ Θεωρίας. Test Αξιολόγησης: ΦΥΣΙΚΗ Β ΛΥΚΕΙΟΥ ΟΜΑΔΑΣ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ ΚΕΦΑΛΑΙΟ 1 ο Καμπυλόγραμμες Κινήσεις (Οριζόντια Βολή,Ο.Κ.Κ.) - 17 Ερωτήσεις Αξιολόγησης για ΤΕΣΤ Θεωρίας. Εισηγητής : Γ. Φ. Σ ι

Διαβάστε περισσότερα

Η Λ Ι Α Κ Α Ρ Ο Λ Ο Γ Ι Α

Η Λ Ι Α Κ Α Ρ Ο Λ Ο Γ Ι Α Η Λ Ι Α Κ Α Ρ Ο Λ Ο Γ Ι Α Αναγνωστοπούλου Στρατηγούλα (5553), Σταυρίδη Δήμητρα (5861) 1 ΛΙΓΗ ΑΣΤΡΟΝΟΜΙΑ 1.1 Η κίνηση της Γης Η Γη κινείται με τρεις τρόπους: περιστρέφεται γύρω από τον άξονά της σε 24h,

Διαβάστε περισσότερα

Β ΛΥΚΕΙΟΥ: ΦΥΣΙΚΗΣ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ

Β ΛΥΚΕΙΟΥ: ΦΥΣΙΚΗΣ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΛΥΚΕΙΟΥ: ΦΥΣΙΚΗΣ ΠΡΟΣΑΑΤΟΛΙΣΜΟΥ Διαγωνίσματα 2014-2015 1 ο Διαγώνισμα Θεματικό πεδίο: Επαναληπτικό (Οριζόντια ολή Κυκλική Κίνηση Κρούσεις) Ημερομηνία 16 οεμβρίου 2014 Διάρκεια Επιμέλεια 2 Ώρες ΘΕΜΑ 1 25

Διαβάστε περισσότερα

ΤΕΛΟΣ 1ης ΑΠΟ 5 ΣΕΛΙ ΕΣ

ΤΕΛΟΣ 1ης ΑΠΟ 5 ΣΕΛΙ ΕΣ ΑΡΧΗ 1ης ΣΕΛΙ ΑΣ ΚΕΝΤΡΙΚΗ ΕΠΙΤΡΟΠΗ ΕΙΔΙΚΩΝ ΜΑΘΗΜΑΤΩΝ ΚΥΡΙΑΚΗ 24 ΙΟΥΝΙΟΥ 2012 ΚΟΙΝΗ ΕΞΕΤΑΣΗ ΟΛΩΝ ΤΩΝ ΥΠΟΨΗΦΙΩΝ ΣΤΟ ΓΡΑΜΜΙΚΟ ΣΧΕΔΙΟ ΣΥΝΟΛΟ ΣΕΛΙΔΩΝ ΠΕΝΤΕ (5) ΘΕΜΑ: «ΜΙΚΡΗ ΔΙΩΡΟΦΗ ΚΑΤΟΙΚΙΑ» ΠΕΡΙΓΡΑΦΗ: Πρόκειται

Διαβάστε περισσότερα

ΓΑΛΑΝΑΚΗΣ ΓΙΩΡΓΟΣ ΔΗΜΗΤΡΑΚΟΠΟΥΛΟΣ ΜΙΧΑΛΗΣ

ΓΑΛΑΝΑΚΗΣ ΓΙΩΡΓΟΣ ΔΗΜΗΤΡΑΚΟΠΟΥΛΟΣ ΜΙΧΑΛΗΣ ΘΕΜΑ Α Στις ερωτήσεις -4 να γράψετε στο τετράδιό σας τον αριθμό της ερώτησης και δίπλα το γράμμα που αντιστοιχεί η σωστή απάντηση. Ένας ακίνητος τρoχός δέχεται σταθερή συνιστάμενη ροπή ως προς άξονα διερχόμενο

Διαβάστε περισσότερα

Γεωφυσικά προσομοιώματα-υπολογισμός συνθετικών κυματομορφών Κεφάλαιο 4.

Γεωφυσικά προσομοιώματα-υπολογισμός συνθετικών κυματομορφών Κεφάλαιο 4. 4. ΓΕΩΦΥΣΙΚΑ ΠΡΟΣΟΜΟΙΩΜΑΤΑ-ΥΠΟΛΟΓΙΣΜΟΣ ΣΥΝΘΕΤΙΚΩΝ ΚΥΜΑΤΟΜΟΡΦΩΝ ΣΤΗΝ ΠΕΡΙΟΧΗ ΤΗΣ ΘΕΣΣΑΛΟΝΙΚΗΣ ΕΙΣΑΓΩΓΗ Η πόλη της Θεσσαλονίκης βρίσκεται στη γεωλογική ζώνη Αξιού-Βαρδάρη που συνορεύει με την Περιροδοπική

Διαβάστε περισσότερα