ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ ΤΩΝ ΜΑΘΗΜΑΤΙΚΩΝ ΘΕΤΙΚΟΥ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΤΗΣ Β ΛΥΚΕΙΟΥ

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ ΤΩΝ ΜΑΘΗΜΑΤΙΚΩΝ ΘΕΤΙΚΟΥ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΤΗΣ Β ΛΥΚΕΙΟΥ"

Transcript

1 ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ ΤΩΝ ΜΑΘΗΜΑΤΙΚΩΝ ΘΕΤΙΚΟΥ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΤΗΣ Β ΛΥΚΕΙΟΥ

2 Διανύσματα Πολλαπλασιασμός αριθμού με διάνυσμα ο Θέμα _8603 Δίνεται τρίγωνο ΑΒΓ και σημεία Δ και Ε του επιπέδου τέτοια, ώστε 5 και 5. α) Να γράψετε το διάνυσμα ως γραμμικό συνδυασμό των και. (Μονάδες 3) β) Να δείξετε ότι τα διανύσματα και είναι παράλληλα. (Μονάδες ) _8604 Δίνεται παραλληλόγραμμο ΑΒΓΔ και Ε,Ζ σημεία τέτοια ώστε :, 5 7 α) Να γράψετε τα διανύσματα και ως γραμμικό συνδυασμό των και. (Μονάδες 3) β) Να αποδείξτε ότι τα σημεία B, Z και E είναι συνευθειακά. (Μονάδες ) _0054 Θεωρούμε τα σημεία Ρ, Λ, Κ και Μ του επιπέδου για τα οποία ισχύει η σχέση: 5 3. α) Να αποδείξετε ότι τα σημεία Κ, Λ και Μ είναι συνευθειακά. (Μονάδες 0) β) Για τα παραπάνω σημεία Κ, Λ και Μ να δείξετε ότι ισχύει: 3, όπου Α και Β είναι σημεία του επιπέδου. (Μονάδες 5) Συντεταγμένες στο επίπεδο ο Θέμα _8605 Δίνονται τα διανύσματα i 4j, 3i j και 5i 5j, όπου i και j είναι τα μοναδιαία διανύσματα των αξόνων xx και yy αντίστοιχα. α) Να βρείτε τις συντεταγμένες των και. (Μονάδες ) β) Να εξετάσετε αν τα σημεία, και μπορεί να είναι κορυφές τριγώνου. (Μονάδες 3) _0055 Θεωρούμε τα σημεία α,3, α,4 και Γ (-4, 5α+4), α. α) Να βρείτε τα διανύσματα AB και. (μονάδες 8) β) Να βρείτε για ποια τιμή του α, τα Α, Β, Γ είναι συνευθειακά. (μονάδες 0) γ) Αν α, να βρείτε αριθμό λ ώστε λ. (μονάδες 7)

3 _006 Δίνεται παραλληλόγραμμο ΑΒΓΔ με τρεις κορυφές τα σημεία Α(,), Γ(4, 3) και Δ(, 3). α) Να υπολογίσετε τα μήκη των πλευρών του ΑΒΓΔ. (Μονάδες 9) β) Να υπολογίσετε τις συντεταγμένες του σημείου τομής Κ των διαγωνίων ΑΓ και ΒΔ, καθώς και τις συντεταγμένες της κορυφής Β. (Μονάδες 6) _007 Θεωρούμε τα σημεία α, 4α και 5α, α, α. α) Να γράψετε το συναρτήσει του α και να βρείτε το α ώστε 0. (Μονάδες ) β) Έστω α. Να βρείτε σημείο Μ του άξονα x x ώστε το τρίγωνο ΜΑΒ να είναι ισοσκελές με βάση την ΑΒ. (Μονάδες 3) _0073 Δίνονται τα σημεία,3,,5 και, 4. α) Να αποδείξετε ότι σχηματίζουν τρίγωνο. β) Να βρείτε το συμμετρικό Δ του Β ως προς το μέσο Μ της ΑΓ. (Μονάδες 0) γ) Τι σχήμα είναι το ΑΒΓΔ; Να αιτιολογήσετε τον ισχυρισμό σας..048 Δίνονται τα διανύσματα α i j, β i 5 j και γ 7,3. α) Να αποδείξετε ότι τα διανύσματα α, β, γ είναι συγγραμικά ανά δύο. (Μονάδες 0) β) Να γραφεί το διάνυσμα γ ως γραμμικός συνδυασμός των διανυσμάτων α και β. (Μονάδες 5) _8556 Δίνονται τα διανύσματα a και β με π α,β Εσωτερικό γινόμενο ο Θέμα και α, β. 3 α) Να βρείτε το εσωτερικό γινόμενο α β. β) Αν τα διανύσματα α β και κα β είναι κάθετα να βρείτε την τιμή του κ. (Μονάδες 0) γ) Να βρείτε το μέτρο του διανύσματος α β. _8558 Σε τρίγωνο ΑΒΓ είναι: AB 4, 6, A, 8. α) Να βρείτε τις συντεταγμένες του διανύσματος,όπου ΑΜ είναι η διάμεσος του τριγώνου ΑΒΓ. β) Να αποδείξετε ότι η γωνία ˆ είναι οξεία. (Μονάδες 0) γ) Αν στο τρίγωνο ΑΒΓ επιπλέον ισχύει Α(3,), να βρείτε τις συντεταγμένες των κορυφών του Β και Γ.

4 _858 Έστω τα διανύσματα α και β για τα οποία ισχύει : α β 3 και α, β 60. α) Να αποδείξετε ότι α β (Μονάδες 0) β) Να υπολογίσετε τα μέτρα των διανυσμάτων α β και α β (Μονάδες 5) _8598 κ 6κ 9, κ 3,6, όπου κ. Δίνονται τα διανύσματα και α) Να βρείτε το εσωτερικό γινόμενο. β) Να βρείτε τις τιμές του κ, ώστε τα διανύσματα και να είναι κάθετα. (Μονάδες 9) γ) Για κ = να βρείτε το διάνυσμα. _0053 Δίνονται τα διανύσματα α, β με β α 4 και α β 8. α) Να υπολογίσετε τη γωνία α, β. (Μονάδες 0) β) Να αποδείξετε ότι β α 0. (Μονάδες 5) _0056 Έστω α και β δύο διανύσματα με α, β 5π και (α, β) και u α β. 6 α) Να υπολογίσετε τα εσωτερικά γινόμενα α β και β u. (Μονάδες 6) β) Να βρείτε το μέτρο του διανύσματος u. (Μονάδες 9) _0057 π Δίνονται τα διανύσματα α και β α, β και α, β. Να υπολογίσετε τα εξής: 3 α) το εσωτερικό γινόμενό των διανυσμάτων α και β και κατόπιν την τιμή της παράστασης: α α β. (Μονάδες 0) β) Το συνημίτονο της γωνίας των διανυσμάτων α β και β α. (Μονάδες 5) _0058 Δίνονται τα διανύσματα α (, 3) και β ( 3, 3). Να υπολογίσετε: α) τη γωνία α, β (Μονάδες 0) β) το διάνυσμα _0059 u α β (α β) α (Μονάδες 5) Δίνονται τα διανύσματα α (,3) και β (, ) α) Να βρείτε τις συντεταγμένες του διανύσματος u α β (Μονάδες 0) β) Να βρείτε τον θετικό αριθμό x για τον οποίο τα διανύσματα u και ν x,x κάθετα. είναι (Μονάδες 5)

5 _0070 Έστω α, β δύο διανύσματα του επιπέδου για τα οποία ισχύουν: 3 α β 9, α β και π α, β. 3 α) Να βρείτε τα μέτρα των διανυσμάτων α, β και το εσωτερικό γινόμενο α β. (Μονάδες ) β) Να υπολογίσετε το μέτρο του διανύσματος u α 3β. (Μονάδες 3) 4ο Θέμα 4_8606 Δίνονται τα διανύσματα O (4, ) και O (,), όπου Ο είναι η αρχή των αξόνων. α) Να αποδείξετε ότι τα διανύσματα και O είναι κάθετα. (Μονάδες 4) β) Αν Γ (α, β) είναι σημείο της ευθείας που διέρχεται από τα σημεία Α και Β, τότε: i) να αποδείξετε ότι: ( 3,4) και (α 4,β ) (Μονάδες 5) ii) να αποδείξετε ότι: 4α + 3β = 0 (Μονάδες 6) iii) αν επιπλέον τα διανύσματα και είναι κάθετα, να βρείτε τις συντεταγμένες του σημείου Γ. (Μονάδες 0) 4_866 Δίνονται τα διανύσματα α,β και γ για τα οποία ισχύουν: α, β, α,β 60 και κ γ α β, όπου κ. α) Να υπολογίσετε το εσωτερικό γινόμενο α β (Μονάδες 3) β) Αν ισχύει β γ κ, τότε: i) να αποδείξετε ότι: κ = (Μονάδες 6) ii) να υπολογίσετε το μέτρο του διανύσματος γ iii) να αποδείξετε ότι τα διανύσματα 3α γ και β γ είναι κάθετα. 4_868 α) Να εξετάσετε πότε ισχύει καθεμιά από τις ισότητες: u v u v και u v u v (Μονάδες 0) β) Δίνονται τα διανύσματα α,β, γ για τα οποία ισχύουν: α β γ 0 και α β γ i) Να αποδείξετε ότι: α β και β γ ii) Να αποδείξετε ότι: 7α 3γ 0 4

6 _0050 Δίνονται τα διανύσματα α,7 και β,4 Προβολή διανύσματος σε διάνυσμα. α) Να βρεθεί η προβολή του α πάνω στο β. (Μονάδες 0) β) Να αναλύσετε το α σε δύο κάθετες μεταξύ τους συνιστώσες. από τις οποίες η μία να είναι παράλληλη στο β. (Μονάδες 5) _005 Δίνονται τα διανύσματα α, β με α, α β β 7 και α β. α) Να υπολογίσετε τα α και β. (Μονάδες 6) β) Να υπολογίσετε το μέτρο του διανύσματος α β. (Μονάδες 9) γ) Να βρείτε την προβολή του α β στο διάνυσμα β. (Μονάδες 0) Δίνονται τα διανύσματα α, 3 και β,. α) Να βρείτε τη προβολή του α πάνω στο β. (Μονάδες 0) β) Να αναλύσετε το α σε δύο κάθετες συνιστώσες από τις οποίες η μία να είναι παράλληλη με το β. (Μονάδες 5) Ευθεία Εξίσωση ευθείας ο Θέμα _8575 Δίνονται τα σημεία Α(,) και Β (5,6 ). α) Να βρείτε την εξίσωση της ευθείας που διέρχεται από τα σημεία Α και B. (Μονάδες 0) β) Να αποδείξετε ότι η μεσοκάθετος ε του ευθυγράμμου τμήματος ΑΒ έχει εξίσωση την y x 7 (Μονάδες 5) _8600 Θεωρούμε την ευθεία ε που τέμνει τους άξονες χ χ και ψ ψ στα σημεία 3,0 και 0,6 αντίστοιχα. α) Να βρείτε την εξίσωση της ευθείας ε. β) Αν ε είναι η ευθεία που διέρχεται από την αρχή των αξόνων και είναι κάθετη στην ε, τότε να βρείτε: i) την εξίσωση της ευθείας ε. (Μονάδες 9) ii) τις συντεταγμένες του σημείου τομής των ευθειών ε και ε. _860 Έστω Μ (3, 5) το μέσο ευθυγράμμου τμήματος ΑΒ με Α(,). α) Να βρείτε: i) τις συντεταγμένες του σημείου Β. (Μονάδες 6) 5

7 ii) την εξίσωση της ευθείας που διέρχεται από τα σημεία Α και Β.. β) Να βρείτε τις συντεταγμένες σημείου Κ του άξονα χ χ έτσι ώστε να ισχύει _860 Δίνεται η ευθεία (ε): y x και το σημείο, 4. (Μονάδες ) α) Να βρείτε την εξίσωση της ευθείας που διέρχεται από το Α και είναι κάθετη στην (ε). (Μονάδες 0) β) Να βρείτε την προβολή του σημείου Α πάνω στην ευθεία (ε). (Μονάδες 5) _0060 Δίνονται τα διανύσματα α (, ) και β (3,0). α) Να βρείτε τις συντεταγμένες του διανύσματος β) Να βρείτε την εξίσωση της ευθείας που έχει συντελεστή διεύθυνσης u 4α β. (Μονάδες 0) 3 u 5 και διέρχεται από το σημείο, α β. (Μονάδες 5) _0063 Θεωρούμε το ευθύγραμμο τμήμα ΑΒ με μέσο Μ και,,,5. α) Να βρείτε τις συντεταγμένες του σημείου Β. (Μονάδες 0) β) Να βρείτε την εξίσωση της μεσοκαθέτου ε του ευθυγράμμου τμήματος ΑΒ, καθώς και τα κοινά σημεία αυτής με τους άξονες x x και y y. (Μονάδες 5) _0066 Δίνεται τρίγωνο ΑΒΓ με κορυφές τα σημεία 3,,, και,4. α) Να βρείτε την εξίσωση της πλευράς ΑΓ. β) Να βρείτε τις εξισώσεις του ύψους ΒΔ και της διαμέσου ΑΜ Δίνεται τρίγωνο ΑΒΓ με Α( 5,4), Β(,6), Γ(4,) και σημείο Μ της πλευράς ΑΒ για το οποίο ισχύει. 4 α) Να βρείτε τις συντεταγμένες του διανύσματος. (Μονάδες 6) β) Να βρείτε τις συντεταγμένες του σημείου Μ. (Μονάδες 9) 9 γ) Αν το σημείο Μ έχει συντεταγμένες 4,, να υπολογίσετε την εξίσωση της ευθείας που διέρχεται από τα σημεία Γ, Μ. (Μονάδες 0) ο Θέμα Δίνονται τα σημεία λ,λ,, και 4,6, λ. α) Να βρείτε την μεσοκάθετο του τμήματος ΒΓ. β) Αν το σημείο Α ισαπέχει από τα σημεία Β και Γ,να βρείτε την τιμή του λ. γ) Για λ 4,να βρείτε σημείο Δ ώστε το τετράπλευρο ΑΒΔΓ να είναι ρόμβος. (Μονάδες 0) 6

8 Γενική μορφή εξίσωσης ευθείας ο Θέμα _8584. Δίνονται οι παράλληλες ευθείες ε : x y 8 = 0, ε : x 4y + 0 = 0 και το σημείο Α της ε που έχει τετμημένη το 4. α) Να βρείτε τις συντεταγμένες του σημείου Α. (Μονάδες 5) β) Να βρείτε την εξίσωση της ευθείας ε η οποία διέρχεται από το σημείο Α και είναι κάθετη στην ευθεία ε. (Μονάδες 0) γ) Αν Β είναι το σημείο τομής των ευθειών ε και ε, τότε να βρείτε τις συντεταγμένες του Β (Μονάδες 0) _8587. Δίνονται οι ευθείες ε : x 8y 6 0και ε : x y 5 0 οι οποίες τέμνονται στο σημείο Μ. Αν οι ευθείες ε και ε τέμνουν τον άξονα y y στα σημεία Α και B αντίστοιχα, τότε: α) να βρείτε τις συντεταγμένες των σημείων Μ, A και B. (Μονάδες 0) β) αν Κ είναι το μέσο του τμήματος ΑΒ, να βρείτε τον συντελεστή διεύθυνσης του διανύσματος. (Μονάδες 5) _8589 Δίνονται οι ευθείες ε :8x y 8 0 και ε : x y 0 οι οποίες τέμνονται στο σημείο. α) Να βρείτε τις συντεταγμένες του σημείου και στη συνέχεια, να βρείτε την εξίσωση της ευθείας που διέρχεται από το και είναι κάθετη στον άξονα xx. (Μονάδες 0) β) Να αποδείξετε ότι οι ευθείες που διέρχονται από το και έχουν συντελεστή διεύθυνσης λ έχουν εξίσωση την: λx y 3λ 4 0, όπου λ (Μονάδες 5) _ 859 Δίνονται οι ευθείες ε : x 3y 5 0 και ε :3x y 5 0 α) Να αποδείξετε ότι οι ευθείες ε και ε είναι κάθετες μεταξύ τους. (Μονάδες 9) β) Να βρείτε τις συντεταγμένες του σημείου τομής των ευθειών ε και ε (Μονάδες 9) γ) Να βρείτε την εξίσωση της ευθείας που διέρχεται από το σημείο και την αρχή των αξόνων. _8595 Δίνονται οι ευθείες ε :3x y 3 0 και ε : x y 4 0 α) Να βρείτε τις συντεταγμένες του σημείου τομής των ευθειών ε και ε β) Αν η ευθεία ε τέμνει τον άξονα yy στο σημείο και η ευθεία ε τέμνει τον άξονα xx στο σημείο, τότε: i) να βρείτε τις συντεταγμένες των σημείων και ii) να αποδείξετε ότι η ευθεία που διέρχεται από τα σημεία και έχει εξίσωση την 3x 4y 0 (Μονάδες 9) 7

9 _0065 Δίνεται η ευθεία ε : x + y + = 0 και το σημείο Α(5,). α) Να βρείτε την εξίσωση της ευθείας η, η οποία διέρχεται από το Α και είναι κάθετη προς την ευθεία ε. (Μονάδες 9) β) Να βρείτε την εξίσωση της ευθείας η, η οποία διέρχεται από το Α και είναι παράλληλη προς τον άξονα x x. γ) Να βρείτε το σημείο τομής των ευθειών η και η και την απόστασή του από την αρχή των αξόνων. (Μονάδες 9).007 Θεωρούμε μια ευθεία (ε) και ένα σημείο 6, εκτός της (ε). Έστω, η προβολή του Α στην (ε). Να βρείτε: α) Την εξίσωση της ευθείας (ε). (Μονάδες 3) β) Το συμμετρικό του Α ως προς την (ε). (Μονάδες ) Απόσταση σημείου από ευθεία - Εμβαδόν τριγώνου _006 Δίνονται τα σημεία Α(, ) και Β(, 3). α) Να βρείτε την εξίσωση της ευθείας ε που διέρχεται από τα σημεία Α, Β. (Μονάδες ) β) Να υπολογίσετε το εμβαδόν του τριγώνου ΟΚΛ, όπου Ο είναι η αρχή των αξόνων και Κ, Λ είναι τα σημεία τομής της ε με τους άξονες xx και yy αντίστοιχα. (Μονάδες 4) _0067 Δίνεται τρίγωνο ΑΒΓ με κορυφές τα σημεία Α(3,), Β( 3,) και Γ(4,0). α) Να βρείτε την εξίσωση της πλευράς ΑΒ. (Μονάδες 9) β) Να υπολογίσετε το ύψος ΓΔ καθώς και την εξίσωση της ευθείας πάνω στην οποία βρίσκεται αυτό. (Μονάδες 6) 4ο Θέμα 4_86 Δίνεται η εξίσωση: x xy y 6x 6y 8 0 α) Να αποδείξετε ότι η εξίσωση παριστάνει γεωμετρικά δύο ευθείες γραμμές ε και ε οι οποίες είναι παράλληλες μεταξύ τους. β) Αν ε : x y 0 και ε : x y 4 0, να βρείτε την εξίσωση της μεσοπαράλληλης ε των ε και ε γ) Αν Α είναι σημείο της ευθείας ε με τεταγμένη το και Β σημείο της ευθείας ε με τετμημένη το, τότε: i) να βρείτε τις συντεταγμένες των σημείων A και Β (Μονάδες ) ii) να βρείτε τις συντεταγμένες δύο σημείων Γ και Δ της ευθείας ε έτσι, ώστε το τετράπλευρο ΑΓΒΔ να είναι τετράγωνο. 8

10 4_863 Δίνεται η εξίσωση x y xy 3λx 3λy λ 0, με λ διαφορετικό του 0. α) Να αποδείξετε ότι η παραπάνω εξίσωση παριστάνει στο επίπεδο, δύο ευθείες παράλληλες μεταξύ τους, καθεμιά από τις οποίες έχει κλίση ίση με. (Μονάδες ) β) Αν το εμβαδόν του τετραγώνου του οποίου οι δύο πλευρές βρίσκονται πάνω στις ευθείες του ερωτήματος α) είναι ίσο με, να βρείτε την τιμή του λ. (Μονάδες 3) 4_867 Δίνονται τα διανύσματα a και b με μέτρα, 6 αντίστοιχα και φ [0,π] η μεταξύ τους γωνία. Επίσης δίνεται η εξίσωση a b x a b 5 0 y. α) Να αποδείξετε ότι η () παριστάνει ευθεία για κάθε φ [0,π]. (Μονάδες 3) β) Αν η παραπάνω ευθεία είναι παράλληλη στον άξονα y y, να αποδείξετε ότι b 3a. γ) Αν η παραπάνω ευθεία είναι παράλληλη στον άξονα χ χ, να αποδείξετε ότι b 3a. δ) Αν η παραπάνω ευθεία είναι παράλληλη στην διχοτόμο πρώτης και τρίτης γωνίας των αξόνων, να αποδείξετε ότι b a 4_8609 Εμβαδόν τριγώνου 4ο Θέμα Σε τρίγωνο ΑΒΓ είναι λ, λ, 3λ, λ, όπου λ 0 και λ, και Μ είναι το μέσο της πλευράς ΒΓ. α) Να αποδείξετε ότι λ, λ β) Να βρείτε την τιμή του λ για την οποία το διάνυσμα AΜ είναι κάθετο στο διάνυσμα α, λ λ. γ) Για την τιμή του λ που βρήκατε στο ερώτημα β), να υπολογίσετε το εμβαδόν του τριγώνου ΑΒΓ. (Μονάδες 0) 4_860 Δίνονται οι ευθείες ε : x y 0λ 6 0 και ε : 0x y λ 4 0, όπου λ R α) Να αποδείξετε ότι για κάθε τιμή της παραμέτρου λ οι ευθείες ε και ε τέμνονται, και να βρείτε τις συντεταγμένες του σημείου τομής τους M β) Να αποδείξετε ότι για κάθε τιμή της παραμέτρου λ το σημείο M ανήκει στην ευθεία ε : 8x + y 6 = 0 9

11 γ) Αν η ευθεία ε τέμνει τους άξονες χ χ και ψ ψ στα σημεία Α και Β αντίστοιχα, τότε: i) να βρείτε την εξίσωση της ευθείας ζ που διέρχεται από την αρχή Ο των αξόνων και να αποδείξετε ότι είναι παράλληλη προς την ευθεία ΑΒ (Μονάδες 5) 9 ii) αν Κ είναι τυχαίο σημείο της ευθείας ζ, να αποδείξετε ότι ( ). 4 (Μονάδες 6) 4_86 Δίνεται η ευθεία ε : x 4y 7 0 και τα σημεία Α(,4 ) και B (,6) α) Να βρείτε τις συντεταγμένες σημείου M της ευθείας ε το οποίο ισαπέχει από τα σημεία A και B β) Να υπολογίσετε το εμβαδόν του τριγώνου ΜΑΒ γ) Να αποδείξετε ότι τα σημεία Κ ( x,y) για τα οποία ισχύει (ΚΑΒ) = (ΜΑΒ) ανήκουν στις ευθείες με εξισώσεις τις: x y 5 0 και x y 5 0 (Μονάδες 0) 4_864 Δίνονται οι ευθείες ε : 3x y 3 0 και ε : x y 4 0 α) Να βρείτε τις συντεταγμένες του σημείου τομής Α των ευθειών ε και ε (Μονάδες 5) β) Αν η ευθεία ε τέμνει τον άξονα y y στο σημείο Β και η ευθεία ε τέμνει τον άξονα χ χ στο σημείο Γ, τότε: i) να βρείτε εξίσωση της ευθείας που διέρχεται από τα σημεία Β και Γ (Μονάδες 5) ii) να βρείτε το εμβαδόν του τριγώνου ΑΒΓ (Μονάδες 5) γ) Να αποδείξετε ότι τα σημεία Κ ( χ,ψ) για τα οποία ισχύει (ΚΒΓ ) = ( ΑΒΓ ) ανήκουν σε δύο παράλληλες ευθείες, των οποίων να βρείτε τις εξισώσεις. (Μονάδες 0) 4_865 Θεωρούμε ευθύγραμμο τμήμα ΑΒ που είναι παράλληλο προς την ευθεία ε : y = x, με Α(x,y ), Β ( x,y ) και x < x. Αν το σημείο Μ (3, 5) είναι το μέσο του ευθυγράμμου τμήματος ΑΒ και το γινόμενο των τετμημένων των σημείων Α και Β ισούται με 5, τότε: α) να υπολογίσετε τις συντεταγμένες των σημείων Α και Β. (Μονάδες 3) β) να αποδείξετε ότι (ΟΑΒ) = 4, όπου Ο είναι η αρχή των αξόνων. (Μονάδες 5) γ) να αποδείξετε ότι τα σημεία Κ ( x,y) για τα οποία ισχύει (ΚΑΒ) = (ΟΑΒ) ανήκουν στις ευθείες με εξισώσεις τις : x y 0 και x y 6 0 _860 Δίνονται οι ευθείες,. ε : λ x y 5 0, α) Να αποδείξετε ότι, για κάθε τιμή του λ οι ευθείες τέμνονται. ε : λ 3 x y 5 0 με λ και το σημείο β) Αν οι ευθείες τέμνονται στο σημείο, να βρείτε την τιμή του λ. 0 (Μονάδες 0)

12 γ) Έστω λ και, τα σημεία που οι ε και ε τέμνουν τον άξονα yy.να βρείτε το εμβαδόν του τριγώνου. 4_86 Δίνονται οι ευθείες ε : κx κy 3κ 0 και ζ : 3κ x κ y 6κ 0, όπου κ α) Να εξετάσετε αν υπάρχει τιμή του κ, ώστε οι ευθείες να είναι παράλληλες. β) Να βρείτε την αμβλεία γωνία που σχηματίζουν οι ευθείες ε και (Μονάδες 0) ζ. (Μονάδες 5) 4_86. 3 Δίνονται τα σημεία A,, Β(, - ) και μ 4 μ,, όπου μ. α) Να βρείτε τις συντεταγμένες των διανυσμάτων και β) Να αποδείξετε ότι για κάθε μ το σημείο Γ ανήκει στην ευθεία που διέρχεται από τα σημεία Α και Β. γ) Να βρείτε την τιμή του μ έτσι, ώστε μ. (Μονάδες 6) δ) Για την τιμή του μ που βρήκατε στο ερώτημα γ), να αποδείξετε ότι (ΟΒΓ ) =, όπου O είναι η αρχή των αξόνων. (Μονάδες 3) Δίνονται τα σημεία Α(3,4), B(5,7) και Γ (μ +,3μ ), όπου μ. α) Να βρείτε τις συντεταγμένες των διανυσμάτων και και, στη συνέχεια, να αποδείξετε ότι τα σημεία Α, B και Γ δεν είναι συνευθειακά για κάθε τιμή του μ. β) Να αποδείξετε ότι: i) το εμβαδόν του τριγώνου ΑΒΓ δεν εξαρτάται από το μ. (Μονάδες 5) ii) για κάθε τιμή του μ το σημείο Γ ανήκει σε ευθεία ε, της οποίας να βρείτε την εξίσωση. γ) Να ερμηνεύσετε γεωμετρικά γιατί το εμβαδόν του τριγώνου ΑΒΓ παραμένει σταθερό, ανεξάρτητα από την τιμή του μ; (Μονάδες 5)

ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ ΤΩΝ ΜΑΘΗΜΑΤΙΚΩΝ ΘΕΤΙΚΟΥ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΤΗΣ Β ΛΥΚΕΙΟΥ

ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ ΤΩΝ ΜΑΘΗΜΑΤΙΚΩΝ ΘΕΤΙΚΟΥ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΤΗΣ Β ΛΥΚΕΙΟΥ ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ ΤΩΝ ΜΑΘΗΜΑΤΙΚΩΝ ΘΕΤΙΚΟΥ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΤΗΣ Β ΛΥΚΕΙΟΥ Διανύσματα Πολλαπλασιασμός αριθμού με διάνυσμα ο Θέμα _8603 Δίνεται τρίγωνο ΑΒΓ και σημεία Δ και Ε του επιπέδου τέτοια, ώστε 5 και

Διαβάστε περισσότερα

και 2, 2 2 είναι κάθετα να βρείτε την τιμή του κ. γ) Αν στο τρίγωνο ΑΒΓ επιπλέον ισχύει Α(3,1), να βρείτε τις συντεταγμένες των κορυφών του Β και Γ.

και 2, 2 2 είναι κάθετα να βρείτε την τιμή του κ. γ) Αν στο τρίγωνο ΑΒΓ επιπλέον ισχύει Α(3,1), να βρείτε τις συντεταγμένες των κορυφών του Β και Γ. Β ΛΥΚΕΙΟΥ ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ (ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ) 8556 ΘΕΜΑ Δίνονται τα διανύσματα και με, και, 3 α) Να βρείτε το εσωτερικό γινόμενο β) Αν τα διανύσματα γ) Να βρείτε το μέτρο του διανύσματος 8558 ΘΕΜΑ

Διαβάστε περισσότερα

Τράπεζα Θεμάτων Διαβαθμισμένης Δυσκολίας-Μαθηματικά Ομάδας Προσανατολισμού Θετικών Σπουδών ΟΜΑΔΑΣ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ Β Λ Υ Κ Ε Ι Ο Υ

Τράπεζα Θεμάτων Διαβαθμισμένης Δυσκολίας-Μαθηματικά Ομάδας Προσανατολισμού Θετικών Σπουδών ΟΜΑΔΑΣ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ Β Λ Υ Κ Ε Ι Ο Υ Μ Α Θ Η Μ Α Τ Ι Κ Α ΟΜΑΔΑΣ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ Β Λ Υ Κ Ε Ι Ο Υ ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ ΔΙΑΒΑΘΜΙΣΜΕΝΗΣ ΔΥΣΚΟΛΙΑΣ Σχολικό έτος : 04-05 Τα θέματα εμπλουτίζονται με την δημοσιοποίηση και των νέων θεμάτων

Διαβάστε περισσότερα

= π 3 και a = 2, β =2 2. a, β. α) Να βρείτε το εσωτερικό γινόμενο a β. (Μονάδες 8)

= π 3 και a = 2, β =2 2. a, β. α) Να βρείτε το εσωτερικό γινόμενο a β. (Μονάδες 8) ΘΕΜΑ Δίνονται τα διανύσματα a και β με a, β = π 3 και a =, β =. α) Να βρείτε το εσωτερικό γινόμενο a β. β) Αν τα διανύσματα a + β και κ a + β είναι κάθετα να βρείτε την τιμή του κ. (Μονάδες 10) γ) Να βρείτε

Διαβάστε περισσότερα

ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ Β ΚΑΤΕΥΘΥΝΣΗ ΦΡΟΝΤΙΣΤΗΡΙΑ ΚΕΦΑΛΑ ΔΙΑΝΥΣΜΑΤΑ. = π 3 και a = 2, β =2 2. a, β AΓ =(2,-8). α) Να βρείτε τις συντεταγμένες του διανύσματος

ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ Β ΚΑΤΕΥΘΥΝΣΗ ΦΡΟΝΤΙΣΤΗΡΙΑ ΚΕΦΑΛΑ ΔΙΑΝΥΣΜΑΤΑ. = π 3 και a = 2, β =2 2. a, β AΓ =(2,-8). α) Να βρείτε τις συντεταγμένες του διανύσματος ΔΙΑΝΥΣΜΑΤΑ 8556 ΘΕΜΑ Δίνονται τα διανύσματα a και β με a, β = π 3 και a =, β =.. α) Να βρείτε το εσωτερικό γινόμενο a β. β) Αν τα διανύσματα a + β και κ a + β είναι κάθετα να βρείτε την τιμή του κ. (Μονάδες

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ Β ΛΥΚΕΙΟΥ

ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ Β ΛΥΚΕΙΟΥ Φεργαδιώτης Αθανάσιος ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ ΣΤA ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ Β ΛΥΚΕΙΟΥ Θέμα 4 ο (16) -2- Τράπεζα θεμάτων Μαθηματικών προσανατολισμού Β Λυκείου -3- Τράπεζα θεμάτων Μαθηματικών προσανατολισμού Β

Διαβάστε περισσότερα

ΔΙΑΝΥΣΜΑΤΑ ΠΟΛΛΑΠΛΑΣΙΑΣΜΟΣ ΑΡΙΘΜΟΥ ΜΕ ΔΙΑΝΥΣΜΑ. ΘΕΜΑ 2ο

ΔΙΑΝΥΣΜΑΤΑ ΠΟΛΛΑΠΛΑΣΙΑΣΜΟΣ ΑΡΙΘΜΟΥ ΜΕ ΔΙΑΝΥΣΜΑ. ΘΕΜΑ 2ο Β ΛΥΚΕΙΟΥ ΚΑΤΕΥΘΥΝΣΗ ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ ΔΙΑΝΥΣΜΑΤΑ ΠΟΛΛΑΠΛΑΣΙΑΣΜΟΣ ΑΡΙΘΜΟΥ ΜΕ ΔΙΑΝΥΣΜΑ ΘΕΜΑ ο ΘΕΜΑ 8603 Δίνεται τρίγωνο και σημεία και του επιπέδου τέτοια, ώστε 5 και 5. α) Να γράψετε το διάνυσμα ως γραμμικό

Διαβάστε περισσότερα

ΔΙΑΝΥΣΜΑΤΑ. (Μονάδες 8) (Μονάδες 10) (Μονάδες 7) ΘΕΜΑ 2. AM, όπου ΑΜ είναι η διάμεσος. (Μονάδες 7)

ΔΙΑΝΥΣΜΑΤΑ. (Μονάδες 8) (Μονάδες 10) (Μονάδες 7) ΘΕΜΑ 2. AM, όπου ΑΜ είναι η διάμεσος. (Μονάδες 7) ΔΙΑΝΥΣΜΑΤΑ ΘΕΜΑ Άσκηση Δίνονται τα διανύσματα a και με a, = 3 και a =, =. α) Να βρείτε το εσωτερικό γινόμενο a. β) Αν τα διανύσματα a + και κ a + είναι κάθετα να βρείτε την τιμή του κ. γ) Να βρείτε το

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ Β ΛΥΚΕΙΟΥ

ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ Β ΛΥΚΕΙΟΥ Φεργαδιώτης Αθανάσιος ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ ΣΤA ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ Β ΛΥΚΕΙΟΥ Θέμα 2 ο (39) -2- Τράπεζα θεμάτων Μαθηματικών προσανατολισμού Β Λυκείου -3- Τράπεζα θεμάτων Μαθηματικών προσανατολισμού Β

Διαβάστε περισσότερα

ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ ΤΩΝ ΜΑΘΗΜΑΤΙΚΩΝ ΘΕΤΙΚΟΥ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΤΗΣ Β ΛΥΚΕΙΟΥ

ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ ΤΩΝ ΜΑΘΗΜΑΤΙΚΩΝ ΘΕΤΙΚΟΥ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΤΗΣ Β ΛΥΚΕΙΟΥ ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ ΤΩΝ ΜΑΘΗΜΑΤΙΚΩΝ ΘΕΤΙΚΟΥ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΤΗΣ Β ΛΥΚΕΙΟΥ Για τις λύσεις συνεργάστηκαν οι μαθηματικοί: Βλαχόπουλος Αποστόλης Δικαιοσυνόπουλος Νίκος Κολλινιάτη Γιωργία Μάκος Σπύρος Μαρωνίτη

Διαβάστε περισσότερα

Επιμέλεια: Σακαρίκος Ευάγγελος 108 Θέματα - 24/1/2015

Επιμέλεια: Σακαρίκος Ευάγγελος 108 Θέματα - 24/1/2015 Τράπεζα Θεμάτων Β Λυκείου Μαθηματικά Προσανατολισμού Επιμέλεια: Σακαρίκος Ευάγγελος 08 Θέματα - 4//05 Τράπεζα Θεμάτων Β Λυκείου Μαθηματικά Προσανατολισμού Τράπεζα Θεμάτων Β Λυκείου Μαθηματικά Προσαν. Κεφάλαιο

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 1 Ο ΔΙΑΝΥΣΜΑΤΑ

ΚΕΦΑΛΑΙΟ 1 Ο ΔΙΑΝΥΣΜΑΤΑ ΘΕΜΑΤΑ ΚΑΙ ΑΠΑΝΤΗΣΕΙΣ ΤΗΣ ΤΡΑΠΕΖΑΣ ΘΕΜΑΤΩΝ ΓΙΑ ΤΑ ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΟΥ Β ΛΥΚΕΙΟΥ ΣΧΟΛΙΚΟ ΕΤΟΣ 014-015 ΚΕΦΑΛΑΙΟ 1 Ο ΔΙΑΝΥΣΜΑΤΑ 1. ΘΕΜΑ ΚΩΔΙΚΟΣ_18556 Δίνονται τα διανύσματα α και β με ^, και,. α Να

Διαβάστε περισσότερα

1,y 1) είναι η C : xx yy 0.

1,y 1) είναι η C : xx yy 0. ΘΕΜΑ Α ΔΕΙΓΜΑΤΑ ΘΕΜΑΤΩΝ ΕΞΕΤΑΣΕΩΝ ΜΑΙΟΥ-ΙΟΥΝΙΟΥ ΜΑΘΗΜΑΤΙΚΩΝ ΚΑΤΕΥΘΥΝΣΗΣ Β ΛΥΚΕΙΟΥ ο δείγμα Α. Αν α, β δύο διανύσματα του επιπέδου με συντελεστές διεύθυνσης λ και λ αντίστοιχα, να αποδείξετε ότι α β λ λ.

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΑ ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΟΥ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ Β ΛΥΚΕΙΟΥ

ΜΑΘΗΜΑΤΑ ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΟΥ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ Β ΛΥΚΕΙΟΥ ΜΑΘΗΜΑΤΑ ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΟΥ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ Β ΛΥΚΕΙΟΥ ΚΕΦΑΛΑΙΟ 1 ο : ΔΙΑΝΥΣΜΑΤΑ 1 ΜΑΘΗΜΑ 1 ο +2 ο ΕΝΝΟΙΑ ΔΙΑΝΥΣΜΑΤΟΣ Διάνυσμα ορίζεται ένα προσανατολισμένο ευθύγραμμο τμήμα, δηλαδή ένα ευθύγραμμο τμήμα

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ

ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ ΘΕΜΑ 1 ο Δίνεται η ευθεία (ε) με εξίσωση: 2x y1 0 καθώς και το σημείο Μ(3,0). α. Να βρείτε την εξίσωση μιας ευθείας (η) που περνά από το Μ και είναι κάθετη στην ευθεία (ε). β. Να

Διαβάστε περισσότερα

ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ. Μαθηματικά Προσανατολισμού Β Γενικού Ημερησίου Λυκείου. 2 ο ΘΕΜΑ. Εκφωνήσεις Λύσεις των θεμάτων. Έκδοση 1 η (18/11/2014)

ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ. Μαθηματικά Προσανατολισμού Β Γενικού Ημερησίου Λυκείου. 2 ο ΘΕΜΑ. Εκφωνήσεις Λύσεις των θεμάτων. Έκδοση 1 η (18/11/2014) ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ Μαθηματικά Προσανατολισμού Β Γενικού Ημερησίου Λυκείου ο ΘΕΜΑ Εκφωνήσεις Λύσεις των θεμάτων Έκδοση η (8//04) Θέματα ης Ομάδας ο ΘΕΜΑ Μαθηματικά Προσανατολισμού Β Λυκείου GI_V_MATHP 8556

Διαβάστε περισσότερα

Μαθηματικά προσανατολισμού Β Λυκείου

Μαθηματικά προσανατολισμού Β Λυκείου Μαθηματικά προσανατολισμού Β Λυκείου Συντεταγμένες Διανύσματος wwwaskisopolisgr wwwaskisopolisgr Συντεταγμένες στο επίπεδο Άξονας Πάνω σε μια ευθεία επιλέγουμε δύο σημεία Ο και Ι, έτσι το διάνυσμα i OI

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 3 Ο. Ι) ΚΥΚΛΟΣ 1. Να βρεθεί η εξίσωση του κύκλου που έχει κέντρο το O(0,0) και ι) διέρχεται από το Α( 4, 3) και ιι) εφάπτεται στην 4x 3y+10=0

ΚΕΦΑΛΑΙΟ 3 Ο. Ι) ΚΥΚΛΟΣ 1. Να βρεθεί η εξίσωση του κύκλου που έχει κέντρο το O(0,0) και ι) διέρχεται από το Α( 4, 3) και ιι) εφάπτεται στην 4x 3y+10=0 ΚΕΦΑΛΑΙΟ 3 Ο Ι) ΚΥΚΛΟΣ 1. Να βρεθεί η εξίσωση του κύκλου που έχει κέντρο το O(0,0) και ι) διέρχεται από το Α( 4, 3) και ιι) εφάπτεται στην 4x 3y+10=0 2. Να βρεθεί η εξίσωση της εφαπτομένης του κύκλου x

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ & ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Β ΛΥΚΕΙΟΥ

ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ & ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Β ΛΥΚΕΙΟΥ ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ & ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Β ΛΥΚΕΙΟΥ ΚΕΦΑΛΑΙΟ 1Ο : ΔΙΑΝΥΣΜΑΤΑ ΒΑΣΙΚΗ ΜΕΘΟΔΟΛΟΓΙΑ Διάνυσμα Θέσης ενός σημείου Αν θεωρήσουμε ένα οποιοδήποτε σημείο Ο του επιπέδου ως σημείο αναφοράς (ακόμα

Διαβάστε περισσότερα

Η γενική μορφή της εξίσωσης ευθείας είναι η από τα Α, Β διάφορο του μηδενός

Η γενική μορφή της εξίσωσης ευθείας είναι η από τα Α, Β διάφορο του μηδενός ΕΥΘΕΙΑ Να προσέχεις ότι: Η γενική μορφή της εξίσωσης ευθείας είναι η από τα Α, Β διάφορο του μηδενός Ax+By+Γ=0, με κάποιο Η εξίσωση της ευθείας που διέρχεται από ένα σημείο Α(x 0,y 0 ) και έχει συντελεστή

Διαβάστε περισσότερα

2.2 ΓΕΝΙΚΗ ΜΟΡΦΗ ΕΞΙΣΩΣΗΣ ΕΥΘΕΙΑΣ

2.2 ΓΕΝΙΚΗ ΜΟΡΦΗ ΕΞΙΣΩΣΗΣ ΕΥΘΕΙΑΣ 63 ΓΕΝΙΚΗ ΜΟΡΦΗ ΕΞΙΣΩΣΗΣ ΕΥΘΕΙΑΣ Η Εξίσωση Αx + Βy + Γ = 0, με Α 0 ή Β 0 Έστω ε μια ευθεία στο καρτεσιανό επίπεδο Αν η ευθεία ε τέμνει τον άξονα yy στο σημείο Σ (, 0 β ) και έχει συντελεστή διεύθυνσης

Διαβάστε περισσότερα

ΟΜΟΣΠΟΝ ΙΑ ΕΚΠΑΙ ΕΥΤΙΚΩΝ ΦΡΟΝΤΙΣΤΩΝ ΕΛΛΑ ΟΣ (Ο.Ε.Φ.Ε.) ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 2012

ΟΜΟΣΠΟΝ ΙΑ ΕΚΠΑΙ ΕΥΤΙΚΩΝ ΦΡΟΝΤΙΣΤΩΝ ΕΛΛΑ ΟΣ (Ο.Ε.Φ.Ε.) ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 2012 ΟΜΟΣΠΟΝ ΙΑ ΕΚΠΑΙ ΕΥΤΙΚΩΝ ΦΡΟΝΤΙΣΤΩΝ ΕΛΛΑ ΟΣ (Ο.Ε.Φ.Ε.) ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 0 Ε_.ΜλΘΤ(ε) ΤΑΞΗ: Β ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ / ΘΕΤΙΚΗΣ & ΤΕΧΝΟΛΟΓΙΚΗΣ ΘΕΜΑ Α Ηµεροµηνία: Κυριακή

Διαβάστε περισσότερα

2 ΕΥΘΕΙΑ ΑΛΥΤΕΣ ΑΣΚΗΣΕΙΣ

2 ΕΥΘΕΙΑ ΑΛΥΤΕΣ ΑΣΚΗΣΕΙΣ ΕΥΘΕΙΑ ΑΛΥΤΕΣ ΑΣΚΗΣΕΙΣ ΑΛΥΤΕΣ ΑΣΚΗΣΕΙΣ 1. Να βρείτε τον συντελεστή διεύθυνσης μιας ευθείας ε, που σχηματίζει με τον άξονα x x γωνία: π 3 α) ω = β) ω = γ) ω = π 3. Να βρείτε τη γωνία ω που σχηματίζει με

Διαβάστε περισσότερα

ΠΡΩΤΟ ΘΕΜΑ ΕΞΕΤΑΣΕΩΝ

ΠΡΩΤΟ ΘΕΜΑ ΕΞΕΤΑΣΕΩΝ ΠΡΩΤΟ ΘΕΜΑ ΕΞΕΤΑΣΕΩΝ 1. Α. Έστω x, y και x, y δύο διανύσματα του καρτεσιανού επιπέδου Οxy. i. Να εκφράσετε (χωρίς απόδειξη) το εσωτερικό γινόμενο των διανυσμάτων και συναρτήσει των συντεταγμένων τους.

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΟΥ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΤΗΣ Β ΛΥΚΕΙΟΥ

ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΟΥ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΤΗΣ Β ΛΥΚΕΙΟΥ ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΟΥ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΤΗΣ Β ΛΥΚΕΙΟΥ Διανύσματα ΑΣΚΗΣΕΙΣ ΣΤΑ ΔΙΑΝΥΣΜΑΤΑ ΠΡΟΣΘΕΣΗ ΚΑΙ ΑΦΑΙΡΕΣΗ ΔΙΑΝΥΣΜΑΤΩΝ 1. Δίνεται τετράγωνο ΑΒΓΔ.Σε καθεμία από τις παρακάτω περιπτώσεις να βρείτε το άθροισμα.

Διαβάστε περισσότερα

Τάξη B. Μάθημα: Η Θεωρία σε Ερωτήσεις. Επαναληπτικά Θέματα. Επαναληπτικά Διαγωνίσματα. Επιμέλεια: Κώστας Κουτσοβασίλης. α Ε

Τάξη B. Μάθημα: Η Θεωρία σε Ερωτήσεις. Επαναληπτικά Θέματα. Επαναληπτικά Διαγωνίσματα. Επιμέλεια: Κώστας Κουτσοβασίλης. α Ε Ν β K C Ε -α Ο α Ε Τάξη B Μ -β Λ Μάθημα: Η Θεωρία σε Ερωτήσεις Επαναληπτικά Θέματα Επαναληπτικά Διαγωνίσματα Επιμέλεια: Διανύσματα Ερωτήσεις θεωρίας 1. Πως ορίζεται το διάνυσμα;. Τι λέγεται μηδενικό διάνυσμα;

Διαβάστε περισσότερα

Χαρακτηρίστε τις παρακάτω προτάσεις ως σωστό (Σ) ή λάθος (Λ)

Χαρακτηρίστε τις παρακάτω προτάσεις ως σωστό (Σ) ή λάθος (Λ) ΕΡΩΤΗΣΕΙΣ ΑΝΤΙΚΕΙΜΕΝΙΚΟΥ ΤΥΠΟΥ ΕΥΘΕΙΑ Χαρακτηρίστε τις παρακάτω προτάσεις ως σωστό (Σ) ή λάθος (Λ) 1. Συντελεστής διεύθυνσης μιας ευθείας (ε) είναι η εφαπτομένη της γωνίας που σχηματίζει η ευθεία με τον

Διαβάστε περισσότερα

ΕΥΘΕΙΑ. Κεφάλαιο 2ο: Ερωτήσεις του τύπου «Σωστό-Λάθος»

ΕΥΘΕΙΑ. Κεφάλαιο 2ο: Ερωτήσεις του τύπου «Σωστό-Λάθος» Κεφάλαιο ο: ΕΥΘΕΙΑ Ερωτήσεις του τύπου «Σωστό-Λάθος». * Συντελεστής διεύθυνσης µιας ευθείας (ε) είναι η εφαπτοµένη της γωνίας που σχηµατίζει η ευθεία (ε) µε τον άξονα x x. Σ Λ. * Ο συντελεστής διεύθυνσης

Διαβάστε περισσότερα

ΦΥΛΛΑ ΙΑ ΣΗΜΕΙΩΣΕΩΝ ΜΑΘΗΜΑΤΙΚΩΝ ΚΑΤΕΥΘΥΝΣΗΣ Β ΛΥΚΕΙΟΥ

ΦΥΛΛΑ ΙΑ ΣΗΜΕΙΩΣΕΩΝ ΜΑΘΗΜΑΤΙΚΩΝ ΚΑΤΕΥΘΥΝΣΗΣ Β ΛΥΚΕΙΟΥ ΦΥΛΛΑ ΙΑ ΣΗΜΕΙΩΣΕΩΝ ΜΑΘΗΜΑΤΙΚΩΝ ΚΑΤΕΥΘΥΝΣΗΣ Β ΛΥΚΕΙΟΥ ΦΥΛΛΑ ΙΟ ΑΣΚΗΣΕΩΝ 1 Θέµα: Τα διανύσµατα ❶ ❷ ❸ ❹ ❺ Η έννοια του διανύσµατος Πρόσθεση και αφαίρεση διανυσµάτων Πολλαπλασιασµός αριθµού µε διάνυσµα Συντεταγµένες

Διαβάστε περισσότερα

Ασκήσεις στην ευθεία. 2. Θεωρούµε την γραµµή µε εξίσωση x 2 +y 2-2x+y-5=0. Βρείτε τα σηµεία της καµπύλης, αν υπάρχουν, µε τετµηµένη -1.

Ασκήσεις στην ευθεία. 2. Θεωρούµε την γραµµή µε εξίσωση x 2 +y 2-2x+y-5=0. Βρείτε τα σηµεία της καµπύλης, αν υπάρχουν, µε τετµηµένη -1. Ασκήσεις στην ευθεία 1. Να βρείτε τα σηµεία τοµής των γραµµών µε εξισώσεις : α) 7x-11y+1=0, x+y-=0 β) y-3x-=0, x +y =4 γ) x +y =α, 3x+y+α=0. Θεωρούµε την γραµµή µε εξίσωση x +y -x+y-5=0. Βρείτε τα σηµεία

Διαβάστε περισσότερα

Η ΕΥΘΕΙΑ ΣΤΟ ΕΠΙΠΕΔΟ Μέρος Α : Θεωρία

Η ΕΥΘΕΙΑ ΣΤΟ ΕΠΙΠΕΔΟ Μέρος Α : Θεωρία 1 Η ΕΥΘΕΙΑ ΣΤΟ ΕΠΙΠΕΔΟ Μέρος Α : Θεωρία ΕΞΙΣΩΣΗ ΕΥΘΕΙΑΣ Εξίσωση Γραμμής Μια εξίσωση με δύο αγνώστους, λέγεται εξίσωση μιας γραμμής C, όταν οι συντεταγμένες των σημείων της C, και μόνο αυτές, την επαληθεύουν.

Διαβάστε περισσότερα

πλευρές του κείνται στις ευθείες : 4χ-3ψ+7=0, 3χ+2ψ-16=0, χ-5ψ+6=0. (ΑΒ=5, ΒΓ= 13,

πλευρές του κείνται στις ευθείες : 4χ-3ψ+7=0, 3χ+2ψ-16=0, χ-5ψ+6=0. (ΑΒ=5, ΒΓ= 13, 1 Η Ευθεία στο Επίπεδο Η Ευθεία στο Επίπεδο 1 Να βρεθεί το είδος των γωνιών του τριγώνου που οι πλευρές του κείνται στις ευθείες : 4χ-3ψ+3=0, 3χ+4ψ+4=0, χ-7ψ+8=0. (90, 45, 45 ) 2 Να βρεθεί το μήκος των

Διαβάστε περισσότερα

AB. Αν το διάνυσμα AB έχει μέτρο 1, τότε λέγεται

AB. Αν το διάνυσμα AB έχει μέτρο 1, τότε λέγεται ΔΙΑΝΥΣΜΑΤΑ Στη Γεωμετρία το διάνυσμα ορίζεται ως ένα προσανατολισμένο ευθύγραμμο τμήμα, δηλαδή ως ένα ευθύγραμμο τμήμα του οποίου τα άκρα θεωρούνται διατεταγμένα Αν η αρχή και το πέρας ενός διανύσματος

Διαβάστε περισσότερα

ΑΣΚΗΣΕΙΣ ΣΤΑ ΔΙΑΝΥΣΜΑΤΑ ΕΣΩΤΕΡΙΚΟ ΓΙΝΟΜΕΝΟ

ΑΣΚΗΣΕΙΣ ΣΤΑ ΔΙΑΝΥΣΜΑΤΑ ΕΣΩΤΕΡΙΚΟ ΓΙΝΟΜΕΝΟ ΑΣΚΗΣΕΙΣ ΣΤΑ ΔΙΑΝΥΣΜΑΤΑ ΕΣΩΤΕΡΙΚΟ ΓΙΝΟΜΕΝΟ ΟΡΙΣΜΟΣ ΚΑΙ ΙΔΙΟΤΗΤΕΣ ΕΣΩΤΕΡΙΚΟΥ ΓΙΝΟΜΕΝΟΥ 1. Να υπολογιστεί το εσωτερικό γινόμενο a δύο διανυσμάτων a και αν: ι) a a 5, 7,(, ) 5, ιι) a 5,,( a, ). 6 6. Το διάνυσμα

Διαβάστε περισσότερα

ΑΣΚΗΣΕΙΣ ΣΤΗ ΓΕΝΙΚΗ ΜΟΡΦΗ ΕΞΙΣΩΣΗΣ ΕΥΘΕΙΑΣ

ΑΣΚΗΣΕΙΣ ΣΤΗ ΓΕΝΙΚΗ ΜΟΡΦΗ ΕΞΙΣΩΣΗΣ ΕΥΘΕΙΑΣ ΑΣΚΗΣΕΙΣ ΣΤΗ ΓΕΝΙΚΗ ΜΟΡΦΗ ΕΞΙΣΩΣΗΣ ΕΥΘΕΙΑΣ 1. Να σχεδιάσετε την καμπύλη που παριστάνει η εξίσωση x y x 2 y. x y 2. Να βρεθεί η εξίσωση της ευθείας, η οποία τέμνει : i) τον άξονα χ'χ σε σημείο με τετμημένη

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 2Ο : Η ΕΥΘΕΙΑ ΣΤΟ ΕΠΙΠΕΔΟ ΒΑΣΙΚΗ ΜΕΘΟΔΟΛΟΓΙΑ

ΚΕΦΑΛΑΙΟ 2Ο : Η ΕΥΘΕΙΑ ΣΤΟ ΕΠΙΠΕΔΟ ΒΑΣΙΚΗ ΜΕΘΟΔΟΛΟΓΙΑ ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ & ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Β ΛΥΚΕΙΟΥ ΚΕΦΑΛΑΙΟ Ο : Η ΕΥΘΕΙΑ ΣΤΟ ΕΠΙΠΕΔΟ ΒΑΣΙΚΗ ΜΕΘΟΔΟΛΟΓΙΑ. Ένα σημείο Μ(x,y) ανήκει σε μια γραμμή C αν και μόνο αν επαληθεύει την εξίσωσή της. Π.χ. :

Διαβάστε περισσότερα

ΘΕΜΑΤΑ ΕΞΕΤΑΣΕΩΝ. και 25x i). Να κάνετε τις πράξεις στο πολυώνυμο.

ΘΕΜΑΤΑ ΕΞΕΤΑΣΕΩΝ. και 25x i). Να κάνετε τις πράξεις στο πολυώνυμο. ΣΥΛΛΟΓΟΣ «Η ΕΛΛΗΝΙΚΗ ΠΑΙΔΕΙΑ» ΓΥΜΝΑΣΙΟ ΑΜΑΡΟΥΣΙΟΥ ΜΑΘΗΜΑΤΙΚΑ ΘΕΜΑΤΑ ΕΞΕΤΑΣΕΩΝ ΘΕΜΑ 1 Δίνονται τα πολυώνυμα (3x ) (5 x)(3x ) και 5x 9 i). Να κάνετε τις πράξεις στο πολυώνυμο. ii). Να βρείτε την τιμή του

Διαβάστε περισσότερα

ΘΕΜΑΤΑ. Μονάδες 8 Β. η εξίσωση της μεσοκάθετης της ΑΓ Μονάδες 9

ΘΕΜΑΤΑ. Μονάδες 8 Β. η εξίσωση της μεσοκάθετης της ΑΓ Μονάδες 9 ΓΕΛ ΜΑΘ. ΚΑΤΕΥΘΥΝΣΗΣ Β 331 Α. α. Τι ονομάζουμε εσωτερικό γινόμενο των μη μηδενικών διανυσμάτων α, β. Μονάδες 5 β. Εάν ορίζονται οι συντελεστές διεύθυνσης των διανυσμάτων α, β αντιστοίχως να δείξετε ότι:

Διαβάστε περισσότερα

Επαναληπτικά Θέµατα Εξετάσεων

Επαναληπτικά Θέµατα Εξετάσεων Επαναληπτικά Θέµατα Εξετάσεων Καθηγητές : Νικόλαος Κατσίπης 25 Απριλίου 2014 Στόχος του παρόντος ϕυλλαδίου είναι να αποτελέσει µια αφορµή για επανάληψη πριν τις εξετάσεις. Σας ευχόµαστε καλό διάβασµα και...

Διαβάστε περισσότερα

Γενικό Ενιαίο Λύκειο Μαθ. Κατ. Τάξη B

Γενικό Ενιαίο Λύκειο Μαθ. Κατ. Τάξη B 151 Θέματα εξετάσεων περιόδου Μαΐου - Ιουνίου στα Μαθηματικά Κατεύθυνσης Τάξη - B Λυκείου 15 Α. Αν α, β, γ ακέραιοι ώστε α/β και α/γ, να δείξετε ότι α/(β + γ). Μονάδες 13 Β. α. Δώστε τον ορισμό της παραβολής.

Διαβάστε περισσότερα

Επαναληπτικά συνδυαστικα θέµατα

Επαναληπτικά συνδυαστικα θέµατα Επαναληπτικά συνδυαστικα θέµατα A. Αν α, β i. αβ Θέµα ο µη µηδενικά διανύσµατα και ισχύει α+ β + α β =, τότε να δείξετε ότι: και ii. Αν α β τότε ισχύει α + β =. B. Να βρεθούν οι τιµές του λ ώστε η εξίσωση

Διαβάστε περισσότερα

ΠΡΟΤΕΙΝΟΜΕΝΟΣ ΣΧΕΔΙΑΣΜΟΣ ΕΠΑΝΑΛΗΨΗΣ ΜΑΘΗΜΑΤΙΚΩΝ Γ ΓΥΜΝΑΣΙΟΥ

ΠΡΟΤΕΙΝΟΜΕΝΟΣ ΣΧΕΔΙΑΣΜΟΣ ΕΠΑΝΑΛΗΨΗΣ ΜΑΘΗΜΑΤΙΚΩΝ Γ ΓΥΜΝΑΣΙΟΥ ΕΚΠΑΙΔΕΥΤΗΡΙΑ ΓΥΜΝΑΣΙΟ ΑΜΑΡΟΥΣΙΟΥ ΠΡΟΤΕΙΝΟΜΕΝΟΣ ΣΧΕΔΙΑΣΜΟΣ ΕΠΑΝΑΛΗΨΗΣ ΜΑΘΗΜΑΤΙΚΩΝ Γ ΓΥΜΝΑΣΙΟΥ ΑΛΓΕΒΡΑ Επαναληπτικές Ασκήσεις (από σχολικό βιβλίο) (από βοήθημα Γ Γυμνασίου Πετσιά-Κάτσιου) Κεφάλαιο 1ο 17,

Διαβάστε περισσότερα

ΤΕΤΡΑΚΤΥΣ ΦΡΟΝΤΙΣΤΗΡΙΟ ΜΕΣΗΣ ΕΚΠΑΙΔΕΥΣΗΣ Αμυραδάκη 20, Νίκαια (210-4903576) ΝΟΕΜΒΡΙΟΣ 2013 ΤΑΞΗ... Β ΛΥΚΕΙΟΥ... ΜΑΘΗΜΑ...ΓΕΩΜΕΤΡΙΑΣ...

ΤΕΤΡΑΚΤΥΣ ΦΡΟΝΤΙΣΤΗΡΙΟ ΜΕΣΗΣ ΕΚΠΑΙΔΕΥΣΗΣ Αμυραδάκη 20, Νίκαια (210-4903576) ΝΟΕΜΒΡΙΟΣ 2013 ΤΑΞΗ... Β ΛΥΚΕΙΟΥ... ΜΑΘΗΜΑ...ΓΕΩΜΕΤΡΙΑΣ... Αμυραδάκη 0, Νίκαια (10-4903576) ΤΑΞΗ... Β ΛΥΚΕΙΟΥ... ΘΕΜΑ 1 ΝΟΕΜΒΡΙΟΣ 013 Α. Να αποδείξετε ότι σε κάθε ορθογώνιο τρίγωνο, το τετράγωνο του ύψους που αντιστοιχεί στην υποτείνουσα του ισούται με το γινόμενο

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 1 ο ΔΙΑΝΥΣΜΑΤΑ

ΚΕΦΑΛΑΙΟ 1 ο ΔΙΑΝΥΣΜΑΤΑ taexeiolag ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Β ΛΥΚΕΙΟΥ ΑΣΚΗΣΗ 1 uuuu uuuu uuuu Αν OA OB 3O 0 και ΚΕΦΑΛΑΙΟ 1 ο ΔΙΑΝΥΣΜΑΤΑ uuuu uuuu uuuu OA OB 1, O α Να δείξετε ότι τα σημεία Α, Β, Γ είναι συνευθειακά

Διαβάστε περισσότερα

i. εστίες Ε' (-4, 0), Ε(4, 0) και η απόσταση των κορυφών είναι 5, ii. εστίες Ε'(0, -10), Ε(0, 10) και η απόσταση των κορυφών είναι 8.

i. εστίες Ε' (-4, 0), Ε(4, 0) και η απόσταση των κορυφών είναι 5, ii. εστίες Ε'(0, -10), Ε(0, 10) και η απόσταση των κορυφών είναι 8. ΥΠΕΡΒΟΛΗ ΕΞΙΣΩΣΗ ΚΑΙ ΣΤΟΙΧΕΙΑ ΥΠΕΡΒΟΛΗΣ 1) Να βρεθεί η εξίσωση της υπερβολής αν έχει: i) Εστιακή απόσταση γ=0 και άξονα β=16, 5 ii) Άξονα α=16 και εκκεντρότητα ε=. 4 ) Να βρείτε την εξίσωση της υπερβολής,

Διαβάστε περισσότερα

Επαναληπτικό Διαγώνισμα Μαθηματικών Κατεύθυνσης Β Λυκείου

Επαναληπτικό Διαγώνισμα Μαθηματικών Κατεύθυνσης Β Λυκείου Επαναληπτικό Διαγώνισμα Μαθηματικών Κατεύθυνσης Β Λυκείου Θέμα 1 Α. Να αποδείξετε ότι αν α,β τότε α //β α λβ, λ. είναι δύο διανύσματα, με β 0, Β. Να χαρακτηρίσετε τις προτάσεις που ακολουθούν, γράφοντας

Διαβάστε περισσότερα

2 Η ΕΥΘΕΙΑ ΣΤΟ ΕΠΙΠΕΔΟ. Εισαγωγή

2 Η ΕΥΘΕΙΑ ΣΤΟ ΕΠΙΠΕΔΟ. Εισαγωγή Η ΕΥΘΕΙΑ ΣΤΟ ΕΠΙΠΕΔΟ Εισαγωγή Η ιδέα της χρησιμοποίησης ενός συστήματος συντεταγμένων για τον προσδιορισμό της θέσης ενός σημείου πάνω σε μια επιφάνεια προέρχεται από την Γεωγραφία και ήταν γνωστή στους

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Β ΛΥΚΕΙΟΥ ΚΕΦΑΛΑΙΟ 2 ΕΥΘΕΙΑ ΑΣΚΗΣΕΙΣ Πηγή: KEE

ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Β ΛΥΚΕΙΟΥ ΚΕΦΑΛΑΙΟ 2 ΕΥΘΕΙΑ ΑΣΚΗΣΕΙΣ Πηγή: KEE 1. Να βρείτε τον συντελεστή διεύθυνσης µιας ευθείας ε, που σχηµατίζει µε τον άξονα x x γωνία: α) ω = 3 π β) ω = π 3 γ) ω = π. Να βρείτε τη γωνία ω που σχηµατίζει µε τον άξονα x x µια ευθεία ε, η οποία

Διαβάστε περισσότερα

ΚΩΝΙΚΕΣ ΤΟΜΕΣ. Κεφάλαιο 4ο: Ερωτήσεις του τύπου «Σωστό - Λάθος» k R

ΚΩΝΙΚΕΣ ΤΟΜΕΣ. Κεφάλαιο 4ο: Ερωτήσεις του τύπου «Σωστό - Λάθος» k R Κεφάλαιο 4ο: ΚΩΝΙΚΕΣ ΤΟΜΕΣ Α. ΚΥΚΛΟΣ Ερωτήσεις του τύπου «Σωστό - Λάθος» 1. * Η εξίσωση ( x x ) + ( y y ) = k, k R είναι πάντοτε εξίσωση κύκλου. o o. * Η εξίσωση x + y + Ax + By + Γ = 0 παριστάνει κύκλο

Διαβάστε περισσότερα

Επαναληπτικά Θέµατα Εξετάσεων

Επαναληπτικά Θέµατα Εξετάσεων Επαναληπτικά Θέµατα Εξετάσεων Καθηγητής : Νικόλαος. Κατσίπης 19 Απριλίου 2013 Στόχος του παρόντος ϕυλλαδίου είναι να αποτελέσει µια αφορµή για επανάληψη πριν τις εξετάσεις. Σας εύχοµαι καλό διάβασµα και...

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ Β ΛΥΚΕΙΟΥ [TΡΑΠΕΖΑ ΘΕΜΑΤΩΝ ] (Μονάδες 13) β) Να δείξετε ότι τα διανύσματα ΔΕ και BΓ είναι παράλληλα.

ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ Β ΛΥΚΕΙΟΥ [TΡΑΠΕΖΑ ΘΕΜΑΤΩΝ ] (Μονάδες 13) β) Να δείξετε ότι τα διανύσματα ΔΕ και BΓ είναι παράλληλα. ΔΙΑΝΥΣΜΑΤΑ ΘΕΜΑ Ο 863 Δίνεται τρίγωνο ΑΒΓ και σημεία Δ και Ε του επιπέδου τέτοια, ώστε: AΔ=AB+5AΓ και AΕ =5AB+AΓ α) Να γράψετε το διάνυσμα ΔΕ ως γραμμικό συνδυασμό των AB και AΓ ) Να δείξετε ότι τα διανύσματα

Διαβάστε περισσότερα

ΕΠΑΝΑΛΗΨΗ ΔΙΑΝΥΣΜΑΤΑ

ΕΠΑΝΑΛΗΨΗ ΔΙΑΝΥΣΜΑΤΑ ΕΠΑΝΑΛΗΨΗ ΔΙΑΝΥΣΜΑΤΑ Στο ορθογώνιο σύστημα αξόνων Οxy θεωρούμε τα σημεία Α, Β, τα οποία έχουν τετμημένες τις ρίζες της εξίσωσης x - (4λ+6μ)x - 005 = 0 και τεταγμένες τις ρίζες της εξίσωσης y + ( 5λ + μ)y

Διαβάστε περισσότερα

32 ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ Β ΛΥΚΕΙΟΥ ΚΑΤΕΥΘΥΝΣΗΣ ΘΕΜΑ 1 Ο Α1) Έστω το διάνυσμα a=

32 ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ Β ΛΥΚΕΙΟΥ ΚΑΤΕΥΘΥΝΣΗΣ ΘΕΜΑ 1 Ο Α1) Έστω το διάνυσμα a= 32 ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ Β ΛΥΚΕΙΟΥ ΚΑΤΕΥΘΥΝΣΗΣ ΘΕΜΑ 1 Ο Α1) Έστω το διάνυσμα a= ( xy, ). Να ορίσετε τις έννοιες α)μέτρο του διανύσματος και β) συντελεστής διεύθυνσης του διανύσματος Α2) Να γράψετε τους τύπους

Διαβάστε περισσότερα

Ο κύκλος με κέντρο την αρχή των αξόνων και ακτίνα ρ έχει εξίσωση: B,- 2 A 2

Ο κύκλος με κέντρο την αρχή των αξόνων και ακτίνα ρ έχει εξίσωση: B,- 2 A 2 3 0 ΛΥΚΕΙΟ ΚΕΡΑΤΣΙΝΙΟΥ Λ. ΒΟΥΛΓΑΡΗ ΜΑΘΗΜΑΤΙΚΟΣ ΚΥΚΛΟΣ Κύκλος είναι ο γεωμετρικός τόπος των σημείων του επιπέδου που απέχουν σταθερή απόσταση από ένα σταθερό σημείο του επιπέδου αυτού. Το σταθερό σημείο

Διαβάστε περισσότερα

Β Λυκείου- Μαθηματικά Κατεύθυνσης. Μέρος Α Θεωρία. (Ορισμοί, θεωρήματα, αποδείξεις, παρατηρήσεις)

Β Λυκείου- Μαθηματικά Κατεύθυνσης. Μέρος Α Θεωρία. (Ορισμοί, θεωρήματα, αποδείξεις, παρατηρήσεις) 1 Μέρος Α Θεωρία (Ορισμοί, θεωρήματα, αποδείξεις, παρατηρήσεις) Η έννοια του διανύσματος Ορισμός του Διανύσματος Διάνυσμα ονομάζεται ένα προσανατολισμένο ευθύγραμμο τμήμα, δηλαδή ένα ευθύγραμμο τμήμα του

Διαβάστε περισσότερα

1. * Να βρείτε τον συντελεστή διεύθυνσης µιας ευθείας ε, που σχηµατίζει µε τον άξονα x x γωνία: 2π 3

1. * Να βρείτε τον συντελεστή διεύθυνσης µιας ευθείας ε, που σχηµατίζει µε τον άξονα x x γωνία: 2π 3 Ερωτήσεις ανάπτυξης 1. * Να βρείτε τον συντελεστή διεύθυνσης µιας ευθείας ε, που σχηµατίζει µε τον άξονα x x γωνία: α) ω = 3 π β) ω = 2π 3 γ) ω = π 2. * Να βρείτε τη γωνία ω που σχηµατίζει µε τον άξονα

Διαβάστε περισσότερα

Επαναληπτικό Διαγώνισμα Μαθηματικών Θετικής-Τεχνολογικής Κατεύθυνσης Β Λυκείου

Επαναληπτικό Διαγώνισμα Μαθηματικών Θετικής-Τεχνολογικής Κατεύθυνσης Β Λυκείου Επαναληπτικό Διαγώνισμα Μαθηματικών Θετικής-Τεχνολογικής Κατεύθυνσης Β Λυκείου Θέμα A. Να αποδείξετε ότι η εξίσωση της εφαπτομένης του κύκλου στο σημείο του Α, ) είναι 8 μονάδες) Β. Να δώσετε τον ορισμό

Διαβάστε περισσότερα

ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ. γ)να υπολογίσετε το μέτρο του διανύσματος u. δ)αν το διάνυσμα v,

ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ. γ)να υπολογίσετε το μέτρο του διανύσματος u. δ)αν το διάνυσμα v, ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 1. Δίνονται τα διανύσματα a, για τα οποία ισχύουν : 4, 5 και α)να αποδείξετε ότι 10 β)να βρείτε τη γωνία των και. 5. 8 γ)να υπολογίσετε το μέτρο του διανύσματος u. δ)αν το διάνυσμα

Διαβάστε περισσότερα

Ερωτήσεις αντιστοίχισης

Ερωτήσεις αντιστοίχισης Ερωτήσεις αντιστοίχισης 1. ** Να αντιστοιχίσετε κάθε ευθεία που η εξίσωσή της βρίσκεται στη του πίνακα (Ι) µε τον συντελεστή της που βρίσκεται στη, συµπληρώνοντας τον πίνακα (ΙΙ) (α, β 0). 1. ε 1 : y =

Διαβάστε περισσότερα

1.4 ΣΥΝΤΕΤΑΓΜΕΝΕΣ ΣΤΟ ΕΠΙΠΕΔΟ

1.4 ΣΥΝΤΕΤΑΓΜΕΝΕΣ ΣΤΟ ΕΠΙΠΕΔΟ 34 4 ΣΥΝΤΕΤΑΓΜΕΝΕΣ ΣΤΟ ΕΠΙΠΕΔΟ Άξονας Πάνω σε μια ευθεία επιλέγουμε δύο σημεία Ο και Ι, έτσι ώστε το διάνυσμα OI να έχει μέτρο και να βρίσκεται στην ημιευθεία O Λέμε τότε ότι έχουμε έναν άξονα με αρχή

Διαβάστε περισσότερα

(Έκδοση: 06 12 2014)

(Έκδοση: 06 12 2014) (Έκδοση: 06 04) Οι απαντήσεις και οι λύσεις είναι αποτέλεσμα της συλλογικής δουλειάς των συνεργατών του δικτυακού τόπου http://lisari.blogspot.gr η έκδοση: 06 04 (συνεχής ανανέωση) Το βιβλίο διατίθεται

Διαβάστε περισσότερα

Θέµατα Μαθηµατικών Θετικής & Τεχν. Κατεύθυνσης Β Λυκείου 2000

Θέµατα Μαθηµατικών Θετικής & Τεχν. Κατεύθυνσης Β Λυκείου 2000 Θέµατα Μαθηµατικών Θετικής & Τεχν. Κατεύθυνσης Β Λυκείου 000 Ζήτηµα ο Α.. Να γράψετε την εξίσωση του κύκλου που έχει κέντρο Κ(x 0,y 0 ) και ακτίνα ρ. (Μονάδες ) Α.. Πότε η εξίσωση x + y + Ax + By + Γ 0

Διαβάστε περισσότερα

1.3 ΠΟΛΛΑΠΛΑΣΙΑΣΜΟΣ ΑΡΙΘΜΟΥ ΜΕ ΔΙΑΝΥΣΜΑ

1.3 ΠΟΛΛΑΠΛΑΣΙΑΣΜΟΣ ΑΡΙΘΜΟΥ ΜΕ ΔΙΑΝΥΣΜΑ ΚΕΦΑΛΑΙΟ Ο : ΔΙΑΝΥΣΜΑΤΑ - ΕΝΟΤΗΤΑ ΠΟΛΛΑΠΛΑΣΙΑΣΜΟΣ ΑΡΙΘΜΟΥ ΜΕ ΔΙΑΝΥΣΜΑ ΣΤΟΙΧΕΙΑ ΘΕΩΡΙΑΣ Ορισμός : αν λ πραγματικός αριθμός με 0 και μη μηδενικό διάνυσμα τότε σαν γινόμενο του λ με το ορίζουμε ένα διάνυσμα

Διαβάστε περισσότερα

ΑΣΚΗΣΕΙΣ ΣΤΗΝ ΠΑΡΑΒΟΛΗ

ΑΣΚΗΣΕΙΣ ΣΤΗΝ ΠΑΡΑΒΟΛΗ ΑΣΚΗΣΕΙΣ ΣΤΗΝ ΠΑΡΑΒΟΛΗ ΕΞΙΣΩΣΗ ΠΑΡΑΒΟΛΗΣ 8. Να βρεθεί η εξίσωση της παραβολής με κορυφή το (0, 0) στις παρακάτω περιπτώσεις: α) είναι συμμετρική ως προς το θετικό ημιάξονα Οx και έχει παράμετρο p = 5 β)

Διαβάστε περισσότερα

ΣΧΕ ΙΑ ΚΡΙΤΗΡΙΩΝ ΑΞΙΟΛΟΓΗΣΗΣ ΤΟΥ ΜΑΘΗΤΗ. ( Κεφάλαιο 4ο : Θεωρία Αριθµ ών)

ΣΧΕ ΙΑ ΚΡΙΤΗΡΙΩΝ ΑΞΙΟΛΟΓΗΣΗΣ ΤΟΥ ΜΑΘΗΤΗ. ( Κεφάλαιο 4ο : Θεωρία Αριθµ ών) ΣΧΕ ΙΑ ΚΡΙΤΗΡΙΩΝ ΑΞΙΟΛΟΓΗΣΗΣ ΤΟΥ ΜΑΘΗΤΗ ( Κεφάλαιο 4ο : Θεωρία Αριθµ ών) Τα κριτήρια αξιολόγησης που ακολουθούν είναι ενδεικτικά. Ο καθηγητής έχει τη δυνατότητα διαµόρφωσής τους σε ενιαία θέµατα, επιλογής

Διαβάστε περισσότερα

ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ

ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γιώργος Πρέσβης ΜΑΘΗΜΑΤΙΚΑ B ΛΥΚΕΙΟΥ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΚΕΦΑΛΑΙΟ Ο : ΕΞΙΣΩΣΗ ΕΥΘΕΙΑΣ ΕΠΑΝΑΛΗΨΗ Φροντιστήρια Φροντιστήρια ΜΕΘΟΔΟΛΟΓΙΑ ΑΣΚΗΣΕΩΝ 1η Κατηγορία : Εξίσωση Γραμμής 1.1 Να εξετάσετε

Διαβάστε περισσότερα

Ερωτήσεις τύπου «Σωστό - Λάθος» Σωστό Λάθος

Ερωτήσεις τύπου «Σωστό - Λάθος» Σωστό Λάθος Εγγράψιμα και περιγράψιμα τετράπλευρα Ερωτήσεις τύπου «Σωστό - Λάθος» Σωστό Λάθος 1. Ένα τετράπλευρο είναι εγγράψιμο σε κύκλο αν είναι παραλληλόγραμμο.. Ένα τετράπλευρο είναι εγγράψιμο σε κύκλο αν είναι

Διαβάστε περισσότερα

φέρουμε μια οποιαδήποτε χορδή ΑΒ του κύκλου και την προεκτείνουμε κατά τμήμα

φέρουμε μια οποιαδήποτε χορδή ΑΒ του κύκλου και την προεκτείνουμε κατά τμήμα 1. Δίνεται ο κύκλος + y ρ, όπου ρ>0. Από το σημείο A( - ρ,0) του C C :x = φέρουμε μια οποιαδήποτε χορδή ΑΒ του κύκλου και την προεκτείνουμε κατά τμήμα BM = AB. Να αποδείξετε ότι το Μ κινείται πάνω σε ένα

Διαβάστε περισσότερα

3 o ΓΕ.Λ. ΚΕΡΑΤΣΙΝΙΟΥ. ΖΟΥΖΙΑΣ ΠΑΝΑΓΙΩΤΗΣ Μαθηματικός 2013 2014 EΠΑΝΑΛΗΨΗ ΣΤΗ ΓΕΩΜΕΤΡΙΑ ΤΗΣ Α ΛΥΚΕΙΟΥ ΠΕΡΙΕΧΟΜΕΝΑ

3 o ΓΕ.Λ. ΚΕΡΑΤΣΙΝΙΟΥ. ΖΟΥΖΙΑΣ ΠΑΝΑΓΙΩΤΗΣ Μαθηματικός 2013 2014 EΠΑΝΑΛΗΨΗ ΣΤΗ ΓΕΩΜΕΤΡΙΑ ΤΗΣ Α ΛΥΚΕΙΟΥ ΠΕΡΙΕΧΟΜΕΝΑ 3 o ΓΕ.Λ. ΚΕΡΑΤΣΙΝΙΟΥ Μαθηματικός 2013 2014 EΠΑΝΑΛΗΨΗ ΣΤΗ ΓΕΩΜΕΤΡΙΑ ΤΗΣ Α ΛΥΚΕΙΟΥ ΠΕΡΙΕΧΟΜΕΝΑ 1) ΘΕΩΡΙΑ... 2 2) ΕΡΩΤΗΣΕΙΣ... 5 2.1. ΤΡΙΓΩΝΑ... 5 2.1.1. ΕΡΩΤΗΣΕΙΣ Σωστού - Λάθους στα τρίγωνα... 5 2.1.2.

Διαβάστε περισσότερα

ΑΣΚΗΣΕΙΣ ΣΤΟ ΕΜΒΑΔΟΝ ΤΡΙΓΩΝΟΥ. 1. Να βρείτε την απόσταση του σημείου Μ( ημθ, συνθ) από την ευθεία: i) ε : y = -xεφθ ii) ε : xσυνθ - yημθ = 2

ΑΣΚΗΣΕΙΣ ΣΤΟ ΕΜΒΑΔΟΝ ΤΡΙΓΩΝΟΥ. 1. Να βρείτε την απόσταση του σημείου Μ( ημθ, συνθ) από την ευθεία: i) ε : y = -xεφθ ii) ε : xσυνθ - yημθ = 2 ΑΠΟΣΤΑΣΗ ΣΗΜΕΙΟΥ ΑΠΟ ΕΥΘΕΙΑ ΑΣΚΗΣΕΙΣ ΣΤΟ ΕΜΒΑΔΟΝ ΤΡΙΓΩΝΟΥ 1. Να βρείτε την απόσταση του σημείου Μ( ημθ, συνθ) από την ευθεία: i) ε : y = -xεφθ ii) ε : xσυνθ - yημθ = 4. α) Να βρεθεί η απόσταση του σημείου

Διαβάστε περισσότερα

1.4 ΣΥΝΤΕΤΑΓΜΕΝΕΣ ΣΤΟ ΕΠΙΠΕΔΟ

1.4 ΣΥΝΤΕΤΑΓΜΕΝΕΣ ΣΤΟ ΕΠΙΠΕΔΟ ΚΕΦΑΛΑΙΟ Ο : ΔΙΑΝΥΣΜΑΤΑ - ΕΝΟΤΗΤΑ 4 ΣΤΟΙΧΕΙΑ ΘΕΩΡΙΑΣ 4 ΣΥΝΤΕΤΑΓΜΕΝΕΣ ΣΤΟ ΕΠΙΠΕΔΟ Κάθε διάνυσμα του επιπέδου γράφεται κατά μοναδικό τρόπο στη μορφή : i j όπου i, j μοναδιαία διανύσματα με κοινή αρχή το

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ Ο.Π. ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ ΣΥΝ ΥΑΣΤΙΚΑ ΘΕΜΑΤΑ. Γιάννης Ζαµπέλης Μαθηµατικός

ΜΑΘΗΜΑΤΙΚΑ Ο.Π. ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ ΣΥΝ ΥΑΣΤΙΚΑ ΘΕΜΑΤΑ. Γιάννης Ζαµπέλης Μαθηµατικός ΣΥΝ ΥΑΣΤΙΚΑ ΘΕΜΑΤΑ 4 5 Γιάννης Ζαµπέλης Μαθηµατικός 867 (Αναρτήθηκε 8 4 ) ίνονται τα διανύσµατα a και b µε µέτρα, 6 αντίστοιχα και ϕ [, π] a b+ x+ a b y 5= () δίνεται η εξίσωση ( ) ( ) α) Να αποδείξετε

Διαβάστε περισσότερα

ΚΥΚΛΟΣ. και ακτίνα 1 3. Σ Λ

ΚΥΚΛΟΣ. και ακτίνα 1 3. Σ Λ 1 ΓΕΝΙΚΟ ΛΥΚΕΙΟ ΚΑΣΤΡΙΤΣΙΟΥ ΚΥΚΛΟΣ ΕΠΙΜΕΛΕΙΑ: Kωνσταντόπουλος Κων/νος Μαθηματικός ΜSc 1. Σε κάθε μια από τις παρακάτω περιπτώσεις να κυκλώσετε το γράμμα Σ, αν ο ισχυρισμός είναι αληθής διαφορετικά να κυκλώσετε

Διαβάστε περισσότερα

Θέµατα Εξετάσεων Β Λυκείου Μαθηµατικά Θετικής και Τεχνολογικής Κατεύθυνσης 1999-2004

Θέµατα Εξετάσεων Β Λυκείου Μαθηµατικά Θετικής και Τεχνολογικής Κατεύθυνσης 1999-2004 Θέµατα Εξετάσεων Β Λυκείου Μαθηµατικά Θετικής και Τεχνολογικής Κατεύθυνσης 1999-004 Περιεχόµενα 1 Θέµατα 1999.......................................... 3 Θέµατα 000..........................................

Διαβάστε περισσότερα

ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΘΕΩΡΗΤΙΚΗ ΓΕΩΜΕΤΡΙΑ

ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΘΕΩΡΗΤΙΚΗ ΓΕΩΜΕΤΡΙΑ ΓΕΩΜΕΤΡΙΑ Α ΛΥΚΕΙΟΥ ΘΕΩΡΙΑ ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΘΕΩΡΗΤΙΚΗ ΓΕΩΜΕΤΡΙΑ ΟΡΙΣΜΟΙ Ευθύγραμμο τμήμα είναι το κομμάτι της ευθείας που έχει αρχή και τέλος. Ημιευθεια Είναι το κομμάτι της ευθείας που έχει αρχή αλλά όχι

Διαβάστε περισσότερα

Καρτεσιανές συντεταγμένες Γραφική παράσταση συνάρτησης Εφαρμογές

Καρτεσιανές συντεταγμένες Γραφική παράσταση συνάρτησης Εφαρμογές Καρτεσιανές συντεταγμένες Γραφική παράσταση συνάρτησης Εφαρμογές Να βρείτε για καθεμιά από τις παρακάτω γραμμές αν είναι γραφική παράσταση κάποιας συνάρτησης. 4-1 1 () (1) (3) (4) (5) (6) Αν υπάρχει ευθεία

Διαβάστε περισσότερα

Επαναληπτικές Ασκήσεις

Επαναληπτικές Ασκήσεις Β' Γυμν. - Επαναληπτικές Ασκήσεις 1 Άσκηση 1 Απλοποίησε τις αλγεβρικές παραστάσεις (α) 2y 2z 8ω 8ω 2y 2z (β) 1x 2y 3z 3 3 z 2z z 2 x y Επαναληπτικές Ασκήσεις Άλγεβρα - Γεωμετρία Άσκηση 2 Υπολόγισε την

Διαβάστε περισσότερα

Ε π ι μ έ λ ε ι α ( μ ε Α λ φ α β η τ ι κ ή σ ε ι ρ ά ) :

Ε π ι μ έ λ ε ι α ( μ ε Α λ φ α β η τ ι κ ή σ ε ι ρ ά ) : Ε π ι μ έ λ ε ι α ( μ ε Α λ φ α β η τ ι κ ή σ ε ι ρ ά ) : Ανδριοπούλου Τασιάννα Ανδρονίκου Γιώργος Βασσάλου Γιάννα Βελλίκης Γιώργος Καρατσιώλης Δημήτρης Κασλής Κώστας Λαλούμης Νίκος Μπέκας Χρήστος Μπίτζας

Διαβάστε περισσότερα

ΕΡΩΤΗΣΕΙΣ ΑΞΙΟΛΟΓΗΣΗΣ

ΕΡΩΤΗΣΕΙΣ ΑΞΙΟΛΟΓΗΣΗΣ ΙΑΝΥΣΜΑΤΑ ΕΡΩΤΗΣΕΙΣ ΑΞΙΟΛΟΓΗΣΗΣ ΕΡΩΤΗΣΕΙΣ ΑΞΙΟΛΟΓΗΣΗΣ. Να σηµειώσετε το σωστό (Σ) ή το λάθος (Λ) στους παρακάτω ισχυρισµούς:. Αν ΑΒ + ΒΓ = ΑΓ, τότε τα σηµεία Α, Β, Γ είναι συνευθειακά.. Αν α = β, τότε

Διαβάστε περισσότερα

Β.1.8. Παραπληρωματικές και Συμπληρωματικές γωνίες Κατά κορυφήν γωνίες

Β.1.8. Παραπληρωματικές και Συμπληρωματικές γωνίες Κατά κορυφήν γωνίες Β.1.6. Είδη γωνιών Κάθετες ευθείες 1. Ορθή γωνία λέγεται η γωνία της οποίας το μέτρο είναι ίσο με 90 ο. 2. Οξεία γωνία λέγεται κάθε γωνία με μέτρο μικρότερο των 90 ο. 3. Αμβλεία γωνία λέγεται κάθε γωνία

Διαβάστε περισσότερα

Τάξη A Μάθημα: Γεωμετρία

Τάξη A Μάθημα: Γεωμετρία Τάξη A Μάθημα: Γεωμετρία Η Θεωρία σε Ερωτήσεις Ερωτήσεις Κατανόησης Επαναληπτικά Θέματα Επαναληπτικά Διαγωνίσματα Περιεχόμενα Τρίγωνα Α. Θεωρία-Αποδείξεις Σελ.2 Β. Θεωρία-Ορισμοί..Σελ.9 Γ. Ερωτήσεις Σωστού

Διαβάστε περισσότερα

201 5 ΘΕΜΑΤΑ Σ ΤΟΝ ΚΥ ΚΛΟ Α. ΘΕΩΡΙΑ. i. η εξίσωση του κύκλου με κέντρο Ο(0,0) και ακτίνα ρ είναι η

201 5 ΘΕΜΑΤΑ Σ ΤΟΝ ΚΥ ΚΛΟ Α. ΘΕΩΡΙΑ. i. η εξίσωση του κύκλου με κέντρο Ο(0,0) και ακτίνα ρ είναι η 201 5 ΘΕΜΑΤΑ Σ ΤΟΝ ΚΥ ΚΛΟ - 1-1. Να αποδείξετε ότι: Α. ΘΕΩΡΙΑ i. η εξίσωση του κύκλου με κέντρο Ο(0,0) και ακτίνα ρ είναι η C : x 2 y 2 ρ 2. Να αποδείξετε ότι η εφαπτομένη του κύκλου C: χ 2 + ψ 2 = ρ 2

Διαβάστε περισσότερα

ΔΕΙΓΜΑΤΑ ΘΕΜΑΤΩΝ ΕΞΕΤΑΣΕΩΝ ΜΑΘΗΜΑΤΙΚΩΝ ΑΛΓΕΒΡΑ Α ΛΥΚΕΙΟΥ. 1 ο δείγμα

ΔΕΙΓΜΑΤΑ ΘΕΜΑΤΩΝ ΕΞΕΤΑΣΕΩΝ ΜΑΘΗΜΑΤΙΚΩΝ ΑΛΓΕΒΡΑ Α ΛΥΚΕΙΟΥ. 1 ο δείγμα ΔΕΙΓΜΑΤΑ ΘΕΜΑΤΩΝ ΕΞΕΤΑΣΕΩΝ ΜΑΘΗΜΑΤΙΚΩΝ ΑΛΓΕΒΡΑ Α ΛΥΚΕΙΟΥ ο δείγμα ΘΕΜΑ Α Α. Να αποδείξετε ότι ισχύει α + β α + β, για κάθε α, β R. Α. Τι ονομάζουμε νιοστή ρίζα ενός μη αρνητικού αριθμού α; Α. Να χαρακτηρίσεις

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ

ΜΑΘΗΜΑΤΙΚΑ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ Γ. ΛΥΚΕΙΟΥ ΜΑΘΗΜΑΤΙΚΑ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ ΔΙΑΦΟΡΙΚΟΣ ΛΟΓΙΣΜΟΣ Μαθηματικά Γενικής Παιδείας Γ.Λυκείου ΔΙΑΦΟΡΙΚΟΣ ΛΟΓΙΣΜΟΣ ΑΣΚΗΣΕΙΣ ) Να βρείτε το πεδίο ορισμού των συναρτήσεων: ( ) 6+ 9, g ( ), h ( ) 5 +, k

Διαβάστε περισσότερα

ΘΕΜΑΤΑ. β. ΜΗΔ = 45 Μονάδες 5. Θέμα 4 ο Δίνεται ορθογώνιο τρίγωνο ΑΒΓ ( Α = 90 ) με ΑΓ > ΑΒ, η διάμεσός του ΑΖ και έστω Δ και

ΘΕΜΑΤΑ. β. ΜΗΔ = 45 Μονάδες 5. Θέμα 4 ο Δίνεται ορθογώνιο τρίγωνο ΑΒΓ ( Α = 90 ) με ΑΓ > ΑΒ, η διάμεσός του ΑΖ και έστω Δ και Α. Να χαρακτηρίσετε Σωστές (Σ) ή Λάθος (Λ) τις παρακάτω προτάσεις: α. Οι διχοτόμοι δύο διαδοχικών και παραπληρωματικών γωνιών σχηματίζουν ορθή γωνία. β. Οι διαγώνιες κάθε παραλληλογράμμου είναι ίσες μεταξύ

Διαβάστε περισσότερα

ΘΕΩΡΙΑ Α ΓΥΜΝΑΣΙΟΥ. Η διαίρεση καλείται Ευκλείδεια και είναι τέλεια όταν το υπόλοιπο είναι μηδέν.

ΘΕΩΡΙΑ Α ΓΥΜΝΑΣΙΟΥ. Η διαίρεση καλείται Ευκλείδεια και είναι τέλεια όταν το υπόλοιπο είναι μηδέν. ΑΛΓΕΒΡΑ 1 ο ΚΕΦΑΛΑΙΟ ΘΕΩΡΙΑ Α ΓΥΜΝΑΣΙΟΥ 1. Τι είναι αριθμητική παράσταση; Με ποια σειρά εκτελούμε τις πράξεις σε μια αριθμητική παράσταση ώστε να βρούμε την τιμή της; Αριθμητική παράσταση λέγεται κάθε

Διαβάστε περισσότερα

2.3 ΜΕΤΡΟ ΜΙΓΑΔΙΚΟΥ ΑΡΙΘΜΟΥ

2.3 ΜΕΤΡΟ ΜΙΓΑΔΙΚΟΥ ΑΡΙΘΜΟΥ ΕΠΙΜΕΛΕΙΑ : ΠΑΛΑΙΟΛΟΓΟΥ ΠΑΥΛΟΣ.ptetragono.gr Σελίδα. ΜΕΤΡΟ ΜΙΓΑΔΙΚΟΥ ΑΡΙΘΜΟΥ Να βρεθεί το μέτρο των μιγαδικών :..... 0 0. 5 5 6.. 0 0. 5. 5 5 0 0 0 0 0 0 0 0 ΜΕΘΟΔΟΛΟΓΙΑ : ΜΕΤΡΟ ΜΙΓΑΔΙΚΟΥ Αν τότε. Αν χρειαστεί

Διαβάστε περισσότερα

Επαναληπτικό Διαγώνισμα Γεωμετρίας Α Λυκείου

Επαναληπτικό Διαγώνισμα Γεωμετρίας Α Λυκείου Επαναληπτικό Διαγώνισμα Γεωμετρίας Α Λυκείου Θέμα Α. Να αποδείξετε ότι το ευθύγραμμο τμήμα που ενώνει τα μέσα των δύο πλευρών τριγώνου, είναι παράλληλο προς την τρίτη πλευρά και ίσο με το μισό της (7 μονάδες)

Διαβάστε περισσότερα

ΓΕΩΜΕΤΡΙΑ ΤΗΣ Α ΛΥΚΕΙΟΥ. ΚΕΦΑΚΑΙΟ 3 ο -ΤΡΙΓΩΝΑ

ΓΕΩΜΕΤΡΙΑ ΤΗΣ Α ΛΥΚΕΙΟΥ. ΚΕΦΑΚΑΙΟ 3 ο -ΤΡΙΓΩΝΑ ΓΕΩΜΕΤΡΙΑ ΤΗΣ Α ΛΥΚΕΙΟΥ ΟΙ ΕΡΩΤΗΣΕΙΣ ΚΛΕΙΣΤΟΥ ΤΥΠΟΥ ΑΠΟΤΕΛΟΥΝ ΜΕΡΟΣ ΤΟΥ ΘΕΜΑΤΟΣ Α ΤΩΝ ΕΞΕΤΑΣΕΩΝ (ΘΕΜΑ ΘΕΩΡΙΑΣ) Α. ΕΡΩΤΗΣΕΙΣ ΣΩΣΤΟΥ - ΛΑΘΟΥΣ ΚΕΦΑΚΑΙΟ 3 ο -ΤΡΙΓΩΝΑ 1. Ένα τρίγωνο είναι οξυγώνιο όταν έχει

Διαβάστε περισσότερα

Μαθηματικά Θετικής Τεχνολογικής Κατεύθυνσης Β Λυκείου

Μαθηματικά Θετικής Τεχνολογικής Κατεύθυνσης Β Λυκείου Μαθηματικά Θετικής Τεχνολογικής Κατεύθυνσης Β Λυκείου Κεφάλαιο ο : Κωνικές Τομές Επιμέλεια : Παλαιολόγου Παύλος Μαθηματικός ΚΕΦΑΛΑΙΟ Ο : ΚΩΝΙΚΕΣ ΤΟΜΕΣ. Ο ΚΥΚΛΟΣ ΣΤΟΙΧΕΙΑ ΘΕΩΡΙΑΣ Ένας κύκλος ορίζεται αν

Διαβάστε περισσότερα

Επαναληπτικό Διαγώνισµα Γεωµετρίας Β Λυκείου

Επαναληπτικό Διαγώνισµα Γεωµετρίας Β Λυκείου Επαναληπτικό Διαγώνισµα Γεωµετρίας Β Λυκείου Θέµα 1 Α. Να υπολογίσετε την πλευρά λ και το απόστηµα α τετραγώνου εγγεγραµµένου σε κύκλο (Ο, R) συναρτήσει της ακτίνας R (10 Μονάδες) Β. Να χαρακτηρίσετε τις

Διαβάστε περισσότερα

Για να παραστήσουμε ένα σύνολο χρησιμοποιούμε συνήθως έναν από τους παρακάτω τρόπους :

Για να παραστήσουμε ένα σύνολο χρησιμοποιούμε συνήθως έναν από τους παρακάτω τρόπους : ΚΕΦΑΛΑΙΟ Ο ΣΥΝΑΡΤΗΣΕΙΣ. Σύνολα ΠΑΡΑΣΤΑΣΗ ΣΥΝΟΛΟΥ ΓΡΑΦΗ ΣΥΝΟΛΟΥ Για να παραστήσουμε ένα σύνολο χρησιμοποιούμε συνήθως έναν από τους παρακάτω τρόπους : ) Παράσταση με αναγραφή των στοιχείων Όταν δίνονται

Διαβάστε περισσότερα

ΕΠΑΝΑΛΗΨΗ ΣΤΟΥΣ ΜΙΓΑΔΙΚΟΥΣ

ΕΠΑΝΑΛΗΨΗ ΣΤΟΥΣ ΜΙΓΑΔΙΚΟΥΣ ΕΠΑΝΑΛΗΨΗ ΣΤΟΥΣ ΜΙΓΑΔΙΚΟΥΣ. Δίνεται η συνάρτηση f (). Να βρείτε για ποιες τιμές του δεν ορίζεται η συνάρτηση f. Να βρείτε τον αριθμό f ( ). Να δείξετε ότι f () I. Δίνεται η εξίσωση με η οποία έχει ρίζες

Διαβάστε περισσότερα

ΑΣΚΗΣΕΙΣ ΣΤΑ ΔΙΑΝΥΣΜΑΤΑ ΠΟΛΛΑΠΛΑΣΙΑΣΜΟΣ ΑΡΙΘΜΟΥ ΜΕ ΔΙΑΝΥΣΜΑ. 1. Να αποδείξετε ότι για οποιαδήποτε σημεία Α,Β,Γ,Δ ισχύει ότι : 4 3 4 3 7

ΑΣΚΗΣΕΙΣ ΣΤΑ ΔΙΑΝΥΣΜΑΤΑ ΠΟΛΛΑΠΛΑΣΙΑΣΜΟΣ ΑΡΙΘΜΟΥ ΜΕ ΔΙΑΝΥΣΜΑ. 1. Να αποδείξετε ότι για οποιαδήποτε σημεία Α,Β,Γ,Δ ισχύει ότι : 4 3 4 3 7 ΒΑΣΙΚΕΣ ΕΦΑΡΜΟΓΕΣ ΑΣΚΗΣΕΙΣ ΣΤΑ ΔΙΑΝΥΣΜΑΤΑ ΠΟΛΛΑΠΛΑΣΙΑΣΜΟΣ ΑΡΙΘΜΟΥ ΜΕ ΔΙΑΝΥΣΜΑ. Να αποδείξετε ότι για οποιαδήποτε σημεία Α,Β,Γ,Δ ισχύει ότι : 4 4 7. Αν ισχύουν να αποδείξετε ότι. Αν ισχύει ότι 5 5 να αποδείξετε

Διαβάστε περισσότερα

ΓΕΩΜΕΤΡΙΑ - ΚΕΦΑΛΑΙΟ 3ο Παραλληλόγραµµα - Τραπέζια

ΓΕΩΜΕΤΡΙΑ - ΚΕΦΑΛΑΙΟ 3ο Παραλληλόγραµµα - Τραπέζια ΓΕΩΜΕΤΡΙΑ - ΚΕΦΑΛΑΙΟ 3ο Παραλληλόγραµµα - Τραπέζια 184 ΕΡΩΤΗΣΕΙΣ ΑΝΑΠΤΥΞΗΣ ΚΑΙ ΑΝΤΙΚΕΙΜΕΝΙΚΟΥ ΤΥΠΟΥ 1. Να αντιστοιχίσετε κάθε στοιχείο της στήλης (Α) µε ένα µόνο στοιχείο της στήλης (Β): στήλη (Α) τετράπλευρα

Διαβάστε περισσότερα

Μαθηματικά Γ Γυμνασίου. Μεθοδική Επανάληψη

Μαθηματικά Γ Γυμνασίου. Μεθοδική Επανάληψη Μαθηματικά Γ Γυμνασίου Μεθοδική Επανάληψη Στέλιος Μιχαήλογλου www.askisopolis.gr Η επανάληψη των Μαθηματικών βήμα - βήμα Άλγεβρα Κεφάλαιο 1ο: Αλγεβρικές παραστάσεις 1.1. Πράξεις με πραγματικούς αριθμούς

Διαβάστε περισσότερα

Νίκος Καζαντζάκης (Από τον πρόλογο του Καπετάν Μιχάλη )

Νίκος Καζαντζάκης (Από τον πρόλογο του Καπετάν Μιχάλη ) .Η ψυχή του ανθρώπου γίνεται παντοδύναμη, όταν συνεπαρθεί από μια μεγάλη ιδέα. Τρομάζεις όταν ύστερα από πικρές δοκιμασίες, καταλάβεις πως μέσα μας υπάρχει μια δύναμη που μπορεί να ξεπεράσει τη δύναμη

Διαβάστε περισσότερα

Απαντήσεις Λύσεις σε Θέματα από την Τράπεζα Θεμάτων. Μάθημα: Γεωμετρία Α Λυκείου

Απαντήσεις Λύσεις σε Θέματα από την Τράπεζα Θεμάτων. Μάθημα: Γεωμετρία Α Λυκείου Απαντήσεις Λύσεις σε Θέματα από την Τράπεζα Θεμάτων Μάθημα: Γεωμετρία Α Λυκείου Παρουσιάζουμε συνοπτικές λύσεις σε επιλεγμένα Θέματα («Θέμα 4 ο») από την Τράπεζα θεμάτων. Το αρχείο αυτό τις επόμενες ημέρες

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 10 Ο ΕΜΒΑΔΑ 10.1 ΠΟΛΥΓΩΝΙΚΑ ΧΩΡΙΑ 10.2 ΕΜΒΑΔΟΝ ΕΥΘΥΓΡΑΜ. ΣΧΗΜ. ΙΣΟΔΥΝΑΜΑ ΕΥΘΥΓΡΑΜ. ΣΧΗΜ. 10.3 ΕΜΒΑΔΟΝ ΒΑΣΙΚΩΝ ΕΥΘΥΓΡΑΜΜΩΝ ΣΧΗΜΑΤΩΝ

ΚΕΦΑΛΑΙΟ 10 Ο ΕΜΒΑΔΑ 10.1 ΠΟΛΥΓΩΝΙΚΑ ΧΩΡΙΑ 10.2 ΕΜΒΑΔΟΝ ΕΥΘΥΓΡΑΜ. ΣΧΗΜ. ΙΣΟΔΥΝΑΜΑ ΕΥΘΥΓΡΑΜ. ΣΧΗΜ. 10.3 ΕΜΒΑΔΟΝ ΒΑΣΙΚΩΝ ΕΥΘΥΓΡΑΜΜΩΝ ΣΧΗΜΑΤΩΝ ΚΕΦΑΛΑΙΟ 0 Ο ΕΜΒΑΔΑ 0. ΠΟΛΥΓΩΝΙΚΑ ΧΩΡΙΑ 0. ΕΜΒΑΔΟΝ ΕΥΘΥΓΡΑΜ. ΣΧΗΜ. ΙΣΟΔΥΝΑΜΑ ΕΥΘΥΓΡΑΜ. ΣΧΗΜ. 0.3 ΕΜΒΑΔΟΝ ΒΑΣΙΚΩΝ ΕΥΘΥΓΡΑΜΜΩΝ ΣΧΗΜΑΤΩΝ ΘΕΩΡΙΑ (Πολυγωνικά χωρία) Ας θεωρήσουμε ένα πολύγωνο, για παράδειγμα

Διαβάστε περισσότερα

ΕΠΑΝΑΛΗΠΤΙΚΕΣ ΑΣΚΗΣΕΙΣ Γ ΓΥΜΝΑΣΙΟΥ 4) Να κάνετε τις πράξεις και μετά να βρείτε την αριθμητική τιμή του

ΕΠΑΝΑΛΗΠΤΙΚΕΣ ΑΣΚΗΣΕΙΣ Γ ΓΥΜΝΑΣΙΟΥ 4) Να κάνετε τις πράξεις και μετά να βρείτε την αριθμητική τιμή του ΕΠΑΝΑΗΠΤΙΚΕ ΑΚΗΕΙ Γ ΓΥΜΝΑΙΟΥ ΕΝΟΤΗΤΑ : Αξιοσημείωτες Ταυτότητες 1. Να βρείτε τα αναπτύγματα: 1) 3 ) 3) 5 3 3 5 3 5) 5 4) 3 5 6) ( α 3 + 3β ) 7) (7 + )(7 ) 8) (β 4 + 1)(β + 1)(β + 1)(β 1). Να κάνετε τις

Διαβάστε περισσότερα