Η ΧΡΥΣΗ ΤΟΜΗ ΣΤΗ ΖΩΓΡΑΦΙΚΗ

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "Η ΧΡΥΣΗ ΤΟΜΗ ΣΤΗ ΖΩΓΡΑΦΙΚΗ"

Transcript

1 Η ΧΡΥΣΗ ΤΟΜΗ ΣΤΗ ΖΩΓΡΑΦΙΚΗ Τα µαθηµατικά και η τέχνη, αν και φαινοµενικά τουλάχιστον, αποτελούν δύο ξεχωριστά πεδία της ανθρώπινης δραστηριότητας, είναι δυνατόν να συνδυαστούν και να δώσουν δηµιουργίες οι οποίες αποτελούν αξιοθαύµαστο µείγµα εντυπωσιακής πολυπλοκότητας και εκπληκτικής οµορφιάς. Ανέκαθεν, τα µαθηµατικά έπαιζαν ένα σηµαντικό ρόλο στην εξέλιξη της τέχνης. Κατά καιρούς αναδείχθηκαν εξέχουσες µορφές, οι οποίες χρησιµοποίησαν µαθηµατικά ως το βασικό συστατικό της τέχνης τους. Πολλοί είναι οι καλλιτέχνες οι οποίοι έχουν δηµιουργήσει τα έργα τους µε την βοήθεια των µαθηµατικών και συγκεκριµένα της χρυσής τοµής, όπως για παράδειγµα, οι Λεονάρντο Ντα Βίντσι και Σαλβαντόρ Νταλί. The Bathers at Ansières του Georges Seurat Ο ΑΡΙΘΜΟΣ Φ O λόγος δύο διαδοχικών αριθµών της ακολουθίας Φιµπονάτσι ονοµάζεται Χρυσή τοµή ή Χρυσή αναλογία, συµβολίζεται µε τον αριθµό Φ και προσεγγίζει τον άρρητο αριθµό Το βιβλίο το οποίο µελετούσε τον αριθµό Φ, εικονογραφήθηκε από το γνωστό Ιταλό καλλιτέχνη Λεονάρντο Ντα Βίντσι. Ο Ντα Βίντσι, για αρκετό καιρό έδειξε ένα διακαές ενδιαφέρον για τα µαθηµατικά στην τέχνη και τη φύση και επιδόθηκε σε συστηµατικές µελέτες. Ερεύνησε τις αναλογίες του ανθρωπίνου σώµατος και ειδικότερα τις αναλογίες στο ανθρώπινο πρόσωπο όπως στα έργα του «Μόνα Λίζα» και «Άνθρωπος του Βιτρούβιου». «Ο Άνθρωπος του Βιτρούβιου» Ο Άνθρωπος του Βιτρούβιου είναι ένα διάσηµο σχέδιο µε συνοδευτικές σηµειώσεις του Λεονάρντο Ντα Βίντσι, που φτιάχτηκε περίπου το 1490 σε ένα από τα ηµερολόγιά του. Απεικονίζει µία γυµνή αντρική φιγούρα σε δύο αλληλοκαλυπτόµενες θέσεις µε τα µέλη του ανεπτυγµένα και συγχρόνως εγγεγραµµένη σε ένα κύκλο και ένα τετράγωνο. Το σχέδιο και το κείµενο συχνά ονοµάζονται Κανόνας των Αναλογιών και στηρίζεται στο "χρυσό κανόνα" του Φιµπονάτσι. Σύµφωνα µε τις σηµειώσεις του Ντα Βίντσι στο συνοδευτικό κείµενο, το σχέδιο έγινε ως µελέτη των αναλογιών του (ανδρικού) 28

2 ανθρώπινου σώµατος όπως περιγράφεται σε µια πραγµατεία του Ρωµαίου αρχιτέκτονα Βιτρούβιου, που είχε γράψει για το ανθρώπινο σώµα: µια παλάµη έχει πλάτος τεσσάρων δακτύλων ένα πόδι έχει πλάτος τέσσερις παλάµες ένας πήχης έχει πλάτος έξι παλάµες το ύψος ενός ανθρώπου είναι τέσσερις πήχεις (και άρα 24 παλάµες) µια δρασκελιά είναι τέσσερις πήχεις Το µήκος των χεριών ενός άντρα σε διάταση είναι ίσο µε το ύψος του η απόσταση από την γραµµή των µαλλιών ως την κορυφή του στήθους είναι το 1/7 του ύψους του άνδρα η απόσταση από την κορυφή του κεφαλιού ως τις θηλές είναι το 1/4 του ύψους του άνδρα το µέγιστο πλάτος των ώµων είναι το 1/4 του ύψους του άνδρα η απόσταση από το αγκώνα ως την άκρη του χεριού είναι το 1/5 του ύψους του άνδρα η απόσταση από τον αγκώνα ως την µασχάλη είναι το 1/8 του ύψους του άνδρα το µήκος του χεριού είναι 1/10 του ύψους ενός άνδρα η απόσταση από την άκρη του πηγουνιού ως την µύτη είναι το 1/3 του µήκους του προσώπου η απόσταση της γραµµής των µαλλιών ως τα φρύδια είναι το 1/3 του µήκους του προσώπου το µήκος του αυτιού είναι το 1/3 του µήκους του προσώπου. Το ίδιο το σχέδιο συχνά χρησιµοποιείται ως ένα υπονοούµενο σύµβολο της ουσιώδους συµµετρίας του ανθρώπινου σώµατος, και κατά προέκταση του σύµπαντος ως σύνολο. «Μόνα Λίζα» Ένα από τα πιο φηµισµένα και αµφιλεγόµενα έργα του Λεονάρντο Ντα Βίντσι είναι και η «Μόνα Λίζα». Ο Ντα Βίντσι ζωγράφισε το πρόσωπο της Μόνα Λίζα ώστε αυτό να χωράει τέλεια σε ένα χρυσό ορθογώνιο και δόµησε τον υπόλοιπο πίνακα γύρω από το πρόσωπο χωρίζοντάς τον επίσης σε χρυσά ορθογώνια. 29

3 Η ταυτότητα της γυναίκας στον πίνακα όµως αµφισβητείται από πολλούς και δεν είναι λίγοι εκείνοι που υποστηρίζουν ότι στον πίνακα ο Λεονάρντο ζωγράφισε τον ίδιο του τον εαυτό στη "θηλυκή" του εκδοχή καθώς ο Ντα Βίντσι ήταν υποστηρικτής της ισορροπίας ανάµεσα στο θηλυκό και το αρσενικό. «Μυστικός είπνος» Πρόκειται για µια τοιχογραφία στον τοίχο της µονής Σάντα Μαρία ντέλε Γκράτσιε που ο Λεονάρντο Ντα Βίντσι την ξεκίνησε το 1495 και την τελείωσε το Ο Μυστικός είπνος του Λεονάρντο είναι γεµάτος ανησυχητικές εκτροπές: δεν υπάρχει το Άγιο ισκοπότηρο, ούτε δείχνει το Χριστό να θεσπίζει το µυστήριο της Θείας Ευχαριστίας. Στα πρόσωπα δε των µαθητών αναγνωρίζει κανείς τα πορτραίτα επιφανών ετερόδοξων της εποχής του και το έργο ολόκληρο φαίνεται ότι µεταφέρει ένα συγκλονιστικό κρυφό µήνυµα. Παρόλα αυτά το έργο µάς εντυπωσιάζει ακόµα και σήµερα καθώς είναι µια πραγµατική και θαυµαστή µελέτη του χρυσού κανόνα". Σαλβαντόρ Νταλί και Χρυσός Λόγος Ένας ακόµα καλλιτέχνης που επηρεάστηκε από τη Χρυσή αναλογία ήταν ο Ισπανός ζωγράφος Σαλβαντόρ Νταλί ( ). Ο Νταλί συνδέθηκε µε το καλλιτεχνικό κίνηµα του υπερρεαλισµού και υπήρξε µια εκκεντρική φυσιογνωµία της σύγχρονης τέχνης. Όπως παρατηρούµε στον πίνακα του Νταλί «Θυσία του Μυστικού είπνου», οι διαστάσεις του πίνακα βρίσκονται σε Χρυσό Λόγο µεταξύ τους. Επίσης, το µέρος από ένα τεράστιο δωδεκάεδρο φαίνεται να πλέει πάνω από 30

4 το τραπέζι και να το καλύπτει (τα Πλατωνικά στερεά και ιδιαίτερα το δωδεκάεδρο σχετίζονται στενά µε το χρυσό λόγο). «Η Θυσία του Μυστικού είπνου» του Σαλβαντόρ Νταλί Έργα άλλων καλλιτεχνών που εµπνεύστηκαν από τη Χρυσή Αναλογία Η Αγία Οικογένεια του Μιχαήλ Άγγελου «Η σταύρωση» του Ραφαήλ Η γέννηση της Αφροδίτης του Μποτιτσέλι Αυτοπροσωπογραφία του Ρέµπραντ 31

5 Η ΧΡΥΣΗ ΤΟΜΗ ΣΤΗ ΓΛΥΠΤΙΚΗ Ο Μιχαήλ Άγγελος, εκτός από τη ζωγραφική, χρησιµοποίησε τη χρυσή τοµή και στη γλυπτική, όπως στο δηµιούργηµά του «αυίδ». Οι αναλογίες του αυίδ συµµορφώνονται µε τη χρυσή τοµή από τη θέση του οµφαλού σε σχέση µε το ύψος του µέχρι τη θέση των αρθρώσεων στα δάχτυλά του. Στην Αφροδίτη της Μήλου, αριστούργηµα του Αγήσανδρου ή Αλέξανδρου της Αντιοχείας, η θέση του οµφαλού επίσης χωρίζει το άγαλµα σε µέσο και άκρο λόγο. Ο «αυίδ» του Μιχαήλ Άγγελου Η «Αφροδίτη της Μήλου» Άγαλµα του «Modulor» Στη σύγχρονη εποχή, ο Le Corbusier µεταχειρίστηκε το σύστηµα της χρυσής τοµής για να σχηµατίσει το δικό του σύστηµα αναλογιών, γνωστό ως Modulor, εργαλείο µέτρησης βασισµένο στο ανθρώπινο σώµα και στα µαθηµατικά. Στο άγαλµα «Le Modulor» µε βάση τις ιδανικές διαστάσεις που πρότεινε ο Le Corbusier στο οµότιτλο βιβλίο του, ο άντρας ύψους 183 εκ., µε το σηκωµένο χέρι φτάνει τα 226 εκ., ενώ ο οµφαλός του βρίσκεται ακριβώς στη µέση, στα 113 εκ. Ο λόγος 183/113, αντιστοιχεί µε µεγάλη προσέγγιση στο χρυσό λόγο. 32

Ο Βιτρούβιος Άντρας του Λεονάρντο Ντα Βίντσι

Ο Βιτρούβιος Άντρας του Λεονάρντο Ντα Βίντσι Ο Βιτρούβιος Άντρας του Λεονάρντο Ντα Βίντσι Ο Άνθρωπος του Βιτρούβιου είναι ένα διάσημο σχέδιο με συνοδευτικές σημειώσεις του Λεονάρντο Ντα Βίντσι, που φτιάχτηκε περίπου το 1490 σε ένα από τα ημερολόγιά

Διαβάστε περισσότερα

ΛΕΟΝΑΡΝΤΟ ΝΤΑ ΒΊΝΤΣΙ 1452-1519 ΒΑΣΙΛΕΙΟΥ ΕΥΤΥΧΙΑ ΓΚΕΚΑΣ ΤΡΥΦΩΝ ΑΡΣΕΝΙΔΗΣ ΕΥΘΥΜΙΟΣ

ΛΕΟΝΑΡΝΤΟ ΝΤΑ ΒΊΝΤΣΙ 1452-1519 ΒΑΣΙΛΕΙΟΥ ΕΥΤΥΧΙΑ ΓΚΕΚΑΣ ΤΡΥΦΩΝ ΑΡΣΕΝΙΔΗΣ ΕΥΘΥΜΙΟΣ ΛΕΟΝΑΡΝΤΟ ΝΤΑ ΒΊΝΤΣΙ 1452-1519 ΒΑΣΙΛΕΙΟΥ ΕΥΤΥΧΙΑ ΓΚΕΚΑΣ ΤΡΥΦΩΝ ΑΡΣΕΝΙΔΗΣ ΕΥΘΥΜΙΟΣ 1 Ο Λεονάρντο ντα Βίντσι ήταν Ιταλός αρχιτέκτονας, ζωγράφος, γλύπτης, μουσικός, εφευρέτης, μηχανικός, ανατόμος, γεωμέτρης

Διαβάστε περισσότερα

Ο χρυσός αριθμός φ. Η συνάντηση της αισθητικής τελειότητας και των μαθηματικών

Ο χρυσός αριθμός φ. Η συνάντηση της αισθητικής τελειότητας και των μαθηματικών Ο χρυσός αριθμός φ Η συνάντηση της αισθητικής τελειότητας και των μαθηματικών ΤΟ ΠΡΟΒΛΗΜΑ Το πρόβλημα της χρυσής τομής, σε απλή διατύπωση είναι το εξής: Να χωριστεί ένα τμήμα ΑΒ σε μέσο και άκρο λόγο δηλαδή

Διαβάστε περισσότερα

ΠΩΣ ΕΠΗΡΕΑΣΑΝ ΔΙΑΧΡΟΝΙΚΑ ΤΑ ΜΑΘΗΜΑΤΙΚΑ ΤΗΝ ΖΩΓΡΑΦΙΚΗ

ΠΩΣ ΕΠΗΡΕΑΣΑΝ ΔΙΑΧΡΟΝΙΚΑ ΤΑ ΜΑΘΗΜΑΤΙΚΑ ΤΗΝ ΖΩΓΡΑΦΙΚΗ ΠΩΣ ΕΠΗΡΕΑΣΑΝ ΔΙΑΧΡΟΝΙΚΑ ΤΑ ΜΑΘΗΜΑΤΙΚΑ ΤΗΝ ΖΩΓΡΑΦΙΚΗ Η ΟΜΑΔΑ μας ανέλαβε το θέμα της σχέσης των Μαθηματικών με τη ΖΩΓΡΑΦΙΚΗ!!! ΠΑΡΟΥΣΙΑΣΗ-ΕΠΙΜΕΛΕΙΑ: ΓΟΥΛΑ ΕΙΡΗΝΗ, ΡΑΛΛΙΟΥ ΕΥΑΝΘΙΑ, ΤΣΙΜΗΤΡΑ ΑΓΓΕΛΙΚΗ. ΙΣΤΟΡΙΚΗ

Διαβάστε περισσότερα

Ερευνητική εργασία Da Vinci «ΖΩΓΡΑΦΙΚΗ» 2º ΛΥΚΕΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΣΧΟΛΙΚΟ ΕΤΟΣ

Ερευνητική εργασία Da Vinci «ΖΩΓΡΑΦΙΚΗ» 2º ΛΥΚΕΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΣΧΟΛΙΚΟ ΕΤΟΣ Ερευνητική εργασία Da Vinci «ΖΩΓΡΑΦΙΚΗ» 2º ΛΥΚΕΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΣΧΟΛΙΚΟ ΕΤΟΣ 2012-2013 Υπεύθυνοι μαθητές Τζούρι Άρτεμις Σίμος Νίκος Πέτσιος Αναστάσης Σακελλίων Γρηγόρης Υπεύθυνοι καθηγητές: Αδαμάρα Ζούλας

Διαβάστε περισσότερα

Η χρυσή τομή και ο χρυσός αριθμός φ

Η χρυσή τομή και ο χρυσός αριθμός φ Η χρυσή τομή και ο χρυσός αριθμός φ Ο Johannes Kepler είχε πει ότι η γεωμετρία έχει δύο θησαυρούς: το Πυθαγόρειο Θεώρημα και τη Χρυσή Τομή. Το πρώτο μπορεί να συγκριθεί με μια ποσότητα χρυσού και το δεύτερο

Διαβάστε περισσότερα

Γεώργιος Βασιλειάδης, Λύκειο Παιανίας «Η χρυσή τομή στα μαθηματικά, στην τέχνη, στη ζωή» 2012-2013

Γεώργιος Βασιλειάδης, Λύκειο Παιανίας «Η χρυσή τομή στα μαθηματικά, στην τέχνη, στη ζωή» 2012-2013 Γεώργιος Βασιλειάδης, Λύκειο Παιανίας «Η χρυσή τομή στα μαθηματικά, στην τέχνη, στη ζωή» 2012-2013 Η Χρυσή τοµή στην καθηµερινότητά µας Η χρυσή τοµή δεν είναι µόνο ένας µαθηµατικός όρος, αλλά και µια

Διαβάστε περισσότερα

Η γεωμετρία της ζωής. Ερευνητική εργασία Α Λυκείου 2ου ΓΕΛ ΚΑΒΑΛΑΣ

Η γεωμετρία της ζωής. Ερευνητική εργασία Α Λυκείου 2ου ΓΕΛ ΚΑΒΑΛΑΣ Η γεωμετρία της ζωής Ερευνητική εργασία Α Λυκείου 2ου ΓΕΛ ΚΑΒΑΛΑΣ Τι μελετά η γεωμετρία ; Γεωμετρία είναι ο κλάδος των μαθηματικών που ασχολείται με χωρικές σχέσεις, δηλαδή με τη σύνθεση του χώρου που

Διαβάστε περισσότερα

ΧΡΥΣΗ ΤΟΜΗ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ

ΧΡΥΣΗ ΤΟΜΗ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΧΡΥΣΗ ΤΟΜΗ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ Χρησιμοποιήθηκε στην αρχαία Αίγυπτο και στην Πυθαγόρεια παράδοση,ο πρώτος ορισμός που έχουμε για αυτήν ανήκει στον Ευκλείδη που την ορίζει ως διαίρεση ενός ευθύγραμμου τμήματος

Διαβάστε περισσότερα

ΛΕΟΝΑΡΝΤΟ ΝΤΑ ΒΙΝΤΣΙ ΤΕΧΝΙΚΕΣ

ΛΕΟΝΑΡΝΤΟ ΝΤΑ ΒΙΝΤΣΙ ΤΕΧΝΙΚΕΣ ΛΕΟΝΑΡΝΤΟ ΝΤΑ ΒΙΝΤΣΙ Ο Λεονάρντο Ντα Βίντσι γεννήθηκε στην πόλη Αντσιάνο κοντά στο Βίντσι της Ιταλίας στις 15 Απριλίου του 1450 και απεβίωσε στις 2 Μαΐου του 1519 στη Γαλλία μετά την εγκατάστασή του από

Διαβάστε περισσότερα

Χρυσή τομή. 3.1 Εισαγωγή

Χρυσή τομή. 3.1 Εισαγωγή Χρυσή τομή 3.1 Εισαγωγή Ίσως όλοι έχουμε την εντύπωση πως αυτό που λέγεται λόγος χρυσής τομής, είναι μία έμπνευση των αρχαίων Ελλήνων την οποία εκμεταλλεύτηκαν για να κατασκευάσουν κτίσματα ή να δημιουργήσουν

Διαβάστε περισσότερα

Ανδριοπούλου Αγγελική Σταθοπούλου Σωτηρία Χαλούλη Αλεξία Ψαράκη Κωνσταντίνα. Leonardo Da Vinci. Ανατομία Ενός Μυαλού

Ανδριοπούλου Αγγελική Σταθοπούλου Σωτηρία Χαλούλη Αλεξία Ψαράκη Κωνσταντίνα. Leonardo Da Vinci. Ανατομία Ενός Μυαλού Οι μαθητές με αφορμή το πολύπλευρο έργο του Λεονάρντο Ντα Βίντσι προσέγγισαν επιστημονικά και καλλιτεχνικά πεδία του ενδιαφέροντός τους σε μία προσπάθεια να «αποκωδικοποιήσουν» τον επιστήμονα και καλλιτέχνη

Διαβάστε περισσότερα

Υποομάδα 3 Θέμα: Χρυσός Αριθμός Φ- Χρυσή Τομή

Υποομάδα 3 Θέμα: Χρυσός Αριθμός Φ- Χρυσή Τομή Α Γενικό Λύκειο Τοσιτσειο Αρσάκειο Εκάλης Ερευνητική εργασία project :Τα μαθηματικά στην Ακρόπολη Υποομάδα 3 Θέμα: Χρυσός Αριθμός Φ- Χρυσή Τομή Μέλη ομάδας: Χρήστος Παπακωνσταντίνου Βασίλης Πελωριάδης

Διαβάστε περισσότερα

Φύση και Μαθηματικά. Η χρυσή τομή φ

Φύση και Μαθηματικά. Η χρυσή τομή φ Η χρυσή τομή φ Ερευνητική Εργασία (Project) Α' Λυκείου 1ο Γενικό Λύκειο Ξάνθης 2011 2012 Συντονιστές Εκπαιδευτικοί Επαμεινώνδας Διαμαντόπουλος Βασιλική Κώττη Συμμετέχοντες Μαθητές Αναστασιάδης Κωνσταντίνος

Διαβάστε περισσότερα

Ο Πυθαγόρας ήταν ο πρώτος που διατύπωσε τον μαθηματικό ορισμό της αναλογίας χρησιμοποιώντας δύο ευθύγραμμα τμήματα.

Ο Πυθαγόρας ήταν ο πρώτος που διατύπωσε τον μαθηματικό ορισμό της αναλογίας χρησιμοποιώντας δύο ευθύγραμμα τμήματα. Ο ΧΡΥΣΟΣ ΑΡΙΘΜΟΣ Φ Ο Πυθαγόρας ήταν ο πρώτος που διατύπωσε τον μαθηματικό ορισμό της αναλογίας χρησιμοποιώντας δύο ευθύγραμμα τμήματα. Η σκέψη του ήταν πως αν υπάρχει ένα ευθύγραμμο τμήμα και ένα σημείο

Διαβάστε περισσότερα

Περιεχόμενα Μαθητές που συμμετείχαν στην παρούσα εργασία..3 Σκοπός της εργασίας-στόχοι-ερευνητικά ερωτήματα..4 Α. Χρυσή τομή στα μαθηματικά

Περιεχόμενα Μαθητές που συμμετείχαν στην παρούσα εργασία..3 Σκοπός της εργασίας-στόχοι-ερευνητικά ερωτήματα..4 Α. Χρυσή τομή στα μαθηματικά Περιεχόμενα Μαθητές που συμμετείχαν στην παρούσα εργασία..3 Σκοπός της εργασίας-στόχοι-ερευνητικά ερωτήματα..4 Α. Χρυσή τομή στα μαθηματικά.5 Μαθηματικός τύπος..5 Ιδιότητες..5 Κατασκευή με κανόνα και διαβήτη.6

Διαβάστε περισσότερα

Η ΣΥΜΜΕΤΡΙΑ ΣΤΟ ΦΥΣΙΚΟ ΚΟΣΜΟ ΦΥΣΗ ΚΑΙ ΜΑΘΗΜΑΤΙΚΑ Η ΣΥΜΜΕΤΡΙΑ ΣΤΟ ΦΥΣΙΚΟ ΚΟΣΜΟ

Η ΣΥΜΜΕΤΡΙΑ ΣΤΟ ΦΥΣΙΚΟ ΚΟΣΜΟ ΦΥΣΗ ΚΑΙ ΜΑΘΗΜΑΤΙΚΑ Η ΣΥΜΜΕΤΡΙΑ ΣΤΟ ΦΥΣΙΚΟ ΚΟΣΜΟ Η ΣΥΜΜΕΤΡΙΑ ΣΤΟ ΦΥΣΙΚΟ ΚΟΣΜΟ ΦΥΣΗ ΚΑΙ ΜΑΘΗΜΑΤΙΚΑ Η ΣΥΜΜΕΤΡΙΑ ΣΤΟ ΦΥΣΙΚΟ ΚΟΣΜΟ Επιμέλεια: Μιχαηλίσιν Άννα- Μαρία, Τζιώτης Δημήτρης, Τσάτσα Κωνσταντίνα Η συμμετρία στο φυσικό κόσμο Η συμμετρία που κατεξοχήν

Διαβάστε περισσότερα

ΤΡΕΙΣ ΚΑΙ Ο ΚΟΥΚΟΣ ΕΡΕΥΝΗΤΙΚΗ ΕΡΓΑΣΙΑ: «ΜΕΤΡΟΝ ΑΡΙΣΤΟΝ» ΣΗΜΑΝΤΙΚΟΙ ΑΡΙΘΜΟΙ

ΤΡΕΙΣ ΚΑΙ Ο ΚΟΥΚΟΣ ΕΡΕΥΝΗΤΙΚΗ ΕΡΓΑΣΙΑ: «ΜΕΤΡΟΝ ΑΡΙΣΤΟΝ» ΣΗΜΑΝΤΙΚΟΙ ΑΡΙΘΜΟΙ ΕΡΕΥΝΗΤΙΚΗ ΕΡΓΑΣΙΑ: «ΜΕΤΡΟΝ ΑΡΙΣΤΟΝ» ΣΗΜΑΝΤΙΚΟΙ ΑΡΙΘΜΟΙ ΤΡΕΙΣ ΚΑΙ Ο ΚΟΥΚΟΣ ΦΑΙΔΡΑ ΚΟΥΡΒΙΣΙΑΝΟΥ ΒΑΣΙΛΗΣ ΚΑΤΣΑΝΤΩΝΗΣ ΚΩΝΣΤΑΝΤΙΝΟΣ ΗΛΙΟΠΟΥΛΟΣ ΑΝΔΡΕΑΣ ΚΑΣΙΜΑΤΗΣ Ερευνητικά Ερωτήματα Ποιοι είναι ΟΙ ΣΗΜΑΝΤΙΚΟΙ

Διαβάστε περισσότερα

Γενικά χαρακτηριστικά

Γενικά χαρακτηριστικά ΙΜΠΡΕΣΙΟΝΙΣΜΟΣ Γενικά χαρακτηριστικά Μικρές πινελιές που δημιουργούν παχύ στρώμα μπογιάς αποτυπώνοντας λεπτομερές. Χρήση των βασικών χρωμάτων, σπάνια χρήση του μαύρου χρώματος. Απουσία διαδοχικών επιστρώσεων

Διαβάστε περισσότερα

Ομάδες. 1 η ομάδα: Αρμονικά Κύτταρα Θέμα: Βιολογία Μαθητές: Μπάκου Εύα Μπούρλια Ελένη Πέττα Ελεονώρα Πρεβέντα Βάσω Τσόλη Στέλλα

Ομάδες. 1 η ομάδα: Αρμονικά Κύτταρα Θέμα: Βιολογία Μαθητές: Μπάκου Εύα Μπούρλια Ελένη Πέττα Ελεονώρα Πρεβέντα Βάσω Τσόλη Στέλλα Ο χρυσός αριθμός Φ Ομάδες 1 η ομάδα: Αρμονικά Κύτταρα Θέμα: Βιολογία Μαθητές: Μπάκου Εύα Μπούρλια Ελένη Πέττα Ελεονώρα Πρεβέντα Βάσω Τσόλη Στέλλα 2 η ομάδα: Μικροί Εξερευνητές Θέμα: Αρχιτεκτονική Μαθητές:

Διαβάστε περισσότερα

Ειδικό Τεχνικό Σχέδιο

Ειδικό Τεχνικό Σχέδιο ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα Ειδικό Τεχνικό Σχέδιο Ενότητα 6.1: Ανθρωπομετρικά στοιχεία και στοιχεία Εργονομίας στην κατοικία Δρ Σταματίνα Γ. Μαλικούτη Τμήμα

Διαβάστε περισσότερα

ΣΥΝΘΕΤΙΚΕΣ ΑΡΧΕΣ ΕΙΚΟΝΩΝ

ΣΥΝΘΕΤΙΚΕΣ ΑΡΧΕΣ ΕΙΚΟΝΩΝ ΣΥΝΘΕΤΙΚΕΣ ΑΡΧΕΣ ΕΙΚΟΝΩΝ ΤΙ ΡΩΤΑΜΕ ΜΙΑ ΕΙΚΟΝΑ ; ΤΙ ΜΑΣ ΑΦΗΓΕΙΤΑΙ ΜΙΑ ΕΙΚΟΝΑ ; ΠΩΣ ΜΑΣ ΤΟ ΑΦΗΓΕΙΤΑΙ ΜΙΑ ΕΙΚΟΝΑ ; ΣΥΝΘΕΣΗ: Οργάνωση ενός συνόλου από επιμέρους στοιχεία σε μια ενιαία διάταξη Αρχική ιδέα σύνθεσης

Διαβάστε περισσότερα

Μαθηματικά Β Γυμνασίου. Επανάληψη στη Θεωρία

Μαθηματικά Β Γυμνασίου. Επανάληψη στη Θεωρία Μαθηματικά Β Γυμνασίου Επανάληψη στη Θεωρία Α.1.1: Η έννοια της μεταβλητής - Αλγεβρικές παραστάσεις Α.1.2: Εξισώσεις α βαθμού Α.1.4: Επίλυση προβλημάτων με τη χρήση εξισώσεων Α.1.5: Ανισώσεις α βαθμού

Διαβάστε περισσότερα

Ε Ρ Γ Α Σ Ι Α Θέμα: «Ακολουθία Fibonacci»

Ε Ρ Γ Α Σ Ι Α Θέμα: «Ακολουθία Fibonacci» Ε Ρ Γ Α Σ Ι Α Θέμα: «Ακολουθία Fibonacci» Μάθημα: Άλγεβρα Υπεύθυνος καθηγητής: κ. Σκοτίδας Τάξη: Β Λυκείου Τμήμα Β2 Ονοματεπώνυμο: Λαμπρινή Μαρίνα Λάππα Σχολικό έτος: 2010 2011 1 ΠΕΡΙΕΧΟΜΕΝΑ 1) Ποιο πρόβλημα

Διαβάστε περισσότερα

Πως η φύση παίρνει μορφή με χρυσές αναλογίες.

Πως η φύση παίρνει μορφή με χρυσές αναλογίες. 3 ο ΓΕΛ ΧΑΛΑΝΔΡΙΟΥ Πως η φύση παίρνει μορφή με χρυσές αναλογίες. Ομαδα1 Νικολόπουλος Βασίλης Παχής Θοδωρής Τσιάμης Θάνος Φλέγκας Κωνσταντίνος Ομαδα2 Μαγουλά Ολίνα Μακρή Άννα Πάλλη Ευσταρτία Ντίας Στέφανος

Διαβάστε περισσότερα

1. Γενικά περί Συμμετρίας

1. Γενικά περί Συμμετρίας 1. Γενικά περί Συμμετρίας ιδακτικοί στόχοι Μετά την ολοκλήρωση της μελέτης του κεφαλαίου αυτού θα μπορείτε να... o αναφέρετε τη διττή σημασία της έννοιας της συμμετρίας από την αρχαία Ελλάδα μέχρι και

Διαβάστε περισσότερα

Σχεδιασμός Προγραμμάτων

Σχεδιασμός Προγραμμάτων Σχεδιασμός Προγραμμάτων Ευλυγισία & Ισορροπία Μ. Μιχαλοπούλου Δ. Π. Θράκης Διατάσεις με καρέκλα Κάθισμα σε καρέκλα και Αυτί στον ώμο (κατέβασμα του αυτιού προς τον ώμο). Το σαγόνι βλέπει τον ώμο. Κυκλικές

Διαβάστε περισσότερα

Σύμβολα και σχεδιαστικά στοιχεία. Μάθημα 3

Σύμβολα και σχεδιαστικά στοιχεία. Μάθημα 3 Σύμβολα και σχεδιαστικά στοιχεία Μάθημα 3 Τα αρχιτεκτονικά σύμβολα αποτελούν μια διεθνή, συγκεκριμένη και απλή γλώσσα. Είναι προορισμένα να γίνονται κατανοητά από τον καθένα, ακόμα και από μη ειδικούς.

Διαβάστε περισσότερα

ΕΚΠΑΙΔΕΥΤΙΚΕΣ ΔΡΑΣΤΗΡΙΟΤΗΤΕΣ

ΕΚΠΑΙΔΕΥΤΙΚΕΣ ΔΡΑΣΤΗΡΙΟΤΗΤΕΣ Ε, τότε, παιδιά, θα έλεγα να βάλουµε όλοι το χαρτζιλίκι µας να αγοράσουµε το βιβλίο για τη µικρή µας φίλη, πρότεινε η Νάντια και όλοι συµφώνησαν. Το πολυπόθητο βιβλίο έγινε δικό της χάρη στην αγάπη των

Διαβάστε περισσότερα

Πέτερ Μπρέγκελ ( ):

Πέτερ Μπρέγκελ ( ): ΑΝΑΓΕΝΝΗΣΗ Πέτερ Μπρέγκελ (1525 1569) Πέτερ Μπρέγκελ (1525 1569): Ήταν ένας από τους μεγαλύτερους Ολλανδούς ζωγράφους και χαράκτες της εποχής του, πρωτοπόρος της Βορειοευρωαπαϊκής Αναγέννησης. Ασχολήθηκε

Διαβάστε περισσότερα

Κρόουλ. Ανάλυση τεχνικής

Κρόουλ. Ανάλυση τεχνικής Κρόουλ Ανάλυση τεχνικής (di Prampero 1986; Toussaint and Hollander 1994; Vilas-Boas et al., 2011) Γιατί είναι το crawl το γρηγορότερο στιλ; Είναι και το οικονομικότερο Περιεχόμενα Περιγραφή τεχνικής χεριών

Διαβάστε περισσότερα

ΔΕΛΤΙΟ ΤΑΥΤΟΤΗΤΑΣ. ΟΝΟΜΑ: Στεγόσαυρος. ΣΗΜΑΣΙΑ ΟΝΟΜΑΤΟΣ: Σαύρα με οροφή. ΧΑΡΑΚΤΗΡΙΣΤΙΚΑ ΤΟΥ ΣΩΜΑΤΟΣ:

ΔΕΛΤΙΟ ΤΑΥΤΟΤΗΤΑΣ. ΟΝΟΜΑ: Στεγόσαυρος. ΣΗΜΑΣΙΑ ΟΝΟΜΑΤΟΣ: Σαύρα με οροφή. ΧΑΡΑΚΤΗΡΙΣΤΙΚΑ ΤΟΥ ΣΩΜΑΤΟΣ: ΟΝΟΜΑ: Στεγόσαυρος ΣΗΜΑΣΙΑ ΟΝΟΜΑΤΟΣ: Σαύρα με οροφή. Ογκώδες τετράποδο που είχε μήκος 8 10 μέτρα. Η πλάτη του καλύπτονταν από μεγάλες κεράτινες πλάκες που ξεκινούσαν μικρές από τη βάση του κεφαλιού, μεγάλωναν

Διαβάστε περισσότερα

Αφιέρωμα: LeonardodaVinci

Αφιέρωμα: LeonardodaVinci Αφιέρωμα: LeonardodaVinci Ο Βίος και τα Έργα Ο ιταλός αρχιτέκτονας, ζωγράφος, γλύπτης, μουσικός, εφευρέτης, μηχανικός, ανατόμος, γεωμέτρης και επιστήμονας LeonardodiserPierodaVinci ή αλλιώς ο γνωστός σε

Διαβάστε περισσότερα

PROJECT Β ΤΕΤΡΑΜΗΝΟΥ ΘΕΜΑ:ΤΑ ΜΑΘΗΜΑΤΙΚΑ ΣΤΗ ΦΥΣΗ ΚΑΙ ΣΤΗΝ ΤΕΧΝΗ ΥΠΟΘΕΜΑ:ΤΑ ΜΑΘΗΜΑΤΙΚΑ ΣΤΗΝ ΤΕΧΝΗ

PROJECT Β ΤΕΤΡΑΜΗΝΟΥ ΘΕΜΑ:ΤΑ ΜΑΘΗΜΑΤΙΚΑ ΣΤΗ ΦΥΣΗ ΚΑΙ ΣΤΗΝ ΤΕΧΝΗ ΥΠΟΘΕΜΑ:ΤΑ ΜΑΘΗΜΑΤΙΚΑ ΣΤΗΝ ΤΕΧΝΗ 2 ο ΓΕΛ ΡΕΘΥΜΝΟΥ Σχ. Έτος 2011-12 PROJECT Β ΤΕΤΡΑΜΗΝΟΥ ΤΑΞΗ Α' ΘΕΜΑ:ΤΑ ΜΑΘΗΜΑΤΙΚΑ ΣΤΗ ΦΥΣΗ ΚΑΙ ΣΤΗΝ ΤΕΧΝΗ ΥΠΟΘΕΜΑ:ΤΑ ΜΑΘΗΜΑΤΙΚΑ ΣΤΗΝ ΤΕΧΝΗ ΜΑΘΗΤΕΣ:ΚΩΣΤΗΣ ΚΑΛΑΙΤΖΙΔΑΚΗΣ ΣΤΑΜΑΤΗΣ ΜΠΡΙΛΛΑΚΗΣ ΑΝΔΡΕΑΣ ΚΑΟΥΔΗΣ

Διαβάστε περισσότερα

Στοιχεία και εµβαδόν πρίσµατος και κυλίνδρου. ρ. Σ.Πατσιοµίτου

Στοιχεία και εµβαδόν πρίσµατος και κυλίνδρου. ρ. Σ.Πατσιοµίτου Στοιχεία και εµβαδόν πρίσµατος και κυλίνδρου ρ. Σ.Πατσιοµίτου Το ορθό πρίσµα και τα στοιχεία του Στη Στερεοµετρία τα παρακάτω στερεά σώµατα ονοµάζονται ορθά πρίσµατα. Οι δύο παράλληλες έδρες του λέγονταιβάσεις

Διαβάστε περισσότερα

Ειδικότητα: Ύφασµα Ένδυση

Ειδικότητα: Ύφασµα Ένδυση Ειδικότητα: Ύφασµα Ένδυση Αναλυτικό Πρόγραµµα Σπουδών του Μαθήµατος Β Τάξη 1 ου Κύκλου Τ.Ε.Ε. 5 ώρες /εβδοµάδα Αθήνα, Απρίλιος 2001 Α. ΣΚΟΠΟΣ ΤΗΣ Ι ΑΣΚΑΛΙΑΣ ΤΟΥ ΜΑΘΗΜΑΤΟΣ: Μάθηµα: «Σχεδιασµός Ετοίµων Ενδυµάτων

Διαβάστε περισσότερα

ΠΡΟΒΛΗΜΑΤΑ ΠΟΥ ΛΥΝΟΝΤΑΙ ΜΕ ΕΞΙΣΩΣΕΙΣ

ΠΡΟΒΛΗΜΑΤΑ ΠΟΥ ΛΥΝΟΝΤΑΙ ΜΕ ΕΞΙΣΩΣΕΙΣ ΠΡΟΒΛΗΜΑΤΑ ΠΟΥ ΛΥΝΟΝΤΑΙ ΜΕ ΕΞΙΣΩΣΕΙΣ 1. Η συνδρομή για την συμμετοχή στον όμιλο κολύμβησης είναι 15 τον μήνα και 5 για κάθε φορά που χρησιμοποιούμε την πισίνα. Αν τον προηγούμενο μήνα πληρώσαμε 75, πόσες

Διαβάστε περισσότερα

Η τέχνη µέσα από την Ιστορία. Βυζαντινές τοιχογραφίες in situ.

Η τέχνη µέσα από την Ιστορία. Βυζαντινές τοιχογραφίες in situ. Η τέχνη µέσα από την Ιστορία. Βυζαντινές τοιχογραφίες in situ. Κατερίνα αµιανάκη, Φιλόλογος, Γυµνάσιο Κριτσάς Λασιθίου, σχολικό έτος 2007-2008 Κίνητρα µιας διαφορετικής διδασκαλίας Η τέχνη είναι ένα κεφάλαιο

Διαβάστε περισσότερα

0,1,1,2,3,5,8,13,21,34,55,89...

0,1,1,2,3,5,8,13,21,34,55,89... ΧΡΥΣΗ ΤΟΜΗ: Β ΜΕΡΟΣ 0,1,1,2,3,5,8,13,21,34,55,89... Οι παραπάνω αριθμοί ονομάζονται Ακολουθία Fibonacci το άθροισμα των 2 προηγουμένων αριθμών ισούται με τον επόμενο αριθμό στην ακολουθία. Το πηλίκο τον

Διαβάστε περισσότερα

1 ο ΛΥΚΕΙΟ ΠΑΤΡΩΝ Ερευνητική εργασία. Εφαρμογές του «Φ» 1 ο τετράμηνο

1 ο ΛΥΚΕΙΟ ΠΑΤΡΩΝ Ερευνητική εργασία. Εφαρμογές του «Φ» 1 ο τετράμηνο 1 ο ΛΥΚΕΙΟ ΠΑΤΡΩΝ Ερευνητική εργασία Εφαρμογές του «Φ» 1 ο τετράμηνο 2012-13 ΥΠΕΥΘΥΝΟΣ ΚΑΘΗΓΗΤΗΣ ΚΟΡΟΝΤΖΗΣ ΚΩΝΣΤΑΝΤΙΝΟΣ ΠΕ03 ΠΕΡΙΕΧΟΜΕΝΑ 1. Ιστορική αναδρομή 2. Αλγεβρικές ιδιότητες 3. Γεωμετρικές Ιδιότητες

Διαβάστε περισσότερα

Μάθετε να γράφετε 4/5. ετών. Από τελείες στη γραµµή γραµµές και διακοσµήσεις από τη γραµµή της επιστολής. να κάνετε στο σπίτι

Μάθετε να γράφετε 4/5. ετών. Από τελείες στη γραµµή γραµµές και διακοσµήσεις από τη γραµµή της επιστολής. να κάνετε στο σπίτι Υ Ο Μ Σ Η Φ Α Ρ Γ ΙΟ Α ΤΟ ΤΕΤΡ Μάθετε να γράφετε 4/5 ετών Από τελείες στη γραµµή γραµµές και διακοσµήσεις από τη γραµµή της επιστολής να κάνετε στο σπίτι 2 Από το σχολείο στο σπίτι Από το σχολείο στο σπίτι

Διαβάστε περισσότερα

ΠΕΡΙΕΧΟΜΕΝΑ Α ΜΕΡΟΣ. Μαθαίνω να σχηµατίζω απλές προτάσεις... 7. Μαθαίνω να οµορφαίνω τις προτάσεις µου... 17

ΠΕΡΙΕΧΟΜΕΝΑ Α ΜΕΡΟΣ. Μαθαίνω να σχηµατίζω απλές προτάσεις... 7. Μαθαίνω να οµορφαίνω τις προτάσεις µου... 17 3 ΠΕΡΙΕΧΟΜΕΝΑ Α ΜΕΡΟΣ Μαθαίνω να σχηµατίζω απλές προτάσεις................ 7 Μαθαίνω να οµορφαίνω τις προτάσεις µου.............. 17 Μαθαίνω να µεγαλώνω τις προτάσεις µου............... 25 Μαθαίνω να γράφω

Διαβάστε περισσότερα

2 ος. Γυμνασίου. ΘΕΜΑ 1 ο Με τα. αριθμός που μπορούμε να σχηματίσουμε ώστε. Απάντηση = β) Γνωρίζουμε ότι διψήφιο τμήμα

2 ος. Γυμνασίου. ΘΕΜΑ 1 ο Με τα. αριθμός που μπορούμε να σχηματίσουμε ώστε. Απάντηση = β) Γνωρίζουμε ότι διψήφιο τμήμα ΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ ΠΑΡΑΡΤΗΜΑ ΗΜΑΘΙΑ ΑΣ 2 ος Ημαθιώτικος Μαθητικός Διαγωνισμός στα Μαθηματικά. «Κ. ΚΑΡΑΘΕΟΔΩΡΗ» Σάββατο 23 Ιανουαρίου 2010 Α Γυμνασίου ΘΕΜΑ 1 ο Με τα ψηφία 0, 1, 2, 3, 4, 5 σχηματίζουμ

Διαβάστε περισσότερα

Ο ΙΕΡΟΣ ΑΡΙΘΜΟΣ Φ ΧΡΥΣΗ ΤΟΜΗ ΤΕΧΝΕΣ ΜΑΘΗΤΕΣ ΛΑΜΠΡΟΠΟΥΛΟΥ ΕΥΑ ΜΑΝΕΝΤΗ ΖΩΗ ΑΝΤΩΝΑΤΟΥ ΑΣΠΑ ΔΡΟΓΓΙΤΗΣ ΓΙΩΡΓΟΣ ΥΠΕΥΘΥΝΗ ΚΑΘΗΓΗΤΡΙΑ ΑΝΤΩΝΟΠΟΥΛΟΥ ΕΛΠΙΔΑ

Ο ΙΕΡΟΣ ΑΡΙΘΜΟΣ Φ ΧΡΥΣΗ ΤΟΜΗ ΤΕΧΝΕΣ ΜΑΘΗΤΕΣ ΛΑΜΠΡΟΠΟΥΛΟΥ ΕΥΑ ΜΑΝΕΝΤΗ ΖΩΗ ΑΝΤΩΝΑΤΟΥ ΑΣΠΑ ΔΡΟΓΓΙΤΗΣ ΓΙΩΡΓΟΣ ΥΠΕΥΘΥΝΗ ΚΑΘΗΓΗΤΡΙΑ ΑΝΤΩΝΟΠΟΥΛΟΥ ΕΛΠΙΔΑ 1 η ΕΡΕΥΝΗΤΙΚΗ ΕΡΓΑΣΙΑ Ο ΙΕΡΟΣ ΑΡΙΘΜΟΣ Φ ΧΡΥΣΗ ΤΟΜΗ ΤΕΧΝΕΣ ΜΑΘΗΤΕΣ ΛΑΜΠΡΟΠΟΥΛΟΥ ΕΥΑ ΜΑΝΕΝΤΗ ΖΩΗ ΑΝΤΩΝΑΤΟΥ ΑΣΠΑ ΔΡΟΓΓΙΤΗΣ ΓΙΩΡΓΟΣ ΥΠΕΥΘΥΝΗ ΚΑΘΗΓΗΤΡΙΑ ΑΝΤΩΝΟΠΟΥΛΟΥ ΕΛΠΙΔΑ ΠΑΤΡΑ 17 ΙΑΝΟΥΑΡΙΟΥ 2012 Εισαγωγή

Διαβάστε περισσότερα

σχετικά με τον ιμπρεσιονισμό

σχετικά με τον ιμπρεσιονισμό Impressionism and Postimpressionism Ιμπρεσιονισμός και Μεταϊμπρεσσιονισμός Monet Van Gogh Σχέδιο Εργασίας: Μεγάλοι Ζωγράφοι Μαρία Κασαπίδη Ιούνιος 2007 σχετικά με τον ιμπρεσιονισμό Ο Ιμπρεσιονισμός είναι

Διαβάστε περισσότερα

ΕΝΔΕΙΚΤΙΚΕΣ ΔΟΚΙΜΑΣΙΕΣ ΜΑΘΗΜΑΤΙΚΩΝ ΓΙΑ ΤΗΝ ΕΙΣΑΓΩΓΗ ΜΑΘΗΤΩΝ ΣΤΑ ΠΡΟΤΥΠΑ-ΠΕΙΡΑΜΑΤΙΚΑ ΓΥΜΝΑΣΙΑ

ΕΝΔΕΙΚΤΙΚΕΣ ΔΟΚΙΜΑΣΙΕΣ ΜΑΘΗΜΑΤΙΚΩΝ ΓΙΑ ΤΗΝ ΕΙΣΑΓΩΓΗ ΜΑΘΗΤΩΝ ΣΤΑ ΠΡΟΤΥΠΑ-ΠΕΙΡΑΜΑΤΙΚΑ ΓΥΜΝΑΣΙΑ ΕΝΔΕΙΚΤΙΚΕΣ ΔΟΚΙΜΑΣΙΕΣ ΜΑΘΗΜΑΤΙΚΩΝ ΓΙΑ ΤΗΝ ΕΙΣΑΓΩΓΗ ΜΑΘΗΤΩΝ ΣΤΑ ΠΡΟΤΥΠΑ-ΠΕΙΡΑΜΑΤΙΚΑ ΓΥΜΝΑΣΙΑ ΔΟΚΙΜΑΣΙΑ 6 1) Να εκφράσετε τον αριθμό 48 σε γινόμενο πρώτων παραγόντων με δενδροδιάγραμμα. 2) Να συγκρίνετε

Διαβάστε περισσότερα

Μιχάλης Λάμπρου Νίκος Κ. Σπανουδάκης. τόμος 1. Καγκουρό Ελλάς

Μιχάλης Λάμπρου Νίκος Κ. Σπανουδάκης. τόμος 1. Καγκουρό Ελλάς Μιχάλης Λάμπρου Νίκος Κ. Σπανουδάκης τόμος Καγκουρό Ελλάς 0 007 (ο πρώτος αριθµός σε µια γραµµή αναφέρεται στη σελίδα που αρχίζει το άρθρο και ο δεύτερος στη σελίδα που περιέχει τις απαντήσεις) Πρόλογος

Διαβάστε περισσότερα

Να ξαναγράψετε το κείμενο που ακολουθεί συμπληρώνοντας τα κενά με τις

Να ξαναγράψετε το κείμενο που ακολουθεί συμπληρώνοντας τα κενά με τις ΜΑΘΗΜΑ 10 Ο ΠΡΟΣΚΥΝΟΥΜΕΝ ΣΟΥ ΤΑ ΠΑΘΗ,ΧΡΙΣΤΕ Να ξαναγράψετε το κείμενο που ακολουθεί συμπληρώνοντας τα κενά με τις κατάλληλες λέξεις που δίνονται στην παρένθεση. Σε κάθε κενό αντιστοιχεί μια λέξη. «Η Μεγάλη

Διαβάστε περισσότερα

Μαθηματικά: Αριθμητική και Άλγεβρα. Μάθημα 10 ο, Τμήμα Α

Μαθηματικά: Αριθμητική και Άλγεβρα. Μάθημα 10 ο, Τμήμα Α Μαθηματικά: Αριθμητική και Άλγεβρα Μάθημα 10 ο, Τμήμα Α Ορθογώνιο παραλληλόγραμμο 3 cm 5 cm Ο τύπος όπως είναι γραμμένος δείχνει ότι μπορούμε να πολλαπλασιάσουμε δύο μήκη. Ε=3cm x 5cm=15cm 2. Πώς καταλαβαίνετε

Διαβάστε περισσότερα

Ο πίνακας The Agnew Clinic του Τόμας Ίκινς

Ο πίνακας The Agnew Clinic του Τόμας Ίκινς Ο πίνακας The Agnew Clinic του Τόμας Ίκινς Γεώργιος Νικ. Σχορετσανίτης 2 3 Ο πίνακας The Agnew Clinic του Τόμας Ίκινς Το 1876, ο Τόμας Ίκινς (Thomas Eakins) ολοκλήρωσε ένα πορτραίτο του John Hill Brinton

Διαβάστε περισσότερα

ΕΡΓΟΝΟΜΙΑ - Λύσεις ασκήσεων στην ενότητα

ΕΡΓΟΝΟΜΙΑ - Λύσεις ασκήσεων στην ενότητα ΕΡΓΟΝΟΜΙΑ - Λύσεις ασκήσεων στην ενότητα 1. α. Να εξηγήσετε τον ρόλο του στοιχείου της προσαρμοστικότητας σε θέματα εργονομίας προϊόντων. Να αναφέρετε ένα παράδειγμα. β. Να αναφέρετε επιπτώσεις εργονομικών

Διαβάστε περισσότερα

Σπουδαίοι μαθηματικοί ανά τους αιώνες

Σπουδαίοι μαθηματικοί ανά τους αιώνες Σπουδαίοι μαθηματικοί ανά τους αιώνες ΑΡΧΑΙΟΙ ΧΡΟΝΟΙ Πυθαγόρας (580-500π.Χ) Ευκλείδης (350-270π.Χ) Αρχιμήδης (287-212π.Χ) Διοκλής (240-180π.Χ) ΠΡΩΤΟΧΡΙΣΤΙΑΝΙΚΗ ΠΕΡΙΟΔΟΣ Ήρων (1 Ος αιώνας μ.χ) Υπατία (370-416

Διαβάστε περισσότερα

Η τέχνη των Μαθηματικών και τα Μαθηματικά της τέχνης

Η τέχνη των Μαθηματικών και τα Μαθηματικά της τέχνης Η τέχνη των Μαθηματικών και τα Μαθηματικά της τέχνης Γεωμετρία και Τέχνη από την Αρχαιότητα έως σήμερα! Η έρευνά μας εστίασε στην εξελικτική πορεία της Τέχνης και τη συνεχή αλληλεπίδρασή της με θεμελιώδεις

Διαβάστε περισσότερα

5 ος Πανελλήνιος Μαθητικός Διαγωνισμός «Παιχνίδι και Μαθηματικά»

5 ος Πανελλήνιος Μαθητικός Διαγωνισμός «Παιχνίδι και Μαθηματικά» ΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ Πανεπιστημίου (Ελευθερίου Βενιζέλου) 34 106 79 ΑΘΗΝΑ Τηλ. 361653-3617784 - Fax: 364105 GREEK MATHEMATICAL SOCIETY 34, Panepistimiou (Εleftheriou Venizelou) Street GR. 106 79

Διαβάστε περισσότερα

Αναγέννηση. Σύνθετη λέξη: Ανά= ξανά + γέννηση

Αναγέννηση. Σύνθετη λέξη: Ανά= ξανά + γέννηση Leonardo da Vinci Αναγέννηση Σύνθετη λέξη: Ανά= ξανά + γέννηση ου ου Πρόκειται για ένα φαινόμενο μοναδικό στην παγκόσμια ιστορία, που συνδύαζε ένα πλήθος χαρακτηριστικών και ιδιαιτεροτήτων ανάλογα με την

Διαβάστε περισσότερα

ΑΣΚΗΣΕΙΣ ΣΤΗΝ ΤΑΞΗ. Κάρτες εκγύμνασης

ΑΣΚΗΣΕΙΣ ΣΤΗΝ ΤΑΞΗ. Κάρτες εκγύμνασης ΑΣΚΗΣΕΙΣ ΣΤΗΝ ΤΑΞΗ Άσκηση 1 η Κάρτες εκγύμνασης Υλικά: Ο εκπαιδευτικός ετοιμάζει 4 κάρτες με κινητικές δραστηριότητες (πχ. επικύψεις, καθίσματα, ασκήσεις χεριών, ασκήσεις ποδιών). Ο εκπαιδευτικός μοιράζει

Διαβάστε περισσότερα

ΤΟ ΠΥΘΑΓΟΡΕΙΟ ΘΕΩΡΗΜΑ ΚΑΙ ΤΟ ΕΜΒΑΔΟ ΚΥΚΛΙΚΟΥ ΔΙΣΚΟΥ ΜΕΣΑ ΑΠΟ ΜΙΑ ΣΕΙΡΑ JAVA-APPLETS

ΤΟ ΠΥΘΑΓΟΡΕΙΟ ΘΕΩΡΗΜΑ ΚΑΙ ΤΟ ΕΜΒΑΔΟ ΚΥΚΛΙΚΟΥ ΔΙΣΚΟΥ ΜΕΣΑ ΑΠΟ ΜΙΑ ΣΕΙΡΑ JAVA-APPLETS 246 3 Ο ΣΥΝΕΔΡΙΟ ΣΤΗ ΣΥΡΟ ΤΠΕ ΣΤΗΝ ΕΚΠΑΙΔΕΥΣΗ ΤΟ ΠΥΘΑΓΟΡΕΙΟ ΘΕΩΡΗΜΑ ΚΑΙ ΤΟ ΕΜΒΑΔΟ ΚΥΚΛΙΚΟΥ ΔΙΣΚΟΥ ΜΕΣΑ ΑΠΟ ΜΙΑ ΣΕΙΡΑ JAVA-APPLETS Φουναριωτάκης Αθανάσιος Μαθηματικός Β/θμιας Εκπαίδευσης Προσωπική ιστοσελίδα:

Διαβάστε περισσότερα

Οι γωνιάσεις, κύριο χαρακτηριστικό του συμφυούς παραστήματος. Τα παραστήματα είναι τα τρία τέταρτα του στυλ

Οι γωνιάσεις, κύριο χαρακτηριστικό του συμφυούς παραστήματος. Τα παραστήματα είναι τα τρία τέταρτα του στυλ ΤΟ ΜΠΡΕΤΟΝ ΚΑΙ ΟΙ ΓΩΝΙΑΣΕΙΣ ΤΟΥ Οι γωνιάσεις, κύριο χαρακτηριστικό του συμφυούς παραστήματος. Τα παραστήματα είναι τα τρία τέταρτα του στυλ Δεν σας κρύβω ότι στην προσέγγιση μου για την παρουσίαση των

Διαβάστε περισσότερα

Κανονικά πολύγωνα Τουρναβίτης Στέργιος

Κανονικά πολύγωνα Τουρναβίτης Στέργιος Κανονικά πολύγωνα Τουρναβίτης Στέργιος Κανονικά πολύγωνα στη φύση, τέχνη, ανθρώπινες κατασκευές, Μαθηματικά Κανονικά πολύγωνα στη φύση Η κηρήθρα είναι ένα φυσικό θαύμα αρχιτεκτονικής Οι μέλισσες έχουν

Διαβάστε περισσότερα

Κορδάτος Κωνσταντίνος Λισέβσκι Αντριάν Μακελαράκη Μελίνα Μιράντα Νίξον Μπελέρης Άρης Νεζεργιώτης Ιωάννης Παβλόβσκα Μάρτα Τάμπα Ιουλιάν

Κορδάτος Κωνσταντίνος Λισέβσκι Αντριάν Μακελαράκη Μελίνα Μιράντα Νίξον Μπελέρης Άρης Νεζεργιώτης Ιωάννης Παβλόβσκα Μάρτα Τάμπα Ιουλιάν ΟΙ ΜΑΘΗΤΕΣ ΤΟΥ PROJECT Αντέμι Ορέστης Γκαντάλλα Μάρκος Γεωργακόπουλος Ευάγγελος Γιώργκο Σπύρο Καρούσης Στέφανος Κερμέζο Χριστίνα Κονιτόπουλος Πέτρος-Παύλος Κορδάτος Κωνσταντίνος Λισέβσκι Αντριάν Μακελαράκη

Διαβάστε περισσότερα

Κείμενο Εκκλησίας του Τιμίου Σταυρού στο Πελέντρι. Ελληνικά

Κείμενο Εκκλησίας του Τιμίου Σταυρού στο Πελέντρι. Ελληνικά 1 Κείμενο Εκκλησίας του Τιμίου Σταυρού στο Πελέντρι Ελληνικά 2 ΕΚΚΛΗΣΙΑ ΤΟΥ ΤΙΜΙΟΥ ΣΤΑΥΡΟΥ ΣΤΟ ΠΕΛΕΝΤΡΙ Η εκκλησία του Τιμίου Σταυρού στο Πελέντρι φαίνεται να χτίστηκε λίγο μετά τα μέσα του 12 ου αιώνα

Διαβάστε περισσότερα

5 ος Πανελλήνιος Μαθητικός Διαγωνισμός «Παιχνίδι και Μαθηματικά»

5 ος Πανελλήνιος Μαθητικός Διαγωνισμός «Παιχνίδι και Μαθηματικά» ΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ Πανεπιστημίου (Ελευθερίου Βενιζέλου) 34 106 79 ΑΘΗΝΑ Τηλ. 3616532-3617784 - Fax: 3641025 e-mail : info@hms.gr www.hms.gr GREEK MATHEMATICAL SOCIETY 34, Panepistimiou (Εleftheriou

Διαβάστε περισσότερα

Η εκμάθηση της μετωπικής πάσας στην πετοσφαίριση

Η εκμάθηση της μετωπικής πάσας στην πετοσφαίριση Η εκμάθηση της μετωπικής πάσας στην πετοσφαίριση Υποδειγματικό Σενάριο Γνωστικό αντικείμενο: Φυσική αγωγή Δημιουργός: ΜΑΡΙΑ ΥΦΑΝΤΗ ΙΝΣΤΙΤΟΥΤΟ ΕΚΠΑΙΔΕΥΤΙΚΗΣ ΠΟΛΙΤΙΚΗΣ ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ, ΕΡΕΥΝΑΣ ΚΑΙ ΘΡΗΣΚΕΥΜΑΤΩΝ

Διαβάστε περισσότερα

ΕΠΑΝΑΛΗΨΗ Β ΓΥΜΝΑΣΙΟΥ ΑΛΓΕΒΡΑ

ΕΠΑΝΑΛΗΨΗ Β ΓΥΜΝΑΣΙΟΥ ΑΛΓΕΒΡΑ ΕΠΑΝΑΛΗΨΗ Β ΓΥΜΝΑΣΙΟΥ ΑΛΓΕΒΡΑ Να βρείτε στην αντίστοιχη σελίδα του σχολικού σας βιβλίου το ζητούμενο της κάθε ερώτησης που δίνεται παρακάτω και να το γράψετε στο τετράδιό σας. ΚΕΦΑΛΑΙΟ 1 1. Να συμπληρώσετε

Διαβάστε περισσότερα

Η έννοια του συνόλου. Εισαγωγικό κεφάλαιο 27

Η έννοια του συνόλου. Εισαγωγικό κεφάλαιο 27 Εισαγωγικό κεφάλαιο 27 Η έννοια του συνόλου Σύνολο είναι κάθε συλλογή αντικειμένων, που προέρχονται από την εμπειρία μας ή τη διανόησή μας, είναι καλά ορισμένα και διακρίνονται το ένα από το άλλο. Αυτός

Διαβάστε περισσότερα

4. Η τέχνη στο πλαίσιο της φιλοσοφίας του Χέγκελ για την ιστορία

4. Η τέχνη στο πλαίσιο της φιλοσοφίας του Χέγκελ για την ιστορία 4. Η τέχνη στο πλαίσιο της φιλοσοφίας του Χέγκελ για την ιστορία Α1. Ερωτήσεις γνώσης - κατανόησης 1. Πώς συλλαµβάνει ο Χέγκελ τη σχέση ιστορίας και πνεύµατος και ποιο ρόλο επιφυλάσσει στο πνεύµα; 2. Τι

Διαβάστε περισσότερα

ΑΛΓΕΒΡΑ Α ΛΥΚΕΙΟΥ. 8. Πότε το γινόμενο δύο ή περισσοτέρων αριθμών παραγόντων είναι ίσο με το μηδέν ;

ΑΛΓΕΒΡΑ Α ΛΥΚΕΙΟΥ. 8. Πότε το γινόμενο δύο ή περισσοτέρων αριθμών παραγόντων είναι ίσο με το μηδέν ; ΑΛΓΕΒΡΑ Α ΛΥΚΕΙΟΥ ΚΕΦΑΛΑΙΟ ο : ( ΕΡΩΤΗΣΕΙΣ ΘΕΩΡΙΑΣ ) ΠΑΡΑΤΗΡΗΣΗ : Το κεφάλαιο αυτό περιέχει πολλά θέματα που είναι επανάληψη εννοιών που διδάχθηκαν στο Γυμνάσιο γι αυτό σ αυτές δεν θα επεκταθώ αναλυτικά

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ Γ ΓΥΜΝΑΣΙΟΥ

ΜΑΘΗΜΑΤΙΚΑ Γ ΓΥΜΝΑΣΙΟΥ ΜΑΘΗΜΑΤΙΚΑ Γ ΓΥΜΝΑΣΙΟΥ Οι πραγματικοί αριθμοί αποτελούνται από τους ρητούς και τους άρρητους αριθμούς, τους φυσικούς και τους ακέραιους αριθμούς. Δηλαδή είναι το μεγαλύτερο σύνολο αριθμών που μπορούμε

Διαβάστε περισσότερα

Βασικές Γεωμετρικές έννοιες

Βασικές Γεωμετρικές έννοιες Βασικές Γεωμετρικές έννοιες Σημείο Με την άκρη του μολυβιού μου ακουμπώντας την σε ένα κομμάτι χαρτί αφήνω ένα σημάδι το οποίο το λέω σημείο. Το σημείο το δίνω όνομα γράφοντας πάνω απ αυτό ένα κεφαλαίο

Διαβάστε περισσότερα

Ερωτήσεις Κατανόησης. Ασκήσεις σχολικού βιβλίου σελίδας

Ερωτήσεις Κατανόησης. Ασκήσεις σχολικού βιβλίου σελίδας 5. 5.5 σκήσεις σχολικού βιβλίου σελίδας 0 04 ρωτήσεις Κατανόησης. Ποια από τα παρακάτω τετράπλευρα είναι Ορθογώνια, ρόµβοι, i τετράγωνα, ποια όχι και γιατί; (α) 5 (β) 5 (γ) (δ) (ε) (ζ) φ 5 φ 5 φ φ (η)

Διαβάστε περισσότερα

1 ΔΙΑΝΥΣΜΑΤΑ. Εισαγωγή

1 ΔΙΑΝΥΣΜΑΤΑ. Εισαγωγή 1 ΙΝΥΣΜΤ Εισαγωγή Το διάνυσμα είναι ένα χαρακτηριστικό παράδειγμα έννοιας που αναπτύχθηκε μέσα από τη στενή αλληλεπίδραση Μαθηματικών και Φυσικής. κανόνας του παραλληλόγραμμου, σύμφωνα με τον οποίο το

Διαβάστε περισσότερα

ΤΟ ΗΛΙΑΚΟ ΣΥΣΤΗΜΑ! ΧΡΙΣΤΙΝΑ ΠΑΤΣΙΑΒΑ ΚΑΙ ΣΟΦΙΑ ΚΟΥΤΡΟΥΜΑΝΗ

ΤΟ ΗΛΙΑΚΟ ΣΥΣΤΗΜΑ! ΧΡΙΣΤΙΝΑ ΠΑΤΣΙΑΒΑ ΚΑΙ ΣΟΦΙΑ ΚΟΥΤΡΟΥΜΑΝΗ ΤΟ ΗΛΙΑΚΟ ΣΥΣΤΗΜΑ! ΧΡΙΣΤΙΝΑ ΠΑΤΣΙΑΒΑ ΚΑΙ ΣΟΦΙΑ ΚΟΥΤΡΟΥΜΑΝΗ ΤΟ ΗΛΙΑΚΟ ΣΥΣΤΗΜΑ Ως Ηλιακό Σύστημα θεωρούμε τον Ήλιο και όλα τα αντικείμενα που συγκρατούνται σε τροχιά γύρω του χάρις στη βαρύτητα, που σχηματίστηκαν

Διαβάστε περισσότερα

εγγράφοντας κανονικά πολύγωνα σε τόρους, δηλαδή στερεούς δακτυλίους µε κυκλική τοµή, και επίσης τα µελετά µε πυραµίδες. [Β-4, σελ 58].

εγγράφοντας κανονικά πολύγωνα σε τόρους, δηλαδή στερεούς δακτυλίους µε κυκλική τοµή, και επίσης τα µελετά µε πυραµίδες. [Β-4, σελ 58]. εγγράφοντας κανονικά πολύγωνα σε τόρους, δηλαδή στερεούς δακτυλίους µε κυκλική τοµή, και επίσης τα µελετά µε πυραµίδες. [Β-4, σελ 58]. Η συνεισφορά του Kepler στα Αρχιµήδεια ήταν µεγάλη, γιατί αυτός απέδειξε

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ Β Γυμνασίου

ΜΑΘΗΜΑΤΙΚΑ Β Γυμνασίου ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ ΚΑΙ ΠΟΛΙΤΙΣΜΟΥ ΜΑΘΗΜΑΤΙΚΑ Β Γυμνασίου Ενότητα 3: Πραγματικοί αριθμοί Πυθαγόρειο Θεώρημα ΠΑΙΔΑΓΩΓΙΚΟ ΙΝΣΤΙΤΟΥΤΟ ΥΠΗΡΕΣΙΑ ΑΝΑΠΤΥΞΗΣ ΠΡΟΓΡΑΜΜΑΤΩΝ ΜΑΘΗΜΑΤΙΚΑ Β Γυμνασίου Ενότητα 2: Πραγματικοί

Διαβάστε περισσότερα

ΕΡΩΤΗΣΕΙΣ ΘΕΩΡΙΑΣ ΜΑΘΗΜΑΤΙΚΑ Β ΓΥΜΝΑΣΙΟΥ. ΜΕΡΟΣ 1ο ΑΛΓΕΒΡΑ

ΕΡΩΤΗΣΕΙΣ ΘΕΩΡΙΑΣ ΜΑΘΗΜΑΤΙΚΑ Β ΓΥΜΝΑΣΙΟΥ. ΜΕΡΟΣ 1ο ΑΛΓΕΒΡΑ 1. Τι καλείται μεταβλητή; ΕΡΩΤΗΣΕΙΣ ΘΕΩΡΙΑΣ ΜΑΘΗΜΑΤΙΑ Β ΓΥΜΝΑΣΙΟΥ ΜΕΡΟΣ 1ο ΑΛΓΕΒΡΑ Μεταβλητή είναι ένα γράμμα (π.χ., y, t, ) που το χρησιμοποιούμε για να παραστήσουμε ένα οποιοδήποτε στοιχείο ενός συνόλου..

Διαβάστε περισσότερα

ΘΕΜΑΤΙΚΗ ΕΝΟΤΗΤΑ. Αδέλφια στο σχολείο

ΘΕΜΑΤΙΚΗ ΕΝΟΤΗΤΑ. Αδέλφια στο σχολείο ΘΕΜΑΤΙΚΗ ΕΝΟΤΗΤΑ Αδέλφια στο σχολείο Οι συμμαθητές και οι συμμαθήτριές μου Οι μαθήτριες του Χριστού Κάποτε, μια γυναίκα, που ονομαζόταν Μάρθα, υποδέχτηκε στο σπίτι της τον Ιησού. Η Μάρθα, ήταν αδελφή του

Διαβάστε περισσότερα

Ιστορία Μεσαιωνικού και Νεότερου κόσμου Γλυπτική της Αναγέννησης Εργασία των μαθητριών : Μενεγή Νίνα

Ιστορία Μεσαιωνικού και Νεότερου κόσμου Γλυπτική της Αναγέννησης Εργασία των μαθητριών : Μενεγή Νίνα Ιστορία Μεσαιωνικού και Νεότερου κόσμου Γλυπτική της Αναγέννησης Εργασία των μαθητριών : Μενεγή Νίνα Καθηγήτρια: Α.Παπαμελετίου Σχολικό έτος: 2013-14 Λιότση Σωτηρία Αναγέννηση 14 ος -15 ος αιώνας Για πρώτη

Διαβάστε περισσότερα

ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΤΜΗΜΑ ΕΠΙΣΤΗΜΗΣ ΦΥΣΙΚΗΣ ΑΓΩΓΗΣ ΚΑΙ ΑΘΛΗΤΙΣΜΟΥ ΜΑΘΗΜΑ: ΠΑΙΔΑΓΩΓΙΚΗ ΓΥΜΝΑΣΤΙΚΗ

ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΤΜΗΜΑ ΕΠΙΣΤΗΜΗΣ ΦΥΣΙΚΗΣ ΑΓΩΓΗΣ ΚΑΙ ΑΘΛΗΤΙΣΜΟΥ ΜΑΘΗΜΑ: ΠΑΙΔΑΓΩΓΙΚΗ ΓΥΜΝΑΣΤΙΚΗ ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΤΜΗΜΑ ΕΠΙΣΤΗΜΗΣ ΦΥΣΙΚΗΣ ΑΓΩΓΗΣ ΚΑΙ ΑΘΛΗΤΙΣΜΟΥ ΜΑΘΗΜΑ: ΠΑΙΔΑΓΩΓΙΚΗ ΓΥΜΝΑΣΤΙΚΗ Επικοινωνία και συνεννόηση μεταξύ καθηγητή Φ.Α και μαθητών Καλύτερη συνεργασία Εξοικονόμηση

Διαβάστε περισσότερα

Μ Α Θ Η Μ Α Τ Α Γ Λ Υ Κ Ε Ι Ο Υ

Μ Α Θ Η Μ Α Τ Α Γ Λ Υ Κ Ε Ι Ο Υ Μ Α Θ Η Μ Α Τ Α Γ Λ Υ Κ Ε Ι Ο Υ ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ ΚΑΙ ΣΠΟΥΔΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΠΛΗΡΟΦΟΡΙΚΗΣ (Α ΜΕΡΟΣ: ΣΥΝΑΡΤΗΣΕΙΣ) Μαθηματικά Προσανατολισμού Γ Λυκείου- Μαθηματικός Περιηγητής ΕΝΟΤΗΤΑ

Διαβάστε περισσότερα

Προσομοίωση προαγωγικών εξετάσεων Β Γυμνασίου ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΣΧΟΛΙΚΟΥ ΕΤΟΥΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΤΗΣ Β ΓΥΜΑΝΣΙΟΥ ΠΡΟΣΟΜΟΙΩΣΗ Α.

Προσομοίωση προαγωγικών εξετάσεων Β Γυμνασίου ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΣΧΟΛΙΚΟΥ ΕΤΟΥΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΤΗΣ Β ΓΥΜΑΝΣΙΟΥ ΠΡΟΣΟΜΟΙΩΣΗ Α. Προσομοίωση προαγωγικών εξετάσεων Β Γυμνασίου ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΣΧΟΛΙΚΟΥ ΕΤΟΥΣ 014-015 ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΤΗΣ Β ΓΥΜΑΝΣΙΟΥ ΠΡΟΣΟΜΟΙΩΣΗ Α. ΘΕΩΡΙΑ ΘΕΜΑ 1 ο Α. Να χαρακτηρίσετε τις προτάσεις που ακολουθούν

Διαβάστε περισσότερα

Η ΓΛΩΣΣΑ ΤΟΥ ΣΩΜΑΤΟΣ ΣΤΟ ΚΟΣΜΟ

Η ΓΛΩΣΣΑ ΤΟΥ ΣΩΜΑΤΟΣ ΣΤΟ ΚΟΣΜΟ Η ΓΛΩΣΣΑ ΤΟΥ ΣΩΜΑΤΟΣ ΣΤΟ ΚΟΣΜΟ Κάποιες από τις χειρονομίες που για τη δική μας κουλτούρα δε σημαίνουν τίποτα, ή σημαίνουν κάτι καλό, μπορεί για κάποιους άλλους να σημαίνουν κάτι άσχημο. Ας δούμε λοιπόν

Διαβάστε περισσότερα

Ulrich Rückriem. Σκιές της πέτρας ΕΚΠΑΙ ΕΥΤΙΚΟ ΠΡΟΓΡΑΜΜΑ ΓΙΑ ΜΑΘΗΤΕΣ ΗΜΟΤΙΚΟΥ

Ulrich Rückriem. Σκιές της πέτρας ΕΚΠΑΙ ΕΥΤΙΚΟ ΠΡΟΓΡΑΜΜΑ ΓΙΑ ΜΑΘΗΤΕΣ ΗΜΟΤΙΚΟΥ Ulrich Rückriem Σκιές της πέτρας ΕΚΠΑΙ ΕΥΤΙΚΟ ΠΡΟΓΡΑΜΜΑ ΓΙΑ ΜΑΘΗΤΕΣ ΗΜΟΤΙΚΟΥ Το Εθνικό Μουσείο Σύγχρονης Τέχνης επιχορηγείται από το Υπουργείο Πολιτισµού Eκπαιδευτικό Πρόγραµµα για Μαθητές ηµοτικού Οργάνωση

Διαβάστε περισσότερα

Εργαλείο Εκπαιδευτικής Αξιολόγησης για παιδιά µε Αυτισµό στο Γνωστικό τοµέα

Εργαλείο Εκπαιδευτικής Αξιολόγησης για παιδιά µε Αυτισµό στο Γνωστικό τοµέα Εργαλείο Εκπαιδευτικής Αξιολόγησης για παιδιά µε Αυτισµό στο Γνωστικό τοµέα Οπτική αντίληψη Ακουστική αντίληψη Γνωστικός - εκτελεστικός τοµέας Γνωστικός - εκφραστικός τοµέας Μίµηση Οπτική µνήµη Λειτουργική

Διαβάστε περισσότερα

ΜΙΧΑΗΛ ΑΓΓΕΛΟΣ Ο ΒΙΟΣ ΤΟΥ

ΜΙΧΑΗΛ ΑΓΓΕΛΟΣ Ο ΒΙΟΣ ΤΟΥ ΜΙΧΑΗΛ ΑΓΓΕΛΟΣ Ο ΒΙΟΣ ΤΟΥ Ο Μιχαήλ Άγγελος γεννήθηκε στην Ιταλία. Η περιοχή όπου γεννήθηκε,καπρεζε Μικελάντζελο, έχει πάρει το ονόµατος προς τιµήν του γνωστού ζωγράφου. Καταγόταν από παλιά φλωρεντίνικη

Διαβάστε περισσότερα

βοήθεια ευθείας και κύκλου. Δεν ισχύει όμως το ίδιο για την παρεμβολή δύο μέσων αναλόγων η οποία απαιτεί τη χρησιμοποίηση διαφορετικών 2

βοήθεια ευθείας και κύκλου. Δεν ισχύει όμως το ίδιο για την παρεμβολή δύο μέσων αναλόγων η οποία απαιτεί τη χρησιμοποίηση διαφορετικών 2 3 ΚΩΝΙΚΕΣ ΤΟΜΕΣ Εισαγωγή Η μελέτη της έλλειψης, της παραβολής και της υπερβολής από τους Αρχαίους Έλληνες μαθηματικούς φαίνεται ότι είχε αφετηρία τη σχέση αυτών των καμπύλων με ορισμένα προβλήματα γεωμετρικών

Διαβάστε περισσότερα

ΘΕΩΡΙΑ Β ΓΥΜΝΑΣΙΟΥ. Μια παράσταση που περιέχει πράξεις με μεταβλητές (γράμματα) και αριθμούς καλείται αλγεβρική, όπως για παράδειγμα η : 2x+3y-8

ΘΕΩΡΙΑ Β ΓΥΜΝΑΣΙΟΥ. Μια παράσταση που περιέχει πράξεις με μεταβλητές (γράμματα) και αριθμούς καλείται αλγεβρική, όπως για παράδειγμα η : 2x+3y-8 ΘΕΩΡΙΑ Β ΓΥΜΝΑΣΙΟΥ Άλγεβρα 1 ο Κεφάλαιο 1. Τι ονομάζουμε αριθμητική και τι αλγεβρική παράσταση; Να δώσετε από ένα παράδειγμα. Μια παράσταση που περιέχει πράξεις με αριθμούς, καλείται αριθμητική παράσταση,

Διαβάστε περισσότερα

Κείμενο Εκκλησίας Αρχαγγέλου Μιχαήλ στον Πεδουλά. Ελληνικά

Κείμενο Εκκλησίας Αρχαγγέλου Μιχαήλ στον Πεδουλά. Ελληνικά 1 Κείμενο Εκκλησίας Αρχαγγέλου Μιχαήλ στον Πεδουλά Ελληνικά 2 ΕΚΚΛΗΣΙΑ ΤΟΥ ΑΡΧΑΓΓΕΛΟΥ ΜΙΧΑΗΛ ΣΤΟΝ ΠΕΔΟΥΛΑ Η εκκλησία του Αρχαγγέλου Μιχαήλ που χτίστηκε πριν το 1474 είναι μονόκλιτη, ξυλόστεγη με νάρθηκα

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ Γ Γυμνασίου

ΜΑΘΗΜΑΤΙΚΑ Γ Γυμνασίου ΜΑΘΗΜΑΤΙΚΑ Γ Γυμνασίου Κεφάλαιο ο Αλγεβρικές Παραστάσεις ΛΕΜΟΝΙΑ ΜΠΟΥΤΣΚΟΥ Γυμνάσιο Αμυνταίου ΜΑΘΗΜΑ Α. Πράξεις με πραγματικούς αριθμούς ΑΣΚΗΣΕΙΣ ) ) Να συμπληρώσετε τα κενά ώστε στην κατακόρυφη στήλη

Διαβάστε περισσότερα

Συνάρτηση, Τιμές συνάρτησης, Πίνακας Τιμών. Τι ονομάζουμε πίνακα τιμών μιας συνάρτησης;

Συνάρτηση, Τιμές συνάρτησης, Πίνακας Τιμών. Τι ονομάζουμε πίνακα τιμών μιας συνάρτησης; ΣΤΟΛΗ ΧΡΙΣΤΙΝΑ 1 Ονοματεπώνυμο μαθητή : Ημερομηνία :.../.../20... Μαθηματικές έννοιες: Συνάρτηση, Τιμές συνάρτησης, Πίνακας Τιμών. Θυμόμαστε- Μαθαίνουμε: Τι ονομάζουμε συνάρτηση;.. Τι ονομάζουμε πίνακα

Διαβάστε περισσότερα

2.1 ΠΡΑΞΕΙΣ ΚΑΙ ΟΙ ΙΔΙΟΤΗΤΕΣ ΤΟΥΣ

2.1 ΠΡΑΞΕΙΣ ΚΑΙ ΟΙ ΙΔΙΟΤΗΤΕΣ ΤΟΥΣ ΚΕΦΑΛΑΙΟ : ΟΙ ΠΡΑΓΜΑΤΙΚΟΙ ΑΡΙΘΜΟΙ. ΠΡΑΞΕΙΣ ΚΑΙ ΟΙ ΙΔΙΟΤΗΤΕΣ ΤΟΥΣ Ρητός ονομάζεται κάθε αριθμός που έχει ή μπορεί να πάρει τη μορφή κλάσματος, όπου, είναι ακέραιοι με 0. Ρητοί αριθμοί : Q /, 0. Έτσι π.χ.

Διαβάστε περισσότερα

Φύση και Μαθηματικά. Η χρυσή τομή φ

Φύση και Μαθηματικά. Η χρυσή τομή φ Φύση και Μαθηματικά Η χρυσή τομή φ Ερευνητική Εργασία (Project) Α' Λυκείου 1ο ΓΕΛ Ξάνθης 2011 2012 Επιβλέποντες καθηγητές Επαμεινώνδας Διαμαντόπουλος Βασιλική Κώττη Φύση και Μαθηματικά 2 Τι είναι η χρυσή

Διαβάστε περισσότερα

DaVinci Σχολικό Έτος: 2012-2013 Ανατομία και Ιατρική

DaVinci Σχολικό Έτος: 2012-2013 Ανατομία και Ιατρική DaVinci Σχολικό Έτος: 2012-2013 Ανατομία και Ιατρική Υπεύθυνοι καθηγητές: Ζούλας Δημ. Αδαμάρα Αθαν. { Εργασία των μαθητών: Psyco Killers Πεταλωτή Χρήστου Σέρβου Αθανάσιου Χατζηγκόντζιου Χάρη Χατζηπαυλίδη

Διαβάστε περισσότερα

Επαναληπτικές Ασκήσεις Μαθηματικών Γ τάξη 1 η Ενότητα

Επαναληπτικές Ασκήσεις Μαθηματικών Γ τάξη 1 η Ενότητα ilias ili Οδύσσεια Τα απίθανα... τριτάκια! Tετάρτη τάξη Επαναληπτικές Ασκήσεις Μαθηματικών Γ τάξη 1 η Ενότητα Αριθμοί μέχρι το 1000 - Οι τέσσερις πράξεις Γεωμετρικά σχήματα Πηγή: e-selides 1) Γράφω τους

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 1 Η ΧΡΥΣΗ ΤΟΜΗ

ΚΕΦΑΛΑΙΟ 1 Η ΧΡΥΣΗ ΤΟΜΗ ΚΕΦΑΛΑΙΟ 1 Η ΧΡΥΣΗ ΤΟΜΗ Εισαγωγή Στο παρακάτω σχέδιο βλέπουμε την απεικόνηση τεσσάρων διαφορετικών κορνιζών. Ποια θα επιλέγατε, σαν την καλύτερη αισθητικά προκειμένου να τοποθετήσετε μία φωτογραφίας σας;

Διαβάστε περισσότερα

ΜΕΘΟΔΟΛΟΓΙΕΣ & ΑΣΚΗΣΕΙΣ ΓΙΑ ΤΗΝ ΑΛΓΕΒΡΑ ΤΗΣ Α ΛΥΚΕΙΟΥ

ΜΕΘΟΔΟΛΟΓΙΕΣ & ΑΣΚΗΣΕΙΣ ΓΙΑ ΤΗΝ ΑΛΓΕΒΡΑ ΤΗΣ Α ΛΥΚΕΙΟΥ ΜΕΘΟΔΟΛΟΓΙΕΣ & ΑΣΚΗΣΕΙΣ ΓΙΑ ΤΗΝ ΑΛΓΕΒΡΑ ΤΗΣ Α ΛΥΚΕΙΟΥ Επιμέλεια : Παλαιολόγου Παύλος Μαθηματικός Αγαπητοί μαθητές. αυτό το βιβλίο αποτελεί ένα βοήθημα στην ύλη της Άλγεβρας Α Λυκείου, που είναι ένα από

Διαβάστε περισσότερα

THOMAS VOGEL Το τελευταίο παραµύθι του Μιγκέλ Τόρρες ντα Σίλβα (ΜΥΘΙΣΤΟΡΗΜΑ)

THOMAS VOGEL Το τελευταίο παραµύθι του Μιγκέλ Τόρρες ντα Σίλβα (ΜΥΘΙΣΤΟΡΗΜΑ) THOMAS VOGEL Το τελευταίο παραµύθι του Μιγκέλ Τόρρες ντα Σίλβα (ΜΥΘΙΣΤΟΡΗΜΑ) Μετάφραση: ΛΙΝΑ ΣΙΠΙΤΑΝΟΥ Εκδόσεις Κριτική 2003 Παρουσίαση του βιβλίου: Ευαγγελία Τατάγια ΠΕΡΙΛΗΨΗ Το µυθιστόρηµα ξετυλίγεται

Διαβάστε περισσότερα

Η ΓΕΩΜΕΤΡΙΑ ΩΣ ΤΡΟΠΟΣ ΕΚΦΡΑΣΗΣ ΣΤΙΣ ΤΕΧΝΕΣ (ΖΩΓΡΑΦΙΚΗ, ΓΛΥΠΤΙΚΗ) ΚΑΙ ΩΣ ΕΡΓΑΛΕΙΟ ΚΑΤΑΝΟΗΣΗΣ ΤΗΣ ΦΥΣΗΣ

Η ΓΕΩΜΕΤΡΙΑ ΩΣ ΤΡΟΠΟΣ ΕΚΦΡΑΣΗΣ ΣΤΙΣ ΤΕΧΝΕΣ (ΖΩΓΡΑΦΙΚΗ, ΓΛΥΠΤΙΚΗ) ΚΑΙ ΩΣ ΕΡΓΑΛΕΙΟ ΚΑΤΑΝΟΗΣΗΣ ΤΗΣ ΦΥΣΗΣ Η ΓΕΩΜΕΤΡΙΑ ΩΣ ΤΡΟΠΟΣ ΕΚΦΡΑΣΗΣ ΣΤΙΣ ΤΕΧΝΕΣ (ΖΩΓΡΑΦΙΚΗ, ΓΛΥΠΤΙΚΗ) ΚΑΙ ΩΣ ΕΡΓΑΛΕΙΟ ΚΑΤΑΝΟΗΣΗΣ ΤΗΣ ΦΥΣΗΣ ΑΜΡΟ ΧΡΗΣΤΟΣ ΗΛΙΑ ΕΥΑΓΓΕΛΙΑ ΚΑΛΕΓΙΑΣ ΝΙΚΟΛΑΟΣ ΚΑΛΥΒΑΣ ΑΡΙΣΤΟΤΕΛΗΣ ΚΑΤΣΗ ΕΥΤΥΧΙΑ ΛΟΥΤΣΑΡΗΣ ΔΗΜΗΤΡΙΟΣ

Διαβάστε περισσότερα

Κεφάλαιο 7. Kλασική Εποχή. Οι Τέχνες και τα Γράμματα

Κεφάλαιο 7. Kλασική Εποχή. Οι Τέχνες και τα Γράμματα Κεφάλαιο 7 Kλασική Εποχή Οι Τέχνες και τα Γράμματα Στόχοι: Mε το τέλος της ενότητας οι μαθητές να είναι σε θέση να διαπιστώσουν τον ιδιαίτερο χαρακτήρα της ελληνικής τέχνης σε συνδυασμό με τις πολιτικές

Διαβάστε περισσότερα

Συνοπτική Θεωρία Μαθηματικών Α Γυμνασίου

Συνοπτική Θεωρία Μαθηματικών Α Γυμνασίου Web page: www.ma8eno.gr e-mail: vrentzou@ma8eno.gr Η αποτελεσματική μάθηση δεν θέλει κόπο αλλά τρόπο, δηλαδή ma8eno.gr Συνοπτική Θεωρία Μαθηματικών Α Γυμνασίου Αριθμητική - Άλγεβρα Γεωμετρία Άρτιος λέγεται

Διαβάστε περισσότερα

ΑΡΜΟΝΙΚΕΣ ΧΑΡΑΞΕΙΣ ΣΤΟ ΕΡΓΟ ΤΟΥ ΣΠ. ΠΑΠΑΛΟΥΚΑ

ΑΡΜΟΝΙΚΕΣ ΧΑΡΑΞΕΙΣ ΣΤΟ ΕΡΓΟ ΤΟΥ ΣΠ. ΠΑΠΑΛΟΥΚΑ ΑΡΜΟΝΙΚΕΣ ΧΑΡΑΞΕΙΣ ΣΤΟ ΕΡΓΟ ΤΟΥ ΣΠ. ΠΑΠΑΛΟΥΚΑ α) Ειρήνη Χρυσοβαλάντη Ρουμπάνη β) Μαρία Πανακάκη «Το τοπίο είναι αντικείμενα σε διάφορες αποστάσεις, που χαρακτηρίζονται με χρώματα, σε διάφορες πλάκες, οριζόντιες,

Διαβάστε περισσότερα