ΔΟΜΕΣ ΔΕΔΟΜΕΝΩΝ. Κατακερµατισµός Κεφάλαιο 14. Ε. Μαρκάκης Επίκουρος Καθηγητής
|
|
- Ξενοφών Παπαγεωργίου
- 8 χρόνια πριν
- Προβολές:
Transcript
1 ΔΟΜΕΣ ΔΕΔΟΜΕΝΩΝ Κατακερµατισµός Κεφάλαιο 14 Ε. Μαρκάκης Επίκουρος Καθηγητής
2 Περίληψη Εισαγωγή στον κατακερµατισµό Συναρτήσεις κατακερµατισµού Χωριστή αλυσίδωση Γραµµική διερεύνηση Διπλός κατακερµατισµός Δυναµικός κατακερµατισµός Προοπτική 14-2
3 Εισαγωγή Βασική ιδέα: άµεσος εντοπισµός στοιχείων Μέχρι τώρα υποθέταµε ότι τα κλειδιά έχουν κάποια διάταξη Οι αλγόριθµοι αναζήτησης που εξετάσαµε στηρίζονται σε λειτουργίες συγκρίσεων µεταξύ κλειδιών Υπάρχει µέθοδος less() Στα Δέντρα Δυαδικής Aναζήτησης εκµεταλλευόµαστε τον τρόπο που έχουµε διατάξει τα κλειδιά Το αριστερό υποδέντρο έχει κλειδιά µικρότερα ή ίσα της ρίζας 14-3
4 Εισαγωγή Βασική ιδέα: άµεσος εντοπισµός στοιχείων Στον κατακερµατισµό δεν εκµεταλλευόµαστε τη διάταξη Αρκεί να υπάρχει µέθοδος equals() Το κλειδί µετασχηµατίζεται σε θέση (αριθµοδείκτη) πίνακα Απαιτείται συνάρτηση κατακερµατισµού για µετασχηµατισµό Πολλά κλειδιά µπορεί να µετασχηµατίζονται στην ίδια θέση Απαιτείται µέθοδος διαχείρισης συγκρούσεων (collision resolution) για τις θέσεις Μπορεί να γίνει χρησιµοποιώντας λίστες 14-4
5 Εισαγωγή Ο κατακερµατισµός αναδεικνύει τον ανταγωνισµό χώρου-χρόνου (time-space tradeoff) Αν έχουµε πολλή µνήµη διαθέσιµη, µπορεί να απαιτεί λίγο χρόνο Αν έχουµε πολύ χρόνο διαθέσιµο, µπορεί να απαιτεί λίγη µνήµη Μπορούµε να επιτύχουµε όποια ισορροπία θέλουµε προσαρµόζοντας το µέγεθος του πίνακα κατακερµατισµού 14-5
6 Εισαγωγή Οι λειτουργίες εισαγωγής και αναζήτησης σε πίνακα συµβόλων µε χρήση κατακερµατισµού µπορεί να γίνουν ακόµα και σε σταθερό χρόνο, Ο(1), και οι 2 (υπό κάποιες προϋποθέσεις) Ο χρόνος εκτέλεσης όµως εξαρτάται και από το µέγεθος κλειδιού Ο κατακερµατισµός δεν παρέχει πολύ αποδοτικές υλοποιήσεις άλλων λειτουργιών όπως η επιλογή του k-οστού µικρότερου στοιχείου 14-6
7 Συναρτήσεις κατακερµατισµού Μορφή συνάρτησης κατακερµατισµού A: σύνολο αντικειµένων, Μ: µέγεθος πίνακα h: A [0, M-1] Συνήθως µετασχηµατίζουµε µόνο το κλειδί του αντικειµένου Δήλωση: int hash(key k, int M) Iδανικά η έξοδος πρέπει να φαίνεται τυχαία Δηλαδή: Για ένα τυχαία επιλεγµένο αντικείµενο κάθε θέση στον πίνακα θέλουµε να είναι εξίσου πιθανή Τύποι κλειδιών Κάθε τύπος απαιτεί διαφορετική συνάρτηση Στη C χρησιµοποιούµε τη δυαδική µορφή των κλειδιών Η πρακτική αυτή οδηγεί σε µη µεταφέρσιµο κώδικα Στη Java η δυαδική µορφή είναι κρυµµένη Πάντως όλα τα αντικείµενα έχουν µία µέθοδο hashcode! 14-7
8 Συναρτήσεις κατακερµατισµού Κλειδιά κινητής υποδιαστολής Έστω ότι ανήκουν στο διάστηµα [0,1) h(k) = floor(k*m) µε k [0, 1) Έστω ότι ανήκουν στο διάστηµα [s,t) h(k) = floor((k-s)/(t-s)*m) Παράδειγµα µε Μ = 97 3 collisions, 17, 53,
9 Συναρτήσεις κατακερµατισµού Ακέραια κλειδιά w bits Διαίρεση µε 2 w για µετατροπή σε [0,1) Συνεχίζουµε όπως για κλειδιά κινητής υποδιαστολής Απλή λύση: h(k) = (k*m)<<w //δεξιά ολίσθηση για τη διαίρεση µε 2 w Αγνοεί πολλά από τα bits του κλειδιού Μπορεί να δηµιουργηθούν έτσι πολλές συγκρούσεις Καλύτερη λύση: h(k)= k mod M (συνάρτηση κατακερµατισµού υπολοίπου) Το M συνίσταται να είναι πρώτος Επιτυγχάνει καλύτερη διασπορά Κάνει και για κινητή υποδιαστολή: h(k) = (k*2 w ) mod M Αν το k έχει w δυαδικά ψηφία στο δεκαδικό µέρος 14-9
10 Συναρτήσεις κατακερµατισµού Άλλα αντικείµενα Μετατρέπουµε το κλειδί σε δυαδική µορφή Κάθε αντικείµενο είναι ουσιαστικά µία ακολουθία από bits Χρησιµοποιούµε τη µέθοδο του υπολοίπου Γιατί θέλουµε το M να είναι πρώτος; Έστω ότι τα κλειδιά είναι συµβολοσειρές ASCII Τα αντιµετωπίζουµε ως ακεραίους µε βάση το 128 (7 bits) Ιδανικά θέλουµε να χρησιµοποιούµε όλα τα bits (ή το δυνατόν περισσότερα) του αντικειµένου στη συνάρτηση κατακερµατισµού Έστω ότι διαλέγουµε M = 64 = 2 6 Ουσιαστικά χρησιµοποιούµε µόνο τα τελευταία 6 bits µε την k mod M! Είναι καλό να αποφεύγουµε δυνάµεις του 2 Με M πρώτο αποφεύγουµε κοινούς παράγοντες 14-10
11 Συναρτήσεις κατακερµατισµού Χρήσιµοι πρώτοι αριθµοί Οι δυναµικοί πίνακες µε την πάροδο του χρόνου θα πρέπει να διπλασιάζονται ή να µειώνονται στο µισό ανάλογα µε το πλήθος των εγγραφών Αν το Μ όµως είναι πρώτος, για να διπλασιάσουµε τον πίνακα θα πρέπει να βρούµε κάποιον άλλον πρώτο «κοντά» στο 2Μ Συνήθης τακτική: επιλέγουµε πρώτους αριθµούς που είναι κοντά σε δυνάµεις του 2. π.χ. Mersenne primes: πρώτοι της µορφής 2 m -1 Για αρκετές (αλλά όχι για όλες) τις τιµές του m, o 2 m -1 είναι πρώτος αριθµός Χρησιµοποιούµε συνήθως τον πλησιέστερο πρώτο στο 2 n (από κάτω) 14-11
12 Συναρτήσεις κατακερµατισµού Εναλλακτική µέθοδος υπολοίπου h(k) = floor(k*a) mod M (για κάποιο πραγµατικό a) Με αυτή τη µέθοδο ο M δεν χρειάζεται πλέον να είναι πρώτος Αρκεί να επιλέξουµε το κατάλληλο a! Μία καλή επιλογή είναι φ = 0, Ο φ είναι η χρυσή τοµή (golden ratio) Παράδειγµα Ακέραια κλειδιά των 16 bits σε δεκαδική µορφή Με h(k) = k % 97 έχουµε καλή κατανοµή Με h(k) = k % 100 έχουµε κακή κατανοµή Ουσιαστικά χρησιµοποιούµε τα 2 δεξιά δεκαδικά ψηφία Με h(k) = (int) (φ * k) % 100 έχουµε καλή κατανοµή Το φ αναιρεί τα προβλήµατα του
13 Συναρτήσεις κατακερµατισµού Σε πολλές περιπτώσεις, τα κλειδιά δεν είναι αριθµοί αλλά strings Αλφαριθµητικά κλειδιά µεγάλου µήκους Για να εφαρµόσουµε συνάρτηση κατακερµατισµού σε τέτοια κλειδιά, µπορούµε να τα γράψουµε σε δυαδική µορφή (7 bits για κάθε χαρακτήρα) Π.χ. now 110 (128) (128) (128) 0 Για µεγάλα κλειδιά όµως θα έχουµε υπερχείλιση πριν πάµε να υπολογίσουµε το υπόλοιπο mod M 14-13
14 Συναρτήσεις κατακερµατισµού Ιδέα: Αν k = k n k n-1 k 3 k 2 k 1 k k k k k 3 + Ξαναγράφουµε σύµφωνα µε τον αλγόριθµο του Horner (δείτε Κεφ. 4) ( (((k n k n-1 ) 128 +k n-2 ) k n-3 ) ) 128 +k 1 )128 +k 0 Υπολογίζουµε το υπόλοιπο mod M σε κάθε βήµα (µετά τον πολλαπλασιασµό και την πρόσθεση) Δεν αλλάζει το τελικό αποτέλεσµα 14-14
15 Συναρτήσεις κατακερµατισµού Καθολικός κατακερµατισµός (universal hashing) Βασίζεται στην παραπάνω µέθοδο Η ιδέα είναι να ελαχιστοποιήσουµε την πιθανότητα σύγκρουσης κλειδιών Χρήση τυχαίων παραγόντων για κάθε ψηφίο (αντί για το 128 που είδαµε πριν) Συνήθως οι αριθµοί είναι ψευδοτυχαίοι Παράγονται από γεννήτρια τυχαίων αριθµών Πιθανότητα σύγκρουσης 1/M για πίνακα µεγέθους M static int hashu(string s, int M) { int h = 0, a = 31415, b = 27183; for (int i = 0; i < s.length(); i++) { h = (a*h + s.charat(i)) % M; a = a*b % (M-1); } return h; } Η γεννήτρια τυχαίων αριθµών είναι µέσα στον κώδικα 14-15
16 Χωριστή αλυσίδωση (Separate Chaining) Πώς διαχειριζόµαστε τις συγκρούσεις? Διαχείριση συγκρούσεων µε λίστες Σε κάθε θέση του πίνακα ξεκινάει µία λίστα Τα αντικείµενα που συγκρούονται τοποθετούνται στη λίστα Διατεταγµένη ή µη διατεταγµένη λίστα Συνήθως µη διατεταγµένη λόγω µικρού µήκους Πιθανόν µεγάλη σπατάλη χώρου Κάθε θέση απαιτεί έναν δείκτη σε λίστα 14-16
17 Χωριστή αλυσίδωση Κόστος πράξεων Εισαγωγή: σταθερό κόστος Ο(1) σε µη διατεταγµένη λίστα Η εισαγωγή γίνεται στην αρχή της λίστας Αναζήτηση: N/M κατά µέσο όρο για N στοιχεία σε M λίστες Το µέσο µήκος των λιστών είναι N/M Άρα Ο(1) κατά µέσο όρο όταν Ν = Ο(Μ) (π.χ. όταν Ν = 5Μ ή πιο γενικά όταν Ν = c M για κάποια σταθερά c) Μπορεί βέβαια µία λίστα να έχει N στοιχεία και όλες οι άλλες κανένα! (πάρα πολύ µικρή πιθανότητα για κάτι τέτοιο αν είµαστε προσεκτικοί) Πόσο µεγάλες είναι οι λίστες στην πράξη; Είναι σχεδόν πάντα πολύ κοντά στο N/M! (αν είναι καλή η συνάρτηση κατακερµατισµού) 14-17
18 Χωριστή αλυσίδωση Υλοποίηση χωριστής αλυσίδωσης private Node[] heads; private int N, M; ST(int maxn) {//maxn = εκτίµηση πλήθους στοιχείων N = 0; M = maxn/5; heads = new Node[M]; } ITEM search(key key) { return searchr(heads[hash(key, M)], key); } //αναδροµική αναζήτηση σε αταξινόµητη λίστα (Κεφ. 12) void insert(item x) { int i = hash(x.key(), M); heads[i] = new Node(x, heads[i]);//εισαγωγή N++; } //στην αρχή 14-18
19 Χωριστή αλυσίδωση Ιδιότητα 1: Η πιθανότητα µία λίστα να έχει µήκος πολύ κοντά στο Ν/Μ µετά την εισαγωγή Ν στοιχείων τείνει στο 1 Απόδειξη µε χρήση Poisson approximation Τέτοιου είδους προβλήµατα αναφέρονται συνήθως ως occupancy problems Ιδιότητα 2: Κατά µέσο όρο η πρώτη σύγκρουση συµβαίνει όταν έχουµε εισάγει περίπου 1.25 Μ στοιχεία Birthday paradox! Iδιότητα 3: Οι λίστες ουσιαστικά συµπεριφέρονται σαν στοίβες (αφού κάνουµε εισαγωγή στην αρχή) Πολύ χρήσιµη ιδιότητα για τον πίνακα συµβόλων ενός compiler 14-19
20 Χωριστή αλυσίδωση Ανταγωνισµός χώρου-χρόνου Ο παράγοντας α = N/M παίζει κεντρικό ρόλο Αυξάνοντας το M µειώνεται το µήκος των λιστών Ταχύτερη αναζήτηση, αλλά περισσότερος χώρος για δείκτες Στην πράξη διαλέγουµε συνήθως M = Ν/5 ή N/10 Όταν το N µεταβάλλεται χρησιµοποιούµε δυναµικούς πίνακες Χειρισµός διπλών κλειδιών Αν επιτρέπονται, η εισαγωγή δεν αλλάζει Στην αναζήτηση πρέπει να ψάχνουµε όλη τη λίστα Αν δεν επιτρέπονται, η αναζήτηση δεν αλλάζει Στην εισαγωγή πρέπει να ψάχνουµε όλη τη λίστα Μειονεκτήµατα κατακερµατισµού Ακατάλληλος για επιλογή k-οστού µικρότερου/µεγαλύτερου στοιχείου και για ταξινόµηση 14-20
21 Γραµµική διερεύνηση (Linear Probing) Κατακερµατισµός ανοιχτής διευθυνσιοδότησης (open addressing) Αντίθετη προσέγγιση από τη χωριστή αλυσίδωση Διαχείριση συγκρούσεων χωρίς λίστες Τα στοιχεία τοποθετούνται µέσα στον πίνακα Πρέπει να ισχύει πάντα ότι M > N Διάφορες µέθοδοι εντοπισµού µιας θέσης 14-21
22 Γραµµική διερεύνηση (Linear Probing) Γραµµική διερεύνηση Χρήση της πρώτης κενής θέσης Ξεκινάµε στο σηµείο που µας λέει η συνάρτηση Σαρώνουµε κυκλικά τον πίνακα (µε φορά προς τα δεξιά) Εισαγωγή: εισάγουµε το στοιχείο στο πρώτο κενό Μπορεί να είναι η αρχική θέση αν δεν έχουµε σύγκρουση Αναζήτηση: επιτυχία αν βρούµε το στοιχείο Αποτυχία αν φτάσουµε σε κενή θέση (υπάρχει πάντα επειδή Μ > Ν) 14-22
23 Γραµµική διερεύνηση Υλοποίηση γραµµικής διερεύνησης private ITEM[] st; private int N, M; ST(int maxn) { N = 0; M = 2*maxN; st = new ITEM[M]; } void insert(item x) { int i = hash(x.key(), M); while (st[i]!= null) i = (i+1) % M; st[i] = x; N++; } ITEM search(key key) { int i = hash(key, M); while (st[i]!= null) if (equals(key, st[i].key())) return st[i]; else i = (i+1) % M; return null; } 14-23
24 Γραµµική διερεύνηση Ανταγωνισµός χώρου-χρόνου Ο παράγοντας α = N/M παίζει πάλι κεντρικό ρόλο Εδώ όµως α < 1 ενώ στην χωριστή αλυσίδωση α > 1 Το α εδώ ονοµάζεται συντελεστής πλήρωσης (load factor) Όσο το α προσεγγίζει το 1 τόσο επιβραδύνονται οι πράξεις Τόσο όµως µειώνεται η επιβάρυνση σε χώρο Το κόστος εξαρτάται και από τα clusters στον πίνακα Cluster (συστοιχία) = µία ακολουθία συνεχόµενων µη κενών θέσεων Μέσο κόστος πράξεων (Knuth 1962) Επιτυχής αναζήτηση: (1+1/(1-α))/2 Ανεπιτυχής αναζήτηση: (1+1/(1-α) 2 )/2 Πολύ καλή προσέγγιση όσο το α είναι µακριά από το 1 Στην πράξη προσπαθούµε να κρατάµε το α κοντά στο ½ Τα παραπάνω κόστη γίνονται 1,5 και 2,
25 Γραµµική διερεύνηση Χειρισµός διπλών κλειδιών Παρόµοιος µε αυτόν της χωριστής αλυσίδωσης Αφαίρεση κλειδιών: αφήνει κενό στη συστοιχία! Μπορεί να προκαλέσει λάθη σε µελλοντικές αναζητήσεις Επανεισαγωγή των επόµενων κλειδιών της συστοιχίας public void remove(item x) { int i = hash(x.key(), M); while (st[i]!= null) if (equals(x.key(), st[i].key())) break; else i = (i+1) % M; if (st[i] == null) return; st[i] = null; N--; for (int j = i+1; st[j]!= null; j = (j+1) % M) { x = st[j]; st[j] = null; insert(x); N--; } } //προσοχή στην ενηµέρωση του Ν 14-25
26 Διπλός κατακερµατισµός Παραλλαγή της γραµµικής διερεύνησης Η γραµµική διερεύνηση µπορεί να δηµιουργήσει µεγάλα clusters Για αποφυγή των clusters: Χρήση δεύτερης συνάρτησης κατακερµατισµού g Αναζήτηση: προχωράµε δεξιόστροφα όπως στη γραµµική διερεύνηση, αλλά µε βήµα αναζήτησης το g(k) Κοιτάµε πρώτα τη θέση h(k) Αν δεν υπάρχει εκεί (και δεν είναι null) κοιτάµε τη θέση h(k) + g(k) Μετέπειτα τη θέση h(k) + g(k) + g(k) κ.o.κ. Στην απλή γραµµική διερεύνηση το βήµα είναι ίσο µε
27 Διπλός κατακερµατισµός Επιλογή της δεύτερης συνάρτησης g(k) > 0 για να µην έχουµε άπειρο βρόχο g(k) πρώτο σε σχέση µε το M Παράδειγµα: (k % 97) + 3 Μέσο κόστος πράξεων (Guibas & Szemeredi) Επιτυχής αναζήτηση: ln(1/(1-α))/α Ανεπιτυχής αναζήτηση: 1/(1-α) 14-27
28 Διπλός κατακερµατισµός Υλοποίηση διπλού κατακερµατισµού void insert(item x) { KEY key = x.key(); int i = hash(key, M); int k = hashtwo(key); //2 η συνάρτηση κατακερµατισµού while (st[i]!= null) i = (i+k) % M; //βήµα = k st[i] = x; N++; } ITEM search(key key) { int i = hash(key, M); int k = hashtwo(key); while (st[i]!= null) if (equals(key, st[i].key())) return st[i]; else i = (i+k) % M; return null; } 14-28
29 Διπλός κατακερµατισµός Κέρδος χρόνου για σταθερή επιβάρυνση µνήµης Για α = 0,5 µέσο κόστος επιτυχούς/ανεπιτυχούς αναζήτησης είναι 1,4 και 1,5 αντίστοιχα Στη γραµµική διερεύνηση ήταν 1,5 και 2,5 αντίστοιχα Κέρδος µνήµης για σταθερό κόστος χρόνου Έστω ότι θέλουµε το πολύ t διερευνήσεις ανά πράξη Οι ανεπιτυχείς αναζητήσεις είναι πάντα πιο αργές Στη γραµµική διερεύνηση πρέπει α 1-1/sqrt(2t-1) (από τύπους του Knuth) Στο διπλό κατακερµατισµό πρέπει α 1-1/t Για t=10 οι τιµές είναι α = 68% και α = 90% αντίστοιχα Άρα µε φιξαρισµένο το t, κερδίζουµε σε µνήµη στον διπλό κατακερµατισµό Αφαίρεση στοιχείων Δεν λειτουργεί η µέθοδος της γραµµικής διερεύνησης Δεν ξέρουµε ποια στοιχεία πέρασαν από το αφαιρούµενο! Χρήση ειδικών στοιχείων φρουρών αντί για κενά 14-29
30 Δυναµικός κατακερµατισµός Χειρισµός δυναµικού πλήθους κλειδιών Προσπαθούµε να διατηρήσουµε ένα κατάλληλο α Αλλαγή µεγέθους πίνακα ανάλογα µε τα κλειδιά Παράδειγµα µε γραµµική διερεύνηση Όταν το α περάσει το 50% διπλασιάζουµε τον πίνακα Όταν το α πέσει κάτω από 12,5% υποδιπλασιάζουµε τον πίνακα Διατήρηση του α ανάµεσα στο 25% και το 50% Τα κλειδιά επανεισάγονται σε κάθε αλλαγή Κάποιες πράξεις κοστίζουν πολύ περισσότερο από τις άλλες (π.χ. η εισαγωγή όταν συνοδεύεται από διπλασιασµό) Το µέσο κόστος όµως είναι σταθερό! Μετά από αλλαγή µεγέθους ο πίνακας έχει Μ/4 κλειδιά Θα διπλασιαστεί µετά από Μ/4 τουλάχιστον εισαγωγές Θα υποδιπλασιαστεί µετά από Μ/8 τουλάχιστον διαγραφές 14-30
31 Δυναµικός κατακερµατισµός Υλοποίηση δυναµικού κατακερµατισµού Ο υποδιπλασιασµός είναι παρόµοιος µε τον διπλασιασµό private ITEM[] st; private int N, M; ST(int maxn) { N = 0; M = 4; st = new ITEM[M]; } private void expand() { ITEM[] t = st; N = 0; M = M+M; st = new ITEM[M]; for (int i = 0; i < M/2; i++) if (t[i]!= null) insert(t[i]); } void insert(item x) { int i = hash(x.key(), M); while (st[i]!= null) i = (i+1) % M; st[i] = x; if (N++ >= M/2) expand(); } 14-31
32 Προοπτική Γραµµική διερεύνηση ή διπλός κατακερµατισµός; Η γραµµική διερεύνηση είναι ταχύτερη αλλά ο διπλός κατακερµατισµός είναι πιο οικονοµικός σε µνήµη Απαιτεί όµως τον υπολογισµό µιας δεύτερης συνάρτησης Χωριστή αλυσίδωση ή γραµµική διερεύνηση; Η χωριστή αλυσίδωση παρέχει απλές υλοποιήσεις Εξαρτάται όµως και από το κόστος των συνδέσµων Έστω σύστηµα χωριστής αλυσίδωσης, µε Μ λίστες των 4 στοιχείων Έστω ότι κάθε σύνδεσµος απαιτεί µία λέξη µηχανης Το κόστος µνήµης είναι 9Μ λέξεις (4Μ στοιχεία + 5Μ δείκτες) Μέσος χρόνος επιτυχούς αναζήτησης: 2 διερευνήσεις (µισή λίστα) Έστω γραµµική διερεύνηση σε πίνακα 9Μ θέσεων (ίδια µνήµη µε χωρ. αλυσ.) Έχουµε α = 4Μ στοιχεία / 9Μ θέσεις = 4/9 Μέσος χρόνος επιτυχούς αναζήτησης: (1+1/(1-4/9))/2 = 1,4 < 2, άρα καλύτερα Για 2 διερευνήσεις αρκεί να έχουµε πίνακα 6Μ (δηλ. λιγότερη µνήµη από 9Μ) 14-32
Δοµές Δεδοµένων. 16η Διάλεξη Κατακερµατισµός. Ε. Μαρκάκης
Δοµές Δεδοµένων 16η Διάλεξη Κατακερµατισµός Ε. Μαρκάκης Περίληψη Συναρτήσεις κατακερµατισµού Χωριστή αλυσίδωση Γραµµική διερεύνηση Διπλός κατακερµατισµός Δυναµικός κατακερµατισµός Προοπτική Δοµές Δεδοµένων
Δοµές Δεδοµένων. 15η Διάλεξη Δέντρα Δυαδικής Αναζήτησης και Κατακερµατισµός. Ε. Μαρκάκης
Δοµές Δεδοµένων 15η Διάλεξη Δέντρα Δυαδικής Αναζήτησης και Κατακερµατισµός Ε. Μαρκάκης Περίληψη Υλοποιήσεις άλλων λειτουργιών σε ΔΔΑ: Επιλογή k-οστού µικρότερου Διαµέριση Αφαίρεση στοιχείου Ένωση 2 δέντρων
ΔΟΜΕΣ ΔΕΔΟΜΕΝΩΝ. Πίνακες Συµβόλων Κεφάλαιο 12 ( ) Ε. Μαρκάκης Επίκουρος Καθηγητής
ΔΟΜΕΣ ΔΕΔΟΜΕΝΩΝ Πίνακες Συµβόλων Κεφάλαιο 12 (12.1-12.4) Ε. Μαρκάκης Επίκουρος Καθηγητής Περίληψη Πίνακες συµβόλων Διεπαφή πίνακα συµβόλων Αναζήτηση µε αριθµοδείκτη Ακολουθιακή αναζήτηση Δυαδική αναζήτηση
Δοµές Δεδοµένων. 14η Διάλεξη Δέντρα Δυαδικής Αναζήτησης. Ε. Μαρκάκης
Δοµές Δεδοµένων 14η Διάλεξη Δέντρα Δυαδικής Αναζήτησης Ε. Μαρκάκης Περίληψη Δέντρα Δυαδικής Αναζήτησης Υλοποιήσεις εισαγωγής και αναζήτησης Χαρακτηριστικά επιδόσεων ΔΔΑ Εισαγωγή στη ρίζα ΔΔΑ Υλοποιήσεις
Οργάνωση αρχείων: πως είναι τοποθετηµένες οι εγγραφές ενός αρχείου όταν αποθηκεύονται στο δίσκο
Κατακερµατισµός 1 Οργάνωση Αρχείων (σύνοψη) Οργάνωση αρχείων: πως είναι τοποθετηµένες οι εγγραφές ενός αρχείου όταν αποθηκεύονται στο δίσκο 1. Αρχεία Σωρού 2. Ταξινοµηµένα Αρχεία Φυσική διάταξη των εγγραφών
ΔΟΜΕΣ ΔΕΔΟΜΕΝΩΝ. Εξωτερική Αναζήτηση και Β-δέντρα Κεφάλαιο 16. Ε. Μαρκάκης Επίκουρος Καθηγητής
ΔΟΜΕΣ ΔΕΔΟΜΕΝΩΝ Εξωτερική Αναζήτηση και Β-δέντρα Κεφάλαιο 16 Ε. Μαρκάκης Επίκουρος Καθηγητής Περίληψη Ακολουθιακή πρόσβαση Β-δέντρα Υλοποίηση πίνακα συµβόλων µε Β-δέντρα Αναζήτηση Εισαγωγή Δοµές Δεδοµένων
ΟΙΚΟΝΟΜΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ. Δοµές Δεδοµένων
ΟΝΟΜΑΤΕΠΩΝΥΜΟ: ΟΙΚΟΝΟΜΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ AM: Δοµές Δεδοµένων Πτυχιακή Εξεταστική Ιούλιος 2014 Διδάσκων : Ευάγγελος Μαρκάκης 09.07.2014 ΥΠΟΓΡΑΦΗ ΕΠΟΠΤΗ: Διάρκεια εξέτασης : 2 ώρες
Δοµές Δεδοµένων. 18η Διάλεξη Ισορροπηµένα δέντρα. Ε. Μαρκάκης
Δοµές Δεδοµένων 18η Διάλεξη Ισορροπηµένα δέντρα Ε. Μαρκάκης Περίληψη Επανάληψη των Τυχαιοποιηµένων ΔΔΑ, Στρεβλών ΔΔΑ, Δέντρων 2-3-4 Δέντρα κόκκινου-µαύρου Λίστες Παράλειψης Χαρακτηριστικά επιδόσεων - συµπεράσµατα
Δομές Δεδομένων και Αλγόριθμοι
Δομές Δεδομένων και Αλγόριθμοι Χρήστος Γκόγκος ΤΕΙ Ηπείρου Χειμερινό Εξάμηνο 2014-2015 Παρουσίαση 19 Hashing - Κατακερματισμός 1 / 23 Πίνακες απευθείας πρόσβασης (Direct Access Tables) Οι πίνακες απευθείας
Δοµές Δεδοµένων. 13η Διάλεξη Πίνακες Συµβόλων. Ε. Μαρκάκης
Δοµές Δεδοµένων 13η Διάλεξη Πίνακες Συµβόλων Ε. Μαρκάκης Ο αλγόριθµος heapsort Παράδειγµα ταξινόµησης µε σωρό Δηµιουργία σωρού (σε µορφή δέντρου) Τα στοιχεία ταξινοµούνται µερικώς Ταξινόµηση µε βάση το
Δομές Δεδομένων. Δημήτρης Μιχαήλ. Κατακερματισμός. Τμήμα Πληροφορικής και Τηλεματικής Χαροκόπειο Πανεπιστήμιο
Δομές Δεδομένων Κατακερματισμός Δημήτρης Μιχαήλ Τμήμα Πληροφορικής και Τηλεματικής Χαροκόπειο Πανεπιστήμιο Λεξικό Dictionary Ένα λεξικό (dictionary) είναι ένας αφηρημένος τύπος δεδομένων (ΑΤΔ) που διατηρεί
Δοµές Δεδοµένων. 17η Διάλεξη Ισορροπηµένα δέντρα. Ε. Μαρκάκης
Δοµές Δεδοµένων 17η Διάλεξη Ισορροπηµένα δέντρα Ε. Μαρκάκης Περίληψη Εισαγωγή Τυχαιοποιηµένα ΔΔΑ (Randomized Binary Search trees) Στρεβλά ΔΔΑ (Splay trees) Καθοδικά δέντρα 2-3-4 (Top-Down 2-3-4 trees)
ΠΛΗ111. Ανοιξη Μάθηµα 8 ο. Αναζήτηση. Τµήµα Ηλεκτρονικών Μηχανικών και Μηχανικών Υπολογιστών Πολυτεχνείο Κρήτης
ΠΛΗ111 οµηµένος Προγραµµατισµός Ανοιξη 2005 Μάθηµα 8 ο Αναζήτηση Τµήµα Ηλεκτρονικών Μηχανικών και Μηχανικών Υπολογιστών Πολυτεχνείο Κρήτης Αναζήτηση Αναζήτηση σε ιατεταγµένο Πίνακα υαδική Αναζήτηση Κατακερµατισµός
Δομές Αναζήτησης. εισαγωγή αναζήτηση επιλογή. εισαγωγή. αναζήτηση
Δομές Αναζήτησης χειρότερη περίπτωση μέση περίπτωση εισαγωγή αναζήτηση επιλογή εισαγωγή αναζήτηση διατεταγμένος πίνακας διατεταγμένη λίστα μη διατεταγμένος πίνακας μη διατεταγμένη λίστα δένδρο αναζήτησης
Δυναμικά Σύνολα. Δυναμικό σύνολο. Tα στοιχεία του μεταβάλλονται μέσω εντολών εισαγωγής και διαγραφής. διαγραφή. εισαγωγή
Δυναμικά Σύνολα Δυναμικό σύνολο Tα στοιχεία του μεταβάλλονται μέσω εντολών εισαγωγής και διαγραφής διαγραφή εισαγωγή Δυναμικά Σύνολα Δυναμικό σύνολο Tα στοιχεία του μεταβάλλονται μέσω εντολών εισαγωγής
Δυναμικά Σύνολα. Δυναμικό σύνολο. Tα στοιχεία του μεταβάλλονται μέσω εντολών εισαγωγής και διαγραφής. διαγραφή. εισαγωγή
Δυναμικά Σύνολα Δυναμικό σύνολο Tα στοιχεία του μεταβάλλονται μέσω εντολών εισαγωγής και διαγραφής διαγραφή εισαγωγή Δυναμικά Σύνολα Δυναμικό σύνολο Tα στοιχεία του μεταβάλλονται μέσω εντολών εισαγωγής
ΟΙΚΟΝΟΜΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ. Δοµές Δεδοµένων
ΟΝΟΜΑΤΕΠΩΝΥΜΟ: ΟΙΚΟΝΟΜΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ AM: Δοµές Δεδοµένων Εξεταστική Ιανουαρίου 2014 Διδάσκων : Ευάγγελος Μαρκάκης 20.01.2014 ΥΠΟΓΡΑΦΗ ΕΠΟΠΤΗ: Διάρκεια εξέτασης : 2 ώρες και
Κατακερματισμός. 4/3/2009 Μ.Χατζόπουλος 1
Κατακερματισμός 4/3/2009 Μ.Χατζόπουλος 1 H ιδέα που βρίσκεται πίσω από την τεχνική του κατακερματισμού είναι να δίνεται μια συνάρτησης h, που λέγεται συνάρτηση κατακερματισμού ή παραγωγής τυχαίων τιμών
Δοµές Δεδοµένων. 11η Διάλεξη Ταξινόµηση Quicksort και Ιδιότητες Δέντρων. Ε. Μαρκάκης
Δοµές Δεδοµένων 11η Διάλεξη Ταξινόµηση Quicksort και Ιδιότητες Δέντρων Ε. Μαρκάκης Περίληψη Quicksort Χαρακτηριστικά επιδόσεων Μη αναδροµική υλοποίηση Δέντρα Μαθηµατικές ιδιότητες Δοµές Δεδοµένων 11-2
Πίνακες Συμβόλων. εισαγωγή αναζήτηση επιλογή. εισαγωγή. αναζήτηση
Πίνακες Συμβόλων χειρότερη περίπτωση μέση περίπτωση εισαγωγή αναζήτηση επιλογή εισαγωγή αναζήτηση διατεταγμένος πίνακας διατεταγμένη λίστα μη διατεταγμένος πίνακας μη διατεταγμένη λίστα δένδρο αναζήτησης
Δυναμικός Κατακερματισμός. Βάσεις Δεδομένων Ευαγγελία Πιτουρά 1
Δυναμικός Κατακερματισμός Βάσεις Δεδομένων 2013-2014 Ευαγγελία Πιτουρά 1 Κατακερματισμός Τι αποθηκεύουμε στους κάδους; Στα παραδείγματα δείχνουμε μόνο την τιμή του πεδίου κατακερματισμού Την ίδια την εγγραφή
Διάλεξη 22: Τεχνικές Κατακερματισμού I (Hashing)
Διάλεξη 22: Τεχνικές Κατακερματισμού I (Hashing) Στην ενότητα αυτή θα μελετηθούν τα εξής επιμέρους θέματα: Ανασκόπηση Προβλήματος και Προκαταρκτικών Λύσεων Bit Διανύσματα Τεχνικές Κατακερματισμού & Συναρτήσεις
Δυναμικός Κατακερματισμός. Βάσεις Δεδομένων Ευαγγελία Πιτουρά 1
Δυναμικός Κατακερματισμός Βάσεις Δεδομένων 2017-2018 1 Κατακερματισμός Πρόβλημα στατικού κατακερματισμού: Έστω Μ κάδους και r εγγραφές ανά κάδο - το πολύ Μ * r εγγραφές (αλλιώς μεγάλες αλυσίδες υπερχείλισης)
ΔΟΜΕΣ ΔΕΔΟΜΕΝΩΝ. Ταξινόµηση Mergesort Κεφάλαιο 8. Ε. Μαρκάκης Επίκουρος Καθηγητής
ΔΟΜΕΣ ΔΕΔΟΜΕΝΩΝ Ταξινόµηση Mergesort Κεφάλαιο 8 Ε. Μαρκάκης Επίκουρος Καθηγητής Περίληψη Ταξινόµηση µε συγχώνευση Αλγόριθµος Mergesort Διµερής συγχώνευση Αφηρηµένη επιτόπου συγχώνευση Αναλυτική ταξινόµηση
Διάλεξη 18: Τεχνικές Κατακερματισμού I (Hashing)
ΕΠΛ231 Δομές Δεδομένων και Αλγόριθμοι 1 Διάλεξη 18: Τεχνικές Κατακερματισμού I (Hashing) Στην ενότητα αυτή θα μελετηθούν τα εξής επιμέρους θέματα: - Ανασκόπηση Προβλήματος και Προκαταρκτικών Λύσεων Bit-Διανύσματα
Δομές Δεδομένων. Ενότητα 11: Τεχνικές Κατακερματισμού. Καθηγήτρια Μαρία Σατρατζέμη. Τμήμα Εφαρμοσμένης Πληροφορικής.
Ενότητα 11: Τεχνικές Κατακερματισμού Καθηγήτρια Μαρία Σατρατζέμη Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό υλικό, όπως εικόνες, που υπόκειται
Δυναμικός Κατακερματισμός. Βάσεις Δεδομένων Ευαγγελία Πιτουρά 1
Δυναμικός Κατακερματισμός 1 Κατακερματισμός Τι αποθηκεύουμε στους κάδους; Στα παραδείγματα δείχνουμε μόνο την τιμή του πεδίου κατακερματισμού Την ίδια την εγγραφή (ως τρόπος οργάνωσης αρχείου) μέγεθος
Δυναμικός Κατακερματισμός. Βάσεις Δεδομένων Ευαγγελία Πιτουρά 1
Δυναμικός Κατακερματισμός Βάσεις Δεδομένων 2018-2019 1 Κατακερματισμός Πρόβλημα στατικού κατακερματισμού: Έστω Μ κάδους και r εγγραφές ανά κάδο - το πολύ Μ * r εγγραφές (αλλιώς μεγάλες αλυσίδες υπερχείλισης)
Στην ενότητα αυτή θα µελετηθούν τα εξής επιµέρους θέµατα:
Τεχνικές Κατακερµατισµού Στην ενότητα αυτή θα µελετηθούν τα εξής επιµέρους θέµατα: Τεχνικές Κατακερµατισµού ιαχείριση Συγκρούσεων µε Αλυσίδωση ιαχείριση Συγκρούσεων µε Ανοικτή ιεύθυνση ιπλός Κατακερµατισµός,
Τα δεδομένα (περιεχόμενο) μιας βάσης δεδομένων αποθηκεύεται στο δίσκο
Κατακερματισμός 1 Αποθήκευση εδομένων (σύνοψη) Τα δεδομένα (περιεχόμενο) μιας βάσης δεδομένων αποθηκεύεται στο δίσκο Παραδοσιακά, μία σχέση (πίνακας/στιγμιότυπο) αποθηκεύεται σε ένα αρχείο Αρχείο δεδομένων
Δυναμικά Σύνολα. Δυναμικό σύνολο. Tα στοιχεία του μεταβάλλονται μέσω εντολών εισαγωγής και διαγραφής. διαγραφή. εισαγωγή
Δυναμικά Σύνολα Δυναμικό σύνολο Tα στοιχεία του μεταβάλλονται μέσω εντολών εισαγωγής και διαγραφής διαγραφή εισαγωγή Δυναμικά Σύνολα Δυναμικό σύνολο Tα στοιχεία του μεταβάλλονται μέσω εντολών εισαγωγής
ΠΑΡΑΡΤΗΜΑ: QUIZ ΔΟΜΕΣ ΔΕΔΟΜΕΝΩΝ
ΠΑΡΑΡΤΗΜΑ: QUIZ ΔΟΜΕΣ ΔΕΔΟΜΕΝΩΝ (Οι ερωτήσεις µε κίτρινη υπογράµµιση είναι εκτός ύλης για φέτος) ΕΙΣΑΓΩΓΗ Q1. Οι Πρωταρχικοί τύποι (primitive types) στη Java 1. Είναι όλοι οι ακέραιοι και όλοι οι πραγµατικοί
ΔΟΜΕΣ ΔΕΔΟΜΕΝΩΝ. Δέντρα Δυαδικής Αναζήτησης Κεφάλαιο 12 ( ) Ε. Μαρκάκης Επίκουρος Καθηγητής
ΔΟΜΕΣ ΔΕΔΟΜΕΝΩΝ Δέντρα Δυαδικής Αναζήτησης Κεφάλαιο 12 (12.6 12.9) Ε. Μαρκάκης Επίκουρος Καθηγητής Περίληψη Δέντρα Δυαδικής Αναζήτησης (ΔΔΑ) Υλοποιήσεις εισαγωγής και αναζήτησης Χαρακτηριστικά επιδόσεων
Δοµές Δεδοµένων. 9η Διάλεξη Ταξινόµηση - Στοιχειώδεις µέθοδοι. Ε. Μαρκάκης
Δοµές Δεδοµένων 9η Διάλεξη Ταξινόµηση - Στοιχειώδεις µέθοδοι Ε. Μαρκάκης Περίληψη Bubble Sort Selection Sort Insertion Sort Χαρακτηριστικά επιδόσεων Shellsort Ταξινόµηση συνδεδεµένων λιστών Δοµές Δεδοµένων
Πίνακες (Μια παλιά άσκηση) Πίνακες Κατακερματισμού (Hash Tables) Πίνακες (Μια παλιά άσκηση) Εισαγωγή. A n
Πίνακες (Μια παλιά άσκηση) Πίνακες Κατακερματισμού (Hash Tables) Ορέστης Τελέλης telelis@unipi.gr Τμήμα Ψηφιακών Συστημάτων, Πανεπιστήμιο Πειραιώς A n O(1) (στην πρώτη ελέυθερη θέση στο τέλος του πίνακα).
Advanced Data Indexing
Advanced Data Indexing (Προηγμένη ευρετηρίαση δεδομένων) Κατακερματισμός Hashing (1ο Μέρος) Η Αναζήτηση απαιτεί Δομές Λύσεις Για να υποστηριχθεί η αποδοτική αναζήτηση απαιτείται η χρήση κατάλληλων δομών-ευρετηρίων
ΔΟΜΕΣ ΔΕΔΟΜΕΝΩΝ. Ταξινόµηση Quicksort Κεφάλαιο 7. Ε. Μαρκάκης Επίκουρος Καθηγητής
ΔΟΜΕΣ ΔΕΔΟΜΕΝΩΝ Ταξινόµηση Quicksort Κεφάλαιο 7 Ε. Μαρκάκης Επίκουρος Καθηγητής Περίληψη Quicksort Ο βασικός αλγόριθµος Χαρακτηριστικά επιδόσεων Μικροί υποπίνακες Μη αναδροµική υλοποίηση Δοµές Δεδοµένων
Διάλεξη 23: Τεχνικές Κατακερματισμού II (Hashing)
ΕΠΛ231 Δομές Δεδομένων και Αλγόριθμοι 1 Διάλεξη 23: Τεχνικές Κατακερματισμού II (Hashing) Στην ενότητα αυτή θα μελετηθούν τα εξής επιμέρους θέματα: - Διαχείριση Συγκρούσεων με Ανοικτή Διεύθυνση a) Linear
Εξωτερική Αναζήτηση. Ιεραρχία Μνήμης Υπολογιστή. Εξωτερική Μνήμη. Εσωτερική Μνήμη. Κρυφή Μνήμη (Cache) Καταχωρητές (Registers) μεγαλύτερη ταχύτητα
Ιεραρχία Μνήμης Υπολογιστή Εξωτερική Μνήμη Εσωτερική Μνήμη Κρυφή Μνήμη (Cache) μεγαλύτερη χωρητικότητα Καταχωρητές (Registers) Κεντρική Μονάδα (CPU) μεγαλύτερη ταχύτητα Πολλές σημαντικές εφαρμογές διαχειρίζονται
Κατακερµατισµός. Οργάνωση Αρχείων (σύνοψη) Οργάνωση αρχείων: πως είναι τοποθετημένες οι εγγραφές ενός αρχείου όταν αποθηκεύονται στο δίσκο
Κατακερµατισµός 1 Οργάνωση Αρχείων (σύνοψη) Οργάνωση αρχείων: πως είναι τοποθετημένες οι εγγραφές ενός αρχείου όταν αποθηκεύονται στο δίσκο 1. Αρχεία Σωρού 2. Ταξινομημένα Αρχεία Φυσική διάταξη των εγγραφών
Ουρά Προτεραιότητας (priority queue)
Ουρά Προτεραιότητας (priority queue) Δομή δεδομένων που υποστηρίζει δύο βασικές λειτουργίες : Εισαγωγή στοιχείου με δεδομένο κλειδί. Επιστροφή ενός στοιχείου με μέγιστο (ή ελάχιστο) κλειδί και διαγραφή
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ. Δομές Δεδομένων. Ιωάννης Γ. Τόλλης Τμήμα Επιστήμης Υπολογιστών Πανεπιστήμιο Κρήτης
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Δομές Δεδομένων Ιωάννης Γ. Τόλλης Τμήμα Επιστήμης Υπολογιστών Πανεπιστήμιο Κρήτης Χρηματοδότηση Το παρόν εκπαιδευτικό υλικό έχει αναπτυχθεί στα πλαίσια του εκπαιδευτικού
ΕΝΟΤΗΤΑ 8 KATAKEΡΜΑΤΙΣΜΟΣ (HASHING)
ΕΝΟΤΗΤΑ 8 KATAKEΡΜΑΤΙΣΜΟΣ (HASHING) Κατακερµατισµός Στόχος Έχουµε ένα σύνολο από κλειδιά {Κ 0,, Κ n-1 } και θέλουµε να υλοποιήσουµε Insert() και LookUp() (ίσως και Delete()) απλά και γρήγορα στην πράξη.
Δομές Δεδομένων. Κατακερματισμός. Δομές Δεδομένων & Αλγόριθμοι. Εργαστήριο Γνώσης και Ευφυούς Πληροφορικής 1
Δομές Δεδομένων Κατακερματισμός Πληροφορικής 1 Πρόβλημα Insert, Search και DELETE εγγραφής Σε σταθερό χρόνο Σε πίνακα εγγραφών όπου το πεδίο τιμών στα κλειδιά >> Μέγεθος Πίνακα (M) το πλήθος των εγγραφών
Δομές Αναζήτησης. κλειδί από ολικά διατεταγμένο σύνολο. Θέλουμε να υποστηρίξουμε δύο βασικές λειτουργίες: Εισαγωγή ενός νέου στοιχείου
Δομές Αναζήτησης Χειριζόμαστε ένα σύνολο στοιχείων κλειδί από ολικά διατεταγμένο σύνολο όπου το κάθε στοιχείο έχει ένα Θέλουμε να υποστηρίξουμε δύο βασικές λειτουργίες: Εισαγωγή ενός νέου στοιχείου με
ΔΟΜΕΣ ΔΕΔΟΜΕΝΩΝ. Ουρές προτεραιότητας Κεφάλαιο 9. Ε. Μαρκάκης Επίκουρος Καθηγητής
ΔΟΜΕΣ ΔΕΔΟΜΕΝΩΝ Ουρές προτεραιότητας Κεφάλαιο 9 Ε. Μαρκάκης Επίκουρος Καθηγητής Περίληψη Ουρές προτεραιότητας Στοιχειώδεις υλοποιήσεις Δοµή δεδοµένων σωρού Αλγόριθµοι σε σωρούς Ο αλγόριθµος heapsort Δοµές
Δομές Αναζήτησης. κλειδί από ολικά διατεταγμένο σύνολο. Θέλουμε να υποστηρίξουμε δύο βασικές λειτουργίες: Εισαγωγή ενός νέου στοιχείου
Δομές Αναζήτησης Χειριζόμαστε ένα σύνολο στοιχείων κλειδί από ολικά διατεταγμένο σύνολο όπου το κάθε στοιχείο έχει ένα Θέλουμε να υποστηρίξουμε δύο βασικές λειτουργίες: Εισαγωγή ενός νέου στοιχείου με
10. Πίνακες Κατακερματισμού
Πανεπιστήμιο Πειραιώς Σχολή Τεχνολογιών Πληροφορικής και Επικοινωνιών Τμήμα Ψηφιακών Συστημάτων 10. Πίνακες Κατακερματισμού 2 ομές εδομένων 4 5 Χρήστος ουλκερίδης Τμήμα Ψηφιακών Συστημάτων 16/12/2016 Πίνακες
ΠΛΗ111. Ανοιξη 2005. Μάθηµα 7 ο. έντρο. Τµήµα Ηλεκτρονικών Μηχανικών και Μηχανικών Υπολογιστών Πολυτεχνείο Κρήτης
ΠΛΗ111 οµηµένος Προγραµµατισµός Ανοιξη 2005 Μάθηµα 7 ο έντρο Τµήµα Ηλεκτρονικών Μηχανικών και Μηχανικών Υπολογιστών Πολυτεχνείο Κρήτης έντρο Ορισµός Υλοποίηση µε Πίνακα Υλοποίηση µε είκτες υαδικό έντρο
Στοιχειώδεις Δομές Δεδομένων
Στοιχειώδεις Δομές Δεδομένων Τύποι δεδομένων στη Java Ακέραιοι (int, long) Αριθμοί κινητής υποδιαστολής (float, double) Χαρακτήρες (char) Δυαδικοί (boolean) Από τους παραπάνω μπορούμε να φτιάξουμε σύνθετους
ΕΝΟΤΗΤΑ 6 ΛΙΣΤΕΣ ΠΑΡΑΛΕΙΨΗΣ (SKIP LISTS)
ΕΝΟΤΗΤΑ 6 ΛΙΣΤΕΣ ΠΑΡΑΛΕΙΨΗΣ (SKIP LISTS) Ταχεία Αναζήτηση Σε πίνακα: δυαδική αναζήτηση (binary search) σε ταξινοµηµένο πίνακα O(log n) Σε δένδρο: αναζήτηση σε ισοζυγισµένο δένδρο O(log n) Σε λίστα: Μπορούµε
ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΚΑΙ ΜΗΧΑΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ ΛΥΣΗ ΣΤΗΝ ΕΥΤΕΡΗ ΑΣΚΗΣΗ
ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΚΑΙ ΜΗΧΑΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ ΛΥΣΗ ΣΤΗΝ ΕΥΤΕΡΗ ΑΣΚΗΣΗ ΜΑΘΗΜΑ ΒΑΣΕΙΣ Ε ΟΜΕΝΩΝ ΑΚΑ. ΕΤΟΣ 2012-13 Ι ΑΣΚΟΝΤΕΣ Ιωάννης Βασιλείου Καθηγητής, Τοµέας Τεχνολογίας
Δοµές Δεδοµένων. 10η Διάλεξη Ταξινόµηση. E. Μαρκάκης
Δοµές Δεδοµένων 10η Διάλεξη Ταξινόµηση E. Μαρκάκης Περίληψη Ταξινόµηση µε αριθµοδείκτη κλειδιού Ταξινόµηση µε συγχώνευση Αλγόριθµος Mergesort Διµερής συγχώνευση Αφηρηµένη επιτόπου συγχώνευση Αναλυτική
Λίστες παράλειψης (skip lists)
Χρησιμοποιεί πρόσθετους συνδέσμους στους κόμβους μιας συνδεδεμένης λίστας επιτάχυνση της αναζήτησης με παράλειψη μεγάλων τμημάτων της λίστας Μια λίστα παράλειψης είναι μια διατεταγμένη συνδεδεμένη λίστα
ΔΟΜΕΣ ΔΕΔΟΜΕΝΩΝ. Βασικές Ιδιότητες και Διάσχιση Κεφάλαιο 5 ( και ) Ε. Μαρκάκης Επίκουρος Καθηγητής
ΔΟΜΕΣ ΔΕΔΟΜΕΝΩΝ Βασικές Ιδιότητες και Διάσχιση Κεφάλαιο 5 (5.1-5.2 και 5.4-5.6) Ε. Μαρκάκης Επίκουρος Καθηγητής Περίληψη Δέντρα Βασικοί ορισµοί Μαθηµατικές ιδιότητες Διάσχιση δέντρων Preorder, postorder,
Ν. Μ. Μισυρλής. Τµήµα Πληροφορικής και Τηλεπικοινωνιών, Πανεπιστήµιο Αθηνών. Καθηγητής: Ν. Μ. Μισυρλής 29 Μαΐου / 18
Ν. Μ. Μισυρλής Τµήµα Πληροφορικής και Τηλεπικοινωνιών, Πανεπιστήµιο Αθηνών Καθηγητής: Ν. Μ. Μισυρλής 29 Μαΐου 2017 1 / 18 Βέλτιστα (στατικά) δυαδικά δένδρα αναζήτησης Παράδειγµα: Σχεδιασµός προγράµµατος
Δοµές Δεδοµένων. 6η Διάλεξη Αναδροµικές Εξισώσεις και Αφηρηµένοι Τύποι Δεδοµένων. Ε. Μαρκάκης
Δοµές Δεδοµένων 6η Διάλεξη Αναδροµικές Εξισώσεις και Αφηρηµένοι Τύποι Δεδοµένων Ε. Μαρκάκης Περίληψη Χρήση αναδροµικών εξισώσεων στην ανάλυση αλγορίθµων Αφηρηµένοι τύποι δεδοµένων Συλλογές στοιχείων Στοίβα
Διδάσκων: Κωνσταντίνος Κώστα
Διάλεξη Ε7: Επανάληψη Στην ενότητα αυτή θα μελετηθούν τα εξής επιμέρους θέματα: Hashing, Final Exam Διδάσκων: Κωνσταντίνος Κώστα ΕΠΛ 035 Δομές Δεδομένων και Αλγόριθμοι για Ηλ. Μηχ. και Μηχ. Υπολ. Ε7-1
Ν!=1*2*3* *(N-1) * N => N! = (Ν-1)! * N έτσι 55! = 54! * 55
ΑΝΑ ΡΟΜΗ- ΑΣΚΗΣΕΙΣ Μια µέθοδος είναι αναδροµική όταν καλεί τον εαυτό της και έχει µια συνθήκη τερµατισµού π.χ. το παραγοντικό ενός αριθµού Ν, µπορεί να καλεί το παραγοντικό του αριθµού Ν-1 το παραγοντικό
Ενότητα 6: Κατακερματισμός Ασκήσεις και Λύσεις
ΗΥ2, Ενότητα : Ασκήσεις και Λύσεις Ενότητα : Κατακερματισμός Ασκήσεις και Λύσεις Άσκηση 1 Χρησιμοποιήστε τη συνάρτηση κατακερματισμού της διαίρεσης ως πρωτεύουσα συνάρτηση κατακερματισμού και τη συνάρτηση
2.1. Εντολές. 2.2. Σχόλια. 2.3. Τύποι Δεδομένων
2 Βασικές Εντολές 2.1. Εντολές Οι στην Java ακολουθούν το πρότυπο της γλώσσας C. Έτσι, κάθε εντολή που γράφουμε στη Java θα πρέπει να τελειώνει με το ερωτηματικό (;). Όπως και η C έτσι και η Java επιτρέπει
Προγραµµατισµός 1 Ταξινόµηση - Αναζήτηση
Προγραµµατισµός 1 Ταξινόµηση - Αναζήτηση 1 Ταξινόµηση! Δεδοµένα: Δίνεται ένας πίνακας data από N ακεραίους! Ζητούµενο: Να ταξινοµηθούν τα περιεχόµενα σε αύξουσα αριθµητική σειρά:!i : 0 data[i]
Διδάσκων: Κωνσταντίνος Κώστα Διαφάνειες: Δημήτρης Ζεϊναλιπούρ
Διάλεξη 25: Τεχνικές Κατακερματισμού II Στην ενότητα αυτή θα μελετηθούν τα εξής επιμέρους θέματα: Διαχείριση Συγκρούσεων με Ανοικτή Διεύθυνση a) Linear Probing, b) Quadratic Probing c) Double Hashing Διατεταγμένος
ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΚΑΙ ΜΗΧΑΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ ΤΟΜΕΑΣ ΤΕΧΝΟΛΟΓΙΑΣ ΠΛΗΡΟΦΟΡΙΚΗΣ ΚΑΙ ΥΠΟΛΟΓΙΣΤΩΝ
ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΚΑΙ ΜΗΧΑΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ ΤΟΜΕΑΣ ΤΕΧΝΟΛΟΓΙΑΣ ΠΛΗΡΟΦΟΡΙΚΗΣ ΚΑΙ ΥΠΟΛΟΓΙΣΤΩΝ ΕΡΓΑΣΤΗΡΙΟ ΥΠΟΛΟΓΙΣΤΙΚΩΝ ΣΥΣΤΗΜΑΤΩΝ www.cslab.ece.ntua.gr Εισαγωγή στην
Αλγόριθμοι Ταξινόμησης Μέρος 2
Αλγόριθμοι Ταξινόμησης Μέρος 2 Μανόλης Κουμπαράκης 1 Προχωρημένοι Αλγόριθμοι Ταξινόμησης Στη συνέχεια θα παρουσιάσουμε τρείς προχωρημένους αλγόριθμους ταξινόμησης: treesort, quicksort και mergesort. 2
Συλλογές, Στοίβες και Ουρές
Συλλογές, Στοίβες και Ουρές Σε πολλές εφαρμογές μας αρκεί η αναπαράσταση ενός δυναμικού συνόλου με μια δομή δεδομένων η οποία δεν υποστηρίζει την αναζήτηση οποιουδήποτε στοιχείου. Συλλογή (bag) : Επιστρέφει
Κατακερματισμός (Hashing)
Κατακερματισμός (Hashing) O κατακερματισμός είναι μια τεχνική οργάνωσης ενός αρχείου. Είναι αρκετά δημοφιλής μέθοδος για την οργάνωση αρχείων Βάσεων Δεδομένων, καθώς βοηθάει σημαντικά στην γρήγορη αναζήτηση
ΔΟΜΕΣ ΔΕΔΟΜΕΝΩΝ. Ουρές προτεραιότητας Κεφάλαιο 9. Ε. Μαρκάκης Επίκουρος Καθηγητής
ΔΟΜΕΣ ΔΕΔΟΜΕΝΩΝ Ουρές προτεραιότητας Κεφάλαιο 9 Ε. Μαρκάκης Επίκουρος Καθηγητής Περίληψη Ουρές προτεραιότητας Στοιχειώδεις υλοποιήσεις Δοµή δεδοµένων σωρού Αλγόριθµοι σε σωρούς Ο αλγόριθµος heapsort Δοµές
3.2 3.3 3.4 ΠΡΑΞΕΙΣ ΜΕ ΕΚΑ ΙΚΟΥΣ
1 3.2 3.3 3.4 ΠΡΑΞΕΙΣ ΜΕ ΕΚΑ ΙΚΟΥΣ ΥΠΟΛΟΓΙΣΜΟΙ ΜΕ ΚΟΜΠΙΟΥΤΕΡΑΚΙ ΤΥΠΟΠΟΙΗΜΕΝΗ ΜΟΡΦΗ ΑΡΙΘΜΩΝ ΘΕΩΡΙΑ 1. Πρόσθεση αφαίρεση δεκαδικών Γίνονται όπως και στους φυσικούς αριθµούς. Προσθέτουµε ή αφαιρούµε τα ψηφία
Διδάσκων: Παναγιώτης Ανδρέου
Διάλεξη 12: Δέντρα ΙΙ -Δυαδικά Δέντρα Στην ενότητα αυτή θα μελετηθούν τα εξής επιμέρους θέματα: - Δυαδικά Δένδρα - Δυαδικά Δένδρα Αναζήτησης(ΔΔΑ) - Εύρεση Τυχαίου, Μέγιστου, Μικρότερου στοιχείου - Εισαγωγή
Κατ οίκον Εργασία 3 Σκελετοί Λύσεων
Άσκηση 1 Χρησιµοποιούµε τη δοµή Κατ οίκον Εργασία 3 Σκελετοί Λύσεων typedef struct Node int data; struct node *lchild; struct node *rbro; node; και υποθέτουµε πως ένα τυχαίο δένδρο είναι υλοποιηµένο ως
ΔΟΜΕΣ ΔΕΔΟΜΕΝΩΝ. Αρχές Ανάλυσης Αλγορίθµων Κεφάλαιο 2. Ε. Μαρκάκης Επικ. Καθηγητής
ΔΟΜΕΣ ΔΕΔΟΜΕΝΩΝ Αρχές Ανάλυσης Αλγορίθµων Κεφάλαιο 2 Ε. Μαρκάκης Επικ. Καθηγητής Περίληψη Εµπειρική ανάλυση αλγορίθµων Μαθηµατική ανάλυση αλγορίθµων Αύξηση συναρτήσεων Συµβολισµός µεγάλου όµικρον Παραδείγµατα
ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΑΤΡΩΝ - ΤΜΗΥΠ ΒΑΣΕΙΣ ΔΕΔΟΜΕΝΩΝ ΙI
ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΑΤΡΩΝ - ΤΜΗΥΠ ΒΑΣΕΙΣ ΔΕΔΟΜΕΝΩΝ ΙI Δομές Ευρετηρίων και Κατακερματισμός Αρχείων II Β. Μεγαλοοικονόμου Δ. Χριστοδουλάκης (παρουσίαση βασισμένη εν μέρη σε σημειώσεις των Silberchatz, Korth και
Προγραμματισμός Ι (ΗΥ120)
Προγραμματισμός Ι (ΗΥ120) Διάλεξη 20: Δυαδικό Δέντρο Αναζήτησης Δυαδικό δέντρο Κάθε κόμβος «γονέας» περιέχει δύο δείκτες που δείχνουν σε δύο κόμβους «παιδιά» του ιδίου τύπου. Αν οι δείκτες προς αυτούς
Συναρτήσεις Κατακερματισμού και Πίνακες Κατακερματισμού
Μια συνάρτηση κατακερματισμού (hash function) h απεικονίζει κλειδιά ενός δοσμένου τύπου σεακεραίουςενόςσταθερούδιαστήματος [0,N 1]όπουΝτομέγεθοςτουπίνακα. Πχ: Συναρτήσεις Κατακερματισμού και Πίνακες Κατακερματισμού
Αριθμητική Ανάλυση & Εφαρμογές
Αριθμητική Ανάλυση & Εφαρμογές Διδάσκων: Δημήτριος Ι. Φωτιάδης Τμήμα Μηχανικών Επιστήμης Υλικών Ιωάννινα 2017-2018 Υπολογισμοί και Σφάλματα Παράσταση Πραγματικών Αριθμών Συστήματα Αριθμών Παράσταση Ακέραιου
Εργαστήριο ΨΗΦΙΑΚΗ ΛΟΓΙΚΗ. Εισαγωγή
Εισαγωγή Εργαστήριο ΨΗΦΙΑΚΗ ΛΟΓΙΚΗ Ξεκινάµε την εργαστηριακή µελέτη της Ψηφιακής Λογικής των Η/Υ εξετάζοντας αρχικά τη µορφή των δεδοµένων που αποθηκεύουν και επεξεργάζονται οι υπολογιστές και προχωρώντας
Linear Hashing. Linear vs other Hashing
Linear Hashing Τµήµα Πληροφορικής & Τηλ/νών, ΕΚΠΑ Υλοποίηση Συστηµάτων Βάσεων εδοµένων http://www.di.uoa.gr/~k18 Linear vs other Hashing Σεαντίθεσηµετοστατικόκατακερµατισµό, τα buckets αυξάνονται καθώς
Κεφα λαιο 9 Κατακερματισμός
Κεφα λαιο 9 Κατακερματισμός Περιεχόμενα 9.1 Εισαγωγή... 197 9.2 Συναρτήσεις Κατακερματισμού... 199 9.3 Επίλυση συγκρούσεων... 200 9.3.1 Ξεχωριστές αλυσίδες... 200 9.3.2 Μεταβλητές διευθύνσεις... 201 Ανάλυση
Ανάλυση αλγορίθμων. Χρόνος εκτέλεσης: Αναμενόμενη περίπτωση. - απαιτεί γνώση της κατανομής εισόδου
Ανάλυση αλγορίθμων Παράμετροι απόδοσης ενός αλγόριθμου: Χρόνος εκτέλεσης Απαιτούμενοι πόροι, π.χ. μνήμη, επικοινωνία (π.χ. σε κατανεμημένα συστήματα) Προσπάθεια υλοποίησης Ανάλυση της απόδοσης Θεωρητική
Δυαδικά Δένδρα Αναζήτησης, Δένδρα AVL
Δυαδικά Δένδρα Αναζήτησης, Δένδρα AVL Υλικό από τις σηµειώσεις Ν. Παπασπύρου, 2006 Δέντρα δυαδικής αναζήτησης Δενδρικές δοµές δεδοµένων στις οποίες Όλα τα στοιχεία στο αριστερό υποδέντρο της ρίζας είναι
Τμήμα Χρηματοοικονομικής & Ελεγκτικής ΤΕΙ Ηπείρου Παράρτημα Πρέβεζας. Πληροφορική Ι. Αναπαράσταση αριθμών στο δυαδικό σύστημα. Δρ.
Τμήμα Χρηματοοικονομικής & Ελεγκτικής ΤΕΙ Ηπείρου Παράρτημα Πρέβεζας Πληροφορική Ι Αναπαράσταση αριθμών στο δυαδικό σύστημα Δρ. Γκόγκος Χρήστος Δεκαδικό σύστημα αρίθμησης Ελληνικό - Ρωμαϊκό Σύστημα αρίθμησης
Διάλεξη 12: Δέντρα ΙΙ Δυαδικά Δέντρα
Διάλεξη 12: Δέντρα ΙΙ Δυαδικά Δέντρα Στην ενότητα αυτή θα μελετηθούν τα εξής επιμέρους θέματα: Δυαδικά Δένδρα Δυαδικά Δένδρα Αναζήτησης (ΔΔΑ) Εύρεση Τυχαίου, Μέγιστου, Μικρότερου στοιχείου Εισαγωγή στοιχείου
Προγραμματιστικές Τεχνικές
Εθνικό Μετσόβιο Πολυτεχνείο Σχολή Αγρονόμων Τοπογράφων Μηχανικών Προγραμματιστικές Τεχνικές Βασίλειος Βεσκούκης Δρ. Ηλεκτρολόγος Μηχανικός & Μηχανικός Υπολογιστών ΕΜΠ v.vescoukis@cs.ntua.gr Ρωμύλος Κορακίτης
ΔΟΜΕΣ ΔΕΔΟΜΕΝΩΝ. Ισορροπηµένα Δέντρα Κεφάλαιο 13. Ε. Μαρκάκης Επίκουρος Καθηγητής
ΔΟΜΕΣ ΔΕΔΟΜΕΝΩΝ Ισορροπηµένα Δέντρα Κεφάλαιο 13 Ε. Μαρκάκης Επίκουρος Καθηγητής Περίληψη Εισαγωγή Τυχαιοποιηµένα ΔΔΑ (Randomized Binary Search trees) Στρεβλά ΔΔΑ (Splay trees) Καθοδικά δέντρα 2-3-4 (Top-Down
διεύθυνση πρώτου στοιχείου διεύθυνση i-οστού στοιχείου T t[n]; &t[0] είναι t &t[i] είναι t + i*sizeof(t)
Προγραµµατισµός Ι (ΗΥ120) ιάλεξη 18: ιασυνδεµένες οµές - Λίστες ιασυνδεδεµένες δοµές δεδοµένων Η µνήµη ενός πίνακα δεσµεύεται συνεχόµενα. Η πρόσβαση στο i-οστό στοιχείο είναι άµεσηκαθώς η διεύθυνση του
5. Γεννήτριες Τυχαίων Αριθµών.
5. Γεννήτριες Τυχαίων Αριθµών. 5.1. Εισαγωγή. Στο Κεφάλαιο αυτό θα δούµε πώς µπορούµε να δηµιουργήσουµε τυχαίους αριθµούς από την οµοιόµορφη κατανοµή στο διάστηµα [0,1]. Την κατανοµή αυτή, συµβολίζουµε
ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΑΝΑΛΥΣΗ ΑΛΓΟΡΙΘΜΩΝ
ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΑΝΑΛΥΣΗ ΑΛΓΟΡΙΘΜΩΝ Ενότητα 13: Αλγόριθμοι-Μεγάλων ακεραίων- Εκθετοποίηση- Πολλαπλασιασμός πινάκων -Strassen Μαρία Σατρατζέμη Τμήμα Εφαρμοσμένης Πληροφορικής Άδειες Χρήσης Το παρόν εκπαιδευτικό
Προγραµµατισµός Ι (ΗΥ120)
Προγραµµατισµός Ι (ΗΥ120) Διάλεξη 15: Διασυνδεµένες Δοµές - Λίστες Δοµές δεδοµένων! Ένα τυπικό πρόγραµµα επεξεργάζεται δεδοµένα Πώς θα τα διατάξουµε? 2 Τι λειτουργίες θέλουµε να εκτελέσουµε? Πώς θα υλοποιήσουµε
Δοµές Δεδοµένων. 2η Διάλεξη Αλγόριθµοι Ένωσης-Εύρεσης (Union-Find) Ε. Μαρκάκης. Βασίζεται στις διαφάνειες των R. Sedgewick K.
Δοµές Δεδοµένων 2η Διάλεξη Αλγόριθµοι Ένωσης-Εύρεσης (Union-Find) Ε. Μαρκάκης Βασίζεται στις διαφάνειες των R. Sedgewick K. Wayne Περίληψη Συνδετικότητα δικτύου Αφαιρέσεις Συνδεδεµένα συστατικά Αφηρηµένη
Επαναληπτικές δοµές. µτ α.τ. Όχι. ! απαγορεύεται µέσα σε µία ΓΙΑ να µεταβάλλουµε τον µετρητή! διότι δεν θα ξέρουµε µετά πόσες επαναλήψεις θα γίνουν
Επαναληπτικές δοµές Η λογική των επαναληπτικών διαδικασιών εφαρµόζεται όπου µία ακολουθία εντολών εφαρµόζεται σε ένα σύνολο περιπτώσεων που έχουν κάτι κοινό. Όταν ψάχνουµε θέση για να παρκάρουµε κοντά
Βασικές Έννοιες Δοµών Δεδοµένων
Δοµές Δεδοµένων Δοµές Δεδοµένων Στην ενότητα αυτή θα γνωρίσουµε ορισµένες Δοµές Δεδοµένων και θα τις χρησιµοποιήσουµε για την αποδοτική επίλυση του προβλήµατος του ευσταθούς ταιριάσµατος Βασικές Έννοιες
Κεφάλαιο 6 Ουρές Προτεραιότητας
Κεφάλαιο 6 Ουρές Προτεραιότητας Περιεχόμενα 6.1 Ο αφηρημένος τύπος δεδομένων ουράς προτεραιότητας... 114 6.2 Ουρές προτεραιότητας με στοιχειώδεις δομές δεδομένων... 115 6.3 Δυαδικός σωρός... 116 6.3.1
#include <stdlib.h> Α. [-128,127] Β. [-127,128] Γ. [-128,128]
ΕΙΣΑΓΩΓΗ ΣΤΟΝ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟ Εξετάσεις Α Περιόδου 2017 (27/1/2017) ΟΝΟΜΑΤΕΠΩΝΥΜΟ:................................................................................ Α.Μ.:...............................................
Δυναμικός Κατακερματισμός
Δυναμικός Κατακερματισμός Καλό για βάση δεδομένων που μεγαλώνει και συρρικνώνεται σε μέγεθος Επιτρέπει τη δυναμική τροποποίηση της συνάρτησης κατακερματισμού Επεκτάσιμος κατακερματισμός μια μορφή δυναμικού
Διαίρει-και-Βασίλευε. Αλγόριθµοι & Πολυπλοκότητα (Χειµώνας 2011) Διαίρει-και-Βασίλευε 2
Διαίρει-και-Βασίλευε Αλγόριθµοι & Πολυπλοκότητα (Χειµώνας 2011) Διαίρει-και-Βασίλευε 2 Διαίρει-και-Βασίλευε Γενική µέθοδος σχεδιασµού αλγορίθµων: Διαίρεση σε ( 2) υποπροβλήµατα (σηµαντικά) µικρότερου µεγέθους.
Ενώσεις δεδομένων Απαριθμητές Ψηφιακοί τελεστές Αναδρομικές συναρτήσεις
Ενώσεις δεδομένων Απαριθμητές Ψηφιακοί τελεστές Αναδρομικές συναρτήσεις Ενώσεις δεδομένων (union) τι και γιατί Συσκευές με μικρή μνήμη => ανάγκη εξοικονόμησης πόρων Παρατήρηση: αχρησιμοποίητη μνήμη. Έστω
ΔΟΜΕΣ ΔΕΔΟΜΕΝΩΝ. Αλγόριθµοι Ένωσης-Εύρεσης (Union-Find) Κεφάλαιο 1. Ε. Μαρκάκης Επικ. Καθηγητής
ΔΟΜΕΣ ΔΕΔΟΜΕΝΩΝ Αλγόριθµοι Ένωσης-Εύρεσης (Union-Find) Κεφάλαιο 1 Ε. Μαρκάκης Επικ. Καθηγητής Περίληψη Συνδετικότητα δικτύου Αφαιρέσεις (abstractions) Αφηρηµένη ένωση-εύρεση 1. Γρήγορη εύρεση 2. Γρήγορη
Cuckoo Hashing. Αλγόριθμοι και Πολυπλοκότητα. Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εθνικό Μετσόβιο Πολυτεχνείο
Cuckoo Hashing Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εθνικό Μετσόβιο β Πολυτεχνείο Πρόβλημα (ADT) Λεξικού υναμικά μεταβαλλόμενη συλλογή αντικειμένων που αναγνωρίζονται με «κλειδί» (π.χ.
Διάλεξη 17: O Αλγόριθμος Ταξινόμησης HeapSort
Διάλεξη 17: O Αλγόριθμος Ταξινόμησης HeapSort Στην ενότητα αυτή θα μελετηθούν τα εξής επιμέρους θέματα: Η διαδικασία PercolateDown, Δημιουργία Σωρού O Αλγόριθμος Ταξινόμησης HeapSort Υλοποίηση, Παραδείγματα