ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ. Εργαστήριο 6: Προσημασμένοι Ακέραιοι, Προσθαφαιρέτες, Flip- Flops

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ. Εργαστήριο 6: Προσημασμένοι Ακέραιοι, Προσθαφαιρέτες, Flip- Flops"

Transcript

1 ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Ψηφιακή Σχεδίαση Εργαστήριο 6: Προσημασμένοι Ακέραιοι, Προσθαφαιρέτες, Flip- Flops Μανόλης Γ.Η. Κατεβαίνης Τμήμα Επιστήμης Υπολογιστών

2 Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται στην άδεια χρήσης Creative Commons και ειδικότερα Αναφορά Μη εμπορική Χρήση Όχι Παράγωγο Έργο 3.0 Ελλάδα (Attribution Non Commercial Non-derivatives 3.0 Greece). CC BY-NC-ND 3.0 GR Εξαιρείται από την ως άνω άδεια υλικό που περιλαμβάνεται στις διαφάνειες του μαθήματος, και υπόκειται σε άλλου τύπου άδεια χρήσης. Η άδεια χρήσης στην οποία υπόκειται το υλικό αυτό αναφέρεται ρητώς. Χρηματοδότηση Το παρόν εκπαιδευτικό υλικό έχει αναπτυχθεί στα πλαίσια του εκπαιδευτικού έργου του διδάσκοντα. Το έργο «Ανοικτά Ακαδημαϊκά Μαθήματα στο Πανεπιστήμιο Κρήτης» έχει χρηματοδοτήσει μόνο τη αναδιαμόρφωση του εκπαιδευτικού υλικού. Το έργο υλοποιείται στο πλαίσιο του Επιχειρησιακού Προγράμματος «Εκπαίδευση και Δια Βίου Μάθηση» και συγχρηματοδοτείται από την Ευρωπαϊκή Ένωση (Ευρωπαϊκό Κοινωνικό Ταμείο) και από εθνικούς πόρους. 2

3 Ψηφιακή Σχεδίαση Εργαστήριο 6: Προσημασμένοι Ακέραιοι, Προσθαφαιρέτες, Flip- Flops [Βιβλία: προαιρετικά μπορείτε να διαβάσετε: Wakerly: (σελ ) Mano: (σελ. 9-17)]. 6.1 Πολλαπλασιασμός, Διαίρεση, και Υπόλοιπο με δυνάμεις του 2 Όπως στο δεκαδικό σύστημα ο πολλαπλασιασμός επί 10, 100, κλπ. είναι πολύ απλός, έτσι και στο δυαδικό ο πολλαπλασιασμός επί δύναμη του 2 αντιστοιχεί σε απλή αριστερή ολίσθηση με γέμισμα μηδενικών από δεξιά. Όντως, αν B είναι ο δυαδικός αριθμός b n-1 b n-2...b 2 b 1 b 0 με n bits ( 5.1), τότε το γινόμενό του επί 2 k είναι: B 2 k = b n-1 2 (n-1)+k + b n-2 2 (n-2)+k b k + b k + b k = = b n-1 2 n+k-1 + b n-2 2 n+k b 1 2 k+1 + b 0 2 k k k Βάσει της τελευταίας αυτής ισότητας, ο αριθμός B 2 k άναπαρίσταται στο δυαδικό με n+k bits τα οποία είναι: τα n bits του αριθμού B "ολισθημένα" αριστερά κατά k θέσεις (δηλαδή με τη σημαντικότητα καθενός αυξημένη κατά k θέσεις), ακολουθούμενα από k μηδενικά. Γιά παράδειγμα, ο αριθμός 45 (δεκαδικό) = (δυαδικό), πολλαπλασιαζόμενος επί 16 = 2 4 δίνει 45x16 = 720 (δεκαδικό), που στο δυαδικό είναι: Στο δεκαεξαδικό, ο πρώτος αριθμός (45) είναι ο 2D, και το γινόμενό του επί 16 (επί "10" στο δεκαεξαδικό) είναι: 2D0. Κατ' αντίστοιχο τρόπο, η διαίρεση διά δύναμη του 2 αντιστοιχεί σε δεξιά ολίσθηση τα λιγότερο σημαντικά bits του αριθμού, που "εκδιώκονται" από τη δεξιά άκρη του, αποτελούν το υπόλοιπο της διαίρεσης. Γιά τον παραπάνω αριθμό B, η διαίρεσή του διά 2 k δίνει: B / 2 k = (b n-1 2 (n-1)-k + b n-2 2 (n-2)-k b k b k 2 0 ) + (b k-1 2 k b b ) / 2 k Ο πρώτος όρος του παραπάνω αθροίσματος είναι ακέραιος αριθμός, ενώ ο δεύτερος είναι κλασματικός, μικρότερος της μονάδας ή μηδεν, δεδομένου ότι ο αριθμητής (b k- 1 2k b b ) είναι ένας δυαδικός αριθμός με k bits, άρα πάντα μικρότερος του 2 k. Κατά συνέπεια, ο πρώτος όρος (τα αριστερά n-k bits του αρχικού αριθμού) είναι το ακέραιο πηλίκο της διαίρεσης, ενώ ο αριθμητής του δευτέρου όρου (τα δεξιά k bits του αρχικού αριθμού) είναι το υπόλοιπο της (ακέραιας) διαίρεσης. Γιά παράδειγμα, ο αριθμός 205 (δεκαδικό) = (δυαδικό), διαρούμενος διά 8 = 2 3 δίνει πηλίκο 25 (δεκαδικό) = (δυαδικό), και υπόλοιπο 5 (δεκαδικό) = 101 (δυαδικό). Στο οκταδικό, ο διαιρετέος είναι 315, ο διαιρέτης είναι 10, το πηλίκο είναι 31 (=3x8+1=25 στο δεκαδικό), και το υπόλοιπο είναι 5. Μιά συνηθισμένη εφαρμογή στους υπολογιστές είναι όταν μιά μεγάλη μνήμη, π.χ. 256 Mbytes, κατασκευάζεται από κάμποσες --π.χ. δεκαέξι (16)-- μικρότερες, μεγέθους δύναμης του 2 η καθεμία --εδώ μεγέθους 16 MBytes = 16,777,216 Bytes καθεμία. Εάν μας ζητηθεί να προσπελάσουμε το Byte με διεύθυνση 167,772,560, σε ποιάν από τις 16 μικρότερες μνήμες βρίσκεται αυτό και τι διεύθυνση μέσα σε αυτήν 3

4 έχει; Γιά να βρούμε σε ποιά μνήμη θα το αναζητήσουμε, πρέπει να διαιρέσουμε τη διεύθυνση 167,772,560 διά το μέγεθος 16,777,216 των επιμέρους μνημών, που σ' αυτήν την περίπτωση μας δίνει 10 (δεκαδικό) (πρόκειται γιά την 11η μνήμη, αφού οι επιμέρους μνήμες αριθμούνται 0, 1, 2,..., 15) το υπόλοιπο της διαίρεσης, 400 (δεκαδικό), μας δίνει την επιθυμητή διεύθυνση μέσα στην επιμέρους μνήμη. Η διεύθυνση του επιθυμητού Byte είναι 167,772,560 (δεκαδικό) = A,00,01,90 (δεκαεξαδικό) = 1010, , , (δυαδικό - 28 bits). Το μέγεθος της κάθε επιμέρους μνήμης (διαιρέτης) είναι 16 M = 2 24, άρα το ζητούμενο Byte βρίσκεται στη θέση (υπόλοιπο διαίρεσης, δηλαδή δεξιά 24 bits της διεύθυνσης) της μνήμης υπ' αριθμόν 1010 (πηλίκο διαίρεσης, δηλαδή αριστερά = 4 bits της διεύθυνσης) μετατρέποντας στο δεκαδικό, βλέπουμε ότι όντως πρόκειται γιά τη θέση = 400 της μνήμης υπ' αριθμόν 8+2 = Συστροφή (wrap-around) Αναπαράστασης Αριθμών με n bits Μία άλλη εφαρμογή της παραπάνω παρατήρησης σχετικά με το υπόλοιπο της διαίρεσης διά δύναμη του 2 είναι η ερμηνεία των αριθμητικών πράξεων με πεπερασμένο πλήθος bits. Ας φανταστούμε ότι οι ακέραιοι αριθμοί των μαθηματικών έχουν πάρα πολλά bits --όσα χρειάζονται γιά το μέγεθός τους-- αλλά εμείς κάνουμε πράξεις μ' έναν υπολογιστή που έχει πεπερασμένο πλήθος bits, έστω n bits, και γι' αυτό κρατάμε μόνο τα n λιγότερο σημαντικά (δεξιά) bits του "μαθηματικού" αριθμού. Έτσι, όταν προσθέτουμε αριθμούς ( 5.4) μ' έναν αθροιστή μεγέθους n bits, αγνοούμε (πετάμε) το κρατούμενο που βγαίνει από την αριστερή άκρη (MSB), διότι δεν έχουμε πού να το αποθηκεύσουμε. Επομένως, αν A είναι το πραγματικό (μαθηματικό) αποτέλεσμα της πράξης μας, ο υπολογιστής μας τελικά θα κρατήσει μόνο το υπόλοιπο της διαίρεσης του A διά 2 n (που συνήθως συμβολίζεται: A mod 2 n ). Εάν σε αυτό τον υπολογιστή, με το πεπερασμένο πλήθος των n bits, αρχίσω να μετρώ από το 0 προς τα πάνω, όταν φτάσω στον αριθμό 2 n -1, ο επόμενος αριθμός θα φανεί σαν να είναι πάλι ο 0, και μετά θα συνεχίσω να μετράω πάλι από την αρχή, 1, 10, 11, 100, κλπ. Το φαινόμενο αυτό είναι σαν να έχω ένα τροχό με περίμετρο 2 n και με χαραγμένους επάνω του τους 2 n υπάρχοντες συνδυασμούς των n bits, δεξιόστροφα από το μέχρι το , και να τυλίγω επάνω σε αυτόν τον τροχό τον άξονα των αριθμών, όπως φαίνεται στο σχήμα δίπλα γιά n=4 bits. Έστω ότι ξεκινάμε το τύλιγμα έτσι ώστε ο ακέραιος αριθμός 0 να συμπέσει με τον δυαδικό κώδικα Τότε, οι 2 n κώδικες του τροχού θα συμπέσουν με τους ακεραίους αριθμούς από 0 έως 2 n -1, όπως ακριβώς καθορίζει ο γνωστός μας από την 5.1 κώδικας δυαδικής αναπαράστασης των μη προσημασμένων ακεραίων. Όταν όμως εξαντλούνται οι υπάρχοντες συνδυασμοί των n bits, οι περαιτέρω αριθμοί (π.χ. 16, 17,... στο σχήμα) έχουν "τυλιχτεί" πάνω στους ίδιους κώδικες, 000, 001, κλπ, ξανά από την αρχή. Αν λοιπόν μιά πρόσθεση δώσει αποτέλεσμα από 2 n και πάνω, το αποτέλεσμα αυτό, στον υπολογιστή με τα n bits, θα μοιάζει σαν ένας μικρότερος αριθμός --αυτός που προκύπτει από το "τύλιγμα". Το φαινόμενο αυτό ονομάζεται "wrap around" --περιτύλιγμα, περιέλιξη, ή συστροφή-- των ακεραίων αριθμών γύρω από τον "τροχό" των πεπερασμένων συνδυασμών που έχει τη δυνατότητα να παραστήσει ο 4

5 υπολογιστής. Εάν τώρα θεωρήσουμε και τους αρνητικούς αριθμούς, στον ίδιο άξονα των αριθμών τον συνεστραμμένο γύρω από τον τροχό, όπως φαίνεται στο σχήμα, τότε αποκτάμε μιά μέθοδο --έναν κώδικα-- αναπαράστασης και αρνητικών αριθμών. Ο κώδικας αυτός, που ονομάζεται "συμπλήρωμα ως προς 2", χρησιμοποιείται σήμερα σε όλους τους υπολογιστές γιά την αναπαράσταση "προσημασμένων ακεραίων" (signed integers), και έχει πολύ σημαντικά πλεονεκτήματα απλότητας έναντι άλλων, εναλλακτικών κωδίκων. Στην καθημερινή μας ζωή παριστάνουμε τους προσημασμένους ακεραίους χρησιμοποιώντας έναν διαφορετικό κώδικα, τον κώδικα προσήμου - απόλυτης τιμής (sign-magnitude representation). Η κατεύθυνση αύξησης της απόλυτης τιμής, όμως, είναι άλλοτε δεξιόστροφα (θετικοί αριθμοί) και άλλοτε αριστερόστροφα (αρνητικοί αριθμοί), πάνω στον συνεστραμμένο άξονα των αριθμών. Αυτή η αλλαγή φοράς αύξησης έχει σαν συνέπεια, όταν προσθέτουμε προσημασμένους ακεραίους στην καθημερινή μας ζωή, άλλοτε να πρέπει να κάνουμε πρόσθεση κι άλλοτε αφαίρεση των απολύτων τιμών τους, και μάλιστα πριν από την αφαίρεση να πρέπει να συγκρίνουμε τις δύο απόλυτες τιμές γιά να βρούμε ποιά είναι η μικρότερη και να αφαιρέσουμε αυτήν από την άλλη. Αντ' αυτού, οι υπολογιστές ακολουθούν τον πολύ απλούστερο τρόπο που πηγάζει από την παραπάνω μέθοδο της "συστροφής": επειδή η (αλγεβρική) αύξηση μιάς τιμής --είτε θετικής είτε αρνητικής-- αντιστοιχεί πάντα σε δεξιόστροφη κίνηση πάνω στον τροχό, προκύπτει ότι αρκεί πάντα να κάνουμε πρόσθεση και μόνο, ανεξαρτήτως του αν προσθέτουμε θετικούς ή αρνητικούς αριθμούς! Η άλλη βασική παρατήρηση είναι ότι η (αλγεβρική) ελάττωση μιάς τιμής, δηλαδή η πρόσθεση ενός αρνητικού αριθμού --π.χ. του (-1)-- που αντιστοιχεί σε αριστερόστροφη κίνηση πάνω στον τροχό --π.χ. κατά 22.5 μοίρες εδώ-- μπορεί να προκύψει ισοδύναμα και σαν πρόσθεση ενός "μεγάλου" θετικού αριθμού --του 15 στο εδώ παράδειγμα, που αντιστοιχεί σε δεξιόστροφη κίνηση κατά = μοίρες. Αν λοιπόν κωδικοποιήσουμε το -1 με τον ίδιο κώδικα όπως και το 15, τότε η πρόσθεση αυτού του κώδικα με έναν τετράμπιτο αθροιστή θα φέρνει το ίδιο αποτέλεσμα όπως η πρόσθεση του Κώδικας Συμπληρώματος-2 Προσημασμένων Ακεραίων Σ' έναν υπολογιστή που λειτουργεί με λέξεις των n bits καθεμία, η συστροφή των ακεραίων αριθμών προκαλεί την επανεμφάνιση της ίδιας αναπαράστασης κάθε φορά που προχωρούμε κατά 2 n προς τα πάνω ή προς τα κάτω. Στο σχήμα δεξιά φαίνεται ένα παράδειγμα γιά έναν οκτάμπιτο υπολογιστή. Ο κώδικας , ερμηνευόμενος σαν μη προσημασμένος ακέραιος (unsigned integer), παριστά τον αριθμό 255 (δεκαδικό) όμως, ο ίδιος κώδικας επανεμφανίζεται 256 θέσεις πιό πάνω, στο = 511, όπως και 256 θέσεις πιό κάτω, στο = -1. Η παρατήρηση αυτή είναι η βάση της δημιουργίας του κώδικα αναπαράστασης των προσημασμένων ακεραίων. Ο κώδικας "συμπληρώματος ως προς 2" (2's Complement) που χρησιμοποιείται σήμερα στους υπολογιστές γιά την αναπαράσταση προσημασμένων ακεραίων (signed integers), κωδικοποιεί τον αρνητικό αριθμό (- A), όπου A μεταξύ 1 και 2 n-1, με τον κώδικα μη προσημασμένου του ακεραίου (-A) +2 n = 2 n -A. Έτσι, στο σχήμα δεξιά, ο αριθμός -2 κωδικοποιείται όπως ο 2 n - 2 = 256 5

6 - 2 = 254, δηλαδή Ομοίως, ο -3 κωδικοποιείται όπως ο 253, ο -4 όπως ο 252, ο -5 κωδικοποιείται , σαν τον 251, κ.ο.κ. Βλέπουμε ότι οι κώδικες των αρνητικών αριθμών αυξάνουν προς την ίδια κατεύθυνση προς την οποία αυξάνουν και οι κώδικες των θετικών αριθμών. Τους θετικούς αριθμούς από 0 έως 2 n-1-1, ο κώδικας συμπληρώματος ως προς 2 τους παριστά πανοποιότυπα όπως και ο κώδικας των μη προσημασμένων ακεραίων. Σ' έναν οκτάμπιτο υπολογιστή όπως του παραπάνω παραδείγματος, έχουμε τη δυνατότητα να κωδικοποιήσουμε μονοσήμαντα μέχρι 256 διαφορετικούς ακεραίους αριθμούς οι υπόλοιποι αριθμοί, που "δεν χωράνε" σε 8 bits, θα απεικονίζονται μέσω συστροφής σε κάποιον από τους "βασικούς" αριθμούς. Από τους άπειρους ακεραίους που υπάρχουν, ποιούς 256 θα διαλέξουμε σαν τους "βασικούς" ακεραίους, που θα χρησιμοποιούμε και θα κωδικοποιούμε μονοσήμαντα; Η απάντηση εξαρτάται από τον κώδικα που επιλέγουμε. Είδαμε στην 5.1 ότι ο οκτάμπιτος κώδικας μη προσημασμένων ακεραίων παριστάνει τους αριθμούς από το 0 ώς το 255 γενικότερα, με n bits, ο κώδικας αυτός παριστάνει τους ακεραίους από το 0 έως και το 2 n -1. Αντ' αυτού, ο κώδικας συμπληρώματος ως προς 2, με 8 bits, επιλέγουμε να παριστά μονοσήμαντα τους ακεραίους από -128 έως και +127 γενικότερα, με n bits, ο κώδικας αυτός παριστάνει τους ακεραίους από τον -2 n-1 έως και τον +2 n-1-1. Τις περιοχές αυτές τις βλέπουμε σημειωμένες στο σχήμα με αγκύλες. Όπως βλέπουμε, η περιοχή αναπαράστασης του κώδικα των προσημασμένων ακεραίων είναι σχεδόν συμμετρική γύρω από το μηδέν, και έχει επιλεγεί ούτως ώστε το αριστερό (MS) bit του κώδικα να είναι 1 γιά όλους τους αρνητικούς αριθμούς και μόνο, και να είναι 0 γιά όλους τους μη αρνητικούς αριθμούς και μόνο, δηλαδή γιά τον αριθμό μηδέν και όλους τους θετικούς αριθμούς. 6.4 Πρόσθεση Προσημασμένων Ακεραίων σε Συμπλήρωμα-2 Θεωρήστε έναν υπολογιστή με λέξεις των n bits, και έναν αθροιστή μη προσημασμένων ακεραίων όπως αυτός της 5.4, του οποίου όμως αγνοούμε το κρατούμενο εξόδου, κρατάμε δηλαδή μόνο το άθροισμα mod 2 n, δηλαδή μόνο τα n LS bits. Θα αποδείξουμε ότι εάν στις δύο εισόδους αυτού του αθροιστή τροφοδοτήσουμε τους κώδικες συμπληρώματος-2 δύο προσημασμένων ακεραίων, A s και B s, μεταξύ -2 n-1 και +2 n-1-1 ο καθένας, και εάν το (προσημασμένο) άθροισμα των δύο ακεραίων βρίσκεται επίσης στην περιοχή από -2 n-1 έως και +2 n-1-1, τότε στην έξοδο του παραπάνω αθροιστή θα εμφανιστεί ο κώδικας συμπληρώματος-2 του (προσημασμένου) αυτού αθροίσματος. Με άλλα λόγια, ο αθροιστής μη προσημασμένων ακεραίων, όπως τον ξέρουμε, είναι επίσης και αθροιστής προσημασμένων αριθμών, όταν αυτοί παρίστανται με κώδικα συμπληρώματος-2, και όταν το άθροισμά τους χωρά να παρασταθεί και αυτό με τον ίδιο κώδικα και το ίδιο πλήθος bits. Γιά την απόδειξη θα χρησιμοποιήσουμε, όπως φαίνεται στο παραπάνω σχήμα, τους ακεραίους A u και B u, που αποτελούν την ερμηνεία των A s και B s ως μη προσημασμένων αριθμών δηλαδή, όπως ξέρουμε, A u = A s + 2 n όταν A s <0, αλλοιώς A u = A s --και ομοίως γιά τον B u. Ο αθροιστής μη προσημασμένων υπολογίζει το S u = (A u +B u ) mod 2 n, το οποίο στη συνέχεια ερμηνεύουμε σαν τον προσημασμένο αριθμό S s, δηλ. S s = S u όταν S u <2 n-1, αλλοιώς S s = S u - 2 n. Η βασική ιδέα της απόδειξης είναι η εξής: αφού ο A u είναι είτε A s είτε A s + 2 n, και ο B u είναι είτε B s είτε B s + 2 n, 6

7 τότε το άθροισμα (A u +B u ) θα είναι: A s +P, όπου P = είτε 0, είτε 2 n, είτε 2 n+1. Επομένως, αφού το άθροισμα S u υπολογίζεται mod 2 n, ο όρος P θα φεύγει, και θα μας μένει το άθροισμα A s. Γιά μιά πλήρη απόδειξη, πρέπει να εξετάσουμε προσεκτικά τις περιοχές τιμών των προσθετέων και του αθροίσματος, όπως θα κάνουμε τώρα, χωριστά γιά τις τέσσερεις περιπτώσεις: (α) Θετικός συν Θετικό: Όταν οι δύο προσθετέοι, A s και B s, είναι θετικοί ή μηδέν και δεν ξεπερνούν τον αριθμό +2 n-1-1, τότε A u = A s και B u = B s, άρα και A u +B u = A s. Η υπόθεση του θεωρήματός μας είναι ότι το άθροισμα A s μπορεί να παρασταθεί με n bits σε μορφή συμπληρώματος 2, άρα το A s δεν ξεπερνά το +2 n-1-1. Κατά συνέπεια, και το S = A u +B u δεν ξεπερνά το 2 n-1-1, επομένως S u = S <2 n-1. Σε αυτήν την περιοχή, όμως, S s = S u, άρα S s = S = A u +B u = A s [ΟΕΔ]. (β) Θετικός συν Αρνητκό, με Άθροισμα Θετικό ή Μηδέν: Έστω ότι A s = +A και B s = -B, όπου A και B είναι θετικοί που δεν ξεπερνούν το +2 n- 1-1, και ο A είναι μεγαλύτερος ή ίσος του B, όπως φαίνεται στο σχήμα (πρώτοι δύο άξονες). Επειδή A s >0, έχουμε A u =A s =A απ' την άλλη μεριά, B s <0, άρα B u = B s +2 n = 2 n -B. Ο μη προσημασμένος αθροιστής υπολογίζει το άθροισμα S = A + (2 n - B) = 2 n + (A-B), το οποίο όμως είναι μεγαλύτερο ή ίσο του 2 n, επειδή ο A είναι μεγαλύτερος ή ίσος του B. Άρα, S u = S mod 2 n = (2 n + (A-B)) mod 2 n = A - B. Επειδή S u =A-B δεν ξεπερνά το +2 n-1-1, θα είναι S s = S u επομένως, S s = A-B = A s [ΟΕΔ]. (γ) Θετικός συν Αρνητκό, με Άθροισμα Αρνητικό: Έστω ότι A s = -A και B s = +B, όπου A θετικός, B θετικός ή μηδέν, A>B, ο A δεν ξεπερνά το 2 n-1, και ο B δεν ξεπερνά το 2 n-1-1. Σε αυτή την περίπτωση, έχουμε: A u = A s +2 n = 2 n -A, και B u =B s =B, όπως φαίνεται στο σχήμα, στη μετάβαση από τον πρώτο στον τρίτο άξονα των αριθμών. Ο μη προσημασμένος αθροιστής υπολογίζει το άθροισμα S = (2 n - A) + B = 2 n - (A-B) επειδή A>B, το άθροισμα αυτό είναι μικρότερο του 2 n, άρα ο αθροιστής το βγάζει αυτούσιο: S u = S = 2 n - (A-B). Επειδή ο A δεν ξεπερνά το 2 n-1, το ίδιο ισχύει και γιά τον (A-B) επομένως, ο S u είναι μεγαλύτερος ή ίσος του 2 n-1. Ένας τέτοιος μη προσημασμένος αριθμός, ερμηνευόμενος σε κωδικοποίηση συμπληρώματος-2, θα ερμηνευτεί σαν ο αρνητικός αριθμός S s = S u - 2 n = (2 n -(A-B)) - 2 n = -A + B = A s + B s [ΟΕΔ]. (δ) Αρνητκός συν Αρνητκό: Έστω ότι A s = -A και B s = -B, όπου A και B είναι θετικοί που δεν ξεπερνούν, ούτε αυτοί ούτε το άθροισμά τους, τον αριθμό 2 n-1. Τότε: A u = A s +2 n = 2 n -A, και B u = 7

8 B s +2 n = 2 n -B, όπως φαίνεται στο δεξιό άξονα του σχήματος. Ο μη προσημασμένος αθροιστής υπολογίζει το άθροισμα S = (2 n -A) + (2 n -B) = 2 n+1 - (A+B), το οποίο όμως είναι μεταξύ 2 n+1-2 n-1 = 2 n +2 n-1 και 2 n+1-1. Άρα, επειδή ο αθροιστής βγάζει μόνο n bits, θα βγάλει τελικά: S u = S mod 2 n = (2 n+1 - (A+B)) mod 2 n = 2 n - (A+B), το οποίο είναι μεταξύ 2 n-1 και 2 n -1. Σε αυτήν την περιοχή τιμών, S s = S u - 2 n = (2 n - (A+B)) - 2 n = -A-B = A s + B s [ΟΕΔ]. 6.5 Εύρεση του Αντιθέτου ενός Αριθμού Διαπιστώσαμε ότι μπορούμε να προσθέτουμε προσημασμένους ακεραίους σε μορφή συμπληρώματος ως προς 2 χρησιμοποιώντας τον ίδιο αθροιστή μη προσημασμένων ακεραίων που ήδη είχαμε. Προκειμένου, τώρα, να κάνουμε και αφαιρέσεις, το μόνο που χρειαζόμαστε είναι μιά μέθοδος να βρίσκουμε τον αντίθετο αριθμό, -B, ενός δοθέντα αριθμού B. Όταν αποκτήσουμε μιά τέτοια μέθοδο, θα μπορούμε να κάνουμε την αφαίρεση A-B μέσω της πρόσθεσης A+(-B). Τη ζητούμενη μέθοδο μας τη δίνει η παρατήρηση του σχήματος: Έστω B ένας προσημασμένος ακέραιος σε μορφή συμπληρώματος-2 με n bits, και έστω B' ο επίσης προσημασμένος ακέραιος συμπληρώματος-2 με n bits που προκύπτει από τον B αντιστρέφοντας το κάθε bit του. Τον αριθμό B' τον λέμε και "συμπλήρωμα του B ως προς 1" (1's complement), επειδή κάθε νέο bit είναι 1 μείον το παλαιό bit. Στο επάνω μέρος του σχήματος φαίνεται ο τροχός των προσημασμένων αριθμών της 6.2 με σημειωμένα επάνω τα ζευγάρια B - B' αριθμών που είναι ο ένας το συμπλήρωμα-ως-προς-1 του άλλου. Εύκολα βλέπει κανείς ότι το προσημασμένο άθροισμα των B + B' ισούται πάντα με -1, αφού έχει την αναπαράσταση με όλο άσσους: η πρόσθεση ενός bit 0 με ένα bit 1, χωρίς κρατούμενο εισόδου, δίνει πάντα άθροισμα 1 και κρατούμενο 0 (χρησιμοποιήσαμε την ιδιότητα ότι οι προσημασμένοι αριθμοί B και B' προστίθενται με τον ίδιο τρόπο όπως προσθέτουμε και τους μη προσημασμένους αριθμούς, όπως αποδείξαμε στην προηγούμενη παράγραφο, 6.4). Αφού B+B' = -1, προκύπτει ότι B+B'+1 = B + (B'+1) = 0, άρα οι αριθμοί B και (B'+1) είναι αλγεβρικά αντίθετοι: (B'+1) = -B --υπό την προϋπόθεση ότι το άθροισμα (B'+1) μπορεί να παρασταθεί σε συμπλήρωμα-2 με n bits, δηλαδή ότι το (B'+1) βρίσκεται μεταξύ -2 n-1 και +2 n-1-1, πράγμα που ισχύει πάντα εκτός της περίπτωσης B' = +2 n-1-1 = , δηλαδή εκτός B = = -2 n-1, αφού τότε ο -B = +2 n-1 δεν μπορεί να παρασταθεί με n bits σε μορφή συμπληρώματος-2. Επομένως, συνολικά, όταν B είναι ακέραιος στο διάστημα [-(2 n-1-1), +(2 n-1-1)], τότε ο αλγεβρικός αντίθετός του, -B (που επίσης ανήκει στο ίδιο διάστημα), σε παράσταση συμπληρώματος-2, είναι ο Β'+1, δηλαδή ο αριθμός που προκύπτει από την παράσταση συμπληρώματος-2 του B αν αντιστρέψουμε το κάθε bit της και στη συνέχεια προσθέσουμε τον αριθμό 1 (μέσω προσημασμένης πρόσθεσης, που, όπως 8

9 έχουμε δείξει, είναι η ίδια με την μη προσημασμένη όπου αγνοούμε το κρατούμενο εξόδου). Άσκηση 6.6: Αρνητικοί Αριθμοί και Αφαιρέσεις [Κάντε την πριν το εργαστήριο και παραδώστε την με την αναφορά σας.] (α) Χρησιμοποιήστε τις παραστάσεις συμπληρώματος-2 του σχήματος της 6.3 γιά να κάνετε τις παρακάτω προσθέσεις μέσω του γνωστού αλγόριθμου μη προσημασμένης πρόσθεσης, με 8 bits και αγνοώντας το κρατούμενο εξόδου, και επιβεβαιώστε στο δεκαδικό ότι το αποτέλεσμα είναι σωστό: 32+(-1), 15+(-5), 2+(-3), (-1)+(-1), (-4)+(-2), (-126)+125, (-127)+127. (β) Χρησιμοποιήστε τις παραστάσεις συμπληρώματος-2 του σχήματος της 6.3 και την παραπάνω μέθοδο εύρεσης του αντίθετου ενός αριθμού, γιά να βρείτε τα εξής αντίθετα, και επιβεβαιώστε την ορθότητα του αποτελέσματος: -(127), -(126), -(4), - (3), -(1), -(0) -(-1), -(-2), -(-4), -(-5), -(-126), και -(-127). 6.7 Προσθαφαιρέτες Στους υπολογιστές συνήθως βρίσκει κανείς "προσθαφαιρέτες" (adder/subtracter) ακεραίων, κυκλώματα δηλαδή που μπορούν να κάνουν είτε προσθεση είτε αφαίρεση. Το κύκλωμα αυτό κατασκευάζεται πολύ εύκολα και με χαμηλό κόστος, με βάση έναν αθροιστή μη προσημασμένων ακεραίων ( 5.4), όπως δείχνει το σχήμα. Ο αθροιστής φαίνεται στο κάτω μέρος του σχήματος: το σύμβολό του είναι ένα τραπέζιο με μιά εσοχή, έτσι που να θυμίζει ότι παίρνει δύο λέξεις δεδομένων, τις συνδυάζει, και βγάζει μία λέξη-απάντηση μέσα στο τραπέζιο γράφεται το σύμβολο "+" γιά να ξεχωρίζουμε αυτόν τον αθροιστή από άλλα κυκλώματα που κάνουν (και) άλλες πράξεις πάνω στις δύο εισόδους τους. Το κύκλωμα έχει δύο εισόδους δεδομένων, A και B, μία είσοδο ελέγχου, add'/sub, και μία έξοδο δεδομένων, S. Συνήθως τα δεδομένα είναι προσημασμένοι αριθμοί, αλλά μπορεί να χρησιμοποιηθεί και με μη προσημασμένους. Η είσοδος A δίδεται στον αθροιστή ως έχει η είσοδος B, όμως, φτάνει στον αθροιστή με μία από δύο διαφορετικές μορφές, σύμφωνα με το τι επιλέγει ένας πολυπλέκτης 2-σε-1: είτε αυτούσια η λέξη B, είτε το συμπλήρωμά της ως προς 1, B'. Ο βασικός αθροιστής πρέπει να δέχεται κρατούμενο εισόδου, C in. Όταν κάναμε πρόσθεση το κρατούμενο αυτό εισόδου ήταν πάντα 0, και γι' αυτό μπορούσαμε να το αγνοήσουμε χρησιμοποιώντας έναν ημιαθροιστή γιά τα δεξιά (LS) bits, όμως εδώ θα το χρειαστούμε αυτό το κρατούμενο εισόδου, (άρα χρειαζόμαστε πλήρεις αθροιστές στις θέσεις όλων των bits --και του LS). Γιά να κάνει το κύκλωμα πρόσθεση, S = A+B, θέτουμε την είσοδο ελέγχου add'/sub = 0 αυτό κάνει τη δεύτερη είσοδο του αθροιστή να ισούται με B, και το κρατούμενο εισόδου να είναι 0, όπως ακριβώς δηλαδή πρέπει γιά να γίνει η πρόσθεση A+B. Γιά να κάνει το κύκλωμα αφαίρεση, S = A-B, θέτουμε την είσοδο ελέγχου add'/sub = 1 αυτό κάνει τη δεύτερη είσοδο του αθροιστή να είναι το συμπλήρωμα B', και το κρατούμενο εισόδου να είναι 1. Δεδομένου ότι το κρατούμενο εισόδου έχει την ίδια σημαντικότητα, 2 0, με τα δεξιά (LS) bits των αριθμών εισόδου, A 0 και B 0, στα οποία και προστίθεται, το να ισούται το κρατούμενο εισόδου αυτό με 1 ισοδυναμεί με το να προστίθεται ο αριθμός 1 μαζί με τους δύο προσθετέους, A και B'. Επομένως, η έξοδος S = A + B' + 1 ξέρουμε όμως, από την 6.5, ότι B'+1 = -B, άρα η έξοδος S = A + (B'+1) = A + (-B) = A - B. Το όνομα του σήματος ελέγχου, add'/sub, είναι κατάλληλα γραμμένο ώστε να μας θυμίζει ότι όταν αυτό είναι αληθές (1) το κύκλωμα 9

10 κάνει "sub" (αφαίρεση), ενώ όταν αυτό είναι ψευδές (0), δηλαδή add' ψευδές άρα add αληθές, τότε το κύκλωμα κάνει "add" (πρόσθεση). Πείραμα 6.8: Τετράμπιτος Αθροιστής ΠΡΟΣΟΧΗ!: το chip αυτού του πειράματος έχει τα pins τροφοδοσίας σε παράξενη, μη συμβατική θέση. Συνδέστε τα πολύ προσεκτικά, αλλοιώς θα κάψετε το chip! Στο πείραμα αυτό θα χρησιμοποιήσετε το chip "7483" το οποίο είναι ένας τετράμπιτος δυαδικός αθροιστής: περιέχει 4 πλήρεις αθροιστές (του ενός bit καθένας), με τα κρατούμενά τους συνδεδεμένα σε μιάν αλυσίδα. Λεπτομερείς πληροφορίες γιά το chip αυτό μπορείτε να βρείτε στη διεύθυνση που ανέφερε η 3.7. Τροφοδοτήστε τις εισόδους δεδομένων από τους 8 διακόπτες της πλακέτας εισόδων/εξόδων, και συνδέστε 5 LED's στις εξόδους, όπως στο σχήμα. Ελλείψει επαρκών διακοπτών εισόδου, συνδέστε την είσοδο κρατουμένου του αθροιστή σε μία από τις τάσεις τροφοδοσίας με ένα σύρμα που μπορείτε να το εναλλάσετε χειροκίνητα μεταξύ γής (0) και θετικού (1). Πριν φτάσετε στο εργαστήριο, συμπληρώστε τον παρακάτω πίνακα, όπου οι {{επόμενες γραμμές}} είναι: , , , , και όλες με Cin=1. Στον πίνακα αυτόν, Ain, Bin, και Cin είναι οι δυαδικές είσοδοι του αθροιστή Au+Bu+Cin είναι η ερμηνεία των εισόδων και της αναμενόμενης εξόδου σύμφωνα με τον κώδικα μη προσημασμένων αριθμών S(5b) είναι η αναμενόμενη πεντάμπιτη έξοδος του αθροιστή (άθροισμα μη προσημασμένων εισόδων), και πρέπει να συμφωνεί με την προηγούμενη στήλη. Ain Bin Cin Au+Bu+Cin S(5b) As+Bs+Cin S(4) Bin' =Bs' As- Bs'=S(4) = = = -4 2-(-4) = = = = +4 2-(+4) = {{επόμενες γραμμές}}: As+Bs+Cin είναι η ερμηνεία των εισόδων και της αναμενόμενης εξόδου σύμφωνα με τον κώδικα συμπληρώματος-2 προσημασμένων αριθμών S(4) είναι η αναμενόμενη τετράμπιτη έξοδος του αθροιστή (άθροισμα προσημασμένων εισόδων), και πρέπει να συμφωνεί με την προηγούμενη στήλη. Bin' είναι το συμπλήρωμα ως προς 1 της εισόδου Bin --ας θεωρήσουμε από 'δω και πέρα ότι αυτό ήταν η αρχική είσοδος ενός αφαιρέτη, πριν ένας αντιστροφέας δώσει το Bin στον αθροιστή, και Bs' είναι η ερμηνεία αυτού του Bin' σαν προσημασμένου αριθμού As-Bs'=S(4) είναι η ερμηνεία της πράξης του (φανταστικού) αφαιρέτη, και πρέπει να συμφωνεί με τη στήλη S(4). Στο εργαστήριο, επαληθεύστε πειραματικά τις εξόδους S(5b) και S(4) του πίνακα. Μην χαλάστε το κύκλωμά σας όταν τελειώσετε: θα το χρειαστείτε στο πείραμα

11 Πείραμα 6.9: Προσθαφαιρέτης με XOR Ο προσθαφαιρέτης της 6.7 μπορεί εναλλακτικά να υλοποιηθεί με πύλες αποκλειστικού-ή (XOR), όπως φαίνεται στο σχήμα δίπλα, αντί αντιστροφέων και πολυπλέκτη. Ο λόγος είναι ότι οι πύλες XOR δίνουν στην έξοδό τους την πρώτη είσοδο όταν η δεύτερη είσοδος είναι 0, ενώ δίνουν στην έξοδό τους το συμπλήρωμα της πρώτης εισόδου τους όταν η δεύτερη είσοδος είναι 1. Φτιάξτε έναν τετράμπιτο προσθαφαιρέτη, χρησιμοποιώντας τον αθροιστή του προηγουμένου πειράματος 6.8 και ένα chip πυλών XOR (7486) όπως αυτό του πειράματος 5.7 γιά διευκόλυνσή σας, η διάταξη ακροδεκτών του επαναλαμβάνεται στο σχήμα εδώ. Πριν φτάσετε στο εργαστήριο, κάντε το σχεδιάγραμμα συνδεσμολογίας που δείχνει ποιά συγκεκριμένα pins ποιού chip πρέπει να συνδέσετε πού. Στο εργαστήριο, κατασκευάστε τον προσθαφαιρέτη, και δώστε του τις εισόδους Bin' του πίνακα του παραπάνω πειράματος 6.8, με το σήμα add'/sub = 1, ούτως ώστε να διαπιστώσετε πως αυτές οι αφαιρέσεις γίνονται σωστά. Μετά, γυρίστε το σήμα add'/sub στο 0 (πρόσθεση), και κάντε κάμποσες προσθέσεις γιά να διαπιστώσετε τη σωστή λειτουργία --π.χ. κάντε τις προσθέσεις των δύο πρώτων στηλών του παραπάνω πίνακα, χωρίς κρατούμενο εισόδου αυτή τη φορά. Πείραμα 6.10: Η στοιχειώδης Ιδέα του Flip-Flop Στο πείραμα 3.4 είχαμε δεί ότι τα κυκλώματα με θετική ανάδραση έχουν συνήθως δύο σταθερές καταστάσεις, κι έτσι χρησιμοποιούνται σαν μνήμες. Το απλούστερο κύκλωμα λογικών πυλών που έχει θετική ανάδραση είναι δύο αντιστροφείς (πύλες NOT) συνδεδεμένοι κυκλικά ώστε να τροφοδοτούν ο ένας τον άλλον, όπως στο σχήμα. Η ανάδραση είναι θετική επειδή δύο αρνήσεις κάνουν μία κατάφαση. Προφανώς, το κύκλωμα αυτό έχει δύο σταθερές καταστάσεις: (i) ο αριστερός κόμβος μπορεί να είναι 0 και ο δεξιός 1, ή (ii) ο αριστερός κόμβος μπορεί να είναι 1 και ο δεξιός 0. Το κύκλωμα αυτό αποτελεί τη βασική ιδέα του flip-flop, δηλαδή του στοιχειώδους κυττάρου ψηφιακής μνήμης. Κατασκευάστε το κύκλωμα αυτό στο εργαστήριο, και συνδέστε δύο LED's στις εξόδους του. Χρησιμοποιήστε δύο από τις πύλες ενός chip 7404 (βλ. 3.7). Το κύκλωμα αυτό δεν έχει εξωτερικές εισόδους, αφού κάθε είσοδος πύλης του οδηγείται από μιάν άλλη πύλη του! Επομένως, δεν μπορείτε να του αλλάξετε την κατάστασή του. Σβήστε και ανάψτε την τροφοδοσία πολλές φορές, και παρατηρήστε αν το κύκλωμα "σηκώνεται" πάντα στην ίδια κατάσταση, ή πότε στη μιά και πότε στην άλλη. (Αν το κύκλωμα είναι εντελώς "συμμετρικό", από ηλεκτρική άποψη, θα "πέφτει" με πιθανότητα 50% στη μία κατάσταση και 50% στην άλλη, σαν μιά μπίλια που την τοποθετείτε ακριβώς ισορροπημένη στην κόψη ενός ξυραφιού, κι αυτή πέφτει πότε από τη μιά και πότε από την άλλη αν όμως το κύκλωμα έχει έστω και μία ανεπαίσθητη (ηλεκτρική) ασυμμετρία, τότε θα πέφτει συνήθως από την ίδια "πλευρά"). 11

12 Ένας --ημιπαράνομος...-- τρόπος να επηρρεάσουμε την κατάσταση του flip-flop (με την τροφοδοσία αναμένη) είναι να ακουμπήσουμε "στιγμιαία" τον έναν από τους δύο κόμβους του με ένα σύρμα γειωμένο, όπως δείχνει το σχήμα με τα κατακόρυφα βέλη. (Εναλλακτικά, το σύρμα θα μπορούσε να συνδέονταν και στην θετική τροφοδοσία). (Γενικά, σ' ένα τυχόν κύκλωμα, είναι πολύ κακό να ακουμπάς την έξοδο μιάς πύλης στη γή ή στην τροφοδοσία, διότι όταν η έξοδος προσπαθεί να δώσει την αντίθετη τιμή από αυτήν που της ακουμπάμε, κατ' ουσίαν προκαλούμε βραχυκύκλωμα και υπερθέρμανση, με πιθανό κάψιμο αν συνεχιστεί γιά πολλήν ώρα εδώ, ευτυχώς, τα πράγματα δεν είναι τόσο κακά: το βραχυκύκλωμα διαρκεί ελάχιστα ns μόνο, μέχρις ότου η νέα τιμή που αυτό επιβάλει εξωτερικά κάνει την "βόλτα" του κυκλώματος και αλλάξει κατά την ίδια φορά την τιμή που η πύλη προσπαθεί να δώσει στην έξοδό της έτσι, η υπερθέρμανση είναι πολύ μικρή). Ακουμπήστε τον έναν κόμβο, και δείτε ότι αμέσως η αντίστοιχη LED σβήνει και η άλλη ανάβει. Απομακρύνετε το σύρμα και παρατηρήστε ότι το κύκλωμα μένει εκεί που το αφήσατε, δηλαδή έχει μνήμη. Επαναλάβετε από την άλλη πλευρά. Όταν το ακούμπημα είναι από την ίδια πλευρά που είναι ήδη σβηστή, αυτό δεν έχει επίδραση όταν είναι από την άλλη, τότε έχει. Αυτή είναι η βασική (χειροκίνητη) ιδέα του flip-flop τύπου RS, την αυτοματοποίηση της οποίας (με πύλες αντί ακουμπήματος συρμάτων) θα δούμε στο επόμενο εργαστήριο. 12

Lab 6: Signed Add/Subtract, FF (U.Crete, CS-120) 14-10-28 17:28 διαίρεσης, δηλαδή αριστερά 28-24 = 4 bits της διεύθυνσης) μετατρέποντας στο δεκαδικό, βλέπουμε ότι όντως πρόκειται γιά τη θέση 256+128+16

Διαβάστε περισσότερα

Εργαστήριο 6: Προσηµασµένοι Ακέραιοι, Προσθαφαιρέτες, Flip-Flops

Εργαστήριο 6: Προσηµασµένοι Ακέραιοι, Προσθαφαιρέτες, Flip-Flops ΗΥ-120: Ψηφιακή Σχεδίαση Φθινόπωρο 2003 Τµ. Επ. Υπολογιστών Πανεπιστήµιο Κρήτης Εργαστήριο 6: Προσηµασµένοι Ακέραιοι, Προσθαφαιρέτες, Flip-Flops 24-27 Νοεµβρίου 2003 ιαγωνισµός Προόδου: Σάββατο 29 Νοεµβρίου,

Διαβάστε περισσότερα

Εργαστήριο 6: Προσηµασµένοι Ακέραιοι, Προσθαφαιρέτες, Flip-Flops

Εργαστήριο 6: Προσηµασµένοι Ακέραιοι, Προσθαφαιρέτες, Flip-Flops 1 of 6 18/11/2003 5:11 µµ ΗΥ-120: Ψηφιακή Σχεδίαση Φθινόπωρο 2003 Τµ. Επ. Υπολογιστών Πανεπιστήµιο Κρήτης Εργαστήριο 6: Προσηµασµένοι Ακέραιοι, Προσθαφαιρέτες, Flip-Flops 24-27 Νοεµβρίου 2003 ιαγωνισµός

Διαβάστε περισσότερα

1. ΣΥΣΤΗΜΑΤΑ ΑΡΙΘΜΩΝ. α i. (α i β i ) (1.3) όπου: η= το πλήθος ακεραίων ψηφίων του αριθμού Ν. n-1

1. ΣΥΣΤΗΜΑΤΑ ΑΡΙΘΜΩΝ. α i. (α i β i ) (1.3) όπου: η= το πλήθος ακεραίων ψηφίων του αριθμού Ν. n-1 1. ΣΥΣΤΗΜΑΤΑ ΑΡΙΘΜΩΝ 1.1 Εισαγωγή Το δεκαδικό σύστημα (Decimal System) αρίθμησης χρησιμοποιείται από τον άνθρωπο και είναι κατάλληλο βέβαια γι αυτόν, είναι όμως εντελώς ακατάλληλο για τις ηλεκτρονικές

Διαβάστε περισσότερα

Εισαγωγή στην Πληροφορική & τον Προγραμματισμό

Εισαγωγή στην Πληροφορική & τον Προγραμματισμό ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα Εισαγωγή στην Πληροφορική & τον Προγραμματισμό Ενότητα 3 η : Κωδικοποίηση & Παράσταση Δεδομένων Ι. Ψαρομήλιγκος Χ. Κυτάγιας Τμήμα

Διαβάστε περισσότερα

Πληροφορική. Ενότητα 4 η : Κωδικοποίηση & Παράσταση Δεδομένων. Ι. Ψαρομήλιγκος Τμήμα Λογιστικής & Χρηματοοικονομικής

Πληροφορική. Ενότητα 4 η : Κωδικοποίηση & Παράσταση Δεδομένων. Ι. Ψαρομήλιγκος Τμήμα Λογιστικής & Χρηματοοικονομικής ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα Πληροφορική Ενότητα 4 η : Κωδικοποίηση & Παράσταση Δεδομένων Ι. Ψαρομήλιγκος Τμήμα Λογιστικής & Χρηματοοικονομικής Άδειες Χρήσης

Διαβάστε περισσότερα

Εισαγωγή στην Επιστήμη των Υπολογιστών

Εισαγωγή στην Επιστήμη των Υπολογιστών Εισαγωγή στην Επιστήμη των Υπολογιστών Ενότητα 2: Αποθήκευση Δεδομένων, 2ΔΩ Τμήμα: Αγροτικής Οικονομίας & Ανάπτυξης Διδάσκων: Θεόδωρος Τσιλιγκιρίδης Μαθησιακοί Στόχοι Η Ενότητα 2 διαπραγματεύεται θέματα

Διαβάστε περισσότερα

Ελίνα Μακρή

Ελίνα Μακρή Ελίνα Μακρή elmak@unipi.gr Μετατροπή Αριθμητικών Συστημάτων Πράξεις στα Αριθμητικά Συστήματα Σχεδίαση Ψηφιακών Κυκλωμάτων με Logism Άλγεβρα Boole Λογικές Πύλες (AND, OR, NOT, NAND, XOR) Flip Flops (D,

Διαβάστε περισσότερα

Εισαγωγή στην επιστήμη των υπολογιστών. Πράξεις με μπιτ

Εισαγωγή στην επιστήμη των υπολογιστών. Πράξεις με μπιτ Εισαγωγή στην επιστήμη των υπολογιστών Πράξεις με μπιτ 1 Πράξεις με μπιτ 2 Αριθμητικές Πράξεις σε Ακέραιους Πρόσθεση, Αφαίρεση, Πολλαπλασιασμός, Διαίρεση 3 Πρόσθεση στη μορφή συμπληρώματος ως προς δύο

Διαβάστε περισσότερα

Εισαγωγή στους Ηλεκτρονικούς Υπολογιστές. 3 ο Μάθημα. Λεωνίδας Αλεξόπουλος Λέκτορας ΕΜΠ. url:

Εισαγωγή στους Ηλεκτρονικούς Υπολογιστές. 3 ο Μάθημα. Λεωνίδας Αλεξόπουλος Λέκτορας ΕΜΠ.   url: Εισαγωγή στους Ηλεκτρονικούς Υπολογιστές 3 ο Μάθημα Λεωνίδας Αλεξόπουλος Λέκτορας ΕΜΠ email: leo@mail.ntua.gr url: http://users.ntua.gr/leo Άδεια Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες

Διαβάστε περισσότερα

Ψηφιακά Συστήματα. 1. Συστήματα Αριθμών

Ψηφιακά Συστήματα. 1. Συστήματα Αριθμών Ψηφιακά Συστήματα 1. Συστήματα Αριθμών Βιβλιογραφία 1. Φανουράκης Κ., Πάτσης Γ., Τσακιρίδης Ο., Θεωρία και Ασκήσεις Ψηφιακών Ηλεκτρονικών, ΜΑΡΙΑ ΠΑΡΙΚΟΥ & ΣΙΑ ΕΠΕ, 2016. [59382199] 2. Floyd Thomas L.,

Διαβάστε περισσότερα

ΠΛΗ21 Κεφάλαιο 2. ΠΛΗ21 Ψηφιακά Συστήματα: Τόμος Α Κεφάλαιο: Παράσταση Προσημασμένων Αριθμών Συμπληρώματα

ΠΛΗ21 Κεφάλαιο 2. ΠΛΗ21 Ψηφιακά Συστήματα: Τόμος Α Κεφάλαιο: Παράσταση Προσημασμένων Αριθμών Συμπληρώματα Ψηφιακά Συστήματα: Τόμος Α Κεφάλαιο: 2 2.3.4 Παράσταση Προσημασμένων Αριθμών Συμπληρώματα Στόχοι του κεφαλαίου είναι να γνωρίσουμε: Τι είναι ένας Συμπλήρωμα ενός αριθμού πρακτικά Τι είναι Συμπλήρωμα ως

Διαβάστε περισσότερα

Εισαγωγή στην Επιστήμη των Υπολογιστών

Εισαγωγή στην Επιστήμη των Υπολογιστών Εισαγωγή στην Επιστήμη των Υπολογιστών Ενότητα 2: Λογικές πράξεις, 2ΔΩ Τμήμα: Αγροτικής Οικονομίας & Ανάπτυξης Διδάσκων: Θεόδωρος Τσιλικρίδης Μαθησιακοί Στόχοι Η Ενότητα 2 διαπραγματεύεται θέματα που αφορούν

Διαβάστε περισσότερα

Εισαγωγή στην επιστήμη των υπολογιστών

Εισαγωγή στην επιστήμη των υπολογιστών Εισαγωγή στην επιστήμη των υπολογιστών Υπολογιστές και Δεδομένα Κεφάλαιο 3ο Αναπαράσταση Αριθμών www.di.uoa.gr/~organosi 1 Δεκαδικό και Δυαδικό Δεκαδικό σύστημα 2 3 Δεκαδικό και Δυαδικό Δυαδικό Σύστημα

Διαβάστε περισσότερα

4.1 Θεωρητική εισαγωγή

4.1 Θεωρητική εισαγωγή ΨΗΦΙΑΚΑ ΚΥΚΛΩΜΑΤΑ - ΕΡΓΑΣΤΗΡΙΑΚΗ ΑΣΚΗΣΗ 4 ΥΑ ΙΚΟΣ ΑΘΡΟΙΣΤΗΣ-ΑΦΑΙΡΕΤΗΣ Σκοπός: Να µελετηθούν αριθµητικά κυκλώµατα δυαδικής πρόσθεσης και αφαίρεσης. Να σχεδιαστούν τα κυκλώµατα από τους πίνακες αληθείας

Διαβάστε περισσότερα

Συστήματα αρίθμησης. = α n-1 *b n-1 + a n-2 *b n-2 + +a 1 b 1 + a 0 όπου τα 0 a i b-1

Συστήματα αρίθμησης. = α n-1 *b n-1 + a n-2 *b n-2 + +a 1 b 1 + a 0 όπου τα 0 a i b-1 Συστήματα αρίθμησης Δεκαδικό σύστημα αρίθμησης 1402 = 1000 + 400 +2 =1*10 3 + 4*10 2 + 0*10 1 + 2*10 0 Γενικά σε ένα σύστημα αρίθμησης με βάση το b N, ένας ακέραιος αριθμός με n ψηφία παριστάνεται ως:

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα. Αρχιτεκτονική-Ι. Ενότητα 1: Εισαγωγή στην Αρχιτεκτονική -Ι

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα. Αρχιτεκτονική-Ι. Ενότητα 1: Εισαγωγή στην Αρχιτεκτονική -Ι ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα Αρχιτεκτονική-Ι Ενότητα 1: Εισαγωγή στην Αρχιτεκτονική -Ι Ιωάννης Έλληνας Τμήμα Η/ΥΣ Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό

Διαβάστε περισσότερα

Ελληνική Δημοκρατία Τεχνολογικό Εκπαιδευτικό Ίδρυμα Ηπείρου. Πληροφορική Ι. Ενότητα 4 : Πράξεις με bits. Δρ. Γκόγκος Χρήστος

Ελληνική Δημοκρατία Τεχνολογικό Εκπαιδευτικό Ίδρυμα Ηπείρου. Πληροφορική Ι. Ενότητα 4 : Πράξεις με bits. Δρ. Γκόγκος Χρήστος Ελληνική Δημοκρατία Τεχνολογικό Εκπαιδευτικό Ίδρυμα Ηπείρου Πληροφορική Ι Ενότητα 4 : Πράξεις με bits Δρ. Γκόγκος Χρήστος 2 Ανοιχτά Ακαδημαϊκά Μαθήματα στο ΤΕΙ Ηπείρου Τμήμα Χρηματοοικονομικής & Ελεγκτικής

Διαβάστε περισσότερα

Αριθμητικά Συστήματα

Αριθμητικά Συστήματα Αριθμητικά Συστήματα Σε οποιοδήποτε αριθμητικό σύστημα, με βάση τον αριθμό Β, ένας ακέραιος αριθμός με πλήθος ψηφίων ν, εκφράζεται ως ακολούθως: α ν-1 α ν-2 α 1 α 0 = α ν-1 Β ν-1 + α ν-2 Β ν-2 + + α 1

Διαβάστε περισσότερα

! Εάν ο αριθμός διαθέτει περισσότερα bits, χρησιμοποιούμε μεγαλύτερες δυνάμεις του 2. ! Προσοχή στη θέση του περισσότερο σημαντικού bit!

! Εάν ο αριθμός διαθέτει περισσότερα bits, χρησιμοποιούμε μεγαλύτερες δυνάμεις του 2. ! Προσοχή στη θέση του περισσότερο σημαντικού bit! Ιόνιο Πανεπιστήμιο Τμήμα Πληροφορικής Εισαγωγή στην Επιστήμη των Υπολογιστών 25-6 Πράξεις με δυαδικούς αριθμούς (αριθμητικές ) http://di.ionio.gr/~mistral/tp/csintro/ Αριθμοί Πράξεις με δυαδικούς αριθμούς

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ. Εργαστήριο 7: Μανταλωτές (Latches), Καταχωρητές, και Διφασικά Ρολόγια

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ. Εργαστήριο 7: Μανταλωτές (Latches), Καταχωρητές, και Διφασικά Ρολόγια ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Ψηφιακή Σχεδίαση Εργαστήριο 7: Μανταλωτές (Latches), Καταχωρητές, και Διφασικά Ρολόγια Μανόλης Γ.Η. Κατεβαίνης Τμήμα Επιστήμης Υπολογιστών Άδειες Χρήσης Το παρόν

Διαβάστε περισσότερα

ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΠΛΗΡΟΦΟΡΙΚΗ

ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΠΛΗΡΟΦΟΡΙΚΗ ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΠΛΗΡΟΦΟΡΙΚΗ Κ. Δεμέστιχας Εργαστήριο Πληροφορικής Γεωπονικό Πανεπιστήμιο Αθηνών Επικοινωνία μέσω e-mail: cdemest@aua.gr, cdemest@cn.ntua.gr 3. ΑΡΙΘΜΗΤΙΚΗ ΥΠΟΛΟΓΙΣΤΩΝ ΜΕΡΟΣ Β Παράσταση Προσημασμένων

Διαβάστε περισσότερα

Πράξεις με δυαδικούς αριθμούς

Πράξεις με δυαδικούς αριθμούς Ιόνιο Πανεπιστήμιο Τμήμα Πληροφορικής Εισαγωγή στην Επιστήμη των Υπολογιστών 25-6 Πράξεις με δυαδικούς αριθμούς (αριθμητικές πράξεις) http://di.ionio.gr/~mistral/tp/csintro/ Μ.Στεφανιδάκης Πράξεις με δυαδικούς

Διαβάστε περισσότερα

Οργάνωση Υπολογιστών

Οργάνωση Υπολογιστών Οργάνωση Υπολογιστών Επιμέλεια: Γεώργιος Θεοδωρίδης, Επίκουρος Καθηγητής Ανδρέας Εμερετλής, Υποψήφιος Διδάκτορας Τμήμα Ηλεκτρολόγων Μηχανικών και Τεχνολογίας Υπολογιστών 1 Άδειες Χρήσης Το παρόν υλικό

Διαβάστε περισσότερα

Αρχιτεκτονική Υπολογιστών Ασκήσεις Εργαστηρίου

Αρχιτεκτονική Υπολογιστών Ασκήσεις Εργαστηρίου Αρχιτεκτονική Υπολογιστών Ασκήσεις Εργαστηρίου Ενότητα: ΕΡΓΑΣΤΗΡΙΑΚΗ ΑΣΚΗΣΗ Νο 01 Δρ. Μηνάς Δασυγένης mdasyg@ieee.org Τμήμα Μηχανικών Πληροφορικής και Τηλεπικοινωνιών Εργαστήριο Ψηφιακών Συστημάτων και

Διαβάστε περισσότερα

Εθνικό Μετσόβιο Πολυτεχνείο Σχολή Ηλεκτρολόγων Μηχανικών - Μηχανικών Υπολογιστών. ΑΡΧΙΤΕΚΤΟΝΙΚΗ ΥΠΟΛΟΓΙΣΤΩΝ Νεκτάριος Κοζύρης ΑΡΙΘΜΗΤΙΚΕΣ ΠΡΑΞΕΙΣ

Εθνικό Μετσόβιο Πολυτεχνείο Σχολή Ηλεκτρολόγων Μηχανικών - Μηχανικών Υπολογιστών. ΑΡΧΙΤΕΚΤΟΝΙΚΗ ΥΠΟΛΟΓΙΣΤΩΝ Νεκτάριος Κοζύρης ΑΡΙΘΜΗΤΙΚΕΣ ΠΡΑΞΕΙΣ Εθνικό Μετσόβιο Πολυτεχνείο Σχολή Ηλεκτρολόγων Μηχανικών - Μηχανικών Υπολογιστών ΑΡΧΙΤΕΚΤΟΝΙΚΗ ΥΠΟΛΟΓΙΣΤΩΝ Νεκτάριος Κοζύρης ΑΡΙΘΜΗΤΙΚΕΣ ΠΡΑΞΕΙΣ Άδεια Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες

Διαβάστε περισσότερα

Εισαγωγή στην επιστήμη των υπολογιστών. Υπολογιστές και Δεδομένα Κεφάλαιο 4ο Πράξεις με μπιτ

Εισαγωγή στην επιστήμη των υπολογιστών. Υπολογιστές και Δεδομένα Κεφάλαιο 4ο Πράξεις με μπιτ Εισαγωγή στην επιστήμη των υπολογιστών Υπολογιστές και Δεδομένα Κεφάλαιο 4ο Πράξεις με μπιτ 1 Πράξεις με μπιτ 2 ΑριθμητικέςΠράξειςσεΑκέραιους Πρόσθεση, Αφαίρεση, Πολλαπλασιασμός, Διαίρεση Ο πολλαπλασιασμός

Διαβάστε περισσότερα

ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΠΛΗΡΟΦΟΡΙΚΗ

ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΠΛΗΡΟΦΟΡΙΚΗ ΤΕΙ ΙΟΝΙΩΝ ΝΗΣΩΝ ΤΜΗΜΑ ΕΦΑΡΜΟΓΩΝ ΠΛΗΡΟΦΟΡΙΚΗΣ ΣΤΗ ΔΙΟΙΚΗΣΗ ΚΑΙ ΣΤΗΝ ΟΙΚΟΝΟΜΙΑ 7 Ο ΜΑΘΗΜΑ ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΠΛΗΡΟΦΟΡΙΚΗ ΑΠΟΣΤΟΛΙΑ ΠΑΓΓΕ Περιεχόμενα 2 Δυαδικό Σύστημα Προσημασμένοι δυαδικοί αριθμοί Αφαίρεση

Διαβάστε περισσότερα

Ελληνική Δημοκρατία Τεχνολογικό Εκπαιδευτικό Ίδρυμα Ηπείρου. Πληροφορική Ι. Ενότητα 3 : Αναπαράσταση αριθμών στο δυαδικό σύστημα. Δρ.

Ελληνική Δημοκρατία Τεχνολογικό Εκπαιδευτικό Ίδρυμα Ηπείρου. Πληροφορική Ι. Ενότητα 3 : Αναπαράσταση αριθμών στο δυαδικό σύστημα. Δρ. Ελληνική Δημοκρατία Τεχνολογικό Εκπαιδευτικό Ίδρυμα Ηπείρου Πληροφορική Ι Ενότητα 3 : Αναπαράσταση αριθμών στο δυαδικό σύστημα Δρ. Γκόγκος Χρήστος 2 Ανοιχτά Ακαδημαϊκά Μαθήματα στο ΤΕΙ Ηπείρου Τμήμα Χρηματοοικονομικής

Διαβάστε περισσότερα

Αριθµητική υπολογιστών

Αριθµητική υπολογιστών Αριθµητική υπολογιστών Μιχάλης ρακόπουλος Υπολογιστική Επιστήµη & Τεχνολογία, #03 1 εκαδικό σύστηµα αρίθµησης Βάση το 10. 10 ψηφία: 0 1 2 3 4 5 6 7 8 9 1 δεκαδικό ψηφίο εκφράζει 1 από 10 πιθανές επιλογές

Διαβάστε περισσότερα

Τμήμα Οικιακής Οικονομίας και Οικολογίας. Αναπαράσταση Αριθμών

Τμήμα Οικιακής Οικονομίας και Οικολογίας. Αναπαράσταση Αριθμών Αναπαράσταση Αριθμών Δεκαδικό και Δυαδικό Δεκαδικό σύστημα Δεκαδικό και Δυαδικό Μετατροπή Για τη μετατροπή ενός αριθμού από το δυαδικό σύστημα στο δεκαδικό, πολλαπλασιάζουμε κάθε δυαδικό ψηφίο του αριθμού

Διαβάστε περισσότερα

Αριθμητικά Συστήματα Κώδικες

Αριθμητικά Συστήματα Κώδικες Αριθμητικά Συστήματα Κώδικες 1.1 Εισαγωγή Κεφάλαιο 1 Ένα αριθμητικό σύστημα ορίζει ένα σύνολο τιμών που χρησιμοποιούνται για την αναπαράσταση μίας ποσότητας. Ποσοτικοποιώντας τιμές και αντικείμενα και

Διαβάστε περισσότερα

a -j a 5 a 4 a 3 a 2 a 1 a 0, a -1 a -2 a -3

a -j a 5 a 4 a 3 a 2 a 1 a 0, a -1 a -2 a -3 ΑΣΚΗΣΗ 5 ΑΘΡΟΙΣΤΕΣ - ΑΦΑΙΡΕΤΕΣ 5.1. ΣΚΟΠΟΣ Η πραγματοποίηση της αριθμητικής πρόσθεσης και αφαίρεσης με λογικά κυκλώματα. 5.2. ΘΕΩΡΗΤΙΚΟ ΜΕΡΟΣ ΣΥΣΤΗΜΑΤΑ ΑΡΙΘΜΗΣΗΣ: Κάθε σύστημα αρίθμησης χαρακτηρίζεται

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Ψηφιακή Σχεδίαση Εργαστήριο 5: Δυαδική Αρίθμηση, Αθροιστές Μανόλης Γ.Η. Κατεβαίνης Τμήμα Επιστήμης Υπολογιστών Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται

Διαβάστε περισσότερα

Εισαγωγή στην πληροφορική

Εισαγωγή στην πληροφορική Τμήμα Μηχανικών Πληροφορικής & Τηλεπικοινωνιών Εισαγωγή στην πληροφορική Ενότητα 3: Δυαδικά Συστήματα Αγγελίδης Παντελής Τμήμα Μηχανικών Πληροφορικής και Τηλεπικοινωνιών Άδειες Χρήσης Το παρόν εκπαιδευτικό

Διαβάστε περισσότερα

Εισαγωγή στην επιστήμη των υπολογιστών. Υπολογιστές και Δεδομένα Κεφάλαιο 4ο Πράξεις με μπιτ

Εισαγωγή στην επιστήμη των υπολογιστών. Υπολογιστές και Δεδομένα Κεφάλαιο 4ο Πράξεις με μπιτ Εισαγωγή στην επιστήμη των υπολογιστών Υπολογιστές και Δεδομένα Κεφάλαιο 4ο Πράξεις με μπιτ 1 Πράξεις με μπιτ 2 Αριθμητικές Πράξεις σε Ακέραιους Πρόσθεση, Αφαίρεση, Πολλαπλασιασμός, Διαίρεση Ο πολλαπλασιασμός

Διαβάστε περισσότερα

Ψηφιακή Σχεδίαση. Ενότητα: ΕΡΓΑΣΤΗΡΙΑΚΗ ΑΣΚΗΣΗ No:01. Δρ. Μηνάς Δασυγένης. Τμήμα Μηχανικών Πληροφορικής και Τηλεπικοινωνιών

Ψηφιακή Σχεδίαση. Ενότητα: ΕΡΓΑΣΤΗΡΙΑΚΗ ΑΣΚΗΣΗ No:01. Δρ. Μηνάς Δασυγένης. Τμήμα Μηχανικών Πληροφορικής και Τηλεπικοινωνιών Ψηφιακή Σχεδίαση Ενότητα: ΕΡΓΑΣΤΗΡΙΑΚΗ ΑΣΚΗΣΗ No:01 Δρ. Μηνάς Δασυγένης mdasyg@ieee.org Τμήμα Μηχανικών Πληροφορικής και Τηλεπικοινωνιών Εργαστήριο Ψηφιακών Συστημάτων και Αρχιτεκτονικής Υπολογιστών http:

Διαβάστε περισσότερα

1. Βάσεις αριθμητικών συστημάτων 2. Μετατροπές μεταξύ ξύβάσεων 3. Αρνητικοί δυαδικοί αριθμοί 4. Αριθμητικές πράξεις δυαδικών αριθμών

1. Βάσεις αριθμητικών συστημάτων 2. Μετατροπές μεταξύ ξύβάσεων 3. Αρνητικοί δυαδικοί αριθμοί 4. Αριθμητικές πράξεις δυαδικών αριθμών ΑΡΧΙΤΕΚΤΟΝΙΚΗ ΥΠΟΛΟΓΙΣΤΩΝ MHXANIKOI Η/Υ ΚΑΙ ΠΛΗΡΟΦΟΡΙΚΗΣ ΥΑ ΙΚΟΙ ΑΡΙΘΜΟΙ (ΑΚΕΡΑΙΟΙ ΑΡΙΘΜΟΙ) Γ. Τσιατούχας Παράρτηµα A ιάρθρωση 1. Βάσεις αριθμητικών συστημάτων 2. Μετατροπές μεταξύ ξύβάσεων 3. Αρνητικοί

Διαβάστε περισσότερα

ΠΛΗΡΟΦΟΡΙΚΗ I. 4 η ΔΙΑΛΕΞΗ Αριθμητικά Συστήματα

ΠΛΗΡΟΦΟΡΙΚΗ I. 4 η ΔΙΑΛΕΞΗ Αριθμητικά Συστήματα ΣΧΟΛΗ ΔΙΟΙΚΗΣΗΣ ΚΑΙ ΟΙΚΟΝΟΜΙΑΣ - ΤΜΗΜΑ ΔΙΟΙΚΗΣΗΣ ΕΠΙΧΕΙΡΗΣΕΩΝ ΕΙΣΑΓΩΓΙΚΗ ΚΑΤΕΥΘΥΝΣΗ ΤΟΥΡΙΣΤΙΚΩΝ ΕΠΙΧΕΙΡΗΣΕΩΝ ΚΑΙ ΕΠΙΧΕΙΡΗΣΕΩΝ ΦΙΛΟΞΕΝΙΑΣ ΠΛΗΡΟΦΟΡΙΚΗ I 4 η ΔΙΑΛΕΞΗ Αριθμητικά Συστήματα ΧΑΣΑΝΗΣ ΒΑΣΙΛΕΙΟΣ

Διαβάστε περισσότερα

Εισαγωγή στην Πληροφορική

Εισαγωγή στην Πληροφορική Εισαγωγή στην Πληροφορική Αριθμητικά Συστήματα ΤΕΙ Ιονίων Νήσων Τμήμα Τεχνολόγων Περιβάλλοντος Κατεύθυνση Συντήρησης Πολιτισμικής Κληρονομιάς Βασικές Έννοιες Ένα Αριθμητικό Σύστημα αποτελείται από ένα

Διαβάστε περισσότερα

Ψηφιακή Σχεδίαση. Ενότητα: ΕΡΓΑΣΤΗΡΙΑΚΗ ΑΣΚΗΣΗ No:07. Δρ. Μηνάς Δασυγένης. Τμήμα Μηχανικών Πληροφορικής και Τηλεπικοινωνιών

Ψηφιακή Σχεδίαση. Ενότητα: ΕΡΓΑΣΤΗΡΙΑΚΗ ΑΣΚΗΣΗ No:07. Δρ. Μηνάς Δασυγένης. Τμήμα Μηχανικών Πληροφορικής και Τηλεπικοινωνιών Ψηφιακή Σχεδίαση Ενότητα: ΕΡΓΑΣΤΗΡΙΑΚΗ ΑΣΚΗΣΗ No:07 Δρ. Μηνάς Δασυγένης mdasyg@ieee.org Τμήμα Μηχανικών Πληροφορικής και Τηλεπικοινωνιών Εργαστήριο Ψηφιακών Συστημάτων και Αρχιτεκτονικής Υπολογιστών http:

Διαβάστε περισσότερα

ΑΡΧΙΤΕΚΤΟΝΙΚΗ ΥΠΟΛΟΓΙΣΤΩΝ. Κεφάλαιο 3

ΑΡΧΙΤΕΚΤΟΝΙΚΗ ΥΠΟΛΟΓΙΣΤΩΝ. Κεφάλαιο 3 ΑΡΧΙΤΕΚΤΟΝΙΚΗ ΥΠΟΛΟΓΙΣΤΩΝ Κεφάλαιο 3 Κεντρική Μονάδα Επεξεργασίας Κεντρική Μονάδα Επεξεργασίας Μονάδα επεξεργασίας δεδομένων Μονάδα ελέγχου Μονάδα επεξεργασίας δεδομένων Δομή Αριθμητικής Λογικής Μονάδας

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΣΧΟΛΗ ΘΕΤΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΚΑΙ ΤΕΧΝΟΛΟΓΙΑΣ ΠΡΟΓΡΑΜΜΑ ΣΠΟΥΔΩΝ ΠΛΗΡΟΦΟΡΙΚΗΣ ΘΕΜΑΤΙΚΗ ΕΝΟΤΗΤΑ: ΠΛΗ-21

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΣΧΟΛΗ ΘΕΤΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΚΑΙ ΤΕΧΝΟΛΟΓΙΑΣ ΠΡΟΓΡΑΜΜΑ ΣΠΟΥΔΩΝ ΠΛΗΡΟΦΟΡΙΚΗΣ ΘΕΜΑΤΙΚΗ ΕΝΟΤΗΤΑ: ΠΛΗ-21 ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΣΧΟΛΗ ΘΕΤΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΚΑΙ ΤΕΧΝΟΛΟΓΙΑΣ ΠΡΟΓΡΑΜΜΑ ΣΠΟΥΔΩΝ ΠΛΗΡΟΦΟΡΙΚΗΣ ΘΕΜΑΤΙΚΗ ΕΝΟΤΗΤΑ: ΠΛΗ-2 ΨΗΦΙΑΚΗ ΣΧΕΔΙΑΣΗ ΑΣΚΗΣΕΙΙΣ ΓΡΑΠΤΩΝ ΕΡΓΑΣΙΙΩΝ & ΘΕΜΑΤΩΝ ΕΞΕΤΑΣΕΩΝ ΣΥΝΤΕΛΕΣΤΕΣ

Διαβάστε περισσότερα

ΗΜΥ 100 Εισαγωγή στην Τεχνολογία

ΗΜΥ 100 Εισαγωγή στην Τεχνολογία ΗΜΥ 100 Εισαγωγή στην Τεχνολογία Στέλιος Τιμοθέου ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΚΑΙ ΜΗΧΑΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΤΑ ΘΕΜΑΤΑ ΜΑΣ ΣΗΜΕΡΑ Συστήματα αρίθμησης Δυαδικό αριθμητικό

Διαβάστε περισσότερα

Εισαγωγή στην επιστήμη των υπολογιστών. Υπολογιστές και Δεδομένα Κεφάλαιο 4ο Πράξεις με μπιτ

Εισαγωγή στην επιστήμη των υπολογιστών. Υπολογιστές και Δεδομένα Κεφάλαιο 4ο Πράξεις με μπιτ Εισαγωγή στην επιστήμη των υπολογιστών Υπολογιστές και Δεδομένα Κεφάλαιο 4ο Πράξεις με μπιτ 1 Πράξεις με μπιτ 2 Αριθμητικές Πράξεις σε Ακέραιους Πρόσθεση, Αφαίρεση, Πολλαπλασιασμός, Διαίρεση Ο πολλαπλασιασμός

Διαβάστε περισσότερα

Εισαγωγή στους Ηλεκτρονικούς Υπολογιστές. 5 ο Μάθημα. Λεωνίδας Αλεξόπουλος Λέκτορας ΕΜΠ. url:

Εισαγωγή στους Ηλεκτρονικούς Υπολογιστές. 5 ο Μάθημα. Λεωνίδας Αλεξόπουλος Λέκτορας ΕΜΠ.   url: στους Ηλεκτρονικούς Υπολογιστές 5 ο Μάθημα Λεωνίδας Αλεξόπουλος Λέκτορας ΕΜΠ email: leo@mail.ntua.gr url: http://users.ntua.gr/leo Άδεια Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative

Διαβάστε περισσότερα

Πανεπιστήμιο Πατρών Τμήμα Φυσικής Εργαστήριο Ηλεκτρονικής. Ψηφιακά Ηλεκτρονικά. Αριθμητικά Συστήματα. Επιμέλεια Διαφανειών: Δ.

Πανεπιστήμιο Πατρών Τμήμα Φυσικής Εργαστήριο Ηλεκτρονικής. Ψηφιακά Ηλεκτρονικά. Αριθμητικά Συστήματα. Επιμέλεια Διαφανειών: Δ. Πανεπιστήμιο Πατρών Τμήμα Φυσικής Ψηφιακά Ηλεκτρονικά Αριθμητικά Συστήματα Επιμέλεια Διαφανειών: Δ. Μπακάλης Πάτρα, Φεβρουάριος 2009 Αριθμητικά Συστήματα Δεκαδικό Σύστημα: Βάση το 10, ψηφία 10 και συντελεστές

Διαβάστε περισσότερα

Εργαστήριο Ψηφιακής Σχεδίασης

Εργαστήριο Ψηφιακής Σχεδίασης ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ Εργαστήριο Ψηφιακής Σχεδίασης 8 Εργαστηριακές Ασκήσεις Χρ. Καβουσιανός Επίκουρος Καθηγητής 2014 Εργαστηριακές Ασκήσεις Ψηφιακής Σχεδίασης 2 Εργαστηριακές Ασκήσεις

Διαβάστε περισσότερα

Αθροιστές. Ημιαθροιστής

Αθροιστές. Ημιαθροιστής Αθροιστές Η πιο βασική αριθμητική πράξη είναι η πρόσθεση. Για την πρόσθεση δύο δυαδικών ψηφίων υπάρχουν τέσσερις δυνατές περιπτώσεις: +=, +=, +=, +=. Οι τρεις πρώτες πράξεις δημιουργούν ένα άθροισμα που

Διαβάστε περισσότερα

Κεφάλαιο 2. Συστήματα Αρίθμησης και Αναπαράσταση Πληροφορίας. Περιεχόμενα. 2.1 Αριθμητικά Συστήματα. Εισαγωγή

Κεφάλαιο 2. Συστήματα Αρίθμησης και Αναπαράσταση Πληροφορίας. Περιεχόμενα. 2.1 Αριθμητικά Συστήματα. Εισαγωγή Κεφάλαιο. Συστήματα Αρίθμησης και Αναπαράσταση Πληροφορίας Περιεχόμενα. Αριθμητικά συστήματα. Μετατροπή αριθμών από ένα σύστημα σε άλλο.3 Πράξεις στο δυαδικό σύστημα.4 Πράξεις στο δεκαεξαδικό σύστημα.5

Διαβάστε περισσότερα

Θέμα 1ο (3 μονάδες) Υλοποιήστε το ακoλουθιακό κύκλωμα που περιγράφεται από το κατωτέρω διάγραμμα

Θέμα 1ο (3 μονάδες) Υλοποιήστε το ακoλουθιακό κύκλωμα που περιγράφεται από το κατωτέρω διάγραμμα Ηλεκτρολόγοι Μηχανικοί ΕΜΠ Λογική Σχεδίαση Ψηφιακών Συστημάτων Διαγώνισμα επαναληπτικής εξέτασης 2016 Θέμα 1ο (3 μονάδες) Υλοποιήστε το ακoλουθιακό κύκλωμα που περιγράφεται από το κατωτέρω διάγραμμα καταστάσεων,

Διαβάστε περισσότερα

Τμήμα Χρηματοοικονομικής & Ελεγκτικής ΤΕΙ Ηπείρου Παράρτημα Πρέβεζας. Πληροφορική Ι. Μάθημα 4 ο Πράξεις με bits. Δρ.

Τμήμα Χρηματοοικονομικής & Ελεγκτικής ΤΕΙ Ηπείρου Παράρτημα Πρέβεζας. Πληροφορική Ι. Μάθημα 4 ο Πράξεις με bits. Δρ. Τμήμα Χρηματοοικονομικής & Ελεγκτικής ΤΕΙ Ηπείρου Παράρτημα Πρέβεζας Πληροφορική Ι Μάθημα 4 ο Πράξεις με bits Δρ. Γκόγκος Χρήστος Κατηγορίες πράξεων με bits Πράξεις με δυαδικά ψηφία Αριθμητικές πράξεις

Διαβάστε περισσότερα

Περιεχόμενα. Πρώτο Κεφάλαιο. Εισαγωγή στα Ψηφιακά Συστήματα. Δεύτερο Κεφάλαιο. Αριθμητικά Συστήματα Κώδικες

Περιεχόμενα. Πρώτο Κεφάλαιο. Εισαγωγή στα Ψηφιακά Συστήματα. Δεύτερο Κεφάλαιο. Αριθμητικά Συστήματα Κώδικες Πρώτο Κεφάλαιο Εισαγωγή στα Ψηφιακά Συστήματα 1.1 Αναλογικά και Ψηφιακά Σήματα και Συστήματα... 1 1.2 Βασικά Ψηφιακά Κυκλώματα... 3 1.3 Ολοκληρωμένα κυκλώματα... 4 1.4 Τυπωμένα κυκλώματα... 7 1.5 Εργαλεία

Διαβάστε περισσότερα

ΕΙΣΑΓΩΓΗ ΣΤΟΥΣ ΥΠΟΛΟΓΙΣΤΕΣ. ΜΑΘΗΜΑ 2 ο. ΑΛΓΕΒΡΑ Boole ΛΟΓΙΚΑ ΚΥΚΛΩΜΑΤΑ

ΕΙΣΑΓΩΓΗ ΣΤΟΥΣ ΥΠΟΛΟΓΙΣΤΕΣ. ΜΑΘΗΜΑ 2 ο. ΑΛΓΕΒΡΑ Boole ΛΟΓΙΚΑ ΚΥΚΛΩΜΑΤΑ ΕΙΣΑΓΩΓΗ ΣΤΟΥΣ ΥΠΟΛΟΓΙΣΤΕΣ ΜΑΘΗΜΑ 2 ο ΑΛΓΕΒΡΑ Boole ΛΟΓΙΚΑ ΚΥΚΛΩΜΑΤΑ 2009-10 ΕΙΣΑΓΩΓΗ ΣΤΟΥΣ ΥΠΟΛΟΓΙΣΤΕΣ 1 Άλγεβρα Βοοle η θεωρητική βάση των λογικών κυκλωμάτων Η άλγεβρα Βοοle ορίζεται επάνω στο σύνολο

Διαβάστε περισσότερα

ΠΛΗΡΟΦΟΡΙΚΗ I Ενότητα 6

ΠΛΗΡΟΦΟΡΙΚΗ I Ενότητα 6 ΠΛΗΡΟΦΟΡΙΚΗ I Ενότητα 6 ΑΡΙΘΜΗΤΙΚΑ ΣΥΣΤΗΜΑΤΑ Bits & Bytes Bit: η μικρότερη μονάδα πληροφορίας μία από δύο πιθανές καταστάσεις (ναι / όχι, αληθές / ψευδές, n / ff) κωδικοποίηση σε 0 ή 1 δυαδικό σύστημα

Διαβάστε περισσότερα

Λογική Δημήτρης Πλεξουσάκης Φροντιστήριο 6: Προτασιακός Λογισμός: Μέθοδος Επίλυσης Τμήμα Επιστήμης Υπολογιστών

Λογική Δημήτρης Πλεξουσάκης Φροντιστήριο 6: Προτασιακός Λογισμός: Μέθοδος Επίλυσης Τμήμα Επιστήμης Υπολογιστών Λογική Δημήτρης Πλεξουσάκης Φροντιστήριο 6: Προτασιακός Λογισμός: Μέθοδος Επίλυσης Τμήμα Επιστήμης Υπολογιστών Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται στην άδεια χρήσης Creative Commons και

Διαβάστε περισσότερα

Δυαδικό Σύστημα Αρίθμησης

Δυαδικό Σύστημα Αρίθμησης Δυαδικό Σύστημα Αρίθμησης Το δυαδικό σύστημα αρίθμησης χρησιμοποιεί δύο ψηφία. Το 0 και το 1. Τα ψηφία ενός αριθμού στο δυαδικό σύστημα αρίθμησης αντιστοιχίζονται σε δυνάμεις του 2. Μονάδες, δυάδες, τετράδες,

Διαβάστε περισσότερα

2. ΑΡΙΘΜΗΤΙΚΗ ΤΟΥ ΥΠΟΛΟΓΙΣΤΗ. 2.1 Αριθμητικά συστήματα

2. ΑΡΙΘΜΗΤΙΚΗ ΤΟΥ ΥΠΟΛΟΓΙΣΤΗ. 2.1 Αριθμητικά συστήματα 2. ΑΡΙΘΜΗΤΙΚΗ ΤΟΥ ΥΠΟΛΟΓΙΣΤΗ 2.1 Αριθμητικά συστήματα Κάθε πραγματικός αριθμός χ μπορεί να παρασταθεί σε ένα αριθμητικό σύστημα με βάση β>1 με μια δυναμοσειρά της μορφής, -οο * = ± Σ ψ β " (2 1) η - ν

Διαβάστε περισσότερα

Γενικά Στοιχεία Ηλεκτρονικού Υπολογιστή

Γενικά Στοιχεία Ηλεκτρονικού Υπολογιστή Γενικά Στοιχεία Ηλεκτρονικού Υπολογιστή 1. Ηλεκτρονικός Υπολογιστής Ο Ηλεκτρονικός Υπολογιστής είναι μια συσκευή, μεγάλη ή μικρή, που επεξεργάζεται δεδομένα και εκτελεί την εργασία του σύμφωνα με τα παρακάτω

Διαβάστε περισσότερα

Ηλεκτρολόγοι Μηχανικοί ΕΜΠ Λογική Σχεδίαση Ψηφιακών Συστημάτων Διαγώνισμα κανονικής εξέτασης 2017

Ηλεκτρολόγοι Μηχανικοί ΕΜΠ Λογική Σχεδίαση Ψηφιακών Συστημάτων Διαγώνισμα κανονικής εξέτασης 2017 Ηλεκτρολόγοι Μηχανικοί ΕΜΠ Λογική Σχεδίαση Ψηφιακών Συστημάτων Διαγώνισμα κανονικής εξέτασης 2017 Θέμα 1ο (3 μονάδες) Υλοποιήστε το ακoλουθιακό κύκλωμα που περιγράφεται από το κατωτέρω διάγραμμα καταστάσεων,

Διαβάστε περισσότερα

Σχεδιασμός Ολοκληρωμένων Κυκλωμάτων VLSI II

Σχεδιασμός Ολοκληρωμένων Κυκλωμάτων VLSI II Σχεδιασμός Ολοκληρωμένων Κυκλωμάτων VLSI II 3 η Εργαστηριακή Άσκηση Σχεδίαση και Υλοποίηση μίας ALU δύο εισόδων VHDL Εργαστήριο_2 2012-2013 1 Άδειες Χρήσης Το παρόν υλικό διατίθεται με τους όρους της άδειας

Διαβάστε περισσότερα

Εισαγωγή στην πληροφορική

Εισαγωγή στην πληροφορική Τμήμα Μηχανικών Πληροφορικής & Τηλεπικοινωνιών Εισαγωγή στην πληροφορική Ενότητα 4: Ψηφιακή Λογική, Άλγεβρα Boole, Πίνακες Αλήθειας (Μέρος B) Αγγελίδης Παντελής Τμήμα Μηχανικών Πληροφορικής και Τηλεπικοινωνιών

Διαβάστε περισσότερα

Οργάνωση Υπολογιστών ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ. Ασκήσεις 7: Πρόγραμμα Συνδεδεμένης Λίστας και Διαδικασιών. Μανόλης Γ.Η.

Οργάνωση Υπολογιστών ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ. Ασκήσεις 7: Πρόγραμμα Συνδεδεμένης Λίστας και Διαδικασιών. Μανόλης Γ.Η. ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Οργάνωση Υπολογιστών Ασκήσεις 7: Πρόγραμμα Συνδεδεμένης Λίστας και Διαδικασιών Μανόλης Γ.Η. Κατεβαίνης Τμήμα Επιστήμης Υπολογιστών Άδειες Χρήσης Το παρόν εκπαιδευτικό

Διαβάστε περισσότερα

Εισαγωγή στους Ηλεκτρονικούς Υπολογιστές. 4 ο Μάθημα. Λεωνίδας Αλεξόπουλος Λέκτορας ΕΜΠ. url:

Εισαγωγή στους Ηλεκτρονικούς Υπολογιστές. 4 ο Μάθημα. Λεωνίδας Αλεξόπουλος Λέκτορας ΕΜΠ.   url: στους Ηλεκτρονικούς Υπολογιστές 4 ο Μάθημα Λεωνίδας λεξόπουλος Λέκτορας ΕΜΠ email: leo@mail.ntua.gr url: http://users.ntua.gr/leo Άδεια Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative

Διαβάστε περισσότερα

Αριθμητικά Συστήματα

Αριθμητικά Συστήματα Αριθμητικά Συστήματα Οργάνωση Δεδομένων (1/2) Bits: Η μικρότερη αριθμητική μονάδα ενός υπολογιστικού συστήματος, η οποία δείχνει δύο καταστάσεις, 0 ή 1 (αληθές η ψευδές). Nibbles: Μονάδα 4 bit που παριστά

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Οργάνωση Υπολογιστών Εργαστήριο 11: Κρυφές Μνήμες και η Επίδοσή τους Μανόλης Γ.Η. Κατεβαίνης Τμήμα Επιστήμης Υπολογιστών Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό

Διαβάστε περισσότερα

Τμήμα Χρηματοοικονομικής & Ελεγκτικής ΤΕΙ Ηπείρου Παράρτημα Πρέβεζας. Πληροφορική Ι. Αναπαράσταση αριθμών στο δυαδικό σύστημα. Δρ.

Τμήμα Χρηματοοικονομικής & Ελεγκτικής ΤΕΙ Ηπείρου Παράρτημα Πρέβεζας. Πληροφορική Ι. Αναπαράσταση αριθμών στο δυαδικό σύστημα. Δρ. Τμήμα Χρηματοοικονομικής & Ελεγκτικής ΤΕΙ Ηπείρου Παράρτημα Πρέβεζας Πληροφορική Ι Αναπαράσταση αριθμών στο δυαδικό σύστημα Δρ. Γκόγκος Χρήστος Δεκαδικό σύστημα αρίθμησης Ελληνικό - Ρωμαϊκό Σύστημα αρίθμησης

Διαβάστε περισσότερα

Συστήματα Αρίθμησης. Συστήματα Αρίθμησης 1. PDF created with FinePrint pdffactory Pro trial version

Συστήματα Αρίθμησης. Συστήματα Αρίθμησης 1. PDF created with FinePrint pdffactory Pro trial version Συστήματα Αρίθμησης Στην καθημερινή μας ζωή χρησιμοποιούμε το δεκαδικό σύστημα αρίθμησης. Στο σύστημα αυτό χρησιμοποιούμε δέκα διαφορετικά σύμβολα τα :,, 2, 3, 4, 5, 6,7 8, 9. Για τον αριθμό 32 θα χρειαστούμε

Διαβάστε περισσότερα

Λογική Σχεδίαση Ψηφιακών Συστημάτων

Λογική Σχεδίαση Ψηφιακών Συστημάτων Πανεπιστήμιο Θεσσαλίας Τμήμα Πληροφορικής Λογική Σχεδίαση Ψηφιακών Συστημάτων Σταμούλης Γεώργιος georges@uth.gr Δαδαλιάρης Αντώνιος dadaliaris@uth.gr Δυαδικοί Αριθμοί Η γενική αναπαράσταση ενός οποιουδήποτε

Διαβάστε περισσότερα

Οργάνωση Υπολογιστών ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ. Εργαστήριο 9: Εισαγωγή στην Ομοχειρία (Pipelining - Διοχέτευση) Μανόλης Γ.Η.

Οργάνωση Υπολογιστών ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ. Εργαστήριο 9: Εισαγωγή στην Ομοχειρία (Pipelining - Διοχέτευση) Μανόλης Γ.Η. ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Οργάνωση Υπολογιστών Εργαστήριο 9: Εισαγωγή στην Ομοχειρία (Pipelining - Διοχέτευση) Μανόλης Γ.Η. Κατεβαίνης Τμήμα Επιστήμης Υπολογιστών Άδειες Χρήσης Το παρόν εκπαιδευτικό

Διαβάστε περισσότερα

Εισαγωγή στους Υπολογιστές

Εισαγωγή στους Υπολογιστές Εισαγωγή στους Υπολογιστές Ενότητα 9: Ψηφιακή Αριθμητική Βασίλης Παλιουράς Πολυτεχνική Σχολή Τμήμα Ηλεκτρολόγων Μηχανικών και Τεχνολογίας Υπολογιστών Ψηφιακή Αριθμητική Σκοποί ενότητας 2 Περιεχόμενα ενότητας

Διαβάστε περισσότερα

Πανεπιστήμιο Δυτικής Μακεδονίας. Τμήμα Μηχανικών Πληροφορικής & Τηλεπικοινωνιών. Ψηφιακή Σχεδίαση

Πανεπιστήμιο Δυτικής Μακεδονίας. Τμήμα Μηχανικών Πληροφορικής & Τηλεπικοινωνιών. Ψηφιακή Σχεδίαση Τμήμα Μηχανικών Πληροφορικής & Τηλεπικοινωνιών Ψηφιακή Σχεδίαση Ενότητα 12: Σύνοψη Θεμάτων Δρ. Μηνάς Δασυγένης mdasyg@ieee.org Εργαστήριο Ψηφιακών Συστημάτων και Αρχιτεκτονικής Υπολογιστών http://arch.icte.uowm.gr/mdasyg

Διαβάστε περισσότερα

Οργάνωση Υπολογιστών ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ. Εργαστήριο 10: Επίδοση Επεξεργαστών, CPI. Μανόλης Γ.Η. Κατεβαίνης

Οργάνωση Υπολογιστών ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ. Εργαστήριο 10: Επίδοση Επεξεργαστών, CPI. Μανόλης Γ.Η. Κατεβαίνης ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Οργάνωση Υπολογιστών Εργαστήριο 10: Επίδοση Επεξεργαστών, CPI Μανόλης Γ.Η. Κατεβαίνης Τμήμα Επιστήμης Υπολογιστών Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται

Διαβάστε περισσότερα

Δυαδικη παρασταση αριθμων και συμβολων

Δυαδικη παρασταση αριθμων και συμβολων Δυαδικη παρασταση αριθμων και συμβολων Ενα αριθμητικο συστημα χαρακτηριζεται απο την βαση r και τα συμβολα a i που παιρνουν τις τιμες 0,1,...,r-1. (a n,,a 1,a 0. a -1,a -2,,a -m ) r = =a n r n + +a 1 r+a

Διαβάστε περισσότερα

Εισαγωγή στην Επιστήμη των Υπολογιστών

Εισαγωγή στην Επιστήμη των Υπολογιστών Εισαγωγή στην Επιστήμη των Υπολογιστών Ενότητα 2: Αποθήκευση Δεδομένων: Αριθμητική του Υπολογιστή, Αριθμητικά Συστήματα Μετατροπές, 2ΔΩ Τμήμα: Αγροτικής Οικονομίας & Ανάπτυξης Διδάσκων: Θεόδωρος Τσιλιγκιρίδης

Διαβάστε περισσότερα

Εισαγωγή στους Ηλεκτρονικούς Υπολογιστές

Εισαγωγή στους Ηλεκτρονικούς Υπολογιστές Εισαγωγή στους Ηλεκτρονικούς Υπολογιστές http://courseware.mech.ntua.gr/ml23021/ 3 ο Μάθημα Λεωνίδας Αλεξόπουλος Λέκτορας ΕΜΠ E-mail: leo@mail.ntua.gr URL: http://users.ntua.gr/leo 1 Κωδικοποίηση & Αποκωδικοποίηση

Διαβάστε περισσότερα

Αναπαράσταση Δεδομένων. ΜΥΥ-106 Εισαγωγή στους Η/Υ και στην Πληροφορική

Αναπαράσταση Δεδομένων. ΜΥΥ-106 Εισαγωγή στους Η/Υ και στην Πληροφορική Αναπαράσταση Δεδομένων ΜΥΥ-106 Εισαγωγή στους Η/Υ και στην Πληροφορική Αναπαράσταση δεδομένων Κατάλληλη συμβολική αναπαράσταση δεδομένων, για απλοποίηση βασικών πράξεων, όπως πρόσθεση Πόσο εύκολο είναι

Διαβάστε περισσότερα

Λογική Δημήτρης Πλεξουσάκης Φροντιστήριο 5: Προτασιακός Λογισμός: Κατασκευή Μοντέλων Τμήμα Επιστήμης Υπολογιστών

Λογική Δημήτρης Πλεξουσάκης Φροντιστήριο 5: Προτασιακός Λογισμός: Κατασκευή Μοντέλων Τμήμα Επιστήμης Υπολογιστών Λογική Δημήτρης Πλεξουσάκης Φροντιστήριο 5: Προτασιακός Λογισμός: Κατασκευή Μοντέλων Τμήμα Επιστήμης Υπολογιστών Άδειες Χρήσης 1. Το παρόν εκπαιδευτικό υλικό υπόκειται στην άδεια χρήσης Creative Commons

Διαβάστε περισσότερα

Υπολογιστικά & Διακριτά Μαθηματικά

Υπολογιστικά & Διακριτά Μαθηματικά Υπολογιστικά & Διακριτά Μαθηματικά Ενότητα 10: Αριθμητική υπολοίπων - Κυκλικές ομάδες: Διαιρετότητα - Ευκλείδειος αλγόριθμος - Κατάλοιπα Στεφανίδης Γεώργιος Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται

Διαβάστε περισσότερα

Αριθμητική Ανάλυση & Εφαρμογές

Αριθμητική Ανάλυση & Εφαρμογές Αριθμητική Ανάλυση & Εφαρμογές Διδάσκων: Δημήτριος Ι. Φωτιάδης Τμήμα Μηχανικών Επιστήμης Υλικών Ιωάννινα 2017-2018 Υπολογισμοί και Σφάλματα Παράσταση Πραγματικών Αριθμών Συστήματα Αριθμών Παράσταση Ακέραιου

Διαβάστε περισσότερα

Τμήμα Οικιακής Οικονομίας και Οικολογίας. Αναπαράσταση Αριθμών

Τμήμα Οικιακής Οικονομίας και Οικολογίας. Αναπαράσταση Αριθμών Αναπαράσταση Αριθμών Δεκαδικό και Δυαδικό Δεκαδικό σύστημα Δεκαδικό και Δυαδικό Μετατροπή Για τη μετατροπή ενός αριθμού από το δυαδικό σύστημα στο δεκαδικό, πολλαπλασιάζουμε κάθε δυαδικό ψηφίο του αριθμού

Διαβάστε περισσότερα

Λύσεις Ασκήσεων ΣΕΙΡΑ 1 η. Πρόσημο και μέγεθος

Λύσεις Ασκήσεων ΣΕΙΡΑ 1 η. Πρόσημο και μέγεθος ΓΕΩΠΟΝΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ ΕΡΓΑΣΤΗΡΙΟ ΠΛΗΡΟΦΟΡΙΚΗΣ ΜΑΘΗΜΑ: ΠΛΗΡΟΦΟΡΙΚΗ ΕΞΑΜΗΝΟ: 1 ο /2015-16 ΤΜΗΜΑ: ΑΓΡΟΤΙΚΗΣ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΑΝΑΠΤΥΞΗΣ Καθηγητής: Θ. Τσιλιγκιρίδης Άσκηση 1η Περιεχόμενα μνήμης Λύσεις

Διαβάστε περισσότερα

Πράξεις με δυαδικούς αριθμούς

Πράξεις με δυαδικούς αριθμούς Ιόνιο Πανεπιστήμιο Τμήμα Πληροφορικής Εισαγωγή στην Επιστήμη των Υπολογιστών 25-6 Πράξεις με δυαδικούς αριθμούς (λογικές πράξεις) http://di.ionio.gr/~mistral/tp/csintro/ Μ.Στεφανιδάκης Εκτέλεση πράξεων

Διαβάστε περισσότερα

Προγραμματισμός Ηλεκτρονικών Υπολογιστών 1

Προγραμματισμός Ηλεκτρονικών Υπολογιστών 1 Προγραμματισμός Ηλεκτρονικών Υπολογιστών 1 Ενότητα 3: Άλγεβρα Βοole και Λογικές Πράξεις Δρ. Φραγκούλης Γεώργιος Τμήμα Ηλεκτρολογίας Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης

Διαβάστε περισσότερα

ΑΡΙΘΜΗΤΙΚΗ ΓΙΑ ΥΠΟΛΟΓΙΣΤΕΣ

ΑΡΙΘΜΗΤΙΚΗ ΓΙΑ ΥΠΟΛΟΓΙΣΤΕΣ ΑΡΧΙΤΕΚΤΟΝΙΚΗ ΥΠΟΛΟΓΙΣΤΩΝ ΑΡΙΘΜΗΤΙΚΗ ΓΙΑ ΥΠΟΛΟΓΙΣΤΕΣ ΣΗΜΜΥ, 5 Ο ΕΞΑΜΗΝΟ http://www.cslab.ece.ntua.gr/courses/comparch t / / h 1 ΑΡΙΘΜΟΙ Decimal Eύκολο για τον άνθρωπο Ιδιαίτερα για την εκτέλεση αριθμητικών

Διαβάστε περισσότερα

Υπολογιστικά & Διακριτά Μαθηματικά

Υπολογιστικά & Διακριτά Μαθηματικά Υπολογιστικά & Διακριτά Μαθηματικά Ενότητα 3: Σύνολα Συνδυαστική Στεφανίδης Γεώργιος Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό υλικό, όπως

Διαβάστε περισσότερα

Εργαστήριο Εισαγωγής στη Σχεδίαση Συστημάτων VLSI

Εργαστήριο Εισαγωγής στη Σχεδίαση Συστημάτων VLSI Ε.Μ.Π. - ΣΧΟΛΗ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΚΑΙ ΜΗΧΑΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ ΤΟΜΕΑΣ ΤΕΧΝΟΛΟΓΙΑΣ ΥΠΟΛΟΓΙΣΤΩΝ ΚΑΙ ΠΛΗΡΟΦΟΡΙΚΗΣ ΕΡΓΑΣΤΗΡΙΟ ΜΙΚΡΟΫΠΟΛΟΓΙΣΤΩΝ ΚΑΙ ΨΗΦΙΑΚΩΝ ΣΥΣΤΗΜΑΤΩΝ ΕΙΣΑΓΩΓΗ ΣΤΗ ΣΧΕΔΙΑΣΗ ΣΥΣΤΗΜΑΤΩΝ VLSI

Διαβάστε περισσότερα

ΑΛΓΕΒΡΑ Α ΓΥΜΝΑΣΙΟΥ ΘΕΤΙΚΟΙ ΚΑΙ ΑΡΝΗΤΙΚΟΙ ΑΡΙΘΜΟΙ ΕΠΙΜΕΛΕΙΑ : ΧΑΛΑΤΖΙΑΝ ΠΑΥΛΟΣ

ΑΛΓΕΒΡΑ Α ΓΥΜΝΑΣΙΟΥ ΘΕΤΙΚΟΙ ΚΑΙ ΑΡΝΗΤΙΚΟΙ ΑΡΙΘΜΟΙ ΕΠΙΜΕΛΕΙΑ : ΧΑΛΑΤΖΙΑΝ ΠΑΥΛΟΣ ΘΕΤΙΚΟΙ ΚΑΙ ΑΡΝΗΤΙΚΟΙ ΑΡΙΘΜΟΙ ΕΠΙΜΕΛΕΙΑ : ΧΑΛΑΤΖΙΑΝ ΠΑΥΛΟΣ ΚΕΦΑΛΑΙΟ 7 Ο ΘΕΤΙΚΟΙ ΚΑΙ ΑΡΝΗΤΙΚΟΙ ΑΡΙΘΜΟΙ ΣΤΟΙΧΕΙΑ ΘΕΩΡΙΑΣ 1. Όταν μπροστα" (αριστερα") απο" ε"ναν αριθμο" γραφει" το συ"μβολο + το"τε ο αριθμο"ς

Διαβάστε περισσότερα

ΤΙΤΛΟΣ ΕΡΓΑΣΤΗΡΙΑΚΗΣ ΑΣΚΗΣΗΣ ΑΣΥΓΧΡΟΝΟΙ ΜΕΤΡΗΤΕΣ

ΤΙΤΛΟΣ ΕΡΓΑΣΤΗΡΙΑΚΗΣ ΑΣΚΗΣΗΣ ΑΣΥΓΧΡΟΝΟΙ ΜΕΤΡΗΤΕΣ ΣΧΟΛΗ ΑΣΠΑΙΤΕ ΤΜΗΜΑ ΕΚΠΑΙΔΕΥΤΙΚΩΝ ΗΛΕΚΤΡΟΛΟΓΙΑΣ ΕΡΓΑΣΤΗΡΙΟ ΨΗΦΙΑΚΩΝ ΣΥΣΤΗΜΑΤΩΝ ΘΕΩΡΗΤΙΚΟ ΜΕΡΟΣ ΤΙΤΛΟΣ ΕΡΓΑΣΤΗΡΙΑΚΗΣ ΑΣΚΗΣΗΣ ΑΣΥΓΧΡΟΝΟΙ ΜΕΤΡΗΤΕΣ 1) Οι απαριθμητές ή μετρητές (counters) είναι κυκλώματα που

Διαβάστε περισσότερα

Περίληψη. ΗΜΥ 210: Λογικός Σχεδιασµός, Εαρινό Εξάµηνο 2005. υαδική Αφαίρεση. υαδική Αφαίρεση (συν.) Ακόµη ένα παράδειγµα Αφαίρεσης.

Περίληψη. ΗΜΥ 210: Λογικός Σχεδιασµός, Εαρινό Εξάµηνο 2005. υαδική Αφαίρεση. υαδική Αφαίρεση (συν.) Ακόµη ένα παράδειγµα Αφαίρεσης. ΗΜΥ-210: Λογικός Σχεδιασµός Εαρινό Εξάµηνο 2005 Κεφάλαιο 5 -ii: Αριθµητικές Συναρτήσεις και Κυκλώµατα Πανεπιστήµιο Κύπρου Τµήµα Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Αφαίρεση δυαδικών Περίληψη

Διαβάστε περισσότερα

Υπολογιστικά & Διακριτά Μαθηματικά

Υπολογιστικά & Διακριτά Μαθηματικά Υπολογιστικά & Διακριτά Μαθηματικά Ενότητα 8: Σχέσεις - Πράξεις Δομές Στεφανίδης Γεώργιος Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό υλικό,

Διαβάστε περισσότερα

Εισαγωγή στην επιστήµη των υπολογιστών. Πράξεις µε µπιτ

Εισαγωγή στην επιστήµη των υπολογιστών. Πράξεις µε µπιτ Εισαγωγή στην επιστήµη των υπολογιστών Πράξεις µε µπιτ 1 Πράξεις µε µπιτ 2 Αριθµητικές Πράξεις σε Ακέραιους Πρόσθεση, Αφαίρεση, Πολλαπλασιασµός, Διαίρεση 3 Πρόσθεση στη µορφή συµπληρώµατος ως προς δύο

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα ΜΙΚΡΟΗΛΕΚΤΡΟΝΙΚΗ - VLSI Ενότητα: Συνδιαστικά κυκλώματα, βασικές στατικές λογικές πύλες, σύνθετες και δυναμικές πύλες Κυριάκης

Διαβάστε περισσότερα

Εισαγωγή στην επιστήµη των υπολογιστών ΑΡΙΘΜΗΤΙΚΑ ΣΥΣΤΗΜΑΤΑ

Εισαγωγή στην επιστήµη των υπολογιστών ΑΡΙΘΜΗΤΙΚΑ ΣΥΣΤΗΜΑΤΑ Εισαγωγή στην επιστήµη των υπολογιστών ΑΡΙΘΜΗΤΙΚΑ ΣΥΣΤΗΜΑΤΑ 1 Αριθµητικό Σύστηµα! Ορίζει τον τρόπο αναπαράστασης ενός αριθµού µε διακεκριµένα σύµβολα! Ένας αριθµός αναπαρίσταται διαφορετικά σε κάθε σύστηµα,

Διαβάστε περισσότερα

Αριθμητικά Συστήματα Η ανάγκη του ανθρώπου για μετρήσεις οδήγησε αρχικά στην επινόηση των αριθμών Κατόπιν, στην επινόηση συμβόλων για τη παράσταση

Αριθμητικά Συστήματα Η ανάγκη του ανθρώπου για μετρήσεις οδήγησε αρχικά στην επινόηση των αριθμών Κατόπιν, στην επινόηση συμβόλων για τη παράσταση Αριθμητικά Συστήματα Η ανάγκη του ανθρώπου για μετρήσεις οδήγησε αρχικά στην επινόηση των αριθμών Κατόπιν, στην επινόηση συμβόλων για τη παράσταση τους Κατόπιν, στην επινόηση συμβόλων για τη παράσταση

Διαβάστε περισσότερα

Συστήματα Παράλληλης και Κατανεμημένης Επεξεργασίας

Συστήματα Παράλληλης και Κατανεμημένης Επεξεργασίας Συστήματα Παράλληλης και Κατανεμημένης Επεξεργασίας Ενότητα: ΕΡΓΑΣΤΗΡΙΑΚΗ ΑΣΚΗΣΗ No:08 Δρ. Μηνάς Δασυγένης mdasyg@ieee.org Τμήμα Μηχανικών Πληροφορικής και Τηλεπικοινωνιών Εργαστήριο Ψηφιακών Συστημάτων

Διαβάστε περισσότερα

Πανεπιστήμιο Δυτικής Μακεδονίας. Τμήμα Μηχανικών Πληροφορικής & Τηλεπικοινωνιών. Ψηφιακή Σχεδίαση

Πανεπιστήμιο Δυτικής Μακεδονίας. Τμήμα Μηχανικών Πληροφορικής & Τηλεπικοινωνιών. Ψηφιακή Σχεδίαση Τμήμα Μηχανικών Πληροφορικής & Τηλεπικοινωνιών Ψηφιακή Σχεδίαση Ενότητα 9: Ελαχιστοποίηση και Κωδικοποίηση Καταστάσεων, Σχεδίαση με D flip-flop, Σχεδίαση με JK flip-flop, Σχεδίαση με T flip-flop Δρ. Μηνάς

Διαβάστε περισσότερα

Μάθημα 2: Παράσταση της Πληροφορίας

Μάθημα 2: Παράσταση της Πληροφορίας Μάθημα 2: Παράσταση της Πληροφορίας 2.1 Παράσταση δεδομένων Κάθε υπολογιστική μηχανή αποτελείται από ηλεκτρονικά κυκλώματα που η λειτουργία τους βασίζεται στην αρχή ανοιχτό-κλειστό. Η συμπεριφορά τους

Διαβάστε περισσότερα

ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΑΝΑΛΥΣΗ ΑΛΓΟΡΙΘΜΩΝ

ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΑΝΑΛΥΣΗ ΑΛΓΟΡΙΘΜΩΝ ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΑΝΑΛΥΣΗ ΑΛΓΟΡΙΘΜΩΝ Ενότητα 13: Αλγόριθμοι-Μεγάλων ακεραίων- Εκθετοποίηση- Πολλαπλασιασμός πινάκων -Strassen Μαρία Σατρατζέμη Τμήμα Εφαρμοσμένης Πληροφορικής Άδειες Χρήσης Το παρόν εκπαιδευτικό

Διαβάστε περισσότερα

Λογική Σχεδίαση Ι - Εξεταστική Φεβρουαρίου 2013 Διάρκεια εξέτασης : 160 Ονοματεπώνυμο : Α. Μ. Έτος σπουδών:

Λογική Σχεδίαση Ι - Εξεταστική Φεβρουαρίου 2013 Διάρκεια εξέτασης : 160 Ονοματεπώνυμο : Α. Μ. Έτος σπουδών: Λογική Σχεδίαση Ι - Εξεταστική Φεβρουαρίου 23 Διάρκεια εξέτασης : 6 Ονοματεπώνυμο : Α. Μ. Έτος σπουδών: Θέμα (,5 μονάδες) Στις εισόδους του ακόλουθου κυκλώματος c b a εφαρμόζονται οι κάτωθι κυματομορφές.

Διαβάστε περισσότερα