Εργαστήριο 5: υαδική Αρίθµηση, Αθροιστές

Save this PDF as:
 WORD  PNG  TXT  JPG

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "Εργαστήριο 5: υαδική Αρίθµηση, Αθροιστές"

Transcript

1 24/10/2005 1:32 µµ 1 of 8 ΗΥ-120: Ψηφιακή Σχεδίαση Φθινόπωρο 2005 Τµ. Επ. Υπολογιστών Πανεπιστήµιο Κρήτης Εργαστήριο 5: υαδική Αρίθµηση, Αθροιστές 31 Οκτωβρίου - 4 Νοεµβρίου 2005 ιαγωνισµός Προόδου: Σάββατο 12 Νοεµβρίου 2005 (ώρα µάλλον 9:30-11:30) [Βιβλίο (Wakerly): προαιρετικά µπορείτε να διαβάσετε τις παραγράφους (σελίδες 31-40), και τις παραγράφους (σελ )]. Ασκήσεις 4.7 και 4.8 στην Άλγεβρα Boole [Θυµηθείτε ότι θα παραδώσετε µαζί µε την αναφορά σας αυτού του εργαστηρίου και τις απαντήσεις σας στις ασκήσεις 4.7 και 4.8 της προηγούµενης βδοµάδας]. 5.1 υαδική Αρίθµηση: Μία δυαδική λέξη αποτελούµενη από n bits µπορεί να αναπαραστήσει ένα από 2 n διακριτά στοιχεία, µε τη χρήση ενός κώδικα που να αντιστοιχίζει (αυθαίρετα) τον κάθε συνδυασµό των bits στο κάθε επιθυµητό στοιχείο. Με τον ίδιο αυτό τρόπο, οι δυαδικές λέξεις µπορούν να αναπαραστήσουν αριθµούς, αρκεί να επιλέξουµε τον επιθυµητό κώδικα. Γιά την αναπαράσταση των µη-αρνητικών ακεραίων (non-negative integers) (άλλως: "µη προσηµασµένων ακεραίων" - unsigned integers) χρησιµοποιείται καθολικά η κωδικοποίηση του δυαδικού συστήµατος µέτρησης που αποτελεί κατ' ευθείαν µεταφορά στη "βάση 2" των όσων ισχύουν στη "βάση 10", δηλαδή στο δεκαδικό σύστηµα µέτρησης. Όπως ξέρουµε, ο δεκαδικός n-ψήφιος αριθµός "d n-1 d n-2...d 2 d 1 d 0 ", όπου τα "ψηφία" d i (γιά i=0, 1,..., n-1) είναι ακέραιοι αριθµοί µεταξύ του 0 και του 9, παριστάνει τον ακέραιο αριθµό: d n-1 10 n-1 + d n-2 10 n d d d Γιά παράδειγµα, ο συµβολισµός "14508", όταν ερµηνευτεί σαν δεκαδικός αριθµός, παριστάνει τον ακέραιο = Κατά εντελώς ανάλογο τρόπο, ο δυαδικός αριθµός µεγέθους n bits "b n-1 b n-2...b 2 b 1 b 0 ", όπου τα "bits" b i (γιά i=0, 1,..., n-1) είναι ακέραιοι αριθµοί µεταξύ του 0 και του 1, παριστάνει τον αριθµό: b n-1 2 n-1 + b n-2 2 n b b b Το bit b 0 λέγεται το λιγότερο σηµαντικό (least significant - LS) bit επειδή είναι ο συντελεστής της µικρότερης δύναµης του 2, και το bit b n-1 λέγεται το περισσότερο σηµαντικό (most significant - MS) bit του αριθµού επειδή είναι ο συντελεστής της µεγαλύτερης δύναµης του 2. Γιά παράδειγµα, η οκτάµπιτη δυαδική λέξη " ", όταν ερµηνευτεί σαν (δυαδικός) αριθµός, παριστάνει τον ακέραιο = = = 209 (δεκαδικό). Γενικότερα, ο n-ψήφιος αριθµός σε βάση H (όπου H είναι ένας ακέραιος µεγαλύτερος του 1) "h n-1 h n-2...h 2 h 1 h 0 ", όπου τα "ψηφία" h i (γιά i=0, 1,..., n-1) είναι ακέραιοι αριθµοί µεταξύ του 0 και του H-1, παριστάνει τον αριθµό: h n-1 H n-1 + h n-2 H n h 2 H 2 + h 1 H 1 + h 0 H 0 Στην καθηµερινή µας ζωή χρησιµοποιούµε δεκαδικούς αριθµούς, δηλαδή αριθµούς µε βάση H=10. Η µέτρηση του χρόνου (60 δευτερόλεπτα, 60 λεπτά, 12 ή 24 ώρες), καθώς και ορισµένες Αγγλοσαξωνικές µονάδες (π.χ. ένα πόδι = 12 ίντσες), είναι κατάλοιπα ενός (παλαιοτέρου;) δωδεκαδικού συστήµατος µέτρησης (βάση H=12). Τα ψηφιακά συστήµατα λειτουργούν µε δυαδικούς αριθµούς (βάση H=2). Επίσης, στην επιστήµη υπολογιστών χρησιµοποιούµε οκταδικούς (octal) αριθµούς (βάση H=8) και δεκαεξαδικούς (hexadecimal) αριθµούς (βάση H=16), επειδή η µετατροπή ανάµεσα σε αυτούς και τους δυαδικούς αριθµούς είναι απλούστατη, και, απ' την άλλη µεριά, οι οκταδικοί και δεκαεξαδικοί αριθµοί έχουν πολύ λιγότερα ψηφία από τους δυαδικούς, κι έτσι τους γράφει και τους διαβάζει πολύ ευκολότερα ο άνθρωπος. Οι οκταδικοί αριθµοί χρησιµοποιούν 8 ψηφία: τα ψηφία 0, 1, 2, 3, 4, 5, 6, και 7. Οι δεκαεξαδικοί αριθµοί χρησιµοποιούν 16 ψηφία: τα ψηφία 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A, B, C, D, E, και F. Έτσι, οι πρώτοι 65 αριθµοί στο δεκαδικό (decimal), δυαδικό (binary), οκταδικό (octal), και δεκαεξαδικό (hex) είναι αυτοί που φαίνονται στον παρακάνω πίνακα.

2 24/10/2005 1:32 µµ 2 of 8 Dec Binary Oct Hex Dec Binary Oct Hex Dec Binary Oct Hex A A A E B B F C C D D E E E F F F Η µετατροπή αριθµού µεταξύ δυαδικού, οκταδικού, και δεκαεξαδικού είναι εντελώς τετριµένη, βάσει της εξής παρατήρησης: Επειδή η βάση H = 8 = 2 3, κάθε ψηφίο ενός οκταδικού αριθµού αντιστοιχεί ακριβώς σε µιά τριάδα από bits του ίδιου αριθµού γραµµένου στο δυαδικό, ξεκινώντας από δεξιά. Οµοίως, επειδή η βάση H = 16 = 2 4, κάθε ψηφίο ενός δεκαεξαδικού αριθµού αντιστοιχεί ακριβώς σε µιά τετράδα από bits του ίδιου αριθµού γραµµένου στο δυαδικό, ξεκινώντας πάλι από δεξιά. Η µετατροπή αριθµού από το δυαδικό στο δεκαδικό µπορεί να γίνει όπως στο παράδειγµα στην αρχή της παραγράφου, προσθέτοντας δηλαδή τις δυνάµεις του 2 που αντιστοιχούν στους άσσους του αριθµού. Τέλος, η µετατροπή αριθµού από το δεκαδικό στο δυαδικό µπορεί να γίνει βάσει της παρατήρησης ότι αν ένας αριθµός είναι µονός (περιττός) τότε το λιγότερο σηµαντικό (LS) bit του θα είναι άσσος, ενώ αν ο αριθµός είναι ζυγός (άρτιος) τότε το LS bit του θα είναι µηδέν. Πράγµατι, αν ο αριθµός A είναι ο b n-1 b n-2...b 2 b 1 b 0, όπως παραπάνω, τότε διαιρώντας τον A διά 2 έχουµε: A/2 = b n-1 2 n-2 + b n-2 2 n b b ( b 0 / 2 ) Έτσι διαπιστώνουµε ότι το ακέραιο πηλίκο της διαίρεσης του A διά 2 είναι ο δυαδικός αριθµός b n-1 b n-2...b 2 b 1, ενώ το υπόλοιπο της διαίρεσης είναι το bit b 0. Με αυτόν τον τρόπο βρίσκουµε το λιγότερο σηµαντικό (LS) bit του A στο δυαδικό. Συνεχίζοντας µε τον ίδιο τρόπο, διαιρώντας το προηγούµενο ακέραιο πηλίκο διά 2, βρίσκουµε το επόµενο bit, b 1, κ.ο.κ. Ο τρόπος αυτός εύρεσης, µε µονοσήµαντο τρόπο, των bits της δυαδικής αναπαράστασης δοθέντα αριθµού αποδεικνύει και ότι η αναπαράσταση αυτή είναι µοναδική γιά τον κάθε αριθµό. Άσκηση 5.2: Μετατροπές Βάσης Αριθµών [Άσκηση στο χαρτί παράδοση µέσα στην αναφορά του εργαστηρίου]. (α) Θεωρήστε δεκαεξάµπιτους (16-bit) µη προσηµασµένους (unsigned) αριθµούς. Πόσα ψηφία θα έχουν αυτοί όταν εκφραστούν στο δεκαεξαδικό; Γιατί; Πόσα ψηφία στο οκταδικό; Γιατί; Στο οκταδικό, το αριστερότερό τους ψηφίο (περισσότερο σηµαντικό - most significant - MS) τι µπορεί να είναι µόνο; Γιατί; (β) Μετατρέψτε τους δεκαδικούς αριθµούς 9501 και σε δεκαεξάµπιτους δυαδικούς αριθµούς, δείχνοντας και τις ενδιάµεσες πράξεις που κάνετε. Στη συνέχεια, επαληθεύστε τις µετατροπές αυτές, βρίσκοντας από τους δυαδικούς αριθµούς τους δεκαδικούς στους οποίους αυτοί αντιστοιχούν. Τέλος, γράψτε τους δύο δεκαεξάµπιτους δυαδικούς αριθµούς που βρήκατε στο οκταδικό και στο δεκαεξαδικό, δείχνοντας καθαρά από που προκύπτει το κάθε ψηφίο του κάθε οκταδικού και δεκαεξαδικού αριθµού. (γ) Θεωρήστε τον εξαψήφιο δεκαεξαδικό αριθµό 8F2B7C. Πόσα bits έχει; Γιατί; Γράψτε τον στο δυαδικό και στη συνέχεια στο οκταδικό. 5.3 Πρόσθεση υαδικών Αριθµών: Αλγόριθµος "Κρατουµένου" Έστω ότι θέλουµε να προσθέσουµε τους δυαδικούς αριθµούς, µεγέθους n bits ο καθένας, A = a n-1 a n-2...a 2 a 1 a 0 και B = b n-1 b n-2...b 2 b 1 b 0. Προφανώς, από µαθηµατική άποψη, το άθροισµά τους είναι: A + B = (a n-1 +b n-1 ) 2 n-1 + (a n-2 +b n-2 ) 2 n (a 2 +b 2 ) (a 1 +b 1 ) (a 0 +b 0 ) 2 0 Το πρόβληµα είναι ότι αυτή η µαθηµατική απεικόνιση δεν µας δίνει µε άµεσο τρόπο τη δυαδική αναπαράσταση του αθροίσµατος, διότι οι συντελεστές (a i +b i ) των δυνάµεων του 2 (γιά i=0, 1,..., n-1)

3 24/10/2005 1:32 µµ 3 of 8 δεν είναι ακέραιοι αριθµοί µεταξύ του 0 και του 1, όπως πρέπει γιά τη δυαδική αναπαράσταση, αλλά είναι ακέραιοι αριθµοί µεταξύ του 0 και του 2, δηλαδή µπορούν να έχουν τρείς διαφορετικές τιµές ο καθένας. Γιά να βρούµε το άθροισµα σε µορφή δυαδικής αναπαράστασης πρέπει να ακολουθήσουµε µιά διαδικασία ("αλγόριθµο"!) ανάλογη της πρόσθεση µε "κρατούµενο" (carry) του δηµοτικού σχολείου. Ξεκινάµε από τη λιγότερο σηµαντική (LS) θέση (θέση 0), (a 0 +b 0 ). Εάν το άθροισµα αυτό είναι 0 ή 1, τότε το ονοµάζουµε s 0, και αυτό αποτελεί το λιγότερο σηµαντικό (LS) bit του αθροίσµατος. Εάν όµως a 0 +b 0 = 2, τότε εκφράζουµε το 2 στο δυαδικό (10), και εποµένως θέτουµε s 0 = 0 (αφού το άθροισµα είναι ζυγός αριθµός), και θυµόµαστε ότι µας έχει "περισσέψει" µιά ποσότητα (όταν µας προέκυψε στη θέση 0) = (όταν τη µεταφέρουµε στη θέση 1), την οποία και "κρατάµε" γιά να τη µεταφέρουµε στη θέση 1, ονοµάζοντας την c 1 (κρατούµενο - carry). Συνεχίζοντας µε τη θέση 1, πρέπει να προσθέσουµε τα bits a 1 και b 1 των δύο αριθµών, καθώς και το κρατούµενο c 1 που προέκυψε από τη θέση 0. Καθένας από αυτούς τους τρείς αριθµούς είναι 0 ή 1 (το κρατούµενο µπορεί να ήταν "2" στη θέση 0, αλλά όταν µεταφέρθηκε στη θέση 1 έγινε το µισό ("1"), διότι η θέση 1 έχει διπλάσια "σηµαντικότητα" (δύναµη του 2) από τη θέση 0). Αθροίζοντας αυτούς τους 3 αριθµούς, που καθένας τους είναι 0 ή 1, προκύπτει ένας αριθµός µεταξύ 0 και 3. Αν το άθροισµα αυτό είναι 0 ή 1, τότε το ονοµάζουµε s 1, και αυτό αποτελεί το bit του αθροίσµατος στη θέση 1. Εάν όµως a 1 +b 1 +c 1 είναι 2 ή 3, τότε το εκφράζουµε στο δυαδικό σαν έναν αριθµό των 2 bits (2 bits αρκούν!), ονοµάζουµε s 1 το δεξιό και c 2 το αριστερό από αυτά τα 2 bits, και θυµόµαστε ότι µας έχει "περισσέψει" µιά ποσότητα 2c (όταν µας προέκυψε στη θέση 1) = c (όταν τη µεταφέρουµε στη θέση 2), την οποία και "κρατάµε" γιά να τη µεταφέρουµε στη θέση 2. Από κει και πέρα, η διαδικασία (αλγόριθµος) της πρόσθεσης προχωρεί µε τον ίδιο τρόπο. Η παρατήρηση-κλειδί ("αναλλοίωτη συνθήκη" - invariant property) είναι ότι το "κρατούµενο εισόδου" c i στη θέση i είναι πάντα 0 ή 1. Την ιδιότητα αυτή την αποδείξαµε στη θέση i=1, και την αποδεικνύουµε στη συνέχεια επαγωγικά, από τη θέση i γιά τη θέση i+1: αφού το άθροισµα (a i +b i +c i ) είναι άθροισµα τριών αριθµών που καθένας τους είναι 0 ή 1, τότε το άθροισµα αυτό θα είναι µεταξύ 0 και 3, άρα µπορεί να εκφραστεί µε µοναδικό τρόπο σαν δυαδικός αριθµός των 2 bits, c i+1 2 i+1 + s i 2 i, όπου οι αριθµοί c i+1 και s i είναι µεταξύ 0 και 1. Από αυτόν τον αλγόριθµο πρόσθεσης, λοιπόν, προέκυψαν τα n bits αθροίσµατος s i (i από 0 έως n-1) και το ένα τελικό bit κρατουµένου c n, τα οποία n+1 bits είναι όλα 0 ή 1, και γιά τα οποία ισχύει, από τον αλγόριθµο µετασχηµατισµού της αρχικής µας σχέσης, ότι: A + B = c n 2 n + s n-1 2 n-1 + s n-2 2 n s s s Επειδή αυτή είναι µία νόµιµη αναπαράσταση του αθροίσµατος A+B στο δυαδικό σύστηµα, και επειδή η αναπαράσταση κάθε αριθµού στο δυαδικό σύστηµα είναι µοναδική, προκύπτει ότι αυτή είναι η αναπαράσταση του αθροίσµατος στο δυαδικό. Ο.Ε Ο Ψηφιακός Αθροιστής Η διαδικασία πρόσθεσης που διατυπώσαµε παραπάνω µεταφράζεται άµεσα σε ψηφιακό κύκλωµα όπως φαίνεται στο σχήµα. Το παράδειγµα εδώ αφορά την πρόσθεση δύο οκτάµπιτων δυαδικών αριθµών, A και B. Κάθε ορθογώνιο κουτί παριστά ένα κύκλωµα πρόσθεσης γιά µία θέση σηµαντικότητας των bits. Το δεξιό (LS) κύκλωµα είναι απλούστερο από τα άλλα, διότι έχει να προσθέσει µόνο δύο εισόδους (του ενός bit καθεµία) αυτό λέγεται "ηµιαθροιστής" (half-adder, "HA"). Το άθροισµα που υπολογίζει το εκφράζει σαν δύο bits: το bit s 0 που έχει τον ίδιο βαθµό σηµαντικότητας µε τις εισόδους (θέση 0), και το bit c 1 που έχει βαθµό σηµαντικότητας κατά 1 µεγαλύτερο αυτού των εισόδων. Τα υπόλοιπα 7 κυκλώµατα είναι κάπως πιό πολύπλοκα: πρέπει να προσθέσουν τρείς εισόδους (του ενός bit) το καθένα αυτά

4 24/10/2005 1:32 µµ 4 of 8 λέγονται "πλήρεις αθροιστές" (full-adders, "FA"). Ο ρόλος τους είναι να µετράνε πόσοι άσσοι υπάρχουν στις τρείς εισόδους τους και να εκφράζουν αυτό τον αριθµό στο δυαδικό, µε 2 bits, τα c i+1 και s i. Ο πίνακας αληθείας τους προκύπτει από αυτό τον ορισµό και φαίνεται στο σχήµα δίπλα. Παρατηρήστε ότι ο πίνακας αληθείας του αθροίσµατος, s, έχει τους άσσους σε σχήµα "σκακιέρας": καµία απλοποίηση δεν είναι εφικτή! Ο λόγος είναι ότι το s ισούται µε την "περιττή ισοτιµία" (odd parity) των εισόδων, δηλαδή το αν το πλήθος των άσσων στις εισόδους είναι περιττός (µονός) αριθµός. Οιαδήποτε δύο γειτονικά τετράγωνα στο χάρτη Karnaugh διαφέρουν µεταξύ τους κατά την τιµή µίας και µόνο µίας µεταβλητής εισόδου άρα, αλλάζοντας τιµή αυτή η µία µόνο είσοδος αλλάζει και η ισοτιµία της εισόδου από άρτια σε περιττή ή από περιττή σε άρτια, κι έτσι αλλάζει και το s. Κατά βάθος, η περιττή ισοτιµία είναι η επέκταση του αποκλειστικού-ή σε περισσότερες των δύο µεταβλητές εισόδου, και η παραπάνω ιδιότητά του είναι αυτή ακριβώς που το κάνει χρήσιµο σε διατάξεις όπως οι διακόπτες allez-retour και οι κώδικες ανίχνευσης σφαλµάτων: αν ένα οιοδήποτε bit εισόδου αλλάξει τιµή, ο κώδικας αυτός αλλάζει επίσης τιµή ( 1.4) Το κρατούµενο εξόδου του κάθε αθροιστή είναι είσοδος στον επόµενο προς τα "αριστερά" (προς MS) αθροιστή. Στην αριστερότερη (MS) θέση, το κρατούµενο εξόδου πρέπει να θεωρηθεί ότι αποτελεί το επόµενο σε σηµαντικότητα bit του αθροίσµατος, αφού το άθροισµα δύο οκτάµπιτων αριθµών (από 0 έως 255 καθένας) ενδέχεται να απαιτεί 9 bits γιά να παρασταθεί (άθροισµα από 0 έως 510). Ο οκτάµπιτος αθροιστής που µόλις σχεδιάσαµε είναι ένα συνδυαστικό κύκλωµα, διότι οι έξοδοί του, S, εξαρτώνται µόνο από τις παρούσες τιµές των εισόδων του, A και B, δηλαδή δεν έχει µνήµη. Όταν συνθέταµε συνδυαστικά κυκλώµατα είχαµε δεί τη µέθοδο του χάρτη Karnaugh, µε την οποία το κύκλωµα εκφράζονταν σαν το λογικό Ή κάµποσων όρων που ο καθένας τους ήταν το λογικό ΚΑΙ εισόδων ή συµπληρωµάτων τους. Ακολουθόντας τη µέθοδο αυτή µπορεί κανείς να φτιάξει το ένα από τα κουτιά του σχήµατος, όπως στη σελίδα 152 του βιβλίου. Όµως, αν προσπαθήσουµε να εφαρµόσουµε τη µέθοδο αυτή σε ολόκληρο τον (π.χ. οκτάµπιτο) αθροιστή, πρώτον ο χάρτης Karnaugh θα είναι τεραστίων διαστάσεων (2 16 τετράγωνα!), και δεύτερον το κύκλωµα που θα προέκυπτε θα ήταν εξωπραγµατικά τεράστιο. Αντ' αυτού, το κύκλωµα που σχεδιάσαµε εδώ, στο παραπάνω σχήµα, είναι πολύ διαφορετικό: αποτελείται από πολλά υποκυκλώµατα (ένα γιά κάθε θέση bit), όπου η έξοδος του ενός είναι είσοδος στο άλλο (κρατούµενα), δηλαδή πρόκειται γιά µιάν αλυσίδα πολλών κυκλωµάτων αντί γιά µόλις δύο επίπεδα πυλών (ΚΑΙ - Ή) που δίνει ο χάρτης Karnaugh. Το πλεονέκτηµα της νέας µεθόδου είναι η τεράστια απλοποίηση του κυκλώµατος. Το µειονέκτηµα είναι η µεγαλύτερη καθυστέρηση: γιά να προκύψουν τα τελευταία 2 MS bits του αθροίσµατος πρέπει πρώτα να τελειώσουν τη δουλειά τους, "σειριακά" ο ένας µετά τον άλλον, όλοι οι επιµέρους αθροιστές (ενός bit καθένας), από τη δεξιά µέχρι την αριστερή άκρη. Άσκηση 5.5: υαδική Πρόσθεση [Άσκηση στο χαρτί παράδοση µε την αναφορά του εργαστηρίου]. Προσθέστε στο δυαδικό, µε τον παραπάνω αλγόριθµο πρόσθεσης µε κρατούµενα, τους δύο δεκαεξάµπιτους δυαδικούς αριθµούς που βρήκατε στην άσκηση 5.2(β) όταν µετατρέψατε τους δεκαδικούς αριθµούς 9501 και στο δυαδικό. Στη συνέχεια, µετατρέψτε το δυαδικό άθροισµα που βρήκατε στο δεκαδικό, και επαληθεύστε ότι αυτό ισούται µε Άσκηση 5.6: Ηµιαθροιστής (Half-Adder), Πλήρης Αθροιστής (Full-Adder) Ονοµάσαµε ηµιαθροιστή (half-adder, HA) το κύκλωµα που προσθέτει δύο bits, a i και b i, και εκφράζει το άθροισµά τους σε µορφή ενός δυαδικού αριθµού 2 bits, c i+1 s i. Ονοµάσαµε πλήρη αθροιστή (full-adder, FA) το κύκλωµα που προσθέτει τρία bits, a i, b i, και c i, και εκφράζει το άθροισµά τους σε µορφή ενός δυαδικού αριθµού 2 bits, c i+1 s i. Εκτός από την κατ'ευθείαν σύνθεσή του βάσει των χαρτών Karnaugh στο δεύτερο σχήµα της 5.4 παραπάνω (βλ. και σελ. 152 βιβλίου), το κύκλωµα αυτό µπορεί να κατασκευαστεί και χρησιµοποιώντας ηµιαθροιστές όπως δείχνει το σχήµα εδώ: γιά να προσθέσω τρείς αριθµούς αρκεί να προσθέσω τους δύο πρώτους και στο άθροισµά τους να προσθέσω τον τρίτο. Κανονικά, πρέπει επίσης να προσθέσω και τα κρατούµενα. Όµως, µπορεί κανείς εύκολα να αποδείξει ότι το πολύ ένας από τους δύο ηµιαθροιστές του σχήµατος µπορεί να βγάζει

5 24/10/2005 1:32 µµ 5 of 8 κρατούµενο 1, κάθε φορά άρα, αντί γιά κύκλωµα πρόσθεσης των δύο επιµέρους κρατουµένων, αρκεί να χρησιµοποιηθεί µιά πύλη Ή. Γιά την άσκηση αυτή: a. b. c. Κατασκευάστε τον πίνακα αληθείας του ηµιαθροιστή, και αποδείξτε µ' αυτόν ότι ο ηµιαθροιστής µπορεί να υλοποιηθεί όπως δείχνει το σχήµα. Η επάνω πύλη στο σχήµα, της οποίας το σύµβολο µοιάζει µε πύλη Ή αλλά έχει διπλό τόξο στην αριστερή της πλευρά, είναι πύλη αποκλειστικού Ή ( 1.4). Γράψτε την απόδειξη της παραπάνω ιδιότητας σχετικά µε τα κρατούµενα εξόδου των δύο ηµιαθροιστών του πλήρους αθροιστή. Κατασκευάστε τον πίνακα αληθείας του κυκλώµατος µε τους δύο ηµιαθροιστές και την πύλη Ή που φαίνεται στο σχήµα, και συγκρίνετέ τον µε τον πίνακα αληθείας του πλήρη αθροιστή που φαίνονταν στο δεύτερο σχήµα της 5.4 παραπάνω, αποδεικνύοντας έτσι ότι το κύκλωµα του σχήµατος υλοποιεί όντως έναν πλήρη αθροιστή. Πείραµα 5.7: Κατασκευή Ηµιαθροιστή και Πλήρη Αθροιστή Κατασκευάστε και ελέγξτε έναν ηµιαθροιστή, και στη συνέχεια προσθέστε άλλον έναν ηµιαθροιστή και την πύλη Ή όπως στο παραπάνω κύκλωµα της 5.6 προκειµένου να φτιάξτε και να ελέγξτε έναν πλήρη αθροιστή. Χρησιµοποιήστε, από τα chips που σας έχουν δοθεί ( 3.6) ένα chip 7408 (πύλες AND), ένα chip 7432 (πύλες OR), και ένα chip 7486 που περιέχει 4 πύλες Αποκλειστικού-Ή (XOR). Οι ακροδέκτες των chips αυτών φαίνονται στο σχήµα. Πρίν φτάσετε στο εργαστήριο δείξτε τις συνδέσεις που πρέπει να γίνουν σ' αυτά τα chips προκειµένου να υλοποιήστε έναν ηµιαθροιστή, και στη συνέχεια ένα πλήρη αθροιστή. Ακολουθήστε το µοντέλο του σχήµατος της 4.10 γιά το σχεδιάγραµµα του κυκλώµατός σας. Στο εργαστήριο, κατασκευάστε τα κυκλώµατα αυτά, αφήνοντας χώρο στην πλακέτα συνδέσεων γιά ακόµα ένα chip 7408 και ένα chip 7486, καθώς και ένα ακόµα chip προς την πλευρά των εξόδων γιά το πείραµα 5.8. Θυµηθείτε τις οδηγίες κατασκευής και αποσφαλµάτωσης της Ελέγξτε τη σωστή λειτουργία, πρώτα του ηµιαθροιστή και µετά του πλήρη αθροιστή, τροφοδοτώντας τις εισόδους τους από τους διακόπτες Q, M, N, και παρακολουθώντας τις εξόδους τους στις LED 0 και 1. Όταν τελειώσετε µην χαλάσετε το κύκλωµά σας, διότι θα το χρειαστείτε στο πείραµα Πείραµα 5.8: Chip Αποκωδικοποίησης Οθόνης 7 Τµηµάτων Τα κυκλώµατα αποκωδικοποίησης τεσσάρων bits γιά να οδηγήσουν τον ενδείκτη 7 τµηµάτων που είδαµε στην άσκηση 4.5 ήταν πολύ πολύπλοκα γιά να τα φτιάξουµε στην πλακέτα µας, ξεκινόντας µε απλές πύλες AND, OR, και NOT. Γι' αυτό θα τα πάρουµε έτοιµα! Το chip MC14511B κάνει περίπου τη δουλειά του κυκλώµατος της άσκησης 4.5 συν µερικές ακόµα. Πρόκειται γιά έναν αποκωδικοποιητή από "BCD" (binary-coded decimal - δεκαδικό σε δυαδική κωδικοποίηση) σε οθόνη 7 τµηµάτων ( 2.1). Ο κώδικας BCD αποτελείται από 4 bits τα οποία παίρνουν µόνο τις τιµές από 0000 έως 1001 που είδαµε στην άσκηση 4.4. Το chip MC14511B έχει 7 εξόδους, οι οποίες οδηγούν κατ' ευθείαν τις LED's a, b, c, d, e, f και g της οθόνης 7 τµηµάτων, µε τον τρόπο που έδειχνε η άσκηση 4.5 (µόνο που το "7" δεν έχει αριστερή κατακόρυφη γραµµή). Επιπλέον, το chip MC14511B σβήνει εντελώς την οθόνη όταν στην είσοδό του δοθεί ένας από τους υπόλοιπους 6 κώδικες, από 1010 έως 1111 (δηλαδή δεν έχει "συνθήκες αδιαφορίας" - 4.4). Μερικές ακόµα δυνατότητές του θα αναφερθούν παρακάτω, αλλά δεν θα τις χρησιµοποιήσουµε εµείς. Λεπτοµερείς πληροφορίες γιά το chip αυτό µπορείτε να βρείτε στη διεύθυνση που ανέφερε η 3.6 ή π.χ. στη διεύθυνση Οι ακροδέκτες του chip MC14511B φαίνονται στο σχήµα. Η ηλεκτρική τροφοδοσία του chip γίνεται από το κάτω δεξιά ποδαράκι (αριθµός 8) γιά τον αρνητικό πόλο (γείωση) και από το πάνω αριστερό (αριθµός 16) γιά το θετικό πόλο. Τα ποδαράκια 9 έως και 15 του MC14511B είναι οι 7 έξοδοί του, που προορίζονται να οδηγούν κατ' ευθείαν τις 7 LED's συνδέστε τα στις επαφές a, b, c, d, e, f και g της καλωδιοταινίας, προσέχοντας τη διαφορετική σειρά. Το ποδαράκι 3 είναι είσοδος, και είναι το αρνητικό (συµπλήρωµα) του σήµατος LT - lamp test, που προορίζεται γιά τον έλεγχο µήπως κάποια λυχνία έχει

6 24/10/2005 1:32 µµ 6 of 8 καεί: όταν ενεργοποιείται πρέπει να ανάβουν όλες οι λυχνίες --όποια δεν ανάβει έχει καεί. Εµείς δεν θα το χρησιµοποιήσουµε, δηλαδή LT=0, δηλαδή LT'=1, άρα πρέπει να τροφοδοτήσετε το ποδαράκι 3 µε ψηλή τάση, δηλαδή να το συνδέσετε στο θετικό πόλο του τροφοδοτικού. Το ποδαράκι 4 είναι είσοδος, και είναι το αρνητικό του σήµατος BI - blanking input, που προορίζεται γιά να σβήνει την οθόνη όποτε θέλουµε να τη σβήνουµε (ανεξαρτήτως κώδικα εισόδου) εµείς δεν θα το χρησιµοποιήσουµε, δηλαδή BI=0, δηλαδή BI'=1, άρα και το ποδαράκι 4 πρέπει να το συνδέσετε στη θετική τροφοδοσία. Το ποδαράκι 5 είναι η είσοδος LE - latch enable, που προορίζεται γιά να αποθηκεύεται ο κώδικας εισόδου σε 4 εσωτερικά flip-flops, ούτως ώστε να παραµένει η οθόνη στεθερή στην ένδειξη που είχε επιλεγεί παλαιότερα µέσω των εισόδων, ανεξάρτητα αν οι είσοδοι αυτές τώρα έχουν αλλάξει εµείς δεν θα το χρησιµοποιήσουµε, δηλαδή LE=0, άρα και το ποδαράκι 5 πρέπει να το συνδέσετε στην αρνητική τροφοδοσία, δηλαδή στη γείωση. Τέλος, τα ποδαράκια 1, 2, 6, και 7 είναι οι είσοδοι του κώδικα BCD που δίνουµε γιά να ελέγχουµε τον αριθµό στην οθόνη. Το MC14511B χρησιµοποιεί το συµβολισµό DCBA γιά τα 4 αυτά bits, δηλαδή "D" (ποδαράκι 6) είναι το περισσότερο σηµαντικό (MS) bit, και "A" (ποδαράκι 7) είναι το λιγότερο σηµαντικό (LS) bit. Τροφοδοτήστε αυτούς τους 4 ακροδέκτες από τους διακόπτες Q (MS bit), M, N, και A (LS bit), και ελέξγτε τι αποτέλεσµα φέρνουν οι 16 συνδυασµοί των 4 αυτών εισόδων στην ένδειξη 7 τµηµάτων. Άσκηση 5.9: Ταχύτητα υαδικής Πρόσθεσης [Άσκηση στο χαρτί παράδοση µέσα στην αναφορά του εργαστηρίου]. Θεωρήστε ότι η κάθε λογική πύλη έχει καθυστέρηση 75 ps, δηλαδή η έξοδός της παίρνει τη σωστή καινούργια τιµή 75 ps µετά την αλλαγή µιάς εισόδου σε µιά νέα "σωστή" τιµή. Στην πράξη, η καθυστέρηση µιάς πύλης κυµαίνεται σε µιά ευρεία περιοχή τιµών, εξαρτώµενη από πολλούς παράγοντες πάντως, η τιµή που υποθέτουµε --λιγότερο από ένα δέκατο του δισεκατοµµυριοστού του δευτερολέπτου-- είναι αντιπροσωπευτική του τι συµβαίνει µέσα σ' ένα σύγχρονο (2004) επεξεργαστή µε ρολόϊ 1 GHz ή λίγο παραπάνω. Προσοχή: η τιµή που υποθέτουµε είναι πολύ µικρότερη από την καθυστέρηση των πυλών των chips 7408, 7432, και 7486, πρώτ' απ' όλα επειδή εκείνες οι καθυστερήσεις αφορούν σήµατα που είναι έξω από το chip, ενώ εδώ µιλάµε γιά σήµατα µέσα στο ίδιο chip, και δεύτερον επειδή εδώ υποθέτουµε πιό σύγχρονη τεχνολογία κατασκευής. Υπενθύµιση: τα υποπολλαπλάσια της µονάδας είναι: m - milli - χιλιοστό µ - micro - εκατοµµυριοστό n - nano - δισεκατοµµυριοστό p - pico - τρισεκατοµµυριοστό f - femto - τετράκις εκατοµµυριοστό a - atto - πεντάκις εκατοµµυριοστό (α) Πόσες πύλες µεσολαβούν από την είσοδο κρατουµένου του πλήρη αθροιστή της άσκησης 5.6 µέχρι την έξοδο κρατουµένου του; Πολλαπλασιάστε τον αριθµό αυτό επί 75 ps γιά να βρείτε την κατά προσέγγιση καθυστέρηση ενός bit της πρόσθεσης. [Γιά όσους θέλουν να προσέξουν τις λεπτοµέρειες, ο αριθµός αυτός πυλών είναι διαφορετικός από τον αριθµό πυλών που µεσολαβούν από τις εισόδους a i και b i µέχρι την έξοδο κρατουµένου. Αν το σκεφτείτε κατά βάθος, γιά όλα τα bits του αθροιστή πλην των ακραίων µας ενδιαφέρει ο πρώτος αριθµός. Ο δεύτερος αριθµός µας ενδιαφέρει µόνο γιά το λιγότερο σηµαντικό bit, ενώ γιά το περισσότερο σηµαντικό µας ενδιαφέρει ο αριθµός πυλών που µεσολαβούν από την είσοδο κρατουµένου µέχρι τις δύο εξόδους του αθροιστή]. (β) Θεωρήστε έναν αθροιστή λέξεων των 64 bits, όπως αυτοί που υπάρχουν στους σύγχρονους 64-µπιτους επεξεργαστές. Τι καθυστέρηση θα είχε ένας τέτοιος αθροιστής αν ήταν κατασκευασµένος από µιάν αλυσίδα 64 πλήρων αθροιστών σαν αυτούς του (α), όπως έδειχνε το σχήµα της σελίδας 3; Γιά απλότητα, θεωρήστε ότι ο ηµιαθροιστής του δεξιού bit έχει κι αυτός την ίδια καθυστέρηση. (γ) Αν η περίοδος του ρολογιού του επεξεργαστή ήταν περίπου ίση µε την καθυστέρηση του αθροιστή (όπως συχνά είναι), τι συχνότητα ρολογιού θα είχε αυτός ο επεξεργαστής; Πώς συγκρίνεται αυτή µε τις συχνότητες ρολογιών των σύγχρονων επεξεργαστών; [Ευτυχώς, υπάρχουν τρόποι να γίνονται πολύ γρηγορότερα οι προσθέσεις, γι' αυτό και οι επεξεργαστές είναι τόσο γρήγοροι όσο είναι!...]

7 24/10/2005 1:32 µµ 7 of Πρόσθεση πολλών Αριθµών Όταν θέλουµε να βρούµε το άθροισµα πολλών αριθµών, µπορούµε είτε να χρησιµοποιήσουµε έναν αθροιστή κατ' επανάληψη, όπως θα δούµε αργότερα, όταν θα µιλάµε γιά "ακολουθιακά" --δηλ. όχι συνδυαστικά-- κυκλώµατα, ή να χρησιµοποιήσουµε πολλούς αθροιστές, όπως δείχνει το σχήµα. Στο παράδειγµα του σχήµατος εδώ, ζητάµε το άθροισµα S των τεσσάρων αριθµών K, L, M, και N, άρα πρέπει να κάνουµε τρείς προσθέσεις. Με την πάνω αριστερά διάταξη (σε σχήµα καταρράκτη - cascade), ο πρώτος αθροιστής προσθέτει τους K και L, ο δεύτερος προσθέτει το άθροισµα K+L µε τον M, και ο τρίτος βρίσκει το άθροισµα του K+L+M µε τον N. Με την πάνω δεξιά διάταξη (σε σχήµα δένδρου - tree), βρίσκουµε πρώτα τα αθροίσµατα K+L και M+N, και στη συνέχεια τα προσθέτουµε. Εάν θεωρήσουµε, π.χ., ότι οι αριθµοί K, L, M, N είναι οκτάµπιτοι, δηλαδή µεταξύ 0 και 255 καθένας, τότε το άθροισµά τους µπορεί να κυµαίνεται από 0 έως 1020, άρα χρειάζονται 10 bits γιά να παρασταθεί. Παρ' ότι και οι δύο διατάξεις χρησιµοποιούν το ίδιο πλήθος αθροιστών, η δενδροειδής είναι γενικά προτιµότερη, διότι συνήθως δίνει µικρότερη συνολική καθυστέρηση (αν και, όπως δείχνει το κάτω µέρος του σχήµατος, η συνολική καθυστέρηση, όταν χρησιµοποιήσουµε αθροιστές του τύπου της παραγράφου 5.4, δεν είναι τόσο άσχηµη όσο δείχνει το πάνω µέρος του σχήµατος). Στο κάτω µέρος του σχήµατος φαίνεται η δενδροειδής διάταξη των τριών αθροιστών, όπου έχουµε αναλύσει τον κάθε αθροιστή σε κυκλώµατα του ενός bit, όπως κάναµε παραπάνω στην παράγραφο 5.4 γιά να χωράει το σχήµα, περιοριστήκαµε σε τρίµπιτους αριθµούς, αντί 8 bits που είχαν στο επάνω µέρος του σχήµατος. Προσέξτε ότι όλα τα bits της ίδιας "σηµαντικότητας" (δηλαδή που είναι συντελεστές της ίδιας δύναµης του 2) --π.χ. τα k 1, l 1, m 1, n 1 -- προστίθενται µεταξύ τους µε πλήρεις αθροιστές (FA) αυτής της "σηµαντικότητας", δηλαδή τα ενδιάµεσα αθροίσµατα που παράγουν αυτά τα κυκλώµατα FA έχουν την ίδια αυτή σηµαντικότητα 1, και προστίθενται µεταξύ τους (ή θα µπορούσαν να προστεθούν και µε τα bits ίδιας σηµαντικότητας άλλων αριθµών, π.χ. p 1 ) γιά να παράγουν το bit s 1 του αθροίσµατος που έχει κι αυτό την ίδια σηµαντικότητα 1. Όµως, τα κρατούµενα εξόδου όλων αυτών των κυκλωµάτων FA έχουν σηµαντικότητα κατά ένα µεγαλύτερη, διότι αποτελούν συντελεστές της επόµενης προς τα αριστερά δύναµης του 2, άρα πρέπει να αθροιστούν µε τα bits εισόδου της αντίστοιχης σηµαντικότητας 2, εδώ, δηλαδή µε τα k 2, l 2, m 2, και n 2. Οι προσθέσεις αυτών των 7 bits σηµαντικότητας 2 (4 bits εισόδου και 3 κρατούµενα) πρέπει να γίνουν σε κυκλώµατα FA (ή HA) σηµαντικότητας 2, µε οιαδήποτε σειρά ή σε οιοδήποτε µίγµα προτιµάµε. Πείραµα 5.11: Μετρητής Πλήθους πατηµένων ιακοπτών Σχεδιάστε και κατασκευάστε ένα κύκλωµα µε έξι (6) εισόδους που να µετράει πόσες από αυτές ισούνται µε 1, και να δείχνει το πλήθος αυτό, σαν δεκαδικό αριθµό, στην οθόνη 7 τµηµάτων. Μας ενδιαφέρει µόνο το πλήθος των "αναµένων" εισόδων και όχι το ποιές από αυτές είναι αναµένες (ισούνται µε 1). Άρα, το αποτέλεσµα θα είναι ένας αριθµός από 0 έως 6, τον οποίο το κύκλωµά σας πρέπει κατ' αρχάς να υπολογίσει σαν τρίµπιτο δυαδικό αριθµό, µεταξύ 000 και 110 στη συνέχεια, µε τον αριθµό αυτό θα οδηγήστε τον αποκωδικοποιητή BCD σε ενδείκτη 7 τµηµάτων του πειράµατος 5.8 παραπάνω. Εάν όταν φτάσετε σε αυτό το πείραµα, στο εργαστήριο, είναι η ώρα περασµένη και κινδυνεύετε να µην προλάβετε να κατασκευάσετε το πλήρες κύκλωµα µε τις 6 εισόδους, ξεκινήστε µε ένα υποσύνολό του που να µετράει τους άσσους µεταξύ τεσσάρων (4) µόνο εισόδων, και στη συνέχεια, αν αυτό δουλεύει σωστά και έχετε χρόνο, συµπληρώστε το σε 6 εισόδους. Ακολουθήστε την εξής στρατηγική: θεωρήστε ότι κάθε είσοδος είναι ένας (µονόµπιτος!) δυαδικός αριθµός άρα, πρέπει να προσθέσετε έξι (6) δυαδικούς αριθµούς του 1 bit καθένας, και να βγάλετε ένα άθροισµα των 3 bits (το οποίο ποτέ δεν θα υπερβαίνει το 110). Μπορείτε να χρησιµοποιήστε το κύκλωµα της προηγουµένης παραγράφου 5.10 κατάλληλα προσαρµοσµένο. Στη βαθµίδα σηµαντικότητας 0 του κυκλώµατος, µπορείτε να προσθέσετε τους έξι αριθµούς είτε ανά δύο µέσω τριών ηµιαθροιστών, είτε ανά τρείς µέσω δύο πλήρων αθροιστών στη συνέχεια, τα τρία ή δύο αθροίσµατα σηµαντικότητας 0 πρέπει να προστεθούν µεταξύ τους, κατάλληλα. Τα κρατούµενα εξόδου από τους αθροιστές σηµαντικότητας 0 θα

8 24/10/2005 1:32 µµ 8 of 8 αποτελούν εισόδους στη βαθµίδα σηµαντικότητας 1. Πόσα είναι αυτά; Με τι κύκλωµα θα τα προσθέσετε; Μήπως ισχύει κάποια ιδιότητα όπως π.χ. ότι αποκλείεται να είναι ποτέ όλα τους ταυτόχρονα 1; Βάσει αυτής της ιδιότητας προκύπτει κάποια απλοποίηση του κυκλώµατος; Ποιό από όλα τα κυκλώµατα είναι φτηνότερο στην κατασκευή; Εξετάστε τις εναλλακτικές λύσεις πρίν φτάστε στο εργαστήριο, γράψτε τα συµπεράσµατά σας στην αναφορά σας, καταλήξτε σε µία λύση και σχεδιάστε την, πρώτα µε ηµιαθροιστές ή/και πλήρεις αθροιστές και πύλες, µετά µόνο µε ηµιαθροιστές και πύλες, και στη συνέχεια µε σκέτες πύλες. Στο τελευταίο στάδιο, ακολουθήστε το µοντέλο του σχήµατος της 4.10 γιά το σχεδιάγραµµα του κυκλώµατός σας. Στο εργαστήριο, κατασκευάστε το κύκλωµά σας και τροφοδοτήστε το από τους διακόπτες Q, M, N, A, B, και C. Συνδέστε τη δυαδική έξοδο (3 bits) του κυκλώµατος πρόσθεσης π.χ. στις LED 5, 6, και 7, και αν θέλετε συνδέστε και άλλες ενδιάµεσες εξόδους σε άλλες LED γιά σκοπούς παρακολούθησης - αποσφαλµάτωσης (βλ. και οδηγίες 4.11). Επίσης, συνδέστε τη δυαδική έξοδο (3 bits) του κυκλώµατος πρόσθεσης στις τρείς LS εισόδους "CBA" του αποκωδικοποιητή του πειράµατος 5.8, και τροφοδοτήστε την είσοδο D (4ο, MS bit) µε 0 (δηλαδή συνδέστε την στη γείωση). Ελέξτε αν η ένδειξη 7 τµηµάτων δείχνει πάντα το σωστό πλήθος πατηµένων διακοπτών, γιά όλους τους συνδυασµούς κατάστασης των διακοπτών (64 συνδυασµοί!). Εν συνεχεία, συνδέστε τη δυαδική έξοδο (3 bits) του κυκλώµατος πρόσθεσης στις εισόδους DCB (3 MS bits) αυτή τη φορά, και τροφοδοτήστε την είσοδο A µε 0. Αυτή η "ολίσθηση" προς τα αριστερά του πλήθους αναµένων εισόδων ισοδυναµεί µε πολλαπλασιασµό επί 2. Ελέξτε αν η ένδειξη 7 τµηµάτων ισούται πάντα µε το διπλάσιο του πλήθους αναµένων εισόδων, εκτός όταν το πλήθος αυτό είναι 5 ή 6, οπότε το διπλάσιό τους δεν παριστάνεται µε ένα µόνο δεκαδικό ψηφίο. Μετά, αλλάξτε την είσοδο A σε 1 (σύνδεση στη θετική τροφοδοσία). Ελέξτε αν η ένδειξη 7 τµηµάτων ισούται πάντα µε το διπλάσιο συν ένα του πλήθους αναµένων εισόδων (εκτός όταν ο αριθµός αυτός υπερβαίνει το 9) γιατί ισχύει αυτό; Up to the Home Page of CS-120 copyright University of Crete, Greece. last updated: 24 Oct. 2005, by M. Katevenis.

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Ψηφιακή Σχεδίαση Εργαστήριο 5: Δυαδική Αρίθμηση, Αθροιστές Μανόλης Γ.Η. Κατεβαίνης Τμήμα Επιστήμης Υπολογιστών Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται

Διαβάστε περισσότερα

Εργαστήριο 5: υαδική Αρίθµηση, Αθροιστές

Εργαστήριο 5: υαδική Αρίθµηση, Αθροιστές 1 of 7 13/11/2003 12:02 µµ ΗΥ-120: Ψηφιακή Σχεδίαση Φθινόπωρο 2003 Τµ. Επ. Υπολογιστών Πανεπιστήµιο Κρήτης Εργαστήριο 5: υαδική Αρίθµηση, Αθροιστές 18-22 Νοεµβρίου 2003 [Τα τµήµατα της ευτέρας 17/11 µεταφέρονται

Διαβάστε περισσότερα

4.1 Θεωρητική εισαγωγή

4.1 Θεωρητική εισαγωγή ΨΗΦΙΑΚΑ ΚΥΚΛΩΜΑΤΑ - ΕΡΓΑΣΤΗΡΙΑΚΗ ΑΣΚΗΣΗ 4 ΥΑ ΙΚΟΣ ΑΘΡΟΙΣΤΗΣ-ΑΦΑΙΡΕΤΗΣ Σκοπός: Να µελετηθούν αριθµητικά κυκλώµατα δυαδικής πρόσθεσης και αφαίρεσης. Να σχεδιαστούν τα κυκλώµατα από τους πίνακες αληθείας

Διαβάστε περισσότερα

5.1 Θεωρητική εισαγωγή

5.1 Θεωρητική εισαγωγή ΨΗΦΙΑΚΑ ΚΥΚΛΩΜΑΤΑ - ΕΡΓΑΣΤΗΡΙΑΚΗ ΑΣΚΗΣΗ 5 ΚΩ ΙΚΟΠΟΙΗΣΗ BCD Σκοπός: Η κατανόηση της µετατροπής ενός τύπου δυαδικής πληροφορίας σε άλλον (κωδικοποίηση/αποκωδικοποίηση) µε τη µελέτη της κωδικοποίησης BCD

Διαβάστε περισσότερα

Εργαστήριο ΨΗΦΙΑΚΗ ΛΟΓΙΚΗ. Εισαγωγή

Εργαστήριο ΨΗΦΙΑΚΗ ΛΟΓΙΚΗ. Εισαγωγή Εισαγωγή Εργαστήριο ΨΗΦΙΑΚΗ ΛΟΓΙΚΗ Ξεκινάµε την εργαστηριακή µελέτη της Ψηφιακής Λογικής των Η/Υ εξετάζοντας αρχικά τη µορφή των δεδοµένων που αποθηκεύουν και επεξεργάζονται οι υπολογιστές και προχωρώντας

Διαβάστε περισσότερα

1 η Θεµατική Ενότητα : Δυαδικά Συστήµατα

1 η Θεµατική Ενότητα : Δυαδικά Συστήµατα 1 η Θεµατική Ενότητα : Δυαδικά Συστήµατα Δεκαδικοί Αριθµοί Βάση : 10 Ψηφία : 0, 1, 2, 3, 4, 5, 6, 7, 8, 9 Αριθµοί: Συντελεστές Χ δυνάµεις του 10 7392.25 = 7x10 3 + 3x10 2 + 9x10 1 + 2x10 0 + 2x10-1 + 5x10-2

Διαβάστε περισσότερα

Εργαστήριο Ψηφιακής Σχεδίασης

Εργαστήριο Ψηφιακής Σχεδίασης ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ Εργαστήριο Ψηφιακής Σχεδίασης 8 Εργαστηριακές Ασκήσεις Χρ. Καβουσιανός Επίκουρος Καθηγητής 2014 Εργαστηριακές Ασκήσεις Ψηφιακής Σχεδίασης 2 Εργαστηριακές Ασκήσεις

Διαβάστε περισσότερα

Εισαγωγή στην επιστήµη των υπολογιστών ΑΡΙΘΜΗΤΙΚΑ ΣΥΣΤΗΜΑΤΑ

Εισαγωγή στην επιστήµη των υπολογιστών ΑΡΙΘΜΗΤΙΚΑ ΣΥΣΤΗΜΑΤΑ Εισαγωγή στην επιστήµη των υπολογιστών ΑΡΙΘΜΗΤΙΚΑ ΣΥΣΤΗΜΑΤΑ 1 Αριθµητικό Σύστηµα! Ορίζει τον τρόπο αναπαράστασης ενός αριθµού µε διακεκριµένα σύµβολα! Ένας αριθµός αναπαρίσταται διαφορετικά σε κάθε σύστηµα,

Διαβάστε περισσότερα

ΠΡΟΓΡΑΜΜΑ ΣΠΟΥ ΩΝ ΠΛΗΡΟΦΟΡΙΚΗΣ

ΠΡΟΓΡΑΜΜΑ ΣΠΟΥ ΩΝ ΠΛΗΡΟΦΟΡΙΚΗΣ Θεµατική Ενότητα ΠΡΟΓΡΑΜΜΑ ΣΠΟΥ ΩΝ ΠΛΗΡΟΦΟΡΙΚΗΣ Ακαδηµαϊκό Έτος 2006 2007 Γραπτή Εργασία #2 Ηµεροµηνία Παράδοσης 28-0 - 2007 ΠΛΗ 2: Ψηφιακά Συστήµατα ΠΡΟΤΕΙΝΟΜΕΝΕΣ ΛΥΣΕΙΣ Άσκηση : [5 µονάδες] Έχετε στη

Διαβάστε περισσότερα

Επανάληψη Βασικών Στοιχείων Ψηφιακής Λογικής

Επανάληψη Βασικών Στοιχείων Ψηφιακής Λογικής Επανάληψη Βασικών Στοιχείων Ψηφιακής Λογικής Αριθµοί Διαφόρων Βάσεων Δυαδικά Συστήµατα 2 Υπολογιστική Ακρίβεια Ο αριθµός των δυαδικών ψηφίων αναπαράστασης αριθµών καθορίζει την ακρίβεια των αριθµών σε

Διαβάστε περισσότερα

Σ ή. : υαδικά. Ε ό. ή Ενότητα

Σ ή. : υαδικά. Ε ό. ή Ενότητα 1η Θεµατική Θ ή Ενότητα Ε ό : υαδικά δ ά Συστήµατα Σ ή Μονάδα Ελέγχου Ψηφιακοί Υπολογιστές Αριθµητική Μονάδα Κρυφή Μνήµη Μονάδα Μνήµης ιαχείριση Μονάδων Ι/Ο ίσκοι Οθόνες ικτυακές Μονάδες Πληκτρολόγιο,

Διαβάστε περισσότερα

1. Βάσεις αριθμητικών συστημάτων 2. Μετατροπές μεταξύ ξύβάσεων 3. Αρνητικοί δυαδικοί αριθμοί 4. Αριθμητικές πράξεις δυαδικών αριθμών

1. Βάσεις αριθμητικών συστημάτων 2. Μετατροπές μεταξύ ξύβάσεων 3. Αρνητικοί δυαδικοί αριθμοί 4. Αριθμητικές πράξεις δυαδικών αριθμών ΑΡΧΙΤΕΚΤΟΝΙΚΗ ΥΠΟΛΟΓΙΣΤΩΝ MHXANIKOI Η/Υ ΚΑΙ ΠΛΗΡΟΦΟΡΙΚΗΣ ΥΑ ΙΚΟΙ ΑΡΙΘΜΟΙ (ΑΚΕΡΑΙΟΙ ΑΡΙΘΜΟΙ) Γ. Τσιατούχας Παράρτηµα A ιάρθρωση 1. Βάσεις αριθμητικών συστημάτων 2. Μετατροπές μεταξύ ξύβάσεων 3. Αρνητικοί

Διαβάστε περισσότερα

Πρόγραμμα Επικαιροποίησης Γνώσεων Αποφοίτων ΑΡΙΘΜΗΤΙΚΑ ΣΥΣΤΗΜΑΤΑ

Πρόγραμμα Επικαιροποίησης Γνώσεων Αποφοίτων ΑΡΙΘΜΗΤΙΚΑ ΣΥΣΤΗΜΑΤΑ Πρόγραμμα Επικαιροποίησης Γνώσεων Αποφοίτων ΕΝΟΤΗΤΑ Μ1 ΨΗΦΙΑΚΑ ΗΛΕΚΤΡΟΝΙΚΑ Εκπαιδευτής: Γ. Π. ΠΑΤΣΗΣ, Επικ. Καθηγητής, Τμήμα Ηλεκτρονικών Μηχανικών, ΤΕΙ Αθήνας ΑΡΙΘΜΗΤΙΚΑ ΣΥΣΤΗΜΑΤΑ 1. Ποια είναι η βάση

Διαβάστε περισσότερα

Υπολογιστές και Πληροφορία 1

Υπολογιστές και Πληροφορία 1 ΗΜΥ-20: Σχεδιασμός Ψηφιακών Συστημάτων Σκοπός του μαθήματος Λογικός Σχεδιασμός και Σχεδιασμός Η/Υ Εισαγωγή, Υπολογιστές και Πληροφορία Διδάσκουσα: Μαρία Κ. Μιχαήλ Βασικές έννοιες & εργαλεία που χρησιμοποιούνται

Διαβάστε περισσότερα

Ψηφιακοί Υπολογιστές

Ψηφιακοί Υπολογιστές 1 η Θεµατική Ενότητα : υαδικά Συστήµατα Ψηφιακοί Υπολογιστές Παλαιότερα οι υπολογιστές χρησιµοποιούνταν για αριθµητικούς υπολογισµούς Ψηφίο (digit) Ψηφιακοί Υπολογιστές Σήµατα (signals) : διακριτά στοιχεία

Διαβάστε περισσότερα

Ελίνα Μακρή

Ελίνα Μακρή Ελίνα Μακρή elmak@unipi.gr Μετατροπή Αριθμητικών Συστημάτων Πράξεις στα Αριθμητικά Συστήματα Σχεδίαση Ψηφιακών Κυκλωμάτων με Logism Άλγεβρα Boole Λογικές Πύλες (AND, OR, NOT, NAND, XOR) Flip Flops (D,

Διαβάστε περισσότερα

Εισαγωγή στην επιστήµη των υπολογιστών. Υπολογιστές και Δεδοµένα Κεφάλαιο 3ο Αναπαράσταση Αριθµών

Εισαγωγή στην επιστήµη των υπολογιστών. Υπολογιστές και Δεδοµένα Κεφάλαιο 3ο Αναπαράσταση Αριθµών Εισαγωγή στην επιστήµη των υπολογιστών Υπολογιστές και Δεδοµένα Κεφάλαιο 3ο Αναπαράσταση Αριθµών 1 Δεκαδικό και Δυαδικό Σύστηµα Δύο κυρίαρχα συστήµατα στο χώρο των υπολογιστών Δεκαδικό: Η βάση του συστήµατος

Διαβάστε περισσότερα

a -j a 5 a 4 a 3 a 2 a 1 a 0, a -1 a -2 a -3

a -j a 5 a 4 a 3 a 2 a 1 a 0, a -1 a -2 a -3 ΑΣΚΗΣΗ 5 ΑΘΡΟΙΣΤΕΣ - ΑΦΑΙΡΕΤΕΣ 5.1. ΣΚΟΠΟΣ Η πραγματοποίηση της αριθμητικής πρόσθεσης και αφαίρεσης με λογικά κυκλώματα. 5.2. ΘΕΩΡΗΤΙΚΟ ΜΕΡΟΣ ΣΥΣΤΗΜΑΤΑ ΑΡΙΘΜΗΣΗΣ: Κάθε σύστημα αρίθμησης χαρακτηρίζεται

Διαβάστε περισσότερα

Εισαγωγή στην Πληροφορική & τον Προγραμματισμό

Εισαγωγή στην Πληροφορική & τον Προγραμματισμό ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα Εισαγωγή στην Πληροφορική & τον Προγραμματισμό Ενότητα 3 η : Κωδικοποίηση & Παράσταση Δεδομένων Ι. Ψαρομήλιγκος Χ. Κυτάγιας Τμήμα

Διαβάστε περισσότερα

Ελίνα Μακρή

Ελίνα Μακρή Ελίνα Μακρή elmak@unipi.gr Μετατροπή Αριθμητικών Συστημάτων Πράξεις στα Αριθμητικά Συστήματα Σχεδίαση Ψηφιακών Κυκλωμάτων με Logism Άλγεβρα Boole Λογικές Πύλες (AND, OR, NOT, NAND, XOR) Flip Flops (D,

Διαβάστε περισσότερα

Αριθμητικά Συστήματα

Αριθμητικά Συστήματα Αριθμητικά Συστήματα Σε οποιοδήποτε αριθμητικό σύστημα, με βάση τον αριθμό Β, ένας ακέραιος αριθμός με πλήθος ψηφίων ν, εκφράζεται ως ακολούθως: α ν-1 α ν-2 α 1 α 0 = α ν-1 Β ν-1 + α ν-2 Β ν-2 + + α 1

Διαβάστε περισσότερα

ΠΛΗΡΟΦΟΡΙΚΗ I. 4 η ΔΙΑΛΕΞΗ Αριθμητικά Συστήματα

ΠΛΗΡΟΦΟΡΙΚΗ I. 4 η ΔΙΑΛΕΞΗ Αριθμητικά Συστήματα ΣΧΟΛΗ ΔΙΟΙΚΗΣΗΣ ΚΑΙ ΟΙΚΟΝΟΜΙΑΣ - ΤΜΗΜΑ ΔΙΟΙΚΗΣΗΣ ΕΠΙΧΕΙΡΗΣΕΩΝ ΕΙΣΑΓΩΓΙΚΗ ΚΑΤΕΥΘΥΝΣΗ ΤΟΥΡΙΣΤΙΚΩΝ ΕΠΙΧΕΙΡΗΣΕΩΝ ΚΑΙ ΕΠΙΧΕΙΡΗΣΕΩΝ ΦΙΛΟΞΕΝΙΑΣ ΠΛΗΡΟΦΟΡΙΚΗ I 4 η ΔΙΑΛΕΞΗ Αριθμητικά Συστήματα ΧΑΣΑΝΗΣ ΒΑΣΙΛΕΙΟΣ

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΣΧΟΛΗ ΘΕΤΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΚΑΙ ΤΕΧΝΟΛΟΓΙΑΣ ΠΡΟΓΡΑΜΜΑ ΣΠΟΥΔΩΝ ΠΛΗΡΟΦΟΡΙΚΗΣ ΘΕΜΑΤΙΚΗ ΕΝΟΤΗΤΑ: ΠΛΗ-21

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΣΧΟΛΗ ΘΕΤΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΚΑΙ ΤΕΧΝΟΛΟΓΙΑΣ ΠΡΟΓΡΑΜΜΑ ΣΠΟΥΔΩΝ ΠΛΗΡΟΦΟΡΙΚΗΣ ΘΕΜΑΤΙΚΗ ΕΝΟΤΗΤΑ: ΠΛΗ-21 ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΣΧΟΛΗ ΘΕΤΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΚΑΙ ΤΕΧΝΟΛΟΓΙΑΣ ΠΡΟΓΡΑΜΜΑ ΣΠΟΥΔΩΝ ΠΛΗΡΟΦΟΡΙΚΗΣ ΘΕΜΑΤΙΚΗ ΕΝΟΤΗΤΑ: ΠΛΗ-2 ΨΗΦΙΑΚΗ ΣΧΕΔΙΑΣΗ ΑΣΚΗΣΕΙΙΣ ΓΡΑΠΤΩΝ ΕΡΓΑΣΙΙΩΝ & ΘΕΜΑΤΩΝ ΕΞΕΤΑΣΕΩΝ ΣΥΝΤΕΛΕΣΤΕΣ

Διαβάστε περισσότερα

Δυαδικό Σύστημα Αρίθμησης

Δυαδικό Σύστημα Αρίθμησης Δυαδικό Σύστημα Αρίθμησης Το δυαδικό σύστημα αρίθμησης χρησιμοποιεί δύο ψηφία. Το 0 και το 1. Τα ψηφία ενός αριθμού στο δυαδικό σύστημα αρίθμησης αντιστοιχίζονται σε δυνάμεις του 2. Μονάδες, δυάδες, τετράδες,

Διαβάστε περισσότερα

Συστήματα Αρίθμησης. Συστήματα Αρίθμησης 1. PDF created with FinePrint pdffactory Pro trial version

Συστήματα Αρίθμησης. Συστήματα Αρίθμησης 1. PDF created with FinePrint pdffactory Pro trial version Συστήματα Αρίθμησης Στην καθημερινή μας ζωή χρησιμοποιούμε το δεκαδικό σύστημα αρίθμησης. Στο σύστημα αυτό χρησιμοποιούμε δέκα διαφορετικά σύμβολα τα :,, 2, 3, 4, 5, 6,7 8, 9. Για τον αριθμό 32 θα χρειαστούμε

Διαβάστε περισσότερα

1 η Θεµατική Ενότητα : Αριθµητικά Κυκλώµατα. Επιµέλεια διαφανειών: Χρ. Καβουσιανός

1 η Θεµατική Ενότητα : Αριθµητικά Κυκλώµατα. Επιµέλεια διαφανειών: Χρ. Καβουσιανός η Θεµατική Ενότητα : Αριθµητικά Κυκλώµατα Επιµέλεια διαφανειών: Χρ. Καβουσιανός Άθροιση + + + + a +b 2c+s + Κρατούµενο προηγούµενης βαθµίδας κρατούµενο άθροισµα Μεταφέρεται στην επόµενη βαθµίδα σηµαντικότητας

Διαβάστε περισσότερα

ΨΗΦΙΑΚΑ ΚΥΚΛΩΜΑΤΑ - ΕΡΓΑΣΤΗΡΙΑΚΗ ΑΣΚΗΣΗ 3

ΨΗΦΙΑΚΑ ΚΥΚΛΩΜΑΤΑ - ΕΡΓΑΣΤΗΡΙΑΚΗ ΑΣΚΗΣΗ 3 ΨΗΦΙΑΚΑ ΚΥΚΛΩΜΑΤΑ - ΕΡΓΑΣΤΗΡΙΑΚΗ ΑΣΚΗΣΗ 3 ΑΠΛΟΠΟΙΗΣΗ και ΥΛΟΠΟΙΗΣΗ ΛΟΓΙΚΩΝ ΣΥΝΑΡΤΗΣΕΩΝ Σκοπός: Η κατανόηση της σχέσης µιας λογικής συνάρτησης µε το αντίστοιχο κύκλωµα. Η απλοποίηση λογικών συναρτήσεων

Διαβάστε περισσότερα

100 ΕΡΩΤΗΣΕΙΣ ΜΕ ΤΙΣ ΑΝΤΙΣΤΟΙΧΕΣ ΑΠΑΝΤΗΣΕΙΣ ΓΙΑ ΤΟ ΜΑΘΗΜΑ ΨΗΦΙΑΚΑ ΚΥΚΛΩΜΑΤΑ

100 ΕΡΩΤΗΣΕΙΣ ΜΕ ΤΙΣ ΑΝΤΙΣΤΟΙΧΕΣ ΑΠΑΝΤΗΣΕΙΣ ΓΙΑ ΤΟ ΜΑΘΗΜΑ ΨΗΦΙΑΚΑ ΚΥΚΛΩΜΑΤΑ 100 ΕΡΩΤΗΣΕΙΣ ΜΕ ΤΙΣ ΑΝΤΙΣΤΟΙΧΕΣ ΑΠΑΝΤΗΣΕΙΣ ΓΙΑ ΤΟ ΜΑΘΗΜΑ ΨΗΦΙΑΚΑ ΚΥΚΛΩΜΑΤΑ 1) Να μετατρέψετε τον δεκαδικό αριθμό (60,25) 10, στον αντίστοιχο δυαδικό 11111,11 111001,01 111100,01 100111,1 111100,01 2)

Διαβάστε περισσότερα

Εργαστήριο 6: Προσηµασµένοι Ακέραιοι, Προσθαφαιρέτες, Flip-Flops

Εργαστήριο 6: Προσηµασµένοι Ακέραιοι, Προσθαφαιρέτες, Flip-Flops 1 of 6 18/11/2003 5:11 µµ ΗΥ-120: Ψηφιακή Σχεδίαση Φθινόπωρο 2003 Τµ. Επ. Υπολογιστών Πανεπιστήµιο Κρήτης Εργαστήριο 6: Προσηµασµένοι Ακέραιοι, Προσθαφαιρέτες, Flip-Flops 24-27 Νοεµβρίου 2003 ιαγωνισµός

Διαβάστε περισσότερα

Εισαγωγή στην επιστήμη των υπολογιστών. ΑΡΙΘΜΗΤΙΚΑ ΣΥΣΤΗΜΑΤΑ και Μετατροπές Αριθμών

Εισαγωγή στην επιστήμη των υπολογιστών. ΑΡΙΘΜΗΤΙΚΑ ΣΥΣΤΗΜΑΤΑ και Μετατροπές Αριθμών Εισαγωγή στην επιστήμη των υπολογιστών ΑΡΙΘΜΗΤΙΚΑ ΣΥΣΤΗΜΑΤΑ και Μετατροπές Αριθμών 1 Αριθμητικό Σύστημα Ορίζει τον τρόπο αναπαράστασης ενός αριθμού με διακεκριμένα σύμβολα Ένας αριθμός αναπαρίσταται διαφορετικά

Διαβάστε περισσότερα

Εισαγωγή στην Επιστήμη των Υπολογιστών

Εισαγωγή στην Επιστήμη των Υπολογιστών Εισαγωγή στην Επιστήμη των Υπολογιστών Ενότητα 2: Αποθήκευση Δεδομένων: Αριθμητική του Υπολογιστή, Αριθμητικά Συστήματα Μετατροπές, 2ΔΩ Τμήμα: Αγροτικής Οικονομίας & Ανάπτυξης Διδάσκων: Θεόδωρος Τσιλιγκιρίδης

Διαβάστε περισσότερα

Κυκλώµατα µε MSI. υαδικός Αθροιστής & Αφαιρέτης

Κυκλώµατα µε MSI. υαδικός Αθροιστής & Αφαιρέτης 5 η Θεµατική Ενότητα : Συνδυαστικά Κυκλώµατα µε MSI υαδικός Αθροιστής & Αφαιρέτης A i B i FA S i C i C i+1 D Σειριακός Αθροιστής Σειριακός Αθροιστής: απαιτεί 1 πλήρη αθροιστή, 1 στοιχείο µνήµης και παράγει

Διαβάστε περισσότερα

Εργαστήριο 6: Προσηµασµένοι Ακέραιοι, Προσθαφαιρέτες, Flip-Flops

Εργαστήριο 6: Προσηµασµένοι Ακέραιοι, Προσθαφαιρέτες, Flip-Flops ΗΥ-120: Ψηφιακή Σχεδίαση Φθινόπωρο 2003 Τµ. Επ. Υπολογιστών Πανεπιστήµιο Κρήτης Εργαστήριο 6: Προσηµασµένοι Ακέραιοι, Προσθαφαιρέτες, Flip-Flops 24-27 Νοεµβρίου 2003 ιαγωνισµός Προόδου: Σάββατο 29 Νοεµβρίου,

Διαβάστε περισσότερα

Αριθμητικά Συστήματα

Αριθμητικά Συστήματα Αριθμητικά Συστήματα Οργάνωση Δεδομένων (1/2) Bits: Η μικρότερη αριθμητική μονάδα ενός υπολογιστικού συστήματος, η οποία δείχνει δύο καταστάσεις, 0 ή 1 (αληθές η ψευδές). Nibbles: Μονάδα 4 bit που παριστά

Διαβάστε περισσότερα

Πληροφορική. Ενότητα 4 η : Κωδικοποίηση & Παράσταση Δεδομένων. Ι. Ψαρομήλιγκος Τμήμα Λογιστικής & Χρηματοοικονομικής

Πληροφορική. Ενότητα 4 η : Κωδικοποίηση & Παράσταση Δεδομένων. Ι. Ψαρομήλιγκος Τμήμα Λογιστικής & Χρηματοοικονομικής ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα Πληροφορική Ενότητα 4 η : Κωδικοποίηση & Παράσταση Δεδομένων Ι. Ψαρομήλιγκος Τμήμα Λογιστικής & Χρηματοοικονομικής Άδειες Χρήσης

Διαβάστε περισσότερα

Τετάρτη 5-12/11/2014. ΣΗΜΕΙΩΣΕΙΣ 3 ου και 4 ου ΜΑΘΗΜΑΤΟΣ ΕΙΔΙΚΟΤΗΤΑ: ΤΕΧΝΙΚΟΣ ΕΦΑΡΜΟΓΩΝ ΠΛΗΡΟΦΟΡΙΚΗΣ ΜΑΘΗΜΑ: ΑΡΧΙΤΕΚΤΟΝΙΚΗ Η/Υ Α ΕΞΑΜΗΝΟ

Τετάρτη 5-12/11/2014. ΣΗΜΕΙΩΣΕΙΣ 3 ου και 4 ου ΜΑΘΗΜΑΤΟΣ ΕΙΔΙΚΟΤΗΤΑ: ΤΕΧΝΙΚΟΣ ΕΦΑΡΜΟΓΩΝ ΠΛΗΡΟΦΟΡΙΚΗΣ ΜΑΘΗΜΑ: ΑΡΧΙΤΕΚΤΟΝΙΚΗ Η/Υ Α ΕΞΑΜΗΝΟ Τετάρτη 5-12/11/2014 ΣΗΜΕΙΩΣΕΙΣ 3 ου και 4 ου ΜΑΘΗΜΑΤΟΣ ΕΙΔΙΚΟΤΗΤΑ: ΤΕΧΝΙΚΟΣ ΕΦΑΡΜΟΓΩΝ ΠΛΗΡΟΦΟΡΙΚΗΣ ΜΑΘΗΜΑ: ΑΡΧΙΤΕΚΤΟΝΙΚΗ Η/Υ Α ΕΞΑΜΗΝΟ ΕΚΠΑΙΔΕΥΤΗΣ: ΤΡΟΧΙΔΗΣ ΠΑΝΑΓΙΩΤΗΣ 1. Παράσταση και οργάνωση δεδομένων

Διαβάστε περισσότερα

Εισαγωγή στην επιστήμη των υπολογιστών

Εισαγωγή στην επιστήμη των υπολογιστών Εισαγωγή στην επιστήμη των υπολογιστών Υπολογιστές και Δεδομένα Κεφάλαιο 3ο Αναπαράσταση Αριθμών www.di.uoa.gr/~organosi 1 Δεκαδικό και Δυαδικό Δεκαδικό σύστημα 2 3 Δεκαδικό και Δυαδικό Δυαδικό Σύστημα

Διαβάστε περισσότερα

Πράξεις με δυαδικούς αριθμούς

Πράξεις με δυαδικούς αριθμούς Ιόνιο Πανεπιστήμιο Τμήμα Πληροφορικής Εισαγωγή στην Επιστήμη των Υπολογιστών 25-6 Πράξεις με δυαδικούς αριθμούς (αριθμητικές πράξεις) http://di.ionio.gr/~mistral/tp/csintro/ Μ.Στεφανιδάκης Πράξεις με δυαδικούς

Διαβάστε περισσότερα

6.1 Θεωρητική εισαγωγή

6.1 Θεωρητική εισαγωγή ΨΗΦΙΑΚΑ ΚΥΚΛΩΜΑΤΑ - ΕΡΓΑΣΤΗΡΙΑΚΗ ΑΣΚΗΣΗ 6 ΑΠΟΚΩ ΙΚΟΠΟΙΗΤΕΣ ΚΑΙ ΠΟΛΥΠΛΕΚΤΕΣ Σκοπός: Η κατανόηση της λειτουργίας των κυκλωµάτων ψηφιακής πολυπλεξίας και αποκωδικοποίησης και η εξοικείωση µε τους ολοκληρωµένους

Διαβάστε περισσότερα

Περιεχόμενα. Πρώτο Κεφάλαιο. Εισαγωγή στα Ψηφιακά Συστήματα. Δεύτερο Κεφάλαιο. Αριθμητικά Συστήματα Κώδικες

Περιεχόμενα. Πρώτο Κεφάλαιο. Εισαγωγή στα Ψηφιακά Συστήματα. Δεύτερο Κεφάλαιο. Αριθμητικά Συστήματα Κώδικες Πρώτο Κεφάλαιο Εισαγωγή στα Ψηφιακά Συστήματα 1.1 Αναλογικά και Ψηφιακά Σήματα και Συστήματα... 1 1.2 Βασικά Ψηφιακά Κυκλώματα... 3 1.3 Ολοκληρωμένα κυκλώματα... 4 1.4 Τυπωμένα κυκλώματα... 7 1.5 Εργαλεία

Διαβάστε περισσότερα

Εισαγωγή στην Πληροφορική ΓΕΝΙΚΟ ΤΜΗΜΑ ΘΕΤΙΚΩΝ ΕΠΙΣΤΗΜΩΝ TEI ΧΑΛΚΙ ΑΣ

Εισαγωγή στην Πληροφορική ΓΕΝΙΚΟ ΤΜΗΜΑ ΘΕΤΙΚΩΝ ΕΠΙΣΤΗΜΩΝ TEI ΧΑΛΚΙ ΑΣ Εισαγωγή στην Πληροφορική 1 Περιεχόµενα - Κωδικοποιήσεις - Αριθµητικά Συστήµατα 2 Ηλεκτρονικός Υπολογιστής Είπαµε ότι είναι, µία Ηλεκτρονική Μηχανή, που δουλεύει κάτω από τον έλεγχο εντολών αποθηκευµένων

Διαβάστε περισσότερα

ΑΡΧΙΤΕΚΤΟΝΙΚΗ ΥΠΟΛΟΓΙΣΤΩΝ. Κεφάλαιο 3

ΑΡΧΙΤΕΚΤΟΝΙΚΗ ΥΠΟΛΟΓΙΣΤΩΝ. Κεφάλαιο 3 ΑΡΧΙΤΕΚΤΟΝΙΚΗ ΥΠΟΛΟΓΙΣΤΩΝ Κεφάλαιο 3 Κεντρική Μονάδα Επεξεργασίας Κεντρική Μονάδα Επεξεργασίας Μονάδα επεξεργασίας δεδομένων Μονάδα ελέγχου Μονάδα επεξεργασίας δεδομένων Δομή Αριθμητικής Λογικής Μονάδας

Διαβάστε περισσότερα

Συστήματα αρίθμησης. = α n-1 *b n-1 + a n-2 *b n-2 + +a 1 b 1 + a 0 όπου τα 0 a i b-1

Συστήματα αρίθμησης. = α n-1 *b n-1 + a n-2 *b n-2 + +a 1 b 1 + a 0 όπου τα 0 a i b-1 Συστήματα αρίθμησης Δεκαδικό σύστημα αρίθμησης 1402 = 1000 + 400 +2 =1*10 3 + 4*10 2 + 0*10 1 + 2*10 0 Γενικά σε ένα σύστημα αρίθμησης με βάση το b N, ένας ακέραιος αριθμός με n ψηφία παριστάνεται ως:

Διαβάστε περισσότερα

ΗΜΥ-210: Σχεδιασμός Ψηφιακών Συστημάτων

ΗΜΥ-210: Σχεδιασμός Ψηφιακών Συστημάτων ΗΜΥ-2: Σχεδιασμός Ψηφιακών Συστημάτων Χειμερινό Εξάμηνο 28 Αριθμητικές Συναρτήσεις και Κυκλώματα Διδάσκουσα: Μαρία Κ. Μιχαήλ Πανεπιστήμιο Κύπρου Τμήμα Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Πρόσθεση

Διαβάστε περισσότερα

ΕΙΣΑΓΩΓΗ ΣΤΟΥΣ ΥΠΟΛΟΓΙΣΤΕΣ. ΜΑΘΗΜΑ 2 ο. ΑΛΓΕΒΡΑ Boole ΛΟΓΙΚΑ ΚΥΚΛΩΜΑΤΑ

ΕΙΣΑΓΩΓΗ ΣΤΟΥΣ ΥΠΟΛΟΓΙΣΤΕΣ. ΜΑΘΗΜΑ 2 ο. ΑΛΓΕΒΡΑ Boole ΛΟΓΙΚΑ ΚΥΚΛΩΜΑΤΑ ΕΙΣΑΓΩΓΗ ΣΤΟΥΣ ΥΠΟΛΟΓΙΣΤΕΣ ΜΑΘΗΜΑ 2 ο ΑΛΓΕΒΡΑ Boole ΛΟΓΙΚΑ ΚΥΚΛΩΜΑΤΑ 2009-10 ΕΙΣΑΓΩΓΗ ΣΤΟΥΣ ΥΠΟΛΟΓΙΣΤΕΣ 1 Άλγεβρα Βοοle η θεωρητική βάση των λογικών κυκλωμάτων Η άλγεβρα Βοοle ορίζεται επάνω στο σύνολο

Διαβάστε περισσότερα

4 η Θεµατική Ενότητα : Συνδυαστική Λογική. Επιµέλεια διαφανειών: Χρ. Καβουσιανός

4 η Θεµατική Ενότητα : Συνδυαστική Λογική. Επιµέλεια διαφανειών: Χρ. Καβουσιανός 4 η Θεµατική Ενότητα : Συνδυαστική Λογική Επιµέλεια διαφανειών: Χρ. Καβουσιανός Λογικά Κυκλώµατα Ø Τα λογικά κυκλώµατα διακρίνονται σε συνδυαστικά (combinational) και ακολουθιακά (sequential). Ø Τα συνδυαστικά

Διαβάστε περισσότερα

Κεφάλαιο Τρία: Ψηφιακά Ηλεκτρονικά

Κεφάλαιο Τρία: Ψηφιακά Ηλεκτρονικά Κεφάλαιο Τρία: 3.1 Τι είναι αναλογικό και τι ψηφιακό µέγεθος Αναλογικό ονοµάζεται το µέγεθος που µπορεί να πάρει οποιαδήποτε τιµή σε µια συγκεκριµένη περιοχή τιµών π.χ. η ταχύτητα ενός αυτοκινήτου. Ψηφιακό

Διαβάστε περισσότερα

ΠΕΡΙΕΧΟΜΕΝΑ. Πρόλογος...9 ΚΕΦ. 1. ΑΡΙΘΜΗΤΙΚΑ ΣΥΣΤΗΜΑΤΑ - ΚΩΔΙΚΕΣ

ΠΕΡΙΕΧΟΜΕΝΑ. Πρόλογος...9 ΚΕΦ. 1. ΑΡΙΘΜΗΤΙΚΑ ΣΥΣΤΗΜΑΤΑ - ΚΩΔΙΚΕΣ ΠΕΡΙΕΧΟΜΕΝΑ Πρόλογος...9 ΚΕΦ. 1. ΑΡΙΘΜΗΤΙΚΑ ΣΥΣΤΗΜΑΤΑ - ΚΩΔΙΚΕΣ 1.1 Εισαγωγή...11 1.2 Τα κύρια αριθμητικά Συστήματα...12 1.3 Μετατροπή αριθμών μεταξύ των αριθμητικών συστημάτων...13 1.3.1 Μετατροπή ακέραιων

Διαβάστε περισσότερα

e-book ΛΟΓΙΚΗ ΣΧΕΔΙΑΣΗ ΑΣΚΗΣΕΙΣ

e-book ΛΟΓΙΚΗ ΣΧΕΔΙΑΣΗ ΑΣΚΗΣΕΙΣ e-book ΛΟΓΙΚΗ ΣΧΕΔΙΑΣΗ ΑΣΚΗΣΕΙΣ 1. Να μετατρέψετε τον δεκαδικό 16.25 σε δυαδικό. 2. Να μετατρέψετε τον δεκαδικό 18.75 σε δυαδικό και τον δεκαδικό 268 σε δεκαεξαδικό. 3. Να βρεθεί η βάση εκείνου του αριθμητικού

Διαβάστε περισσότερα

ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΠΛΗΡΟΦΟΡΙΚΗ

ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΠΛΗΡΟΦΟΡΙΚΗ ΤΕΙ ΙΟΝΙΩΝ ΝΗΣΩΝ ΤΜΗΜΑ ΕΦΑΡΜΟΓΩΝ ΠΛΗΡΟΦΟΡΙΚΗΣ ΣΤΗ ΔΙΟΙΚΗΣΗ ΚΑΙ ΣΤΗΝ ΟΙΚΟΝΟΜΙΑ 7 Ο ΜΑΘΗΜΑ ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΠΛΗΡΟΦΟΡΙΚΗ ΑΠΟΣΤΟΛΙΑ ΠΑΓΓΕ Περιεχόμενα 2 Δυαδικό Σύστημα Προσημασμένοι δυαδικοί αριθμοί Αφαίρεση

Διαβάστε περισσότερα

ΦΟΙΤΗΤΡΙΑ : ΒΟΥΛΓΑΡΙ ΟΥ ΜΑΡΙΑ, ΑΕΜ: 2109 ΕΠΙΒΛΕΠΩΝ : ΚΑΛΟΜΟΙΡΟΣ ΙΩΑΝΝΗΣ, ΕΠΙΚΟΥΡΟΣ ΚΑΘΗΓΗΤΗΣ

ΦΟΙΤΗΤΡΙΑ : ΒΟΥΛΓΑΡΙ ΟΥ ΜΑΡΙΑ, ΑΕΜ: 2109 ΕΠΙΒΛΕΠΩΝ : ΚΑΛΟΜΟΙΡΟΣ ΙΩΑΝΝΗΣ, ΕΠΙΚΟΥΡΟΣ ΚΑΘΗΓΗΤΗΣ Τίτλος: «Σχεδίαση και προσοµοίωση παράλληλης αριθµητικής λογικής µονάδας (ALU) για την επεξεργασία δυαδικών αριθµών εύρους 4-bit, µε το πρόγραµµα Multisim» ΦΟΙΤΗΤΡΙΑ : ΒΟΥΛΓΑΡΙ ΟΥ ΜΑΡΙΑ, ΑΕΜ: 2109 ΕΠΙΒΛΕΠΩΝ

Διαβάστε περισσότερα

Περίληψη. ΗΜΥ 210: Λογικός Σχεδιασµός, Εαρινό Εξάµηνο 2005. υαδική Αφαίρεση. υαδική Αφαίρεση (συν.) Ακόµη ένα παράδειγµα Αφαίρεσης.

Περίληψη. ΗΜΥ 210: Λογικός Σχεδιασµός, Εαρινό Εξάµηνο 2005. υαδική Αφαίρεση. υαδική Αφαίρεση (συν.) Ακόµη ένα παράδειγµα Αφαίρεσης. ΗΜΥ-210: Λογικός Σχεδιασµός Εαρινό Εξάµηνο 2005 Κεφάλαιο 5 -ii: Αριθµητικές Συναρτήσεις και Κυκλώµατα Πανεπιστήµιο Κύπρου Τµήµα Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Αφαίρεση δυαδικών Περίληψη

Διαβάστε περισσότερα

! Εάν ο αριθμός διαθέτει περισσότερα bits, χρησιμοποιούμε μεγαλύτερες δυνάμεις του 2. ! Προσοχή στη θέση του περισσότερο σημαντικού bit!

! Εάν ο αριθμός διαθέτει περισσότερα bits, χρησιμοποιούμε μεγαλύτερες δυνάμεις του 2. ! Προσοχή στη θέση του περισσότερο σημαντικού bit! Ιόνιο Πανεπιστήμιο Τμήμα Πληροφορικής Εισαγωγή στην Επιστήμη των Υπολογιστών 25-6 Πράξεις με δυαδικούς αριθμούς (αριθμητικές ) http://di.ionio.gr/~mistral/tp/csintro/ Αριθμοί Πράξεις με δυαδικούς αριθμούς

Διαβάστε περισσότερα

Υπάρχουν δύο τύποι μνήμης, η μνήμη τυχαίας προσπέλασης (Random Access Memory RAM) και η μνήμη ανάγνωσης-μόνο (Read-Only Memory ROM).

Υπάρχουν δύο τύποι μνήμης, η μνήμη τυχαίας προσπέλασης (Random Access Memory RAM) και η μνήμη ανάγνωσης-μόνο (Read-Only Memory ROM). Μνήμες Ένα από τα βασικά πλεονεκτήματα των ψηφιακών συστημάτων σε σχέση με τα αναλογικά, είναι η ευκολία αποθήκευσης μεγάλων ποσοτήτων πληροφοριών, είτε προσωρινά είτε μόνιμα Οι πληροφορίες αποθηκεύονται

Διαβάστε περισσότερα

Εισαγωγή στην Επιστήμη των Υπολογιστών

Εισαγωγή στην Επιστήμη των Υπολογιστών Εισαγωγή στην Επιστήμη των Υπολογιστών Ενότητα 2: Αποθήκευση Δεδομένων, 2ΔΩ Τμήμα: Αγροτικής Οικονομίας & Ανάπτυξης Διδάσκων: Θεόδωρος Τσιλιγκιρίδης Μαθησιακοί Στόχοι Η Ενότητα 2 διαπραγματεύεται θέματα

Διαβάστε περισσότερα

9. OIΚΟΥΜΕΝΙΚΕΣ ΠΥΛΕΣ ΠΟΛΛΑΠΛΩΝ ΕΙΣΟ ΩΝ

9. OIΚΟΥΜΕΝΙΚΕΣ ΠΥΛΕΣ ΠΟΛΛΑΠΛΩΝ ΕΙΣΟ ΩΝ ΕΡΓΑΣΤΗΡΙΑΚΕΣ ΑΣΚΗΣΕΙΣ 61 9. OIΚΟΥΜΕΝΙΚΕΣ ΠΥΛΕΣ ΠΟΛΛΑΠΛΩΝ ΕΙΣΟ ΩΝ I. Βασική Θεωρία Οι πύλες NAND και NOR ονομάζονται οικουμενικές πύλες (universal gates) γιατί κάθε συνδυαστικό κύκλωμα μπορεί να υλοποιηθεί

Διαβάστε περισσότερα

ΠΛΗΡΟΦΟΡΙΑΚΑ & ΤΗΛΕΠΙΚΟΙΝΩΝΙΑΚΑ ΣΥΣΤΗΜΑΤΑ

ΠΛΗΡΟΦΟΡΙΑΚΑ & ΤΗΛΕΠΙΚΟΙΝΩΝΙΑΚΑ ΣΥΣΤΗΜΑΤΑ Οικονοµικό Πανεπιστήµιο Αθηνών Τµήµα ιοικητικής Επιστήµης & Τεχνολογίας ΠΛΗΡΟΦΟΡΙΑΚΑ & ΤΗΛΕΠΙΚΟΙΝΩΝΙΑΚΑ ΣΥΣΤΗΜΑΤΑ Κεφάλαιο 2 Αριθµητικά Συστήµατα και Αριθµητική Υπολογιστών Γιώργος Γιαγλής Περίληψη Κεφαλαίου

Διαβάστε περισσότερα

ΕΦΑΡΜΟΓΕΣ ΠΛΗΡΟΦΟΡΙΚΗΣ ΥΠΟΛΟΓΙΣΤΩΝ. Κεφάλαιο 2

ΕΦΑΡΜΟΓΕΣ ΠΛΗΡΟΦΟΡΙΚΗΣ ΥΠΟΛΟΓΙΣΤΩΝ. Κεφάλαιο 2 ΕΦΑΡΜΟΓΕΣ ΠΛΗΡΟΦΟΡΙΚΗΣ ΥΠΟΛΟΓΙΣΤΩΝ Κεφάλαιο 2 Ο κύκλος της πληροφορίας Η σηµασία της πληροφορίας Ο υπολογιστής (επεξεργασία-αποθήκευση) 2 Παράσταση δεδοµένων Αριθµητικά συστήµατα εκαδικό σύστηµα 3 υαδικό

Διαβάστε περισσότερα

Συνδυαστικά Λογικά Κυκλώματα

Συνδυαστικά Λογικά Κυκλώματα Συνδυαστικά Λογικά Κυκλώματα Ένα συνδυαστικό λογικό κύκλωμα συντίθεται από λογικές πύλες, δέχεται εισόδους και παράγει μία ή περισσότερες εξόδους. Στα συνδυαστικά λογικά κυκλώματα οι έξοδοι σε κάθε χρονική

Διαβάστε περισσότερα

7 η Θεµατική Ενότητα : Καταχωρητές, Μετρητές και Μονάδες Μνήµης

7 η Θεµατική Ενότητα : Καταχωρητές, Μετρητές και Μονάδες Μνήµης 7 η Θεµατική Ενότητα : Καταχωρητές, Μετρητές και Εισαγωγή Καταχωρητής: είναι µία οµάδα από δυαδικά κύτταρα αποθήκευσης και από λογικές πύλες που διεκπεραιώνουν την µεταφορά πληροφοριών. Οι µετρητές είναι

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΣΧΟΛΗ ΘΕΤΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΚΑΙ ΤΕΧΝΟΛΟΓΙΑΣ ΠΡΟΓΡΑΜΜΑ ΣΠΟΥ ΩΝ ΠΛΗΡΟΦΟΡΙΚΗΣ ΑΠΑΝΤΗΣΕΙΣ ΘΕΜΑΤΩΝ ΕΞΕΤΑΣΕΩΝ

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΣΧΟΛΗ ΘΕΤΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΚΑΙ ΤΕΧΝΟΛΟΓΙΑΣ ΠΡΟΓΡΑΜΜΑ ΣΠΟΥ ΩΝ ΠΛΗΡΟΦΟΡΙΚΗΣ ΑΠΑΝΤΗΣΕΙΣ ΘΕΜΑΤΩΝ ΕΞΕΤΑΣΕΩΝ ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΣΧΟΛΗ ΘΕΤΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΚΑΙ ΤΕΧΝΟΛΟΓΙΑΣ ΠΡΟΓΡΑΜΜΑ ΣΠΟΥ ΩΝ ΠΛΗΡΟΦΟΡΙΚΗΣ Θεµατική Ενότητα ΠΛΗ 2: Ψηφιακά Συστήµατα Ακαδηµαϊκό Έτος 24 25 Ηµεροµηνία Εξέτασης 29.6.25 Χρόνος Εξέτασης

Διαβάστε περισσότερα

Εισαγωγή στην Επιστήμη των Υπολογιστών

Εισαγωγή στην Επιστήμη των Υπολογιστών Εισαγωγή στην Επιστήμη των Υπολογιστών Περιεχόμενα Μαθήματος Συστήματα αρίθμησης Πύλες Διάγραμμα ροής-ψευδοκώδικας Python Συστήματα Αρίθμησης Δεκαδικό σύστημα Οι άνθρωποι χρησιμοποιούν το περίφημο «θεσιακό,

Διαβάστε περισσότερα

Εισαγωγή στην επιστήμη των υπολογιστών. Υπολογιστές και Δεδομένα Κεφάλαιο 4ο Πράξεις με μπιτ

Εισαγωγή στην επιστήμη των υπολογιστών. Υπολογιστές και Δεδομένα Κεφάλαιο 4ο Πράξεις με μπιτ Εισαγωγή στην επιστήμη των υπολογιστών Υπολογιστές και Δεδομένα Κεφάλαιο 4ο Πράξεις με μπιτ 1 Πράξεις με μπιτ 2 ΑριθμητικέςΠράξειςσεΑκέραιους Πρόσθεση, Αφαίρεση, Πολλαπλασιασμός, Διαίρεση Ο πολλαπλασιασμός

Διαβάστε περισσότερα

Αριθμητικά Συστήματα Κώδικες

Αριθμητικά Συστήματα Κώδικες Αριθμητικά Συστήματα Κώδικες 1.1 Εισαγωγή Κεφάλαιο 1 Ένα αριθμητικό σύστημα ορίζει ένα σύνολο τιμών που χρησιμοποιούνται για την αναπαράσταση μίας ποσότητας. Ποσοτικοποιώντας τιμές και αντικείμενα και

Διαβάστε περισσότερα

ΠΕΡΙΕΧΟΜΕΝΑ 1 ΣΥΣΤΗΜΑΤΑ ΑΡΙΘΜΩΝ ΚΑΙ ΚΩ ΙΚΕΣ 1

ΠΕΡΙΕΧΟΜΕΝΑ 1 ΣΥΣΤΗΜΑΤΑ ΑΡΙΘΜΩΝ ΚΑΙ ΚΩ ΙΚΕΣ 1 ΠΕΡΙΕΧΟΜΕΝΑ 1 ΣΥΣΤΗΜΑΤΑ ΑΡΙΘΜΩΝ ΚΑΙ ΚΩ ΙΚΕΣ 1 1-1 Σχηµατισµός Μηνύµατος 1 1-2 Βάση Αρίθµησης 2 1-3 Παράσταση Αριθµών στο εκαδικό Σύστηµα 2 Μετατροπή υαδικού σε εκαδικό 3 Μετατροπή εκαδικού σε υαδικό 4

Διαβάστε περισσότερα

ΒΑΣΙΚΕΣ ΑΡΧΕΣ ΨΗΦΙΑΚΗΣ ΤΕΧΝΟΛΟΓΙΑΣ. Κεφάλαιο 3

ΒΑΣΙΚΕΣ ΑΡΧΕΣ ΨΗΦΙΑΚΗΣ ΤΕΧΝΟΛΟΓΙΑΣ. Κεφάλαιο 3 ΒΑΣΙΚΕΣ ΑΡΧΕΣ ΨΗΦΙΑΚΗΣ ΤΕΧΝΟΛΟΓΙΑΣ Κεφάλαιο 3 Δυαδική λογική Με τον όρο λογική πρόταση ή απλά πρόταση καλούμε κάθε φράση η οποία μπορεί να χαρακτηριστεί αληθής ή ψευδής με βάση το νόημα της. π.χ. Σήμερα

Διαβάστε περισσότερα

ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ. ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΕΠΙΣΤΗΜΗ ΤΩΝ ΥΠΟΛΟΓΙΣΤΩΝ Μέρος Β (Οργάνωση Υπολογιστών)

ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ. ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΕΠΙΣΤΗΜΗ ΤΩΝ ΥΠΟΛΟΓΙΣΤΩΝ Μέρος Β (Οργάνωση Υπολογιστών) ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΚΑΙ ΜΗΧΑΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ ΤΟΜΕΑΣ ΤΕΧΝΟΛΟΓΙΑΣ ΠΛΗΡΟΦΟΡΙΚΗΣ και ΥΠΟΛΟΓΙΣΤΩΝ ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΕΠΙΣΤΗΜΗ ΤΩΝ ΥΠΟΛΟΓΙΣΤΩΝ Μέρος Β (Οργάνωση Υπολογιστών)

Διαβάστε περισσότερα

Τμήμα Οικιακής Οικονομίας και Οικολογίας. Αναπαράσταση Αριθμών

Τμήμα Οικιακής Οικονομίας και Οικολογίας. Αναπαράσταση Αριθμών Αναπαράσταση Αριθμών Δεκαδικό και Δυαδικό Δεκαδικό σύστημα Δεκαδικό και Δυαδικό Μετατροπή Για τη μετατροπή ενός αριθμού από το δυαδικό σύστημα στο δεκαδικό, πολλαπλασιάζουμε κάθε δυαδικό ψηφίο του αριθμού

Διαβάστε περισσότερα

ΗΜΥ 210: Σχεδιασμός Ψηφιακών Συστημάτων. Άλλες Αριθμητικές Συναρτήσεις/Κυκλώματα

ΗΜΥ 210: Σχεδιασμός Ψηφιακών Συστημάτων. Άλλες Αριθμητικές Συναρτήσεις/Κυκλώματα ΗΜΥ-210: Σχεδιασμός Ψηφιακών Συστημάτων Αριθμητικές Συναρτήσεις και Κυκλώματα Διδάσκουσα: Μαρία Κ. Μιχαήλ Πανεπιστήμιο Κύπρου Τμήμα Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Πρόσθεση υαδική Πρόσθεση

Διαβάστε περισσότερα

ΗΜΥ 210 ΣΧΕΔΙΑΣΜΟΣ ΨΗΦΙΑΚΩΝ ΣΥΣΤΗΜΑΤΩΝ

ΗΜΥ 210 ΣΧΕΔΙΑΣΜΟΣ ΨΗΦΙΑΚΩΝ ΣΥΣΤΗΜΑΤΩΝ ΗΜΥ 210 ΣΧΕΔΙΑΣΜΟΣ ΨΗΦΙΑΚΩΝ ΣΥΣΤΗΜΑΤΩΝ Χειµερινό Εξάµηνο 2016 ΔΙΑΛΕΞΗ 9: Σχεδιασµός Συνδυαστικών Κυκλωµάτων ΙΙ (Κεφάλαιο 5) ΧΑΡΗΣ ΘΕΟΧΑΡΙΔΗΣ Επίκουρος Καθηγητής, ΗΜΜΥ (ttheocharides@ucy.ac.cy) Περίληψη

Διαβάστε περισσότερα

ΘΕΜΑΤΑ & ΕΝΔΕΙΚΤΙΚΕΣ ΛΥΣΕΙΣ

ΘΕΜΑΤΑ & ΕΝΔΕΙΚΤΙΚΕΣ ΛΥΣΕΙΣ ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΣΧΟΛΗ ΘΕΤΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΚΑΙ ΤΕΧΝΟΛΟΓΙΑΣ ΠΡΟΓΡΑΜΜΑ ΣΠΟΥΔΩΝ ΠΛΗΡΟΦΟΡΙΚΗΣ Θεματική Ενότητα Ακαδημαϊκό Έτος 2010 2011 Ημερομηνία Εξέτασης Κυριακή 26.6.2011 Ώρα Έναρξης Εξέτασης

Διαβάστε περισσότερα

Αρχιτεκτονικές Υπολογιστών BOOLEAN ALGEBRA

Αρχιτεκτονικές Υπολογιστών BOOLEAN ALGEBRA ΑΡΧΙΤΕΚΤΟΝΙΚΕΣ ΥΠΟΛΟΓΙΣΤΩΝ Μάθηµα: Αρχιτεκτονικές Υπολογιστών OOLEN LGER ιδάσκων: ναπλ. Καθ. Κ. Λαµπρινουδάκης clam@unp.gr Αρχιτεκτονικές Υπολογιστών ναπλ. Καθ. Κ. Λαµπρινουδάκης Άλγεβρα OOLE Οι µεταβλητές

Διαβάστε περισσότερα

Ψηφιακή Λογική και Σχεδίαση

Ψηφιακή Λογική και Σχεδίαση Ιόνιο Πανεπιστήμιο Τμήμα Πληροφορικής Αρχιτεκτονική Υπολογιστών 26-7 Ψηφιακή Λογική και Σχεδίαση (σχεδίαση συνδυαστικών κυκλωμάτων) http://mixstef.github.io/courses/comparch/ Μ.Στεφανιδάκης Το τρανζίστορ

Διαβάστε περισσότερα

Τα µπιτ και η σηµασία τους. Σχήµα bit. ΚΕΦΑΛΑΙΟ 1: Αποθήκευση εδοµένων (1/2) 1.7 Αποθήκευση κλασµάτων 1.8 Συµπίεση δεδοµένων 1.9 Σφάλµατα επικοινωνίας

Τα µπιτ και η σηµασία τους. Σχήµα bit. ΚΕΦΑΛΑΙΟ 1: Αποθήκευση εδοµένων (1/2) 1.7 Αποθήκευση κλασµάτων 1.8 Συµπίεση δεδοµένων 1.9 Σφάλµατα επικοινωνίας ΚΕΦΑΛΑΙΟ 1: Αποθήκευση εδοµένων (1/2) ΚΕΦΑΛΑΙΟ 1: Αποθήκευση εδοµένων (2/2) 1.1 Τα bits και ο τρόπος που αποθηκεύονται 1.2 Κύρια µνήµη 1.3 Αποθηκευτικά µέσα 1.4 Αναπαράσταση πληροφοριών ως σχηµάτων bits

Διαβάστε περισσότερα

Η συχνότητα f των παλµών 0 και 1 στην έξοδο Q n είναι. f Qn = 1/(T cl x 2 n+1 )

Η συχνότητα f των παλµών 0 και 1 στην έξοδο Q n είναι. f Qn = 1/(T cl x 2 n+1 ) ΨΗΦΙΑΚΑ ΚΥΚΛΩΜΑΤΑ - ΕΡΓΑΣΤΗΡΙΑΚΗ ΑΣΚΗΣΗ 9 ΥΑ ΙΚΟΙ ΑΠΑΡΙΘΜΗΤΕΣ Σκοπός: Η µελέτη της λειτουργίας των απαριθµητών. Υλοποίηση ασύγχρονου απαριθµητή 4-bit µε χρήση JK Flip-Flop. Κατανόηση της αλλαγής του υπολοίπου

Διαβάστε περισσότερα

Περιεχόµενα. οµή Η/Υ: Αναπαράσταση εδοµένων. υαδικό σύστηµα. Συστήµατα Αρίθµησης υαδικό Οκταδικό εκαεξαδικό Παραδείγµατα

Περιεχόµενα. οµή Η/Υ: Αναπαράσταση εδοµένων. υαδικό σύστηµα. Συστήµατα Αρίθµησης υαδικό Οκταδικό εκαεξαδικό Παραδείγµατα οµή Η/Υ: Αναπαράσταση εδοµένων Συστήµατα Αρίθµησης υαδικό Οκταδικό εκαεξαδικό Παραδείγµατα Περιεχόµενα Κωδικοποίηση δεδοµένων Κώδικας ASCII Άλλοι κώδικες Παραδείγµατα Συστήµατα Αρίθµησης Τα συνηθέστερα

Διαβάστε περισσότερα

Οργάνωση Υπολογιστών

Οργάνωση Υπολογιστών Οργάνωση Υπολογιστών Επιμέλεια: Γεώργιος Θεοδωρίδης, Επίκουρος Καθηγητής Ανδρέας Εμερετλής, Υποψήφιος Διδάκτορας Τμήμα Ηλεκτρολόγων Μηχανικών και Τεχνολογίας Υπολογιστών 1 Άδειες Χρήσης Το παρόν υλικό

Διαβάστε περισσότερα

Τμήμα Χρηματοοικονομικής & Ελεγκτικής ΤΕΙ Ηπείρου Παράρτημα Πρέβεζας. Πληροφορική Ι. Αναπαράσταση αριθμών στο δυαδικό σύστημα. Δρ.

Τμήμα Χρηματοοικονομικής & Ελεγκτικής ΤΕΙ Ηπείρου Παράρτημα Πρέβεζας. Πληροφορική Ι. Αναπαράσταση αριθμών στο δυαδικό σύστημα. Δρ. Τμήμα Χρηματοοικονομικής & Ελεγκτικής ΤΕΙ Ηπείρου Παράρτημα Πρέβεζας Πληροφορική Ι Αναπαράσταση αριθμών στο δυαδικό σύστημα Δρ. Γκόγκος Χρήστος Δεκαδικό σύστημα αρίθμησης Ελληνικό - Ρωμαϊκό Σύστημα αρίθμησης

Διαβάστε περισσότερα

Εργαστήριο 7: Μανταλωτές (Latches), Καταχωρητές, και ιφασικά Ρολόγια

Εργαστήριο 7: Μανταλωτές (Latches), Καταχωρητές, και ιφασικά Ρολόγια 1 of 5 ΗΥ-120: Ψηφιακή Σχεδίαση Φθινόπωρο 2006 Τµ. Επ. Υπολογιστών Πανεπιστήµιο Κρήτης Εργαστήριο 7: Μανταλωτές (Latches), Καταχωρητές, και ιφασικά Ρολόγια 27-30 Νοεµβρίου 2006 ιαγωνισµός Προόδου: Σάββατο

Διαβάστε περισσότερα

Εισαγωγή στους Ηλεκτρονικούς Υπολογιστές

Εισαγωγή στους Ηλεκτρονικούς Υπολογιστές στους Ηλεκτρονικούς Υπολογιστές http://courseware.mech.tua.gr/ml232/ 3 ο Μάθημα Λεωνίδας Αλεξόπουλος Λέκτορας ΕΜΠ E-mail: leo@mail.tua.gr URL: http://users.tua.gr/leo Λογικές Πράξεις Λογικές Συναρτήσεις

Διαβάστε περισσότερα

Ενότητα 9 ΑΡΙΘΜΗΤΙΚΑ & ΛΟΓΙΚΑ ΚΥΚΛΩΜΑΤΑ

Ενότητα 9 ΑΡΙΘΜΗΤΙΚΑ & ΛΟΓΙΚΑ ΚΥΚΛΩΜΑΤΑ Ενότητα 9 ΑΡΙΘΜΗΤΙΚΑ & ΛΟΓΙΚΑ ΚΥΚΛΩΜΑΤΑ Γενικές Γραμμές Προσημασμένοι Ακέραιοι Δυαδικοί Αριθμοί Ημιαθροιστής - Ημιαφαιρέτης Πλήρης Αθροιστής - Πλήρης Αφαιρέτης Αθροιστής Διάδοσης Κρατούμενου Επαναληπτικές

Διαβάστε περισσότερα

Αθροιστές. Ημιαθροιστής

Αθροιστές. Ημιαθροιστής Αθροιστές Η πιο βασική αριθμητική πράξη είναι η πρόσθεση. Για την πρόσθεση δύο δυαδικών ψηφίων υπάρχουν τέσσερις δυνατές περιπτώσεις: +=, +=, +=, +=. Οι τρεις πρώτες πράξεις δημιουργούν ένα άθροισμα που

Διαβάστε περισσότερα

Συστήµατα Αριθµών, Πληροφορία, και Ψηφιακή Υπολογιστές

Συστήµατα Αριθµών, Πληροφορία, και Ψηφιακή Υπολογιστές ΚΕΦΑΛΑΙΟ 1 Συστήµατα Αριθµών, Πληροφορία, και Ψηφιακή Υπολογιστές Σελίδες 3-21, 24-26 ΚΕΦΑΛΑΙΟ 1 Περιεχόµενα 1.1 ΨΗΦΙΑΚΗ ΥΠΟΛΟΓΙΣΤΕΣ 1.2 Αναπαράσταση Αριθµών 1.3 Αριθµητικές Λειτουργίες 1.4 εκαδικοί Κώδικες

Διαβάστε περισσότερα

Τμήμα Μηχανολόγων Μηχανικών Πανεπιστήμιο Θεσσαλίας ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ Η/Υ. Βασικές Έννοιες Προγραμματισμού. Ιωάννης Λυχναρόπουλος Μαθηματικός, MSc, PhD

Τμήμα Μηχανολόγων Μηχανικών Πανεπιστήμιο Θεσσαλίας ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ Η/Υ. Βασικές Έννοιες Προγραμματισμού. Ιωάννης Λυχναρόπουλος Μαθηματικός, MSc, PhD Τμήμα Μηχανολόγων Μηχανικών Πανεπιστήμιο Θεσσαλίας ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ Η/Υ Βασικές Έννοιες Προγραμματισμού Ιωάννης Λυχναρόπουλος Μαθηματικός, MSc, PhD Αριθμητικά συστήματα Υπάρχουν 10 τύποι ανθρώπων: Αυτοί

Διαβάστε περισσότερα

ΑΣΚΗΣΗ 4 ΣΧΕΔΙΑΣΗ ΑΡΙΘΜΗΤΙΚΩΝ ΛΟΓΙΚΩΝ ΚΥΚΛΩΜΑΤΩΝ

ΑΣΚΗΣΗ 4 ΣΧΕΔΙΑΣΗ ΑΡΙΘΜΗΤΙΚΩΝ ΛΟΓΙΚΩΝ ΚΥΚΛΩΜΑΤΩΝ ΑΣΚΗΣΗ 4 ΣΧΕΔΙΑΣΗ ΑΡΙΘΜΗΤΙΚΩΝ ΛΟΓΙΚΩΝ ΚΥΚΛΩΜΑΤΩΝ Αντικείμενο της άσκησης: Λογική και μεθοδολογία σχεδίασης αριθμητικών λογικών κυκλωμάτων και λειτουργική εξομοίωση με το λογισμικό EWB.. Αθροιστές. Σχεδίαση

Διαβάστε περισσότερα

K15 Ψηφιακή Λογική Σχεδίαση 7-8: Ανάλυση και σύνθεση συνδυαστικών λογικών κυκλωμάτων

K15 Ψηφιακή Λογική Σχεδίαση 7-8: Ανάλυση και σύνθεση συνδυαστικών λογικών κυκλωμάτων K15 Ψηφιακή Λογική Σχεδίαση 7-8: Ανάλυση και σύνθεση συνδυαστικών λογικών κυκλωμάτων Γιάννης Λιαπέρδος TEI Πελοποννήσου Σχολή Τεχνολογικών Εφαρμογών Τμήμα Μηχανικών Πληροφορικής ΤΕ Η έννοια του συνδυαστικού

Διαβάστε περισσότερα

ΠΛΗΡΟΦΟΡΙΚΗ Ι JAVA Τμήμα θεωρίας με Α.Μ. σε 8 & 9 11/10/07

ΠΛΗΡΟΦΟΡΙΚΗ Ι JAVA Τμήμα θεωρίας με Α.Μ. σε 8 & 9 11/10/07 ΠΛΗΡΟΦΟΡΙΚΗ Ι JAVA Τμήμα θεωρίας με Α.Μ. σε 8 & 9 11/10/07 Τμήμα θεωρίας: Α.Μ. 8, 9 Κάθε Πέμπτη, 11πμ-2μμ, ΑΜΦ23. Διδάσκων: Ντίνος Φερεντίνος Γραφείο 118 email: kpf3@cornell.edu Μάθημα: Θεωρία + προαιρετικό

Διαβάστε περισσότερα

Γενικά Στοιχεία Ηλεκτρονικού Υπολογιστή

Γενικά Στοιχεία Ηλεκτρονικού Υπολογιστή Γενικά Στοιχεία Ηλεκτρονικού Υπολογιστή 1. Ηλεκτρονικός Υπολογιστής Ο Ηλεκτρονικός Υπολογιστής είναι μια συσκευή, μεγάλη ή μικρή, που επεξεργάζεται δεδομένα και εκτελεί την εργασία του σύμφωνα με τα παρακάτω

Διαβάστε περισσότερα

Δυαδικη παρασταση αριθμων και συμβολων

Δυαδικη παρασταση αριθμων και συμβολων Δυαδικη παρασταση αριθμων και συμβολων Ενα αριθμητικο συστημα χαρακτηριζεται απο την βαση r και τα συμβολα a i που παιρνουν τις τιμες 0,1,...,r-1. (a n,,a 1,a 0. a -1,a -2,,a -m ) r = =a n r n + +a 1 r+a

Διαβάστε περισσότερα

ΑΣΚΗΣΕΙΣ ΣΤΑ ΣΥΣΤΗΜΑΤΑ ΑΡΙΘΜΗΣΗΣ (σελ. 30-34 στο ΜΥ1011Χ.pdf)

ΑΣΚΗΣΕΙΣ ΣΤΑ ΣΥΣΤΗΜΑΤΑ ΑΡΙΘΜΗΣΗΣ (σελ. 30-34 στο ΜΥ1011Χ.pdf) ΑΣΚΗΣΕΙΣ ΣΤΑ ΣΥΣΤΗΜΑΤΑ ΑΡΙΘΜΗΣΗΣ (σελ. 30-34 στο ΜΥ1011Χ.pdf) Για να λύνετε εύκολα ασκήσεις στα συστήματα αρίθμησης θα πρέπει να απομνημονεύσετε τα πρώτα 17 βάρη του δυαδικού συστήματος από 2 0 μέχρι 2

Διαβάστε περισσότερα

3 η Θεµατική Ενότητα : Απλοποίηση Συναρτήσεων Boole. Επιµέλεια διαφανειών: Χρ. Καβουσιανός

3 η Θεµατική Ενότητα : Απλοποίηση Συναρτήσεων Boole. Επιµέλεια διαφανειών: Χρ. Καβουσιανός 3 η Θεµατική Ενότητα : Απλοποίηση Συναρτήσεων oole Επιµέλεια διαφανειών: Χρ. Καβουσιανός Απλοποίηση Συναρτήσεων oole Ø Η πολυπλοκότητα του κυκλώµατος που υλοποιεί µια συνάρτηση oole σχετίζεται άµεσα µε

Διαβάστε περισσότερα

8.1 Θεωρητική εισαγωγή

8.1 Θεωρητική εισαγωγή ΨΗΦΙΑΚΑ ΚΥΚΛΩΜΑΤΑ - ΕΡΓΑΣΤΗΡΙΑΚΗ ΑΣΚΗΣΗ 8 ΣΤΟΙΧΕΙΑ ΜΝΗΜΗΣ ΚΑΤΑΧΩΡΗΤΕΣ Σκοπός: Η µελέτη της λειτουργίας των καταχωρητών. Θα υλοποιηθεί ένας απλός στατικός καταχωρητής 4-bit µε Flip-Flop τύπου D και θα µελετηθεί

Διαβάστε περισσότερα

Εισαγωγή στην Επιστήµη των Υπολογιστών Εξάµηνο 4ο-ΣΗΜΜΥ

Εισαγωγή στην Επιστήµη των Υπολογιστών Εξάµηνο 4ο-ΣΗΜΜΥ ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΚΑΙ ΜΗΧΑΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ ΤΟΜΕΑΣ ΤΕΧΝΟΛΟΓΙΑΣ ΠΛΗΡΟΦΟΡΙΚΗΣ ΚΑΙ ΥΠΟΛΟΓΙΣΤΩΝ ΕΡΓΑΣΤΗΡΙΟ ΥΠΟΛΟΓΙΣΤΙΚΩΝ ΣΥΣΤΗΜΑΤΩΝ www.cslab.ece.ntua.gr Εισαγωγή στην

Διαβάστε περισσότερα

Πρόβληµα 2 (15 µονάδες)

Πρόβληµα 2 (15 µονάδες) ΟΙΚΟΝΟΜΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΜΑΘΗΜΑ: ΚΡΥΠΤΟΓΡΑΦΙΑ ΚΑΙ ΕΦΑΡΜΟΓΕΣ, 2013-2014 ΔΙΔΑΣΚΩΝ: Ε. Μαρκάκης Πρόβληµα 1 (5 µονάδες) 2 η Σειρά Ασκήσεων Προθεσµία Παράδοσης: 19/1/2014 Υπολογίστε

Διαβάστε περισσότερα

1.1 Θεωρητική εισαγωγή

1.1 Θεωρητική εισαγωγή ΨΗΦΙΑΚΑ ΚΥΚΛΩΜΑΤΑ - ΕΡΓΑΣΤΗΡΙΑΚΗ ΑΣΚΗΣΗ ΛΟΓΙΚΕΣ ΠΥΛΕΣ NOT, AND, NAND Σκοπός: Να εξοικειωθούν οι φοιτητές µε τα ολοκληρωµένα κυκλώµατα της σειράς 7400 για τη σχεδίαση και υλοποίηση απλών λογικών συναρτήσεων.

Διαβάστε περισσότερα

Τμήμα Οικιακής Οικονομίας και Οικολογίας. Αναπαράσταση Αριθμών

Τμήμα Οικιακής Οικονομίας και Οικολογίας. Αναπαράσταση Αριθμών Αναπαράσταση Αριθμών Δεκαδικό και Δυαδικό Δεκαδικό σύστημα Δεκαδικό και Δυαδικό Μετατροπή Για τη μετατροπή ενός αριθμού από το δυαδικό σύστημα στο δεκαδικό, πολλαπλασιάζουμε κάθε δυαδικό ψηφίο του αριθμού

Διαβάστε περισσότερα

Κεφάλαιο 3 Κεντρική Μονάδα Επεξεργασίας

Κεφάλαιο 3 Κεντρική Μονάδα Επεξεργασίας ΑΡΧΙΤΕΚΤΟΝΙΚΗ ΥΠΟΛΟΓΙΣΤΩΝ Κεφάλαιο 3 Κεντρική Μονάδα Επεξεργασίας Κεντρική Μονάδα Επεξεργασίας Μονάδα επεξεργασίας δεδομένων Μονάδα ελέγχου Μονάδα επεξεργασίας δεδομένων Μονάδα Επεξεργασίας Δεδομένων Μονάδα

Διαβάστε περισσότερα

K24 Ψηφιακά Ηλεκτρονικά 4: Σχεδίαση Συνδυαστικών Κυκλωμάτων

K24 Ψηφιακά Ηλεκτρονικά 4: Σχεδίαση Συνδυαστικών Κυκλωμάτων K24 Ψηφιακά Ηλεκτρονικά 4: Σχεδίαση Συνδυαστικών Κυκλωμάτων TEI Πελοποννήσου Σχολή Τεχνολογικών Εφαρμογών Τμήμα Μηχανικών Πληροφορικής ΤΕ ΤΕΧΝΟΛΟΓΙΚΟ Περιεχόμενα 1 2 3 4 Ένα ψηφιακό κύκλωμα με n εισόδους

Διαβάστε περισσότερα

Τμήμα Χρηματοοικονομικής & Ελεγκτικής ΤΕΙ Ηπείρου Παράρτημα Πρέβεζας. Πληροφορική Ι. Μάθημα 4 ο Πράξεις με bits. Δρ.

Τμήμα Χρηματοοικονομικής & Ελεγκτικής ΤΕΙ Ηπείρου Παράρτημα Πρέβεζας. Πληροφορική Ι. Μάθημα 4 ο Πράξεις με bits. Δρ. Τμήμα Χρηματοοικονομικής & Ελεγκτικής ΤΕΙ Ηπείρου Παράρτημα Πρέβεζας Πληροφορική Ι Μάθημα 4 ο Πράξεις με bits Δρ. Γκόγκος Χρήστος Κατηγορίες πράξεων με bits Πράξεις με δυαδικά ψηφία Αριθμητικές πράξεις

Διαβάστε περισσότερα

Πρόβληµα 2 (12 µονάδες)

Πρόβληµα 2 (12 µονάδες) ΟΙΚΟΝΟΜΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΜΑΘΗΜΑ: ΚΡΥΠΤΟΓΡΑΦΙΑ ΚΑΙ ΕΦΑΡΜΟΓΕΣ, 2015-2016 ΔΙΔΑΣΚΟΝΤΕΣ: Ε. Μαρκάκης, Θ. Ντούσκας Λύσεις 2 ης Σειράς Ασκήσεων Πρόβληµα 1 (12 µονάδες) 1) Υπολογίστε τον

Διαβάστε περισσότερα