Συντάκτης: Παναγιώτης Βεργούρος, Οικονομολόγος Συγγραφέας βιβλίων, Μικρο μακροοικονομίας διαγωνισμών ΑΣΕΠ

Save this PDF as:
 WORD  PNG  TXT  JPG

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "Συντάκτης: Παναγιώτης Βεργούρος, Οικονομολόγος Συγγραφέας βιβλίων, Μικρο μακροοικονομίας διαγωνισμών ΑΣΕΠ"

Transcript

1 Tα Πανεπιστημιακά Φροντιστήρια «ΚΟΛΛΙΝΤΖΑ» προετοιμάζοντας σε ολιγομελείς ομίλους τους υποψήφιους για τον επικείμενο διαγωνισμό του Υ- πουργείου Οικονομικών και στοχεύοντας στην όσο το δυνατό πληρέστερη προετοιμασία τους, παραθέτουν ενδεικτικά διαγωνίσματα προσομοίωσης. Τα θέματα επιμελήθηκαν οι συνεργάτες-εισηγητές των φροντιστηρίων μας. Συντάκτης: Παναγιώτης Βεργούρος, Οικονομολόγος Συγγραφέας βιβλίων, Μικρο μακροοικονομίας διαγωνισμών ΑΣΕΠ Μια πλήρως ανταγωνιστική επιχείρηση παράγει με συνάρτηση συνολικού κόστους που δίνει τον παρακάτω πίνακα. Να απαντήσετε στις ερωτήσεις 5:

2 Q TC Αν το προϊόν πωλείται προς 11 ευρώ ανά μονάδα τότε οι μονάδες προϊόντος που θα παράγει η επιχείρηση θα είναι: α) 5 β) 10 γ) 15 δ) Τα κέρδη της επιχείρησης όταν η τιμή είναι 11 ευρώ θα είναι: α) 10 β) 11 γ) 20 δ) Η καμπύλη προσφοράς της επιχείρησης ανεξάρτητα από το ύψος της τιμής θα ξεκινά από το επίπεδο παραγωγής των μονάδων προϊόντος: α) 5 β) 10 γ) 15 δ) Αν η τιμή προσδιοριστεί στα 9 ευρώ και η επιχείρηση παράγει στο επίπεδο όπου MC = P θα παρουσιάσει: α) Ζημιές περίπου 10 ευρώ β) Μηδενικά κέρδη ή ζημιές 2

3 γ) Κέρδη περίπου 10 ευρώ ΠΑΝΕΠΙΣΤΗΜΙΑΚΑ ΦΡΟΝΤΙΣΤΗΡΙΑ ΚΟΛΛΙΝΤΖΑ δ) Ζημιές αλλά χωρίς να γνωρίζουμε το μέγεθος τους 5. Η επιχείρηση στην τιμή των 9 ευρώ: α) Θα συνεχίσει να παράγει μακροχρόνια β) Δεν θα συνεχίσει να παράγει βραχυχρόνια γ) Θα διακόψει τη λειτουργία της αφού το μέσο κόστος της δεν καλύπτεται από την τιμή δ) Θα συνεχίσει να παράγει βραχυχρόνια 6. Η καμπύλη Engel: α) Είναι άλλη ονομασία της γραμμής τιμής κατανάλωσης β) Είναι άλλη ονομασία της γραμμής εισοδήματος κατανάλωσης γ) Είναι μια καμπύλη που δείχνει τη σχέση του εισοδήματος και της δαπάνης για ένα αγαθό δ) Οι απαντήσεις β και γ 7. Έστω οι συναρτήσεις προσφοράς Q = 4P 20 και ζήτησης Q = 40 2P για ένα αγαθό. s Αν η κυβέρνηση επιβάλλει ανώτατη τιμή P = 8 στην αγορά του αγαθού, τότε θα δημιουργηθεί: α) Πλεόνασμα 12 μονάδων β) Πλεόνασμα 16 μονάδων γ) Έλλειμμα 12 μονάδων δ) Έλλειμμα 16 μονάδων d 8. Το καπέλο στην αγορά του προηγούμενου αγαθού αν όταν θα επιβληθεί η ανώτατη τιμή α) 3 β) 4 γ) 5 δ) 6 P = 8 θα ισούται με: 3

4 9. Η αρχή του επιταχυντή είναι: α) Μια θεωρία προσδιορισμού του ύψους των επενδύσεων, που αποδέχεται ότι οι επενδύσεις είναι συνάρτηση των μεταβολών του καθαρού προϊόντος της οικονομίας β) Μια θεωρία προσδιορισμού του ύψους του εισοδήματος, που δεν αποδέχεται ότι οι επενδύσεις είναι συνάρτηση των μεταβολών του καθαρού προϊόντος της οικονομίας γ) Μια θεωρία προσδιορισμού του ύψους των επενδύσεων, που δεν αποδέχεται ότι οι επενδύσεις είναι συνάρτηση των μεταβολών του καθαρού προϊόντος της οικονομίας δ) Τίποτα από τα παραπάνω 10. Όταν υπολογίζουμε ότι σε μια οικονομία ισχύει η σχέση dy / dg = 0, όπου G είναι οι δημόσιες δαπάνες (δηλαδή η δημοσιονομική πολιτική είναι πλήρως αναποτελεσματική), τότε η οικονομία βρίσκεται: α) Σε ισορροπία σε επίπεδο πλήρους απασχόλησης β) Στην κλασική περιοχή γ) Στην κεϋνσιανή περιοχή δ) Τα α και β 11. Έστω μια συνάρτηση χρησιμότητας με τη μορφή 120 = 5A + 10B. Η κλίση της καμπύλης αδιαφορίας είναι,ισούται με ή με και αντιστοιχεί σε αγαθά: α) Σταθερή (1/2) ( 1/2) υποκατάστατα β) Σταθερή ( 1/2) (2) συμπληρωματικά γ) Σταθερή ( 1/2) ( 2) υποκατάστατα δ) Μεταβλητή ( A /60) ( A / 240 ) υποκατάστατα Έστω μια μονοπωλιακή επιχείρηση που αντιμετωπίζει συνάρτηση ζήτησης Q= 100 2P και έχει συνάρτηση συνολικού κόστους 2 TC Q Q = Να απαντήσετε στις ερωτήσεις 2 7: 12. Η συνάρτηση οριακού εσόδου της επιχείρησης θα είναι η: α) MR= 50 Q 4

5 β) MR= 100 Q/ 2 γ) MR= 50 Q/ 2 δ) MR = Q / Η ποσότητα στην οποία η ελαστικότητα ζήτησης είναι ε = 1 ισούται με: α) 40 β) 50 γ) 60 δ) 100 P 14. Η τιμή που θα επιβάλλει η μονοπωλιακή επιχείρηση θα είναι: α) 25 β) 35 γ) 40 δ) Η τιμή που θα επικρατούσε στην αγορά με πλήρη ανταγωνισμό θα ήταν: α) 30 β) 38 γ) 40 δ) Το συνολικό κέρδος της μονοπωλιακής επιχείρησης, στο επίπεδο όπου ισορροπεί ισούται με: α) 29,2 β) 30 γ) 300 δ) Ο δείκτης μονοπωλιακής δύναμης της επιχείρησης είναι: 5

6 α) 10 β) 20 γ) 30 δ) Το μειονέκτημα της θεωρίας του επιταχυντή αφορά: α) Δεν μπορεί να χρησιμοποιηθεί σε περιόδους ύφεσης, όπου το εισόδημα πιθανόν και να μειώνεται αντί να αυξάνεται β) Δεν περιλαμβάνει στην ανάλυση την ένταση χρησιμοποίησης του υπάρχοντος κεφαλαιουχικού εξοπλισμού γ) Η σημασία της περιορίζεται στην έμφαση που δίνει στη σχέση ανάμεσα στον απαιτούμενο κεφαλαιουχικό εξοπλισμό και στο μέγεθος του παραγόμενου προϊόντος δ) Όλα τα παραπάνω 19. Σε περιόδους ύφεσης, με κύριο χαρακτηριστικό την υποαπασχόληση των παραγωγικών συντελεστών, η προσπάθεια της οικονομίας να αυξήσει την αποταμίευση και συνεπώς να έχει περισσότερους διαθέσιμους πόρους για να προχωρήσει σε επενδύσεις, μπορεί να οδηγήσει τελικά σε μείωση του εισοδήματος και όχι σε αύξηση. Αυτό το φαινόμενο ονομάζεται: α) Παγίδα ρευστότητας β) Πληθωρισμός κόστους γ) Πληθωριστικό κενό δ) Παράδοξο της φειδούς 20. Όταν το μέγεθος των αποταμιεύσεων που αντιστοιχούν στο εισόδημα πλήρους α πασχόλησης μιας οικονομίας είναι μεγαλύτερο από το μέγεθος των επενδύσεων που έχουν αναληφθεί, τότε λέμε ότι η οικονομία βρίσκεται: α) Σε ανισορροπία β) Σε πληθωριστικό κενό γ) Σε αντιπληθωριστικό κενό 6

7 δ) Τίποτα από τα παραπάνω ΠΑΝΕΠΙΣΤΗΜΙΑΚΑ ΦΡΟΝΤΙΣΤΗΡΙΑ ΚΟΛΛΙΝΤΖΑ 21. Το αποτέλεσμα υποκατάστασης είναι: α) Πάντα αρνητικό για τα κανονικά αγαθά β) Πάντα αρνητικό για όλα τα αγαθά γ) Πάντα θετικό μόνο για τα αγαθά με ελαστική καμπύλη ζήτησης δ) Πάντα θετικό στα κατώτερα αγαθά 22. Μια αύξηση του εισοδήματος του καταναλωτή θα μετακινήσει: α) Την καμπύλη ζήτησης πάντα προς τα δεξιά β) Την καμπύλη ζήτησης πάντα προς τα αριστερά γ) Τη ζητούμενη ποσότητα προς τα δεξιά αν είναι κανονικό αγαθό και προς τα αριστερά αν είναι κατώτερο δ) Τη ζητούμενη ποσότητα προς τα δεξιά αν είναι κατώτερο αγαθό και προς τα αριστερά αν είναι κανονικό ( ) Έστω επιχείρηση Α για την οποία έχουμε υπολογίσει ότι ισχύει VC = Q + 16 / 3. Η ελάχιστη προσφερόμενη ποσότητα της επιχείρησης Α όπως θα προσδιοριστεί αν υπολογίσουμε την καμπύλη προσφοράς είναι: α) 2 μονάδες β) 3 μονάδες γ) 4 μονάδες δ) 6 μονάδες 0,4 b 24. Έστω μια συνάρτηση παραγωγής Cobb Douglas με μορφή Q= 2 K L. Αν η συνάρτηση υποδεικνύει σταθερές αποδόσεις κλίμακας τότε το b ισούται με: α) 0,4 β) 0,5 γ) 0,6 δ) 1 7

8 25. Ο επόμενος πίνακας απεικονίζει τις επιλογές που έχει μια επιχείρηση Α για την πολιτική τιμών που μπορεί να ακολουθήσει, σε σχέση με τις πιθανές αντιδράσεις της επιχείρησης Β, που δραστηριοποιείται στην ίδια αγορά. Τα κέρδη της επιχείρησης Α σε κάθε πιθανό ενδεχόμενο εμφανίζονται ως ποσοστά επί του μέσου κόστους της. Β 1 Β 2 Β 3 Α Α Α Τα κέρδη της επιχείρησης σε περίπτωση που επιλέξει την πολιτική maximax θα είναι: α) 10 β) 20 γ) 30 δ) Ο μονοπωλιακός ανταγωνισμός μοιάζει με το μονοπώλιο διότι: α) Τα οριακά έσοδα είναι μικρότερα της τιμής και στις δύο αγορές β) Τα εμπόδια εισόδου στην αγορά είναι μικρά ή και ανύπαρκτα στις δύο αγορές γ) Σε κάθε αγορά τα προϊόντα είναι ομοιογενή δ) Οι δύο αγορές είναι τεχνικά αποτελεσματικές, αφού οι επιχειρήσεις παράγουν με το ελάχιστο μέσο κόστος 27. Η τεχνική αποτελεσματικότητα στα τμήματα των καμπύλων ίσου προϊόντος που επιλέγουν οι επιχειρήσεις για να παράγουν, σημαίνει: α) Οι επιχειρήσεις παράγουν εξοικονομώντας όσο το δυνατόν περισσότερα χρήματα β) Οι επιχειρήσεις παράγουν χρησιμοποιώντας την πιο σύγχρονη τεχνολογία γ) Μηδενική σπατάλη παραγωγικών συντελεστών δ) Οι απαντήσεις α και β 28. Η πολιτική που προτείνει ο Keynes για να αντιμετωπιστεί η ανεργία ανεπαρκούς ζήτησης είναι: 8

9 α) Η μείωση της συνολικής προσφοράς β) Η εφαρμογή ποσοστώσεων στις εισαγωγές γ) Η δασμολόγηση των εισαγόμενων προϊόντων δ) Η ενίσχυση της ζήτησης με δημόσιες επενδύσεις 29. Έστω ότι ένας καταθέτης μπορεί να αποταμιεύσει 100 ευρώ σε μια τράπεζα. Αν το ποσοστό των καταθέσεων που είναι υποχρεωμένες να κρατούν διαθέσιμο οι τράπεζες είναι 20% τότε το συνολικό πλασματικό χρήμα που θα προκύψει θα είναι φορές μεγαλύτερο από το αρχικό κεφάλαιο: α) 3 β) 4 γ) 5 δ) Σε μια κλειστή οικονομία με δημόσιο τομέα οι φόροι T και οι δημόσιες δαπάνες G ( ) είναι προκαθορισμένα σταθερά μεγέθη. Η συνάρτηση που περιγράφει την κατανάλωση είναι η C = a + b Y T 0 και η αντίστοιχη συνάρτηση για την επένδυση είναι I = I0 g i. Με βάση όλα τα παραπάνω δεδομένα η συνάρτηση IS θα πάρει τη μορφή: a+ I + G b T g Y = + i α) 0 0 a+ I0 g β) Y = i a+ I + G b T Y = i 1 b γ) 0 0 a+ I + G b T g Y = i δ) 0 0 9

10 Καλή Επιτυχία Α Π Α Ν Τ Η Σ Ε Ι Σ 2 ου ΤΕΣΤ ΟΙΚΟΝΟΜΙΚΗΣ ΘΕΩΡΙΑΣ 1. δ 2. γ 3. γ 4. α 5. δ 6. γ 7. γ 8. δ 9. α 10. δ 11. γ 12. α 13. β 14. γ 15. β 16. δ 17. α 18. δ 19. δ 20. γ 21. β 22. γ 23. γ 24. γ 25. δ 26. α 27. γ 28. δ 29. γ 30. δ 10

ΠΑΝΕΠΙΣΤΗΜΙΑΚΑ ΦΡΟΝΤΙΣΤΗΡΙΑ ΚΟΛΛΙΝΤΖΑ ΜΑΘΗΜΑ: ΕΡΩΤΗΣΕΙΣ ΟΙΚΟΝΟΜΙΚΗΣ ΘΕΩΡΙΑΣ

ΠΑΝΕΠΙΣΤΗΜΙΑΚΑ ΦΡΟΝΤΙΣΤΗΡΙΑ ΚΟΛΛΙΝΤΖΑ ΜΑΘΗΜΑ: ΕΡΩΤΗΣΕΙΣ ΟΙΚΟΝΟΜΙΚΗΣ ΘΕΩΡΙΑΣ ΜΑΘΗΜΑ: ΕΡΩΤΗΣΕΙΣ ΟΙΚΟΝΟΜΙΚΗΣ ΘΕΩΡΙΑΣ Tα Πανεπιστημιακά Φροντιστήρια «ΚΟΛΛΙΝΤΖΑ» προετοιμάζοντας σε ολιγομελείς ομίλους τους υποψήφιους για τον επικείμενο διαγωνισμό του Υπουργείου Οικονομικών, με κορυφαίο

Διαβάστε περισσότερα

1. Ο εγγυημένος ρυθμός οικονομικής ανάπτυξης στο υπόδειγμα Harrod Domar εξαρτάται

1. Ο εγγυημένος ρυθμός οικονομικής ανάπτυξης στο υπόδειγμα Harrod Domar εξαρτάται 1. Ο εγγυημένος ρυθμός οικονομικής ανάπτυξης στο υπόδειγμα Harrod Domar εξαρτάται από: α) Τη ροπή για αποταμίευση β) Το λόγο κεφαλαίου προϊόντος και τη ροπή για αποταμίευση γ) Το λόγο κεφαλαίου προϊόντος

Διαβάστε περισσότερα

Συντάκτης: Παναγιώτης Βεργούρος, Οικονομολόγος Συγγραφέας βιβλίων, Μικρο μακροοικονομίας διαγωνισμών ΑΣΕΠ

Συντάκτης: Παναγιώτης Βεργούρος, Οικονομολόγος Συγγραφέας βιβλίων, Μικρο μακροοικονομίας διαγωνισμών ΑΣΕΠ Tα Πανεπιστημιακά Φροντιστήρια «ΚΟΛΛΙΝΤΖΑ» προετοιμάζοντας σε ολιγομελείς ομίλους τους υποψήφιους για τον επικείμενο διαγωνισμό του Υ- πουργείου Οικονομικών και στοχεύοντας στην όσο το δυνατό πληρέστερη

Διαβάστε περισσότερα

Συντάκτης: Παναγιώτης Βεργούρος, Οικονομολόγος Συγγραφέας βιβλίων, Μικρο μακροοικονομίας διαγωνισμών ΑΣΕΠ

Συντάκτης: Παναγιώτης Βεργούρος, Οικονομολόγος Συγγραφέας βιβλίων, Μικρο μακροοικονομίας διαγωνισμών ΑΣΕΠ Tα Πανεπιστημιακά Φροντιστήρια «ΚΟΛΛΙΝΤΖΑ» προετοιμάζοντας σε ολιγομελείς ομίλους τους υποψήφιους για τον επικείμενο διαγωνισμό του Υ- πουργείου Οικονομικών και στοχεύοντας στην όσο το δυνατό πληρέστερη

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΑΚΑ ΦΡΟΝΤΙΣΤΗΡΙΑ ΚΟΛΛΙΝΤΖΑ ΜΑΘΗΜΑ: ΟΙΚΟΝΟΜΙΚΗ ΘΕΩΡΙΑ

ΠΑΝΕΠΙΣΤΗΜΙΑΚΑ ΦΡΟΝΤΙΣΤΗΡΙΑ ΚΟΛΛΙΝΤΖΑ ΜΑΘΗΜΑ: ΟΙΚΟΝΟΜΙΚΗ ΘΕΩΡΙΑ ΜΑΘΗΜΑ: ΟΙΚΟΝΟΜΙΚΗ ΘΕΩΡΙΑ Την ευθύνη του εκπαιδευτικού υλικού έχει ο επιστημονικός συνεργάτης των Πανεπιστημιακών Φροντιστηρίων «ΚOΛΛΙΝΤΖΑ», οικονομολόγος συγγραφέας θεμάτων ΑΣΕΠ, Παναγιώτης Βεργούρος.

Διαβάστε περισσότερα

Προτεινόμενα θέματα στο μάθημα. Αρχές Οικονομικής Θεωρίας ΟΜΑΔΑ Α. Στις προτάσεις από Α.1. μέχρι και Α10 να γράψετε στο τετράδιό σας τον αριθμό της

Προτεινόμενα θέματα στο μάθημα. Αρχές Οικονομικής Θεωρίας ΟΜΑΔΑ Α. Στις προτάσεις από Α.1. μέχρι και Α10 να γράψετε στο τετράδιό σας τον αριθμό της Προτεινόμενα θέματα στο μάθημα Αρχές Οικονομικής Θεωρίας ΟΜΑΔΑ Α Στις προτάσεις από Α.1. μέχρι και Α10 να γράψετε στο τετράδιό σας τον αριθμό της καθεμιάς και δίπλα σε κάθε αριθμό την ένδειξη Σωστό, αν

Διαβάστε περισσότερα

3. Με βάση τη βραχυχρόνια καμπύλη Phillips η σχέση πληθωρισμού και ανεργίας είναι:

3. Με βάση τη βραχυχρόνια καμπύλη Phillips η σχέση πληθωρισμού και ανεργίας είναι: 1. Σε περίπτωση που το κράτος φορολογεί τους πολίτες το διαθέσιμο εισόδημα του κάθε ατόμου είναι: α) το σύνολο του εισοδήματός του β) το σύνολο του εισοδήματός του, αφού προηγουμένως αφαιρέσουμε τους φόρους

Διαβάστε περισσότερα

α) Το έλλειμμα ή το πλεόνασμα του εμπορικού ισοζυγίου δεν μεταβάλλεται

α) Το έλλειμμα ή το πλεόνασμα του εμπορικού ισοζυγίου δεν μεταβάλλεται 1. Ο πληθωρισμός ορίζεται ως εξής: (Δ= μεταβολή, Ρ= επίπεδο τιμών, Ρ e = προσδοκώμενο επίπεδο τιμών): α) Δ Ρ e /Ρ β) Ρ e / Ρ γ) Δ Ρ/Ρ δ) (Ρ Ρ e )/Ρ 2. Όταν οι εξαγωγές αυξάνονται: α) Το έλλειμμα ή το πλεόνασμα

Διαβάστε περισσότερα

Το υπόδειγμα IS-LM: Εισαγωγικά

Το υπόδειγμα IS-LM: Εισαγωγικά 1/35 Το υπόδειγμα IS-LM: Εισαγωγικά Νίκος Γιαννακόπουλος Επίκουρος Καθηγητής Τμήμα Οικονομικών Επιστημών Πανεπιστήμιο Πατρών Ακαδημαϊκό Ετος 2014-2015 Εαρινό Εξάμηνο Τι γνωρίζουμε; 2/35 Αγορά αγαθών και

Διαβάστε περισσότερα

1. Ας υποθέσουμε ότι η εισοδηματική ελαστικότητα ζήτησης για όσπρια είναι ίση με το μηδέν. Αυτό σημαίνει ότι:

1. Ας υποθέσουμε ότι η εισοδηματική ελαστικότητα ζήτησης για όσπρια είναι ίση με το μηδέν. Αυτό σημαίνει ότι: 1. Ας υποθέσουμε ότι η εισοδηματική ελαστικότητα ζήτησης για όσπρια είναι ίση με το μηδέν. Αυτό σημαίνει ότι: α) Ανεξάρτητα από το ύψος της τιμής των οσπρίων, ο καταναλωτής θα δαπανά πάντα ένα σταθερό

Διαβάστε περισσότερα

ΑΠΟΛΥΤΗΡΙΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΑΡΧΕΣ ΟΙΚΟΝΟΜΙΚΗΣ ΘΕΩΡΙΑΣ ΜΑΘΗΜΑ ΕΠΙΛΟΓΗΣ Γ ΛΥΚΕΙΟΥ

ΑΠΟΛΥΤΗΡΙΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΑΡΧΕΣ ΟΙΚΟΝΟΜΙΚΗΣ ΘΕΩΡΙΑΣ ΜΑΘΗΜΑ ΕΠΙΛΟΓΗΣ Γ ΛΥΚΕΙΟΥ ΑΠΟΛΥΤΗΡΙΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΑΡΧΕΣ ΟΙΚΟΝΟΜΙΚΗΣ ΘΕΩΡΙΑΣ ΜΑΘΗΜΑ ΕΠΙΛΟΓΗΣ Γ ΛΥΚΕΙΟΥ ΗΜΕΡΟΜΗΝΙΑ: ΕΠΩΝΥΜΟ: ΟΝΟΜΑ: ΟΜΑΔΑ Α Για τις προτάσεις Α1 μέχρι και Α6 να

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΑΚΑ ΦΡΟΝΤΙΣΤΗΡΙΑ ΚΟΛΛΙΝΤΖΑ

ΠΑΝΕΠΙΣΤΗΜΙΑΚΑ ΦΡΟΝΤΙΣΤΗΡΙΑ ΚΟΛΛΙΝΤΖΑ HMEΡΟΜΗΝΙΑ ΔΗΜΟΣΙΕΥΣΗΣ: 4 ΑΠΡΙΛΙΟΥ: ΩΡΑ 10μ.μ Τα παρακάτω θέματα δημοσιεύονται αποκλειστικά και μόνο για όσους υποψήφιους του φροντιστηρίου μας δεν κατάφεραν να προσέλθουν στα επαναληπτικά μαθήματα που

Διαβάστε περισσότερα

1. Σε περίπτωση κατά την οποία η τιμή ενός αγαθού μειωθεί κατά 2% και η ζητούμενη

1. Σε περίπτωση κατά την οποία η τιμή ενός αγαθού μειωθεί κατά 2% και η ζητούμενη Tα Πανεπιστημιακά Φροντιστήρια «ΚΟΛΛΙΝΤΖΑ» προετοιμάζοντας σε ολιγομελείς ομίλους τους υποψήφιους για τον επικείμενο διαγωνισμό του Υ- πουργείου Οικονομικών και στοχεύοντας στην όσο το δυνατό πληρέστερη

Διαβάστε περισσότερα

ΜΑΘΗΜΑ: ΟΙΚΟΝΟΜΙΚΗ ΘΕΩΡΙΑ

ΜΑΘΗΜΑ: ΟΙΚΟΝΟΜΙΚΗ ΘΕΩΡΙΑ ΜΑΘΗΜΑ: ΟΙΚΟΝΟΜΙΚΗ ΘΕΩΡΙΑ Tα Πανεπιστημιακά Φροντιστήρια «ΚΟΛΛΙΝΤΖΑ» προετοιμάζοντας σε ολιγομελείς ομίλους τους υποψήφιους για τον επικείμενο διαγωνισμό του Υπουργείου Οικονομικών, με κορυφαίο επιτελείο

Διαβάστε περισσότερα

ΜΑΘΗΜΑ: ΟΙΚΟΝΟΜΙΚΗ ΘΕΩΡΙΑ

ΜΑΘΗΜΑ: ΟΙΚΟΝΟΜΙΚΗ ΘΕΩΡΙΑ ΜΑΘΗΜΑ: ΟΙΚΟΝΟΜΙΚΗ ΘΕΩΡΙΑ Tα Πανεπιστημιακά Φροντιστήρια «ΚΟΛΛΙΝΤΖΑ» προετοιμάζοντας σε ολιγομελείς ομίλους τους υποψήφιους για τον επικείμενο διαγωνισμό του Υπουργείου Οικονομικών, με κορυφαίο επιτελείο

Διαβάστε περισσότερα

ΘΕΜΑ: Aποτελεσματικότητα της νομισματικής και δημοσιονομικής πολιτικής σε μια ανοικτή οικονομία

ΘΕΜΑ: Aποτελεσματικότητα της νομισματικής και δημοσιονομικής πολιτικής σε μια ανοικτή οικονομία ΘΕΜΑ: ποτελεσματικότητα της νομισματικής και δημοσιονομικής πολιτικής σε μια ανοικτή οικονομία Σύνταξη: Μπαντούλας Κων/νος, Οικονομολόγος, Ms Χρηματοοικονομικών 1 Η πρώτη θεωρία σχετικά με τον αυτόματο

Διαβάστε περισσότερα

νοικίαση κασετών είναι 3. Συνεπώς γνωρίζει ότι αν αυξήσει την τιμή ενοικίασης από

νοικίαση κασετών είναι 3. Συνεπώς γνωρίζει ότι αν αυξήσει την τιμή ενοικίασης από 1. Ο ιδιοκτήτης ενός video club ξέρει ότι η ελαστικότητα της ζήτησης για την ε νοικίαση κασετών είναι 3. Συνεπώς γνωρίζει ότι αν αυξήσει την τιμή ενοικίασης από 200 δρχ. σε 250 δρχ., η ζήτηση θα μειωθεί

Διαβάστε περισσότερα

1. Για να υπολογιστεί το εγχώριο προϊόν σε αγοραίες τιμές με τη μέθοδο της προστιθέμενης

1. Για να υπολογιστεί το εγχώριο προϊόν σε αγοραίες τιμές με τη μέθοδο της προστιθέμενης Tα Πανεπιστημιακά Φροντιστήρια «ΚΟΛΛΙΝΤΖΑ» προετοιμάζοντας σε ολιγομελείς ομίλους τους υποψήφιους για τον επικείμενο διαγωνισμό του Υ- πουργείου Οικονομικών και στοχεύοντας στην όσο το δυνατό πληρέστερη

Διαβάστε περισσότερα

1. Η Μακροοικονομική ασχολείται με τη λειτουργία και τα προβλήματα: α) των δημοσίων επιχειρήσεων και των οργανισμών. β) των ιδιωτικών επιχειρήσεων

1. Η Μακροοικονομική ασχολείται με τη λειτουργία και τα προβλήματα: α) των δημοσίων επιχειρήσεων και των οργανισμών. β) των ιδιωτικών επιχειρήσεων 1. Η Μακροοικονομική ασχολείται με τη λειτουργία και τα προβλήματα: α) των δημοσίων επιχειρήσεων και των οργανισμών. β) των ιδιωτικών επιχειρήσεων γ) του στενού δημόσιου τομέα. δ) της συμπεριφοράς ολόκληρης

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΑΚΑ ΦΡΟΝΤΙΣΤΗΡΙΑ ΚΟΛΛΙΝΤΖΑ

ΠΑΝΕΠΙΣΤΗΜΙΑΚΑ ΦΡΟΝΤΙΣΤΗΡΙΑ ΚΟΛΛΙΝΤΖΑ ΜΑΘΗΜΑ: ΕΡΩΤΗΣΕΙΣ ΣΤΗ ΔΗΜΟΣΙΑ ΟΙΚΟΝΟΜΙΚΗ ΠΕ Tα Πανεπιστημιακά Φροντιστήρια «ΚΟΛΛΙΝΤΖΑ» προετοιμάζοντας σε ολιγομελείς ομίλους τους υποψήφιους για τον επικείμενο διαγωνισμό του Υπουργείου Οικονομικών, με

Διαβάστε περισσότερα

Ας υποθέσουμε ότι ο παίκτης Ι διαλέγει πρώτος την τυχαιοποιημένη στρατηγική (x 1, x 2 ), x 1, x2 0,

Ας υποθέσουμε ότι ο παίκτης Ι διαλέγει πρώτος την τυχαιοποιημένη στρατηγική (x 1, x 2 ), x 1, x2 0, Οικονομικό Πανεπιστήμιο Αθηνών Τμήμα Στατιστικής Εισαγωγή στην Επιχειρησιακή Ερευνα Εαρινό Εξάμηνο 2015 Μ. Ζαζάνης Πρόβλημα 1. Να διατυπώσετε το παρακάτω παίγνιο μηδενικού αθροίσματος ως πρόβλημα γραμμικού

Διαβάστε περισσότερα

1. Υποθέστε ότι η εταιρεία Α καταθέτει στην εμπορική τράπεζα Χ μια επιταγή 20 εκατ.

1. Υποθέστε ότι η εταιρεία Α καταθέτει στην εμπορική τράπεζα Χ μια επιταγή 20 εκατ. 1. Υποθέστε ότι η εταιρεία Α καταθέτει στην εμπορική τράπεζα Χ μια επιταγή 20 εκατ. ευρώ που πήρε από το κράτος για την κατασκευή ενός δημόσιου έργου. Αν η τράπεζα τηρούσε τα ελάχιστα υποχρεωτικά ρευστά

Διαβάστε περισσότερα

Αναγνώριση Προτύπων. Σήμερα! Λόγος Πιθανοφάνειας Πιθανότητα Λάθους Κόστος Ρίσκο Bayes Ελάχιστη πιθανότητα λάθους για πολλές κλάσεις

Αναγνώριση Προτύπων. Σήμερα! Λόγος Πιθανοφάνειας Πιθανότητα Λάθους Κόστος Ρίσκο Bayes Ελάχιστη πιθανότητα λάθους για πολλές κλάσεις Αναγνώριση Προτύπων Σήμερα! Λόγος Πιθανοφάνειας Πιθανότητα Λάθους Πιθανότητα Λάθους Κόστος Ρίσκο Bayes Ελάχιστη πιθανότητα λάθους για πολλές κλάσεις 1 Λόγος Πιθανοφάνειας Ας υποθέσουμε ότι θέλουμε να ταξινομήσουμε

Διαβάστε περισσότερα

Αποδεικτικές Διαδικασίες και Μαθηματική Επαγωγή.

Αποδεικτικές Διαδικασίες και Μαθηματική Επαγωγή. Αποδεικτικές Διαδικασίες και Μαθηματική Επαγωγή. Mαθηματικό σύστημα Ένα μαθηματικό σύστημα αποτελείται από αξιώματα, ορισμούς, μη καθορισμένες έννοιες και θεωρήματα. Η Ευκλείδειος γεωμετρία αποτελεί ένα

Διαβάστε περισσότερα

ΘΕΜΑ: Διαφορές εσωτερικού εξωτερικού δανεισμού. Η διαχρονική κατανομή του βάρους από το δημόσιο δανεισμό.

ΘΕΜΑ: Διαφορές εσωτερικού εξωτερικού δανεισμού. Η διαχρονική κατανομή του βάρους από το δημόσιο δανεισμό. 1 ΘΕΜΑ: Διαφορές εσωτερικού εξωτερικού δανεισμού. Η διαχρονική κατανομή του βάρους από το δημόσιο δανεισμό. Σύνταξη: Παπαδόπουλος Θεοχάρης, Οικονομολόγος, Οικονομολόγος, MSc, PhD Candidate, εισηγητής Φροντιστηρίων

Διαβάστε περισσότερα

ΑΠΟΛΥΤΗΡΙΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ ΤΡΙΤΗ 20 ΙΟΥΝΙΟΥ 2000 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ ΕΠΙΛΟΓΗΣ : ΑΡΧΕΣ ΟΙΚΟΝΟΜΙΚΗΣ ΘΕΩΡΙΑΣ ΣΥΝΟΛΟ ΣΕΛΙΔΩΝ: ΠΕΝΤΕ (5)

ΑΠΟΛΥΤΗΡΙΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ ΤΡΙΤΗ 20 ΙΟΥΝΙΟΥ 2000 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ ΕΠΙΛΟΓΗΣ : ΑΡΧΕΣ ΟΙΚΟΝΟΜΙΚΗΣ ΘΕΩΡΙΑΣ ΣΥΝΟΛΟ ΣΕΛΙΔΩΝ: ΠΕΝΤΕ (5) ΑΡΧΗ 1ΗΣ ΣΕΛΙΔΑΣ ΑΠΟΛΥΤΗΡΙΕΣ ΕΞΕΤΑΣΕΙΣ Σ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ ΤΡΙΤΗ 20 ΙΟΥΝΙΟΥ 2000 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ ΕΠΙΛΟΓΗΣ : ΑΡΧΕΣ ΟΙΚΟΝΟΜΙΚΗΣ ΘΕΩΡΙΑΣ ΣΥΝΟΛΟ ΣΕΛΙΔΩΝ: ΠΕΝΤΕ (5) ΟΜΑΔΑ Α Στις παρακάτω προτάσεις, από Α.1.1.

Διαβάστε περισσότερα

2. Κατάθεσε κάποιος στην Εθνική Τράπεζα 4800 με επιτόκιο 3%. Μετά από πόσο χρόνο θα πάρει τόκο 60 ; α) 90 ημέρες β) 1,5 έτη γ) 5 μήνες δ) 24 μήνες

2. Κατάθεσε κάποιος στην Εθνική Τράπεζα 4800 με επιτόκιο 3%. Μετά από πόσο χρόνο θα πάρει τόκο 60 ; α) 90 ημέρες β) 1,5 έτη γ) 5 μήνες δ) 24 μήνες 20 Φεβρουαρίου 2010 1. Ένας έμπορος αγόρασε 720 κιλά κρασί προς 2 το κιλό. Πρόσθεσε νερό, το πούλησε προς 2,5 το κιλό και κέρδισε 500. Το νερό που πρόσθεσε ήταν σε κιλά: α) 88 β) 56 γ) 60 δ) 65 2. Κατάθεσε

Διαβάστε περισσότερα

{ i f i == 0 and p > 0

{ i f i == 0 and p > 0 ΟΙΚΟΝΟΜΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ - ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΜΕΤΑΠΤΥΧΙΑΚΟ ΠΡΟΓΡΑΜΜΑ ΕΠΙΣΤΗΜΗΣ ΥΠΟΛΟΓΙΣΤΩΝ Σχεδίαση και Ανάλυση Αλγορίθμων Διδάσκων: Ε. Μαρκάκης, Φθινοπωρινό εξάμηνο 014-015 Λύσεις 1ης Σειράς Ασκήσεων

Διαβάστε περισσότερα

ΜΑΘΗΜΑ: ΠΟΛΙΤΙΚΗ ΟΙΚΟΝΟΜΙΑ-ΔΗΜΟΣΙΑ ΟΙΚΟΝΟΜΙΚΗ

ΜΑΘΗΜΑ: ΠΟΛΙΤΙΚΗ ΟΙΚΟΝΟΜΙΑ-ΔΗΜΟΣΙΑ ΟΙΚΟΝΟΜΙΚΗ ΜΑΘΗΜΑ: ΠΟΛΙΤΙΚΗ ΟΙΚΟΝΟΜΙΑ-ΔΗΜΟΣΙΑ ΟΙΚΟΝΟΜΙΚΗ Σύνταξη: Παπαδόπουλος Θεοχάρης, Οικονομολόγος, MSc, PhD Candidate Κατηγορίες οφέλους και κόστους που προέρχονται από τις δημόσιες δαπάνες Για την αξιολόγηση

Διαβάστε περισσότερα

Εισαγωγικά. 1.1 Η σ-αλγεβρα ως πληροφορία

Εισαγωγικά. 1.1 Η σ-αλγεβρα ως πληροφορία 1 Εισαγωγικά 1.1 Η σ-αλγεβρα ως πληροφορία Στη θεωρία μέτρου, όταν δουλεύει κανείς σε έναν χώρο X, συνήθως έχει διαλέξει μια αρκετά μεγάλη σ-άλγεβρα στον X έτσι ώστε όλα τα σύνολα που εμφανίζονται να ανήκουν

Διαβάστε περισσότερα

του συνεργάτη μας Λογιστή Α Τάξεως Γεωργίου Μακρίδη 1. Ποιο από τα παρακάτω δεν περιλαμβάνεται στο Πραγματικό Παθητικό

του συνεργάτη μας Λογιστή Α Τάξεως Γεωργίου Μακρίδη 1. Ποιο από τα παρακάτω δεν περιλαμβάνεται στο Πραγματικό Παθητικό του συνεργάτη μας Λογιστή Α Τάξεως Γεωργίου Μακρίδη 1. Ποιο από τα παρακάτω δεν περιλαμβάνεται στο Πραγματικό Παθητικό μιας οικονομικής μονάδος: Α) Υποχρεώσεις προς τον Παπαδόπουλο, συνιδιοκτήτη της επιχείρησης.

Διαβάστε περισσότερα

Το κράτος είναι φτιαγμένο για τον άνθρωπο και όχι ο άνθρωπος για το κράτος. A. Einstein Πηγή:

Το κράτος είναι φτιαγμένο για τον άνθρωπο και όχι ο άνθρωπος για το κράτος. A. Einstein Πηγή: Ας πούμε και κάτι για τις δύσκολες μέρες που έρχονται Το κράτος είναι φτιαγμένο για τον άνθρωπο και όχι ο άνθρωπος για το κράτος. A. Einstein 1879-1955 Πηγή: http://www.cognosco.gr/gnwmika/ 1 ΚΥΚΛΙΚΟΣ

Διαβάστε περισσότερα

Ημέρα 3 η. (α) Aπό την εργασιακή διαδικασία στη διαδικασία παραγωγής (β) Αξία του προϊόντος και αξία της εργασιακής δύναμης

Ημέρα 3 η. (α) Aπό την εργασιακή διαδικασία στη διαδικασία παραγωγής (β) Αξία του προϊόντος και αξία της εργασιακής δύναμης Ημέρα 3 η. (α) Aπό την εργασιακή διαδικασία στη διαδικασία παραγωγής (β) Αξία του προϊόντος και αξία της εργασιακής δύναμης Η εργασιακή διαδικασία και τα στοιχεία της. Η κοινωνική επικύρωση των ιδιωτικών

Διαβάστε περισσότερα

ΣΤΟ ΙΑΤΡΕΙΟ. Με την πιστοποίηση του αποκτά πρόσβαση στο περιβάλλον του ιατρού που παρέχει η εφαρμογή.

ΣΤΟ ΙΑΤΡΕΙΟ. Με την πιστοποίηση του αποκτά πρόσβαση στο περιβάλλον του ιατρού που παρέχει η εφαρμογή. ΣΤΟ ΙΑΤΡΕΙΟ Ο ιατρός αφού διαπιστώσει εάν το πρόσωπο που προσέρχεται για εξέταση είναι το ίδιο με αυτό που εικονίζεται στο βιβλιάριο υγείας και ελέγξει ότι είναι ασφαλιστικά ενήμερο (όπως ακριβώς γίνεται

Διαβάστε περισσότερα

Μονάδες 5 1.2.α. Να γράψετε στο τετράδιό σας τον παρακάτω πίνακα σωστά συµπληρωµένο.

Μονάδες 5 1.2.α. Να γράψετε στο τετράδιό σας τον παρακάτω πίνακα σωστά συµπληρωµένο. ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ Γ ΤΑΞΗ ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ ΕΥΤΕΡΑ 12 ΙΟΥΝΙΟΥ 2000 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ (ΚΥΚΛΟΣ ΤΕΧΝΟΛΟΓΙΑΣ ΚΑΙ ΠΑΡΑΓΩΓΗΣ): ΧΗΜΕΙΑ - ΒΙΟΧΗΜΕΙΑ ΣΥΝΟΛΟ ΣΕΛΙ

Διαβάστε περισσότερα

ΠΡΟΤΕΙΝΟΜΕΝΟ ΘΕΜΑ. Μορφές δημόσιου δανεισμού. Σύνταξη: Παπαδόπουλος Θεοχάρης, Οικονομολόγος, MSc, PhD Candidate

ΠΡΟΤΕΙΝΟΜΕΝΟ ΘΕΜΑ. Μορφές δημόσιου δανεισμού. Σύνταξη: Παπαδόπουλος Θεοχάρης, Οικονομολόγος, MSc, PhD Candidate ΠΡΟΤΕΙΝΟΜΕΝΟ ΘΕΜΑ Μορφές δημόσιου δανεισμού Σύνταξη: Παπαδόπουλος Θεοχάρης, Οικονομολόγος, MSc, PhD Candidate 1 Ανάλογα με την πηγή προελεύσεως των πόρων Με βάση το κριτήριο αυτό, ο δανεισμός διακρίνεται

Διαβάστε περισσότερα

ΜΑΘΗΜΑ: Πολιτική Οικονομία και Δημόσια Οικονομική

ΜΑΘΗΜΑ: Πολιτική Οικονομία και Δημόσια Οικονομική ΑΠΑΝΤΗΣΕΙΣ ΘΕΜΑΤΩΝ ΜΑΘΗΜΑ: Πολιτική Οικονομία και Δημόσια Οικονομική Α. Ποια θεωρείτε ως βασικά χαρακτηριστικά της σημερινής διεθνούς οικονομικής κρίσης; Β. Να αξιολογήσετε την επίδραση της διεθνούς οικονομικής

Διαβάστε περισσότερα

Το Ισοζύγιο Πληρωμών I Συναλλαγές Περιουσιακών Στοιχείων: Το Ισοζύγιο Χρημ/κών Συναλλαγών (Financial Account)

Το Ισοζύγιο Πληρωμών I Συναλλαγές Περιουσιακών Στοιχείων: Το Ισοζύγιο Χρημ/κών Συναλλαγών (Financial Account) Συναλλαγματικές Ισοτιμίες και Εξωτερικός Πλούτος Θέματα Διεθνούς Οικονομίας Μεταβολές στην Καθαρή Επενδυτική Θέση μιας Χώρας: Ισοζύγιο Τρεχουσών Συναλλαγών, Ισοζύγιο Χρηματοοικονομικών Συναλλαγών, Μεταβολές

Διαβάστε περισσότερα

Αναγνώριση Προτύπων. Σημερινό Μάθημα

Αναγνώριση Προτύπων. Σημερινό Μάθημα Αναγνώριση Προτύπων Σημερινό Μάθημα Bias (απόκλιση) και variance (διακύμανση) Ελεύθεροι Παράμετροι Ελεύθεροι Παράμετροι Διαίρεση dataset Μέθοδος holdout Cross Validation Bootstrap Bias (απόκλιση) και variance

Διαβάστε περισσότερα

ΑΡΧΗ 1ΗΣ ΣΕΛΙΔΑΣ Γ ΤΑΞΗ

ΑΡΧΗ 1ΗΣ ΣΕΛΙΔΑΣ Γ ΤΑΞΗ ΑΡΧΗ 1ΗΣ ΣΕΛΙΔΑΣ ΑΠΟΛΥΤΗΡΙΕΣ ΕΞΕΤΑΣΕΙΣ Σ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ ΔΕΥΤΕΡΑ 12 ΙΟΥΝΙΟΥ 2000 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ (ΚΥΚΛΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ ΚΑΙ ΥΠΗΡΕΣΙΩΝ): ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ

Διαβάστε περισσότερα

ΜΑΘΗΜΑ: ΔΗΜΟΣΙΑ ΟΙΚΟΝΟΜΙΚΗ

ΜΑΘΗΜΑ: ΔΗΜΟΣΙΑ ΟΙΚΟΝΟΜΙΚΗ ΜΑΘΗΜΑ: ΔΗΜΟΣΙΑ ΟΙΚΟΝΟΜΙΚΗ Tα Πανεπιστημιακά Φροντιστήρια «ΚΟΛΛΙΝΤΖΑ» προετοιμάζοντας σε ολιγομελείς ομίλους τους υποψήφιους για τον επικείμενο διαγωνισμό του Υπουργείου Οικονομικών, με κορυφαίο επιτελείο

Διαβάστε περισσότερα

Αναγνώριση Προτύπων. Σημερινό Μάθημα

Αναγνώριση Προτύπων. Σημερινό Μάθημα Αναγνώριση Προτύπων Σημερινό Μάθημα Η κατάρα της διαστατικότητας Μείωση διαστάσεων εξαγωγή χαρακτηριστικών επιλογή χαρακτηριστικών Αναπαράσταση έναντι Κατηγοριοποίησης Ανάλυση Κυρίων Συνιστωσών PCA Γραμμική

Διαβάστε περισσότερα

ΣΥΝΟΛΑ (προσέξτε τα κοινά χαρακτηριστικά των παρακάτω προτάσεων) Οι άνθρωποι που σπουδάζουν ΤΠ&ΕΣ και βρίσκονται στην αίθουσα

ΣΥΝΟΛΑ (προσέξτε τα κοινά χαρακτηριστικά των παρακάτω προτάσεων) Οι άνθρωποι που σπουδάζουν ΤΠ&ΕΣ και βρίσκονται στην αίθουσα ΣΥΝΟΛΑ (προσέξτε τα κοινά χαρακτηριστικά των παρακάτω προτάσεων) Οι άνθρωποι που σπουδάζουν ΤΠ&ΕΣ και βρίσκονται στην αίθουσα Τα βιβλία διακριτών μαθηματικών του Γ.Β. Η/Υ με επεξεργαστή Pentium και χωρητικότητα

Διαβάστε περισσότερα

Ταξινόμηση των μοντέλων διασποράς ατμοσφαιρικών ρύπων βασισμένη σε μαθηματικά κριτήρια.

Ταξινόμηση των μοντέλων διασποράς ατμοσφαιρικών ρύπων βασισμένη σε μαθηματικά κριτήρια. ΠΡΟΤΕΙΝΟΜΕΝΑ ΘΕΜΑΤΑ Ταξινόμηη των μοντέλων διαποράς ατμοφαιρικών ρύπων βαιμένη ε μαθηματικά κριτήρια. Μοντέλο Ελεριανά μοντέλα (Elerian) Λαγκρατζιανά μοντέλα (Lagrangian) Επιπρόθετος διαχωριμός Μοντέλα

Διαβάστε περισσότερα

Αναγνώριση Προτύπων. Σημερινό Μάθημα

Αναγνώριση Προτύπων. Σημερινό Μάθημα Αναγνώριση Προτύπων Σημερινό Μάθημα Μη Παραμετρικός Υπολογισμός πυκνότητας με εκτίμηση Ιστόγραμμα Παράθυρα Parzen Εξομαλυμένη Kernel Ασκήσεις 1 Μη Παραμετρικός Υπολογισμός πυκνότητας με εκτίμηση Κατά τη

Διαβάστε περισσότερα

Γενικό Λύκειο Μαραθοκάμπου Σάμου. Άλγεβρα Β λυκείου. 13 Οκτώβρη 2016

Γενικό Λύκειο Μαραθοκάμπου Σάμου. Άλγεβρα Β λυκείου. 13 Οκτώβρη 2016 Γενικό Λύκειο Μαραθοκάμπου Σάμου Άλγεβρα Β λυκείου Εργασία2 η : «Συναρτήσεις» 13 Οκτώβρη 2016 Ερωτήσεις Θεωρίας 1.Πότελέμεότιμιασυνάρτησηfείναιγνησίωςάυξουσασεέναδιάστημα του πεδίου ορισμού της; 2.Πότελέμεότιμιασυνάρτησηfείναιγνησίωςφθίνουσασεέναδιάστημα

Διαβάστε περισσότερα

Κεφάλαιο 2.4: Τα βασικά στοιχεία ενός Επιχειρηματικού Σχεδίου (Business Plan) Μέσα από αυτό το κεφάλαιο φαίνεται ότι αφενός η σωστή δημιουργία και

Κεφάλαιο 2.4: Τα βασικά στοιχεία ενός Επιχειρηματικού Σχεδίου (Business Plan) Μέσα από αυτό το κεφάλαιο φαίνεται ότι αφενός η σωστή δημιουργία και Κεφάλαιο 2.4: Τα βασικά στοιχεία ενός Επιχειρηματικού Σχεδίου (Business Plan) Περίληψη Κεφαλαίου: Μέσα από αυτό το κεφάλαιο φαίνεται ότι αφενός η σωστή δημιουργία και αφετέρου η σωστή εφαρμογή του Επιχειρηματικού

Διαβάστε περισσότερα

Προτεινόμενα θέματα. στο μάθημα. Αρχές οργάνωσης και διοίκησης επιχειρήσεων. ΟΜΑΔΑ Α: Ερωτήσεις Σωστού Λάθους.

Προτεινόμενα θέματα. στο μάθημα. Αρχές οργάνωσης και διοίκησης επιχειρήσεων. ΟΜΑΔΑ Α: Ερωτήσεις Σωστού Λάθους. Προτεινόμενα θέματα στο μάθημα Αρχές οργάνωσης και διοίκησης επιχειρήσεων ΟΜΑΔΑ Α: Ερωτήσεις Σωστού Λάθους Στις παρακάτω προτάσεις να γράψετε δίπλα στον αριθμό της καθεμιάς τη λέξη Σωστό αν κρίνετε ότι

Διαβάστε περισσότερα

Συμπεριφοριακή Επιχειρηματικότητα

Συμπεριφοριακή Επιχειρηματικότητα Συμπεριφοριακή Επιχειρηματικότητα Great talent can come from anywhere, free your mind Το ταλέντο μπορεί να εμφανιστεί από οπουδήποτε, ελευθερώστε το μυαλό σας 1 Επιχειρηματίας Entrepreneur Γαλλική προέλευση

Διαβάστε περισσότερα

ΑΠΟΛΥΤΗΡΙΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ ΤΡΙΤΗ 30 ΜΑΪΟΥ 2000 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ ΘΕΤΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ: ΧΗΜΕΙΑ ΣΥΝΟΛΟ ΣΕΛΙ ΩΝ: ΕΞΙ (6)

ΑΠΟΛΥΤΗΡΙΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ ΤΡΙΤΗ 30 ΜΑΪΟΥ 2000 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ ΘΕΤΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ: ΧΗΜΕΙΑ ΣΥΝΟΛΟ ΣΕΛΙ ΩΝ: ΕΞΙ (6) ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ ΑΠΟΛΥΤΗΡΙΕΣ ΕΞΕΤΑΣΕΙΣ Σ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ ΤΡΙΤΗ 30 ΜΑΪΟΥ 2000 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ ΘΕΤΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ: ΧΗΜΕΙΑ ΣΥΝΟΛΟ ΣΕΛΙ ΩΝ: ΕΞΙ (6) ΘΕΜΑ 1ο Στις ερωτήσεις 1.1 έως 1.3, να γράψετε στο τετράδιό

Διαβάστε περισσότερα

Αναγνώριση Προτύπων. Σημερινό Μάθημα

Αναγνώριση Προτύπων. Σημερινό Μάθημα Αναγνώριση Προτύπων Σημερινό Μάθημα Εκτίμηση Πυκνότητας με k NN k NN vs Bayes classifier k NN vs Bayes classifier Ο κανόνας ταξινόμησης του πλησιέστερου γείτονα (k NN) lazy αλγόριθμοι O k NN ως χαλαρός

Διαβάστε περισσότερα

Σύνταξη: Παπαδόπουλος Θεοχάρης, Οικονομολόγος, Οικονομολόγος, MSc, PhD Candidate, εισηγητής Φροντιστηρίων ΚΟΛΛΙΝΤΖΑ

Σύνταξη: Παπαδόπουλος Θεοχάρης, Οικονομολόγος, Οικονομολόγος, MSc, PhD Candidate, εισηγητής Φροντιστηρίων ΚΟΛΛΙΝΤΖΑ 1 Σύνταξη: Παπαδόπουλος Θεοχάρης, Οικονομολόγος, Οικονομολόγος, MSc, PhD Candidate, εισηγητής Φροντιστηρίων ΚΟΛΛΙΝΤΖΑ Ο δημόσιος προϋπολογισμός είναι σχεδόν πάντοτε τεχνικά ισοσκελισμένος. Ένα τέτοιο όμως

Διαβάστε περισσότερα

- 1 - Ποιοι κερδίζουν από το εμπόριο αγαθών και υπηρεσιών; Γιατί η άμεση ανταλλαγή αγαθών, ορισμένες φορές, είναι δύσκολο να

- 1 - Ποιοι κερδίζουν από το εμπόριο αγαθών και υπηρεσιών; Γιατί η άμεση ανταλλαγή αγαθών, ορισμένες φορές, είναι δύσκολο να - 1 - Ο παράξενος πραματευτής Ανθολόγιο Ε & Στ τάξης: 277-279 Οικονομικές έννοιες Ανταλλαγή Αντιπραγματισμός Εμπόριο Ερωτήσεις Ποιοι κερδίζουν από το εμπόριο αγαθών και υπηρεσιών; Γιατί η άμεση ανταλλαγή

Διαβάστε περισσότερα

ΜΑΘΗΜΑ: ΔΗΜΟΣΙΑ ΟΙΚΟΝΟΜΙΚΗ

ΜΑΘΗΜΑ: ΔΗΜΟΣΙΑ ΟΙΚΟΝΟΜΙΚΗ ΜΑΘΗΜΑ: ΔΗΜΟΣΙΑ ΟΙΚΟΝΟΜΙΚΗ Tα Πανεπιστημιακά Φροντιστήρια «ΚΟΛΛΙΝΤΖΑ» προετοιμάζοντας σε ολιγομελείς ομίλους τους υποψήφιους για τον επικείμενο διαγωνισμό του Υπουργείου Οικονομικών, με κορυφαίο επιτελείο

Διαβάστε περισσότερα

Α) Ανάλογα με τη φύση των κονδυλίων που περιλαμβάνουν οι προϋπολογισμοί διακρίνονται σε:

Α) Ανάλογα με τη φύση των κονδυλίων που περιλαμβάνουν οι προϋπολογισμοί διακρίνονται σε: Ο διαγωνισμός της Εθνικής Σχολής Δημόσιας Διοίκησης προϋποθέτει, ως γνωστόν, συνδυασμό συνδυαστικής γνώσης της εξεταστέας ύλης και θεμάτων πολιτικής και οικονομικής επικαιρότητας. Tα Πανεπιστημιακά Φροντιστήρια

Διαβάστε περισσότερα

ΣΤΟ ΦΑΡΜΑΚΕΙΟ. Με την πιστοποίηση του έχει πρόσβαση στο περιβάλλον του φαρμακείου που παρέχει η εφαρμογή.

ΣΤΟ ΦΑΡΜΑΚΕΙΟ. Με την πιστοποίηση του έχει πρόσβαση στο περιβάλλον του φαρμακείου που παρέχει η εφαρμογή. ΣΤΟ ΦΑΡΜΑΚΕΙΟ Ο ασθενής έχοντας μαζί του το βιβλιάριο υγείας του και την τυπωμένη συνταγή από τον ιατρό, η οποία αναγράφει τον μοναδικό κωδικό της, πάει στο φαρμακείο. Το φαρμακείο αφού ταυτοποιήσει το

Διαβάστε περισσότερα

Ευρωπαϊκά παράγωγα Ευρωπαϊκά δικαιώματα

Ευρωπαϊκά παράγωγα Ευρωπαϊκά δικαιώματα 17 Ευρωπαϊκά παράγωγα 17.1 Ευρωπαϊκά δικαιώματα Ορισμός 17.1. 1) Ευρωπαϊκό δικαίωμα αγοράς σε μία μετοχή είναι ένα συμβόλαιο που δίνει στον κάτοχό του το δικαίωμα να αγοράσει μία μετοχή από τον εκδότη

Διαβάστε περισσότερα

5.1 Μετρήσιμες συναρτήσεις

5.1 Μετρήσιμες συναρτήσεις 5 Μετρήσιμες συναρτήσεις 5.1 Μετρήσιμες συναρτήσεις Ορισμός 5.1. Εστω (Ω, F ), (E, E) μετρήσιμοι χώροι. Μια συνάρτηση f : Ω E λέγεται F /Eμετρήσιμη αν f 1 (A) F για κάθε A E. (5.1) Συμβολίζουμε το σύνολο

Διαβάστε περισσότερα

Προτεινόμενα θέματα. στο μάθημα. Αρχές οργάνωσης και διοίκησης επιχειρήσεων. ΟΜΑΔΑ Α: Ερωτήσεις Σωστού Λάθους.

Προτεινόμενα θέματα. στο μάθημα. Αρχές οργάνωσης και διοίκησης επιχειρήσεων. ΟΜΑΔΑ Α: Ερωτήσεις Σωστού Λάθους. Προτεινόμενα θέματα στο μάθημα Αρχές οργάνωσης και διοίκησης επιχειρήσεων ΟΜΑΔΑ Α: Ερωτήσεις Σωστού Λάθους Στις παρακάτω προτάσεις να γράψετε δίπλα στον αριθμό της καθεμιάς τη λέξη Σωστό αν κρίνετε ότι

Διαβάστε περισσότερα

ΑΣΕΠ 2000 ΑΣΕΠ 2000 Εμπορική Τράπεζα 1983 Υπουργείο Κοιν. Υπηρ. 1983

ΑΣΕΠ 2000 ΑΣΕΠ 2000 Εμπορική Τράπεζα 1983 Υπουργείο Κοιν. Υπηρ. 1983 20 Φεβρουαρίου 2010 ΑΣΕΠ 2000 1. Η δεξαμενή βενζίνης ενός πρατηρίου υγρών καυσίμων είναι γεμάτη κατά τα 8/9. Κατά τη διάρκεια μιας εβδομάδας το πρατήριο διέθεσε τα 3/4 της βενζίνης αυτής και έμειναν 4000

Διαβάστε περισσότερα

Ημέρα 4 η (α) Αγορά και πώληση της εργασιακής δύναμης. (β) Η απόλυτη υπεραξία. Αγορά και πώληση της εργασιακής δύναμης

Ημέρα 4 η (α) Αγορά και πώληση της εργασιακής δύναμης. (β) Η απόλυτη υπεραξία. Αγορά και πώληση της εργασιακής δύναμης Ημέρα 4 η (α) Αγορά και πώληση της εργασιακής δύναμης (β) Η απόλυτη υπεραξία Αγορά και πώληση της εργασιακής δύναμης Στο κεφάλαιο για την αγορά και την πώληση της εργατικής δύναμης (ελληνική έκδοση: τόμος

Διαβάστε περισσότερα

Ψηφιακή Εικόνα. Σημερινό μάθημα!

Ψηφιακή Εικόνα. Σημερινό μάθημα! Ψηφιακή Εικόνα Σημερινό μάθημα! Ψηφιακή Εικόνα Αναλογική εικόνα Ψηφιοποίηση (digitalization) Δειγματοληψία Κβαντισμός Δυαδικές δ έ (Binary) εικόνες Ψηφιακή εικόνα & οθόνη Η/Υ 1 Ψηφιακή Εικόνα Μια ακίνητη

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ. Πρώτη Γραπτή Εργασία. Εισαγωγή στους υπολογιστές Μαθηματικά

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ. Πρώτη Γραπτή Εργασία. Εισαγωγή στους υπολογιστές Μαθηματικά ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ Πρόγραμμα Σπουδών: ΙΟΙΚΗΣΗ ΕΠΙΧΕΙΡΗΣΕΩΝ και ΟΡΓΑΝΙΣΜΩΝ Θεματική Ενότητα: ΕΟ-13 Ποσοτικές Μέθοδοι Ακαδημαϊκό Έτος: 2012-13 Πρώτη Γραπτή Εργασία Εισαγωγή στους υπολογιστές Μαθηματικά

Διαβάστε περισσότερα

ΜΑΘΗΜΑ: ΠΟΛΙΤΙΚΗ ΟΙΚΟΝΟΜΙΑ

ΜΑΘΗΜΑ: ΠΟΛΙΤΙΚΗ ΟΙΚΟΝΟΜΙΑ ΜΑΘΗΜΑ: ΠΟΛΙΤΙΚΗ ΟΙΚΟΝΟΜΙΑ 1. Ποια είναι τα δημοσιονομικά εργαλεία τόνωσης της ενεργούς ζήτησης στην οικονομία και πως λειτουργούν αυτά; Ποια είναι η δυσκολία στη χρήση αυτών των εργαλείων όταν δημόσιο

Διαβάστε περισσότερα

Τρίτη, 05 Ιουνίου 2001 ΤΕΧΝΟΛΟΓΙΚΗ ΚΑΤΕΥΘΥΝΣΗ Γ ΛΥΚΕΙΟΥ ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ

Τρίτη, 05 Ιουνίου 2001 ΤΕΧΝΟΛΟΓΙΚΗ ΚΑΤΕΥΘΥΝΣΗ Γ ΛΥΚΕΙΟΥ ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ Τρίτη, 05 Ιουνίου 2001 ΤΕΧΝΟΛΟΓΙΚΗ ΚΑΤΕΥΘΥΝΣΗ Γ ΛΥΚΕΙΟΥ ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ ΘΕΜΑ 1 Α. Να µεταφέρετε στο τετράδιό σας και να συµπληρώσετε τον παρακάτω πίνακα αλήθειας δύο προτάσεων

Διαβάστε περισσότερα

Εξαναγκασμένες ταλαντώσεις, Ιδιοτιμές με πολλαπλότητα, Εκθετικά πινάκων. 9 Απριλίου 2013, Βόλος

Εξαναγκασμένες ταλαντώσεις, Ιδιοτιμές με πολλαπλότητα, Εκθετικά πινάκων. 9 Απριλίου 2013, Βόλος ιαφορικές Εξισώσεις Εξαναγκασμένες ταλαντώσεις, Ιδιοτιμές με πολλαπλότητα, Ατελείς ιδιοτιμές Εκθετικά πινάκων Μανόλης Βάβαλης Τμήμα Μηχανικών Η/Υ Τηλεπικοινωνιών και ικτύων Πανεπιστήμιο Θεσσαλίας 9 Απριλίου

Διαβάστε περισσότερα

ΓΕΩΠΟΝΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ ΤΜΗΜΑ ΑΓΡΟΤΙΚΗΣ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΑΝΑΠΤΥΞΗΣ

ΓΕΩΠΟΝΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ ΤΜΗΜΑ ΑΓΡΟΤΙΚΗΣ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΑΝΑΠΤΥΞΗΣ ΓΕΩΠΟΝΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ ΤΜΗΜΑ ΑΓΡΟΤΙΚΗΣ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΑΝΑΠΤΥΞΗΣ ΔΙΔΑΚΤΟΡΙΚΗ ΔΙΑΤΡΙΒΗ ΜΗ ΝΕΟΚΛΑΣΙΚΕΣ ΠΡΟΤΙΜΗΣΕΙΣ ΚΑΙ ΜΕΤΡΑ ΑΠΟΤΙΜΗΣΗΣ: ΘΕΩΡΗΤΙΚΟ ΥΠΟΔΕΙΓΜΑ ΚΑΙ ΕΜΠΕΙΡΙΚΑ ΑΠΟΤΕΛΕΣΜΑΤΑ ΕΡΕΥΝΑΣ ΠΕΔΙΟΥ

Διαβάστε περισσότερα

Παντού σε αυτό το κεφάλαιο, αν δεν αναφέρεται κάτι διαφορετικό, δουλεύουμε σε ένα χώρο πιθανότητας (Ω, F, P) και η G F είναι μια σ-άλγεβρα.

Παντού σε αυτό το κεφάλαιο, αν δεν αναφέρεται κάτι διαφορετικό, δουλεύουμε σε ένα χώρο πιθανότητας (Ω, F, P) και η G F είναι μια σ-άλγεβρα. 2 Δεσμευμένη μέση τιμή 2.1 Ορισμός Παντού σε αυτό το κεφάλαιο, αν δεν αναφέρεται κάτι διαφορετικό, δουλεύουμε σε ένα χώρο πιθανότητας (Ω, F, P) και η G F είναι μια σ-άλγεβρα. Ορισμός 2.1. Για X : Ω R τυχαία

Διαβάστε περισσότερα

Ο Ισχυρός Νόμος των Μεγάλων Αριθμών

Ο Ισχυρός Νόμος των Μεγάλων Αριθμών 1 Ο Ισχυρός Νόμος των Μεγάλων Αριθμών Στο κεφάλαιο αυτό παρουσιάζουμε ένα από τα σημαντικότερα αποτελέσματα της Θεωρίας Πιθανοτήτων, τον ισχυρό νόμο των μεγάλων αριθμών. Η διατύπωση που θα αποδείξουμε

Διαβάστε περισσότερα

ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Β ΤΑΞΗΣ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ ΣΑΒΒΑΤΟ 27 ΜΑΪΟΥ 2000 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ ΘΕΤΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ: ΧΗΜΕΙΑ ΣΥΝΟΛΟ ΣΕΛΙ ΩΝ: ΕΞΙ (6)

ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Β ΤΑΞΗΣ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ ΣΑΒΒΑΤΟ 27 ΜΑΪΟΥ 2000 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ ΘΕΤΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ: ΧΗΜΕΙΑ ΣΥΝΟΛΟ ΣΕΛΙ ΩΝ: ΕΞΙ (6) ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Β ΤΑΞΗΣ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ ΣΑΒΒΑΤΟ 27 ΜΑΪΟΥ 2000 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ ΘΕΤΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ: ΧΗΜΕΙΑ ΣΥΝΟΛΟ ΣΕΛΙ ΩΝ: ΕΞΙ (6) ΘΕΜΑ 1ο Στις ερωτήσεις 1-3, να γράψετε στο τετράδιό

Διαβάστε περισσότερα

ΟΜΑΔΑ 1 ΟΜΑΔΑ 2 ΟΜΑΔΑ 3 ΟΜΑΔΑ 4. Παππά Ειρήνη Καμινάρης Ιωάννης Μαγιοπούλου Ελεάνα Πέτσιος Παναγιώτης

ΟΜΑΔΑ 1 ΟΜΑΔΑ 2 ΟΜΑΔΑ 3 ΟΜΑΔΑ 4. Παππά Ειρήνη Καμινάρης Ιωάννης Μαγιοπούλου Ελεάνα Πέτσιος Παναγιώτης - 1 - ΟΜΑΔΑ 1 ΟΜΑΔΑ 2 ΟΜΑΔΑ 3 ΟΜΑΔΑ 4 Παπαγεωργίου Στέφανος Παππά Ειρήνη Καμινάρης Ιωάννης Μαγιοπούλου Ελεάνα Πέτσιος Παναγιώτης Ντούκας Σταύρος Μπέλλος Βασίλειος Κουντούρης Κων/νος Πορίκης Χρήστος Ντάκουλα

Διαβάστε περισσότερα

«ΔΙΑΚΡΙΤΑ ΜΑΘΗΜΑΤΙΚΑ»

«ΔΙΑΚΡΙΤΑ ΜΑΘΗΜΑΤΙΚΑ» HY 118α «ΔΙΚΡΙΤ ΜΘΗΜΤΙΚ» ΣΚΗΣΕΙΣ ΠΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ ΤΜΗΜ ΕΠΙΣΤΗΜΗΣ ΥΠΟΛΟΙΣΤΩΝ εώργιος Φρ. εωργακόπουλος ΜΕΡΟΣ (1) ασικά στοιχεία της θεωρίας συνόλων. Π. ΚΡΗΤΗΣ ΤΜ. ΕΠ. ΥΠΟΛΟΙΣΤΩΝ «ΔΙΚΡΙΤ ΜΘΗΜΤΙΚ». Φ. εωργακόπουλος

Διαβάστε περισσότερα

Συναρτήσεις & Κλάσεις

Συναρτήσεις & Κλάσεις Συναρτήσεις & Κλάσεις Overloading class member συναρτήσεις/1 #include typedef unsigned short int USHORT; enum BOOL { FALSE, TRUE}; class Rectangle { public: Rectangle(USHORT width, USHORT

Διαβάστε περισσότερα

21/11/2005 Διακριτά Μαθηματικά. Γραφήματα ΒΑΣΙΚΗ ΟΡΟΛΟΓΙΑ : ΜΟΝΟΠΑΤΙΑ ΚΑΙ ΚΥΚΛΟΙ Δ Ι. Γεώργιος Βούρος Πανεπιστήμιο Αιγαίου

21/11/2005 Διακριτά Μαθηματικά. Γραφήματα ΒΑΣΙΚΗ ΟΡΟΛΟΓΙΑ : ΜΟΝΟΠΑΤΙΑ ΚΑΙ ΚΥΚΛΟΙ Δ Ι. Γεώργιος Βούρος Πανεπιστήμιο Αιγαίου Γραφήματα ΒΑΣΙΚΗ ΟΡΟΛΟΓΙΑ : ΜΟΝΟΠΑΤΙΑ ΚΑΙ ΚΥΚΛΟΙ A Ε B Ζ Η Γ K Θ Δ Ι Ορισμός Ένα (μη κατευθυνόμενο) γράφημα (non directed graph) Γ, είναι μία δυάδα από σύνολα Ε και V και συμβολίζεται με Γ=(Ε,V). Το σύνολο

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΔΥΤΙΚΗΣ ΕΛΛΑΔΑΣ ΤΜΗΜΑ ΔΙΟΙΚΗΣΗΣ ΕΠΙΧΕΙΡΗΣΕΩΝ Αγρίνιο, 28 06 2012 ΑΓΡΟΤΙΚΩΝ ΠΡΟΪΟΝΤΩΝ & ΤΡΟΦΙΜΩΝ Α Ν Α Κ Ο Ι Ν Ω Σ Η

ΠΑΝΕΠΙΣΤΗΜΙΟ ΔΥΤΙΚΗΣ ΕΛΛΑΔΑΣ ΤΜΗΜΑ ΔΙΟΙΚΗΣΗΣ ΕΠΙΧΕΙΡΗΣΕΩΝ Αγρίνιο, 28 06 2012 ΑΓΡΟΤΙΚΩΝ ΠΡΟΪΟΝΤΩΝ & ΤΡΟΦΙΜΩΝ Α Ν Α Κ Ο Ι Ν Ω Σ Η ΠΑΝΕΠΙΣΤΗΜΙΟ ΔΥΤΙΚΗΣ ΕΛΛΑΔΑΣ ΤΜΗΜΑ ΔΙΟΙΚΗΣΗΣ ΕΠΙΧΕΙΡΗΣΕΩΝ Αγρίνιο, 28 06 2012 ΑΓΡΟΤΙΚΩΝ ΠΡΟΪΟΝΤΩΝ & ΤΡΟΦΙΜΩΝ Α Ν Α Κ Ο Ι Ν Ω Σ Η Σχετικά με τις ΚΑΤΑΤΑΞΕΙΣ πτυχιούχων Α.Ε.Ι., Τ.Ε.Ι., ΑΝΩΤΕΡΩΝ ΣΧΟΛΩΝ Υπερδιετούς

Διαβάστε περισσότερα

Φροντιστήριο 2: Ανάλυση Αλγόριθμου. Νικόλας Νικολάου ΕΠΛ432: Κατανεμημένοι Αλγόριθμοι 1 / 10

Φροντιστήριο 2: Ανάλυση Αλγόριθμου. Νικόλας Νικολάου ΕΠΛ432: Κατανεμημένοι Αλγόριθμοι 1 / 10 Φροντιστήριο 2: Ανάλυση Αλγόριθμου Εκλογής Προέδρου με O(nlogn) μηνύματα Νικόλας Νικολάου ΕΠΛ432: Κατανεμημένοι Αλγόριθμοι 1 / 10 Περιγραφικός Αλγόριθμος Αρχικά στείλε μήνυμα εξερεύνησης προς τα δεξιά

Διαβάστε περισσότερα

CSE.UOI : Μεταπτυχιακό Μάθημα

CSE.UOI : Μεταπτυχιακό Μάθημα Θέματα Αλγορίθμων Αλγόριθμοι και Εφαρμογές στον Πραγματικό Κόσμο CSE.UOI : Μεταπτυχιακό Μάθημα 10η Ενότητα: Χρονικά Εξελισσόμενες ικτυακές Ροές Σπύρος Κοντογιάννης kntg@cse.ui.gr Τμήμα Μηχανικών Η/Υ &

Διαβάστε περισσότερα

Οι γέφυρες του ποταμού... Pregel (Konigsberg)

Οι γέφυρες του ποταμού... Pregel (Konigsberg) Οι γέφυρες του ποταμού... Pregel (Konigsberg) Β Δ Β Δ Γ Γ Κύκλος του Euler (Euler cycle) είναι κύκλος σε γράφημα Γ που περιέχει κάθε κορυφή του γραφήματος, και κάθε ακμή αυτού ακριβώς μία φορά. Για γράφημα

Διαβάστε περισσότερα

Π Ο Λ Υ Τ Ε Χ Ν Ε Ι Ο Κ Ρ Η Τ Η Σ

Π Ο Λ Υ Τ Ε Χ Ν Ε Ι Ο Κ Ρ Η Τ Η Σ ΕΡΕΥΝΑ ΑΠΟΡΡΟΦΗΣΗΣ ΤΩΝ ΑΠΟΦΟΙΤΩΝ ΜΗΧΑΝΙΚΩΝ ΕΤΩΝ 1998,1999,2000 ΠΟΛΥΤΕΧΝΕΙΟΥ ΚΡΗΤΗΣ (Συνοπτικά Αποτελέσματα) Π Ο Λ Υ Τ Ε Χ Ν Ε Ι Ο Κ Ρ Η Τ Η Σ ΕΡΕΥΝΗΤΙΚΗ ΟΜΑΔΑ: Κουϊκόγλου Σ. Βασίλης, Καθηγητής, Επιστημονικός

Διαβάστε περισσότερα

Ανεξαρτησία Ανεξαρτησία για οικογένειες συνόλων και τυχαίες μεταβλητές

Ανεξαρτησία Ανεξαρτησία για οικογένειες συνόλων και τυχαίες μεταβλητές 10 Ανεξαρτησία 10.1 Ανεξαρτησία για οικογένειες συνόλων και τυχαίες μεταβλητές Στην παράγραφο αυτή δουλεύουμε σε χώρο πιθανότητας (Ω, F, P). Δίνουμε καταρχάς τον ορισμό της ανεξαρτησίας για ενδεχόμενα,

Διαβάστε περισσότερα

2 Η ΠΑΓΚΥΠΡΙΑ ΟΛΥΜΠΙΑ Α ΦΥΣΙΚΗΣ Γ ΓΥΜΝΑΣΙΟΥ

2 Η ΠΑΓΚΥΠΡΙΑ ΟΛΥΜΠΙΑ Α ΦΥΣΙΚΗΣ Γ ΓΥΜΝΑΣΙΟΥ ΕΝΩΣΗ ΚΥΠΡΙΩΝ ΦΥΣΙΚΩΝ 2 Η ΠΑΓΚΥΠΡΙΑ ΟΛΥΜΠΙΑ Α ΦΥΣΙΚΗΣ Γ ΓΥΜΝΑΣΙΟΥ Κυριακή, 16 Απριλίου, 2006 Ώρα: 10:30-13:00 Οδηγίες: 1) Το δοκίµιο αποτελείται από τρία (3) µέρη µε σύνολο δώδεκα (12) θέµατα. 2) Επιτρέπεται

Διαβάστε περισσότερα

ΗΛΕΚΤΡΙΚΗ ΕΝΕΡΓΕΙΑ ΣΤΗ ΚΡΗΤΗ

ΗΛΕΚΤΡΙΚΗ ΕΝΕΡΓΕΙΑ ΣΤΗ ΚΡΗΤΗ ΗΛΕΚΤΡΙΚΗ ΕΝΕΡΓΕΙΑ ΣΤΗ ΚΡΗΤΗ ΑΝΤΙΟΠΗ ΓΙΓΑΝΤΙ ΟΥ Τοµεάρχης Λειτουργίας Κέντρων Ελέγχου Συστηµάτων Μεταφοράς ιεύθυνσης ιαχείρισης Νησιών ΗΛΕΚΤΡΙΚΟ ΣΥΣΤΗΜΑ ΚΡΗΤΗΣ 2009 Εγκατεστηµένη Ισχύς (Ατµοµονάδες, Μονάδες

Διαβάστε περισσότερα

ΣΤΑΤΙΣΤΙΚΗ ΠΟΣΟΤΙΚΗ ΑΝΑΛΥΣΗ ΔΕΔΟΜΕΝΩΝ

ΣΤΑΤΙΣΤΙΚΗ ΠΟΣΟΤΙΚΗ ΑΝΑΛΥΣΗ ΔΕΔΟΜΕΝΩΝ Σημειώσεις για το μάθημα ΣΤΑΤΙΣΤΙΚΗ ΠΟΣΟΤΙΚΗ ΑΝΑΛΥΣΗ ΔΕΔΟΜΕΝΩΝ Παπάνα Αγγελική http://users.auth.gr/~agpapana/statlogistics E mail: papanagel@yahoo.gr, agpapana@gen.auth.gr Α.Τ.Ε.Ι. Θεσσαλονίκης ΠΑΡΑΡΤΗΜΑ

Διαβάστε περισσότερα

τεσσάρων βάσεων δεδομένων που θα αντιστοιχούν στους συνδρομητές

τεσσάρων βάσεων δεδομένων που θα αντιστοιχούν στους συνδρομητές Σ Υ Π Τ Μ Α 8 Ιουνίου 2010 Άσκηση 1 Μια εταιρία τηλεφωνίας προσπαθεί να βρει πού θα τοποθετήσει τις συνιστώσες τηλεφωνικού καταλόγου που θα εξυπηρετούν τους συνδρομητές της. Η εταιρία εξυπηρετεί κατά βάση

Διαβάστε περισσότερα

Παραβολή ψ=αχ 2 +βχ+γ, α 0. Η παραβολή ψ = αχ 2. Γενικά : Κάθε συνάρτηση της μορφής ψ=αχ 2 + βχ +γ, α 0 λέγεται τετραγωνική συνάρτηση.

Παραβολή ψ=αχ 2 +βχ+γ, α 0. Η παραβολή ψ = αχ 2. Γενικά : Κάθε συνάρτηση της μορφής ψ=αχ 2 + βχ +γ, α 0 λέγεται τετραγωνική συνάρτηση. Η παραβολή ψ=αχ 2 +βχ+γ Σελίδα 1 από 10 Παραβολή ψ=αχ 2 +βχ+γ, α0 Γενικά : Κάθε συνάρτηση της μορφής ψ=αχ 2 + βχ +γ, α0 λέγεται τετραγωνική συνάρτηση. Η παραβολή ψ = αχ 2 Η γραφική παράσταση της συνάρτησης

Διαβάστε περισσότερα

Ανελίξεις σε συνεχή χρόνο

Ανελίξεις σε συνεχή χρόνο 4 Ανελίξεις σε συνεχή χρόνο Σε αυτό το κεφάλαιο είναι συγκεντρωμένοι ορισμοί και αποτελέσματα από τη θεωρία των στοχαστικών ανελιξεων συνεχούς χρόνου. Με εξαίρεση την Παράγραφο 4.1, η οποία είναι εντελώς

Διαβάστε περισσότερα

Οικονομικά της Εκπαίδευσης

Οικονομικά της Εκπαίδευσης Οικονομικά της Εκπαίδευσης Νίκος Γιαννακόπουλος Πανεπιστήμιο Πατρών Τμήμα Οικονομικών Επιστημών Ακαδημαϊκό Ετος 2015-2016 Χειμερινό Εξάμηνο ngias@upatras.gr 1/26 Νίκος Γιαννακόπουλος (UPatras) Οικονομικά

Διαβάστε περισσότερα

Κεφάλαιο Η εκθετική κατανομή. Η πυκνότητα πιθανότητας της εκθετικής κατανομής δίδεται από την σχέση (1.1) f(x) = 0 αν x < 0.

Κεφάλαιο Η εκθετική κατανομή. Η πυκνότητα πιθανότητας της εκθετικής κατανομής δίδεται από την σχέση (1.1) f(x) = 0 αν x < 0. Κεφάλαιο Συνεχείς Τυχαίες Μεταβλητές. Η εκθετική κατανομή Η πυκνότητα πιθανότητας της εκθετικής κατανομής δίδεται από την σχέση f(x) = λe λx αν x, αν x

Διαβάστε περισσότερα

Η ΕΝΝΟΙΑ ΤΗΣ ΠΟΙΟΤΗΤΑΣ ΣΤΗΝ ΑΝΑΛΥΣΗ ΤΗΣ ΖΗΤΗΣΗΣ ΤΡΟΦΙΜΩΝ : ΜΙΑ ΜΙΚΡΟΟΙΚΟΝΟΜΕΤΡΙΚΗ ΠΡΟΣΕΓΓΙΣΗ

Η ΕΝΝΟΙΑ ΤΗΣ ΠΟΙΟΤΗΤΑΣ ΣΤΗΝ ΑΝΑΛΥΣΗ ΤΗΣ ΖΗΤΗΣΗΣ ΤΡΟΦΙΜΩΝ : ΜΙΑ ΜΙΚΡΟΟΙΚΟΝΟΜΕΤΡΙΚΗ ΠΡΟΣΕΓΓΙΣΗ ΓΕΩΠΟΝΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ ΤΜΗΜΑ ΑΓΡΟΤΙΚΗΣ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΑΝΑΠΤΥΞΗΣ ΠΡΟΓΡΑΜΜΑ ΜΕΤΑΠΤΥΧΙΑΚΩΝ ΣΠΟΥΔΩΝ ΟΡΓΑΝΩΣΗ ΚΑΙ ΔΙΟΙΚΗΣΗ ΕΠΙΧΕΙΡΗΣΕΩΝ ΤΡΟΦΙΜΩΝ & ΓΕΩΡΓΙΑΣ ΣΥΝΕΡΓΑΖΟΜΕΝΟ ΤΜΗΜΑ: ΕΠΙΣΤΗΜΗΣ & ΤΕΧΝΟΛΟΓΙΑΣ

Διαβάστε περισσότερα

Εκφωνήσεις και Λύσεις των Θεμάτων

Εκφωνήσεις και Λύσεις των Θεμάτων ΑΠΟΛΥΤΗΡΙΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΚΑΙ ΠΑΝΕΛΛΗΝΙΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΕΠΑΛ (ΟΜΑΔΑ Β ) ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Δευτέρα 8 Μαΐου 0 Εκφωνήσεις και Λύσεις των Θεμάτων

Διαβάστε περισσότερα

Δήμος Σωτήριος Υ.Δ. Εργαστήριο Λογικής & Επιστήμης Υπολογιστών. Τομέας Τεχνολογίας Πληροφορικής & Υπολογιστών Σ.Η.Μ.Μ.Υ. Ε.Μ.Π.

Δήμος Σωτήριος Υ.Δ. Εργαστήριο Λογικής & Επιστήμης Υπολογιστών. Τομέας Τεχνολογίας Πληροφορικής & Υπολογιστών Σ.Η.Μ.Μ.Υ. Ε.Μ.Π. Δήμος Σωτήριος Υ.Δ. Εργαστήριο Λογικής & Επιστήμης Υπολογιστών Τομέας Τεχνολογίας Πληροφορικής & Υπολογιστών Σ.Η.Μ.Μ.Υ. Ε.Μ.Π. Θεωρία Παιγνίων (;) αυτά είναι video παίγνια...... αυτά δεν είναι θεωρία παιγνίων

Διαβάστε περισσότερα

Εφαρμογές στην κίνηση Brown

Εφαρμογές στην κίνηση Brown 13 Εφαρμογές στην κίνηση Brown Σε αυτό το κεφάλαιο θέλουμε να κάνουμε για την πολυδιάστατη κίνηση Brown κάτι ανάλογο με αυτό που κάναμε στην Παράγραφο 7.2 για τη μονοδιάστατη κίνηση Brown. Δηλαδή να μελετήσουμε

Διαβάστε περισσότερα

Σχέσεις και ιδιότητές τους

Σχέσεις και ιδιότητές τους Σχέσεις και ιδιότητές τους Διμελής (binary) σχέση Σ από σύνολο Χ σε σύνολο Υ είναι ένα υποσύνολο του καρτεσιανού γινομένου Χ Υ. Αν (χ,ψ) Σ, λέμε ότι το χ σχετίζεται με το ψ και σημειώνουμε χσψ. Στην περίπτωση

Διαβάστε περισσότερα

ΚΛΑΔΟΣ: ΠΕ11 ΦΥΣΙΚΗΣ ΑΓΩΓΗΣ

ΚΛΑΔΟΣ: ΠΕ11 ΦΥΣΙΚΗΣ ΑΓΩΓΗΣ ΚΛΑΔΟΣ: ΠΕ11 ΦΥΣΙΚΗΣ ΑΓΩΓΗΣ Μάθημα: Ενόργανη Γυμναστική Χρήσιμα θεωρία στο κεφάλαιο της ενόργανης γυμναστικής για το γνωστικό αντικείμενο ΠΕ11 της Φυσικής Αγωγής από τα Πανεπιστημιακά Φροντιστήρια Κολλίντζα.

Διαβάστε περισσότερα

HY 280. θεμελιακές έννοιες της επιστήμης του υπολογισμού ΑΣΚΗΣΕΙΣ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ ΤΜΗΜΑ ΕΠΙΣΤΗΜΗΣ ΥΠΟΛΟΓΙΣΤΩΝ. Γεώργιος Φρ.

HY 280. θεμελιακές έννοιες της επιστήμης του υπολογισμού ΑΣΚΗΣΕΙΣ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ ΤΜΗΜΑ ΕΠΙΣΤΗΜΗΣ ΥΠΟΛΟΓΙΣΤΩΝ. Γεώργιος Φρ. HY 280 «ΘΕΩΡΙΑ ΥΠΟΛΟΓΙΣΜΟΥ» θεμελικές έννοιες της επιστήμης του υπολογισμού ΑΣΚΗΣΕΙΣ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ ΤΜΗΜΑ ΕΠΙΣΤΗΜΗΣ ΥΠΟΛΟΓΙΣΤΩΝ Γεώργιος Φρ. Γεωργκόπουλος μέρος Α Εισγωγή, κι η σική θεωρί των πεπερσμένων

Διαβάστε περισσότερα

Επιχειρησιακή Ερευνα Ι

Επιχειρησιακή Ερευνα Ι Επιχειρησιακή Ερευνα Ι Μ. Ζαζάνης Κεφάλαιο 1 Τετραγωνικές μορφές στον R n και το ϑεώρημα του Taylor Ορισμός 1. Εστω a 11 a 1n A =.. a n1 a nn συμμετρικός πίνακας n n με στοιχεία στους πραγματικούς αριθμούς.

Διαβάστε περισσότερα

23/2/07 Sleep out Πλατεία Κλαυθμώνος

23/2/07 Sleep out Πλατεία Κλαυθμώνος 23/2/07 Sleep out Πλατεία Κλαυθμώνος Μια βραδιά στο λούκι με τους αστέγους «Έχετε ποτέ σκεφτεί να κοιμηθείτε μια χειμωνιάτικη νύχτα στο δρόμο;» Με αυτό το ερώτημα απευθύναμε και φέτος την πρόσκληση στους

Διαβάστε περισσότερα

ΑΝΑΛΥΣΗ ΔΙΑΚΥΜΑΝΣΗΣ. Επικ. Καθ. Στέλιος Ζήμερας. Τμήμα Μαθηματικών Κατεύθυνση Στατιστικής και Αναλογιστικά Χρηματοοικονομικά Μαθηματικά

ΑΝΑΛΥΣΗ ΔΙΑΚΥΜΑΝΣΗΣ. Επικ. Καθ. Στέλιος Ζήμερας. Τμήμα Μαθηματικών Κατεύθυνση Στατιστικής και Αναλογιστικά Χρηματοοικονομικά Μαθηματικά ΑΝΑΛΥΣΗ ΔΙΑΚΥΜΑΝΣΗΣ Επικ. Καθ. Στέλιος Ζήμερας Τμήμα Μαθηματικών Κατεύθυνση Στατιστικής και Αναλογιστικά Χρηματοοικονομικά Μαθηματικά 015 Ανεξάρτητα δείγματα: Αφορά δύο κανονικούς πληθυσμούς με παραμέτρους

Διαβάστε περισσότερα

ΑΠΟΛΥΤΗΡΙΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ ΤΕΤΑΡΤΗ 14 ΙΟΥΝΙΟΥ 2000 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ: ΦΥΣΙΚΗ ΣΥΝΟΛΟ ΣΕΛΙΔΩΝ: ΕΞΙ (6)

ΑΠΟΛΥΤΗΡΙΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ ΤΕΤΑΡΤΗ 14 ΙΟΥΝΙΟΥ 2000 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ: ΦΥΣΙΚΗ ΣΥΝΟΛΟ ΣΕΛΙΔΩΝ: ΕΞΙ (6) ΑΡΧΗ ΜΗΝΥΜΑΤΟΣ ΑΠΟΛΥΤΗΡΙΕΣ ΕΞΕΤΑΣΕΙΣ Σ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ ΘΕΜΑ 1 ο ΤΕΤΑΡΤΗ 14 ΙΟΥΝΙΟΥ 2000 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ: ΦΥΣΙΚΗ ΣΥΝΟΛΟ ΣΕΛΙΔΩΝ: ΕΞΙ (6) Στις ερωτήσεις 1 5 να γράψετε στο τετράδιό σας

Διαβάστε περισσότερα

ΑΡΧΗ 1ΗΣ ΣΕΛΙΔΑΣ Γ ΤΑΞΗ

ΑΡΧΗ 1ΗΣ ΣΕΛΙΔΑΣ Γ ΤΑΞΗ ΑΡΧΗ 1ΗΣ ΣΕΛΙΔΑΣ ΑΠΟΛΥΤΗΡΙΕΣ ΕΞΕΤΑΣΕΙΣ Σ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ ΠΑΡΑΣΚΕΥΗ 16 ΙΟΥΝΙΟΥ 2000 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ: ΒΙΟΛΟΓΙΑ ΣΥΝΟΛΟ ΣΕΛΙΔΩΝ: ΠΕΝΤΕ (5) ΘΕΜΑ 1ο Στις ερωτήσεις 1 5, να γράψετε στο τετράδιό

Διαβάστε περισσότερα