Παραβολή ψ=αχ 2 +βχ+γ, α 0. Η παραβολή ψ = αχ 2. Γενικά : Κάθε συνάρτηση της μορφής ψ=αχ 2 + βχ +γ, α 0 λέγεται τετραγωνική συνάρτηση.

Save this PDF as:
 WORD  PNG  TXT  JPG

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "Παραβολή ψ=αχ 2 +βχ+γ, α 0. Η παραβολή ψ = αχ 2. Γενικά : Κάθε συνάρτηση της μορφής ψ=αχ 2 + βχ +γ, α 0 λέγεται τετραγωνική συνάρτηση."

Transcript

1 Η παραβολή ψ=αχ 2 +βχ+γ Σελίδα 1 από 10 Παραβολή ψ=αχ 2 +βχ+γ, α0 Γενικά : Κάθε συνάρτηση της μορφής ψ=αχ 2 + βχ +γ, α0 λέγεται τετραγωνική συνάρτηση. Η παραβολή ψ = αχ 2 Η γραφική παράσταση της συνάρτησης ψ = αχ 2 είναι μια παραβολή, που εφάπτεται του άξονα χχ στην αρχή των αξόνων (0,0). Πράγματι για χ = 0, ψ=α0 =0. Ο άξονας ψψ είναι άξονας συμμετρίας της παραβολής. Αν α > 0 τότε η γραφική παράσταση της ψ=αχ 2 «βρίσκεται» στα Ι ΙΙ τεταρτημόρια του ορθοκανονικού συστήματος συντεταγμένων με ελάχιστη τιμή ψ = 0 όταν χ = 0. ενώ αν α < 0 η γραφική παράσταση της ψ=αχ 2 «βρίσκεται» στα ΙΙΙ ΙV τεταρτημόρια του ορθοκανονικού συστήματος συντεταγμένων με μέγιστη τιμή ψ = 0 όταν χ = 0 (σχήμα 1). Σχήμα 1 ψ= αχ 2

2 Η παραβολή ψ=αχ 2 +βχ+γ Σελίδα 2 από 10 Η παραβολή ψ = αχ 2 + γ Η γραφική παράσταση της συνάρτησης ψ = αχ 2 + γ προκύπτει από την κατακόρυφη μετατόπιση της ψ = αχ 2 κατά γ. Η παραβολή περνά από το σημείο (0, γ). πράγματι για χ = 0, ψ = α.0 + γ = γ Αν γ > 0 τότε η παραβολή ψ= αχ 2 μετατοπίζεται προς τα «πάνω», ενώ αν γ < 0 η παραβολή ψ= αχ 2 μετατοπίζεται προς τα «κάτω». Ο άξονας ψψ είναι άξονας συμμετρίας της παραβολής. Αν α > 0 τότε η γραφική παράσταση της ψ=αχ 2 + γ «προεκτείνεται» προς τα Ι ΙΙ τεταρτημόρια του ορθοκανονικού συστήματος συντεταγμένων με ελάχιστη τιμή ψ = γ όταν χ = 0, ενώ αν α < 0 η γραφική παράσταση της ψ=αχ 2 +γ «προεκτείνεται» προς τα ΙΙΙ ΙV τεταρτημόρια του ορθοκανονικού συστήματος συντεταγμένων με μέγιστη τιμή ψ = γ όταν χ = 0 (σχήματα 2 και 3). Σχήμα 2 ψ = αχ 2 +γ ( α > 0)

3 Η παραβολή ψ=αχ 2 +βχ+γ Σελίδα 3 από 10 Σχήμα 3 ψ = αχ 2 +γ ( α < 0) Τέμνει η παραβολή τον άξονα χχ και αν ναι σε ποια σημεία; Τα σημεία τομής της παραβολής ψ = αχ 2 + γ με τον χχ, αν υπάρχουν, έχουν τεταγμένη ψ = 0. Οι τετμημένες λοιπόν των σημείων τομής προκύπτουν από την επίλυση της εξίσωσης αχ 2 + γ = 0, η οποία έχει λύση μόνο αν 0

4 Η παραβολή ψ=αχ 2 +βχ+γ Σελίδα 4 από 10 Η παραβολή ψ = α(χ-λ) 2 Η γραφική παράσταση της συνάρτησης ψ = α(χ λ) 2 είναι μια παραβολή, που προκύπτει από την οριζόντια μετατόπιση της ψ = αχ 2 κατά λ, δηλ η παραβολή περνά από το σημείο (λ, 0). Πράγματι αν ψ = 0 τότε 0 = α(χ λ) 2 (χ λ) 2 = 0 χ = λ, δηλαδή αν λ > 0 η παραβολή ψ = αχ 2 μετατοπίζεται δεξιά κατά λ, ενώ αν λ < 0 η παραβολή ψ = αχ 2 μετατοπίζεται αριστερά κατά λ.αν α>0 η παραβολή εφάπτεται στον άξονα χχ στο σημείο (λ, 0), που είναι και η ελάχιστη τιμή της συνάρτησης. Αν α< 0 η παραβολή εφάπτεται στον άξονα χχ στο σημείο (λ, 0), που είναι και η μέγιστη τιμή της συνάρτησης. Άξονας συμμετρίας της παραβολής είναι η ευθεία χ = λ. (σχήματα 4 και 5). Σχήμα 4 ψ = α(χ λ) 2 Σχήμα 5 ψ = α(χ λ) 2

5 Η παραβολή ψ=αχ 2 +βχ+γ Σελίδα 5 από 10 Η παραβολή ψ = αχ 2 + βχ Η γραφική παράσταση της συνάρτησης ψ = αχ 2 + βχ είναι μια παραβολή, με άξονα συμμετρίας την ευθεία. Αν α > 0 έχει ελάχιστο το σημείο σημείο,.,, ενώ αν α < 0 έχει μέγιστο το Τα σημεία τομής της παραβολής ψ = αχ 2 + βχ με τον χχ, έχουν τεταγμένη ψ = 0. Οι τετμημένες λοιπόν των σημείων τομής προκύπτουν από την επίλυση της εξίσωσης αχ βχ 0 χαχ β 0χ0 ή χ (Σχήματα 6 και 7) Σχήμα 6 ψ = αχ 2 +βχ ( α > 0)

6 Η παραβολή ψ=αχ 2 +βχ+γ Σελίδα 6 από 10 Η παραβολή ψ = αχ 2 + βχ + γ Σχήμα 7 ψ = αχ 2 +βχ ( α < 0) επίλυση της εξίσωσης αχ 2 +βχ+γ = 0 (α 0) αχ βχγ0χ β α χ γ α 0χ β α χ γ α Αν Δ>0 ορίζεται η και η εξίσωση αχ 2 +βχ+γ = 0 έχει δύο πραγματικές ρίζες τις και. Αν Δ=0 η εξίσωση αχ 2 +βχ+γ = 0 έχει μια «διπλή» ρίζα,ύ 0 Αν Δ<0 η εξίσωση δεν έχει πραγματικές ρίζες, είναι αδύνατη.

7 Η παραβολή ψ=αχ 2 +βχ+γ Σελίδα 7 από 10 Η γραφική παράσταση της ψ= αχ 2 + βχ + γ είναι μια παραβολή: Με άξονα συμμετρίας την ευθεία την ευθεία Αν α > 0 η παραβολή έχει ελάχιστη τιμή για χ =, i. (σχήμα 8) Αν Δ > 0 τέμνει τον άξονα χχ στα σημεία,0,0 Σχήμα 8 ψ=αχ 2 +βχ+γ, α>0, Δ>0 ii. (σχήμα 9) Αν Δ = 0 εφάπτεται του άξονα χχ στο σημείο, 0, που στην προκειμένη περίπτωση είναι και το ελάχιστο.

8 Η παραβολή ψ=αχ 2 +βχ+γ Σελίδα 8 από 10 Σχήμα 9 ψ=αχ 2 +βχ+γ, α>0, Δ=0 iii. (σχήμα 10) Αν Δ < 0 δεν τέμνει και δεν εφάπτεται του άξονα χχ (η εξίσωση αχ 2 +βχ+γ = 0 είναι αδύνατη δεν έχει ρίζες.) Σχήμα10 ψ=αχ 2 +βχ+γ, α>0, Δ<0

9 Η παραβολή ψ=αχ 2 +βχ+γ Σελίδα 9 από Αν α < 0 η παραβολή έχει μέγιστη τιμή για χ=, i. (σχήμα 11) Αν Δ > 0 τέμνει τον άξονα χχ στα σημεία,0,0 Σχήμα 2 ψ=αχ 2 +βχ+γ, α<0, Δ>0 ii. (σχήμα 12) Αν Δ = 0 εφάπτεται του άξονα χχ στο σημείο, 0, που στην προκειμένη περίπτωση είναι και το μέγιστο.

10 Η παραβολή ψ=αχ 2 +βχ+γ Σελίδα 10 από 10 Σχήμα 12 ψ=αχ 2 +βχ+γ, α<0, Δ=0 iii. (σχήμα 13) Αν Δ < 0 δεν τέμνει και δεν εφάπτεται του άξονα χχ (η εξίσωση αχ 2 +βχ+γ = 0 είναι αδύνατη δεν έχει ρίζες). Σχήμα 13 ψ=αχ 2 +βχ+γ, α<0, Δ<0

Αρτιες και περιττές συναρτήσεις

Αρτιες και περιττές συναρτήσεις Μελέτη Συναρτήσεων: άρτιες, περιττές συναρτήσεις - μονοτονία - ακρότατα Κώστας Ράπτης Άρτιες και περιττές συναρτήσεις Ὁι ψυχολόγοι κάνουν λόγο για δύο επίπεδα συλλογιστικής και μνήμης: το αρχαϊκό και το

Διαβάστε περισσότερα

Αρτιες και περιττές συναρτήσεις

Αρτιες και περιττές συναρτήσεις Μελέτη Συναρτήσεων: άρτιες, περιττές συναρτήσεις - μονοτονία - ακρότατα Κωνσταντίνος Α. Ράπτης Άρτιες και περιττές συναρτήσεις Ὁι ψυχολόγοι κάνουν λόγο για δύο επίπεδα συλλογιστικής και μνήμης: το αρχαϊκό

Διαβάστε περισσότερα

α 0. α ν x ν +α ν 1 x ν α 1 x+α 0 α ν x ν,α ν 1 x ν 1,...,α 1 x,α 0, ...,α 1,α 0,

α 0. α ν x ν +α ν 1 x ν α 1 x+α 0 α ν x ν,α ν 1 x ν 1,...,α 1 x,α 0, ...,α 1,α 0, Άλγεβρα Β Λυκείου - Πολυώνυμα: Θεωρία, Μεθοδολογία και Λυμένες ασκήσεις Κώστας Ράπτης Μάιος 2011 Μέρος I Πολυώνυμα 1 Πολυώνυμα 1.1 Στοιχεία ϑεωρίας Καλούμε μονώνυμο του x κάθε παράσταση της μορφήςαx ν,

Διαβάστε περισσότερα

Αποδεικτικές Διαδικασίες και Μαθηματική Επαγωγή.

Αποδεικτικές Διαδικασίες και Μαθηματική Επαγωγή. Αποδεικτικές Διαδικασίες και Μαθηματική Επαγωγή. Mαθηματικό σύστημα Ένα μαθηματικό σύστημα αποτελείται από αξιώματα, ορισμούς, μη καθορισμένες έννοιες και θεωρήματα. Η Ευκλείδειος γεωμετρία αποτελεί ένα

Διαβάστε περισσότερα

Εκφωνήσεις και Λύσεις των Θεμάτων

Εκφωνήσεις και Λύσεις των Θεμάτων ΑΠΟΛΥΤΗΡΙΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΚΑΙ ΠΑΝΕΛΛΗΝΙΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΕΠΑΛ (ΟΜΑΔΑ Β ) ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Δευτέρα 8 Μαΐου 0 Εκφωνήσεις και Λύσεις των Θεμάτων

Διαβάστε περισσότερα

Ας υποθέσουμε ότι ο παίκτης Ι διαλέγει πρώτος την τυχαιοποιημένη στρατηγική (x 1, x 2 ), x 1, x2 0,

Ας υποθέσουμε ότι ο παίκτης Ι διαλέγει πρώτος την τυχαιοποιημένη στρατηγική (x 1, x 2 ), x 1, x2 0, Οικονομικό Πανεπιστήμιο Αθηνών Τμήμα Στατιστικής Εισαγωγή στην Επιχειρησιακή Ερευνα Εαρινό Εξάμηνο 2015 Μ. Ζαζάνης Πρόβλημα 1. Να διατυπώσετε το παρακάτω παίγνιο μηδενικού αθροίσματος ως πρόβλημα γραμμικού

Διαβάστε περισσότερα

21/11/2005 Διακριτά Μαθηματικά. Γραφήματα ΒΑΣΙΚΗ ΟΡΟΛΟΓΙΑ : ΜΟΝΟΠΑΤΙΑ ΚΑΙ ΚΥΚΛΟΙ Δ Ι. Γεώργιος Βούρος Πανεπιστήμιο Αιγαίου

21/11/2005 Διακριτά Μαθηματικά. Γραφήματα ΒΑΣΙΚΗ ΟΡΟΛΟΓΙΑ : ΜΟΝΟΠΑΤΙΑ ΚΑΙ ΚΥΚΛΟΙ Δ Ι. Γεώργιος Βούρος Πανεπιστήμιο Αιγαίου Γραφήματα ΒΑΣΙΚΗ ΟΡΟΛΟΓΙΑ : ΜΟΝΟΠΑΤΙΑ ΚΑΙ ΚΥΚΛΟΙ A Ε B Ζ Η Γ K Θ Δ Ι Ορισμός Ένα (μη κατευθυνόμενο) γράφημα (non directed graph) Γ, είναι μία δυάδα από σύνολα Ε και V και συμβολίζεται με Γ=(Ε,V). Το σύνολο

Διαβάστε περισσότερα

ΚΛΑΔΟΣ: ΠΕ11 ΦΥΣΙΚΗΣ ΑΓΩΓΗΣ

ΚΛΑΔΟΣ: ΠΕ11 ΦΥΣΙΚΗΣ ΑΓΩΓΗΣ ΚΛΑΔΟΣ: ΠΕ11 ΦΥΣΙΚΗΣ ΑΓΩΓΗΣ Μάθημα: Ενόργανη Γυμναστική Χρήσιμα θεωρία στο κεφάλαιο της ενόργανης γυμναστικής για το γνωστικό αντικείμενο ΠΕ11 της Φυσικής Αγωγής από τα Πανεπιστημιακά Φροντιστήρια Κολλίντζα.

Διαβάστε περισσότερα

Γραμμική Ανεξαρτησία. Τμήμα Μηχανικών Η/Υ Τηλεπικοινωνιών και ικτύων Πανεπιστήμιο Θεσσαλίας. 17 Μαρτίου 2013, Βόλος

Γραμμική Ανεξαρτησία. Τμήμα Μηχανικών Η/Υ Τηλεπικοινωνιών και ικτύων Πανεπιστήμιο Θεσσαλίας. 17 Μαρτίου 2013, Βόλος Γραμμικές Συνήθεις ιαφορικές Εξισώσεις Ανώτερης Τάξης Γραμμικές Σ Ε 2ης τάξης Σ Ε 2ης τάξης με σταθερούς συντελεστές Μιγαδικές ρίζες Γραμμικές Σ Ε υψηλότερης τάξης Γραμμική Ανεξαρτησία Μανόλης Βάβαλης

Διαβάστε περισσότερα

Εξαναγκασμένες ταλαντώσεις, Ιδιοτιμές με πολλαπλότητα, Εκθετικά πινάκων. 9 Απριλίου 2013, Βόλος

Εξαναγκασμένες ταλαντώσεις, Ιδιοτιμές με πολλαπλότητα, Εκθετικά πινάκων. 9 Απριλίου 2013, Βόλος ιαφορικές Εξισώσεις Εξαναγκασμένες ταλαντώσεις, Ιδιοτιμές με πολλαπλότητα, Ατελείς ιδιοτιμές Εκθετικά πινάκων Μανόλης Βάβαλης Τμήμα Μηχανικών Η/Υ Τηλεπικοινωνιών και ικτύων Πανεπιστήμιο Θεσσαλίας 9 Απριλίου

Διαβάστε περισσότερα

Εκφωνήσεις και Λύσεις των Θεμάτων

Εκφωνήσεις και Λύσεις των Θεμάτων ΑΠΟΛΥΤΗΡΙΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΚΑΙ ΠΑΝΕΛΛΗΝΙΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΕΠΑΛ (ΟΜΑΔΑ Β ) ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ Τετάρτη 23 Μαΐου 2012 Εκφωήσεις και Λύσεις

Διαβάστε περισσότερα

17 Μαρτίου 2013, Βόλος

17 Μαρτίου 2013, Βόλος Συνήθεις ιαφορικές Εξισώσεις 1ης Τάξης Σ Ε 1ης τάξης, Πεδία κατευθύνσεων, Υπαρξη και μοναδικότητα, ιαχωρίσιμες εξισώσεις, Ολοκληρωτικοί παράγοντες, Αντικαταστάσεις, Αυτόνομες εξισώσεις Μανόλης Βάβαλης

Διαβάστε περισσότερα

Οι γέφυρες του ποταμού... Pregel (Konigsberg)

Οι γέφυρες του ποταμού... Pregel (Konigsberg) Οι γέφυρες του ποταμού... Pregel (Konigsberg) Β Δ Β Δ Γ Γ Κύκλος του Euler (Euler cycle) είναι κύκλος σε γράφημα Γ που περιέχει κάθε κορυφή του γραφήματος, και κάθε ακμή αυτού ακριβώς μία φορά. Για γράφημα

Διαβάστε περισσότερα

Ταξινόμηση των μοντέλων διασποράς ατμοσφαιρικών ρύπων βασισμένη σε μαθηματικά κριτήρια.

Ταξινόμηση των μοντέλων διασποράς ατμοσφαιρικών ρύπων βασισμένη σε μαθηματικά κριτήρια. ΠΡΟΤΕΙΝΟΜΕΝΑ ΘΕΜΑΤΑ Ταξινόμηη των μοντέλων διαποράς ατμοφαιρικών ρύπων βαιμένη ε μαθηματικά κριτήρια. Μοντέλο Ελεριανά μοντέλα (Elerian) Λαγκρατζιανά μοντέλα (Lagrangian) Επιπρόθετος διαχωριμός Μοντέλα

Διαβάστε περισσότερα

Αναγνώριση Προτύπων. Σήμερα! Λόγος Πιθανοφάνειας Πιθανότητα Λάθους Κόστος Ρίσκο Bayes Ελάχιστη πιθανότητα λάθους για πολλές κλάσεις

Αναγνώριση Προτύπων. Σήμερα! Λόγος Πιθανοφάνειας Πιθανότητα Λάθους Κόστος Ρίσκο Bayes Ελάχιστη πιθανότητα λάθους για πολλές κλάσεις Αναγνώριση Προτύπων Σήμερα! Λόγος Πιθανοφάνειας Πιθανότητα Λάθους Πιθανότητα Λάθους Κόστος Ρίσκο Bayes Ελάχιστη πιθανότητα λάθους για πολλές κλάσεις 1 Λόγος Πιθανοφάνειας Ας υποθέσουμε ότι θέλουμε να ταξινομήσουμε

Διαβάστε περισσότερα

Ασκήσεις Ανάλυση Ι Λύσεις ασκήσεων Οµάδας 1

Ασκήσεις Ανάλυση Ι Λύσεις ασκήσεων Οµάδας 1 Ασκήσεις Ανάλυση Ι Λύσεις ασκήσεων Οµάδας Λουκάς Βλάχος και Χάρης Σκόκος ) ύο καράβια αναχωρούν από το ίδιο λιµάνι. Το ένα κινείται µε 5 Km/h προς τα νότια και το άλλο µε Km/h προς τα ανατολικά. Να εκϕράσετε

Διαβάστε περισσότερα

Συντάκτης: Παναγιώτης Βεργούρος, Οικονομολόγος Συγγραφέας βιβλίων, Μικρο μακροοικονομίας διαγωνισμών ΑΣΕΠ

Συντάκτης: Παναγιώτης Βεργούρος, Οικονομολόγος Συγγραφέας βιβλίων, Μικρο μακροοικονομίας διαγωνισμών ΑΣΕΠ Tα Πανεπιστημιακά Φροντιστήρια «ΚΟΛΛΙΝΤΖΑ» προετοιμάζοντας σε ολιγομελείς ομίλους τους υποψήφιους για τον επικείμενο διαγωνισμό του Υ- πουργείου Οικονομικών και στοχεύοντας στην όσο το δυνατό πληρέστερη

Διαβάστε περισσότερα

Περιγραφή Περιγράμματος

Περιγραφή Περιγράμματος Περιγραφή Περιγράμματος Σήμερα! Περιγραφή Περιγράμματος Κώδικας Αλύσσου (chain code) Πολυγωνική γραμμή Υπογραφή (signature) περιγράμματος Μετασχηματισμός Fourier περιγράμματος 1 Περιγραφή Περιγράμματος

Διαβάστε περισσότερα

ΜΑΘΗΜΑ: ΟΙΚΟΝΟΜΙΚΗ ΘΕΩΡΙΑ

ΜΑΘΗΜΑ: ΟΙΚΟΝΟΜΙΚΗ ΘΕΩΡΙΑ ΜΑΘΗΜΑ: ΟΙΚΟΝΟΜΙΚΗ ΘΕΩΡΙΑ Tα Πανεπιστημιακά Φροντιστήρια «ΚΟΛΛΙΝΤΖΑ» προετοιμάζοντας σε ολιγομελείς ομίλους τους υποψήφιους για τον επικείμενο διαγωνισμό του Υπουργείου Οικονομικών, με κορυφαίο επιτελείο

Διαβάστε περισσότερα

Προτεινόμενα θέματα στο μάθημα. Αρχές Οικονομικής Θεωρίας ΟΜΑΔΑ Α. Στις προτάσεις από Α.1. μέχρι και Α10 να γράψετε στο τετράδιό σας τον αριθμό της

Προτεινόμενα θέματα στο μάθημα. Αρχές Οικονομικής Θεωρίας ΟΜΑΔΑ Α. Στις προτάσεις από Α.1. μέχρι και Α10 να γράψετε στο τετράδιό σας τον αριθμό της Προτεινόμενα θέματα στο μάθημα Αρχές Οικονομικής Θεωρίας ΟΜΑΔΑ Α Στις προτάσεις από Α.1. μέχρι και Α10 να γράψετε στο τετράδιό σας τον αριθμό της καθεμιάς και δίπλα σε κάθε αριθμό την ένδειξη Σωστό, αν

Διαβάστε περισσότερα

Φυσική Β Λυκείου Θετικής & Τεχνολογικής Κατεύθυνσης Παναγόπουλος Γιώργος Φυσικός

Φυσική Β Λυκείου Θετικής & Τεχνολογικής Κατεύθυνσης Παναγόπουλος Γιώργος Φυσικός Φυσική Β Λυκείου Θετικής & Τεχνολογικής Κατεύθυνσης Παναγόπουλος Γιώργος Φυσικός gior.panagopoulos@gmail.com Βουλδής Άγγελος Φυσικός angelos_vouldis@hotmail.com Μεντζελόπουλος Λευτέρης Φυσικός MSc Περιβαλλοντολογία

Διαβάστε περισσότερα

Αφιερώνεται στο Δάσκαλο μου Χρήστο Αλεξόπουλο, για την πολύτιμη βοήθεια που μου προσέφερε στα μαθητικά μου χρόνια Άγγελος Βουλδής

Αφιερώνεται στο Δάσκαλο μου Χρήστο Αλεξόπουλο, για την πολύτιμη βοήθεια που μου προσέφερε στα μαθητικά μου χρόνια Άγγελος Βουλδής Αφιερώνεται στο Δάσκαλο μου Χρήστο Αλεξόπουλο, για την πολύτιμη βοήθεια που μου προσέφερε στα μαθητικά μου χρόνια Άγγελος Βουλδής Αφιερώνεται στους Δασκάλους μας, που μας βοήθησαν να φτάσουμε μέχρι εδώ

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΑΚΑ ΦΡΟΝΤΙΣΤΗΡΙΑ ΚΟΛΛΙΝΤΖΑ

ΠΑΝΕΠΙΣΤΗΜΙΑΚΑ ΦΡΟΝΤΙΣΤΗΡΙΑ ΚΟΛΛΙΝΤΖΑ HMEΡΟΜΗΝΙΑ ΔΗΜΟΣΙΕΥΣΗΣ: 4 ΑΠΡΙΛΙΟΥ: ΩΡΑ 10μ.μ Τα παρακάτω θέματα δημοσιεύονται αποκλειστικά και μόνο για όσους υποψήφιους του φροντιστηρίου μας δεν κατάφεραν να προσέλθουν στα επαναληπτικά μαθήματα που

Διαβάστε περισσότερα

ÅéêïóéäùäåêÜåäñïí. www.mathematica.gr. Ìáèçìáôéêü Äåëôßï. Ôåý ïò 13ï. Ïêôþâñéïò 2014 ISSN: 2241-7133

ÅéêïóéäùäåêÜåäñïí. www.mathematica.gr. Ìáèçìáôéêü Äåëôßï. Ôåý ïò 13ï. Ïêôþâñéïò 2014 ISSN: 2241-7133 ÅéêïóéäùäåêÜåäñïí Ìáèçìáôéêü Äåëôßï Ôåý ïò 3ï Ïêôþâñéïò 04 www.mathematica.gr ISSN: 4-733 Το «Εικοσιδωδεκάεδρον» παρουσιάζει ϑέματα που έχουν συζητηθεί στον ιστότοπο http://www.mathematica.gr. Η επιλογή

Διαβάστε περισσότερα

Ψηφιακή Εικόνα. Σημερινό μάθημα!

Ψηφιακή Εικόνα. Σημερινό μάθημα! Ψηφιακή Εικόνα Σημερινό μάθημα! Ψηφιακή Εικόνα Αναλογική εικόνα Ψηφιοποίηση (digitalization) Δειγματοληψία Κβαντισμός Δυαδικές δ έ (Binary) εικόνες Ψηφιακή εικόνα & οθόνη Η/Υ 1 Ψηφιακή Εικόνα Μια ακίνητη

Διαβάστε περισσότερα

ΠΑΡΑΡΤΗΜΑ Γ ΑΠΟΤΙΜΗΣΗ ΚΑΙ ΣΧΕΔΙΑΣΜΟΣ ΕΝΑΝΤΙ ΠΥΡΚΑΓΙΑΣ ΜΕΣΩ ΜΕΘΟΔΩΝ ΠΕΠΕΡΑΣΜΕΝΩΝ ΣΤΟΙΧΕΙΩΝ

ΠΑΡΑΡΤΗΜΑ Γ ΑΠΟΤΙΜΗΣΗ ΚΑΙ ΣΧΕΔΙΑΣΜΟΣ ΕΝΑΝΤΙ ΠΥΡΚΑΓΙΑΣ ΜΕΣΩ ΜΕΘΟΔΩΝ ΠΕΠΕΡΑΣΜΕΝΩΝ ΣΤΟΙΧΕΙΩΝ ΠΑΡΑΡΤΗΜΑ Γ ΑΠΟΤΙΜΗΣΗ ΚΑΙ ΣΧΕΔΙΑΣΜΟΣ ΕΝΑΝΤΙ ΠΥΡΚΑΓΙΑΣ ΜΕΣΩ ΜΕΘΟΔΩΝ ΠΕΠΕΡΑΣΜΕΝΩΝ ΣΤΟΙΧΕΙΩΝ Στο Κεφάλαιο V του παρόντος Πρακτικού Οδηγού παρουσιάστηκαν προσεγγιστικές βήμα προς βήμα επιλύσεις που δύνανται

Διαβάστε περισσότερα

Μεγάλες αποκλίσεις* 17.1 Η έννοια της μεγάλης απόκλισης

Μεγάλες αποκλίσεις* 17.1 Η έννοια της μεγάλης απόκλισης 7 Μεγάλες αποκλίσεις* 7. Η έννοια της μεγάλης απόκλισης Εστω (X ανεξάρτητες και ισόνομες τυχαίες μεταβλητές ώστε P(X = = P(X = = /2 και S = k= X k το άθροισμα των πρώτων από αυτές. Ο νόμος των μεγάλων

Διαβάστε περισσότερα

Μονάδες 5 1.2.α. Να γράψετε στο τετράδιό σας τον παρακάτω πίνακα σωστά συµπληρωµένο.

Μονάδες 5 1.2.α. Να γράψετε στο τετράδιό σας τον παρακάτω πίνακα σωστά συµπληρωµένο. ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ Γ ΤΑΞΗ ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ ΕΥΤΕΡΑ 12 ΙΟΥΝΙΟΥ 2000 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ (ΚΥΚΛΟΣ ΤΕΧΝΟΛΟΓΙΑΣ ΚΑΙ ΠΑΡΑΓΩΓΗΣ): ΧΗΜΕΙΑ - ΒΙΟΧΗΜΕΙΑ ΣΥΝΟΛΟ ΣΕΛΙ

Διαβάστε περισσότερα

Περιγραφή Περιοχής. Σήμερα!

Περιγραφή Περιοχής. Σήμερα! Περιγραφή Περιοχής Σήμερα! Υφή (texture) Ιστόγραμμα & Ροπές Ιστογράμματος Πίνακες συνεμφάνισης Φασματική περιγραφή Ροπές (moments) Στροφορμή (angular momentum) 1 Υφή (texture) Ο ορισμός της έννοιας της

Διαβάστε περισσότερα

Αναγνώριση Προτύπων. Σημερινό Μάθημα

Αναγνώριση Προτύπων. Σημερινό Μάθημα Αναγνώριση Προτύπων Σημερινό Μάθημα Μη Παραμετρικός Υπολογισμός πυκνότητας με εκτίμηση Ιστόγραμμα Παράθυρα Parzen Εξομαλυμένη Kernel Ασκήσεις 1 Μη Παραμετρικός Υπολογισμός πυκνότητας με εκτίμηση Κατά τη

Διαβάστε περισσότερα

ΣΤΟ ΙΑΤΡΕΙΟ. Με την πιστοποίηση του αποκτά πρόσβαση στο περιβάλλον του ιατρού που παρέχει η εφαρμογή.

ΣΤΟ ΙΑΤΡΕΙΟ. Με την πιστοποίηση του αποκτά πρόσβαση στο περιβάλλον του ιατρού που παρέχει η εφαρμογή. ΣΤΟ ΙΑΤΡΕΙΟ Ο ιατρός αφού διαπιστώσει εάν το πρόσωπο που προσέρχεται για εξέταση είναι το ίδιο με αυτό που εικονίζεται στο βιβλιάριο υγείας και ελέγξει ότι είναι ασφαλιστικά ενήμερο (όπως ακριβώς γίνεται

Διαβάστε περισσότερα

Η Θεωρια Αριθμων στην Εκπαιδευση

Η Θεωρια Αριθμων στην Εκπαιδευση Η Θεωρια Αριθμων στην Εκπαιδευση Καθηγητὴς Ν.Γ. Τζανάκης Εφαρμογὲς τῶν συνεχῶν κλασμάτων 1 1. Η τιμὴ τοῦ π μὲ σωστὰ τὰ 50 πρῶτα δεκαδικὰ ψηφία μετὰ τὴν ὑποδιαστολή, εἶναι 3.14159265358979323846264338327950288419716939937511.

Διαβάστε περισσότερα

ΘΕΜΑ: Aποτελεσματικότητα της νομισματικής και δημοσιονομικής πολιτικής σε μια ανοικτή οικονομία

ΘΕΜΑ: Aποτελεσματικότητα της νομισματικής και δημοσιονομικής πολιτικής σε μια ανοικτή οικονομία ΘΕΜΑ: ποτελεσματικότητα της νομισματικής και δημοσιονομικής πολιτικής σε μια ανοικτή οικονομία Σύνταξη: Μπαντούλας Κων/νος, Οικονομολόγος, Ms Χρηματοοικονομικών 1 Η πρώτη θεωρία σχετικά με τον αυτόματο

Διαβάστε περισσότερα

Σχέσεις και ιδιότητές τους

Σχέσεις και ιδιότητές τους Σχέσεις και ιδιότητές τους Διμελής (binary) σχέση Σ από σύνολο Χ σε σύνολο Υ είναι ένα υποσύνολο του καρτεσιανού γινομένου Χ Υ. Αν (χ,ψ) Σ, λέμε ότι το χ σχετίζεται με το ψ και σημειώνουμε χσψ. Στην περίπτωση

Διαβάστε περισσότερα

HY 280. θεμελιακές έννοιες της επιστήμης του υπολογισμού ΑΣΚΗΣΕΙΣ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ ΤΜΗΜΑ ΕΠΙΣΤΗΜΗΣ ΥΠΟΛΟΓΙΣΤΩΝ. Γεώργιος Φρ.

HY 280. θεμελιακές έννοιες της επιστήμης του υπολογισμού ΑΣΚΗΣΕΙΣ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ ΤΜΗΜΑ ΕΠΙΣΤΗΜΗΣ ΥΠΟΛΟΓΙΣΤΩΝ. Γεώργιος Φρ. HY 280 «ΘΕΩΡΙΑ ΥΠΟΛΟΓΙΣΜΟΥ» θεμελικές έννοιες της επιστήμης του υπολογισμού ΑΣΚΗΣΕΙΣ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ ΤΜΗΜΑ ΕΠΙΣΤΗΜΗΣ ΥΠΟΛΟΓΙΣΤΩΝ Γεώργιος Φρ. Γεωργκόπουλος μέρος Α Εισγωγή, κι η σική θεωρί των πεπερσμένων

Διαβάστε περισσότερα

Έννοια. Η αποδοχή της κληρονομίας αποτελεί δικαίωμα του κληρονόμου, άρα δεν

Έννοια. Η αποδοχή της κληρονομίας αποτελεί δικαίωμα του κληρονόμου, άρα δεν 1 1. Αποδοχή κληρονομίας Έννοια. Η αποδοχή της κληρονομίας αποτελεί δικαίωμα του κληρονόμου, άρα δεν μπορεί να ασκηθεί από τους δανειστές του κληρονόμου, τον εκτελεστή της διαθήκης, τον κηδεμόνα ή εκκαθαριστή

Διαβάστε περισσότερα

Φροντιστήριο 2: Ανάλυση Αλγόριθμου. Νικόλας Νικολάου ΕΠΛ432: Κατανεμημένοι Αλγόριθμοι 1 / 10

Φροντιστήριο 2: Ανάλυση Αλγόριθμου. Νικόλας Νικολάου ΕΠΛ432: Κατανεμημένοι Αλγόριθμοι 1 / 10 Φροντιστήριο 2: Ανάλυση Αλγόριθμου Εκλογής Προέδρου με O(nlogn) μηνύματα Νικόλας Νικολάου ΕΠΛ432: Κατανεμημένοι Αλγόριθμοι 1 / 10 Περιγραφικός Αλγόριθμος Αρχικά στείλε μήνυμα εξερεύνησης προς τα δεξιά

Διαβάστε περισσότερα

Διευθύνοντα Μέλη του mathematica.gr

Διευθύνοντα Μέλη του mathematica.gr Το «Εικοσιδωδεκάεδρον» παρουσιάζει ϑέματα που έχουν συζητηθεί στον ιστότοπο http://www.mathematica.gr. Η επιλογή και η φροντίδα του περιεχομένου γίνεται από τους Επιμελητές του mathematica.gr. Μετατροπές

Διαβάστε περισσότερα

Eισηγητής: Μουσουλή Μαρία

Eισηγητής: Μουσουλή Μαρία Eισηγητής: Μουσουλή Μαρία Τεχνική φλοπ Φορά Σκοπός της φοράς είναι να αναπτυχθεί μια ιδανική για τον κάθε αθλητή ταχύτητα και ταυτόχρονα να προετοιμάσει το πάτημα. Το είδος της φοράς του Fosbury ήτα, μια

Διαβάστε περισσότερα

Τρίτη, 05 Ιουνίου 2001 ΤΕΧΝΟΛΟΓΙΚΗ ΚΑΤΕΥΘΥΝΣΗ Γ ΛΥΚΕΙΟΥ ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ

Τρίτη, 05 Ιουνίου 2001 ΤΕΧΝΟΛΟΓΙΚΗ ΚΑΤΕΥΘΥΝΣΗ Γ ΛΥΚΕΙΟΥ ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ Τρίτη, 05 Ιουνίου 2001 ΤΕΧΝΟΛΟΓΙΚΗ ΚΑΤΕΥΘΥΝΣΗ Γ ΛΥΚΕΙΟΥ ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ ΘΕΜΑ 1 Α. Να µεταφέρετε στο τετράδιό σας και να συµπληρώσετε τον παρακάτω πίνακα αλήθειας δύο προτάσεων

Διαβάστε περισσότερα

Ελεγχος Στατιστικών Υποθέσεων με τη χρήση του στατιστικού προγραμμάτος SPSS v. 20

Ελεγχος Στατιστικών Υποθέσεων με τη χρήση του στατιστικού προγραμμάτος SPSS v. 20 A Πανεπιστήμιο Αιγαίου Σχολή Επιστημών της ιοίκησης Τμήμα Μηχανικών Οικονομίας και ιοίκησης Εργαστήριο Στατιστικής Ελεγχος Στατιστικών Υποθέσεων με τη χρήση του στατιστικού προγραμμάτος SPSS v. 20 26Επιμέλεια:

Διαβάστε περισσότερα

ΑΝΑΠΤΥΞΗ ΕΚΠΑΙΔΕΥΤΙΚΟΥ ΛΟΓΙΣΜΙΚΟΥ ΓΙΑ ΤΗΝ ΠΡΟΣΟΜΟΙΩΣΗ ΡΟΜΠΟΤΙΚΟΥ ΒΡΑΧΙΟΝΑ

ΑΝΑΠΤΥΞΗ ΕΚΠΑΙΔΕΥΤΙΚΟΥ ΛΟΓΙΣΜΙΚΟΥ ΓΙΑ ΤΗΝ ΠΡΟΣΟΜΟΙΩΣΗ ΡΟΜΠΟΤΙΚΟΥ ΒΡΑΧΙΟΝΑ ΠΤΥΧΙΑΚΗ ΕΡΓΑΣΙΑ ΚΑΛΦΑΚΗ ΕΛΠΙΔΑ Α.Μ:4370 ΑΝΑΠΤΥΞΗ ΕΚΠΑΙΔΕΥΤΙΚΟΥ ΛΟΓΙΣΜΙΚΟΥ ΓΙΑ ΤΗΝ ΠΡΟΣΟΜΟΙΩΣΗ ΡΟΜΠΟΤΙΚΟΥ ΒΡΑΧΙΟΝΑ ΧΑΝΙΑ ΙΟΥΝΙΟΣ 2013 Καλφάκη Ελπίδα Σελίδα 1 Καλφάκη Ελπίδα Σελίδα 2 "ΔΗΛΩΝΩ ΥΠΕΥΘΥΝΑ ΟΤΙ

Διαβάστε περισσότερα

α) Το έλλειμμα ή το πλεόνασμα του εμπορικού ισοζυγίου δεν μεταβάλλεται

α) Το έλλειμμα ή το πλεόνασμα του εμπορικού ισοζυγίου δεν μεταβάλλεται 1. Ο πληθωρισμός ορίζεται ως εξής: (Δ= μεταβολή, Ρ= επίπεδο τιμών, Ρ e = προσδοκώμενο επίπεδο τιμών): α) Δ Ρ e /Ρ β) Ρ e / Ρ γ) Δ Ρ/Ρ δ) (Ρ Ρ e )/Ρ 2. Όταν οι εξαγωγές αυξάνονται: α) Το έλλειμμα ή το πλεόνασμα

Διαβάστε περισσότερα

Ανεξαρτησία Ανεξαρτησία για οικογένειες συνόλων και τυχαίες μεταβλητές

Ανεξαρτησία Ανεξαρτησία για οικογένειες συνόλων και τυχαίες μεταβλητές 10 Ανεξαρτησία 10.1 Ανεξαρτησία για οικογένειες συνόλων και τυχαίες μεταβλητές Στην παράγραφο αυτή δουλεύουμε σε χώρο πιθανότητας (Ω, F, P). Δίνουμε καταρχάς τον ορισμό της ανεξαρτησίας για ενδεχόμενα,

Διαβάστε περισσότερα

ΑΝΑΛΥΣΗ ΔΙΑΚΥΜΑΝΣΗΣ. Επικ. Καθ. Στέλιος Ζήμερας. Τμήμα Μαθηματικών Κατεύθυνση Στατιστικής και Αναλογιστικά Χρηματοοικονομικά Μαθηματικά

ΑΝΑΛΥΣΗ ΔΙΑΚΥΜΑΝΣΗΣ. Επικ. Καθ. Στέλιος Ζήμερας. Τμήμα Μαθηματικών Κατεύθυνση Στατιστικής και Αναλογιστικά Χρηματοοικονομικά Μαθηματικά ΑΝΑΛΥΣΗ ΔΙΑΚΥΜΑΝΣΗΣ Επικ. Καθ. Στέλιος Ζήμερας Τμήμα Μαθηματικών Κατεύθυνση Στατιστικής και Αναλογιστικά Χρηματοοικονομικά Μαθηματικά 015 Ανεξάρτητα δείγματα: Αφορά δύο κανονικούς πληθυσμούς με παραμέτρους

Διαβάστε περισσότερα

1. Σε περίπτωση κατά την οποία η τιμή ενός αγαθού μειωθεί κατά 2% και η ζητούμενη

1. Σε περίπτωση κατά την οποία η τιμή ενός αγαθού μειωθεί κατά 2% και η ζητούμενη Tα Πανεπιστημιακά Φροντιστήρια «ΚΟΛΛΙΝΤΖΑ» προετοιμάζοντας σε ολιγομελείς ομίλους τους υποψήφιους για τον επικείμενο διαγωνισμό του Υ- πουργείου Οικονομικών και στοχεύοντας στην όσο το δυνατό πληρέστερη

Διαβάστε περισσότερα

Π Ο Λ Ι Τ Ι Κ Α Κ Α Ι Σ Τ Ρ Α Τ Ι Ω Τ Ι Κ Α Γ Ε Γ Ο Ν Ο Τ Α

Π Ο Λ Ι Τ Ι Κ Α Κ Α Ι Σ Τ Ρ Α Τ Ι Ω Τ Ι Κ Α Γ Ε Γ Ο Ν Ο Τ Α Α Ρ Χ Α Ι Α Ι Σ Τ Ο Ρ Ι Α Π Ο Λ Ι Τ Ι Κ Α Κ Α Ι Σ Τ Ρ Α Τ Ι Ω Τ Ι Κ Α Γ Ε Γ Ο Ν Ο Τ Α Σ η µ ε ί ω σ η : σ υ ν ά δ ε λ φ ο ι, ν α µ ο υ σ υ γ χ ω ρ ή σ ε τ ε τ ο γ ρ ή γ ο ρ ο κ α ι α τ η µ έ λ η τ ο ύ

Διαβάστε περισσότερα

Αναγνώριση Προτύπων. Σημερινό Μάθημα

Αναγνώριση Προτύπων. Σημερινό Μάθημα Αναγνώριση Προτύπων Σημερινό Μάθημα Bias (απόκλιση) και variance (διακύμανση) Ελεύθεροι Παράμετροι Ελεύθεροι Παράμετροι Διαίρεση dataset Μέθοδος holdout Cross Validation Bootstrap Bias (απόκλιση) και variance

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΑ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ

ΜΑΘΗΜΑΤΑ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ 2014 15 ΜΑΘΗΜΑΤΑ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ ΘΡΗΣΚΕΥΤΙΚΑ Δ.Ε. 3. Θρησκεία: ένα πανανθρώπινο φαινόμενο: β, σελ. 28 30 Δ.Ε. 7. «Τίνα με λέγουσιν οι άνθρωποι είναι;»: γ, σελ. 68 70 Δ.Ε. 9. Αρχή και πορεία του κόσμου:

Διαβάστε περισσότερα

Αναγνώριση Προτύπων. Σημερινό Μάθημα

Αναγνώριση Προτύπων. Σημερινό Μάθημα Αναγνώριση Προτύπων Σημερινό Μάθημα Η κατάρα της διαστατικότητας Μείωση διαστάσεων εξαγωγή χαρακτηριστικών επιλογή χαρακτηριστικών Αναπαράσταση έναντι Κατηγοριοποίησης Ανάλυση Κυρίων Συνιστωσών PCA Γραμμική

Διαβάστε περισσότερα

ΜΑΘΗΜΑ: ΟΙΚΟΝΟΜΙΚΗ ΘΕΩΡΙΑ

ΜΑΘΗΜΑ: ΟΙΚΟΝΟΜΙΚΗ ΘΕΩΡΙΑ ΜΑΘΗΜΑ: ΟΙΚΟΝΟΜΙΚΗ ΘΕΩΡΙΑ Tα Πανεπιστημιακά Φροντιστήρια «ΚΟΛΛΙΝΤΖΑ» προετοιμάζοντας σε ολιγομελείς ομίλους τους υποψήφιους για τον επικείμενο διαγωνισμό του Υπουργείου Οικονομικών, με κορυφαίο επιτελείο

Διαβάστε περισσότερα

Πανεπιστήμιο Πειραιώς. Πρόγραμμα Μεταπτυχιακών Σπουδών Αναλογιστική Επιστήμη και Διοικητική Κινδύνου

Πανεπιστήμιο Πειραιώς. Πρόγραμμα Μεταπτυχιακών Σπουδών Αναλογιστική Επιστήμη και Διοικητική Κινδύνου Πανεπιστήμιο Πειραιώς Τμήμα Στατιστικής και Ασφαλιστικής Επιστήμης Πρόγραμμα Μεταπτυχιακών Σπουδών Αναλογιστική Επιστήμη και Διοικητική Κινδύνου Παραμετρικά Μοντέλα Επιβίωσης που προκύπτουν από μεταβολές

Διαβάστε περισσότερα

Ο τύπος του Itô. f (s) ds (12.1) f (g(s)) dg(s). (12.2) t f (B s ) db s + 1 2

Ο τύπος του Itô. f (s) ds (12.1) f (g(s)) dg(s). (12.2) t f (B s ) db s + 1 2 12 Ο τύπος του Itô Για συνάρτηση f : R R με συνεχή παράγωγο, έχουμε d f (s) = f (s) ds που σε ολοκληρωτική μορφή σημαίνει f (b) f (a) = b a f (s) ds (12.1) για κάθε a < b. Αν επιπλέον και η g : R R έχει

Διαβάστε περισσότερα

επίπεδων καμπυλών Χειμερινό Εξάμηνο I(P, F G) των F και G σε ένα σημείο P A 2 K

επίπεδων καμπυλών Χειμερινό Εξάμηνο I(P, F G) των F και G σε ένα σημείο P A 2 K Θεωρία Τομών Επίπεδων Καμπυλών Εργασία στο πλαίσιο τού μαθήματος Αλγεβρικές Καμπύλες (με κωδ. αριθμό Α 19) Χειμερινό Εξάμηνο 2008-2009 Μιχαήλ Γκίκας 1 Αριθμός τομής δυο συσχετικών επίπεδων καμπυλών Εστω

Διαβάστε περισσότερα

ΑΠΟΛΥΤΗΡΙΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΑΡΧΕΣ ΟΙΚΟΝΟΜΙΚΗΣ ΘΕΩΡΙΑΣ ΜΑΘΗΜΑ ΕΠΙΛΟΓΗΣ Γ ΛΥΚΕΙΟΥ

ΑΠΟΛΥΤΗΡΙΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΑΡΧΕΣ ΟΙΚΟΝΟΜΙΚΗΣ ΘΕΩΡΙΑΣ ΜΑΘΗΜΑ ΕΠΙΛΟΓΗΣ Γ ΛΥΚΕΙΟΥ ΑΠΟΛΥΤΗΡΙΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΑΡΧΕΣ ΟΙΚΟΝΟΜΙΚΗΣ ΘΕΩΡΙΑΣ ΜΑΘΗΜΑ ΕΠΙΛΟΓΗΣ Γ ΛΥΚΕΙΟΥ ΗΜΕΡΟΜΗΝΙΑ: ΕΠΩΝΥΜΟ: ΟΝΟΜΑ: ΟΜΑΔΑ Α Για τις προτάσεις Α1 μέχρι και Α6 να

Διαβάστε περισσότερα

ΕΦΑΡΜΟΓΗ ΤΗΣ ΠΛΗΡΟΦΟΡΙΑΚΗΣ ΕΝΤΡΟΠΙΑΣ ΣΤΗΝ ΠΥΡΗΝΙΚΗ ΦΥΣΙΚΗ ΚΑΙ ΤΗ ΣΚΕ ΑΣΗ Ι ΑΚΤΟΡΙΚΗ ΙΑΤΡΙΒΗ

ΕΦΑΡΜΟΓΗ ΤΗΣ ΠΛΗΡΟΦΟΡΙΑΚΗΣ ΕΝΤΡΟΠΙΑΣ ΣΤΗΝ ΠΥΡΗΝΙΚΗ ΦΥΣΙΚΗ ΚΑΙ ΤΗ ΣΚΕ ΑΣΗ Ι ΑΚΤΟΡΙΚΗ ΙΑΤΡΙΒΗ ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΤΜΗΜΑ ΦΥΣΙΚΗΣ ΤΟΜΕΑΣ ΠΥΡΗΝΙΚΗΣ ΦΥΣΙΚΗΣ ΚΑΙ ΦΥΣΙΚΗΣ ΣΤΟΙΧΕΙΩ ΩΝ ΣΩΜΑΤΙ ΙΩΝ ΒΑΣΙΛΕΙΟΣ Π. ΨΩΝΗΣ ΕΦΑΡΜΟΓΗ ΤΗΣ ΠΛΗΡΟΦΟΡΙΑΚΗΣ ΕΝΤΡΟΠΙΑΣ ΣΤΗΝ ΠΥΡΗΝΙΚΗ ΦΥΣΙΚΗ ΚΑΙ ΤΗ ΣΚΕ

Διαβάστε περισσότερα

ΑΣΕΠ 2000 ΑΣΕΠ 2000 Εμπορική Τράπεζα 1983 Υπουργείο Κοιν. Υπηρ. 1983

ΑΣΕΠ 2000 ΑΣΕΠ 2000 Εμπορική Τράπεζα 1983 Υπουργείο Κοιν. Υπηρ. 1983 20 Φεβρουαρίου 2010 ΑΣΕΠ 2000 1. Η δεξαμενή βενζίνης ενός πρατηρίου υγρών καυσίμων είναι γεμάτη κατά τα 8/9. Κατά τη διάρκεια μιας εβδομάδας το πρατήριο διέθεσε τα 3/4 της βενζίνης αυτής και έμειναν 4000

Διαβάστε περισσότερα

ΣΥΝΟΛΑ (προσέξτε τα κοινά χαρακτηριστικά των παρακάτω προτάσεων) Οι άνθρωποι που σπουδάζουν ΤΠ&ΕΣ και βρίσκονται στην αίθουσα

ΣΥΝΟΛΑ (προσέξτε τα κοινά χαρακτηριστικά των παρακάτω προτάσεων) Οι άνθρωποι που σπουδάζουν ΤΠ&ΕΣ και βρίσκονται στην αίθουσα ΣΥΝΟΛΑ (προσέξτε τα κοινά χαρακτηριστικά των παρακάτω προτάσεων) Οι άνθρωποι που σπουδάζουν ΤΠ&ΕΣ και βρίσκονται στην αίθουσα Τα βιβλία διακριτών μαθηματικών του Γ.Β. Η/Υ με επεξεργαστή Pentium και χωρητικότητα

Διαβάστε περισσότερα

ΕΚΠΑΙΔΕΥΤΗΡΙΑ ΓΕΙΤΟΝΑ ΤΜΗΜΑ ΦΥΣΙΚΩΝ ΕΠΙΣΤΗΜΩΝ & ΤΕΧΝΟΛΟΓΙΑΣ ΜΕΛΕΤΗ ΤΗΣ ΚΙΝΗΣΗΣ ΤΟΥ ΤΡΟΧΟΥ MAXWELL

ΕΚΠΑΙΔΕΥΤΗΡΙΑ ΓΕΙΤΟΝΑ ΤΜΗΜΑ ΦΥΣΙΚΩΝ ΕΠΙΣΤΗΜΩΝ & ΤΕΧΝΟΛΟΓΙΑΣ ΜΕΛΕΤΗ ΤΗΣ ΚΙΝΗΣΗΣ ΤΟΥ ΤΡΟΧΟΥ MAXWELL ΕΚΠΑΙΔΕΥΤΗΡΙΑ ΓΕΙΤΟΝΑ ΤΜΗΜΑ ΦΥΣΙΚΩΝ ΕΠΙΣΤΗΜΩΝ & ΤΕΧΝΟΛΟΓΙΑΣ ΦΥΣΙΚΗ ΘΕΤΙΚΗΣ &ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤ/ΝΣΗΣ Γ ΛΥΚΕΙΟΥ ΕΡΓΑΣΤΗΡΙΑΚΗ ΑΣΚΗΣΗ: ΜΕΛΕΤΗ ΤΗΣ ΚΙΝΗΣΗΣ ΤΟΥ ΤΡΟΧΟΥ MAXWELL ΒΑΡΗ 01-013 Μπίλιας Κων/νος Φυσικός

Διαβάστε περισσότερα

Πειραματικές δοκιμές πρότυπης περισταλτικής αντλίας δύο σταδίων έγχυσης για τον προσδιορισμό της απόδοσής της

Πειραματικές δοκιμές πρότυπης περισταλτικής αντλίας δύο σταδίων έγχυσης για τον προσδιορισμό της απόδοσής της ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΜΗΧΑΝΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΤΟΜΕΑΣ ΡΕΥΣΤΩΝ ΕΡΓΑΣΤΗΡΙΟ ΒΙΟΡΕΥΣΤΟΜΗΧΑΝΙΚΗΣ ΚΑΙ ΒΙΟΙΑΤΡΙΚΗΣ ΤΕΧΝΟΛΟΓΙΑΣ Διπλωματική εργασία Πειραματικές δοκιμές πρότυπης περισταλτικής αντλίας

Διαβάστε περισσότερα

19 η ΒΑΛΚΑΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΟΛΥΜΠΙΑΔΑ ΝΕΩΝ 24-29 Ιουνίου, 2015, Βελιγράδι, Σερβία

19 η ΒΑΛΚΑΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΟΛΥΜΠΙΑΔΑ ΝΕΩΝ 24-29 Ιουνίου, 2015, Βελιγράδι, Σερβία 19 η ΒΑΛΚΑΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΟΛΥΜΠΙΑΔΑ ΝΕΩΝ 4-9 Ιουνίου, 015, Βελιγράδι, Σερβία Lnguge: Ελληνικά Παρασκευή, 6 Ιουνίου 015 Πρόβλημα 1. Βρείτε όλους τους πρώτους αριθμούς, b, c και όλους τους ϑετικούς ακεραίους

Διαβάστε περισσότερα

1. Ο εγγυημένος ρυθμός οικονομικής ανάπτυξης στο υπόδειγμα Harrod Domar εξαρτάται

1. Ο εγγυημένος ρυθμός οικονομικής ανάπτυξης στο υπόδειγμα Harrod Domar εξαρτάται 1. Ο εγγυημένος ρυθμός οικονομικής ανάπτυξης στο υπόδειγμα Harrod Domar εξαρτάται από: α) Τη ροπή για αποταμίευση β) Το λόγο κεφαλαίου προϊόντος και τη ροπή για αποταμίευση γ) Το λόγο κεφαλαίου προϊόντος

Διαβάστε περισσότερα

12/1/2006 Διακριτά Μαθηματικά. Ορισμός. Υπό γράφημα Τ γραφήματος Γ καλείται συνδετικό (ή επικαλύπτον)

12/1/2006 Διακριτά Μαθηματικά. Ορισμός. Υπό γράφημα Τ γραφήματος Γ καλείται συνδετικό (ή επικαλύπτον) ΣΥΝΔΕΤΙΚΑ ΔΕΝΤΡΑ Ορισμός. Υπό γράφημα Τ γραφήματος Γ καλείται συνδετικό (ή επικαλύπτον) δέντρο (spanning tree) του Γ εάν αυτό είναι δέντρο και περιέχει όλες τις κορυφές του Γ. Παράδειγμα. Στο παρακάτω

Διαβάστε περισσότερα

{ i f i == 0 and p > 0

{ i f i == 0 and p > 0 ΟΙΚΟΝΟΜΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ - ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΜΕΤΑΠΤΥΧΙΑΚΟ ΠΡΟΓΡΑΜΜΑ ΕΠΙΣΤΗΜΗΣ ΥΠΟΛΟΓΙΣΤΩΝ Σχεδίαση και Ανάλυση Αλγορίθμων Διδάσκων: Ε. Μαρκάκης, Φθινοπωρινό εξάμηνο 014-015 Λύσεις 1ης Σειράς Ασκήσεων

Διαβάστε περισσότερα

Ημέρα 3 η. (α) Aπό την εργασιακή διαδικασία στη διαδικασία παραγωγής (β) Αξία του προϊόντος και αξία της εργασιακής δύναμης

Ημέρα 3 η. (α) Aπό την εργασιακή διαδικασία στη διαδικασία παραγωγής (β) Αξία του προϊόντος και αξία της εργασιακής δύναμης Ημέρα 3 η. (α) Aπό την εργασιακή διαδικασία στη διαδικασία παραγωγής (β) Αξία του προϊόντος και αξία της εργασιακής δύναμης Η εργασιακή διαδικασία και τα στοιχεία της. Η κοινωνική επικύρωση των ιδιωτικών

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΑΚΑ ΦΡΟΝΤΙΣΤΗΡΙΑ ΚΟΛΛΙΝΤΖΑ ΜΑΘΗΜΑ: ΕΡΩΤΗΣΕΙΣ ΟΙΚΟΝΟΜΙΚΗΣ ΘΕΩΡΙΑΣ

ΠΑΝΕΠΙΣΤΗΜΙΑΚΑ ΦΡΟΝΤΙΣΤΗΡΙΑ ΚΟΛΛΙΝΤΖΑ ΜΑΘΗΜΑ: ΕΡΩΤΗΣΕΙΣ ΟΙΚΟΝΟΜΙΚΗΣ ΘΕΩΡΙΑΣ ΜΑΘΗΜΑ: ΕΡΩΤΗΣΕΙΣ ΟΙΚΟΝΟΜΙΚΗΣ ΘΕΩΡΙΑΣ Tα Πανεπιστημιακά Φροντιστήρια «ΚΟΛΛΙΝΤΖΑ» προετοιμάζοντας σε ολιγομελείς ομίλους τους υποψήφιους για τον επικείμενο διαγωνισμό του Υπουργείου Οικονομικών, με κορυφαίο

Διαβάστε περισσότερα

ΠΡΟΣΗΜΟ ΤΡΙΩΝΥΜΟΥ ΕΠΙΛΥΣΗ ΑΝΙΣΩΣΕΩΝ 2 ου ΒΑΜΟΥ

ΠΡΟΣΗΜΟ ΤΡΙΩΝΥΜΟΥ ΕΠΙΛΥΣΗ ΑΝΙΣΩΣΕΩΝ 2 ου ΒΑΜΟΥ 5 ΠΡΟΣΗΜΟ ΤΡΙΩΝΥΜΟΥ ΕΠΙ ΑΝΙΣΩΣΕΩΝ ου ΒΑΜΟΥ ΠΡΟΣΗΜΟ ΤΡΙΩΝΥΜΟΥ Για να βρούμε το πρόσημο του τριωνύμου αχ +βχ+γ βρίκουμε την διακρίνουσα Δ=β - 4αγ και αν: Δ>0,το τριώνυμο έχει δυο ρίζες χ 1,χ και το προσημό

Διαβάστε περισσότερα

Μεγέθη ταλάντωσης Το απλό εκκρεμές

Μεγέθη ταλάντωσης Το απλό εκκρεμές Μεγέθη ταλάντωσης Το απλό εκκρεμές 1.Σκοποί: Οι μαθητές Να κατανοήσουν τις έννοιες της περιοδικής κίνησης και της ταλάντωσης Να κατανοήσουν ότι η περιοδική κίνηση δεν είναι ομαλή Να γνωρίσουν τα μεγέθη

Διαβάστε περισσότερα

ΣΟΦΟΚΛΕΟΥΣ ΑΝΤΙΓΟΝΗ Κείµενο από το πρωτότυπο (στ.471-490) ΧΟΡΟΣ ηλοῖ τὸ γέννηµ' ὠµὸν ἐξ ὠµοῦ πατρὸς 471 τῆς παιδὸς εἴκειν δ'οὐκ ἐπίσταται κακοῖς.

ΣΟΦΟΚΛΕΟΥΣ ΑΝΤΙΓΟΝΗ Κείµενο από το πρωτότυπο (στ.471-490) ΧΟΡΟΣ ηλοῖ τὸ γέννηµ' ὠµὸν ἐξ ὠµοῦ πατρὸς 471 τῆς παιδὸς εἴκειν δ'οὐκ ἐπίσταται κακοῖς. ΑΡΧΗ ΜΗΝΥΜΑΤΟΣ ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Β ΤΑΞΗΣ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ ΠΕΜΠΤΗ 24 ΙΟΥΝΙΟΥ 1999 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΑΡΧΑΙΑ ΕΛΛΗΝΙΚΑ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ ΣΥΝΟΛΟ ΣΕΛΙ ΩΝ: ΠΕΝΤΕ (5) ΣΟΦΟΚΛΕΟΥΣ ΑΝΤΙΓΟΝΗ Κείµενο από το πρωτότυπο

Διαβάστε περισσότερα

2 Η ΠΑΓΚΥΠΡΙΑ ΟΛΥΜΠΙΑ Α ΦΥΣΙΚΗΣ Γ ΓΥΜΝΑΣΙΟΥ

2 Η ΠΑΓΚΥΠΡΙΑ ΟΛΥΜΠΙΑ Α ΦΥΣΙΚΗΣ Γ ΓΥΜΝΑΣΙΟΥ ΕΝΩΣΗ ΚΥΠΡΙΩΝ ΦΥΣΙΚΩΝ 2 Η ΠΑΓΚΥΠΡΙΑ ΟΛΥΜΠΙΑ Α ΦΥΣΙΚΗΣ Γ ΓΥΜΝΑΣΙΟΥ Κυριακή, 16 Απριλίου, 2006 Ώρα: 10:30-13:00 Οδηγίες: 1) Το δοκίµιο αποτελείται από τρία (3) µέρη µε σύνολο δώδεκα (12) θέµατα. 2) Επιτρέπεται

Διαβάστε περισσότερα

- 1 - Ποιοι κερδίζουν από το εμπόριο αγαθών και υπηρεσιών; Γιατί η άμεση ανταλλαγή αγαθών, ορισμένες φορές, είναι δύσκολο να

- 1 - Ποιοι κερδίζουν από το εμπόριο αγαθών και υπηρεσιών; Γιατί η άμεση ανταλλαγή αγαθών, ορισμένες φορές, είναι δύσκολο να - 1 - Ο παράξενος πραματευτής Ανθολόγιο Ε & Στ τάξης: 277-279 Οικονομικές έννοιες Ανταλλαγή Αντιπραγματισμός Εμπόριο Ερωτήσεις Ποιοι κερδίζουν από το εμπόριο αγαθών και υπηρεσιών; Γιατί η άμεση ανταλλαγή

Διαβάστε περισσότερα

Βελτίωση Εικόνας. Σήμερα!

Βελτίωση Εικόνας. Σήμερα! Βελτίωση Εικόνας Σήμερα! Υποβάθμιση εικόνας Τεχνικές Βελτίωσης Restoration (Αποκατάσταση) Τροποποίηση ιστογράμματος Ολίσθηση ιστογράμματος Διάταση (stretching) Ισοστάθμιση του ιστογράμματος (histogram

Διαβάστε περισσότερα

Εκφωνήσεις και Λύσεις των Θεμάτων

Εκφωνήσεις και Λύσεις των Θεμάτων ΑΠΟΛΥΤΗΡΙΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΚΑΙ ΠΑΝΕΛΛΗΝΙΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΕΠΑΛ (ΟΜΑΔΑ Β ) ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ Τετάρτη 23 Μαΐου 2012 Εκφωήσεις και Λύσεις

Διαβάστε περισσότερα

ΠΑΡΑΤΗΡΗΣΕΙΣ. 1. Η μέθοδος της μαθηματικής επαγωγής αποτελείται από δυο βήματα :

ΠΑΡΑΤΗΡΗΣΕΙΣ. 1. Η μέθοδος της μαθηματικής επαγωγής αποτελείται από δυο βήματα : ΠΑΡΑΤΗΡΗΣΕΙΣ ΜΑΘΗΜΑΤΙΚΗ ΕΠΑΓΩΓΗ 1. Η μέθοδος της μαθηματικής επαγωγής αποτελείται από δυο βήματα : Βήμα 1 ο : Δείχνουμε ότι η πρόταση Ρ( ν ) είναι αληθής για το μικρότερο φυσικό για τον οποίο ζητείται

Διαβάστε περισσότερα

ΤΙΜΕΣ DISNEYLAND RESORT PARIS

ΤΙΜΕΣ DISNEYLAND RESORT PARIS ΤΙΜΕΣ DISNEYLAND RESORT PARIS 09 Νοεµβρίου 2009 01 Απριλίου 2010 DISNEYLAND 4 3 2 1 4 3 2 1 4 3 2 1 CHD ΠΑΚΕΤΟ 2N/3Μ 350 419 558 973 392 475 641 1140 491 607 840 1538 117 ΠΑΚΕΤΟ 3N/4Μ 464 562 760 1353

Διαβάστε περισσότερα

Ο Ισχυρός Νόμος των Μεγάλων Αριθμών

Ο Ισχυρός Νόμος των Μεγάλων Αριθμών 1 Ο Ισχυρός Νόμος των Μεγάλων Αριθμών Στο κεφάλαιο αυτό παρουσιάζουμε ένα από τα σημαντικότερα αποτελέσματα της Θεωρίας Πιθανοτήτων, τον ισχυρό νόμο των μεγάλων αριθμών. Η διατύπωση που θα αποδείξουμε

Διαβάστε περισσότερα

P(x)= x x x x x.

P(x)= x x x x x. Διασκεδαστικά Μαθηματικά ΑΣΚΗΣΗ (Προτείνει ο Γιώργος Απόκης) Κάποιος αγόρασε κιλά πατάτες, γνωρίζοντας ότι αποτελούνται κατά 99% από νερό. Τις άφησε στον ήλιο για μια βδομάδα και υπολόγισε ότι τώρα αποτελούνται

Διαβάστε περισσότερα

Διάρκεια: 2 ώρες 17/9/2009 ΘΕΜΑΤΑ 1) (2 μονάδες) Δεδομένης της περιγραφής που ακολουθεί δώστε το σχεδιασμό κλάσεων του συστήματος:

Διάρκεια: 2 ώρες 17/9/2009 ΘΕΜΑΤΑ 1) (2 μονάδες) Δεδομένης της περιγραφής που ακολουθεί δώστε το σχεδιασμό κλάσεων του συστήματος: ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΠΛΗΡΟΦΟΡΙΑΚΩΝ ΚΑΙ ΕΠΙΚΟΙΝΩΝΙΑΚΩΝ ΣΥΣΤΗΜΑΤΩΝ Μάθημα: Μεθοδολογίες και Γλώσσες Προγραμματισμού Ι (C++) Διδάσκουσα: Καβαλλιεράτου Εργίνα Διάρκεια: 2 ώρες 17/9/2009 ΘΕΜΑΤΑ

Διαβάστε περισσότερα

ΜΑΘΗΜΑ: ΓΕΝΙΚΟ ΔΙΟΙΚΗΤΙΚΟ ΔΙΚΑΙΟ ΔΙΚΑΣΤΩΝ

ΜΑΘΗΜΑ: ΓΕΝΙΚΟ ΔΙΟΙΚΗΤΙΚΟ ΔΙΚΑΙΟ ΔΙΚΑΣΤΩΝ ΜΑΘΗΜΑ: ΓΕΝΙΚΟ ΔΙΟΙΚΗΤΙΚΟ ΔΙΚΑΙΟ ΔΙΚΑΣΤΩΝ ΕΠΙΜΕΛΕΙΑ : Γεώργιος Κ. Πατρίκιος, Δικηγόρος, ΜΔΕ Δημοσίου Δικαίου, Υπ. Διδάκτωρ Νομικής Σχολής Πανεπιστημίου Αθηνών. ΘΕΜΑΤΙΚΗ : Η αρμοδιότητα των διοικητικών

Διαβάστε περισσότερα

ΣΤΟ ΦΑΡΜΑΚΕΙΟ. Με την πιστοποίηση του έχει πρόσβαση στο περιβάλλον του φαρμακείου που παρέχει η εφαρμογή.

ΣΤΟ ΦΑΡΜΑΚΕΙΟ. Με την πιστοποίηση του έχει πρόσβαση στο περιβάλλον του φαρμακείου που παρέχει η εφαρμογή. ΣΤΟ ΦΑΡΜΑΚΕΙΟ Ο ασθενής έχοντας μαζί του το βιβλιάριο υγείας του και την τυπωμένη συνταγή από τον ιατρό, η οποία αναγράφει τον μοναδικό κωδικό της, πάει στο φαρμακείο. Το φαρμακείο αφού ταυτοποιήσει το

Διαβάστε περισσότερα

Classes. Σημερινό Μάθημα. Constructor και destructor Συναρτήσεις μέλη const Inline συναρτήσεις Δηλώσεις κλάσεων Σύνθετες κλάσεις

Classes. Σημερινό Μάθημα. Constructor και destructor Συναρτήσεις μέλη const Inline συναρτήσεις Δηλώσεις κλάσεων Σύνθετες κλάσεις Classes Σημερινό Μάθημα Constructor και destructor Συναρτήσεις μέλη const Inline συναρτήσεις Δηλώσεις κλάσεων Σύνθετες κλάσεις 2 1 Constructor και destructor Αν δεν δηλώσουμε constructor ή/και destructor

Διαβάστε περισσότερα

Pointers. Σημερινό Μάθημα! Χρήση pointer Τελεστής * Τελεστής & Γενικοί δείκτες Ανάκληση Δέσμευση μνήμης new / delete Pointer σε αντικείμενο 2

Pointers. Σημερινό Μάθημα! Χρήση pointer Τελεστής * Τελεστής & Γενικοί δείκτες Ανάκληση Δέσμευση μνήμης new / delete Pointer σε αντικείμενο 2 Pointers 1 Σημερινό Μάθημα! Χρήση pointer Τελεστής * Τελεστής & Γενικοί δείκτες Ανάκληση Δέσμευση μνήμης new / delete Pointer σε αντικείμενο 2 1 Μνήμη μεταβλητών Κάθε μεταβλητή έχει διεύθυνση Δεν χρειάζεται

Διαβάστε περισσότερα

ΑΞΙΟΠΟΙΗΣΗ ΤΗΣ ΝΕΑΣ ΤΕΧΝΟΛΟΓΙΑΣ (Ν.Τ.) ΣΤΗ ΔΙΔΑΣΚΑΛΙΑ ΤΩΝ ΜΑΘΗΜΑΤΙΚΩΝ (Η ΠΕΡΙΠΤΩΣΗ ΤΗΣ ΠΑΡΑΒΟΛΗΣ)

ΑΞΙΟΠΟΙΗΣΗ ΤΗΣ ΝΕΑΣ ΤΕΧΝΟΛΟΓΙΑΣ (Ν.Τ.) ΣΤΗ ΔΙΔΑΣΚΑΛΙΑ ΤΩΝ ΜΑΘΗΜΑΤΙΚΩΝ (Η ΠΕΡΙΠΤΩΣΗ ΤΗΣ ΠΑΡΑΒΟΛΗΣ) 3 Ο ΣΥΝΕΔΡΙΟ ΣΤΗ ΣΥΡΟ-ΤΠΕ ΣΤΗΝ ΕΚΠΑΙΔΕΥΣΗ 203 ΑΞΙΟΠΟΙΗΣΗ ΤΗΣ ΝΕΑΣ ΤΕΧΝΟΛΟΓΙΑΣ (Ν.Τ.) ΣΤΗ ΔΙΔΑΣΚΑΛΙΑ ΤΩΝ ΜΑΘΗΜΑΤΙΚΩΝ (Η ΠΕΡΙΠΤΩΣΗ ΤΗΣ ΠΑΡΑΒΟΛΗΣ) Mητρογιαννοπούλου Aγγελική Δρ. Φιλοσοφικής Σχολής του Πανεπιστημίου

Διαβάστε περισσότερα

Μητροπολιτικά Οπτικά Δίκτυα. 11.1. Εισαγωγή

Μητροπολιτικά Οπτικά Δίκτυα. 11.1. Εισαγωγή Μητροπολιτικά Οπτικά Δίκτυα 11.1. Εισαγωγή Τα τηλεπικοινωνιακά δίκτυα είναι διαιρεμένα σε μια ιεραρχία τριών επιπέδων: Στα δίκτυα πρόσβασης, τα μητροπολιτικά δίκτυα και τα δίκτυα κορμού. Τα δίκτυα κορμού

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ

ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ ΘΕΜΑ 1 ο Δίνεται η ευθεία (ε) με εξίσωση: 2x y1 0 καθώς και το σημείο Μ(3,0). α. Να βρείτε την εξίσωση μιας ευθείας (η) που περνά από το Μ και είναι κάθετη στην ευθεία (ε). β. Να

Διαβάστε περισσότερα

Ο όρος εισήχθηκε το 1961 από τον Bellman Αναφέρεται στο πρόβλημα της ανάλυσης δεδομένων πολλών μεταβλητών καθώς αυξάνει η διάσταση.

Ο όρος εισήχθηκε το 1961 από τον Bellman Αναφέρεται στο πρόβλημα της ανάλυσης δεδομένων πολλών μεταβλητών καθώς αυξάνει η διάσταση. Αναγνώριση Προτύπων Η κατάρα της διαστατικότητας Ο όρος εισήχθηκε το 1961 από τον Bellman Αναφέρεται στο πρόβλημα της ανάλυσης δεδομένων πολλών μεταβλητών καθώς αυξάνει η διάσταση. Η κατάρα της διαστατικότητας

Διαβάστε περισσότερα

To παιχνίδι την Αρχαία Ελλάδα

To παιχνίδι την Αρχαία Ελλάδα To παιχνίδι την Αρχαία Ελλάδα Μέχρι τα επτά του χρόνια το παιδί έμενε στο σπίτι, όπου έπαιζε διάφορα παιχνίδια. Ο Πλάτων κι ο Αριστοτέλης συμβούλευαν τους γονείς να αφήνουν τα παιδιά τους να διασκεδάζουν

Διαβάστε περισσότερα

«ΔΙΑΚΡΙΤΑ ΜΑΘΗΜΑΤΙΚΑ»

«ΔΙΑΚΡΙΤΑ ΜΑΘΗΜΑΤΙΚΑ» HY 118α «ΔΙΚΡΙΤ ΜΘΗΜΤΙΚ» ΣΚΗΣΕΙΣ ΠΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ ΤΜΗΜ ΕΠΙΣΤΗΜΗΣ ΥΠΟΛΟΙΣΤΩΝ εώργιος Φρ. εωργακόπουλος ΜΕΡΟΣ (1) ασικά στοιχεία της θεωρίας συνόλων. Π. ΚΡΗΤΗΣ ΤΜ. ΕΠ. ΥΠΟΛΟΙΣΤΩΝ «ΔΙΚΡΙΤ ΜΘΗΜΤΙΚ». Φ. εωργακόπουλος

Διαβάστε περισσότερα

Α Ρ Ι Θ Μ Ο Σ : 6.913

Α Ρ Ι Θ Μ Ο Σ : 6.913 Α Ρ Ι Θ Μ Ο Σ : 6.913 ΠΡΑΞΗ ΚΑΤΑΘΕΣΗΣ ΟΡΩΝ ΔΙΑΓΩΝΙΣΜΟΥ Σ τ η ν Π ά τ ρ α σ ή μ ε ρ α σ τ ι ς δ ε κ α τ έ σ σ ε ρ ι ς ( 1 4 ) τ ο υ μ ή ν α Ο κ τ ω β ρ ί ο υ, η μ έ ρ α Τ ε τ ά ρ τ η, τ ο υ έ τ ο υ ς δ

Διαβάστε περισσότερα

Για να παραστήσουμε ένα σύνολο χρησιμοποιούμε συνήθως έναν από τους παρακάτω τρόπους :

Για να παραστήσουμε ένα σύνολο χρησιμοποιούμε συνήθως έναν από τους παρακάτω τρόπους : ΚΕΦΑΛΑΙΟ Ο ΣΥΝΑΡΤΗΣΕΙΣ. Σύνολα ΠΑΡΑΣΤΑΣΗ ΣΥΝΟΛΟΥ ΓΡΑΦΗ ΣΥΝΟΛΟΥ Για να παραστήσουμε ένα σύνολο χρησιμοποιούμε συνήθως έναν από τους παρακάτω τρόπους : ) Παράσταση με αναγραφή των στοιχείων Όταν δίνονται

Διαβάστε περισσότερα

4. Να βρείτε τον βαθμό των πολυωνύμων ως προς χ, ως προς ψ και ως προς χ και ψ μαζί

4. Να βρείτε τον βαθμό των πολυωνύμων ως προς χ, ως προς ψ και ως προς χ και ψ μαζί 1 ΑΣΚΗΣΕΙΣ 1. Να εκτελέσετε τις προσθέσεις, όπου αυτό είναι δυνατόν α) χ 3 +5ψ 3 β) χ 3 +6χ 3 γ) 4χ 5 ω-7ωχ 5 δ) 3χ 5 +4χ ε) χ 4 +3χ 4 ζ) χ -χ η) χ +χ θ) χ +χ ι) χ+χ 3 κ) χ -χ λ) 3χ 4-4χ 4 μ) 3χ-3χ 3.

Διαβάστε περισσότερα

( ιμερείς) ΙΜΕΛΕΙΣ ΣΧΕΣΕΙΣ Α Β «απεικονίσεις»

( ιμερείς) ΙΜΕΛΕΙΣ ΣΧΕΣΕΙΣ Α Β «απεικονίσεις» ( ιμερείς) ΙΜΕΛΕΙΣ ΣΧΕΣΕΙΣ Α Β «πεικονίσεις» 1. ΣΧΕΣΕΙΣ: το σκεπτικό κι ο ορισμός. Τ σύνολ νπριστούν ιδιότητες μεμονωμένων στοιχείων: δεδομένου συνόλου S, κι ενός στοιχείου σ, είνι δυντόν είτε σ S είτε

Διαβάστε περισσότερα

Εργαστηριακή Άσκηση Θερμομόρφωση (Thermoforming)

Εργαστηριακή Άσκηση Θερμομόρφωση (Thermoforming) Σελίδα 1 Πανεπιστήμιο Κύπρου Τμήμα Μηχανικών Μηχανολογίας και Κατασκευαστικής ΜΜΚ 452: Μηχανικές Ιδιότητες και Κατεργασία Πολυμερών Εργαστηριακή Άσκηση Θερμομόρφωση (Thermoforming) Σελίδα 2 Εισαγωγή: Η

Διαβάστε περισσότερα

ΡΗΜΑΤΙΚΑ ΕΠΙΘΕΤΑ ΣΕ -τὸς και -τέος

ΡΗΜΑΤΙΚΑ ΕΠΙΘΕΤΑ ΣΕ -τὸς και -τέος ΡΗΜΑΤΙΚΑ ΕΠΙΘΕΤΑ ΣΕ -τὸς και -τέος 1. Ρηματικά επίθετα σε -τός Σημαίνουν: α) ό,τι και η μετοχή του παρακειμένου ή ενεστώτα ή αορίστου ενεργητικής ή μέσης φωνής (γραπτός=γεγραμμένος, ἀστράτευτος=ὁ μὴ στρατευθεὶς)

Διαβάστε περισσότερα

ΗΛΕΚΤΡΙΚΗ ΕΝΕΡΓΕΙΑ ΣΤΗ ΚΡΗΤΗ

ΗΛΕΚΤΡΙΚΗ ΕΝΕΡΓΕΙΑ ΣΤΗ ΚΡΗΤΗ ΗΛΕΚΤΡΙΚΗ ΕΝΕΡΓΕΙΑ ΣΤΗ ΚΡΗΤΗ ΑΝΤΙΟΠΗ ΓΙΓΑΝΤΙ ΟΥ Τοµεάρχης Λειτουργίας Κέντρων Ελέγχου Συστηµάτων Μεταφοράς ιεύθυνσης ιαχείρισης Νησιών ΗΛΕΚΤΡΙΚΟ ΣΥΣΤΗΜΑ ΚΡΗΤΗΣ 2009 Εγκατεστηµένη Ισχύς (Ατµοµονάδες, Μονάδες

Διαβάστε περισσότερα

ΜΑΘΗΜΑ: ΑΣΤΙΚΟ ΔΙΚΑΙΟ

ΜΑΘΗΜΑ: ΑΣΤΙΚΟ ΔΙΚΑΙΟ ΜΑΘΗΜΑ: ΑΣΤΙΚΟ ΔΙΚΑΙΟ Διδάσκων : Βασίλειος Σταματόπουλος, Δικηγόρος, Δ.Μ.Σ. Συνάντηση 4 η ΕΝΟΧΕΣ ΔΙΑΖΕΥΚΤΙΚΕΣ Εννοιολογική προσέγγιση. Διαζευκτική είναι η ενοχή που έχει ως αντικείμενο δύο ή περισσότερες

Διαβάστε περισσότερα

Επαναληπτικές Ασκήσεις

Επαναληπτικές Ασκήσεις Επαναληπτικές Ασκήσεις Πρόβλημα Μετάδοσης Πακέτων Δύο κόμβοι, A και B, επικοινωνούν μέσω ενός δικτύου store & forward. Ο κόμβος Α συνδέεται στο δίκτυο μέσω ζεύξης 10Mbps, ενώ ο κόμβος B συνδέεται μέσω

Διαβάστε περισσότερα

ΕΠΙΣΤΗΜΟΝΙΚΟΣ ΥΠΕΥΘΥΝΟΣ Δρ Φασουλάς Χαράλαμπος Συντονιστής, Υπεύθυνος του Τμήματος Γεωποικιλότητας του Μουσείο Φυσικής Ιστορίας Κρήτης

ΕΠΙΣΤΗΜΟΝΙΚΟΣ ΥΠΕΥΘΥΝΟΣ Δρ Φασουλάς Χαράλαμπος Συντονιστής, Υπεύθυνος του Τμήματος Γεωποικιλότητας του Μουσείο Φυσικής Ιστορίας Κρήτης 2 ιά ΕΠΙΣΤΗΜΟΝΙΚΟΣ ΥΠΕΥΘΥΝΟΣ Δρ Φασουλάς Χαράλαμπος Συντονιστής, Υπεύθυνος του Τμήματος Γεωποικιλότητας του Μουσείο Φυσικής Ιστορίας Κρήτης ΣΧΕΔΙΑΣΜΟΣ ΤΟΥ ΕΚΠΑΙΔΕΥΤΙΚΟΥ ΥΛΙΚΟΥ Δρ Αμπαρτζάκη Μαρία, Παιδαγωγικό

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΗ ΣΠΗΛΑΙΟΛΟΓΙΚΗ ΕΤΑΙΡΕΙΑ ΕΡΓΑΣΤΗΡΙ ΧΑΡΤΟΓΡΑΦΗΣΗΣ από τον Κοσμά Γαζέα

ΕΛΛΗΝΙΚΗ ΣΠΗΛΑΙΟΛΟΓΙΚΗ ΕΤΑΙΡΕΙΑ ΕΡΓΑΣΤΗΡΙ ΧΑΡΤΟΓΡΑΦΗΣΗΣ από τον Κοσμά Γαζέα ΕΛΛΗΝΙΚΗ ΣΠΗΛΑΙΟΛΟΓΙΚΗ ΕΤΑΙΡΕΙΑ ΕΡΓΑΣΤΗΡΙ ΧΑΡΤΟΓΡΑΦΗΣΗΣ από τον Κοσμά Γαζέα Πραγματοποιήθηκε με επιτυχία το προγραμματισμένο Εργαστήρι Χαρτογράφησης της Ελληνικής Σπηλαιολογικής Εταιρείας από τις 26 Νοεμβρίου

Διαβάστε περισσότερα