5.1 Μετρήσιμες συναρτήσεις

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "5.1 Μετρήσιμες συναρτήσεις"

Transcript

1 5 Μετρήσιμες συναρτήσεις 5.1 Μετρήσιμες συναρτήσεις Ορισμός 5.1. Εστω (Ω, F ), (E, E) μετρήσιμοι χώροι. Μια συνάρτηση f : Ω E λέγεται F /Eμετρήσιμη αν f 1 (A) F για κάθε A E. (5.1) Συμβολίζουμε το σύνολο { f 1 (A) : A E} με f 1 (E). Οπότε η απαίτηση του ορισμού της μετρησιμότητας γράφεται f 1 (E) F. f Ω E f 1 (A) A Σχήμα 5.1: Μια f όπως στον Ορισμό 5.1 Ορολογία: 1. Μια F /E-μετρήσιμη συνάρτηση τη λέμε F -μετρήσιμη ή E-μετρήσιμη ή απλώς μετρήσιμη αν είναι σαφές ποια είναι η σ-άλγεβρα που δεν αναφέρουμε. 2. Οταν ο χώρος Ω ή/και ο E είναι μετρικός χώρος (π.χ. υποσύνολο ενός από τους χώρους R d, [, ], [0, ], C), εκτός αν αναφέρεται κάτι διαφορετικό, θα θεωρείται ότι η σ-άλγεβρα στον Ω και στον E είναι η σ-άλγεβρα των υποσυνόλων Borel του Ω και του E. Και τότε, π.χ., F -μετρήσιμη σημαίνει F /B(E) μετρήσιμη. Στην περίπτωση που ο Ω (αντίστοιχα, ο E) είναι μετρικός χώρος και η E (αντίστοιχα, η F ) εννοείται, ονομάζουμε Borel-μετρήσιμη κάθε f η οποία είναι B(Ω)/E-μετρήσιμη (αντίστοιχα F /B(E)-μετρήσιμη). 3. Σε έναν χώρο πιθανότητας (Ω, F, P), μια μετρήσιμη συνάρτηση λέγεται τυχαία μεταβλητή. Συμβολίζουμε τις τυχαίες μεταβλητές με κεφαλαία γράμματα X, Y,..., σε αντίθεση με τη σύμβαση που υιοθετούμε στον απειροστικό λογισμό και την πραγματική ανάλυση. Για το σύνολο f 1 (A) := {ω Ω : f (ω) A} συνήθως χρησιμοποιούμε τον συμβολισμό { f A}. Ομοια, αν E = R, το { f < a} συμβολίζει το σύνολο {ω Ω : f (ω) < a} και { f 2 < f + 1} το {ω Ω : f 2 (ω) < f (ω) + 1}. 20

2 5.1 Μετρήσιμες συναρτήσεις 21 Παρατήρηση 5.2. Γιατί απαιτούμε από μια συνάρτηση X : Ω E να έχει την ιδιότητα (5.1); Γιατί, όταν ορίσουμε ένα μέτρο πιθανότητας P στην F, θέλουμε να μπορούμε να εξετάζουμε πιθανότητες της μορφής P(X A), όπου A E, δηλαδή P ( X 1 (A) ). Πρέπει επομένως το X 1 (A) να ανήκει στο πεδίο ορισμού της P, το οποίο είναι η F. Πρόταση 5.3. Εστω (Ω, F ), (E, E) μετρήσιμοι χώροι, f : Ω E συνάρτηση, και C E οικογένεια ώστε σ(c) = E. Τότε f 1 (C) F αν και μόνο αν f 1 (E) F. Βέβαια ο έλεγχος f 1 (C) F είναι ευκολότερος από τον f 1 (E) F. Ετσι η πρόταση κάνει ευκολότερο τον έλεγχο της μετρησιμότητας μιας συνάρτησης. Απόδειξη. Εστω B = {A E : f 1 (A) F }. Τότε η C B και εύκολα βλέπουμε ότι η B είναι σ-άλγεβρα (Ασκηση 1.7). Συνεπώς, σ(c) B. Ομως σ(c) = E και B E. Αρα B = E. Προφανές αφού C E. Ακολουθούν δύο συνέπειες της πρότασης. Πόρισμα 5.4. Εστω f : (Ω, F ) (R, B(R)) συνάρτηση. Τότε η f είναι μετρήσιμη αν και μόνο αν f 1( (, a] ) F για κάθε a R. Απόδειξη. Αν C = {(, a] : a R}, γνωρίζουμε ότι σ(c) = B(R). Αρα, από την Πρόταση 5.3 προκύπτει το ζητούμενο. Το ίδιο αποτέλεσμα ισχύει αν αντικαταστήσουμε τα διαστήματα (, a] με (, a) ή γενικά με οποιαδήποτε οικογένεια διαστημάτων που παράγουν την B(R). Επίσης, αντίστοιχο συμπέρασμα προκύπτει αν έχουμε μετρήσιμη συνάρτηση με τιμές στο [, ]. Υπάρχουν μετρήσιμες συναρτήσεις; Είναι πολλές; Καταρχάς, θα δούμε αμέσως ότι όλες οι συνεχείς συναρτήσεις είναι μετρήσιμες. Υπενθυμίζουμε ότι, αν (Ω, d 1 ), (E, d 2 ) μετρικοί χώροι, μια συνάρτηση f : X Y είναι συνεχής αν για κάθε V E ανοιχτό έχουμε ότι f 1 (V) είναι ανοιχτό. Δηλαδή αν η αντίστροφη εικόνα κάθε ανοιχτού συνόλου είναι ανοιχτό σύνολο. Πόρισμα 5.5. Εστω (Ω, d 1 ), (E, d 2 ) μετρικοί χώροι και f : Ω E συνεχής συνάρτηση. Αν F = B(Ω) και E = B(E), τότε η f είναι F /E μετρήσιμη. Απόδειξη. Για την οικογένεια S των ανοιχτών συνόλων του E έχουμε ότι σ(s) = E και όλα τα στοιχεία του f 1 (S) είναι ανοιχτά σύνολα (αφού η f είναι συνεχής) και άρα f 1 (S) F. Το συμπέρασμα έπεται από την Πρόταση 5.3. Παραθέτουμε χωρίς απόδειξη τις βασικές ιδιότητες κλειστότητας του συνόλου των μετρησίμων συναρτήσεων. Εν ολίγοις, αν ξεκινήσει κανείς με μετρήσιμες συναρτήσεις και τις συνδυάσει με κάποιον «φυσιολογικό» τρόπο, προκύπτουν πάλι μετρήσιμες συναρτήσεις. Πρόταση 5.6. Εστω f, g : Ω [, ] μετρήσιμες συναρτήσεις στον μετρήσιμο χώρο (Ω, F ) και a R. Τότε μετρήσιμες είναι επίσης οι συναρτήσεις a f, f, f + g, f g, f /g, min{ f, g}, max{ f, g}, f +, f, όπου καθεμία ορίζεται έτσι ώστε να είναι σταθερή και ίση με μία αυθαίρετη πεπερασμένη σταθερά στο σύνολο των σημείων απροσδιοριστίας (, 0, 0/0). Πρόταση 5.7. Εστω ( f n ) n 1 ακολουθία μετρήσιμων συναρτήσεων στον μετρήσιμο χώρο (Ω, F ) και με τιμές στο [, ]. Τότε: (i) Οι συναρτήσεις είναι επίσης μετρήσιμες. inf f n, sup f n, lim f n, lim f n, n 1 n 1 n n

3 22 Μετρήσιμες συναρτήσεις (ii) Αν η ( f n ) n 1 συγκλίνει σημειακά σε μια συνάρτηση f, τότε η f = lim n f n είναι μετρήσιμη συνάρτηση. Αντιπαραβάλετε την προηγούμενη πρόταση με το γεγονός ότι γενικά το σημειακό όριο συνεχών συναρτήσεων δεν είναι συνεχής συνάρτηση. Η μετρησιμότητα είναι πιο ανθεκτική σε μετασχηματισμούς. Πρόταση 5.8. Εστω (Ω, F ), (E, E), (G, G) μετρήσιμοι χώροι και f : Ω E, g : E G μετρήσιμες συναρτήσεις. Τότε η g f : Ω G είναι F /G μετρήσιμη. Απόδειξη. Εστω A G. Τότε, ( g f ) 1 (A) = f 1( g 1 (A) ). Ομως g 1 (A) E, άρα f 1( g 1 (A) ) F, από το οποίο προκύπτει το ζητούμενο. Πρόταση 5.9. Εστω (Ω, F ) μετρήσιμος χώρος. Τότε: (i) Για A Ω, η 1 A είναι μετρήσιμη αν και μόνο αν A F. (ii) Αν f 1, f 2,..., f n : Ω R, n 1 είναι F /B(R) μετρήσιμες συναρτήσεις και g : R n R είναι B(R n )/B(R) μετρήσιμη, τότε η g( f 1, f 2,..., f n ) : Ω R είναι μετρήσιμη. Απόδειξη. Θα δείξουμε μόνο το (i). Αν B B(R), έχουμε αν 0, 1 B, ( ) 1 Ω \ A αν 0 B, 1 B, 1A (B) = A αν 0 B, 1 B, Ω αν 0, 1 B. Αν η 1 A είναι μετρήσιμη, τότε για B = {1}, έχουμε ( ) 1 1 A (B) F, δηλαδή A F. Αντίστροφα, αν A F, τότε από την (5.2) έχουμε ( ) 1 1 A (B) F για κάθε B B(R). Παράδειγμα Εστω ( f n ) n 1 ακολουθία μετρήσιμων συναρτήσεων σε μετρήσιμο χώρο (Ω, F ) με τιμές στο R. Θέτουμε T := min{k N + : f k > 0} με τη σύμβαση min =. Τότε η T είναι μετρήσιμη γιατί για k N + ισχύει {T k} = { f 1 > 0} { f 2 > 0} { f k > 0} F. Για k μη θετικό ακέραιο έχουμε {T k} =, ενώ για κάθε πραγματικό x έχουμε {T x} = {T [x]}. Επίσης, για οποιοδήποτε n 1, η cos( f 1 + f f n ) είναι μετρήσιμη λόγω του (ii) της προηγούμενης πρότασης και του ότι η (x 1, x 2,..., x n ) cos(x 1 + x x n ) είναι συνεχής. Ορισμός Μια συνάρτηση f : Ω [, ] λέγεται απλή αν η εικόνα της είναι πεπερασμένο σύνολο. Αν οι διαφορετικές τιμές που παίρνει μια απλή συνάρτηση f είναι a 1, a 2,..., a n και θέσουμε A i := f 1( {a i } ), τότε η {A 1, A 2,..., A n } είναι διαμέριση του Ω, και η f γράφεται n f = a i 1 Ai. (5.3) i=1 Προφανώς μια απλή f είναι μετρήσιμη αν και μόνο αν τα σύνολα A 1, A 2,..., A n είναι μετρήσιμα. Μια απλή συνάρτηση δεν γράφεται μοναδικά ως γραμμικός συνδυασμός από δείκτριες συναρτήσεις. Αν τα A 1, A 2,..., A n δεν είναι απαραίτητα ξένα, τότε η σχέση (5.3) ορίζει πάλι μια απλή συνάρτηση. Αν όμως ζητήσουμε τα A 1, A 2,..., A n να είναι διαμέριση του Ω (δηλαδή μη κενά, ξένα ανά δύο, με ένωση το Ω) και οι αριθμοί a 1,..., a n διαφορετικοί μεταξύ τους, τότε η γραφή (5.3) είναι μοναδική (με μόνη ελευθερία στη σειρά με την οποία αριθμούμε τα σύνολα και τους αριθμούς) και ονομάζεται κανονική μορφή της f. (5.2)

4 5.2 Σ-άλγεβρα παραγόμενη από συναρτήσεις 23 Πρόταση Εστω f : Ω [0, ] μετρήσιμη συνάρτηση. Τότε υπάρχει μια αύξουσα ακολουθία ( f n ) n 1 μη αρνητικών, απλών, μετρησίμων συναρτήσεων με πεπερασμένες τιμές ώστε f = lim f n κατά n σημείο. Το ότι η ακολουθία ( f n ) n 1 είναι αύξουσα σημαίνει ότι f n (ω) f n+1 (ω) για κάθε ω Ω και n 1. Απόδειξη. Για n 1, θέτουμε k 2 αν f (ω) [ k f n (ω) := n n αν f (ω) n. 2 n, k+1 2 n ) με k N, 0 k n2 n 1, f n (ω) 0 k k+1 2 f(ω) n 2 n n Σχήμα 5.2: Ο ορισμός της προσέγγισης f n. Ολες οι τιμές πάνω από n απεικονίζονται στο n. Στο διάστημα [0, n] η προσέγγιση γίνεται με λάθος το πολύ 1/2 n. Κάθε f n είναι μη αρνητική, μετρήσιμη, και απλή αφού το σύνολο τιμών της είναι πεπερασμένο, και παίρνει την τιμή k/2 n, όπου 0 k n2 n 1, στο μετρήσιμο σύνολο f 1 ([k2 n, (k + 1)2 n )) και την τιμή n στο f 1 ([n, ]). Για το f = lim n f n. Αν f (ω) <, παίρνουμε φυσικό n 0 > f (ω). Για n n 0 έχουμε f n (ω) f (ω) f n (ω) + 2 n, άρα f n (ω) f (ω) < 2 n και lim f n (ω) = f (ω). Αν f (ω) =, τότε f n (ω) = n για n n. Για το ότι η ακολουθία είναι αύξουσα, παρατηρούμε τα εξής: Αν f (ω) =, τότε f n (ω) = n, που είναι αύξουσα ακολουθία. Αν f (ω) <, έστω n 1, θα δείξουμε ότι f n (ω) f n+1 (ω). Εχουμε τις εξής περιπτώσεις: (α) f (ω) < n. (β) f (ω) [n, n + 1). (γ) f (ω) n + 1. Για το (α) παρατηρούμε ότι το f n (ω) θα ισούται με το αριστερό άκρο του διαστήματος [k2 n, (k + 1)2 n ) στο οποίο ανήκει το f (ω). Για τον καθορισμό του f n+1 (ω), χωρίζουμε το [k2 n, (k + 1)2 n ) σε δύο μισά, τα [ ) [ ) 2k 2k + 1 2k + 1 2k + 2,,, 2n+1 2 n+1 2n+1 2 n+1 και το f n+1 (ω) ισούται με το αριστερό άκρο του μισού στο οποίο ανήκει το f (ω). Αρα είναι τουλάχιστον k2 n = f n (ω). Οι περιπτώσεις (β) και (γ) αφήνονται ως άσκηση. 5.2 Σ-άλγεβρα παραγόμενη από συναρτήσεις Ορισμός Εστω Ω σύνολο. Για μια συνάρτηση f : Ω [, ], σ-άλγεβρα παραγόμενη από την f ονομάζουμε το σύνολο σ( f ) := { f 1 (A) : A B([, ])} = f 1 (B([, ]))

5 24 Μετρήσιμες συναρτήσεις Το ότι αυτό το σύνολο είναι σ-άλγεβρα το έχουμε δει στην Ασκηση 1.7 (β). Αυτή είναι η ελάχιστη σ-άλγεβρα A στο Ω η οποία κάνει την f μετρήσιμη στον (Ω, A). Βέβαια, αν η f είναι μετρήσιμη στον (Ω, F ), τότε θα έχουμε σ( f ) F. Παράδειγμα Η f : R R με f (x) = 1 x<0 + 1 x 0 παράγει τη σ-άλγεβρα {R, (, 0), [0, ), } αφού παίρνει μόνο τις τιμές 1, 1 και οι αντίστροφες εικόνες αυτών των τιμών είναι τα διαστήματα (, 0), [0, ) αντίστοιχα. Οι λεπτομέρειες της απόδειξης αφήνονται ως άσκηση. Παράδειγμα Η συνάρτηση ακέραιο μέρος f (x) = [x] για κάθε x R παράγει τη σ-άλγεβρα σ( f ) = σ(c) όπου C := {[k, k + 1) : k Z} [Ο ισχυρισμός αυτός αφήνεται ως άσκηση. Παρατηρούμε ότι η f παίρνει τιμές στο Z και f 1 ({k}) = [k, k + 1) για κάθε k Z]. Η C είναι μια διαμέριση του R. Παράδειγμα Παίρνουμε Ω = { 1, 1} N+. Μπορούμε να δούμε αυτό το σύνολο ως τον δειγματικό χώρο για μια ακολουθία ρίψεων ενός νομίσματος. Το 1 παριστά το αποτέλεσμα «Κορώνα» και το 1 το αποτέλεσμα «Γράμματα». Για n N +, ορίζουμε τη συνάρτηση X n : Ω R με X n (ω) = ω n, όπου ω = (ω n ) n 1 Ω. Δηλαδή η X n είναι η προβολή στη n-οστή συντεταγμένη. Η X n παίρνει μόνο δύο τιμές. Οπότε η σ(x n ) είναι ακριβώς το σύνολο {, Ω, A n, 1, A n,1 }, με A n, 1 := X 1 ( ) { 1} = {ω Ω : ωn = 1} = { 1, 1} n 1 { 1} { 1, 1} N+ \[n], n A n,1 := X 1 n όπου [n] := {1, 2,..., n}. ( {1} ) = {ω Ω : ωn = 1} = { 1, 1} n 1 {1} { 1, 1} N+ \[n], Ορισμός Εστω Ω σύνολο. Αν { f i : i I} είναι οικογένεια συναρτήσεων στο Ω με τιμές στο [, ], σ-άλγεβρα παραγόμενη από τις συναρτήσεις { f i : i I} ονομάζουμε το σύνολο σ ( { f i : i I} ) := σ ( i I σ( f i ) ). (5.4) Το σύνολο στο δεξί μέλος έχει οριστεί στην Παράγραφο 1.2. Αυτή είναι η ελάχιστη σ-άλγεβρα που κάνει όλες τις { f i : i I} μετρήσιμες. Αν I = {1, 2,..., n}, τη συμβολίζουμε με σ( f 1, f 2,..., f n ). Παράδειγμα Εστω Ω σύνολο, n 2, και f 1, f 2,..., f n : Ω R. Τότε σ( f 1 + f f n ) σ( f 1, f 2,..., f n ). Πράγματι, οι συναρτήσεις f 1, f 2,..., f n είναι σ( f 1, f 2,..., f n )-μετρήσιμες και από την Πρόταση 5.6, είναι σ( f 1, f 2,..., f n )-μετρήσιμη και η συνάρτηση f 1 + f f n. Ομως η σ( f 1 + f f n ) είναι η ελάχιστη σ-άλγεβρα που κάνει την f 1 + f f n μετρήσιμη. Ο ισχυρισμός έπεται. Παράδειγμα Συνεχίζουμε από το Παράδειγμα Θα περιγράψουμε τη σ-άλγεβρα F n := σ ( {X 1, X 2,..., X n } ). Για δεδομένη ακολουθία s = (s 1, s 2,..., s n ) { 1, 1} n θεωρούμε το σύνολο A s : = { (s 1, s 2,..., s n, x n+1, x n+2,...) : x i { 1, 1} για κάθε i n + 1 } = X1 1 ( {s1 } ) X 1 ( {s2 } ) Xn 1 ( {sn } ). 2 Δηλαδη το A s περιέχει όλες τις άπειρες ακολουθίες από 1 και 1 που το αρχικό τους τμήμα είναι το s και μετά είναι ελεύθερες να έχουν ότι θέλουν. Για μια ακολουθία που ανήκει στο A s, η συμπεριφορά της ως τον χρόνο n είναι γνωστή. Ισχυρισμος: Η F n είναι η σ-άλγεβρα που παράγεται από τη διαμέριση C := {A s : s { 1, 1} n } του Ω. Από τον ορισμό της, η F n πρέπει να περιέχει τα Xi 1 ( {si } ) για i = 1, 2,..., n. Αρα, ως σ-άλγεβρα, περιέχει και το A s, που είναι πεπερασμένη τομή των Xi 1 ( {si } ). Επομένως, σ(c) F n. Από την άλλη, κάθε X i με 1 i n είναι μετρήσιμη ως προς τη σ(c). Για παράδειγμα, ( ) {1} = s { 1,1} n :s i =1A s X 1 i

6 5.2 Σ-άλγεβρα παραγόμενη από συναρτήσεις 25 είναι πεπερασμένη ένωση στοιχείων της σ(c), άρα στοιχείο της. Από την ελαχιστότητα της F n, έπεται ότι F n σ(c) και ο ισχυρισμός αποδείχθηκε. Ασκήσεις 5.1 Εστω (Ω, F, P) χώρος πιθανότητας. Να δείξετε ότι για μια X : Ω R, τα ακόλουθα είναι ισοδύναμα: (α) X 1 (A) F για κάθε A B(R). (β) X 1 (A) F για κάθε A R ανοιχτό σύνολο. (γ) X 1 ([a, b]) F για κάθε a < b πραγματικούς αριθμούς. 5.2 Εστω X : Ω [, ] τυχαία μεταβλητή. Να δείξετε ότι {X = }, {X = } F. 5.3 (Μετρήσιμες συναρτήσεις σε σ-άλγεβρα παραγόμενη από αριθμήσιμη διαμέριση) Εστω C := {A i : i I} μια αριθμήσιμη διαμέριση ενός συνόλου Ω, και F := σ(c) (Παράδειγμα 1.1). Να δειχθεί ότι μια συνάρτηση f : Ω R είναι F /B(R) μετρήσιμη αν και μόνο αν είναι σταθερή σε κάθε σύνολο της διαμέρισης. 5.4 Εστω (X n ) n 1 ακολουθία τυχαίων μεταβλητών σε έναν χώρο πιθανότητας (Ω, F, P) με τιμές στο R. Να δείξετε ότι τα παρακάτω σύνολα είναι στοιχεία της F. (α) { lim X n = }, { lim X n = }. n n (β) { lim X n υπάρχει και είναι πραγματικός αριθμός}. n 5.5 Εστω f : R R μονότονη συνάρτηση. Να δειχθεί ότι είναι μετρήσιμη. 5.6 Εστω (Ω, F ) μετρήσιμος χώρος. Αν f, g : Ω R μετρήσιμες, να δείξετε ότι το { f = g} είναι μετρήσιμο. 5.7 Εστω (X n ) n 1 ακολουθία τυχαίων μεταβλητών στον χώρο πιθανότητας (Ω, F, P) με τιμές στο R. Θέτουμε T := min{n 1 : X n > 2} με τη σύμβαση min =. (α) Να δειχθεί ότι {T = } F. (β) Να δειχθεί ότι η T είναι τυχαία μεταβλητή. 5.8 Εστω X = (X 1, X 2,..., X n ) τυχαία μεταβλητή με τιμές στον R n. Θεωρούμε δείκτες 1 i 1 < i 2 < < i k n όπου 1 k < n. Να δειχθεί ότι η συνάρτηση Y := (X i1, X i2,..., X ik ) είναι τυχαία μεταβλητή. [Υπόδειξη: Ισχύει Y = p(x), όπου p η προβολή p : R n R k που απεικονίζει το (x 1, x 2,..., x n ) στο (x i1, x i2,..., x ik ).] 5.9 Να δειχθεί ότι πράγματι το δεξί μέλος της (5.4) είναι η μικρότερη σ-άλγεβρα A που κάνει όλες τις { f i : i I} A-μετρήσιμες Σε αυτή την άσκηση θεωρούμε το πεδίο τιμών της f : R R, δηλαδή το R, εφοδιασμένο με τη σ-αλγεβρα των συνόλων Borel. Περιγράψτε τη σ( f ) στην περίπτωση που (α) f (x) = x 3, (β) f (x) = x Εστω X τυχαία μεταβλητή με τιμές στο R. Αν P(X > 1) > 0, τότε υπάρχει ε > 0 ώστε P(X > 1 + ε) > 0.

Εισαγωγικά. 1.1 Η σ-αλγεβρα ως πληροφορία

Εισαγωγικά. 1.1 Η σ-αλγεβρα ως πληροφορία 1 Εισαγωγικά 1.1 Η σ-αλγεβρα ως πληροφορία Στη θεωρία μέτρου, όταν δουλεύει κανείς σε έναν χώρο X, συνήθως έχει διαλέξει μια αρκετά μεγάλη σ-άλγεβρα στον X έτσι ώστε όλα τα σύνολα που εμφανίζονται να ανήκουν

Διαβάστε περισσότερα

Εστω X σύνολο και A μια σ-άλγεβρα στο X. Ονομάζουμε το ζεύγος (X, A) μετρήσιμο χώρο.

Εστω X σύνολο και A μια σ-άλγεβρα στο X. Ονομάζουμε το ζεύγος (X, A) μετρήσιμο χώρο. 2 Μέτρα 2.1 Μέτρα σε μετρήσιμο χώρο Εστω X σύνολο και A μια σ-άλγεβρα στο X. Ονομάζουμε το ζεύγος (X, A) μετρήσιμο χώρο. Ορισμός 2.1. Μέτρο στον (X, A) λέμε κάθε συνάρτηση µ : A [0, ] που ικανοποιεί τις

Διαβάστε περισσότερα

Ανεξαρτησία Ανεξαρτησία για οικογένειες συνόλων και τυχαίες μεταβλητές

Ανεξαρτησία Ανεξαρτησία για οικογένειες συνόλων και τυχαίες μεταβλητές 10 Ανεξαρτησία 10.1 Ανεξαρτησία για οικογένειες συνόλων και τυχαίες μεταβλητές Στην παράγραφο αυτή δουλεύουμε σε χώρο πιθανότητας (Ω, F, P). Δίνουμε καταρχάς τον ορισμό της ανεξαρτησίας για ενδεχόμενα,

Διαβάστε περισσότερα

Ανεξαρτησία Ανεξαρτησία για οικογένειες συνόλων και τυχαίες μεταβλητές

Ανεξαρτησία Ανεξαρτησία για οικογένειες συνόλων και τυχαίες μεταβλητές 10 Ανεξαρτησία 10.1 Ανεξαρτησία για οικογένειες συνόλων και τυχαίες μεταβλητές Στην παράγραφο αυτή δουλεύουμε σε χώρο πιθανότητας (Ω, F, P). Δίνουμε καταρχάς τον ορισμό της ανεξαρτησίας για ενδεχόμενα,

Διαβάστε περισσότερα

Ανελίξεις σε συνεχή χρόνο

Ανελίξεις σε συνεχή χρόνο 4 Ανελίξεις σε συνεχή χρόνο Σε αυτό το κεφάλαιο είναι συγκεντρωμένοι ορισμοί και αποτελέσματα από τη θεωρία των στοχαστικών ανελιξεων συνεχούς χρόνου. Με εξαίρεση την Παράγραφο 4.1, η οποία είναι εντελώς

Διαβάστε περισσότερα

Αναλυτικές ιδιότητες

Αναλυτικές ιδιότητες 8 Αναλυτικές ιδιότητες 8. Βαθμός συνέχειας* Ξέρουμε ότι η κίνηση Brown είναι συνεχής και θα δείξουμε αργότερα ότι είναι πουθενά διαφορίσιμη. Πόσο ομαλή είναι λοιπόν; Μια ασθενέστερη μορφή ομαλότητας είναι

Διαβάστε περισσότερα

Εφαρμογές στην κίνηση Brown

Εφαρμογές στην κίνηση Brown 13 Εφαρμογές στην κίνηση Brown Σε αυτό το κεφάλαιο θέλουμε να κάνουμε για την πολυδιάστατη κίνηση Brown κάτι ανάλογο με αυτό που κάναμε στην Παράγραφο 7.2 για τη μονοδιάστατη κίνηση Brown. Δηλαδή να μελετήσουμε

Διαβάστε περισσότερα

Παντού σε αυτό το κεφάλαιο, αν δεν αναφέρεται κάτι διαφορετικό, δουλεύουμε σε ένα χώρο πιθανότητας (Ω, F, P) και η G F είναι μια σ-άλγεβρα.

Παντού σε αυτό το κεφάλαιο, αν δεν αναφέρεται κάτι διαφορετικό, δουλεύουμε σε ένα χώρο πιθανότητας (Ω, F, P) και η G F είναι μια σ-άλγεβρα. 2 Δεσμευμένη μέση τιμή 2.1 Ορισμός Παντού σε αυτό το κεφάλαιο, αν δεν αναφέρεται κάτι διαφορετικό, δουλεύουμε σε ένα χώρο πιθανότητας (Ω, F, P) και η G F είναι μια σ-άλγεβρα. Ορισμός 2.1. Για X : Ω R τυχαία

Διαβάστε περισσότερα

Ανεξαρτησία Ανεξαρτησία για οικογένειες συνόλων και τυχαίες μεταβλητές

Ανεξαρτησία Ανεξαρτησία για οικογένειες συνόλων και τυχαίες μεταβλητές 10 Ανεξαρτησία 10.1 Ανεξαρτησία για οικογένειες συνόλων και τυχαίες μεταβλητές Στην παράγραφο αυτή δουλεύουμε σε χώρο πιθανότητας (Ω, F, P). Δίνουμε καταρχάς τον ορισμό της ανεξαρτησίας για ενδεχόμενα,

Διαβάστε περισσότερα

Αποδεικτικές Διαδικασίες και Μαθηματική Επαγωγή.

Αποδεικτικές Διαδικασίες και Μαθηματική Επαγωγή. Αποδεικτικές Διαδικασίες και Μαθηματική Επαγωγή. Mαθηματικό σύστημα Ένα μαθηματικό σύστημα αποτελείται από αξιώματα, ορισμούς, μη καθορισμένες έννοιες και θεωρήματα. Η Ευκλείδειος γεωμετρία αποτελεί ένα

Διαβάστε περισσότερα

Ο Ισχυρός Νόμος των Μεγάλων Αριθμών

Ο Ισχυρός Νόμος των Μεγάλων Αριθμών 1 Ο Ισχυρός Νόμος των Μεγάλων Αριθμών Στο κεφάλαιο αυτό παρουσιάζουμε ένα από τα σημαντικότερα αποτελέσματα της Θεωρίας Πιθανοτήτων, τον ισχυρό νόμο των μεγάλων αριθμών. Η διατύπωση που θα αποδείξουμε

Διαβάστε περισσότερα

Κατασκευή της κίνησης Brown και απλές ιδιότητες

Κατασκευή της κίνησης Brown και απλές ιδιότητες 5 Κατασκευή της κίνησης Brown και απλές ιδιότητες 51 Ορισμός, ύπαρξη, και μοναδικότητα Ορισμός 51 Μια στοχαστική ανέλιξη { : t } ορισμένη σε έναν χώρο πιθανότητας (Ω, F, P) και με τιμές στο R λέγεται (μονοδιάστατη)

Διαβάστε περισσότερα

Martingales. 3.1 Ορισμός και παραδείγματα

Martingales. 3.1 Ορισμός και παραδείγματα 3 Martingales 3.1 Ορισμός και παραδείγματα Εστω χώρος πιθανότητας (Ω, F, P). Διήθηση σε αυτό τον χώρο λέμε μια αύξουσα ακολουθία (F n ) n 0 σ-αλγεβρών, η καθεμία από τις οποίες είναι υποσύνολο της F. Δηλαδή,

Διαβάστε περισσότερα

Επίλυση ειδικών μορφών ΣΔΕ

Επίλυση ειδικών μορφών ΣΔΕ 15 Επίλυση ειδικών μορφών ΣΔΕ Σε αυτό το κεφάλαιο θα δούμε κάποιες ειδικές μορφές ΣΔΕ για τις οποίες υπάρχει μέθοδος επίλυσης. Περισσότερες μπορεί να δει κανείς στο Kloeden and Plaen (199), 4.-4.4. Θα

Διαβάστε περισσότερα

Δημήτρης Χελιώτης ΕΝΑ ΔΕΥΤΕΡΟ ΜΑΘΗΜΑ ΣΤΙΣ ΠΙΘΑΝΟΤΗΤΕΣ

Δημήτρης Χελιώτης ΕΝΑ ΔΕΥΤΕΡΟ ΜΑΘΗΜΑ ΣΤΙΣ ΠΙΘΑΝΟΤΗΤΕΣ Δημήτρης Χελιώτης ΕΝΑ ΔΕΥΤΕΡΟ ΜΑΘΗΜΑ ΣΤΙΣ ΠΙΘΑΝΟΤΗΤΕΣ ii ΔΗΜΗΤΡΗΣ ΧΕΛΙΩΤΗΣ Επίκουρος καθηγητής Τμήμα Μαθηματικών Εθνικό και Καποδιστριακό Πανεπιστήμιο Αθηνων Ενα δεύτερο μάθημα στις πιθανότητες Ενα δεύτερο

Διαβάστε περισσότερα

ΕΙΣΑΓΩΓΗ ΣΤΟN ΣΤΟΧΑΣΤΙΚΟ ΛΟΓΙΣΜΟ

ΕΙΣΑΓΩΓΗ ΣΤΟN ΣΤΟΧΑΣΤΙΚΟ ΛΟΓΙΣΜΟ Δημήτρης Χελιώτης ΕΙΣΑΓΩΓΗ ΣΤΟN ΣΤΟΧΑΣΤΙΚΟ ΛΟΓΙΣΜΟ B τ u(x):=e x {f(b τ ) u(x) = } x ii ΔΗΜΗΤΡΗΣ ΧΕΛΙΩΤΗΣ Επίκουρος καθηγητής Τμήμα Μαθηματικών Εθνικό και Καποδιστριακό Πανεπιστήμιο Αθηνων Εισαγωγή στον

Διαβάστε περισσότερα

ΕΙΣΑΓΩΓΗ ΣΤΟN ΣΤΟΧΑΣΤΙΚΟ ΛΟΓΙΣΜΟ

ΕΙΣΑΓΩΓΗ ΣΤΟN ΣΤΟΧΑΣΤΙΚΟ ΛΟΓΙΣΜΟ Δημήτρης Χελιώτης ΕΙΣΑΓΩΓΗ ΣΤΟN ΣΤΟΧΑΣΤΙΚΟ ΛΟΓΙΣΜΟ B τ u(x):=e x {f(b τ ) u(x) = } x ii ΔΗΜΗΤΡΗΣ ΧΕΛΙΩΤΗΣ Επίκουρος καθηγητής Τμήμα Μαθηματικών Εθνικό και Καποδιστριακό Πανεπιστήμιο Αθηνων Εισαγωγή στον

Διαβάστε περισσότερα

Ας υποθέσουμε ότι ο παίκτης Ι διαλέγει πρώτος την τυχαιοποιημένη στρατηγική (x 1, x 2 ), x 1, x2 0,

Ας υποθέσουμε ότι ο παίκτης Ι διαλέγει πρώτος την τυχαιοποιημένη στρατηγική (x 1, x 2 ), x 1, x2 0, Οικονομικό Πανεπιστήμιο Αθηνών Τμήμα Στατιστικής Εισαγωγή στην Επιχειρησιακή Ερευνα Εαρινό Εξάμηνο 2015 Μ. Ζαζάνης Πρόβλημα 1. Να διατυπώσετε το παρακάτω παίγνιο μηδενικού αθροίσματος ως πρόβλημα γραμμικού

Διαβάστε περισσότερα

Μεγάλες αποκλίσεις* 17.1 Η έννοια της μεγάλης απόκλισης

Μεγάλες αποκλίσεις* 17.1 Η έννοια της μεγάλης απόκλισης 7 Μεγάλες αποκλίσεις* 7. Η έννοια της μεγάλης απόκλισης Εστω (X ανεξάρτητες και ισόνομες τυχαίες μεταβλητές ώστε (X = = (X = = /2 και S = k= X k το άθροισμα των πρώτων από αυτές. Ο νόμος των μεγάλων αριθμών

Διαβάστε περισσότερα

Ο τύπος του Itô. f (s) ds (12.1) f (g(s)) dg(s). (12.2) t f (B s ) db s + 1 2

Ο τύπος του Itô. f (s) ds (12.1) f (g(s)) dg(s). (12.2) t f (B s ) db s + 1 2 12 Ο τύπος του Itô Για συνάρτηση f : R R με συνεχή παράγωγο, έχουμε d f (s) = f (s) ds που σε ολοκληρωτική μορφή σημαίνει f (b) f (a) = b a f (s) ds (12.1) για κάθε a < b. Αν επιπλέον και η g : R R έχει

Διαβάστε περισσότερα

Μεγάλες αποκλίσεις* 17.1 Η έννοια της μεγάλης απόκλισης

Μεγάλες αποκλίσεις* 17.1 Η έννοια της μεγάλης απόκλισης 7 Μεγάλες αποκλίσεις* 7. Η έννοια της μεγάλης απόκλισης Εστω (X ) ανεξάρτητες και ισόνομες τυχαίες μεταβλητές ώστε P(X = ) = P(X = ) = /2 και S = k= X k το άθροισμα των πρώτων από αυτές. Ο νόμος των μεγάλων

Διαβάστε περισσότερα

602. Συναρτησιακή Ανάλυση. Υποδείξεις για τις Ασκήσεις

602. Συναρτησιακή Ανάλυση. Υποδείξεις για τις Ασκήσεις 602. Συναρτησιακή Ανάλυση Υποδείξεις για τις Ασκήσεις Τμήμα Μαθηματικών Πανεπιστήμιο Αθηνών Αθήνα 2018 Περιεχόμενα 1 Χώροι με νόρμα 1 2 Χώροι πεπερασμένης διάστασης 23 3 Γραμμικοί τελεστές και γραμμικά

Διαβάστε περισσότερα

Μεγάλες αποκλίσεις* 17.1 Η έννοια της μεγάλης απόκλισης

Μεγάλες αποκλίσεις* 17.1 Η έννοια της μεγάλης απόκλισης 7 Μεγάλες αποκλίσεις* 7. Η έννοια της μεγάλης απόκλισης Εστω (X ανεξάρτητες και ισόνομες τυχαίες μεταβλητές ώστε P(X = = P(X = = /2 και S = k= X k το άθροισμα των πρώτων από αυτές. Ο νόμος των μεγάλων

Διαβάστε περισσότερα

Η εξίσωση Black-Scholes

Η εξίσωση Black-Scholes 8 Η εξίσωση Black-Scholes 8. Μια απλή αγορά Θεωρούμε ότι έχουμε μια αγορά που έχει μόνο δύο προϊόντα. Το ένα είναι η δυνατότητα κατάθεσης σε μια τράπεζα (ισοδύναμα, αγορά ομολόγων της τράπεζας) και το

Διαβάστε περισσότερα

Αναγνώριση Προτύπων. Σήμερα! Λόγος Πιθανοφάνειας Πιθανότητα Λάθους Κόστος Ρίσκο Bayes Ελάχιστη πιθανότητα λάθους για πολλές κλάσεις

Αναγνώριση Προτύπων. Σήμερα! Λόγος Πιθανοφάνειας Πιθανότητα Λάθους Κόστος Ρίσκο Bayes Ελάχιστη πιθανότητα λάθους για πολλές κλάσεις Αναγνώριση Προτύπων Σήμερα! Λόγος Πιθανοφάνειας Πιθανότητα Λάθους Πιθανότητα Λάθους Κόστος Ρίσκο Bayes Ελάχιστη πιθανότητα λάθους για πολλές κλάσεις 1 Λόγος Πιθανοφάνειας Ας υποθέσουμε ότι θέλουμε να ταξινομήσουμε

Διαβάστε περισσότερα

«ΔΙΑΚΡΙΤΑ ΜΑΘΗΜΑΤΙΚΑ»

«ΔΙΑΚΡΙΤΑ ΜΑΘΗΜΑΤΙΚΑ» HY 118α «ΔΙΚΡΙΤ ΜΘΗΜΤΙΚ» ΣΚΗΣΕΙΣ ΠΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ ΤΜΗΜ ΕΠΙΣΤΗΜΗΣ ΥΠΟΛΟΙΣΤΩΝ εώργιος Φρ. εωργακόπουλος ΜΕΡΟΣ (1) ασικά στοιχεία της θεωρίας συνόλων. Π. ΚΡΗΤΗΣ ΤΜ. ΕΠ. ΥΠΟΛΟΙΣΤΩΝ «ΔΙΚΡΙΤ ΜΘΗΜΤΙΚ». Φ. εωργακόπουλος

Διαβάστε περισσότερα

Οι γέφυρες του ποταμού... Pregel (Konigsberg)

Οι γέφυρες του ποταμού... Pregel (Konigsberg) Οι γέφυρες του ποταμού... Pregel (Konigsberg) Β Δ Β Δ Γ Γ Κύκλος του Euler (Euler cycle) είναι κύκλος σε γράφημα Γ που περιέχει κάθε κορυφή του γραφήματος, και κάθε ακμή αυτού ακριβώς μία φορά. Για γράφημα

Διαβάστε περισσότερα

{ i f i == 0 and p > 0

{ i f i == 0 and p > 0 ΟΙΚΟΝΟΜΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ - ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΜΕΤΑΠΤΥΧΙΑΚΟ ΠΡΟΓΡΑΜΜΑ ΕΠΙΣΤΗΜΗΣ ΥΠΟΛΟΓΙΣΤΩΝ Σχεδίαση και Ανάλυση Αλγορίθμων Διδάσκων: Ε. Μαρκάκης, Φθινοπωρινό εξάμηνο 014-015 Λύσεις 1ης Σειράς Ασκήσεων

Διαβάστε περισσότερα

ιάσταση του Krull Α.Π.Θ. Θεσσαλονίκη Χ. Χαραλαμπους (ΑΠΘ) ιάσταση του Krull Ιανουάριος, / 27

ιάσταση του Krull Α.Π.Θ. Θεσσαλονίκη Χ. Χαραλαμπους (ΑΠΘ) ιάσταση του Krull Ιανουάριος, / 27 ιάσταση του Krull Χ. Χαραλάμπους Α.Π.Θ. Θεσσαλονίκη Ιανουάριος, 2017 Χ. Χαραλαμπους (ΑΠΘ) ιάσταση του Krull Ιανουάριος, 2017 1 / 27 Ορισμοί Εστω R (αντιμεταθετικός) δακτύλιος. Ορισμός Η διάσταση του Krull

Διαβάστε περισσότερα

ΠΙΘΑΝΟΤΗΤΕΣ 2. Σάμης Τρέβεζας

ΠΙΘΑΝΟΤΗΤΕΣ 2. Σάμης Τρέβεζας ΠΙΘΑΝΟΤΗΤΕΣ 2 Σάμης Τρέβεζας ii ΣΑΜΗΣ ΤΡΕΒΕΖΑΣ Λέκτορας Τμήμα Μαθηματικών Εθνικό και Καποδιστριακό Πανεπιστήμιο Αθηνων Πιθανότητες ΙΙ Σημειώσεις σε εξέλιξη... (02/03) Περιεχόμενα 1 Δομές σε Οικογένειες

Διαβάστε περισσότερα

Δ Ι Α Κ Ρ Ι Τ Α Μ Α Θ Η Μ Α Τ Ι Κ Α. 1η σειρά ασκήσεων

Δ Ι Α Κ Ρ Ι Τ Α Μ Α Θ Η Μ Α Τ Ι Κ Α. 1η σειρά ασκήσεων Δ Ι Α Κ Ρ Ι Τ Α Μ Α Θ Η Μ Α Τ Ι Κ Α 1η σειρά ασκήσεων Ονοματεπώνυμο: Αριθμός μητρώου: Ημερομηνία παράδοσης: Μέχρι την Τρίτη 2 Απριλίου 2019 Σημειώστε τις ασκήσεις για τις οποίες έχετε παραδώσει λύση: 1

Διαβάστε περισσότερα

Περίληψη. του Frostman 4.1. Τέλος, η ϑεωρία του μέτρου Hausdorff αναπτύσσεται περαιτέρω στην τελευταία παράγραφο. Εισαγωγή 2

Περίληψη. του Frostman 4.1. Τέλος, η ϑεωρία του μέτρου Hausdorff αναπτύσσεται περαιτέρω στην τελευταία παράγραφο. Εισαγωγή 2 Το Μέτρο και η Διάσταση Hausdorff Γεωργακόπουλος Νίκος Τερεζάκης Αλέξης Περίληψη Αναπτύσσουμε τη ϑεωρία του μέτρου και της διάστασης Hausdorff με εφαρμογές στον υπολογισμό διαστάσεων συνόλων fractal (Θεώρημα

Διαβάστε περισσότερα

Εισαγωγή στη Μιγαδική Ανάλυση. (Πρώτη Ολοκληρωμένη Γραφή)

Εισαγωγή στη Μιγαδική Ανάλυση. (Πρώτη Ολοκληρωμένη Γραφή) Εισαωή στη Μιαδική Ανάλυση Σημειώσεις (Πρώτη Ολοκληρωμένη Γραφή) Ε. Στεφανόπουλος Τμήμα Μαθηματικών Πανεπιστήμιο Αιαίου Καρλόβασι Καλοκαίρι 26 Πρόλοος Οι σημειώσεις αυτές είναι αποτέλεσμα επεξερασίας

Διαβάστε περισσότερα

21/11/2005 Διακριτά Μαθηματικά. Γραφήματα ΒΑΣΙΚΗ ΟΡΟΛΟΓΙΑ : ΜΟΝΟΠΑΤΙΑ ΚΑΙ ΚΥΚΛΟΙ Δ Ι. Γεώργιος Βούρος Πανεπιστήμιο Αιγαίου

21/11/2005 Διακριτά Μαθηματικά. Γραφήματα ΒΑΣΙΚΗ ΟΡΟΛΟΓΙΑ : ΜΟΝΟΠΑΤΙΑ ΚΑΙ ΚΥΚΛΟΙ Δ Ι. Γεώργιος Βούρος Πανεπιστήμιο Αιγαίου Γραφήματα ΒΑΣΙΚΗ ΟΡΟΛΟΓΙΑ : ΜΟΝΟΠΑΤΙΑ ΚΑΙ ΚΥΚΛΟΙ A Ε B Ζ Η Γ K Θ Δ Ι Ορισμός Ένα (μη κατευθυνόμενο) γράφημα (non directed graph) Γ, είναι μία δυάδα από σύνολα Ε και V και συμβολίζεται με Γ=(Ε,V). Το σύνολο

Διαβάστε περισσότερα

Στοχαστικές διαφορικές εξισώσεις

Στοχαστικές διαφορικές εξισώσεις 14 Στοχαστικές διαφορικές εξισώσεις 14.1 Γενικά Στοχαστική διαφορική εξίσωση λέμε μια εξίσωση της μορφής dx = µ(, X ) d + σ(, X ) db, X = x, (14.1) με µ, σ : [, ) R R μετρήσιμες συναρτήσεις, x R, και B

Διαβάστε περισσότερα

Το Θεώρημα Μοναδικότητας των Stone και von Neumann

Το Θεώρημα Μοναδικότητας των Stone και von Neumann Κ Ε Το Θεώρημα Μοναδικότητας των Stone και von Neumann Διπλωματική Εργασία Ειδίκευσης στα Θεωρητικά Μαθηματικά Πανεπιστήμιο Αθηνών Τμήμα Μαθηματικών Αθήνα 2011 Αφιερώνεται στην οικογένεια μου ii Περίληψη

Διαβάστε περισσότερα

Εκφωνήσεις και Λύσεις των Θεμάτων

Εκφωνήσεις και Λύσεις των Θεμάτων ΑΠΟΛΥΤΗΡΙΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΚΑΙ ΠΑΝΕΛΛΗΝΙΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΕΠΑΛ (ΟΜΑΔΑ Β ) ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Δευτέρα 8 Μαΐου 0 Εκφωνήσεις και Λύσεις των Θεμάτων

Διαβάστε περισσότερα

Ευρωπαϊκά παράγωγα Ευρωπαϊκά δικαιώματα

Ευρωπαϊκά παράγωγα Ευρωπαϊκά δικαιώματα 17 Ευρωπαϊκά παράγωγα 17.1 Ευρωπαϊκά δικαιώματα Ορισμός 17.1. 1) Ευρωπαϊκό δικαίωμα αγοράς σε μία μετοχή είναι ένα συμβόλαιο που δίνει στον κάτοχό του το δικαίωμα να αγοράσει μία μετοχή από τον εκδότη

Διαβάστε περισσότερα

Η ανισότητα α β α±β α + β με α, β C και η χρήση της στην εύρεση ακροτάτων.

Η ανισότητα α β α±β α + β με α, β C και η χρήση της στην εύρεση ακροτάτων. A A N A B P Y T A Άρθρο στους Μιγαδικούς Αριθμούς 9 5 0 Η ανισότητα α β α±β α + β με α, β C και η χρήση της στην εύρεση ακροτάτων. Δρ. Νίκος Σωτηρόπουλος, Μαθηματικός Εισαγωγή Το άρθρο αυτό γράφεται με

Διαβάστε περισσότερα

Εξαναγκασμένες ταλαντώσεις, Ιδιοτιμές με πολλαπλότητα, Εκθετικά πινάκων. 9 Απριλίου 2013, Βόλος

Εξαναγκασμένες ταλαντώσεις, Ιδιοτιμές με πολλαπλότητα, Εκθετικά πινάκων. 9 Απριλίου 2013, Βόλος ιαφορικές Εξισώσεις Εξαναγκασμένες ταλαντώσεις, Ιδιοτιμές με πολλαπλότητα, Ατελείς ιδιοτιμές Εκθετικά πινάκων Μανόλης Βάβαλης Τμήμα Μηχανικών Η/Υ Τηλεπικοινωνιών και ικτύων Πανεπιστήμιο Θεσσαλίας 9 Απριλίου

Διαβάστε περισσότερα

ΣΥΝΟΛΑ (προσέξτε τα κοινά χαρακτηριστικά των παρακάτω προτάσεων) Οι άνθρωποι που σπουδάζουν ΤΠ&ΕΣ και βρίσκονται στην αίθουσα

ΣΥΝΟΛΑ (προσέξτε τα κοινά χαρακτηριστικά των παρακάτω προτάσεων) Οι άνθρωποι που σπουδάζουν ΤΠ&ΕΣ και βρίσκονται στην αίθουσα ΣΥΝΟΛΑ (προσέξτε τα κοινά χαρακτηριστικά των παρακάτω προτάσεων) Οι άνθρωποι που σπουδάζουν ΤΠ&ΕΣ και βρίσκονται στην αίθουσα Τα βιβλία διακριτών μαθηματικών του Γ.Β. Η/Υ με επεξεργαστή Pentium και χωρητικότητα

Διαβάστε περισσότερα

Χαρακτηριστικές συναρτήσεις

Χαρακτηριστικές συναρτήσεις 13 Χαρακτηριστικές συναρτήσεις 13.1 Μετασχηματισμός Fourier μέτρου πιθανότητας στο R Εστω (Ω, F, µ) χώρος μέτρου και f : Ω C Borel-μετρήσιμη συνάρτηση. Το πραγματικό και φανταστικό μέρος της f, που τα

Διαβάστε περισσότερα

Σχέσεις και ιδιότητές τους

Σχέσεις και ιδιότητές τους Σχέσεις και ιδιότητές τους Διμελής (binary) σχέση Σ από σύνολο Χ σε σύνολο Υ είναι ένα υποσύνολο του καρτεσιανού γινομένου Χ Υ. Αν (χ,ψ) Σ, λέμε ότι το χ σχετίζεται με το ψ και σημειώνουμε χσψ. Στην περίπτωση

Διαβάστε περισσότερα

Η ΓΕΩΜΕΤΡΙΑ ΤΩΝ FRACTALS

Η ΓΕΩΜΕΤΡΙΑ ΤΩΝ FRACTALS Η ΓΕΩΜΕΤΡΙΑ ΤΩΝ FRACTALS ΕΛΕΝΗ ΤΑΝΤΟΥΛΟΥ ΕΠΙΒΛΕΠΩΝ ΚΑΘΗΓΗΤΗΣ: ΑΝΤΩΝΗΣ ΤΣΟΛΟΜΥΤΗΣ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΣΧΟΛΗ ΘΕΤΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΜΑΘΗΜΑΤΙΚΩΝ ΣΑΜΟΣ 2009 Στην μητέρα μου που μπορεί και με ανέχεται ακόμα,

Διαβάστε περισσότερα

HY 280. θεμελιακές έννοιες της επιστήμης του υπολογισμού ΑΣΚΗΣΕΙΣ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ ΤΜΗΜΑ ΕΠΙΣΤΗΜΗΣ ΥΠΟΛΟΓΙΣΤΩΝ. Γεώργιος Φρ.

HY 280. θεμελιακές έννοιες της επιστήμης του υπολογισμού ΑΣΚΗΣΕΙΣ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ ΤΜΗΜΑ ΕΠΙΣΤΗΜΗΣ ΥΠΟΛΟΓΙΣΤΩΝ. Γεώργιος Φρ. HY 280 «ΘΕΩΡΙΑ ΥΠΟΛΟΓΙΣΜΟΥ» θεμελικές έννοιες της επιστήμης του υπολογισμού ΑΣΚΗΣΕΙΣ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ ΤΜΗΜΑ ΕΠΙΣΤΗΜΗΣ ΥΠΟΛΟΓΙΣΤΩΝ Γεώργιος Φρ. Γεωργκόπουλος μέρος Α Εισγωγή, κι η σική θεωρί των πεπερσμένων

Διαβάστε περισσότερα

( ιμερείς) ΙΜΕΛΕΙΣ ΣΧΕΣΕΙΣ Α Β «απεικονίσεις»

( ιμερείς) ΙΜΕΛΕΙΣ ΣΧΕΣΕΙΣ Α Β «απεικονίσεις» ( ιμερείς) ΙΜΕΛΕΙΣ ΣΧΕΣΕΙΣ Α Β «πεικονίσεις» 1. ΣΧΕΣΕΙΣ: το σκεπτικό κι ο ορισμός. Τ σύνολ νπριστούν ιδιότητες μεμονωμένων στοιχείων: δεδομένου συνόλου S, κι ενός στοιχείου σ, είνι δυντόν είτε σ S είτε

Διαβάστε περισσότερα

Γραμμική Ανεξαρτησία. Τμήμα Μηχανικών Η/Υ Τηλεπικοινωνιών και ικτύων Πανεπιστήμιο Θεσσαλίας. 17 Μαρτίου 2013, Βόλος

Γραμμική Ανεξαρτησία. Τμήμα Μηχανικών Η/Υ Τηλεπικοινωνιών και ικτύων Πανεπιστήμιο Θεσσαλίας. 17 Μαρτίου 2013, Βόλος Γραμμικές Συνήθεις ιαφορικές Εξισώσεις Ανώτερης Τάξης Γραμμικές Σ Ε 2ης τάξης Σ Ε 2ης τάξης με σταθερούς συντελεστές Μιγαδικές ρίζες Γραμμικές Σ Ε υψηλότερης τάξης Γραμμική Ανεξαρτησία Μανόλης Βάβαλης

Διαβάστε περισσότερα

Αναγνώριση Προτύπων. Σημερινό Μάθημα

Αναγνώριση Προτύπων. Σημερινό Μάθημα Αναγνώριση Προτύπων Σημερινό Μάθημα Εκτίμηση Πυκνότητας με k NN k NN vs Bayes classifier k NN vs Bayes classifier Ο κανόνας ταξινόμησης του πλησιέστερου γείτονα (k NN) lazy αλγόριθμοι O k NN ως χαλαρός

Διαβάστε περισσότερα

τους στην Κρυπτογραφία και τα

τους στην Κρυπτογραφία και τα Οι Ομάδες των Πλεξίδων και Εφαρμογές τους στην Κρυπτογραφία και τα Πολυμερή Σχολή Εφαρμοσμένων Μαθηματικών και Φυσικών Επιστημών ΕΜΠ Επιβλέπουσα Καθηγήτρια: Λαμπροπούλου Σοφία Ιούλιος, 2013 Περιεχόμενα

Διαβάστε περισσότερα

Αναγνώριση Προτύπων. Σημερινό Μάθημα

Αναγνώριση Προτύπων. Σημερινό Μάθημα Αναγνώριση Προτύπων Σημερινό Μάθημα Μη Παραμετρικός Υπολογισμός πυκνότητας με εκτίμηση Ιστόγραμμα Παράθυρα Parzen Εξομαλυμένη Kernel Ασκήσεις 1 Μη Παραμετρικός Υπολογισμός πυκνότητας με εκτίμηση Κατά τη

Διαβάστε περισσότερα

ΕΙΣΑΓΩΓΗ. H λογική ασχολείται με δύο έννοιες, την αλήθεια και την απόδειξη. Oι έννοιες αυτές έχουν γίνει

ΕΙΣΑΓΩΓΗ. H λογική ασχολείται με δύο έννοιες, την αλήθεια και την απόδειξη. Oι έννοιες αυτές έχουν γίνει ΕΙΣΑΓΩΓΗ ------------------------------------------------------------------------------------- H λογική ασχολείται με δύο έννοιες, την αλήθεια και την απόδειξη. Oι έννοιες αυτές έχουν γίνει αντικείμενο

Διαβάστε περισσότερα

Κεφάλαιο Η εκθετική κατανομή. Η πυκνότητα πιθανότητας της εκθετικής κατανομής δίδεται από την σχέση (1.1) f(x) = 0 αν x < 0.

Κεφάλαιο Η εκθετική κατανομή. Η πυκνότητα πιθανότητας της εκθετικής κατανομής δίδεται από την σχέση (1.1) f(x) = 0 αν x < 0. Κεφάλαιο Συνεχείς Τυχαίες Μεταβλητές. Η εκθετική κατανομή Η πυκνότητα πιθανότητας της εκθετικής κατανομής δίδεται από την σχέση f(x) = λe λx αν x, αν x

Διαβάστε περισσότερα

Κεφάλαιο 1. Πίνακες και απαλοιφή Gauss

Κεφάλαιο 1. Πίνακες και απαλοιφή Gauss Κεφάλαιο 1 Πίνακες και απαλοιφή Gauss Γύρω απ το γινομένου πινάκων Κάτι σαν τυπολόγιο Αν AB = C, τότε: 1 (C) i j = (i-γραμμή A) ( j-στήλη B) Το συμβολίζει εσωτερικό γινόμενο 2 (i-γραμμή C) = k(a) ik (k-γραμμή

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ. Εαρινό Εξάμηνο

ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ. Εαρινό Εξάμηνο ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΕΠΛ231: Δομές Δεδομένων και Αλγόριθμοι Εαρινό Εξάμηνο 2017-2018 Φροντιστήριο 3 - Λύσεις 1. Εστω ο πίνακας Α = [12, 23, 1, 5, 7, 19, 2, 14]. i. Να δώσετε την κατάσταση

Διαβάστε περισσότερα

1. Εστω ότι A, B, C είναι γενικοί 2 2 πίνακες, δηλαδή, a 21 a, και ανάλογα για τους B, C. Υπολογίστε τους πίνακες (A B) C και A (B C) και

1. Εστω ότι A, B, C είναι γενικοί 2 2 πίνακες, δηλαδή, a 21 a, και ανάλογα για τους B, C. Υπολογίστε τους πίνακες (A B) C και A (B C) και ΕΙΣΑΓΩΓΗ ΣΤΗ ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ Ι Εαρινό Εξάμηνο 0 Ασκήσεις για προσωπική μελέτη Είναι απολύτως απαραίτητο να μπορείτε να τις λύνετε, τουλάχιστον τις υπολογιστικές! Εστω ότι A, B, C είναι γενικοί πίνακες,

Διαβάστε περισσότερα

Εκφωνήσεις και Λύσεις των Θεμάτων

Εκφωνήσεις και Λύσεις των Θεμάτων ΑΠΟΛΥΤΗΡΙΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΚΑΙ ΠΑΝΕΛΛΗΝΙΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΕΠΑΛ (ΟΜΑΔΑ Β ) ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ Τετάρτη 23 Μαΐου 2012 Εκφωήσεις και Λύσεις

Διαβάστε περισσότερα

Πιθανότητες ΙΙ 1 o Μέρος. Οικονομικό Πανεπιστήμιο Αθηνών

Πιθανότητες ΙΙ 1 o Μέρος. Οικονομικό Πανεπιστήμιο Αθηνών Πιθανότητες ΙΙ o Μέρος Μιχάλης Ζαζάνης Τμήμα Στατιστικής Οικονομικό Πανεπιστήμιο Αθηνών 4 Απριλίου 7 Κεφάλαιο Συνεχείς Τυχαίες Μεταβλητές. Η εκθετική κατανομή Η πυκνότητα πιθανότητας της εκθετικής κατανομής

Διαβάστε περισσότερα

Το κράτος είναι φτιαγμένο για τον άνθρωπο και όχι ο άνθρωπος για το κράτος. A. Einstein Πηγή:

Το κράτος είναι φτιαγμένο για τον άνθρωπο και όχι ο άνθρωπος για το κράτος. A. Einstein Πηγή: Ας πούμε και κάτι για τις δύσκολες μέρες που έρχονται Το κράτος είναι φτιαγμένο για τον άνθρωπο και όχι ο άνθρωπος για το κράτος. A. Einstein 1879-1955 Πηγή: http://www.cognosco.gr/gnwmika/ 1 ΚΥΚΛΙΚΟΣ

Διαβάστε περισσότερα

Επιχειρησιακή Ερευνα Ι

Επιχειρησιακή Ερευνα Ι Επιχειρησιακή Ερευνα Ι Μ. Ζαζάνης Κεφάλαιο 1 Τετραγωνικές μορφές στον R n και το ϑεώρημα του Taylor Ορισμός 1. Εστω a 11 a 1n A =.. a n1 a nn συμμετρικός πίνακας n n με στοιχεία στους πραγματικούς αριθμούς.

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ. Εαρινό Εξάμηνο

ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ. Εαρινό Εξάμηνο ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΕΠΛ31: Δομές Δεδομένων και Αλγόριθμοι Εαρινό Εξάμηνο 017-018 Φροντιστήριο 5 1. Δικαιολογήστε όλες τις απαντήσεις σας. i. Δώστε τις 3 βασικές ιδιότητες ενός AVL δένδρου.

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΑΚΑ ΦΡΟΝΤΙΣΤΗΡΙΑ ΚΟΛΛΙΝΤΖΑ ΜΑΘΗΜΑ: ΟΙΚΟΝΟΜΙΚΗ ΘΕΩΡΙΑ

ΠΑΝΕΠΙΣΤΗΜΙΑΚΑ ΦΡΟΝΤΙΣΤΗΡΙΑ ΚΟΛΛΙΝΤΖΑ ΜΑΘΗΜΑ: ΟΙΚΟΝΟΜΙΚΗ ΘΕΩΡΙΑ ΜΑΘΗΜΑ: ΟΙΚΟΝΟΜΙΚΗ ΘΕΩΡΙΑ Την ευθύνη του εκπαιδευτικού υλικού έχει ο επιστημονικός συνεργάτης των Πανεπιστημιακών Φροντιστηρίων «ΚOΛΛΙΝΤΖΑ», οικονομολόγος συγγραφέας θεμάτων ΑΣΕΠ, Παναγιώτης Βεργούρος.

Διαβάστε περισσότερα

Παραβολή ψ=αχ 2 +βχ+γ, α 0. Η παραβολή ψ = αχ 2. Γενικά : Κάθε συνάρτηση της μορφής ψ=αχ 2 + βχ +γ, α 0 λέγεται τετραγωνική συνάρτηση.

Παραβολή ψ=αχ 2 +βχ+γ, α 0. Η παραβολή ψ = αχ 2. Γενικά : Κάθε συνάρτηση της μορφής ψ=αχ 2 + βχ +γ, α 0 λέγεται τετραγωνική συνάρτηση. Η παραβολή ψ=αχ 2 +βχ+γ Σελίδα 1 από 10 Παραβολή ψ=αχ 2 +βχ+γ, α0 Γενικά : Κάθε συνάρτηση της μορφής ψ=αχ 2 + βχ +γ, α0 λέγεται τετραγωνική συνάρτηση. Η παραβολή ψ = αχ 2 Η γραφική παράσταση της συνάρτησης

Διαβάστε περισσότερα

Ισοπεριμετρικές ανισότητες για το

Ισοπεριμετρικές ανισότητες για το Ισοπεριμετρικές ανισότητες για το μέτρο του Gauss Διπλωματική Εργασία Μαρία Μαστροθεοδώρου Τμήμα Μαθηματικών Πανεπιστήμιο Αθηνών Αθήνα 018 Περιεχόμενα 1 Εισαγωγή 1 1.1 Το ισοπεριμετρικό πρόβλημα................................

Διαβάστε περισσότερα

Εισαγωγικές Διαλέξεις στην Θεωρία των Αλυσίδων Markov και των Στοχαστικών Ανελίξεων. Οικονομικό Πανεπιστήμιο Αθηνών

Εισαγωγικές Διαλέξεις στην Θεωρία των Αλυσίδων Markov και των Στοχαστικών Ανελίξεων. Οικονομικό Πανεπιστήμιο Αθηνών Εισαγωγικές Διαλέξεις στην Θεωρία των Αλυσίδων Markov και των Στοχαστικών Ανελίξεων Μιχάλης Ζαζάνης Τμήμα Στατιστικής Οικονομικό Πανεπιστήμιο Αθηνών Κεφάλαιο Αλυσίδες Markov σε Συνεχή Χρόνο. Αλυσίδες

Διαβάστε περισσότερα

ΑΡΧΗ 1ΗΣ ΣΕΛΙΔΑΣ Γ ΤΑΞΗ

ΑΡΧΗ 1ΗΣ ΣΕΛΙΔΑΣ Γ ΤΑΞΗ ΑΡΧΗ 1ΗΣ ΣΕΛΙΔΑΣ ΑΠΟΛΥΤΗΡΙΕΣ ΕΞΕΤΑΣΕΙΣ Σ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ ΔΕΥΤΕΡΑ 12 ΙΟΥΝΙΟΥ 2000 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ (ΚΥΚΛΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ ΚΑΙ ΥΠΗΡΕΣΙΩΝ): ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ

Διαβάστε περισσότερα

Διανυσματικές Συναρτήσεις

Διανυσματικές Συναρτήσεις Κεφάλαιο 5 Διανυσματικές Συναρτήσεις 51 Διανυσματατικές συναρτήσεις Μια συνάρτηση με τιμές στοr n, n>1 λέγεται διανυσματική συνάρτηση Τις διανυσματικές συναρτήσεις ϑα τις συμβολίζουμε με παχειά γράμματα,

Διαβάστε περισσότερα

Γενικό Λύκειο Μαραθοκάμπου Σάμου. Άλγεβρα Β λυκείου. 13 Οκτώβρη 2016

Γενικό Λύκειο Μαραθοκάμπου Σάμου. Άλγεβρα Β λυκείου. 13 Οκτώβρη 2016 Γενικό Λύκειο Μαραθοκάμπου Σάμου Άλγεβρα Β λυκείου Εργασία2 η : «Συναρτήσεις» 13 Οκτώβρη 2016 Ερωτήσεις Θεωρίας 1.Πότελέμεότιμιασυνάρτησηfείναιγνησίωςάυξουσασεέναδιάστημα του πεδίου ορισμού της; 2.Πότελέμεότιμιασυνάρτησηfείναιγνησίωςφθίνουσασεέναδιάστημα

Διαβάστε περισσότερα

Η έκδοση αυτή είναι υπό προετοιμασία. Γιάννης Α. Αντωνιάδης, Αριστείδης Κοντογεώργης

Η έκδοση αυτή είναι υπό προετοιμασία. Γιάννης Α. Αντωνιάδης, Αριστείδης Κοντογεώργης Θεωρία Αριθμών και Εφαρμογές Η έκδοση αυτή είναι υπό προετοιμασία Γιάννης Α. Αντωνιάδης, Αριστείδης Κοντογεώργης 9 Φεβρουαρίου 2015 2 Περιεχόμενα I ΑΡΙΘΜΟΘΕΩΡΙΑ ΤΩΝ ΡΗΤΩΝ ΑΡΙΘΜΩΝ 7 1 ΔΙΑΙΡΕΤΟΤΗΤΑ ΚΑΙ ΠΡΩΤΟΙ

Διαβάστε περισσότερα

Το υπόδειγμα IS-LM: Εισαγωγικά

Το υπόδειγμα IS-LM: Εισαγωγικά 1/35 Το υπόδειγμα IS-LM: Εισαγωγικά Νίκος Γιαννακόπουλος Επίκουρος Καθηγητής Τμήμα Οικονομικών Επιστημών Πανεπιστήμιο Πατρών Ακαδημαϊκό Ετος 2014-2015 Εαρινό Εξάμηνο Τι γνωρίζουμε; 2/35 Αγορά αγαθών και

Διαβάστε περισσότερα

ΣΧΟΛΙΚΟ ΕΤΟΣ ΕΥΘΥΓΡΑΜΜΗ ΟΜΑΛΗ ΚΙΝΗΣΗ ΤΡΙΩΡΗ ΓΡΑΠΤΗ ΕΞΕΤΑΣΗ ΣΤΗ ΦΥΣΙΚΗ A ΛΥΚΕΙΟΥ. Ονοματεπώνυμο Τμήμα

ΣΧΟΛΙΚΟ ΕΤΟΣ ΕΥΘΥΓΡΑΜΜΗ ΟΜΑΛΗ ΚΙΝΗΣΗ ΤΡΙΩΡΗ ΓΡΑΠΤΗ ΕΞΕΤΑΣΗ ΣΤΗ ΦΥΣΙΚΗ A ΛΥΚΕΙΟΥ. Ονοματεπώνυμο Τμήμα Σελίδα 1 ΣΧΟΛΙΚΟ ΕΤΟΣ 2014 2015 ΕΥΘΥΓΡΑΜΜΗ ΟΜΑΛΗ ΚΙΝΗΣΗ ΤΡΙΩΡΗ ΓΡΑΠΤΗ ΕΞΕΤΑΣΗ ΣΤΗ ΦΥΣΙΚΗ A ΛΥΚΕΙΟΥ Ονοματεπώνυμο Τμήμα ΘΕΜΑ Α Οδηγία: Να γράψετε στην κόλλα σας τον αριθμό καθεμιάς από τις παρακάτω ερωτήσεις

Διαβάστε περισσότερα

ΠΡΟΛΟΓΟΣ. Αθήνα, 12 Απριλίου 2016.

ΠΡΟΛΟΓΟΣ. Αθήνα, 12 Απριλίου 2016. Αλγεβρική Γεωμετρία ΠΕΡΙΕΧΟΜΕΝΑ Πρόλογος Κεφάλαιο 1. Αλγεβρικές ποικιλότητες 1 1. Αλγεβρικά Σύνολα 1 2. Το Θεώρημα Ριζών του Hilbert 7 3. Συγγενείς Αλγεβρικές Ποικιλότητες 14 4. Πολλαπλότητα και Πολλαπλότητα

Διαβάστε περισσότερα

Μονάδες 5 1.2.α. Να γράψετε στο τετράδιό σας τον παρακάτω πίνακα σωστά συµπληρωµένο.

Μονάδες 5 1.2.α. Να γράψετε στο τετράδιό σας τον παρακάτω πίνακα σωστά συµπληρωµένο. ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ Γ ΤΑΞΗ ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ ΕΥΤΕΡΑ 12 ΙΟΥΝΙΟΥ 2000 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ (ΚΥΚΛΟΣ ΤΕΧΝΟΛΟΓΙΑΣ ΚΑΙ ΠΑΡΑΓΩΓΗΣ): ΧΗΜΕΙΑ - ΒΙΟΧΗΜΕΙΑ ΣΥΝΟΛΟ ΣΕΛΙ

Διαβάστε περισσότερα

Σημειώσεις Μαθηματικών Μεθόδων. Οικονομικό Πανεπιστήμιο Αθηνών

Σημειώσεις Μαθηματικών Μεθόδων. Οικονομικό Πανεπιστήμιο Αθηνών Σημειώσεις Μαθηματικών Μεθόδων Μιχάλης Ζαζάνης Τμήμα Στατιστικής Οικονομικό Πανεπιστήμιο Αθηνών Φεβρουαρίου 08 Κεφάλαιο Το Μιγαδικό Εκθετικό Είναι γνωστό ότι η εκθετική συνάρτηση e x έχει το ανάπτυγμα

Διαβάστε περισσότερα

Φυσική Θετικής & Τεχνολογικής Κατεύθυνσης Β Λυκείου 3 ο Κεφάλαιο Ηλεκτρικό Πεδίο. Ηλεκτρικό πεδίο. Παρασύρης Κώστας Φυσικός Ηράκλειο Κρήτης

Φυσική Θετικής & Τεχνολογικής Κατεύθυνσης Β Λυκείου 3 ο Κεφάλαιο Ηλεκτρικό Πεδίο. Ηλεκτρικό πεδίο. Παρασύρης Κώστας Φυσικός Ηράκλειο Κρήτης Φσική Θετικής & Τεχνολογικής Κτεύθνσης Β Λκείο 3 ο Κεφάλιο Ηλεκτρικό Πεδίο 3 Ηλεκτρικό πεδίο Πρσύρης Κώστς Φσικός Ηράκλειο Κρήτης Φσική Θετικής & Τεχνολογικής Κτεύθνσης Β Λκείο 3 ο Κεφάλιο Ηλεκτρικό Πεδίο

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ. Εαρινό Εξάμηνο

ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ. Εαρινό Εξάμηνο ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΕΠΛ231: Δομές Δεδομένων και Αλγόριθμοι Εαρινό Εξάμηνο 2017-2018 Φροντιστήριο 3 1. Εστω η στοίβα S και ο παρακάτω αλγόριθμος επεξεργασίας της. Να καταγράψετε την κατάσταση

Διαβάστε περισσότερα

ΜΙΚΡΟΟΙΚΟΝΟΜΙΚΗ Η ΚΑΤΑΝΑΛΩΤΙΚΗ ΑΠΟΦΑΣΗ. Άσκηση με θέμα τη μεγιστοποίηση της χρησιμότητας του καταναλωτή

ΜΙΚΡΟΟΙΚΟΝΟΜΙΚΗ Η ΚΑΤΑΝΑΛΩΤΙΚΗ ΑΠΟΦΑΣΗ. Άσκηση με θέμα τη μεγιστοποίηση της χρησιμότητας του καταναλωτή ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΙΟΝΙΩΝ ΝΗΣΩΝ ΣΧΟΛΗ ΔΙΟΙΚΗΣΗΣ ΚΑΙ ΟΙΚΟΝΟΜΙΑΣ ΤΜΗΜΑ ΔΙΟΙΚΗΣΗΣ ΕΠΙΧΕΙΡΗΣΕΩΝ ΕΙΣΑΓΩΓΙΚΗ ΚΑΤΕΥΘΥΝΣΗ: ΔΙΟΙΚΗΣΗ ΕΠΙΧΕΙΡΗΣΕΩΝ ΑΚΑΔΗΜΑΪΚΟ ΕΤΟΣ 07 08 ΛΕΥΚΑΔΑ ΜΙΚΡΟΟΙΚΟΝΟΜΙΚΗ Η ΚΑΤΑΝΑΛΩΤΙΚΗ

Διαβάστε περισσότερα

Εισαγωγικές Διαλέξεις στην Θεωρία των Αλυσίδων Markov και των Στοχαστικών Ανελίξεων. Οικονομικό Πανεπιστήμιο Αθηνών

Εισαγωγικές Διαλέξεις στην Θεωρία των Αλυσίδων Markov και των Στοχαστικών Ανελίξεων. Οικονομικό Πανεπιστήμιο Αθηνών Εισαγωγικές Διαλέξεις στην Θεωρία των Αλυσίδων Markov και των Στοχαστικών Ανελίξεων Μιχάλης Ζαζάνης Τμήμα Στατιστικής Οικονομικό Πανεπιστήμιο Αθηνών Κεφάλαιο Αλυσίδες Markov σε Συνεχή Χρόνο Αλυσίδες Markov

Διαβάστε περισσότερα

Pointers. Σημερινό Μάθημα! Χρήση pointer Τελεστής * Τελεστής & Γενικοί δείκτες Ανάκληση Δέσμευση μνήμης new / delete Pointer σε αντικείμενο 2

Pointers. Σημερινό Μάθημα! Χρήση pointer Τελεστής * Τελεστής & Γενικοί δείκτες Ανάκληση Δέσμευση μνήμης new / delete Pointer σε αντικείμενο 2 Pointers 1 Σημερινό Μάθημα! Χρήση pointer Τελεστής * Τελεστής & Γενικοί δείκτες Ανάκληση Δέσμευση μνήμης new / delete Pointer σε αντικείμενο 2 1 Μνήμη μεταβλητών Κάθε μεταβλητή έχει διεύθυνση Δεν χρειάζεται

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΑΚΑ ΦΡΟΝΤΙΣΤΗΡΙΑ ΚΟΛΛΙΝΤΖΑ ΜΑΘΗΜΑ: ΕΡΩΤΗΣΕΙΣ ΟΙΚΟΝΟΜΙΚΗΣ ΘΕΩΡΙΑΣ

ΠΑΝΕΠΙΣΤΗΜΙΑΚΑ ΦΡΟΝΤΙΣΤΗΡΙΑ ΚΟΛΛΙΝΤΖΑ ΜΑΘΗΜΑ: ΕΡΩΤΗΣΕΙΣ ΟΙΚΟΝΟΜΙΚΗΣ ΘΕΩΡΙΑΣ ΜΑΘΗΜΑ: ΕΡΩΤΗΣΕΙΣ ΟΙΚΟΝΟΜΙΚΗΣ ΘΕΩΡΙΑΣ Tα Πανεπιστημιακά Φροντιστήρια «ΚΟΛΛΙΝΤΖΑ» προετοιμάζοντας σε ολιγομελείς ομίλους τους υποψήφιους για τον επικείμενο διαγωνισμό του Υπουργείου Οικονομικών, με κορυφαίο

Διαβάστε περισσότερα

Αρτιες και περιττές συναρτήσεις

Αρτιες και περιττές συναρτήσεις Μελέτη Συναρτήσεων: άρτιες, περιττές συναρτήσεις - μονοτονία - ακρότατα Κωνσταντίνος Α. Ράπτης Άρτιες και περιττές συναρτήσεις Ὁι ψυχολόγοι κάνουν λόγο για δύο επίπεδα συλλογιστικής και μνήμης: το αρχαϊκό

Διαβάστε περισσότερα

(3 ο ) Εξαντλητική αναζήτηση I: μεταθέσεις & υποσύνολα (4 o ) Εξαντλητική αναζήτηση II: συνδυασμοί, διατάξεις & διαμερίσεις

(3 ο ) Εξαντλητική αναζήτηση I: μεταθέσεις & υποσύνολα (4 o ) Εξαντλητική αναζήτηση II: συνδυασμοί, διατάξεις & διαμερίσεις (3 ο ) Εξαντλητική αναζήτηση I: μεταθέσεις & υποσύνολα (4 o ) Εξαντλητική αναζήτηση II: συνδυασμοί, διατάξεις & διαμερίσεις Είναι πράγματι τα «προβλήματα» τόσο δύσκολα; Είδαμε (σύντομα) στα προηγούμενα

Διαβάστε περισσότερα

Ταξινόμηση των μοντέλων διασποράς ατμοσφαιρικών ρύπων βασισμένη σε μαθηματικά κριτήρια.

Ταξινόμηση των μοντέλων διασποράς ατμοσφαιρικών ρύπων βασισμένη σε μαθηματικά κριτήρια. ΠΡΟΤΕΙΝΟΜΕΝΑ ΘΕΜΑΤΑ Ταξινόμηη των μοντέλων διαποράς ατμοφαιρικών ρύπων βαιμένη ε μαθηματικά κριτήρια. Μοντέλο Ελεριανά μοντέλα (Elerian) Λαγκρατζιανά μοντέλα (Lagrangian) Επιπρόθετος διαχωριμός Μοντέλα

Διαβάστε περισσότερα

Εκφωνήσεις και Λύσεις των Θεμάτων

Εκφωνήσεις και Λύσεις των Θεμάτων ΠΑΝΕΛΛΗΝΙΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΚΑΙ Γ ΤΑΞΗΣ ΕΠΑΛ (ΟΜΑΔΑ Β ) ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ (ΚΑΤΕΥΘΥΝΣΗΣ) Τετάρτη 8 Μαΐου 26 Εκφωνήσεις και Λύσεις των Θεμάτων η LaT E X-έκδοση ( 22/5/26)

Διαβάστε περισσότερα

Μαθηματικά Πληροφορικής

Μαθηματικά Πληροφορικής Πανεπιστήμιο Αθηνών Μαθηματικά Πληροφορικής Ηλίας Κουτσουπιάς Αθήνα, Οκτώβριος 2009 Περιεχόμενα Περιεχόμενα 1 Σύνολα... 5 ΆλλαΣύμβολα... 6 1 Υποθέσεις και Θεωρήματα 9 1.1 Παρατήρηση-Υπόθεση-Απόδειξη...

Διαβάστε περισσότερα

Αρτιες και περιττές συναρτήσεις

Αρτιες και περιττές συναρτήσεις Μελέτη Συναρτήσεων: άρτιες, περιττές συναρτήσεις - μονοτονία - ακρότατα Κώστας Ράπτης Άρτιες και περιττές συναρτήσεις Ὁι ψυχολόγοι κάνουν λόγο για δύο επίπεδα συλλογιστικής και μνήμης: το αρχαϊκό και το

Διαβάστε περισσότερα

Συναρτήσεις. Σημερινό μάθημα

Συναρτήσεις. Σημερινό μάθημα Συναρτήσεις Σημερινό μάθημα C++ Συναρτήσεις Δήλωση συνάρτησης Σύνταξη συνάρτησης Πρότυπο συνάρτησης & συνάρτηση Αλληλο καλούμενες συναρτήσεις συναρτήσεις μαθηματικών Παράμετροι συναρτήσεων Τοπικές μεταβλητές

Διαβάστε περισσότερα

Αλγόριθμοι & Βελτιστοποίηση Μεταπτυχιακό Μάθημα ΠΜΣ/ΕΤΥ 2η Ενότητα: Μοντελοποίηση Προβλημάτων ως ΓΠ, Ισοδυναμες Μορφές ΓΠ, Γεωμετρία Χωρου Λύσεων

Αλγόριθμοι & Βελτιστοποίηση Μεταπτυχιακό Μάθημα ΠΜΣ/ΕΤΥ 2η Ενότητα: Μοντελοποίηση Προβλημάτων ως ΓΠ, Ισοδυναμες Μορφές ΓΠ, Γεωμετρία Χωρου Λύσεων Αλγόριθμοι & Βελτιστοποίηση Μεταπτυχιακό Μάθημα ΠΜΣ/ΕΤΥ 2η Ενότητα: Μοντελοποίηση Προβλημάτων ως ΓΠ, Ισοδυναμες Μορφές ΓΠ, Γεωμετρία Χωρου Λύσεων Χρήστος Ζαρολιάγκης (zaro@ceid.upatras.gr) Σπύρος Κοντογιάννης

Διαβάστε περισσότερα

17 Μαρτίου 2013, Βόλος

17 Μαρτίου 2013, Βόλος Συνήθεις ιαφορικές Εξισώσεις 1ης Τάξης Σ Ε 1ης τάξης, Πεδία κατευθύνσεων, Υπαρξη και μοναδικότητα, ιαχωρίσιμες εξισώσεις, Ολοκληρωτικοί παράγοντες, Αντικαταστάσεις, Αυτόνομες εξισώσεις Μανόλης Βάβαλης

Διαβάστε περισσότερα

Χαρτοφυλάκια και arbitrage

Χαρτοφυλάκια και arbitrage 16 Χαρτοφυλάκια και arbitrage 16.1 Αγορές μετοχών Ποια είναι η χρήση και η σημασία των μετοχών μιας εταιρείας; Κατά τη σύστασή της ή σε άλλες στιγμές του χρόνου ύπαρξής της χρειάζεται να συγκεντρώσει κεφάλαιο

Διαβάστε περισσότερα

Αναγνώριση Προτύπων. Σημερινό Μάθημα

Αναγνώριση Προτύπων. Σημερινό Μάθημα Αναγνώριση Προτύπων Σημερινό Μάθημα Bias (απόκλιση) και variance (διακύμανση) Ελεύθεροι Παράμετροι Ελεύθεροι Παράμετροι Διαίρεση dataset Μέθοδος holdout Cross Validation Bootstrap Bias (απόκλιση) και variance

Διαβάστε περισσότερα

Συναρτήσεις & Κλάσεις

Συναρτήσεις & Κλάσεις Συναρτήσεις & Κλάσεις Overloading class member συναρτήσεις/1 #include typedef unsigned short int USHORT; enum BOOL { FALSE, TRUE}; class Rectangle { public: Rectangle(USHORT width, USHORT

Διαβάστε περισσότερα

Εισαγωγή στις Διακριτές Πιθανότηες. Οικονομικό Πανεπιστήμιο Αθηνών

Εισαγωγή στις Διακριτές Πιθανότηες. Οικονομικό Πανεπιστήμιο Αθηνών Εισαγωγή στις Διακριτές Πιθανότηες Μιχάλης Ζαζάνης Τμήμα Στατιστικής Οικονομικό Πανεπιστήμιο Αθηνών 27 Δεκεμβρίου 2010 2 Κεφάλαιο 1 Συνδιαστική Ανάλυση και Μαθηματικές Τεχνικές Η απαρίθμηση των στοιχείων

Διαβάστε περισσότερα

Κληρονομικότητα. Σήμερα! Κλάση Βάσης Παράγωγη κλάση Απλή κληρονομικότητα Protected δεδομένα Constructors & Destructors overloading

Κληρονομικότητα. Σήμερα! Κλάση Βάσης Παράγωγη κλάση Απλή κληρονομικότητα Protected δεδομένα Constructors & Destructors overloading Κληρονομικότητα Σήμερα! Κλάση Βάσης Παράγωγη κλάση Απλή κληρονομικότητα Protected δεδομένα Constructors & Destructors overloading 2 1 Κλάση Βάση/Παράγωγη Τα διάφορα αντικείμενα μπορούν να έχουν μεταξύ

Διαβάστε περισσότερα

Φροντιστήριο 2: Ανάλυση Αλγόριθμου. Νικόλας Νικολάου ΕΠΛ432: Κατανεμημένοι Αλγόριθμοι 1 / 10

Φροντιστήριο 2: Ανάλυση Αλγόριθμου. Νικόλας Νικολάου ΕΠΛ432: Κατανεμημένοι Αλγόριθμοι 1 / 10 Φροντιστήριο 2: Ανάλυση Αλγόριθμου Εκλογής Προέδρου με O(nlogn) μηνύματα Νικόλας Νικολάου ΕΠΛ432: Κατανεμημένοι Αλγόριθμοι 1 / 10 Περιγραφικός Αλγόριθμος Αρχικά στείλε μήνυμα εξερεύνησης προς τα δεξιά

Διαβάστε περισσότερα

ΑΣΕΠ 2000 ΑΣΕΠ 2000 Εμπορική Τράπεζα 1983 Υπουργείο Κοιν. Υπηρ. 1983

ΑΣΕΠ 2000 ΑΣΕΠ 2000 Εμπορική Τράπεζα 1983 Υπουργείο Κοιν. Υπηρ. 1983 20 Φεβρουαρίου 2010 ΑΣΕΠ 2000 1. Η δεξαμενή βενζίνης ενός πρατηρίου υγρών καυσίμων είναι γεμάτη κατά τα 8/9. Κατά τη διάρκεια μιας εβδομάδας το πρατήριο διέθεσε τα 3/4 της βενζίνης αυτής και έμειναν 4000

Διαβάστε περισσότερα

ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ Β ΤΑΞΗ. ΘΕΜΑ 1ο

ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ Β ΤΑΞΗ. ΘΕΜΑ 1ο ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ ΘΕΜΑ 1ο ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Σ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ ΤΡΙΤΗ 30 ΜΑΪΟΥ 2000 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ: ΦΥΣΙΚΗ ΣΥΝΟΛΟ ΣΕΛΙ ΩΝ: ΕΞΙ (6) Στις ερωτήσεις 1-4 να γράψετε

Διαβάστε περισσότερα

ΜΑΘΗΜΑ: ΕΜΠΟΡΙΚΟ ΔΙΚΑΙΟ

ΜΑΘΗΜΑ: ΕΜΠΟΡΙΚΟ ΔΙΚΑΙΟ ΜΑΘΗΜΑ: ΕΜΠΟΡΙΚΟ ΔΙΚΑΙΟ Tα Πανεπιστημιακά Φροντιστήρια «ΚΟΛΛΙΝΤΖΑ» προετοιμάζοντας σε ολιγομελείς ομίλους τους υποψήφιους για τον επικείμενο διαγωνισμό του Υπουργείου Οικονομικών, με κορυφαίο επιτελείο

Διαβάστε περισσότερα

Τρίτη, 05 Ιουνίου 2001 ΤΕΧΝΟΛΟΓΙΚΗ ΚΑΤΕΥΘΥΝΣΗ Γ ΛΥΚΕΙΟΥ ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ

Τρίτη, 05 Ιουνίου 2001 ΤΕΧΝΟΛΟΓΙΚΗ ΚΑΤΕΥΘΥΝΣΗ Γ ΛΥΚΕΙΟΥ ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ Τρίτη, 05 Ιουνίου 2001 ΤΕΧΝΟΛΟΓΙΚΗ ΚΑΤΕΥΘΥΝΣΗ Γ ΛΥΚΕΙΟΥ ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ ΘΕΜΑ 1 Α. Να µεταφέρετε στο τετράδιό σας και να συµπληρώσετε τον παρακάτω πίνακα αλήθειας δύο προτάσεων

Διαβάστε περισσότερα

Ψηφιακή Εικόνα. Σημερινό μάθημα!

Ψηφιακή Εικόνα. Σημερινό μάθημα! Ψηφιακή Εικόνα Σημερινό μάθημα! Ψηφιακή Εικόνα Αναλογική εικόνα Ψηφιοποίηση (digitalization) Δειγματοληψία Κβαντισμός Δυαδικές δ έ (Binary) εικόνες Ψηφιακή εικόνα & οθόνη Η/Υ 1 Ψηφιακή Εικόνα Μια ακίνητη

Διαβάστε περισσότερα

Πανεπιστήμιο Πειραιώς. Πρόγραμμα Μεταπτυχιακών Σπουδών Αναλογιστική Επιστήμη και Διοικητική Κινδύνου

Πανεπιστήμιο Πειραιώς. Πρόγραμμα Μεταπτυχιακών Σπουδών Αναλογιστική Επιστήμη και Διοικητική Κινδύνου Πανεπιστήμιο Πειραιώς Τμήμα Στατιστικής και Ασφαλιστικής Επιστήμης Πρόγραμμα Μεταπτυχιακών Σπουδών Αναλογιστική Επιστήμη και Διοικητική Κινδύνου Παραμετρικά Μοντέλα Επιβίωσης που προκύπτουν από μεταβολές

Διαβάστε περισσότερα