فصل 5 :اصل گسترش و اعداد فازی

Save this PDF as:
 WORD  PNG  TXT  JPG

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "فصل 5 :اصل گسترش و اعداد فازی"

Transcript

1 فصل 5 :اصل گسترش و اعداد فازی : 1-5 اصل گسترش در ریاضیات معمولی یکی از مهمترین ابزارها تابع می باشد.تابع یک نوع رابطه خاص می باشد رابطه ای که در نمایش زوج مرتبی عنصر اول تکراری نداشته باشد.معموال تابع را با یک ضابطه نمایش. تابع مانند یک سیستمی است که x را بعنوان ورودی دریافت می کند و y=f(x) میدهیم مثال f(x)=2x+1 بعنوان خروجی حاصل می شود. اگر 2=x ورودی تابع f(x) باشد آنگاه y=f(2)=5 خواهد بود. اکنون فرض کنید ورودی تابع مجموعه ی فازی باشد مثال "تقریبا " 2 ورودی تابع فوق باشد خروجی آن نیز باید یک مجموعه ی فازی باشد. برای تابع فوق خروجی تقریبا 5 خواهد بود. را در نظر بگیرید وقتی Ã یک مجموعه فازی روی X و ورودی باشد می خواهیم خروجی آن تابع f:x Y یعنی f(ã) را بدست آوریم.این کار را با اصل گسترش انجام می دهیم. اصل گسترش : فرض کنید f تابعی از X به Y باشد و Ã یک مجموعه ی فازی روی Y باشد آنگاه f(ã) نیز مجموعه فازی است که به صورت زیر بدست می آید: Ã باشد.اگر f(x)= f:x IN و X={-2,-1,0,1,2} فرض کنید مثال : تابع با ضابطه ی مجموعه فازی روی X باشد f(ã) را بدست آورید Ã= حل : ابتدا باید مقادیر y را بدست آورد سپس میزان عضویت آنها یعنی( f(a)(y را محاسبه کرد. 1

2 y=f(x)={0,1,4} f(ã)= برای y=1 f(a)(1) طبق اصل گسترش به دست می آید. f(a)(1)= max{ A(x): f(x)=1 } = max{ A(-1),A(1) } = max{ 0.7,0.8 } =0.8 x= (1) مثال : فرض کنید f(x)=2x+1 وÃ مجموعه فازی زیر باشد f(ã) را بدست آورید Ã= حل : مقادیر x را در تابع قرار داده وy را بدست می آوریم. و( f(ã به صورت زیر می باشد f(ã)= در این مثال Ã مجموعه فازی "حدودا " 2 می باشد و مقدار تابع مجموعه فازی "حدودا " 5 می باشد.در شکل زیر اصل گسترش برای مجموعه های فازی با تابع عضویت پیوسته نمایش داده شده است. 2

3 مثال : فرض کنید Ã مجموعه فازی با تابع عضویت A(x) باشد و y=f(x)= باشد f(ã) را بدست آورید حل : ابتدا x را بر حسب y به دست می آوریم یعنی )y( را مشخص می کنیم.سپس طبق اصل گسترش f(a)(y) را بدست می آوریم. y= f(a)(y)=sup[a(x): x= = سایر اصل گسترش تعمیم یافته )اصل گسترش چند متغیره( : y فرض کنید تابع f تابعی از به باشد و مجموعه فازی روی باشد آنگاه )f به صورت زیر خواهد بود. f( = در واقع در حالت چند متغیره ابتدا ضرب دکارتی را به دست آورده سپس با توجه به فرمول فوق مقدار تابع را محاسبه می کنیم. )f = yو مثال : فرض کنید و مجموعه های فازی زیر باشند ( )f را بدست آورید. 3

4 حل : ابتدا را بدست می آوریم. س سپ ) y=f( را محاسبه میکنیم. f( )= بعنوان نمونه f(a,b)(2)= max{ min( A(-1),B(1)), min(a(0),b(2)), min(a(1),b(1)) }= max{0.3,0.7,0.4}= 0.7 از اصل گسترش دو متغیر برای انجام عملیات ریاضی روی اعداد فازی استفاده میکنیم. اعداد فازی: بسیاری از پدیده های کمی با یک عدد مطلق وصریح قابل نمایش نمی باشند.مثال وقتی قیمت خودرویی سؤال 0::2 میشود پاسخ میشنویم 22 تقریبا میلیون یا در جمله "من حدودا ساعت عصر به منزل رسیدم" زمان به صورت مبهم بیان شده است.در آزمایشگاه های مختلف اغلب اعدادی که به دست می آیند بصورت تقریبی می باشد.در همه ی این موارد میتوان از اعداد فازی استفاده کرد.معموال به مفاهیم مبهم که دارای اصطالحاتی مانند تقریبا حدودا نزدیک به...باشد مجموعه های فازی نسبت داده میشود که در اصل عدد فازی می باشند. اعداد فازی در تصمیم گیری استدالل تقریبی شبکه عصبی فازی کنترل فازی و... استفاده می شود. مثال گزاره ی زیر مربوط به یک کنترل کننده ی فازی می باشد: - اگر درجه حرارت اتاق تقریبا 02 باشد آنگاه قدرت چرخش موتور کولر زیاد خواهد بود. 4

5 تعریف : به مجموعه ی فازی Ã با تابع عضویت ( A(xعدد فازی گفته میشود هر گاه دارای خواص زیر باشد: Ǝ! مجموعه فازی Ã محدب باشد. تک نرمال باشد یعنی قطعه وار پیوسته باشد..1.2.: مثال : تابع عضویت زیر مربوط به یک عدد فازی می باشد. تابع عضویت مثلثی می باشد لذا محدب است و =(3)A 1 و پیوسته نیز می باشد.این تابع عضویت مربوط به ) می باشد. تقریبا : یا عدد فازی : یعنی ( حال با توجه به اصل گسترش می توان اعمال روی اعداد فازی را انجام داد.مثال برای kبرابر کردن عدد فازی با تابع عضویت ( m(xطبق اصل گسترش تابعy=f(x)=kxرا در نظر میگیریم. ) ) fهمان kخواهد بود که تابع عضویت آن با جایگزینی به جای xدر ( m(xبدست می آید. مثال : دو برابر را در مثال قبل بدست آورید که تابع عضویت حاصل مربوط به می باشد. مثال : فرض کنید و اعداد فازی با توابع عضویت زیر می باشند را بدست آورید 5

6 برای محاسبه جمع دو عدد فازی باید از اصل گسترش دو متغیره استفاده کرد اگر f(x,y)=x+yباشد آنگاه = ) f( بنا براین که به صورت زیر نمایش داده میشود با انجام عملیات فوق داریم: در حالت کلی اگر و دو عدد فازی با تابع عضویت m(x) و n(x) باشند آنگاه:,, تذکر: تابع عضویت های زنگوله ای شکل نیز میتواند تابع عضویت عدد فازی باشند مانند m(x)= که نمایش دهنده ی صفر فازی می باشد یا حتی ترکیبی از خطی و زنگوله ای شکل نیز میتواند تابع عضویت عدد فازی باشد مانند شکل زیر: m 6

7 انجام عملیات ریاضی روی اعداد فازی با استفاده از اصل گسترش کمی پیچیده وطوالنی می باشد به همین علت یک قالب کلی برای همه ی اعداد فازی تعریف شد و با این نمایش و استفاده از اصل گسترش عملیات ریاضی به چند فرمول ساده تر تبدیل شد.نمایشLR توسط دبیرس- پراد مطرح شد. نمایش LR عدد فازی : فرض کنید یک عدد فازی با تابع عضویت m(x) باشد نمایش LR آن بصورت زیر است: که در آن L,R توابعی با خواص زیر میباشد. پیوسته باشند. L(0)=1, R(0)=1 غیر صعودی باشند. R(x)=R(-x), L(x)=(-x).1.2.:.0 از جمله توابعی که برای L,R میتوان استفاده کرد عبارتند از max{0,1-x}, 1- p, در این صورت عدد فازی را با نمایش می دهیم. m عدد مورد نظر α پهنای باند چپ β پهنای باند راست L تابع سمت چپ R تابع سمت راست می باشد. مثال : عدد فازی با فرض و دارای تابع عضویت زیر L(x)=1- x می باشد. 7

8 عملیات روی اعداد فازی : LR فرض کنید دو عدد فازی باشند -1 جمع : (m, +(n, 2- ضرب اسکالر دو عدد فازی : :- ضرب دو عدد فازی : -0 تفریق : (m, مثال :دو عدد فازی را در نظر بگیرید.که در آن L(x)=R(x)=1- x حاصل و را به دست آورید 8

9 عدد فازی مثلثی : به عدد فازی که شکل تابع عضویت آن مثلثی باشد عدد فازی گفته می شود.در نمایش LR اعداد فازی اگر x -1 دو برابر ( L(xهر,R(x) باشند عدد فازی مثلثی حاصل می شود. m اعداد فازی مثلثی را با سه تایی ( a,m,b )نیز نمایش می دهند که در آن نماینده ی اعداد aنقطه شروع bنقطه پایان می باشد یا به عبارت دیگر بازه ی ( a,b )تکیه گاه عدد فازی خواهد بود.اگر باشد یعنی عدد فازی متقارن با شد عدد فازی را به صورت ( a,b )نمایش می دهند که mنقطه وسط a,bمی باشد. فرض کنید جمع : و دو عدد فازی باشند : + تفریق : قرینه : -(m)=( مثال : 9

10 α- برش اعداد فازی بازه می باشد.پس می توان عملیات روی اعداد فازی را با عملیات روی بازه بدست آورد. 11

11 عملیات روی بازه ها : اگر ]b, a[ و ]d, c[ دو بازه باشد آنگاه [a,b]+[c, d] = [a +c, b +d] [a, b]-[c, d] = [a-b, b-c] [a, b].[c, d] = [min (ac,ad, bc, bd), max (ac,ad,bc,bd)] [a, b] [c, d] = [min(, به شرطی که روش α- برش برای عملیات ریاضی : در این روش ابتدا α- برش اعداد فازی را بدست می آوریم سپس با استفاده از عملیات روی بازه ها عملیات روی α- برش ها را بدست آورده و با اصل تجزیه α- برش ها را به مجموعه فازی تبدیل می کنیم. فرض کنید عدد فازی مفروض باشد در این صورت α- برش آن به صورت زیر است. با α- برش های اعدا فازی برای ضرب عملیات بصورت زیر می باشد: 11

12 m, توجه : در اعداد فازی α- برش ها بازه می باشند پس برای تبدیل بازه ها به عدد فازی مثلثی کافی است α- - برش در برش ها را به ازای صفر همان تکیه گاه می باشد. محاسبه کرد. α - برش در 1 همان ارتفاع مجموعه فازی و - پس اگر نقطه ارتفاع m باشد و برش به ازای همان بازه [ a,b ]باشد آنگاه عدد فازی ( a,m,b )خواهد بود. مثال : جمع دو عدد فازی را بدست آورید بازه فازی : یک بازه ی فازی مجموعه فازی ذوزنقه ای شکل می باشد. 12

13 نمایش LR آن به صورت زیر می باشد برخی بازه فازی را نیز عدد فازی در نظر می گیرند و تحت عنوان عدد فازی ذوزنقه ای یا عدد فازی مسطح مورد بررسی قرار میدهند. بازه های فازی برای مفاهیم متوسط گونه استفاده میشوند. 13

محاسبه ی برآیند بردارها به روش تحلیلی

محاسبه ی برآیند بردارها به روش تحلیلی محاسبه ی برآیند بردارها به روش تحلیلی برای محاسبه ی برآیند بردارها به روش تحلیلی باید توانایی تجزیه ی یک بردار در دو راستا ( محور x ها و محور y ها ) را داشته باشیم. به بردارهای تجزیه شده در راستای محور

Διαβάστε περισσότερα

قاعده زنجیره ای برای مشتقات جزي ی (حالت اول) :

قاعده زنجیره ای برای مشتقات جزي ی (حالت اول) : ۱ گرادیان تابع (y :f(x, اگر f یک تابع دومتغیره باشد ا نگاه گرادیان f برداری است که به صورت زیر تعریف می شود f(x, y) = D ۱ f(x, y), D ۲ f(x, y) اگر رویه S نمایش تابع (y Z = f(x, باشد ا نگاه f در هر نقطه

Διαβάστε περισσότερα

تحلیل مدار به روش جریان حلقه

تحلیل مدار به روش جریان حلقه تحلیل مدار به روش جریان حلقه برای حل مدار به روش جریان حلقه باید مراحل زیر را طی کنیم: مرحله ی 1: مدار را تا حد امکان ساده می کنیم)مراقب باشید شاخه هایی را که ترکیب می کنید مورد سوال مسئله نباشد که در

Διαβάστε περισσότερα

هو الحق دانشکده ي مهندسی کامپیوتر جلسه هفتم

هو الحق دانشکده ي مهندسی کامپیوتر جلسه هفتم هو الحق دانشکده ي مهندسی کامپیوتر کدگذاري شبکه Coding) (Network شنبه 2 اسفند 1393 جلسه هفتم استاد: مهدي جعفري نگارنده: سید محمدرضا تاجزاد تعریف 1 بهینه سازي محدب : هدف پیدا کردن مقدار بهینه یک تابع ) min

Διαβάστε περισσότερα

جلسه ی ۳: نزدیک ترین زوج نقاط

جلسه ی ۳: نزدیک ترین زوج نقاط دانشکده ی علوم ریاضی ا نالیز الگوریتم ها ۴ بهمن ۱۳۹۱ جلسه ی ۳: نزدیک ترین زوج نقاط مدر س: دکتر شهرام خزاي ی نگارنده: امیر سیوانی اصل ۱ پیدا کردن نزدیک ترین زوج نقطه فرض می کنیم n نقطه داریم و می خواهیم

Διαβάστε περισσότερα

جلسه ی ۲۴: ماشین تورینگ

جلسه ی ۲۴: ماشین تورینگ دانشکده ی علوم ریاضی نظریه ی زبان ها و اتوماتا ۲۶ ا ذرماه ۱۳۹۱ جلسه ی ۲۴: ماشین تورینگ مدر س: دکتر شهرام خزاي ی نگارندگان: حمید ملک و امین خسر وشاهی ۱ ماشین تور ینگ تعریف ۱ (تعریف غیررسمی ماشین تورینگ)

Διαβάστε περισσότερα

ﯽﺳﻮﻃ ﺮﯿﺼﻧ ﻪﺟاﻮﺧ ﯽﺘﻌﻨﺻ هﺎﮕﺸﻧاد

ﯽﺳﻮﻃ ﺮﯿﺼﻧ ﻪﺟاﻮﺧ ﯽﺘﻌﻨﺻ هﺎﮕﺸﻧاد دانشگاه صنعتی خواجه نصیر طوسی دانشکده برق - گروه کنترل آزمایشگاه کنترل سیستمهای خطی گزارش کار نمونه تابستان 383 به نام خدا گزارش کار آزمایش اول عنوان آزمایش: آشنایی با نحوه پیاده سازی الکترونیکی فرایندها

Διαβάστε περισσότερα

دانشکده ی علوم ریاضی جلسه ی ۵: چند مثال

دانشکده ی علوم ریاضی جلسه ی ۵: چند مثال دانشکده ی علوم ریاضی احتمال و کاربردا ن ۴ اسفند ۹۲ جلسه ی : چند مثال مدر س: دکتر شهرام خزاي ی نگارنده: مهدی پاک طینت (تصحیح: قره داغی گیوه چی تفاق در این جلسه به بررسی و حل چند مثال از مطالب جلسات گذشته

Διαβάστε περισσότερα

دبیرستان غیر دولتی موحد

دبیرستان غیر دولتی موحد دبیرستان غیر دلتی محد هندسه تحلیلی فصل دم معادله های خط صفحه ابتدا باید بدانیم که از یک نقطه به مازات یک بردار تنها یک خط می گذرد. با تجه به این مطلب برای نشتن معادله یک خط احتیاج به داشتن یک نقطه از خط

Διαβάστε περισσότερα

مدار معادل تونن و نورتن

مدار معادل تونن و نورتن مدار معادل تونن و نورتن در تمامی دستگاه های صوتی و تصویری اگرچه قطعات الکتریکی زیادی استفاده می شود ( مانند مقاومت سلف خازن دیود ترانزیستور IC ترانس و دهها قطعه ی دیگر...( اما هدف از طراحی چنین مداراتی

Διαβάστε περισσότερα

جلسه 14 را نیز تعریف کرد. عملگري که به دنبال آن هستیم باید ماتریس چگالی مربوط به یک توزیع را به ماتریس چگالی مربوط به توزیع حاشیه اي آن ببرد.

جلسه 14 را نیز تعریف کرد. عملگري که به دنبال آن هستیم باید ماتریس چگالی مربوط به یک توزیع را به ماتریس چگالی مربوط به توزیع حاشیه اي آن ببرد. تي وري اطلاعات کوانتمی ترم پاییز 39-39 مدرس: ابوالفتح بیگی و امین زاده گوهري نویسنده: کامران کیخسروي جلسه فرض کنید حالت سیستم ترکیبی AB را داشته باشیم. حالت سیستم B به تنهایی چیست در ابتداي درس که حالات

Διαβάστε περισσότερα

جلسه ی ۱۰: الگوریتم مرتب سازی سریع

جلسه ی ۱۰: الگوریتم مرتب سازی سریع دانشکده ی علوم ریاضی داده ساختارها و الگوریتم ها ۸ مهر ۹ جلسه ی ۱۰: الگوریتم مرتب سازی سریع مدر س: دکتر شهرام خزاي ی نگارنده: محمد امین ادر یسی و سینا منصور لکورج ۱ شرح الگور یتم الگوریتم مرتب سازی سریع

Διαβάστε περισσότερα

ویرایشسال 95 شیمیمعدنی تقارن رضافالحتی

ویرایشسال 95 شیمیمعدنی تقارن رضافالحتی ویرایشسال 95 شیمیمعدنی تقارن رضافالحتی از ابتدای مبحث تقارن تا ابتدای مبحث جداول کاراکتر مربوط به کنکور ارشد می باشد افرادی که این قسمت ها را تسلط دارند می توانند از ابتدای مبحث جداول کاراکتر به مطالعه

Διαβάστε περισσότερα

تلفات خط انتقال ابررسی یک شبکة قدرت با 2 به شبکة شکل زیر توجه کنید. ژنراتور فرضیات شبکه: میباشد. تلفات خط انتقال با مربع توان انتقالی متناسب

تلفات خط انتقال ابررسی یک شبکة قدرت با 2 به شبکة شکل زیر توجه کنید. ژنراتور فرضیات شبکه: میباشد. تلفات خط انتقال با مربع توان انتقالی متناسب تلفات خط انتقال ابررسی یک شبکة قدرت با 2 به شبکة شکل زیر توجه کنید. ژنراتور فرضیات شبکه: این شبکه دارای دو واحد کامال یکسان آنها 400 MW میباشد. است تلفات خط انتقال با مربع توان انتقالی متناسب و حداکثر

Διαβάστε περισσότερα

Angle Resolved Photoemission Spectroscopy (ARPES)

Angle Resolved Photoemission Spectroscopy (ARPES) Angle Resolved Photoemission Spectroscopy (ARPES) روش ARPES روشی است تجربی که برای تعیین ساختار الکترونی مواد به کار می رود. این روش بر پایه اثر فوتوالکتریک است که توسط هرتز کشف شد: الکترونها می توانند

Διαβάστε περισσότερα

باشند و c عددی ثابت باشد آنگاه تابع های زیر نیز در a پیوسته اند. به شرطی که g(a) 0 f g

باشند و c عددی ثابت باشد آنگاه تابع های زیر نیز در a پیوسته اند. به شرطی که g(a) 0 f g تعریف : 3 فرض کنیم D دامنه تابع f زیر مجموعه ای از R باشد a D تابع f:d R در نقطه a پیوسته است هرگاه به ازای هر دنباله از نقاط D مانند { n a{ که به a همگراست دنبال ه ){ n }f(a به f(a) همگرا باشد. محتوی

Διαβάστε περισσότερα

جلسه 15 1 اثر و اثر جزي ی نظریه ي اطلاعات کوانتومی 1 ترم پاي یز جدایی پذیر باشد یعنی:

جلسه 15 1 اثر و اثر جزي ی نظریه ي اطلاعات کوانتومی 1 ترم پاي یز جدایی پذیر باشد یعنی: نظریه ي اطلاعات کوانتومی 1 ترم پاي یز 1391-1391 مدرس: دکتر ابوالفتح بیگی ودکتر امین زاده گوهري نویسنده: محمدرضا صنم زاده جلسه 15 فرض کنیم ماتریس چگالی سیستم ترکیبی شامل زیر سیستم هايB و A را داشته باشیم.

Διαβάστε περισσότερα

تئوری جامع ماشین بخش سوم جهت سادگی بحث یک ماشین سنکرون دو قطبی از نوع قطب برجسته مطالعه میشود.

تئوری جامع ماشین بخش سوم جهت سادگی بحث یک ماشین سنکرون دو قطبی از نوع قطب برجسته مطالعه میشود. مفاهیم اصلی جهت آنالیز ماشین های الکتریکی سه فاز محاسبه اندوکتانس سیمپیچیها و معادالت ولتاژ ماشین الف ) ماشین سنکرون جهت سادگی بحث یک ماشین سنکرون دو قطبی از نوع قطب برجسته مطالعه میشود. در حال حاضر از

Διαβάστε περισσότερα

جلسه دوم سوم چهارم: مقدمه اي بر نظریه میدان

جلسه دوم سوم چهارم: مقدمه اي بر نظریه میدان هو الحق دانشکده ي مهندسی کامپیوتر کدگذاري شبکه Coding) (Network سه شنبه 21 اسفند 1393 جلسه دوم سوم چهارم: مقدمه اي بر نظریه میدان استاد: مهدي جعفري نگارنده: علیرضا حیدري خزاي ی در این نوشته مقدمه اي بر

Διαβάστε περισσότερα

جلسه 12 به صورت دنباله اي از,0 1 نمایش داده شده اند در حین محاسبه ممکن است با خطا مواجه شده و یکی از بیت هاي آن. p 1

جلسه 12 به صورت دنباله اي از,0 1 نمایش داده شده اند در حین محاسبه ممکن است با خطا مواجه شده و یکی از بیت هاي آن. p 1 محاسبات کوانتمی (67) ترم بهار 390-39 مدرس: سلمان ابوالفتح بیگی نویسنده: سلمان ابوالفتح بیگی جلسه ذخیره پردازش و انتقال اطلاعات در دنیاي واقعی همواره در حضور خطا انجام می شود. مثلا اطلاعات کلاسیکی که به

Διαβάστε περισσότερα

فهرست جزوه ی فصل دوم مدارهای الکتریکی ( بردارها(

فهرست جزوه ی فصل دوم مدارهای الکتریکی ( بردارها( فهرست جزوه ی فصل دوم مدارهای الکتریکی ( بردارها( رفتار عناصر L, R وC در مدارات جریان متناوب......................................... بردار و کمیت برداری.............................................................

Διαβάστε περισσότερα

جلسه 2 جهت تعریف یک فضاي برداري نیازمند یک میدان 2 هستیم. یک میدان مجموعه اي از اعداد یا اسکالر ها به همراه اعمال

جلسه 2 جهت تعریف یک فضاي برداري نیازمند یک میدان 2 هستیم. یک میدان مجموعه اي از اعداد یا اسکالر ها به همراه اعمال نظریه اطلاعات کوانتمی 1 ترم پاییز 1391-1392 مدرسین: ابوالفتح بیگی و امین زاده گوهري جلسه 2 فراگیري نظریه ي اطلاعات کوانتمی نیازمند داشتن پیش زمینه در جبرخطی می باشد این نظریه ترکیب زیبایی از جبرخطی و نظریه

Διαβάστε περισσότερα

سلسله مزاتب سبان مقدمه فصل : زبان های فارغ از متن زبان های منظم

سلسله مزاتب سبان مقدمه فصل : زبان های فارغ از متن زبان های منظم 1 ماشیه ای توریىگ مقدمه فصل : سلسله مزاتب سبان a n b n c n? ww? زبان های فارغ از متن n b n a ww زبان های منظم a * a*b* 2 زبان ها پذیرفته می شوند بوسیله ی : ماشین های تورینگ a n b n c n ww زبان های فارغ

Διαβάστε περισσότερα

فصل پنجم زبان های فارغ از متن

فصل پنجم زبان های فارغ از متن فصل پنجم زبان های فارغ از متن خانواده زبان های فارغ از متن: ( free )context تعریف: گرامر G=(V,T,,P) کلیه قوانین آن به فرم زیر باشد : یک گرامر فارغ از متن گفته می شود در صورتی که A x A Є V, x Є (V U T)*

Διαβάστε περισσότερα

جلسه 2 1 فضاي برداري محاسبات کوانتمی (22671) ترم بهار

جلسه 2 1 فضاي برداري محاسبات کوانتمی (22671) ترم بهار محاسبات کوانتمی (22671) ترم بهار 1390-1391 مدرس: سلمان ابوالفتح بیگی نویسنده: نادر قاسمی جلسه 2 در این درسنامه به مروري کلی از جبر خطی می پردازیم که هدف اصلی آن آشنایی با نماد گذاري دیراك 1 و مباحثی از

Διαβάστε περισσότερα

:موس لصف یسدنه یاه لکش رد یلوط طباور

:موس لصف یسدنه یاه لکش رد یلوط طباور فصل سوم: 3 روابط طولی درشکلهای هندسی درس او ل قضیۀ سینوس ها یادآوری منظور از روابط طولی رابطه هایی هستند که در مورد اندازه های پاره خط ها و زاویه ها در شکل های مختلف بحث می کنند. در سال گذشته روابط طولی

Διαβάστε περισσότερα

جلسه 22 1 نامساویهایی در مورد اثر ماتریس ها تي وري اطلاعات کوانتومی ترم پاییز

جلسه 22 1 نامساویهایی در مورد اثر ماتریس ها تي وري اطلاعات کوانتومی ترم پاییز تي وري اطلاعات کوانتومی ترم پاییز 1391-1392 مدرس: ابوالفتح بیگی و امین زاده گوهري نویسنده: محمد مهدي مجاهدیان جلسه 22 تا اینجا خواص مربوط به آنتروپی را بیان کردیم. جهت اثبات این خواص نیاز به ابزارهایی

Διαβάστε περισσότερα

هندسه تحلیلی و جبر خطی ( خط و صفحه )

هندسه تحلیلی و جبر خطی ( خط و صفحه ) هندسه تحلیلی جبر خطی ( خط صفحه ) z معادالت متقارن ) : خط ( معادله برداری - معادله پارامتری P فرض کنید e معادلهی خطی باشد که از نقطه ی P به مازات بردار ( c L ) a b رسم شده باشد اگر ( z P ) x y l L نقطهی

Διαβάστε περισσότερα

مینامند یا میگویند α یک صفر تابع

مینامند یا میگویند α یک صفر تابع 1 1-1 مقدمه حل بسیاری از مسائل اجتماعی اقتصادی علمی منجر به حل معادله ای به شکل ) ( می شد. منظر از حل این معادله یافتن عدد یا اعدادی است که مقدار تابع به ازای آنها صفر شد. اگر (α) آنگاه α را ریشه معادله

Διαβάστε περισσότερα

فصل دهم: همبستگی و رگرسیون

فصل دهم: همبستگی و رگرسیون فصل دهم: همبستگی و رگرسیون مطالب این فصل: )r ( کوواریانس ضریب همبستگی رگرسیون ضریب تعیین یا ضریب تشخیص خطای معیار برآور ( )S XY انواع ضرایب همبستگی برای بررسی رابطه بین متغیرهای کمی و کیفی 8 در بسیاری

Διαβάστε περισσότερα

برابری کار نیروی برآیند و تغییرات انرژی جنبشی( را بدست آورید. ماتریس ممان اینرسی s I A

برابری کار نیروی برآیند و تغییرات انرژی جنبشی( را بدست آورید. ماتریس ممان اینرسی s I A مبحث بیست و سوم)مباحث اندازه حرکت وضربه قانون بقای اندازه حرکت انرژی جنبشی و قانون برابری کار نیروی برآیند و تغییرات انرژی جنبشی( تکلیف از مبحث ماتریس ممان اینرسی( را بدست آورید. ماتریس ممان اینرسی s I

Διαβάστε περισσότερα

فهرست مطالب جزوه ی فصل اول مدارهای الکتریکی مفاهیم ولتاژ افت ولتاژ و اختالف پتانسیل تحلیل مدار به روش جریان حلقه... 22

فهرست مطالب جزوه ی فصل اول مدارهای الکتریکی مفاهیم ولتاژ افت ولتاژ و اختالف پتانسیل تحلیل مدار به روش جریان حلقه... 22 فهرست مطالب جزوه ی فصل اول مدارهای الکتریکی آنچه باید پیش از شروع کتاب مدار بدانید تا مدار را آسان بیاموزید.............................. 2 مفاهیم ولتاژ افت ولتاژ و اختالف پتانسیل................................................

Διαβάστε περισσότερα

هد ف های هفته ششم: 1- اجسام متحرک و ساکن را از هم تشخیص دهد. 2- اندازه مسافت و جا به جایی اجسام متحرک را محاسبه و آن ها را مقایسه کند 3- تندی متوسط

هد ف های هفته ششم: 1- اجسام متحرک و ساکن را از هم تشخیص دهد. 2- اندازه مسافت و جا به جایی اجسام متحرک را محاسبه و آن ها را مقایسه کند 3- تندی متوسط هد ف های هفته ششم: 1- اجسام متحرک و ساکن را از هم تشخیص دهد. - اندازه مسافت و جا به جایی اجسام متحرک را محاسبه و آن ها را مقایسه کند 3- تندی متوسط اجسام متحرک را محاسبه کند. 4- تندی متوسط و لحظه ای را

Διαβάστε περισσότερα

جلسه 23 1 تابع آنتروپی و خاصیت مقعر بودن نظریه اطلاعات کوانتمی 1 ترم پاییز

جلسه 23 1 تابع آنتروپی و خاصیت مقعر بودن نظریه اطلاعات کوانتمی 1 ترم پاییز نظریه اطلاعات کوانتمی ترم پاییز 392-39 مدرس: ابوالفتح بیگی و امین راده گوهري نویسنده: علی ایزدي راد جلسه 23 تابع آنتروپی و خاصیت مقعر بودن در جلسه ي قبل به تعریف توابع محدب و صعودي پرداختیم و قضیه هاي

Διαβάστε περισσότερα

خواص هندسی سطوح فصل ششم بخش اول - استاتیک PROBLEMS. 6.1 through 6.18 Using. Fig. P6.4. Fig. Fig. P ft 8 ft. 2.4 m 2.4 m lb. 48 kn.

خواص هندسی سطوح فصل ششم بخش اول - استاتیک PROBLEMS. 6.1 through 6.18 Using. Fig. P6.4. Fig. Fig. P ft 8 ft. 2.4 m 2.4 m lb. 48 kn. خواص هندسی فصل ششم سطوح بخش اول - استاتیک... P6.4 0 kn 5 k 9. P6.5 n. 600 l. P6.. P6. 5 m PROLEMS ee8056_ch06_6-75.ndd Page 8 0/6/09 :50:46 M user-s7 . P6.4. P6.... P6. 5 m. P6.5 n. 0 kn 5 k PROLEMS ee8056_ch06_6-75.ndd

Διαβάστε περισσότερα

فصل ٤ انتگرال کند. در چنین روشی برای محاسبه دایره از درج چندضلعیهای منتظم در درون دایره استفاده میشود

فصل ٤ انتگرال کند. در چنین روشی برای محاسبه دایره از درج چندضلعیهای منتظم در درون دایره استفاده میشود فصل ٤ انتگرال ٤ ١ مسأله مساحت فرمولهای مربوط به مساحت چندضلعیها نظیر مربع مستطیل مثلث و ذوزنقه از زمانهای شروع تمدنهای نخستین به خوبی شناخته شده بوده است. با اینحال مسأله یافتن فرمولی برای بعضی نواحی که

Διαβάστε περισσότερα

فصل صفر یادآوری مفاهیم پایه

فصل صفر یادآوری مفاهیم پایه فصل صفر جبر اعداد حقیقی در این فصل به مرور مهم ترین مطالبی میپردازیم که در مباحث حساب دیفرانسیل و انتگرال بدان محتاج هستیم این مطالب مشتمل بر مروری مجد د بر خواص اعداد حقیقی است که دانشآموزان از دوره دبستان

Διαβάστε περισσότερα

I = I CM + Mh 2, (cm = center of mass)

I = I CM + Mh 2, (cm = center of mass) قواعد کلی اینرسی دو ارنی المان گیری الزمه یادگیری درست و کامل این مباحث که بخش زیادی از نمره پایان ترم ار به خود اختصاص می دهند یادگیری دقیق نکات جزوه استاد محترم و درک درست روابط ریاضی حاکم بر آن ها است

Διαβάστε περισσότερα

تجزیه و تحلیل سیگنال ها و سیستم ها دکتر منصور زینلی

تجزیه و تحلیل سیگنال ها و سیستم ها دکتر منصور زینلی درس تجزیه و تحلیل سیگنال ها و سیستم ها دکتر منصور زینلی فصل اول سیگنال: نشانه یا عالمت هر کمیت فیزیکی) قابل اندازه گیری ) است. انواع سیگنال : سیگنالپیوستهدرزمانکهبهصورت x(t) نشان داده میشود و t یک متغیر

Διαβάστε περισσότερα

عنوان: رمزگذاري جستجوپذیر متقارن پویا

عنوان: رمزگذاري جستجوپذیر متقارن پویا دانشگاه صنعتی شریف دانشکده مهندسی برق گزارش درس ریاضیات رمزنگاري عنوان: رمزگذاري جستجوپذیر متقارن پویا استاد درس: مهندس نگارنده: ز 94 دي ماه 1394 1 5 نماد گذاري و تعریف مسي له 1 6 رمزگذاري جستجوپذیر متقارن

Διαβάστε περισσότερα

به نام خدا قابل استفاده برای کلیه دانشجویان مهندسی و علوم پایه مدرس: هوشمند عزیزی

به نام خدا قابل استفاده برای کلیه دانشجویان مهندسی و علوم پایه مدرس: هوشمند عزیزی به نام خدا قابل استفاده برای کلیه دانشجویان مهندسی و علوم پایه مدرس: هوشمند عزیزی دانشگاه فنی و حرفه ای کرمانشاه زمستان 39 فرمت نمایش اعداد : با توجه به دقت و تعداد ارقام اعشاری قابل قبول در محاسبات می

Διαβάστε περισσότερα

فصل اول پیچیدگی زمانی و مرتبه اجرایی

فصل اول پیچیدگی زمانی و مرتبه اجرایی فصل اول پیچیدگی زمانی و مرتبه اجرایی 1 2 پیچیدگی زمانی Complexity) (Time مثال : 1 تابع زیر جمع عناصر یک آرایه را در زبان C محاسبه می کند. در این برنامه اندازه ورودی همان n یا تعداد عناصر آرایه است و عمل

Διαβάστε περισσότερα

مقدمه در این فصل با مدل ارتعاشی خودرو آشنا میشویم. رفتار ارتعاشی به فرکانسهای طبیعی و مود شیپهای خودرو بستگی دارد. این مبحث به میزان افزایش راحتی

مقدمه در این فصل با مدل ارتعاشی خودرو آشنا میشویم. رفتار ارتعاشی به فرکانسهای طبیعی و مود شیپهای خودرو بستگی دارد. این مبحث به میزان افزایش راحتی مقدمه در این فصل با مدل ارتعاشی خودرو آشنا میشویم. رفتار ارتعاشی به فرکانسهای طبیعی و مود شیپهای خودرو بستگی دارد. این مبحث به میزان افزایش راحتی خودرو و کاهش سر و صداها و لرزشهای داخل اتاق موتور و...

Διαβάστε περισσότερα

تعیین محل قرار گیری رله ها در شبکه های سلولی چندگانه تقسیم کد

تعیین محل قرار گیری رله ها در شبکه های سلولی چندگانه تقسیم کد تعیین محل قرار گیری رله ها در شبکه های سلولی چندگانه تقسیم کد مبتنی بر روش دسترسی زلیخا سپهوند دانشکده مهندسى برق واحد نجف آباد دانشگاه آزاد اسلامى نجف آباد ایر ان zolekhasepahvand@yahoo.com روح االله

Διαβάστε περισσότερα

6- روش های گرادیان مبنا< سر فصل مطالب

6- روش های گرادیان مبنا< سر فصل مطالب 1 بنام خدا بهینه سازی شبیه سازی Simulation Optimization Lecture 6 روش های بهینه سازی شبیه سازی گرادیان مبنا Gradient-based Simulation Optimization methods 6- روش های گرادیان مبنا< سر فصل مطالب 2 شماره

Διαβάστε περισσότερα

کنترل سوییچینگ بر مبنای دستیابی به نمودار حداکثر توان در سلول خورشیدی با روش هوشمند تطبیقی

کنترل سوییچینگ بر مبنای دستیابی به نمودار حداکثر توان در سلول خورشیدی با روش هوشمند تطبیقی کنترل سوییچینگ بر مبنای دستیابی به نمودار حداکثر توان در سلول خورشیدی با روش هوشمند تطبیقی مهندس سید عبدالحسین عمادی * دکتر احسان اسفندیاری چکیده: در این مقاله با استفاده از ساختار غیرخطی برای سلول خورشیدی

Διαβάστε περισσότερα

پنج ره: Command History

پنج ره: Command History هب انم زیدان اپک فهرست مطا ل ب مع ر ف ی رنم ازفار م تل ب:... 11 آش نا ی ی با محی ط ا صل ی رنم ازفار م تل ب:... 11 11... پنج ره: Command History وه ارجای د ست ورات رد م تل ب:... 11 نح نو شت ن د ست ورات

Διαβάστε περισσότερα

http://econometrics.blog.ir/ متغيرهای وابسته نماد متغيرهای وابسته مدت زمان وصول حساب های دريافتني rcp چرخه تبدیل وجه نقد ccc متغیرهای کنترلی نماد متغيرهای کنترلي رشد فروش اندازه شرکت عملکرد شرکت GROW SIZE

Διαβάστε περισσότερα

ماشینهای مخصوص سیم پیچي و میدانهای مغناطیسي

ماشینهای مخصوص سیم پیچي و میدانهای مغناطیسي ماشینهای مخصوص سیم پیچي و میدانهای مغناطیسي استاد: مرتضي خردمندی تهیهکننده: سجاد شمس ویراستار : مینا قنادی یاد آوری مدار های مغناطیسی: L g L g مطابق شکل فرض کنید سیمپیچ N دوری حامل جریان i به دور هستهای

Διαβάστε περισσότερα

بسم الله الرحمن الرحیم دورۀ متوسطۀ اول

بسم الله الرحمن الرحیم دورۀ متوسطۀ اول بسم الله الرحمن الرحیم ریا ض ی 7 دورۀ متوسطۀ اول فهرست سخنی با دانش آموز فصل 1 راهبردهای حل مسئله فصل 2 عددهای صحیح معرفی عددهای عالمت دار جمع و تفریق عددهای صحیح )1 ) جمع و تفریق عددهای صحیح )2 ) ضرب

Διαβάστε περισσότερα

ترمودینامیک مدرس:مسعود رهنمون سال تحصیلى 94-95

ترمودینامیک مدرس:مسعود رهنمون سال تحصیلى 94-95 ترمودینامیک سال تحصیلى 94-95 رهنمون 1- مفاهیم اولیه ترمودینامیک: علمی است که به مطالعه ی رابطه ی بین کار و گرما و تبدیل آنها به یکدیگر می پردازد. دستگاه: گازی است که به مطالعه ی آن می پردازیم. محیط: به

Διαβάστε περισσότερα

فصل دوم مثلثات نسبت های مثلثاتی دایره مثلثاتی روابط بین نسبتهای مثلثاتی

فصل دوم مثلثات نسبت های مثلثاتی دایره مثلثاتی روابط بین نسبتهای مثلثاتی 37 فصل دوم مثلثات نسبت های مثلثاتی دایره مثلثاتی روابط بین نسبتهای مثلثاتی 38 آخر این درس با چی آشنا میشی نسبت های مثلثاتی آشنایی با نسبت های مثلثاتی سینوس کسینوس تانژانت کتانژانت 39 به شکل مقابل نگاه

Διαβάστε περισσότερα

نکنید... بخوانید خالء علمی خود را پر کنید و دانش خودتان را ارائه دهید.

نکنید... بخوانید خالء علمی خود را پر کنید و دانش خودتان را ارائه دهید. گزارش کار آزمایشگاه صنعتی... مکانیک سیاالت ( رینولدز افت فشار ) دانشجویان : فردین احمدی محمد جاللی سعید شادخواطر شاهین غالمی گروه یکشنبه ساعت 2::0 الی رینولدز هدف : بررسی نوع حرکت سیال تئوری : یکی از انواع

Διαβάστε περισσότερα

استفاده از خود متغیر تحت کنترل )در اینجا T یا دما( برای کنترل کردن

استفاده از خود متغیر تحت کنترل )در اینجا T یا دما( برای کنترل کردن 4 فصل : 9 سیستم مدار بسته خطی : عنصر اندازه گیری مثل ترموکوپل - Set point + فرآیند عنصرکنترل نهایی کنترل کننده load بار i proce خطوط انتقال مقدار مطلوب m عنصر اندازه گیری مقدار مقرر تعریف : et point عبارت

Διαβάστε περισσότερα

هدف از این آزمایش آشنایی با برخی قضایاي ساده و در عین حال مهم مدار از قبیل قانون اهم جمع آثار مدار تونن و نورتن

هدف از این آزمایش آشنایی با برخی قضایاي ساده و در عین حال مهم مدار از قبیل قانون اهم جمع آثار مدار تونن و نورتن آزما ی ش سوم: ربرسی اقنون ا ه م و قوانین ولتاژ و جریان اهی کیرشهف قوانین میسقت ولتاژ و میسقت جریان ربرسی مدا ر تونن و نورتن قضیه ااقتنل حدا کثر توان و ربرسی مدا ر پ ل و تس ون هدف از این آزمایش آشنایی با

Διαβάστε περισσότερα

آزمایش میلیکان هدف آزمایش: بررسی کوانتایی بودن بار و اندازهگیري بار الکترون مقدمه: روش مشاهده حرکت قطرات ریز روغن باردار در میدان عبارتند از:

آزمایش میلیکان هدف آزمایش: بررسی کوانتایی بودن بار و اندازهگیري بار الکترون مقدمه: روش مشاهده حرکت قطرات ریز روغن باردار در میدان عبارتند از: آزمایش میلیکان هدف آزمایش: بررسی کوانتایی بودن بار و اندازهگیري بار الکترون مقدمه: یک (R.A.Millikan) رابرت میلیکان 1909 در سال روش عملی براي اندازهگیري بار یونها گزارش کرد. این روش مشاهده حرکت قطرات ریز

Διαβάστε περισσότερα

پايداری Stability معيارپايداری. Stability Criteria. Page 1 of 8

پايداری Stability معيارپايداری. Stability Criteria. Page 1 of 8 پايداری Stility اطمينان از پايداری سيستم های کنترل در زمان طراحی ا ن بسيار حاي ز اهمييت می باشد. سيستمی پايدار محسوب می شود که: بعد از تغيير ضربه در ورودی خروجی به مقدار اوليه ا ن بازگردد. هر مقدار تغيير

Διαβάστε περισσότερα

دانشکده علوم ریاضی دانشگاه گیلان آزمون پایان ترم درس: هندسه منیفلد 1 باشد. دهید.f (gx) = (gof 1 )f X شده باشند سوالات بخش میان ترم

دانشکده علوم ریاضی دانشگاه گیلان آزمون پایان ترم درس: هندسه منیفلد 1 باشد. دهید.f (gx) = (gof 1 )f X شده باشند سوالات بخش میان ترم آزمون پایان ترم درس: هندسه منیفلد 1 زمان آزمون 120 دقیقه نیمسال: اول 95-94 رشته تحصیلی : ریاضی محض 1. نشان دهید X یک میدان برداري روي M است اگر و فقط اگر براي هر تابع مشتقپذیر f روي X(F ) M نیز مشتقپذیر

Διαβάστε περισσότερα

مقاومت مصالح 2 فصل 9: خيز تيرها. 9. Deflection of Beams

مقاومت مصالح 2 فصل 9: خيز تيرها. 9. Deflection of Beams مقاومت مصالح فصل 9: خيز تيرها 9. Deflection of eams دکتر مح مدرضا نيرومند دااگشنه ايپم نور اصفهان eer Johnston DeWolf ( ) رابطه بين گشتاور خمشی و انحنا: تير طره ای تحت بار متمرکز در انتهای آزاد: P انحنا

Διαβάστε περισσότερα

فیلتر کالمن Kalman Filter

فیلتر کالمن Kalman Filter به نام خدا عنوان فیلتر کالمن Kalman Filter سیدمحمد حسینی SeyyedMohammad Hosseini Seyyedmohammad [@] iasbs.ac.ir تحصیالت تکمیلی علوم پایه زنجان Institute for Advanced Studies in Basic Sciences تابستان 95

Διαβάστε περισσότερα

7- روش تقریب میانگین نمونه< سر فصل مطالب

7- روش تقریب میانگین نمونه< سر فصل مطالب 1 بنام خدا بهینه سازی شبیه سازی Simulation Optimization Lecture 7 روش تقریب میانگین نمونه Sample Average Approximation 7- روش تقریب میانگین نمونه< سر فصل مطالب 2 شماره عنوان فصل 1-7 معرفی 2-7 تقریب 3-7

Διαβάστε περισσότερα

عوامل جلوگیری کننده از موازی سازی عبارتند از : 1.هزینه I/O 2.هماهنگی/رقابت

عوامل جلوگیری کننده از موازی سازی عبارتند از : 1.هزینه I/O 2.هماهنگی/رقابت عوامل جلوگیری کننده از موازی سازی عبارتند از :.هزینه I/O.هماهنگی/رقابت ممکن است یک برنامه sequential بهتر از یک برنامه موازی باشد بطور مثال یک عدد 000 رقمی به توان یک عدد طوالنی اینکه الگوریتم را چگونه

Διαβάστε περισσότερα

بخش ششم: عملیات در پایگاه داده رابطهای

بخش ششم: عملیات در پایگاه داده رابطهای هب انم آنکه جان را فک رت آموخت بخش ششم: عملیات در پایگاه داده رابطهای مرتضی امینی نیمسال دوم 92-91 )محتویات اسالیدها برگرفته از یادداشتهای کالسی استاد محمدتقی روحانی رانکوهی است.( یادآوری: مدل دادهای 2

Διαβάστε περισσότερα

فهرست مطالب جزوه ی الکترونیک 1 فصل اول مدار الکتریکی و نقشه ی فنی... 2 خواص مدارات سری... 3 خواص مدارات موازی...

فهرست مطالب جزوه ی الکترونیک 1 فصل اول مدار الکتریکی و نقشه ی فنی... 2 خواص مدارات سری... 3 خواص مدارات موازی... فهرست مطالب جزوه ی الکترونیک 1 فصل اول مدار الکتریکی و نقشه ی فنی................................................. 2 خواص مدارات سری....................................................... 3 3...................................................

Διαβάστε περισσότερα

فصل پنجم : سینکروها جاوید سید رنجبر میالد سیفی علی آسگون

فصل پنجم : سینکروها جاوید سید رنجبر میالد سیفی علی آسگون فصل پنجم : سینکروها جاوید سید رنجبر میالد سیفی علی آسگون مقدمه دراغلب شاخه های صنایع حالتی پدید می آید که دو نقطه دور از هم بایستی دارای سرعت یکسانی باشند. پل های متحرک دهانه سد ها تسمه ی نقاله ها جرثقیل

Διαβάστε περισσότερα

طراحی و تعیین استراتژی بهره برداری از سیستم ترکیبی توربین بادی-فتوولتاییک بر مبنای کنترل اولیه و ثانویه به منظور بهبود مشخصههای پایداری ریزشبکه

طراحی و تعیین استراتژی بهره برداری از سیستم ترکیبی توربین بادی-فتوولتاییک بر مبنای کنترل اولیه و ثانویه به منظور بهبود مشخصههای پایداری ریزشبکه طراحی و تعیین استراتژی بهره برداری از سیستم ترکیبی توربین بادی-فتوولتاییک بر مبنای کنترل اولیه و ثانویه به منظور بهبود مشخصههای پایداری ریزشبکه 2 1* فرانک معتمدی فرید شیخ االسالم 1 -دانشجوی دانشکده برق

Διαβάστε περισσότερα

روش ابداعی کنترل بهینه غیرخطی در توربین بادی با حداقل سازی نوسانات توان و گشتاور

روش ابداعی کنترل بهینه غیرخطی در توربین بادی با حداقل سازی نوسانات توان و گشتاور روش ابداعی کنترل بهینه غیرخطی در توربین بادی با حداقل سازی نوسانات توان و گشتاور فرانک معتمدی * دکترفرید شیخ االسالم 2 -دانشجوی رشته برق دانشگاه آزاد واحد نجفآباد Fa_motamedi@yahoo.com 2 -استاد گروه برق

Διαβάστε περισσότερα

Econometrics.blog.ir

Econometrics.blog.ir وب سایت آموزش نرم افزارهای اقتصادسنجی به نام خدا معادالت همزمان Economerics.blog.ir نام دانشجو: مریم گودرزی مدل های تک معادله ای مدلهایی هستند که دارای یک متغیر درونزا) Y ( و یک یا چند متغیر توضیحی) X

Διαβάστε περισσότερα

کنترل تطبیقی غیر مستقیم مبتنی بر تخصیص قطب با مرتبه کسری

کنترل تطبیقی غیر مستقیم مبتنی بر تخصیص قطب با مرتبه کسری چکیده : کنترل تطبیقی غیر مستقیم مبتنی بر تخصیص قطب با مرتبه کسری روش طراحی قوانین کنترل چندجمله ای با استفاده از جایابی قطب راه کار مناسبی برای بسیاری از کاربردهای صنعتی می باشد. این دسته از کنترل کننده

Διαβάστε περισσότερα

به نام خدا. هر آنچه در دوران تحصیل به آن نیاز دارید. Forum.Konkur.in

به نام خدا.  هر آنچه در دوران تحصیل به آن نیاز دارید. Forum.Konkur.in به نام خدا www.konkur.in هر آنچه در دوران تحصیل به آن نیاز دارید Forum.Konkur.in پاسخ به همه سواالت شما در تمامی مقاطع تحصیلی, در انجمن کنکور مجموعه خود آموز های فیزیک با طعم مفهوم حرکت شناسی تهیه و تنظیم:

Διαβάστε περισσότερα

بسمه تعالی «تمرین شماره یک»

بسمه تعالی «تمرین شماره یک» بسمه تعالی «تمرین شماره یک» شماره دانشجویی : نام و نام خانوادگی : نام استاد: دکتر آزاده شهیدیان ترمودینامیک 1 نام درس : ردیف 0.15 m 3 میباشد. در این حالت یک فنر یک دستگاه سیلندر-پیستون در ابتدا حاوي 0.17kg

Διαβάστε περισσότερα

حفاظت مقایسه فاز خطوط انتقال جبرانشده سري.

حفاظت مقایسه فاز خطوط انتقال جبرانشده سري. حفاظت مقایسه فاز در خطوط انتقال جبران شده سري همراه با MOV 2 1 محمد رضا پویان فر جواد ساده 1 دانشگاه آزاد اسلامی واحد گناباد reza.pooyanfar@gmail.com 2 دانشکده فنی مهندسی دانشگاه فردوسی مشهد sadeh@um.ac.ir

Διαβάστε περισσότερα

تهیه و تنظیم دکتر عباس گلمکانی

تهیه و تنظیم دکتر عباس گلمکانی 2 دستور کار آزمایشگاه الکترونیک تهیه و تنظیم دکتر عباس گلمکانی فهرست مطالب صفحه 4 آزمایش اول ودوم : بررسی نقطه کار ترانسزیستور و پایداری آنها... 8 آزمایش سوم : طراحی تقویت کننده ولتاژ شامل دو طبقه ترانزیستوری...

Διαβάστε περισσότερα

هدف از انجام این آزمایش بررسی رفتار انواع حالتهاي گذراي مدارهاي مرتبه دومRLC اندازهگيري پارامترهاي مختلف معادله

هدف از انجام این آزمایش بررسی رفتار انواع حالتهاي گذراي مدارهاي مرتبه دومRLC اندازهگيري پارامترهاي مختلف معادله آزما ی ش پنج م: پا س خ زمانی مدا رات مرتبه دوم هدف از انجام این آزمایش بررسی رفتار انواع حالتهاي گذراي مدارهاي مرتبه دومLC اندازهگيري پارامترهاي مختلف معادله مشخصه بررسی مقاومت بحرانی و آشنایی با پدیده

Διαβάστε περισσότερα

حجمهای کروی: فعالیت فعالیت 1 به اطراف خود)کالس خانه خیابان و ( به دقت نگاه کنید. در حجمهای هندسی نوع آن را تعیین کنید.

حجمهای کروی: فعالیت فعالیت 1 به اطراف خود)کالس خانه خیابان و ( به دقت نگاه کنید. در حجمهای هندسی نوع آن را تعیین کنید. حجم های هندسی فعالیت به اطراف خود)کالس خانه خیابان و ( به دقت نگاه کنید. آیا چیزی پیدا میکنید که حجم نداشته باشد در تصویر مقابل چه نوع حجمهایی را میبینید آیا همه آنها شکل هندسی دارند آیا میتوانید یک طبقهبندی

Διαβάστε περισσότερα

یک سیستم تخصیص منابع هوشمند بر مبنای OFDMA در یک سیستم بیسیم توزیع شده با استفاده از تئوری بازیها

یک سیستم تخصیص منابع هوشمند بر مبنای OFDMA در یک سیستم بیسیم توزیع شده با استفاده از تئوری بازیها یک سیستم تخصیص منابع هوشمند بر مبنای OFDMA در یک سیستم بیسیم توزیع شده با استفاده از تئوری بازیها حامد رشیدی 1 و سیامک طالبی 2 1 -دانشگاه شهید باهنر كرمان 2 -دانشگاه شهید باهنر كرمان Hamed.hrt@gmail.com

Διαβάστε περισσότερα

طراحی و تجزیه و تحلیل کنترل کننده منطق فازي براي کنترل فرکانس بار در سیستم هاي قدرت

طراحی و تجزیه و تحلیل کنترل کننده منطق فازي براي کنترل فرکانس بار در سیستم هاي قدرت طراحی و تجزیه و تحلیل کنترل کننده منطق فازي براي کنترل فرکانس بار در سیستم هاي قدرت 2 1 مهرداد احمدي کمرپشتی هدي کاظمی موسسه آموزش عالی روزبهان ساري گروه برق ساري ایران Mehrdad.ahmadi.k@gmail.com hoda.kazemi.aski@gmail.com

Διαβάστε περισσότερα

باسمه تعالی مادی و معنوی این اثر متعلق به دانشگاه تربیت دبیر شهید رجایی میباشد.

باسمه تعالی مادی و معنوی این اثر متعلق به دانشگاه تربیت دبیر شهید رجایی میباشد. باسمه تعالی مدیریت تحصیالت تکمیلی تعهدنامه اینجانب محمد چشفر متعهد میشوم که مطالب مندرج در این پایاننامه حاصل کار پژوهشی اینجانب است و دستاوردهای پژوهشی دیگران که در این پژوهش از آن استفاده شده است مطابق

Διαβάστε περισσότερα

بررسی پایداری نیروگاه بادی در بازه های متفاوت زمانی وقوع خطا

بررسی پایداری نیروگاه بادی در بازه های متفاوت زمانی وقوع خطا بررسی پایداری نیروگاه بادی در بازه های متفاوت زمانی وقوع خطا رضا شریفی شرکت توزیع نیروی برق استان خوزستان r.e.sharifi@gmail.com نازنین صباغ شرکت توزیع نیروی برق استان خوزستان sabbaghnazanin@gmail.com سیاوش

Διαβάστε περισσότερα

که روي سطح افقی قرار دارد متصل شده است. تمام سطوح بدون اصطکاك می باشند. نیروي F به صورت افقی به روي سطح شیبداري با زاویه شیب

که روي سطح افقی قرار دارد متصل شده است. تمام سطوح بدون اصطکاك می باشند. نیروي F به صورت افقی به روي سطح شیبداري با زاویه شیب فصل : 5 نیرو ها 40- شخصی به جرم جرم به وسیله طنابی که از روي قرقره بدون اصطکاکی عبور کرده و به یک کیسه شن به متصل است از ارتفاع h پایین می آید. اگر شخص از حال سکون شروع به حرکت کرده باشد با چه سرعتی به

Διαβάστε περισσότερα

طرح حفاظتی جدید برای تشخیص و تفکیک خطاهای تک فاز به زمین داخلی و خارجی در ژنراتورهای ولتاژ باالی کابلی ) powerformer (

طرح حفاظتی جدید برای تشخیص و تفکیک خطاهای تک فاز به زمین داخلی و خارجی در ژنراتورهای ولتاژ باالی کابلی ) powerformer ( 2 حسن براتی علی بچاری صالح 1 1 گروه برق واحد اهواز دانشگاه آزاد اسالمی اهواز ایران ali_bacharisaleh@yahoo.com 2 استادیار گروه برق دانشگاه آزاد اسالمی واحد دزفول دزفول ایران barati216@gmail.com طرح حفاظتی

Διαβάστε περισσότερα

فصل سوم : عناصر سوئیچ

فصل سوم : عناصر سوئیچ فصل سوم : عناصر سوئیچ رله الکترومکانیکی: یک آهنربای الکتریکی است که اگر به آن ولتاژ بدهیم مدار را قطع و وصل می کند. الف: دیود بعنوان سوئیچ دیود واقعی: V D I D = I S (1 e η V T ) دیود ایده آل: در درس از

Διαβάστε περισσότερα

آزمایشگاه الکترونیک 1

آزمایشگاه الکترونیک 1 دانشگاه صنعتی شریف دانشکده فیزیک آزمایشگاه الکترونیک ویرایش سوم 93 آزمایش اسیلوسکپ اشعه کاتدی موضوع : آزمایش کار با یک اسیلوسکپ اشعه کاتدی (C..O) و کاربرد آن در مطالعه مدارهای جریان متناوب (ac) وسایل الزم:

Διαβάστε περισσότερα

ناﺪﻨﻤﺸﻧاد ﺎﺑ ﯽﻳﺎﻨﺷآ تاو (١٧٣٦ــ١٨١٩

ناﺪﻨﻤﺸﻧاد ﺎﺑ ﯽﻳﺎﻨﺷآ تاو (١٧٣٦ــ١٨١٩ فصل ٣ کار و توان هدف های رفتاری: در پايان اين فصل از هنرجو انتظار می رود: ١ کار الکتريکی را با ذکر رابطه شرح دهد. ٢ توان الکتريکی را با ذکر روابط شرح دهد. ٣ ضريب بهره (راندمان) را با ذکر رابطه توضيح دهد.

Διαβάστε περισσότερα

دانشکده فنی امام خمینی بهشهر عنوان : نگارنده : استاد راهنما :

دانشکده فنی امام خمینی بهشهر عنوان : نگارنده : استاد راهنما : دانشکده فنی امام خمینی بهشهر پایان نامه دوره کاردانی گرایش نرم افزار عنوان : پردازش تصویر و کاربرد آن در شناسایی آفات گیاهی نگارنده : امیر محمد پورحسین استاد راهنما : مهندس یوسف استادی زمستان 19 2 چکیده

Διαβάστε περισσότερα

کیوان بهزادپور محدرضا امینی

کیوان بهزادپور محدرضا امینی 1000 / 1004 کنترل فیلترهاي توان اکتیو (APF) تکفاز و سه فاز با استفاده از یک سنسور جریان کیوان بهزادپور محدرضا امینی keivan_bp@yahoo.com دانشجوي کارشناسی ارشد دانشگاه آزاد اسلامی واحد اصفهان چکیده عضو هیي

Διαβάστε περισσότερα

Archive of SID. یا یات کار دی وا د لا جان مقدمه 1 2 چکیده 1 SDE. ا درس الکترونیکی:

Archive of SID.  یا یات کار دی وا د لا جان مقدمه 1 2 چکیده 1 SDE. ا درس الکترونیکی: ج ه ر یا یات کار دی وا د لا جان سال م ماره ١ (ایپپی ٢۴ ھار ٨٩ ص ص ٩٣-١٠١ مقایسه عددی جواب معادله دیفرانسیل تصادفی با نوفه سفید گاوسی و پواسونی رمضان رضاییان رحمان فرنوش. چکیده دانشکده علوم پایه دانشگاه

Διαβάστε περισσότερα

ﻞﻜﺷ V لﺎﺼﺗا ﺎﻳ زﺎﺑ ﺚﻠﺜﻣ لﺎﺼﺗا هﺎﮕﺸﻧاد نﺎﺷﺎﻛ / دﻮﺷ

ﻞﻜﺷ V لﺎﺼﺗا ﺎﻳ زﺎﺑ ﺚﻠﺜﻣ لﺎﺼﺗا هﺎﮕﺸﻧاد نﺎﺷﺎﻛ / دﻮﺷ 1 مبحث بيست و چهارم: اتصال مثلث باز (- اتصال اسكات آرايش هاي خاص ترانسفورماتورهاي سه فاز دانشگاه كاشان / دانشكده مهندسي/ گروه مهندسي برق / درس ماشين هاي الكتريكي / 3 اتصال مثلث باز يا اتصال شكل فرض كنيد

Διαβάστε περισσότερα

مجموعه های اندازه پذیر به مثابە نقاط حدی

مجموعه های اندازه پذیر به مثابە نقاط حدی فرهنگ و اندیشە ریاضی شماره ۵٧ (پاییز و زمستان ١٣٩۴) صص. ٩٧ تا ١٠۶ مجموعه های اندازه پذیر به مثابە نقاط حدی برگردان: رسول کاظمی جی. تاناکا و پی. اف. مک لولین ١. مقدمه دانشجویان درس آنالیز حقیقی در دورۀ

Διαβάστε περισσότερα

پایدار سازی سیستم های چندجمله ای غیرخطی در معرض نویز سیستم و اعوجاج کمی سازی

پایدار سازی سیستم های چندجمله ای غیرخطی در معرض نویز سیستم و اعوجاج کمی سازی پایدار سازی سیستم های چندجمله ای غیرخطی در معرض نیز سیستم اعجاج کمی سازی علی رضا فرهادی استادیار دانشکده مهندسی برق دانشگاه صنعتی شریف afarhadi@sharifedu )تاریخ دریافت مقاله 4994/9/4 تاریخ پذیرش مقاله

Διαβάστε περισσότερα

هندسه در فضا 1. خط و صفحه در فضا ب. وضعیت نسبی دو صفحه در فضا پ. وضعیت نسبی دو خط در فضا ت. وضعیت نسبی خط و صفحه در فضا الف.

هندسه در فضا 1. خط و صفحه در فضا ب. وضعیت نسبی دو صفحه در فضا پ. وضعیت نسبی دو خط در فضا ت. وضعیت نسبی خط و صفحه در فضا الف. 4 هندسه در فضا فصل در اين فصل ميخوانيم: 1. خط و صفحه در فضا الف. اصول هندسهي فضايي ب. وضعیت نسبی دو صفحه در فضا پ. وضعیت نسبی دو خط در فضا ت. وضعیت نسبی خط و صفحه در فضا ث. حاالت چهارگانهي مشخص كردن صفحه

Διαβάστε περισσότερα

بخش غیرآهنی. هدف: ارتقاي خواص ابرکشسانی آلياژ Ni Ti مقدمه

بخش غیرآهنی. هدف: ارتقاي خواص ابرکشسانی آلياژ Ni Ti مقدمه بخش غیرآهنی هدف: ارتقاي خواص ابرکشسانی آلياژ Ni Ti مقدمه رفتار شبه کشسان )Pseudoelasticity( که به طور معمول ابرکشسان )superelasticity( ناميده می شود رفتار برگشت پذیر کشسان ماده در برابر تنش اعمالی است

Διαβάστε περισσότερα

تمرین صفحه 91 تمرین صفحه 95 1 میزان رضایت مشتریان بانک از نحوه برخورد و رسیدگی به درخواست های آنها

تمرین صفحه 91 تمرین صفحه 95 1 میزان رضایت مشتریان بانک از نحوه برخورد و رسیدگی به درخواست های آنها 90 حل تمرین ها تمرین صفحه 91 کدام روش جمع آوری داده ها برای موارد زیر مناسب است یک دلیل برای انتخاب خود ذکر کنید. 1 میزان رضایت مشتریان بانک از نحوه برخورد و رسیدگی به درخواست های آنها پاسخ: پرسش نامه:

Διαβάστε περισσότερα

OFDM ﻢﺘﺴﯿﺳ ﯽﻫدزﺎﺑ ﺮﺑ لﺎﻧﺎﮐﺮﯿﺧﺎﺗ هﺮﺘﺴﮔ ﺮﯿﺛﺎﺗ

OFDM ﻢﺘﺴﯿﺳ ﯽﻫدزﺎﺑ ﺮﺑ لﺎﻧﺎﮐﺮﯿﺧﺎﺗ هﺮﺘﺴﮔ ﺮﯿﺛﺎﺗ و 2 چکیده تاثیر گستره تاخیرکانال بر بازدهی سیستم OFDM علیرضا محمودی دکتر سید محمود مدرس هاشمی modarres@cc.iut.ac.ir Alireza@mahmoodi.ir دانشکده برق وکامپیوتر دانشگاه صنعتی اصفهان انتشار چند مسیره از مهمترین

Διαβάστε περισσότερα

فصل اول و به منظور مردود کردن نظریات ارسطو نشان داد که اجسامی با 1592 به استادی کرسی ریاضیات دانشگاه پادوا منصوب شد و در

فصل اول و به منظور مردود کردن نظریات ارسطو نشان داد که اجسامی با 1592 به استادی کرسی ریاضیات دانشگاه پادوا منصوب شد و در فصل اول حرکت شناسی در دو بعد گالیلئوگالیله: در سال 1581 میالدی به دانشگاه پیزا وارد شد اما در سال 1585 قبل از آن که مدرکی بگیرد از آنجا بیرون آمد. پیش خودش به مطالعه آثار اقلیدس و ارشمیدس پرداخت و به زودی

Διαβάστε περισσότερα

مطالعه تابش جسم سیاه

مطالعه تابش جسم سیاه مطالعه تابش جسم سیاه هدف آزمایش: اندازهگیري شدت تابش یک جسم سیاه بر حسب درجه حرارت آن تحقیق قانون استفان بولتزمن. تحقیق بستگی شدت تابش بر حسب فاصله از جسم سیاه. مقدمه: پرتو ساطع شده از یک جسم در دماي T

Διαβάστε περισσότερα

طراحی پایدارساز سیستم قدرت بر اساس تي وري کنترل حالت لغزشی فازي

طراحی پایدارساز سیستم قدرت بر اساس تي وري کنترل حالت لغزشی فازي طراحی پایدارساز سیستم قدرت بر اساس تي وري کنترل حالت لغزشی فازي 3 حامد کریمی حسنآبادي غضنفر شاهقلیان سید حمید محمودیان دانشگاه آزاد اسلامی واحد نجفآباد Hamed.karimi35@yahoo.com دانشگاه آزاد اسلامی واحد

Διαβάστε περισσότερα

بدست میآيد وصل شدهاست. سیمپیچ ثانويه با N 2 دور تا زمانی که کلید

بدست میآيد وصل شدهاست. سیمپیچ ثانويه با N 2 دور تا زمانی که کلید آزمايش 9 ترانسفورماتور بررسی تجربی ترانسفورماتور و مقايسه با يك ترانسفورماتور ايدهآل تئوری آزمايش توان متوسط در مدار جريان متناوب برابر است با: P av = ε rms i rms cos φ که ε rms جذر میانگین مربعی ε و i

Διαβάστε περισσότερα

موتورهای تکفاز ساختمان موتورهای تک فاز دوخازنی را توضیح دهد. منحنی مشخصه گشتاور سرعت موتور تک فاز با خازن راه انداز را تشریح کند.

موتورهای تکفاز ساختمان موتورهای تک فاز دوخازنی را توضیح دهد. منحنی مشخصه گشتاور سرعت موتور تک فاز با خازن راه انداز را تشریح کند. 5 موتورهای تک فاز 183 موتورهای تکفاز هدف های رفتاری: نحوه تولید میدان مغناطیسی در یک استاتور با یک و دو سیم پیچ را بررسی نماید. لزوم استفاده از سیم پیچ کمکی در موتورهای تک فاز را توضیح دهد. ساختمان داخلی

Διαβάστε περισσότερα

E_mail: چکیده فرکتال تشخیص دهد. مقدمه متحرک[ 2 ].

E_mail: چکیده فرکتال تشخیص دهد. مقدمه متحرک[ 2 ]. آنالیز کامپیوتری مسیر حرکت اسپرم و استخراج بعد فرکتال نویسندگان : ٣ ٢ ١ مریم پنجه فولادگران محمدحسن مرادی وحیدرضا نفیسی ٤ روشنک ابوترابی تهران دانشگاه آزاد اسلامی واحد علوم و تحقیقات دانشکده مهندسی پزشکی

Διαβάστε περισσότερα