3. ATMOSFERSKI PRITISAK

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "3. ATMOSFERSKI PRITISAK"

Transcript

1 3. ATMOSFERSKI PRITISAK NASTAVNA PITANJA: 1. Pojam atmosferskog pritiska 2. Vertikalna raspodjela vazdušnog pritiska 3. Horizontalna raspodjela vazdušnog pritiska 4. Barometarski gradijent LITERATURA: - Brčić I., Pomorska meteorologija i okeanografija, Bar, Cadez M., Meteorologija, Bigz, Simović A., Pomorska meteorologija, Zagreb, Gelo B., Opća i prometna meteorologija, Zagreb, Enciklopedija Wikipedija - Sajt W.M.O - Internet tekstovi i fotografije. 1

2 UVOD 1. Temperatura T 1 > T 2 2 m 1 v 1 > 2 m 2 v 2 m 1 = m 2, : (Kinetička enargija) v 1 > v 2 2. Gostoća Gostoća nekog tijela jeste odnos mase (g, kg, t) i određene zapremine (cm 3, dm 3, m 3 ). V 1 = V 2 m 1 < m 2 ρ 1 = m 1 /V 1 < ρ 2 = m 2 /V 2 3. Vazdušni pritisak Kretanje molekula vazduha po površini uzrokuje pojavu vazdušnog pritiska, koji deluje u svim pravcima podjednako. Vazdušni pritisak zavisi od: - kinetične aktivnosti molekul - temperature vazduha - mase molekula i - gravitacije 2

3 Na molekule vazduha deluje gravitacija, ipak, vazduh ne padne na površinu zemelje, vazdušni pritisak uravnotežuje silu gravitacije Vazdušni pritisak: Sila, koja je posledica gravitacije sa kojom masa atmosfere deluje na jedinicu površine jeste pritisak. Jednačina stanja gasa Promjenljive stanja gasa se mijenjaju sa vremenom i područjem, ali nisu ne povezane. Povezanost među njima lako se može opisati iz JEDNAČINE STANJA GASA R* = 8314J/(kmolK) Izvedene konstante za: T p = Vkonst. = konst. p T= konst. V = kontst. m p V = R * T M površinska gasna konstanta - Boyle-Mariott - Gay-Lussac - Charles Jednačina stanja vazduha p = ρ R T specifična gasna konstanta za vazduh R = R ρ = vazduh m V R * = M vazduha - gostoća vazduha ( kmol K) 8314 J/ = 29 kg/kmol = 287 J/kg K 3

4 Delovi pritiska Vazduh je smješa gasova: - N2 - azot 78 % - O2 - kiseonik 21 % - Ar, CO 2, O 3, H 2 O,... 1 % Za smješu gasova vredi pravilo, da je ukupni pritisak smeše jednak zbiru svih pojedinačnih pritisaka gasova od kojij se smješa sastoji. p vazduha = pn + p 2 O + p 2 Ar +... Daltonov zakon Merenje vazdušnog pritiska Aneroidni barometar tj. barograf: Radi na osnovu Vidijeve doze - zatvorene posude u kojoj je vazdušni pritisak nešto niži. Zbog promjene atmosferskog pritiska dolazi do pomjeranja na membrani aneroidne kutijice, koja se preko sistema poluga prenose na kazaljku koja na barometarskoj skali prikazuje vazdušni pritisak. 1. Pojam atmosferskog pritiska Atmosferski pritisak ili vazdšni jeste pritiska koji vazduh svojom težinom vrši na Zemljinu površinu. Pritisak vazduha na određenu horizontalnu površinu jednak je težini mirnog vazdušnog stuba iznad te površine. 5 F = Pa S 10 N P = N/m2 Ako se za posmatranu horizontalnu površinu uzme površina od 1cm2, onda se pritisak vaduha na takvu površinu zove atmosferski ili vazdušni pritisak. To znači da je vazdušni pritisak na 1cm2 Zemljine površine jednak težini vazdušnog stuba čiji je poprečni presjek 1cm2, a visina od površine Zemlje do gornje granice atmosfere. 4

5 Normalni atmosferski pritisak jeste pritisak vazdušnog stuba temperature 0C na površinu od jednog cm2, meren na nivou mora na 45 0 severne geografske širine a koji uravnotežuje težinu živinog stuba visine od 760 mm. Formula za izračunavanje pritisaka vazduha: p = h ρ g 0 gdje su: h - visina živinog stuba, ρ - specifična gustina Hg g 0 - gravitaciono ubrzanje, Uvrštavanjem vrijednosti ρ = 13595, 1(kg/m 3 ) i g o = 9,80665 (m/s 2 ), u gornju formulu određuje se normalni vazdušni pritisak i on iznosi; p = 0,76 x 13595,1 x 9,80665 p = ,0144 Pa p = 1013,25 mbar 2. Vertikalna raspodjela vazdušnog pritiska Vazdušni pritisak opada sa povećanjem visine. Uzrok ove pojave jeste smanjenje temperature, specifične gustoće, mase, težine a time i sile vazduha koja pritiska posmatranu površinu. Iako su međusobno povezani njihova zavisnost nije linearna, nju opisuje barometarska visinska formula kz p = p 0 e gdje su: po - pritisak na nivou mora p - pritisak na ma kojoj visini k - koeficijent z - posmatrana visina 5

6 Dakle, sa povećanjem nadmorske visine smanjuje se gustina vazdušnog stuba, pa će i njegova masa, odnosno pritisak na jedinicu površine biti sve manji. Zbog smanjenja gustine vazduha, atmosferski pritisak neravnomjerno pada sa porastom visine, i to u početku brže, a zatim, što je nadmorska visina veća, sve sporije, jer se skoro 50% mase vazduha iz atmosfere nalazi u prizemnom sloju tj., u donjih 5 km troposfere. Dijagram: - Opadanje vazdušnog pritiska sa porastom nadmorske visine Dijagram: - Opadanje vazdušnog pritiska sa porastom nadmorske visine Veličina koja izražava promjenu pritiska sa promjenom nadmorske visine naziva se barička stopa. Barička stopa pokazuje broj metara za koji treba povećati nadmorsku visinu da bi atmosferski pritisak pao za 1mbar (1hPa), odnosno 1mmHg. U standardnim meteorološkim uslovima barička stopa u donjem dijelu atmosfere iznosi oko; 8,5m/1mbar ili 10,5m/1mmHg. 6

7 3. Horizontalna raspodjela vazdušnog pritiska Ako na geografsku kartu nanesemo vrijednosti pritiska izmjerene u nekom određenom terminu, dobićemo prikaz raspodjele vazdušnog pritiska na Zemljinoj površini. Kako su meteorološke stanice koje mjere pritisak na različitim nadmorskim visinama, potrebno je sve vrijednosti svesti na određeni nivo nivo mora ili nivo određene standardne izobarske površine. To se vrši tako što se očitana vrijednost ispravi za greške: instrumenta, temperature, nadmorske visine i sile Zemljine teže. U tu svrhu koriste se hidrometeorološke tablice broj od 58. do 61. iz Nautičkih tablica ( HI-N- 41, izdanje HIRM 1978.god.). Radi preglednijeg predstavljanja ispravljenih vrijednosti pritisaka koriste se izobare. Izobare su krive linije koje na geografskoj karti spajaju sva mjesta (tačke) sa istim atmosferskim pritiskom. Karte sa takvim linijama zovu se izobarske karte. Neke od izobara su zatvorene linije, približno kružnog ili elipsastog oblika, mada mogu biti i nepravilne krive. Izobarska karta Evrope 7

8 Izobarske karte Izobara od 1013 mbar predstavlja normalni atmosferski pritisak. Ako je vazdušni pritisak iznad neke oblasti Zemljine površine niži od normalnog, kaže se, da se iznad te oblasti nalazi ciklon ili vazdušna depresija. Ciklon predstavlja oblast u zatvorenim izobarama u kojoj se vazdušni pritisak smanjuje prema centru, gdje je najniži. Nizak pritisak Topao vazduh millibarа Vazduh se kreće na gore i konvergira Zimi su oblasti niskog pritiska iznad mora a leti iznad kontinenta Ciklone centri niskog pritiska U slučaju ako je iznad te oblasti vazdušni pritisak viši od normalnog, iznad posmatrane oblasti vlada anticiklon. Anticiklon je oblast ograničena zatvorenim izobarama u kojoj se vazdušni pritisak povećava ka centru, gdje je najviši. 8

9 Visoki pritisak Hladan i suvi vazduh ima pritisak iznad millibarа Vazduh ide na dole i van datog mijesta divergira Zimi su oblasti visokog pritiska iznad kontinenta a leti iznad mora Anticiklone centri visokog pritiska Greben je izdužena oblast visokog pritiska koji se u vidu klina pruža između oblasti sa nižim pritiscima. Dolina je izdužena oblast niskog pritiska koja se uvlači između oblasti sa višim pritiscima. Sedlo je oblast koja se nalazi između dva ciklona i dva anticiklona, koji stoje jedan naspram drugog. 4. Barometarski gradijent Razlika atmosferskog pritiska između dvije tačke na istom nivou razmaknute u smjeru njegovog najvećeg pada na jedinicu udaljenosti (60 M ili 111 km, što odgovara vrijednosti 1 0 meridijana Zemlje kao kugle) zove se horizontalni barometarski gradijent. Iz ovoga slijedi da je barometarski gradijent sila (vektor) koja ima pravac, smjer i intenzitet. Pravac barometarskog gradijenta uvijek je normalan na izobare. Barometarski gradijent Smjer gradijenta je od mjesta višeg atmosferskog pritiska prema mjestu nižeg pritiska, a intenzitet je određen razlikom atmosferskih pritisaka na horizontalnoj udaljenosti od 60M. Što je intenzitet barometarskog gradijenta veći, to je i brzina vjetra veća, odnosno brzina vjetra je veća što su izobare gušće. 9

10 Razlika u pritiscima između dve tačke (gradijent pritiska) je primarni razlog za kretanje vazdušnih masa u atmosferi. Vazduh struji od mesta gde je pritisak viši ka mestu gde je niži. Drugim rečima vazduh se kreće tako da se uspostavi stanje ravnoteže između oblasti nižeg i oblasti višeg pritiska. Primer: Povezanost promene vazušnog pritiska i vazdušnih strujanja 10

I.13. Koliki je napon između neke tačke A čiji je potencijal 5 V i referentne tačke u odnosu na koju se taj potencijal računa?

I.13. Koliki je napon između neke tačke A čiji je potencijal 5 V i referentne tačke u odnosu na koju se taj potencijal računa? TET I.1. Šta je Kulonova sila? elektrostatička sila magnetna sila c) gravitaciona sila I.. Šta je elektrostatička sila? sila kojom međusobno eluju naelektrisanja u mirovanju sila kojom eluju naelektrisanja

Διαβάστε περισσότερα

TOPLOTA. Primjeri. * TERMODINAMIKA Razmatra prenos energije i efekte tog prenosa na sistem.

TOPLOTA. Primjeri. * TERMODINAMIKA Razmatra prenos energije i efekte tog prenosa na sistem. 1.OSNOVNI POJMOVI TOPLOTA Primjeri * KALORIKA Nauka o toploti * TERMODINAMIKA Razmatra prenos energije i efekte tog prenosa na sistem. * TD SISTEM To je bilo koje makroskopsko tijelo ili grupa tijela,

Διαβάστε περισσότερα

- pravac n je zadan s točkom T(2,0) i koeficijentom smjera k=2. (30 bodova)

- pravac n je zadan s točkom T(2,0) i koeficijentom smjera k=2. (30 bodova) MEHANIKA 1 1. KOLOKVIJ 04/2008. grupa I 1. Zadane su dvije sile F i. Sila F = 4i + 6j [ N]. Sila je zadana s veličinom = i leži na pravcu koji s koordinatnom osi x zatvara kut od 30 (sve komponente sile

Διαβάστε περισσότερα

Osnovne veličine, jedinice i izračunavanja u hemiji

Osnovne veličine, jedinice i izračunavanja u hemiji Osnovne veličine, jedinice i izračunavanja u hemiji Pregled pojmova veličina i njihovih jedinica koje se koriste pri osnovnim izračunavanjima u hemiji dat je u Tabeli 1. Tabela 1. Veličine i njihove jedinice

Διαβάστε περισσότερα

Zadaci sa prethodnih prijemnih ispita iz matematike na Beogradskom univerzitetu

Zadaci sa prethodnih prijemnih ispita iz matematike na Beogradskom univerzitetu Zadaci sa prethodnih prijemnih ispita iz matematike na Beogradskom univerzitetu Trigonometrijske jednačine i nejednačine. Zadaci koji se rade bez upotrebe trigonometrijskih formula. 00. FF cos x sin x

Διαβάστε περισσότερα

Osnovni primer. (Z, +,,, 0, 1) je komutativan prsten sa jedinicom: množenje je distributivno prema sabiranju

Osnovni primer. (Z, +,,, 0, 1) je komutativan prsten sa jedinicom: množenje je distributivno prema sabiranju RAČUN OSTATAKA 1 1 Prsten celih brojeva Z := N + {} N + = {, 3, 2, 1,, 1, 2, 3,...} Osnovni primer. (Z, +,,,, 1) je komutativan prsten sa jedinicom: sabiranje (S1) asocijativnost x + (y + z) = (x + y)

Διαβάστε περισσότερα

IZVODI ZADACI (I deo)

IZVODI ZADACI (I deo) IZVODI ZADACI (I deo) Najpre da se podsetimo tablice i osnovnih pravila:. C`=0. `=. ( )`= 4. ( n )`=n n-. (a )`=a lna 6. (e )`=e 7. (log a )`= 8. (ln)`= ` ln a (>0) 9. = ( 0) 0. `= (>0) (ovde je >0 i a

Διαβάστε περισσότερα

Silu trenja osećaju sva tela koja se nalaze u blizini Zemlje i zbog nje tela koja se puste padaju nadole. Ako pustimo telo da slobodno pada, ono će

Silu trenja osećaju sva tela koja se nalaze u blizini Zemlje i zbog nje tela koja se puste padaju nadole. Ako pustimo telo da slobodno pada, ono će Silu trenja osećaju sva tela koja se nalaze u blizini Zemlje i zbog nje tela koja se puste padaju nadole. Ako pustimo telo da slobodno pada, ono će se bez obzira na masu kretati istim ubrzanjem Zanimljivo

Διαβάστε περισσότερα

MATRICE I DETERMINANTE - formule i zadaci - (Matrice i determinante) 1 / 15

MATRICE I DETERMINANTE - formule i zadaci - (Matrice i determinante) 1 / 15 MATRICE I DETERMINANTE - formule i zadaci - (Matrice i determinante) 1 / 15 Matrice - osnovni pojmovi (Matrice i determinante) 2 / 15 (Matrice i determinante) 2 / 15 Matrice - osnovni pojmovi Matrica reda

Διαβάστε περισσότερα

Lijeva strana prethodnog izraza predstavlja diferencijalnu formu rada rezultantne sile

Lijeva strana prethodnog izraza predstavlja diferencijalnu formu rada rezultantne sile RAD SILE Sila se može tokom kretanja opisati kao zavisnost od vremena t ili od trenutnog vektora položaja r. U poglavlju o impulsu sile i količini kretanja je pokazano na koji način se može povezati kretanje

Διαβάστε περισσότερα

2. ZEMLJNA ATMOSFERA NASTAVNA PITANJA:

2. ZEMLJNA ATMOSFERA NASTAVNA PITANJA: 2. ZEMLJNA ATMOSFERA NASTAVNA PITANJA: 1. Podjela atmosfere 2. Sastav atmosfere 3. Toplotni procesi u atmosferi LITERATURA: 1) Brčić I., Pomorska meteorologija i okeanografija, Bar, 2007. 2) Cadez M.,

Διαβάστε περισσότερα

( , treći kolokvij) 3. Na dite lokalne ekstreme funkcije z = x 4 + y 4 2x 2 + 2y 2 3. (20 bodova)

( , treći kolokvij) 3. Na dite lokalne ekstreme funkcije z = x 4 + y 4 2x 2 + 2y 2 3. (20 bodova) A MATEMATIKA (.6.., treći kolokvij. Zadana je funkcija z = e + + sin(. Izračunajte a z (,, b z (,, c z.. Za funkciju z = 3 + na dite a diferencijal dz, b dz u točki T(, za priraste d =. i d =.. c Za koliko

Διαβάστε περισσότερα

DIMENZIONISANJE PRAVOUGAONIH POPREČNIH PRESEKA NAPREGNUTIH NA PRAVO SLOŽENO SAVIJANJE

DIMENZIONISANJE PRAVOUGAONIH POPREČNIH PRESEKA NAPREGNUTIH NA PRAVO SLOŽENO SAVIJANJE TEORIJA ETONSKIH KONSTRUKCIJA T- DIENZIONISANJE PRAVOUGAONIH POPREČNIH PRESEKA NAPREGNUTIH NA PRAVO SLOŽENO SAVIJANJE 3.5 f "2" η y 2 D G N z d y A "" 0 Z a a G - tačka presek koja određje položaj sistemne

Διαβάστε περισσότερα

Verovatnoća i Statistika I deo Teorija verovatnoće (zadaci) Beleške dr Bobana Marinkovića

Verovatnoća i Statistika I deo Teorija verovatnoće (zadaci) Beleške dr Bobana Marinkovića Verovatnoća i Statistika I deo Teorija verovatnoće zadaci Beleške dr Bobana Marinkovića Iz skupa, 2,, 00} bira se na slučajan način 5 brojeva Odrediti skup elementarnih dogadjaja ako se brojevi biraju

Διαβάστε περισσότερα

Grafičko prikazivanje atributivnih i geografskih nizova

Grafičko prikazivanje atributivnih i geografskih nizova Grafičko prikazivanje atributivnih i geografskih nizova Biserka Draščić Ban Pomorski fakultet u Rijeci 17. veljače 2011. Grafičko prikazivanje atributivnih nizova Atributivni nizovi prikazuju se grafički

Διαβάστε περισσότερα

18. listopada listopada / 13

18. listopada listopada / 13 18. listopada 2016. 18. listopada 2016. 1 / 13 Neprekidne funkcije Važnu klasu funkcija tvore neprekidne funkcije. To su funkcije f kod kojih mala promjena u nezavisnoj varijabli x uzrokuje malu promjenu

Διαβάστε περισσότερα

( ) π. I slučaj-štap sa zglobovima na krajevima F. Opšte rešenje diferencijalne jednačine (1): min

( ) π. I slučaj-štap sa zglobovima na krajevima F. Opšte rešenje diferencijalne jednačine (1): min Kritična sia izvijanja Kritična sia je ona najmanja vrednost sie pritisa pri ojoj nastupa gubita stabinosti, odnosno, pri ojoj štap iz stabine pravoinijse forme ravnoteže preazi u nestabinu rivoinijsu

Διαβάστε περισσότερα

Proračunski model - pravougaoni presek

Proračunski model - pravougaoni presek Proračunski model - pravougaoni presek 1 ε b 3.5 σ b f B "" ηx M u y b x D bu G b h N u z d y b1 a1 "1" b ε a1 10 Z au a 1 Složeno savijanje - VEZNO dimenzionisanje Poznato: statički uticaji za (M i, N

Διαβάστε περισσότερα

Akvizicija tereta. 5660t. Y= masa drva, X=masa cementa. Na brod će se ukrcati 1733 tona drva i 3927 tona cementa.

Akvizicija tereta. 5660t. Y= masa drva, X=masa cementa. Na brod će se ukrcati 1733 tona drva i 3927 tona cementa. Akvizicija tereta. Korisna nosivost broda je 6 t, a na brodu ia 8 cu. ft. prostora raspoloživog za sještaj tereta pod palubu. Navedeni brod treba krcati drvo i ceent, a na palubu ože aksialno ukrcati 34

Διαβάστε περισσότερα

Pismeni ispit iz OTPORNOSTI MATERIJALA I - grupa A

Pismeni ispit iz OTPORNOSTI MATERIJALA I - grupa A Psmen spt z OTPORNOSTI MATERIJALA I - grupa A 1. Kruta poluga ABC se oslanja pomoću dvje špke BD CE kao na slc desno. Špka BD, dužne 0.5 m, zrađena je od čelka (E AB 10 GPa) ma poprečn presjek od 500 mm.

Διαβάστε περισσότερα

3.3. Sile koje se izučavaju u mehanici

3.3. Sile koje se izučavaju u mehanici 3.3. Sile koje se izučavaju u mehanici 3.3.1. Gravitaciona sila Prema Opštem zakonu gravitacije, dvije čestice masa m 1 i m 2 se međusobno privlače silom koja je proporcionalna proizvodu masa dvije čestice

Διαβάστε περισσότερα

Ovo nam govori da funkcija nije ni parna ni neparna, odnosno da nije simetrična ni u odnosu na y osu ni u odnosu na

Ovo nam govori da funkcija nije ni parna ni neparna, odnosno da nije simetrična ni u odnosu na y osu ni u odnosu na . Ispitati tok i skicirati grafik funkcij = Oblast dfinisanosti (domn) Ova funkcija j svuda dfinisana, jr nma razlomka a funkcija j dfinisana za svako iz skupa R. Dakl (, ). Ovo nam odmah govori da funkcija

Διαβάστε περισσότερα

10. STABILNOST KOSINA

10. STABILNOST KOSINA MEHANIKA TLA: Stabilnot koina 101 10. STABILNOST KOSINA 10.1 Metode proračuna koina Problem analize tabilnoti zemljanih maa vodi e na određivanje odnoa između rapoložive mičuće čvrtoće i proečnog mičućeg

Διαβάστε περισσότερα

(P.I.) PRETPOSTAVKA INDUKCIJE - pretpostavimo da tvrdnja vrijedi za n = k.

(P.I.) PRETPOSTAVKA INDUKCIJE - pretpostavimo da tvrdnja vrijedi za n = k. 1 3 Skupovi brojeva 3.1 Skup prirodnih brojeva - N N = {1, 2, 3,...} Aksiom matematičke indukcije Neka je N skup prirodnih brojeva i M podskup od N. Ako za M vrijede svojstva: 1) 1 M 2) n M (n + 1) M,

Διαβάστε περισσότερα

Na grafiku bi to značilo :

Na grafiku bi to značilo : . Ispitati tok i skicirati grafik funkcije + Oblast definisanosti (domen) Kako zadata funkcija nema razlomak, to je (, ) to jest R Nule funkcije + to jest Ovo je jednačina trećeg stepena. U ovakvim situacijama

Διαβάστε περισσότερα

Rad, energija i snaga

Rad, energija i snaga Rad, energija i snaga Željan Kutleša Sandra Bodrožić Rad Rad je skalarna fizikalna veličina koja opisuje djelovanje sile F na tijelo duž pomaka x. = = cos Oznaka za rad je W, a mjerna jedinica J (džul).

Διαβάστε περισσότερα

POTPUNO RIJEŠENIH ZADATAKA PRIRUČNIK ZA SAMOSTALNO UČENJE

POTPUNO RIJEŠENIH ZADATAKA PRIRUČNIK ZA SAMOSTALNO UČENJE **** MLADEN SRAGA **** 011. UNIVERZALNA ZBIRKA POTPUNO RIJEŠENIH ZADATAKA PRIRUČNIK ZA SAMOSTALNO UČENJE SKUP REALNIH BROJEVA α Autor: MLADEN SRAGA Grafički urednik: BESPLATNA - WEB-VARIJANTA Tisak: M.I.M.-SRAGA

Διαβάστε περισσότερα

ASIMPTOTE FUNKCIJA. Dakle: Asimptota je prava kojoj se funkcija približava u beskonačno dalekoj tački. Postoje tri vrste asimptota:

ASIMPTOTE FUNKCIJA. Dakle: Asimptota je prava kojoj se funkcija približava u beskonačno dalekoj tački. Postoje tri vrste asimptota: ASIMPTOTE FUNKCIJA Naš savet je da najpre dobro proučite granične vrednosti funkcija Neki profesori vole da asimptote funkcija ispituju kao ponašanje funkcije na krajevima oblasti definisanosti, pa kako

Διαβάστε περισσότερα

Elementi mehanike fluida

Elementi mehanike fluida Glava 6 Elementi mehanike fluida Slobodno se može reći da smo mi, kao i druga živa biá na Zemlji, u neprekidnom kontaktu sa raznim vrtama fluida. Mi se krećemo kroz fluid i udišemo ga (vazduh), plivamo

Διαβάστε περισσότερα

a M a A. Može se pokazati da je supremum (ako postoji) jedinstven pa uvodimo oznaku sup A.

a M a A. Može se pokazati da je supremum (ako postoji) jedinstven pa uvodimo oznaku sup A. 3 Infimum i supremum Definicija. Neka je A R. Kažemo da je M R supremum skupa A ako je (i) M gornja meda skupa A, tj. a M a A. (ii) M najmanja gornja meda skupa A, tj. ( ε > 0)( a A) takav da je a > M

Διαβάστε περισσότερα

radni nerecenzirani materijal za predavanja R(f) = {f(x) x D}

radni nerecenzirani materijal za predavanja R(f) = {f(x) x D} Matematika 1 Funkcije radni nerecenzirani materijal za predavanja Definicija 1. Neka su D i K bilo koja dva neprazna skupa. Postupak f koji svakom elementu x D pridružuje točno jedan element y K zovemo funkcija

Διαβάστε περισσότερα

Masa, Centar mase & Moment tromosti

Masa, Centar mase & Moment tromosti FAKULTET ELEKTRTEHNIKE, STRARSTVA I BRDGRADNE - SPLIT Katedra za dinamiku i vibracije Mehanika 3 (Dinamika) Laboratorijska vježba Masa, Centar mase & Moment tromosti Ime i rezime rosinac 008. Zadatak:

Διαβάστε περισσότερα

2.7 Primjene odredenih integrala

2.7 Primjene odredenih integrala . INTEGRAL 77.7 Primjene odredenih integrala.7.1 Računanje površina Pořsina lika omedenog pravcima x = a i x = b te krivuljama y = f(x) i y = g(x) je b P = f(x) g(x) dx. a Zadatak.61 Odredite površinu

Διαβάστε περισσότερα

Veleučilište u Rijeci Stručni studij sigurnosti na radu Akad. god. 2011/2012. Matematika. Monotonost i ekstremi. Katica Jurasić. Rijeka, 2011.

Veleučilište u Rijeci Stručni studij sigurnosti na radu Akad. god. 2011/2012. Matematika. Monotonost i ekstremi. Katica Jurasić. Rijeka, 2011. Veleučilište u Rijeci Stručni studij sigurnosti na radu Akad. god. 2011/2012. Matematika Monotonost i ekstremi Katica Jurasić Rijeka, 2011. Ishodi učenja - predavanja Na kraju ovog predavanja moći ćete:,

Διαβάστε περισσότερα

Zadaci iz trigonometrije za seminar

Zadaci iz trigonometrije za seminar Zadaci iz trigonometrije za seminar FON: 1. Vrednost izraza sin 1 cos 6 jednaka je: ; B) 1 ; V) 1 1 + 1 ; G) ; D). 16. Broj rexea jednaqine sin x cos x + cos x = sin x + sin x na intervalu π ), π je: ;

Διαβάστε περισσότερα

A MATEMATIKA Zadana je z = x 3 y + 1

A MATEMATIKA Zadana je z = x 3 y + 1 A MATEMATIKA (.5.., treći kolokvij). Zdn je z 3 + os. () Izrčunjte ngib plohe u pozitivnom smjeru -osi. (b) Izrčunjte ngib pod ) u točki T(, ). () Izrčunjte z u T(, ). (5 bodov). Zdn je z 3 ln. () Izrčunjte

Διαβάστε περισσότερα

Mehanika fluida. Statika fluida.

Mehanika fluida. Statika fluida. Mehanika fluida. Statika fluida. Mehanika fluida (hidromehanika) hidrostatika (mirovanje fluida) hidrodinamika (kretanje fluida) 6. i 7. novembar 2013 godine 1 Pojam fluida Neprekidni kontakt sa raznim

Διαβάστε περισσότερα

P R I N C I P I L E T A

P R I N C I P I L E T A TEORIJA LETENJA P R I N C I P I L E T A ZA PILOTE ULTRALAKIH VAZDUHOPLOVA ULAPL (ULA / ULT) Hudomal Franc, TP / FI CPL(A), FI ULAPL (A) 2012 PRINCIPI LETENJA Aerodinamika malih brzina Sadržaj 1. Energija...1

Διαβάστε περισσότερα

Induktivno spregnuta kola

Induktivno spregnuta kola Induktivno spregnuta kola 13. januar 2016 Transformatori se koriste u elektroenergetskim sistemima za povišavanje i snižavanje napona, u elektronskim i komunikacionim kolima za promjenu napona i odvajanje

Διαβάστε περισσότερα

TAČKA i PRAVA. , onda rastojanje između njih računamo po formuli C(1,5) d(b,c) d(a,b)

TAČKA i PRAVA. , onda rastojanje između njih računamo po formuli C(1,5) d(b,c) d(a,b) TAČKA i PRAVA Najpre ćemo se upoznati sa osnovnim formulama i njihovom primenom.. Rastojanje između dve tačke Ako su nam date tačke Ax (, y) i Bx (, y ), onda rastojanje između njih računamo po formuli

Διαβάστε περισσότερα

LANCI & ELEMENTI ZA KAČENJE

LANCI & ELEMENTI ZA KAČENJE LANCI & ELEMENTI ZA KAČENJE 0 4 0 1 Lanci za vešanje tereta prema standardu MSZ EN 818-2 Lanci su izuzetno pogodni za obavljanje zahtevnih operacija prenošenja tereta. Opseg radne temperature se kreće

Διαβάστε περισσότερα

O DIMENZIONALNOJ ANALIZI U FIZICI.

O DIMENZIONALNOJ ANALIZI U FIZICI. 1 O DIMENZIONALNOJ ANALIZI U FIZICI Ljubiša Nešić, Odsek za fiziku, PMF, Niš http://www.pmf.ni.ac.yu/people/nesiclj/ Uvod Kao što je poznato, fizičke veličine mogu da imaju dimenzije ili pak da budu bezdimenzionalne.

Διαβάστε περισσότερα

Geometrijske karakteristike poprenih presjeka nosaa. 9. dio

Geometrijske karakteristike poprenih presjeka nosaa. 9. dio Geometrijske karakteristike poprenih presjeka nosaa 9. dio 1 Sile presjeka (unutarnje sile): Udužna sila N Poprena sila T Moment uvijanja M t Moment savijanja M Napreanja 1. Normalno napreanje σ. Posmino

Διαβάστε περισσότερα

RAD, SNAGA I ENERGIJA

RAD, SNAGA I ENERGIJA RAD, SNAGA I ENERGIJA SADRŢAJ 1. MEHANIĈKI RAD SILE 2. SNAGA 3. MEHANIĈKA ENERGIJA a) Kinetiĉka energija b) Potencijalna energija c) Ukupna energija d) Rad kao mera za promenu energije 4. ZAKON ODRŢANJA

Διαβάστε περισσότερα

radni nerecenzirani materijal za predavanja

radni nerecenzirani materijal za predavanja Matematika 1 Funkcije radni nerecenzirani materijal za predavanja Definicija 1. Kažemo da je funkcija f : a, b R u točki x 0 a, b postiže lokalni minimum ako postoji okolina O(x 0 ) broja x 0 takva da je

Διαβάστε περισσότερα

PRSKALICA - LELA 5 L / 10 L

PRSKALICA - LELA 5 L / 10 L PRSKALICA - LELA 5 L / 10 L UPUTSTVO ZA UPOTREBU. 1 Prskalica je pogodna za rasprsivanje materija kao sto su : insekticidi, fungicidi i sredstva za tretiranje semena. Prskalica je namenjena za kućnu upotrebu,

Διαβάστε περισσότερα

35(7+2'1,3525$&8195$7,/$GLPHQ]LRQLVDQMHYUDWLOD

35(7+2'1,3525$&8195$7,/$GLPHQ]LRQLVDQMHYUDWLOD Predmet: Mašinski elementi Proraþun vratila strana 1 Dimenzionisati vratilo elektromotora sledecih karakteristika: ominalna snaga P 3kW Broj obrtaja n 14 min 1 Shema opterecenja: Faktor neravnomernosti

Διαβάστε περισσότερα

2.1 Kinematika jednodimenzionog kretanja

2.1 Kinematika jednodimenzionog kretanja Glava 2 Kinematika Gde god da pogledamo oko nas, možemo da uočimo tela u kretanju (u fizici je uobičajeno a se kaže u stanju kretanja ). Čak i kada smo u stanju mirovanja, naše srce kuca i na taj način

Διαβάστε περισσότερα

Fakultet tehničkih nauka, Softverske i informacione tehnologije, Matematika 2 KOLOKVIJUM 1. Prezime, ime, br. indeksa:

Fakultet tehničkih nauka, Softverske i informacione tehnologije, Matematika 2 KOLOKVIJUM 1. Prezime, ime, br. indeksa: Fakultet tehničkih nauka, Softverske i informacione tehnologije, Matematika KOLOKVIJUM 1 Prezime, ime, br. indeksa: 4.7.1 PREDISPITNE OBAVEZE sin + 1 1) lim = ) lim = 3) lim e + ) = + 3 Zaokružiti tačne

Διαβάστε περισσότερα

FUNDIRANJE. Temelj samac ekscentrično opterećen u prostoru 1/11/2013 TEMELJI SAMCI

FUNDIRANJE. Temelj samac ekscentrično opterećen u prostoru 1/11/2013 TEMELJI SAMCI 1/11/013 FUNDIRANJE TEEJI SACI 1. CENTRIČNO OPTEREĆEN TEEJ SAAC. EKSCENTRIČNO OPTEREĆEN TEEJ SAAC 1 Temelj samac ekscentrično oterećen rostor 1 1/11/013 Dimenzionisanje A temelja samca 3 Određivaje visine

Διαβάστε περισσότερα

VJEROJATNOST I STATISTIKA Popravni kolokvij - 1. rujna 2016.

VJEROJATNOST I STATISTIKA Popravni kolokvij - 1. rujna 2016. Broj zadataka: 5 Vrijeme rješavanja: 120 min Ukupan broj bodova: 100 Zadatak 1. (a) Napišite aksiome vjerojatnosti ako je zadan skup Ω i σ-algebra F na Ω. (b) Dokažite iz aksioma vjerojatnosti da za A,

Διαβάστε περισσότερα

ČVRSTOĆA 13. GEOMETRIJSKE KARAKTERISTIKE RAVNIH PRESJEKA ŠTAPA

ČVRSTOĆA 13. GEOMETRIJSKE KARAKTERISTIKE RAVNIH PRESJEKA ŠTAPA ČVRSTOĆA 13. GEOMETRIJSKE KARAKTERISTIKE RAVNIH PRESJEKA ŠTAPA STATIČKI MOMENTI I MOMENTI INERCIJE RAVNIH PLOHA Kao što pri aksijalnom opterećenju štapa apsolutna vrijednost naprezanja zavisi, između ostalog,

Διαβάστε περισσότερα

5 Sistemi linearnih jednačina. a 11 x 1 + a 12 x a 1n x n = b 1 a 21 x 1 + a 22 x a 2n x n = b 2.

5 Sistemi linearnih jednačina. a 11 x 1 + a 12 x a 1n x n = b 1 a 21 x 1 + a 22 x a 2n x n = b 2. 5 Sistemi linearnih jednačina 47 5 Sistemi linearnih jednačina U opštem slučaju, pod sistemom linearnih jednačina podrazumevamo sistem od m jednačina sa n nepoznatih x 1 + a 12 x 2 + + a 1n x n = b 1 a

Διαβάστε περισσότερα

Zadaci iz Osnova matematike

Zadaci iz Osnova matematike Zadaci iz Osnova matematike 1. Riješiti po istinitosnoj vrijednosti iskaza p, q, r jednačinu τ(p ( q r)) =.. Odrediti sve neekvivalentne iskazne formule F = F (p, q) za koje je iskazna formula p q p F

Διαβάστε περισσότερα

Geometrija (I smer) deo 1: Vektori

Geometrija (I smer) deo 1: Vektori Geometrija (I smer) deo 1: Vektori Srdjan Vukmirović Matematički fakultet, Beograd septembar 2013. Vektori i linearne operacije sa vektorima Definicija Vektor je klasa ekvivalencije usmerenih duži. Kažemo

Διαβάστε περισσότερα

VELEUČILIŠTE U RIJECI Prometni odjel. Zdenko Novak 1. UVOD

VELEUČILIŠTE U RIJECI Prometni odjel. Zdenko Novak 1. UVOD 10.2012-13. VELEUČILIŠTE U RIJECI Prometni odjel Zdenko Novak TEHNIČKA SREDSTVA U CESTOVNOM PROMETU 1. UVOD 1 Literatura: [1] Novak, Z.: Predavanja Tehnička sredstva u cestovnom prometu, Web stranice Veleučilišta

Διαβάστε περισσότερα

Sistemi veštačke inteligencije primer 1

Sistemi veštačke inteligencije primer 1 Sistemi veštačke inteligencije primer 1 1. Na jeziku predikatskog računa formalizovati rečenice: a) Miloš je slikar. b) Sava nije slikar. c) Svi slikari su umetnici. Uz pomoć metode rezolucije dokazati

Διαβάστε περισσότερα

Racionalni algebarski izrazi

Racionalni algebarski izrazi . Skratimo razlomak Racionalni algebarski izrazi [MM.4-()6] 5 + 6 +. Ako je a + b + c = dokazati da je a + b + c = abc [MM.4-()] 5 6 5. Reši jednačinu: y y y + + = 7 4 y = [MM.4-(4)] 4. Reši jednačinu:

Διαβάστε περισσότερα

Izradio: Željan Kutleša, mag.educ.phys. Srednja tehnička prometna škola Split

Izradio: Željan Kutleša, mag.educ.phys. Srednja tehnička prometna škola Split DINAMIKA Izradio: Željan Kutleša, mag.educ.phys. Srednja tehnička prometna škola Split Ova knjižica prvenstveno je namijenjena učenicima Srednje tehničke prometne škole Split. U knjižici su korišteni zadaci

Διαβάστε περισσότερα

OBLAST DEFINISANOSTI FUNKCIJE (DOMEN) Pre nego što krenete sa proučavanjem ovog fajla, obavezno pogledajte fajl ELEMENTARNE FUNKCIJE, jer se na

OBLAST DEFINISANOSTI FUNKCIJE (DOMEN) Pre nego što krenete sa proučavanjem ovog fajla, obavezno pogledajte fajl ELEMENTARNE FUNKCIJE, jer se na OBLAST DEFINISANOSTI FUNKCIJE (DOMEN) Prva tačka u ispitivanju toka unkcije je odredjivanje oblasti deinisanosti, u oznaci Pre nego što krenete sa proučavanjem ovog ajla, obavezno pogledajte ajl ELEMENTARNE

Διαβάστε περισσότερα

PROSTORNI STATIČKI ODREĐENI SUSTAVI

PROSTORNI STATIČKI ODREĐENI SUSTAVI PROSTORNI STATIČKI ODREĐENI SUSTAVI - svi elementi ne leže u istoj ravnini q 1 Z F 1 F Y F q 5 Z 8 5 8 1 7 Y y z x 7 X 1 X - svi elementi su u jednoj ravnini a opterećenje djeluje izvan te ravnine Z Y

Διαβάστε περισσότερα

On predstavlja osnovni pojam, poput pojma tačke ili prave u geometriji. Suštinsko svojstvo skupa je da se on sastoji od elemenata ili članova.

On predstavlja osnovni pojam, poput pojma tačke ili prave u geometriji. Suštinsko svojstvo skupa je da se on sastoji od elemenata ili članova. Pojam skupa U matematici se pojam skup ne definiše eksplicitno. On predstavlja osnovni pojam, poput pojma tačke ili prave u geometriji. Suštinsko svojstvo skupa je da se on sastoji od elemenata ili članova.

Διαβάστε περισσότερα

A 2 A 1 Q=? p a. Rješenje:

A 2 A 1 Q=? p a. Rješenje: 8. VJEŽBA - RIJEŠENI ZADACI IZ MEANIKE FLUIDA. Oreite minimalni protok Q u nestlačiom strujanju fluia ko koje će ejektor početi usisaati flui kroz ertikalnu cječicu. Zaano je A = cm, A =,5 cm, h=,9 m.

Διαβάστε περισσότερα

3. razred gimnazije- opšti i prirodno-matematički smer ALKENI. Aciklični nezasićeni ugljovodonici koji imaju jednu dvostruku vezu.

3. razred gimnazije- opšti i prirodno-matematički smer ALKENI. Aciklični nezasićeni ugljovodonici koji imaju jednu dvostruku vezu. ALKENI Acikliči ezasićei ugljovodoici koji imaju jedu dvostruku vezu. 2 4 2 2 2 (etile) viil grupa 3 6 2 3 2 2 prope (propile) alil grupa 4 8 2 2 3 3 3 2 3 3 1-bute 2-bute 2-metilprope 5 10 2 2 2 2 3 2

Διαβάστε περισσότερα

4. PREDAVANJE ČISTO PRAVO SAVIJANJE OTPORNOST MATERIJALA I

4. PREDAVANJE ČISTO PRAVO SAVIJANJE OTPORNOST MATERIJALA I 4. PREDAVANJE ČISTO PRAVO SAVIJANJE OTPORNOST MATERIJALA I Čisto pravo savijanje Pod čistim savijanjem grede podrazumeva se naprezanje pri kome su sve komponente unutrašnjih sila jednake nuli, osim momenta

Διαβάστε περισσότερα

Matematika I. Elvis Baraković, Edis Mekić. 4. studenog Pojam vektora. Sabiranje i oduzimanje vektora

Matematika I. Elvis Baraković, Edis Mekić. 4. studenog Pojam vektora. Sabiranje i oduzimanje vektora Matematika I Elvis Baraković, Edis Mekić 4. studenog 2011. 1 Analitička geometrija 1.1 Pojam vektora. Sabiranje i oduzimanje vektora Skalarnom veličinom ili skalarom nazivamo onu veličinu koja je potpuno

Διαβάστε περισσότερα

Dijagrami: Greda i konzola. Prosta greda. II. Dijagrami unutarnjih sila. 2. Popre nih sila TZ 3. Momenata savijanja My. 1. Uzdužnih sila N. 11.

Dijagrami: Greda i konzola. Prosta greda. II. Dijagrami unutarnjih sila. 2. Popre nih sila TZ 3. Momenata savijanja My. 1. Uzdužnih sila N. 11. Dijagrami:. Udužnih sia N Greda i konoa. Popre nih sia TZ 3. Momenata savijanja My. dio Prosta greda. Optere ena koncentriranom siom F I. Reaktivne sie:. M A = 0 R B F a = 0. M B = 0 R A F b = 0 3. F =

Διαβάστε περισσότερα

5.1 Njutnov zakon univerzalne gravitacije

5.1 Njutnov zakon univerzalne gravitacije Glava 5 Gravitacija Orbitiranje prirodnih i veštačkih satelita oko Zemlje, planeta oko Sunca, fenomen plime i oseke, prenos toplote strujanjem fluida, visoka temperatura unutrašnjosti planeta, padanje

Διαβάστε περισσότερα

Jednodimenzionalne slučajne promenljive

Jednodimenzionalne slučajne promenljive Jednodimenzionalne slučajne promenljive Definicija slučajne promenljive Neka je X f-ja def. na prostoru verovatnoća (Ω, F, P) koja preslikava prostor el. ishoda Ω u skup R realnih brojeva: (1)Skup {ω/

Διαβάστε περισσότερα

Devizno tržište. Mart 2010 Ekonomski fakultet, Beograd Irena Janković

Devizno tržište. Mart 2010 Ekonomski fakultet, Beograd Irena Janković Devizno tržište Devizni urs i devizno tržište Devizni urs - cena jedne valute izražena u drugoj valuti Promene deviznog ursa utiču na vrednost ative i pasive oje su izražene u stranoj valuti Devizni urs

Διαβάστε περισσότερα

Fizička mehanika i termofizika, junski rok

Fizička mehanika i termofizika, junski rok Fizička mehanika i termofizika, junski rok 5.7.2001. 1. Po strmoj ravni, nagibnog ugla α, kotrlja se bez klizanja masivni šuplji cilindar, mase M i poluprečnika R. Po unutrašnjosti cilindra se kreće pas.

Διαβάστε περισσότερα

Neprekinute funkcije i limesi Definicija neprekinute funkcije i njen odnos prema limesu Asimptote Svojstva neprekinutih funkcija

Neprekinute funkcije i limesi Definicija neprekinute funkcije i njen odnos prema limesu Asimptote Svojstva neprekinutih funkcija Sadržaj: Nizovi brojeva Pojam niza Limes niza. Konvergentni nizovi Neki važni nizovi. Broj e. Limes funkcije Definicija esa Računanje esa Jednostrani esi Neprekinute funkcije i esi Definicija neprekinute

Διαβάστε περισσότερα

Mate Vijuga: Rijeseni zadaci iz matematike za srednju skolu

Mate Vijuga: Rijeseni zadaci iz matematike za srednju skolu 7. KOMPLEKSNI BROJEVI 7. Opc pojmov Kompleksn brojev su sastavljen dva djela: Realnog djela (Re) magnarnog djela (Im) Promatrajmo broj a+ b = + 3 Realn do jednak je Re : Imagnarna jednca: = - l = (U elektrotehnc

Διαβάστε περισσότερα

Prvi pismeni zadatak iz Analize sa algebrom novembar Ispitati znak funkcije f(x) = tgx x x3. 2. Naći graničnu vrednost lim x a

Prvi pismeni zadatak iz Analize sa algebrom novembar Ispitati znak funkcije f(x) = tgx x x3. 2. Naći graničnu vrednost lim x a Testovi iz Analize sa algebrom 4 septembar - oktobar 009 Ponavljanje izvoda iz razreda (f(x) = x x ) Ispitivanje uslova Rolove teoreme Ispitivanje granične vrednosti f-je pomoću Lopitalovog pravila 4 Razvoj

Διαβάστε περισσότερα

Masa i gustina. zadaci

Masa i gustina. zadaci Masa i gustina zadaci 1.)Vaga je u ravnote i dok je na jednom njenom tasu telo, a na drugom su tegovi od: 10 g, 2 g, 500 mg i 200 mg.kolika je masa ovog tela? 2.)Na jednom tasu vage se nal azi telo i teg

Διαβάστε περισσότερα

PROSTA GREDA (PROSTO OSLONJENA GREDA)

PROSTA GREDA (PROSTO OSLONJENA GREDA) ROS GRED (ROSO OSONJEN GRED) oprečna sila i moment savijanja u gredi y a b c d e a) Zadana greda s opterećenjem l b) Sile opterećenja na gredu c) Određivanje sila presjeka grede u presjeku a) Unutrašnje

Διαβάστε περισσότερα

Fizika 1. Auditorne vježbe 5. Dunja Polić. Dinamika: Newtonovi zakoni. Fakultet elektrotehnike, strojarstva i brodogradnje Studij računarstva

Fizika 1. Auditorne vježbe 5. Dunja Polić. Dinamika: Newtonovi zakoni. Fakultet elektrotehnike, strojarstva i brodogradnje Studij računarstva Fakultet elektrotehnike, strojarstva i brodogradnje Studij računarstva Školska godina 2006/2007 Fizika 1 Auditorne vježbe 5 Dinamika: Newtonovi zakoni 12. prosinca 2008. Dunja Polić (dunja.polic@fesb.hr)

Διαβάστε περισσότερα

Termofizika. Glava Temperatura

Termofizika. Glava Temperatura Glava 7 Termofizika Toplota je jedan od oblika energije sa čijim transferom sa tela na telo se svakodnevno srećemo. Tako nas na primer, leti Sunce zagreva tokom dana dok su vedre letnje noći često prilično

Διαβάστε περισσότερα

( ) BROJNI PRIMER 4. Temeljni nosač na sloju peska. Slika 6.3. Rešenje: Ekvivalentni modul reakcije podloge/peska k i parametar krutosti λ :

( ) BROJNI PRIMER 4. Temeljni nosač na sloju peska. Slika 6.3. Rešenje: Ekvivalentni modul reakcije podloge/peska k i parametar krutosti λ : BROJNI PRIMER 4 Armrano etonsk temeljn nosač (slka 63), fundran je na dun od D f =15m, u sloju poto-pljenog peska relatvne zjenost D r 75% Odredt sleganje w, nag θ, transverzalnu slu T, moment savjanja

Διαβάστε περισσότερα

ZBIRKA POTPUNO RIJEŠENIH ZADATAKA

ZBIRKA POTPUNO RIJEŠENIH ZADATAKA **** IVANA SRAGA **** 1992.-2011. ZBIRKA POTPUNO RIJEŠENIH ZADATAKA PRIRUČNIK ZA SAMOSTALNO UČENJE POTPUNO RIJEŠENI ZADACI PO ŽUTOJ ZBIRCI INTERNA SKRIPTA CENTRA ZA PODUKU α M.I.M.-Sraga - 1992.-2011.

Διαβάστε περισσότερα

Dnevno kolebanje temperature

Dnevno kolebanje temperature TEMPERATURA VAZDUHA TEMPERATURA VAZDUHA Temperatura vazduha spada među najvažnije klimatske elemente. Zavisi od sunčeve radijacije, odnosno od toplotnog bilansa. Temperatura vazduha se menja po prostoru

Διαβάστε περισσότερα

2. TERMODINAMIKA 2.1. Prvi zakon termodinamike

2. TERMODINAMIKA 2.1. Prvi zakon termodinamike . ERMODINAMIKA.. rvi zakon termodinamike ermodinamika je naučna disciplina koja proučava energetske promene koje prate univerzalne procese u prirodi kao i vezu tih promena sa osobinama materije koja učestvuje

Διαβάστε περισσότερα

Sistemi linearnih jednačina

Sistemi linearnih jednačina Sistemi linearnih jednačina Sistem od n linearnih jednačina sa n nepoznatih (x 1, x 2,..., x n ) je a 11 x 1 + a 12 x 2 + + a 1n x n = b 1, a 21 x 1 + a 22 x 2 + + a 2n x n = b 2, a n1 x 1 + a n2 x 2 +

Διαβάστε περισσότερα

30 kn/m. - zamenimo oslonce sa reakcijama oslonaca. - postavimo uslove ravnoteže. - iz uslova ravnoteže odredimo nepoznate reakcije oslonaca

30 kn/m. - zamenimo oslonce sa reakcijama oslonaca. - postavimo uslove ravnoteže. - iz uslova ravnoteže odredimo nepoznate reakcije oslonaca . Za zadati nosač odrediti: a) Statičke uticaje (, i T) a=.50 m b) Dimenzionisati nosač u kritičnom preseku i proveriti normalne, smičuće i uporedne napone F=00 k F=50 k q=30 k/m a a a a Kvalitet čelika:

Διαβάστε περισσότερα

Atmosfera. Glava Nastanak planetarne atmosfere Nastanak Sunčevog sistema

Atmosfera. Glava Nastanak planetarne atmosfere Nastanak Sunčevog sistema Glava 1 Atmosfera 1.1 Nastanak planetarne atmosfere Atmosfera 1 Zemlje je relativno tanak sferni gasoviti omotač koji gravitacija drži uz Zemlju. U postupku analize Zemljine atmosfere i ljudskog uticaja

Διαβάστε περισσότερα

Dinamičke jednačine ravnog kretanja krutog tela.

Dinamičke jednačine ravnog kretanja krutog tela. Dinamičke jednačine ravnog kretanja krutog tela. Prve dve dinamičke jednačine ravnog kretanja krutog tela, u prvoj varijanti, imaju oblik: 1) m & x X, ) m & y = Y. = i i Dok, u drugoj varijanti, njihov

Διαβάστε περισσότερα

2. KOLOKVIJ IZ MATEMATIKE 1

2. KOLOKVIJ IZ MATEMATIKE 1 2 cos(3 π 4 ) sin( + π 6 ). 2. Pomoću linearnih transformacija funkcije f nacrtajte graf funkcije g ako je, g() = 2f( + 3) +. 3. Odredite domenu funkcije te odredite f i njenu domenu. log 3 2 + 3 7, 4.

Διαβάστε περισσότερα

Algebarske strukture sa jednom operacijom (A, ): Ako operacija ima osobine: zatvorenost i asocijativnost, onda je (A, ) polugrupa

Algebarske strukture sa jednom operacijom (A, ): Ako operacija ima osobine: zatvorenost i asocijativnost, onda je (A, ) polugrupa Binarne operacije Binarna operacija na skupu A je preslikavanje skupa A A u A, to jest : A A A. Pišemo a b = c. Označavanje operacija:,,,. Poznate operacije: sabiranje (+), oduzimanje ( ), množenje ( ).

Διαβάστε περισσότερα

UNIVERZITET U NOVOM SADU Poljoprivredni fakultet FIZIČKE OSOBINE POLJOPRIVREDNIH MATERIJALA (AUTORIZOVANA PREDAVANJA)

UNIVERZITET U NOVOM SADU Poljoprivredni fakultet FIZIČKE OSOBINE POLJOPRIVREDNIH MATERIJALA (AUTORIZOVANA PREDAVANJA) UNIVERZITET U NOVOM SADU Poljoprivredni fakultet DR MIRKO BABIĆ DR LJILJANA BABIĆ FIZIČKE OSOBINE POLJOPRIVREDNIH MATERIJALA (AUTORIZOVANA PREDAVANJA) NOVI SAD, 2007 UVOD Inženjerski pristup rešavanju

Διαβάστε περισσότερα

Zadatak 1. U kojim od spojeva ispod je iznos pada napona na otporniku R=100 Ω približno 0V?

Zadatak 1. U kojim od spojeva ispod je iznos pada napona na otporniku R=100 Ω približno 0V? Zadatak 1. U kojim od spojeva ispod je iznos pada napona na otporniku R=100 Ω približno 0V? a) b) c) d) e) Odgovor: a), c), d) Objašnjenje: [1] Ohmov zakon: U R =I R; ako je U R 0 (za neki realni, ne ekstremno

Διαβάστε περισσότερα

MERENJE, GREŠKE MERENJA I OBRADA REZULTATA MERENJA

MERENJE, GREŠKE MERENJA I OBRADA REZULTATA MERENJA MERENJE, GREŠKE MERENJA I OBRADA REZULTATA MERENJA 1 Merenje Svaki eksperimentalni rad u fizici praćen je merenjem neke fizičke veličine. Izmeriti neku fizičku veličinu znači uporediti je sa standardnom

Διαβάστε περισσότερα

Ispit iz Fizike 1 u februarskom roku (školska 2009/10.) ETF, Beograd,

Ispit iz Fizike 1 u februarskom roku (školska 2009/10.) ETF, Beograd, Ispit iz Fizike 1 u februarskom roku 2010. (školska 2009/10.) ETF, Beograd, 21.2.2010. 1. Telo, koje se može smatrati materijalnom tačkom, bačeno je kao kosi hitac sa neke visine pod nekim početnim elevacionim

Διαβάστε περισσότερα

Koordinatni sistemi. Za određivanje položaja u ravni koriste se dva glavna koordinatna sistema:

Koordinatni sistemi. Za određivanje položaja u ravni koriste se dva glavna koordinatna sistema: Koordinatni sistemi Za određivanje položaja u ravni koriste se dva glavna koordinatna sistema: Kartezijeve koordinate Korištenjem Kartezijevih koordinata položaj tačke u ravni se definiše sa dva broja,

Διαβάστε περισσότερα

Modeli analogni sistemi

Modeli analogni sistemi Modeli analogni sistemi Sistemsko modeliranje Sistemsko modeliranje je prilično težak zadatak jer zahteva iskustvo, praksu i intuiciju da bi neko bio dobar modeler. Osnova za gradnju matematičkih modela

Διαβάστε περισσότερα

Str

Str Str. Testiranje statističkih hipoteza Predavač: Dr Mirko Savić savicmirko@ef.uns.ac.rs www.ef.uns.ac.rs Definicija: Hipoteza predstavlja pretpostavku koja je zasnovana na određenim činjenicama (najčešće

Διαβάστε περισσότερα

GEOTEHNIČKE KONSTRUKCIJE POTPORNE KONSTRUKCIJE. Predavanje: POTPORNE KONSTRUKCIJE Prof.dr.sc. Leo MATEŠIĆ 2012/13

GEOTEHNIČKE KONSTRUKCIJE POTPORNE KONSTRUKCIJE. Predavanje: POTPORNE KONSTRUKCIJE Prof.dr.sc. Leo MATEŠIĆ 2012/13 GEOTEHNIČKE KONSTRUKCIJE POTPORNE KONSTRUKCIJE Predavanje: POTPORNE KONSTRUKCIJE Prof.dr.sc. Leo MATEŠIĆ 2012/13 Sadržaj predavanja 1 TLAK I OTPOR TLA (ponavljanje) 1.1 Općenito - Horizontalni (bočni)

Διαβάστε περισσότερα

FIZIČKO-TEHNIČKA MERENJA: SENZORI PROTOKA

FIZIČKO-TEHNIČKA MERENJA: SENZORI PROTOKA : SENZORI PROTOKA UVOD Merenje protoka je veoma bitno u velikom broju industrijskih aplikacija. Posebno su značajna obračunska merenje, jer se cena gasova i tečnosti određuje na osnovu protoka kroz cevi.

Διαβάστε περισσότερα

Otvorene mreže. Zadatak 1

Otvorene mreže. Zadatak 1 Otvorene mreže Zadatak Na slici je data otvorena mreža u kojoj je rocesor centralni server. Prosečan intenzitet ulaznog toka rocesa u sistem iznosi X rocesa/sec. Posle rocesorske obrade, roces u % slučajeva

Διαβάστε περισσότερα

INTEGRALI Zadaci sa kolokvijuma

INTEGRALI Zadaci sa kolokvijuma INTEGRALI Zadaci sa kolokvijuma ragan ori Sadrжaj Neodređeni integral Određeni integral 6 Nesvojstveni integral 9 4 vojni integral 5 Redovi 5 Studentima generacije / (grupe A9, A i A) Ovo je jox jedna

Διαβάστε περισσότερα

TERMODINAMIKA osnovni pojmovi energija, rad, toplota

TERMODINAMIKA osnovni pojmovi energija, rad, toplota TERMODINAMIKA osnovni pojmovi energija, rad, toplota TERMODINAMIKA TERMO TOPLO nauka o kretanju toplote DINAMO SILA Termodinamika-nauka odnosno naučna disciplina koja ispituje odnose između promena u sistemima

Διαβάστε περισσότερα