ΦΥΣ Διαλ.01 1 Θεωρία - Πείραμα Μετρήσεις - Σφάλματα

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "ΦΥΣ 114 - Διαλ.01 1 Θεωρία - Πείραμα Μετρήσεις - Σφάλματα"

Transcript

1 ΦΥΣ Διαλ.01 1 Θεωρία - Πείραμα Μετρήσεις - Σφάλματα q Θεωρία: Η απάντηση που ζητάτε είναι αποτέλεσμα μαθηματικών πράξεων και εφαρμογή τύπων. Το αποτέλεσμα είναι συγκεκριμένο q Πείραμα: Στηρίζεται σε μετρήσεις. Κάθε μέτρηση όσο προσεκτικά και αν έχει πραγματοποιηθεί περιέχει μια αβεβαιότητα q Όλη η δομή και εφαρμογή των επιστημών στηρίζονται σε πείραμα και επομένως μετρήσεις. Η ικανότητα να υπολογίσουμε την αβεβαιότητα των μετρήσεων και να περιορίσουμε το μέγεθός τους είναι ιδιαίτερα σημαντικό αν θέλουμε να εξάγουμε σημαντικά συμπεράσματα q Η μεθοδολογία, τα όργανα που χρησιμοποιούνται αλλά και μεις οι ίδιοι δεν είμαστε αλάνθαστοι με αποτέλεσμα οι μετρήσεις που παίρνουμε συνοδεύονται πάντοτε με κάποια αβεβαιότητα που ονομάζεται πειραματικό σφάλμα της μέτρησης q Το σφάλμα αντιπροσωπεύει την διαφορά της μετρούμενης ή υπολογιζόμενης τιμής ενός μεγέθους από την αληθινή τιμή του μεγέθους αυτού

2 Σφάλματα μετρήσεων ΦΥΣ Διαλ.01 2 q Είναι σημαντικό σε όλες τις επιστήμες: Ø να σχεδιάσουμε και να πραγματοποιήσουμε κάποιο πείραμα Αλλά περισσότερο σημαντικό Ø να κατανοήσουμε τους περιορισμούς που επιβάλει ο σχεδιασμός του και οι συσκευές που χρησιμοποιούνται για την μέτρηση διαφόρων φυσικών μεγεθών q Το να καταλάβουμε τα πειραματικά σφάλματα και πως μπορούμε να τα χρησιμοποιήσουμε είναι απαραίτητο αν θέλουμε να συγκρίνουμε θεωρητικά και πειραματικά αποτελέσματα και να εξάγουμε χρήσιμα συμπεράσματα

3 ΦΥΣ Διαλ.01 3 Γιατί τόσο σημαντική η γνώση του σφάλματος? q Έστω ότι έχετε κάποιο πολύτιμο νόμισμα το οποίο θέλετε να βρείτε άν είναι χρυσό ή κάποιο άλλο κράμα μετάλλων. Ξέρετε ότι η πυκνότητα του χρυσού είναι 15.5γρ/cm 3 ενώ του κράματος είναι 13.8γρ/cm 3. Καλείτε 2 ειδικούς οι οποίοι μετρούν με κάποια μέθοδο τη πυκνότητα του νομίσματος: [ ] [ ] Ø A ειδικός: Η πυκνότητα είναι 15 και σίγουρα στο διάστημα: 13.5! 16.5 Ø Β ειδικός: Η πυκνότητα είναι 13.9 και σίγουρα στο διάστημα: 13.7! 14.1 q Η μέτρηση του Β ειδικού είναι περισσότερο ακριβής αλλά η μέτρηση του Α ειδικού είναι επίσης σωστή. Οι δυό μετρήσεις είναι συμβατές στα όρια της ακρίβειας της κάθε μέτρησης. Επομένως και οι δυό μετρήσεις μπορούμε να υποθέσουμε (και πιθανόν) είναι σωστές. q Η μέτρηση του Α ειδικού δεν είναι ιδιαίτερα χρήσιμη ωστόσο Η αβεβαιότητα είναι πολύ μεγάλη και περιέχει και τις δυο τιμές που θέλουμε να υπολογίσουμε Επομένως δεν μπορούμε να εξαγάγουμε κάποιο συμπέρασμα q Η μέτρηση του Β ειδικού δείχνει ότι το νόμισμα δεν είναι χρυσό. Η πυκνότητα του κράματος (13.8γρ/cm 3 ) περιέχεται στην αβεβαιότητα της μέτρησης q Ο Β ειδικός θα πρέπει να δώσει επιχειρήματα που να πείθουν για το μέγεθος της αβεβαιότητας της μέτρησής του. Αυτό είναι ιδιαίτερα σημαντικό q Χωρίς τη γνώση των αβεβαιοτήτων των 2 μετρήσεων τα αποτελέσματα θα ήταν άχρηστα και συγκρουόμενα: Ο Α ειδικός λέει ότι είναι χρυσό και ο Β το αντίθετο

4 ΦΥΣ Διαλ.01 4 Σφάλματα To σφάλμα είναι ανθρώπινο. To να περιγράψουμε το σφάλμα σωστά είναι μια μορφή τέχνης Oι φυσικές επιστήμες χωρίζονται σε 2 κλάδους: θεωρία και πείραμα Ο τρόπος που οι 2 κλάδοι εξετάζουν αριθμητικά αποτελέσματα είναι σημαντικά διαφορετικός. Σώμα το οποίο πέφτει υπό την επίδραση Παράδειγμα της βαρύτητας κινείται με σταθερή επιτάχυνση g=9.8m/s 2 Η πρόταση αυτή είναι απολύτως αποδεκτή όταν λύνουμε κάποιο πρόβλημα. Ωστόσο όταν κάνουμε κάποια μέτρηση είναι ημιτελής. Η επιτάχυνση g είναι 9.7 ή 9.9 m/s 2? Είναι πιο κοντά στο ή στο m/s 2? Όλοι ξέρουμε ότι η επιτάχυνση g μεταβάλεται με το ύψος από την επιφάνεια της γης. Εξαρτάται ακόμα από το γεωγραφικό πλάτος. Ακόμα περισσότερο η μέτρηση μιας φυσικής ποσότητας (όπως το g) εξαρτάται από τα όργανα που χρησιμοποιούμε και κανένα όργανα δεν είναι τέλειο. Επομένως είναι αδύνατο να γνωρίζουμε ακριβώς τη τιμή της επιτάχυνσης g

5 ΦΥΣ Διαλ.01 5 Σφάλματα Από πειραματική άποψη η προηγούμενη πρόταση θα ήταν σωστή ως: Μια μπάλα 5gr που αφήνεται ελεύθερη να πέσει υπό την επίδραση της δύναμης της βαρύτητας από ύψος 1.0 ± 0.1m από την επιφάνεια του εδάφους μετρήθηκε ότι κινείται με σταθερή επιτάχυνση g = 9.81 ± 0.03m / s 2 H μέτρηση πραγματοποιήθηκε στο εργαστήριο Β212 του Πανεπιστημίου Κύπρου στη Λευκωσία στις 15:00 τη Πέμπτη 8 Σεπτεμβρίου Ο αριθμός που εμφανίζεται στα δεξιά του συμβόλου ± προσδιορίζει το σφάλμα της μέτρησης. Την αβεβαιότητα (ή βεβαιότητα) της μέτρησης. Σημαίνει ότι η πραγματική τιμή του μεγέθους που μετρούμε βρίσκεται μεταξύ των τιμών g-δg και g+δg g - Δg g g + Δg Προσοχή: Το σωστό πείραμα είναι αυτό που έχει εκτελεσθεί σωστά και επομένως Το σφάλμα σε μια πειραματικά μετρούμενη ποσότητα δεν μπορεί ποτέ να βρεθεί σε κάποιο βιβλίο ή σε κάποια ιστοσελίδα

6 Aβεβαιότητα - (uncertainty) ΦΥΣ Διαλ.01 6 Μιλήσαμε για σφάλματα (errors), δηλώνοντας ότι δείχνουν ασυμφωνία μεταξύ της μετρούμενης τιμής ενός φυσικού μεγέθους και της πραγματικής τιμής του. Ωστόσο ο στόχος της επιστημονικής έρευνας είναι να βρει κάτι νέο, τη τιμή του οποίου δεν γνωρίζουμε από πριν. Επομένως δεν μπορούμε να κάνουμε αναφορά σε πραγματική τιμή ενός μεγέθους και επομένως ο ορισμός του σφάλματος δεν ισχύει. Ο πραγματικός επιστήμονας που ανακαλύπτει κάτι υποθέτει πάντοτε ότι το πείραμά του δεν έχει σφάλμα μέτρησης. Υπάρχει πάντα αυτή η πιθανότητα και πάντοτε μια μέθοδος αναλύεται διεξοδικά για αποφυγή σφάλματος μέτρησης Αργότερα, επαναλαμβάνοντας μια μέτρηση μπορεί να ανακαλυφθεί κάποιο σφάλμα αλλά αρχικά δεν υπάρχει κάποιος οδηγός για σύγκριση με την πραγματική τιμή. Αβεβαιότητα μιας μετρούμενης τιμής είναι το διάστημα γύρω από την μετρούμενη τιμή τέτοιο ώστε η επανάλειψη της μέτρησης θα δώσει ένα αποτέλεσμα το οποίο περικλείεται στο διάστημα αυτό Το διάστημα αυτό δηλώνεται από τον ερευνητή σύμφωνα με προκαθορισμένες αρχές υπολογισμού της αβεβαιότητας. Η αβεβαιότητα είναι o σημαντικός όρος που επιτρέπει τους επιστήμονες να κάνουν πλήρως βέβαια συμπεράσματα

7 Αβεβαιότητα ΦΥΣ Διαλ.01 7 Έστω ότι κάποιος συνάδελφός σας μέτρησε ότι το πάχος ενός βιβλίου είναι 8.53±0.08cm. Δηλώνοντας την αβεβαιότητα (0.08) πιστοποιεί ότι οποιαδήποτε μέτρηση του πάχους του βιβλίου θα δώσει μια τιμή στο διάστημα cm Αν σας έλεγε ότι το βιβλίο έχει πάχος 8.53 cm τότε η πληροφορία αυτή είναι ελλειπής μια και δεν έχετε γνώση των περιορισμών του οργάνου μέτρησης. Δεν μπορείτε να συζητήσετε για σφάλμα στην περίπτωση αυτή και δεν θα μιλήσετε με σιγουριά για το αποτέλεσμα. Χρειάζεται πάντοτε να ορίσετε το διάστημα εμπιστοσύνης (confidence interval) και τότε μπορείτε να εκφράσετε οτιδήποτε με εμπιστοσύνη που κάποιος επιστήμονας θα πρέπει να συμφωνήσει μαζί σας. O απώτερος σκοπός είναι να κάνετε το διάστημα αυτό όσο το δυνατό μικρότερο και αυτό επιτυγχάνεται με εμπειρία. Αβεβαιότητα επομένως μιας αναφερόμενης μέτρησης είναι το διάστημα εμπιστοσύνης γύρω από την μετρούμενη τιμή τέτοιο ώστε η μετρούμενη τιμή δεν μπορεί να βρίσκεται έξω από αυτό Η αβεβαιότητα μπορεί να δοθεί και σα πιθανότητα. Στη περίπτωση αυτή η μετρούμενη τιμή έχει τη δηλώμενη πιθανότητα να βρίσκεται στο διάστημα εμπιστοσύνης.

8 ΦΥΣ Διαλ.01 8 Aκρίβεια και πιστότητα μέτρησης q Πιστότητα (accuracy) ενός πειράματος μέτρησης μιας ποσότητας είναι το μέτρο του πόσο κοντά στην αληθινή τιμή της φυσικής ποσότητας βρίσκεται το αποτέλεσμα q Ακρίβεια (precision) ενός πειράματος μέτρησης μιας ποσότητας υποδηλώνει κατά πόσο διαδοχικές μετρήσεις συμπίπτουν ή επαναλαμβάνονται και αναφέρεται στη διακριτική ικανότητα (resolution) της μέτρησης. Η διακριτική ικανότητα δείχνει πόσο στενά είναι τα όρια στα οποία προσδιορίζεται το μετρούμενο μέγεθος (α) (β) Πιστό και ακριβές (γ) (δ) Ακριβές αλλά όχι πιστό Πιστό αλλά όχι ακριβές Ούτε ακριβές και ούτε πιστό

9 Είδη σφαλμάτων q Ακούσια ή απαράδεκτα σφάλματα Έλλειψη προσοχής Λανθασμένη ανάγνωση ή καταγραφή μετρήσεων Λάθη πράξεων Ανώμαλες πειραματικές συνθήκες q Συστηματικά σφάλματα ΦΥΣ Διαλ.02 9 Ø Στην περίπτωση αυτή, οι μετρήσεις πρέπει να επαναληφθούν ή αν είναι μέρος μιας σειράς μετρήσεων τότε η συγκεκριμένη μέτρηση παραλείπεται Σφάλματα οργάνων μέτρησης (π.χ. λάθος βαθμονόμηση οργάνου μέτρησης) Σφάλματα περιβάλλοντος (π.χ. Θερμοκρασία, πίεση, μαγνητικό πεδίο της γης, μη ακριβές θεωρητικό μοντέλο) Σφάλματα θεωρητικής φύσης q Στατιστικά ή τυχαία σφάλματα Σφάλματα που εισέρχονται κατά τη διάρκεια μιας μέτρησης και έχουν σαν αποτέλεσμα να μετρούμε είτε μεγαλύτερη ή μικρότερη τιμή από τη πραγματική. π.χ. ο χρόνος αντίδρασής μας στη μέτρηση χρόνου με ένα χρονόμετρο Τα υπολογίζουμε και ελαττώνουμε με πολλαπλές μετρήσεις αλλά δεν μπορούμε να αποφύγουμε υπάρχουν πάντα

10 ΦΥΣ Διαλ Συστηματικά σφάλματα Σφάλματα παρατήρησης (π.χ. ανάγνωση οργάνου - έμμεση ή άμεση εξάρτηση από τον ανθρώπινο παράγοντα) Συνήθως απαλείφονται με την επανάληψη της μέτρησης από άλλους παρατηρητές Η μέτρηση στο διπλανό σχήμα δείχνει να υποφέρει από κάποιο σφάλμα: Ο παρατηρητής μάλλον χρειάζεται να καθαρίσει τα γυαλιά του γιατί η μέτρηση που κάνει δεν διαβάζεται καθαρά Η μέτρηση δηλαδή έχει προτίμηση (bias) εξαιτίας του παρατηρητή. Επανάληψη της μέτρησης από άλλους παρατηρητές ουσιαστικά θα μας δώσει μια κατανομή τιμών γύρω από την αληθινή τιμή Τα συστηματικά σφάλματα δεν αναγνωρίζονται εύκολα και ο προσδιορισμός τους είναι πολλές φορές επίπονος Ονομάζονται συστηματικά σφάλματα γιατί το αποτέλεσμα της μέτρησης είναι πάντοτε μετατοπισμένο προς μια κατεύθυνση σχετικά με την αληθινή τιμή του μετρούμενου μεγέθους (προς τα πάνω ή προς τα κάτω) Τα συστηματικά σφάλματα επηρεάζουν την πιστότητα (accuracy) ενός πειράματος

11 ΦΥΣ Διαλ Στατιστικά ή τυχαία σφάλματα Τα σφάλματα αυτά εμφανίζονται ακόμα και όταν έχουν απαλοιφεί τα συστηματικά και ακούσια σφάλματα ή έχουν ληφθεί υπόψη Προέρχονται από συνδυασμό διαφόρων αιτιών όπως και τα συστηματικά σφάλματα αλλά ο τρόπος με τον οποίο επηδρούν σε μια μέτρηση είναι τυχαίος Τα σφάλματα αυτά δεν είναι ή δεν φαίνονται να είναι συνδεδεμένα με κάποια αιτία και δεν επαναλαμβάνονται αλλά είναι τυχαία Εξαιτίας τους η μέτρηση ενός φυσικού μεγέθους μπορεί να δώσει τιμή μεγαλύτερη της αληθινής ενώ η επανάληψη της μέτρησης μπορεί να δώσει κάποια μικρότερη τιμή της αληθινής Τα σφάλματα αυτά υπάρχουν σε κάθε μέτρηση με αποτέλεσμα τόσο η αληθινή όσο και το ακριβές σφάλμα μιας μέτρησης να μη μπορούν να προσδιορισθούν Ένα καλό παράδειγμα τυχαίου σφάλματος είναι αυτό που σχετίζεται με την δειγματοληψία ή μέτρηση. Έστω ότι μελετάμε μια ραδιενεργό διάσπαση που γίνεται τυχαία με ένα σταθερό ρυθμό. Αν ένα δείγμα έχει 1000 ραδιενεργείς διασπάσεις/sec τότε ο αναμενόμενος αριθμός διασπάσεων σε 5sec είναι Αν παίρνουμε μετρήσεις κάθε 5sec τότε οι τιμές των διασπάσεων που θα μετρούμε θα διαφέρει από την αναμενόμενη τιμή, 5000, αλλά εν γένει η τιμή που θα μετρούμε θα είναι γύρω από την τιμή 5000± 5000 Τα στατιστικά σφάλματα επηρεάζουν την ακρίβεια (precision) ενός πειράματος και ελαττώνονται με αρκετές επαναλήψεις της μέτρησης

12 Σφάλμα ανάγνωσης οργάνου ΦΥΣ Διαλ Το σφάλμα αυτό αναφέρεται σε αβεβαιότητες στη μέτρηση που προκαλούνται από τις πεπερασμένες ιδιότητες του οργάνου μέτρησης και/ή από τις δικές μας πεπερασμένες ικανότητες τη στιγμή της μέτρησης (π.χ. χρόνος αντίδρασης) Το σφάλμα αυτό δεν αναφέρεται σε άλλα σφάλματα που μπορούν να γίνουν κατά τη διάρκεια ενός πειράματος q Το σφάλμα ανάγνωσης επηρεάζει την ακρίβεια ενός πειράματος Ø Μήκος ενός μολυβιού: Τοποθετούμε τη μια πλευρά στο 0 του χάρακα και πρέπει να αποφασίσουμε σε ποια υποδιαίρεση φθάνει η αιχμηρή πλευρά του Για να υπολογήσουμε το σφάλμα ανάγνωσης πρέπει να απαντήσουμε στην ερώτηση: ποια είναι η μέγιστη και ελάχιστη τιμή που μπορεί να είχε η θέση για την οποία δεν θα δούμε καμιά διαφορά Δεν υπάρχει κάποιος κανόνας που να μας βοηθά στην απάντηση Οι υποδιαιρέσεις του χάρακα είναι αρκετά κοντά (1mm) και μπορούμε αναμφίβολα να αποφασίσουμε ότι το μήκος του μολυβιού είναι πιο κοντά στα 36mm από ότι στα 35mm ή 37mm αλλά σίγουρα θέλουμε καλύτερη ανάγνωση. Θα μπορούσε να ήταν <36.5mm? Πολύ πίθανο αλλά μάλλον μικρότερη Θα μπορούσε να ήταν <35.5mm? Μάλλον απίθανο Ø Η πιθανότερη τιμή του σφάλματος ανάγνωσης είναι ±0.5mm και η μέτρηση του μήκους είναι 36.0±0.5 mm.

13 ΦΥΣ Διαλ Σφάλμα ανάγνωσης οργάνου q Μέτρηση διαφοράς ηλεκτρικού δυναμικού στο άκρα μιας αντίστασης Οι υποδιαιρέσεις στην περίπτωση αυτή έχουν μεγαλύτερη απόσταση. Μπορούμε ωστόσο να υπολογίσουμε τη θέση του δείκτη μεταξύ δυο υποδιαιρέσεων Μια πιθανή (λογική) τιμή για την τάση θα ήταν 5.3V με πιθανό εύρος V Για άλλους παρατηρητές το σφάλμα να ήταν ±0.2V ή μικρότερο π.χ. 0.05V αλλά κανείς δεν θα αμφισβητούσε ότι το εύρος που δόθηκε αρχικά (0.1V) δεν αποτελεί μια λογική εκτίμηση του σφάλματος Συχνά αναφέρεται στην βιβλιογραφία ότι το σφάλμα ανάγνωσης είναι ± μισό της μικρότερης υποδιαίρεσης. Αυτό είναι λάθος! Το σφάλμα ανάγνωσης τέτοιων οργάνων μπορούν να προσδιοριστούν μόνο από το παρατηρητή που διαβάζει την ένδειξη του οργάνου και μπορεί να είναι διαφορετική για διαφορετικά άτομα

14 Σφάλμα ανάγνωσης οργάνου ΦΥΣ Διαλ Για ένα ψηφιακό όργανο το σφάλμα ανάγνωσης είναι συνήθως είναι ±το μισό του τελευταίου ψηφίου Η έκφραση ±το μισό του τελευταίου ψηφίου είναι η γλώσσα που χρησιμοποιείται στους οδηγούς των κατασκευαστών του οργάνου Δεν σημαίνει το μισό της τιμής του τελευταίου ψηφίου ( 0.8 στη περίπτωσή μας) αλλά το μισό της δύναμης του 10 που αντιπροσωπεύει το τελευταίο ψηφίο. 1 Δηλαδή για την περίπτωσή μας:! 0.1 = Είναι σα να λέμε ότι η τιμή είναι πιο κοντά στο 12.8 από το 12.7 ή Η τελική μας απάντηση επομένως θα ήταν ± C Προσοχή: Το σφάλμα του οργάνου καθορίζεται από τους κατασκευαστές και θα πρέπει να ανατρέχουμε στο αντίστοιχο οδηγό χρήσης του οργάνου

15 Σφάλμα σε επαναλβανόμενες μετρήσεις ΦΥΣ Διαλ Έστω ότι μετρούμε σε ένα πείραμα το χρόνο που χρειάζεται μια μπάλα να φθάσει στο έδαφος όταν την αφήσουμε από ένα συγκεκριμένο ύψος Οι μετρήσεις μας εξαρτώνται από τις διαφοροποιήσεις στο χρόνο αντίδρασής μας για να ξεκινήσουμε ή να σταματήσουμε το χρονόμετρο, τυχαίες διακυμάνσεις της κίνησης του αέρα, διακυμάνσεις στις αρχικές συνθήκες. Όλες αυτές οι διακυμάνσεις οδηγούν σε μια σειρά μετρήσεων που μπορεί να παρουσιάζουν σημαντική διασπορά. Η αληθινή τιμή βρίσκεται κάπου μεταξύ της μικρότερης και μεγαλύτερης τιμής που έχουμε μετρήσει ενώ η διασπορά (το διάστημα που βρίσκονται οι τιμές) δίνει το πιο πιθανό διάστημα τιμών. Υποθέτουμε ότι η καλύτερη εκτίμηση των μετρήσεών μας δίνεται από την αριθμητική μέση τιμή των μετρήσεων αυτών x = x 1 + x 2 + x 3 +!+ x n n Πάντοτε ζητούμε και μια μέτρηση της διασποράς των τιμών Η διασπορά σχετίζεται με την αβεβαιότητα της υπολόγιζόμενης τιμής από την αληθινή τιμή του μεγέθους x. Ο καλύτερος υπολογισμός της διασποράς δίνεται από την τυπική απόκλιση, σ, του x και δίνεται από τη σχέση: = 1 n n! i=1 x i x i! = (x 1 " x)2 + (x 2 " x) 2 + (x 3 " x) 2 +!+ (x n " x) 2 n " 1 = n 1 #( x i " x ) 2 Για n>30! = 1 n " 1 n i=1 n # i=1 ( x i " x ) 2

16 ΦΥΣ Διαλ Τυπικό σφάλμα ή σφάλμα μέσης τιμής Η τυπική απόκλιση σχετίζεται με το σφάλμα κάθε ξεχωριστής μέτρησης x i Ωστόσο αυτό που συνήθως θέλουμε είναι το σφάλμα στη καλύτερη εκτίμηση της τιμής του x, που είναι η μέση τιμή x Το σφάλμα αυτό είναι μικρότερο από την τυπική απόκλιση, σ, γιατί διαφορετικά θα μπορούσαμε να υπολογήσουμε την αληθινή τιμή του x το ίδιο καλά με μια και μόνο μέτρηση όπως θα κάναμε με πολλές μετρήσεις. Το σφάλμα της μέσης τιμής ή τυπικό σφάλμα ορίζεται σαν η τυπική απόκλιση, σ, όλων των μετρήσεων διαιρούμενη με την τετραγωνική ρίζα του αριθμού των μετρήσεων:! x =! n n = 1 #( x i " x ) 2 n(n " 1) i=1 Επομένως η απάντησή μας στην ερώτηση ποια είναι η αληθινή μετρούμενη τιμή της φυσικής ποσότητας x? είναι: x = x ±! x = x ±! n Το σφάλμα έχει τις ίδιες διαστάσεις με τη μετρούμενη ποσότητα Θα πρέπει επομένως να πάρουμε αρκετές μετρήσεις ώστε να ελαττώσουμε το σφάλμα αλλά όχι περισσότερες από όσες οδηγούν σε σφάλμα μικρότερο από το σφάλμα ανάγνωσης του οργάνου.

17 ΦΥΣ Διαλ Μερικοί ακόμα ορισμοί Μέγιστο σφάλμα:!x max = x max " x min 2 Όπου x max και x min είναι οι ακρότατες τιμές που μετρήθηκαν και δεν μπορεί να βρεθεί τιμή έξω από το διάστημα x ±!x max Πιθανό σφάλμα: Το σφάλμα αυτό προσδιορίζει το διάστημα x ±!x "#$. που περικλύει το 50% των μετρούμενων τιμών Απόλυτο σφάλμα: Το τυπικό σφάλμα μιας μέτρησης ονομάζεται και απόλυτο Σχετικό σφάλμα:!x "#$%. = " x x & 100% Είναι αδιάστατος αριθμός

18 ΦΥΣ Διαλ Σημαντικά ψηφία Κάθε πείραμα όπως είδαμε περιέχει ένα βαθμό αβεβαιότητας. Ας υποθέσουμε ότι τρεις παρατηρητές μετρούν το μήκος ενός φύλου χαρτιού με ένα χάρακα με μικρότερη υποδιαίρεση το mm και βρίσκουν 27.92cm, 27.96cm και 27.90cm Παρατηρήστε ότι όλοι συμφωνούν στα τρία πρώτα ψηφία. Προφανώς το 4 ο ψηφίο (το οποίο υπολογίστηκε από τον καθένα) είναι ένα αβέβαιο ψηφίο. (Ακόμα και το 3 ο ψηφίο μπορεί να είναι αβέβαιο ανάλογα με τις συνθήκες) Ορισμός Τα ψηφία που θεωρούνται σωστά και το πρώτο αβέβαιο ψηφίο ονομάζονται σημαντικά ψηφία Ο αριθμός των σημαντικών ψηφίων σε μια μέτρηση εξαρτάται από την ακρίβεια του οργάνου της μέτρησης και σε ένα βαθμό από την ικανότητα του παρατηρητή και θα πρέπει να προσπαθούμε να πάρουμε τόσα ψηφία όσα μας επιτρέπει το όργανο μέτρησης. Ανάλογα θα πρέπει να καταγράφουμε μετρήσεις μόνο με τα σωστά σημαντικά ψηφία και όχι με περισσότερα ψηφία που υποδηλώνουν μεγαλύτερη ακρίβεια από αυτή που καθορίζεται από το όργανο ή τη μέθοδο μέτρησης

19 Σημαντικά ψηφία ΦΥΣ Διαλ Για παράδειγμα έστω ότι μετρήσαμε τη μάζα ενός σώματος να είναι Kgr και προσδιορίσαμε την αβεβαιότητα της μέτρησης σαν ±0.3. Ο αριθμός αποτελείται από 8 σημαντικά ψηφία ενώ η αβεβαιότητα μας λέει ότι τα 5 τελευταία ψηφία (43509) δεν έχουν καμιά σημαντική βαρύτητα μια και αντιπροσωπεύουν ποσότητα μικρότερη από την αβεβαιότητα. Τα ψηφία αυτά ονομάζονται μή σημαντικά. Οι υπολογιστικές μηχανές δείχνουν μη σημαντικά ψηφία και μπορούμε να πάρουμε μη σημαντικά ψηφία απλά και μόνο από απλές υπολογιστικές πράξεις. Για παράδειγμα έστω ότι μετρήσαμε το μήκος μιας ράβδου και το βρήκαμε 12 ίντσες. Μια ίντσα είναι 2.54cm και επομένως το μήκος της ράβδου θα είναι l = 12 x 2.54 = 30.48cm. Ξεκινώντας δηλαδή από μια μέτρηση με 2 σημαντικά ψηφία (12) καταλήξαμε στο προσδιορισμό του μήκους με 4 σημαντικά ψηφία (μεγαλύτερη ακρίβεια) που δεν μπορεί να ισχύει. Επομένως θα έπρεπε να γράψουμε ότι το ύψος είναι 30.cm και όχι 30.48cm

20 ΦΥΣ Διαλ Σημαντικά ψηφία - Κανόνες γραφής - μέτρησης (1α) Γράφουμε τις τιμές των φυσικών μεγεθών ώστε το τελευταίο μετρούμενο ψηφίο πέφτει στα δεξιά της υποδιαστολής. Αυτό μπορούμε να το επιτύχουμε είτε χρησιμοποιώντας επιστημονική σήμανση (π.χ = x 10 1 ) ή χρησιμοποιούμε μεγαλύτερες μονάδες. (1β) Το ψηφίο που αντιπροσωπεύει την μικρότερη μετρούμενη υποδιαίρεση κλίμακος πρέπει να γραφεί ακριβώς ακόμα και αν είναι μηδέν (π.χ m με κλίμακα mm) (1γ) Στρογγυλοποίηση. Όταν διώχνουμε τα μη σημαντικά ψηφία συνήθως αν το πρώτο μη σημαντικό ψηφίο είναι 5 τότε το στρογγυλοποιούμε το τελευταίο σημαντικό ψηφίο προς τα πάνω ένω αν είναι το πρώτο σημαντικό ψηφίο < 5 η στρογγυλοποίηση γίνεται προς τα κάτω. (π.χ > 4.77 ενώ >4.76 (2) Αν το πρώτο μη σημαντικό ψηφίο είναι 5 τότε μπορείτε να το στρογγυλοποιήσετε όπως επιθυμήτε προς τα πάνω ή κάτω αλλά θα πρέπει να χρησιμοποείται πάντα το ίδιο τρόπο (3) Ακέραιοι αριθμοί (1 9) είναι πάντοτε σημαντικοί. Ψηφία που βρίσκονται στα δεξιά της υποδιαστολής είναι σημαντικά. π.χ έχει 5 σημαντικά ψηφία. Ο αριθμός έχει 5 σημαντικά ψηφία.

21 ΦΥΣ Διαλ Σημαντικά ψηφία - κανόνες μέτρησης (4) Προσοχή χρειάζεται στα μηδενικά: (α) Μηδενικά αμέσως μετά την υποδιαστολή δεν υπολογίζονται στα σημαντικά ψηφία αν μετά ακολουθεί στα δεξιά τους κάποιος ακέραιος και δεν υπάρχει ακέραιος στα αριστερά της υποδιαστολή Ο αριθμός έχει 1 σημαντικό ψηφίο Ο αριθμός έχει 5 σημαντικά ψηφία (β) Μηδενικά που ακολουθούν την υποδιαστολή και δεν έχουν κάποιο ψηφίο στα δεξιά τους θεωρούνται σημαντικά ψηφία Ο αριθμός έχει 5 σημαντικά ψηφία (γ) Μηδενικά που ακολουθούν ακέραιους αριθμός και δεν έχουν υποδιαστολή στα δεξιά τους δεν θεωρούνται σημαντικά Ο αριθμός έχει 3 σημαντικά ψηφία

22 ΦΥΣ Διαλ Σημαντικά ψηφία - Πράξεις Ένα σημαντικό χαρακτηριστικό των πειραματικών δεδομένων είναι ότι τα σφάλματα συνδυάζονται στους υπολογισμούς και παράγουν νέα σφάλματα στα υπολογιζόμενα αποτελέσματα Επομένως υπολογισμοί μεταξύ αριθμών με διαφορετικά σημαντικά ψηφία οδηγούν σε αποτελέσματα με διαφορετικά σημαντικά σημεία Οι κανόνες είναι: Για πολλαπλασιασμό και διαίρεση: Τα αποτελέσματα πολ/σμού και διαίρεσης στρογγυλοποιούνται στο ίδιο αριθμό σημαντικών ψηφίων με αυτό του αριθμού με την χειρότερη ακρίβεια Για πρόσθεση και αφαίρεση: Βρίσκουμε τον αριθμό του οποίου το τελευταίο σημαντικό ψηφίο καταλαμβάνει τη θέση πιο κοντά στην υποδιαστολή. Αυτή είναι η θέση του τελευταίου σημαντικού ψηφίου του αποτελέσματος Πολ/σμός με το αβέβαιο ψηφίο δίνει Παράδειγμα πολ/σμου! 2.86 αβέβαιο αποτέλεσμα (το σύμβολο - πάνω Το τελικό αποτέλεσμα έχει 2 βέβαια από τον αριθμό δηλώνει Το τελευταίο σημαντικό ψηφία. Tο ψηφίο 3 είναι αβέβαιο και τα υπόλοιπα δεν έχουν σημασία ψηφίο) 7908 Το αποτέλεσμα θα είναι

23 ΦΥΣ Διαλ Παράδειγμα πρόσθεσης Το αποτέλεσμα επομένως θα είναι 55.1

24 Σημαντικά ψηφία - Παραδείγματα ΦΥΣ Διαλ Είδαμε ότι για μια αριθμητική ποσότητα η οποία μετράται πειραματικά, τα σημαντικά ψηφία είναι τα ψηφία της ποσότητας τα οποία καθορίζονται από την πειραματική μέτρηση. Μερικά παραδείγματα/ερωτήσεις: Προσδιορίστε τον αριθμό σημαντικών ψηφίων για τα ακόλουθα (α) 5280 (β) 0.35 (γ).0037 (δ) (ε) ! 3 σημαντικά ψηφία! 2 σημαντικά ψηφία! 2 σημαντικά ψηφία! 4 σημαντικά ψηφία! 5 σημαντικά ψηφία Παραδείγματα στρογγυλοποίησης: Στρογγυλοποιήστε τα ακόλουθα, κρατώντας μόνο τον αριθμό σημαντικών ψηφίων που δείχνει η παρένθεση (α) (3)! 14.4 (β) (2) 7.5!! (γ) (3) 153 (δ) (5)! (ε) (3) 9830!

25 Σημαντικά ψηφία - παραδείγματα Πράξεις με σημαντικά ψηφία - ερωτήσεις Έστω ότι δίνονται τα ακόλουθα: A =38.275, B=0.134, C= και D=1/3. Υπολογήστε τα ακόλουθα απoτελέσματα:! (α) A x B 5.13 (β) A - B! (γ) (C - A)/C! ή 1.2x10-3 (δ) D x C - D x A (ε) 23 x D!! ή 1.6x ΦΥΣ Διαλ.02! ( " ) = ! ( " ) 3.0 = = 0.016! = 7.7

26 Ακρίβεια υπολογιζόμενης τιμής Έστω ότι μετρούμε τις πλευρές ενός ορθογωνίου παρ/μου και βρίσκουμε ότι είναι: 45.0±0.1cm και 544 ±1cm Το εμβαδό του ορθογωνίου είναι: 45.0x544 = 24480cm 2 Πόσο ακριβές είναι όμως το εμβαδό που υπολογίζουμε? Για να υπολογίσουμε την αβεβαιότητα μιας ποσότητας η οποία εξαρτάται από μετρούμενα μεγέθη τα οποία είναι γνωστά με συγκεκριμένη αβεβαιότητα ακολουθούμε μερικούς απλούς κανόνες: 1. Αν οι ποσότητες προστίθενται ή αφαιρούνται, προσθέτουμε τις επιμέρους αβεβαιότητες ώστε να πάρουμε την αβεβαιότητα του αποτελέματος a. ( 324 ± 1)cm + (670 ± 1)cm = 994 ± 2cm b. ( 764 ± 1)cm! ( 670 ± 1)cm = 94 ± 2cm 2. Αν οι ποσότητες πολ/ζονται ή διαιρούνται, προσθέτουμε τις επιμέρους σχετικές (επί τοις εκατό) αβεβαιότητες ώστε να πάρουμε τη σχετική αβεβαιότητα (επί τοις εκατό) του αποτελέματος. (Μπορείτε να χρησιμοποιήσετε και τις σχετικές αβεβαιότητες για αποφυγή πολλών εκατοντάδων στους υπολογισμούς). Για το παράδειγμα του εμβαδού θα έχουμε: ΦΥΣ Διαλ.02 ( 544 ± 1)cm + ( 45.0 ± 0.1)cm = ( 544 ± 0.2% )cm! ( 45.0 ± 0.2% )cm = ± 0.4%cm 2 ( = ± 97.92cm 2 ) Επομένως το αποτέλεσμα θα είναι A = ± 100cm 2 Ακρίβεια 1 σημαντικού ψηφίου

27 ΦΥΣ Διαλ.02 Ακρίβεια υπολογιζόμενης τιμής 3. Για τη διαίρεση θα είχαμε: ( 544 ± 1)cm ( 45.0 ± 0.1)cm = 544 ± 0.2% ( ) ( 45.0 ± 0.2% ) = ± 0.4%= ± = 12.1± Όταν βρίσκουμε τη τετραγωνική ρίζα μιας ποσότητας, διαιρούμε την αβεβαιότητα με 2, ενώ όταν υπολογίζουμε το τετράγωνο τότε πολ/ζουμε την αβεβαιότητα με 2. Ανάλογοι κανόνες ισχύουν και για άλλες δυνάμεις 45.0 ± 0.1 = 45.0 ± 0.2% = ± 0.1% = ± ( 45.0 ± 0.1) 2 = ( 45.0 ± 0.2% ) 2 = 2025 ± 0.4% = 2025 ± 8 Εξάσκηση: Έστω Α=37.82±0.03, B=33.46±0.05, C=2.1±0.4 και D=3.31±0.01. Να υπολογισθούν οι τιμές των ακόλουθων εξισώσεων και η ακρίβειά τους σύμφωνα με τους κανόνες που είδαμε. Κάνετε στρογγυλοποίηση της απάντησής σας στα κατάλληλα σημαντικά ψηφία (α) (Α - Β) x D! 14.4 ± 0.3! " ( ) # 3.31 = 4.36 # 3.31 = = 14.4 ( ) " ( 3.31± 0.01) = ( 4.36 ±1.83% ) " ( 3.31± 0.3% ) = 14.4 ± 2.137% = 14.4 ± ! 4.36 ± 0.08 (β) A/B - C (γ) B/C (δ) 2(π)Α (ε) (ΑxB)/D! -1 ± 0.4! 16 ± 3! ± 0.2! 382 ± 2! " 2.1 = " 2.1 = " = "1! = = 16

Μετρήσεις Αβεβαιότητες Μετρήσεων

Μετρήσεις Αβεβαιότητες Μετρήσεων Μετρήσεις Αβεβαιότητες Μετρήσεων 1. Σκοπός Σκοπός του μαθήματος είναι να εξοικειωθούν οι σπουδαστές με τις βασικές έννοιες που σχετίζονται με τη θεωρία Σφαλμάτων, όπως το σφάλμα, την αβεβαιότητα της μέτρησης

Διαβάστε περισσότερα

Για τη δραστηριότητα χρησιμοποιούνται τέσσερεις χάρακες του 1 m. Στο σχήμα φαίνεται το πρώτο δέκατο κάθε χάρακα.

Για τη δραστηριότητα χρησιμοποιούνται τέσσερεις χάρακες του 1 m. Στο σχήμα φαίνεται το πρώτο δέκατο κάθε χάρακα. Σημαντικά ψηφία Η ταχύτητα διάδοσης του φωτός είναι 2.99792458 x 10 8 m/s. Η τιμή αυτή είναι δοσμένη σε 9 σημαντικά ψηφία. Τα 9 σημαντικά ψηφία είναι 299792458. Η τιμή αυτή μπορεί να δοθεί και με 5 σημαντικά

Διαβάστε περισσότερα

ΠΑΡΑΡΤΗΜΑ Α Μέσο σφάλμα μεγέθους (που υπολογίζεται από σύνθετη συνάρτηση)

ΠΑΡΑΡΤΗΜΑ Α Μέσο σφάλμα μεγέθους (που υπολογίζεται από σύνθετη συνάρτηση) ΠΑΡΑΡΤΗΜΑ Α Μέσο σφάλμα μεγέθους (που υπολογίζεται από σύνθετη συνάρτηση) Όταν το πρωτοείδα, κι εγώ δεν το συμπάθησα. Είναι, όμως, λάθος μας, καθώς πρόκειται για κάτι πολύ απλό και σίγουρο ως μέθοδος υπολογισμού

Διαβάστε περισσότερα

Συσχέτιση μεταξύ δύο συνόλων δεδομένων

Συσχέτιση μεταξύ δύο συνόλων δεδομένων Διαγράμματα διασποράς (scattergrams) Συσχέτιση μεταξύ δύο συνόλων δεδομένων Η οπτική απεικόνιση δύο συνόλων δεδομένων μπορεί να αποκαλύψει με παραστατικό τρόπο πιθανές τάσεις και μεταξύ τους συσχετίσεις,

Διαβάστε περισσότερα

8. Σύνθεση και ανάλυση δυνάμεων

8. Σύνθεση και ανάλυση δυνάμεων 8. Σύνθεση και ανάλυση δυνάμεων Βασική θεωρία Σύνθεση δυνάμεων Συνισταμένη Σύνθεση δυνάμεων είναι η διαδικασία με την οποία προσπαθούμε να προσδιορίσουμε τη δύναμη εκείνη που προκαλεί τα ίδια αποτελέσματα

Διαβάστε περισσότερα

Ολοκλήρωση - Μέθοδος Monte Carlo

Ολοκλήρωση - Μέθοδος Monte Carlo ΦΥΣ 145 - Διαλ.09 Ολοκλήρωση - Μέθοδος Monte Carlo Χρησιμοποίηση τυχαίων αριθμών για επίλυση ολοκληρωμάτων Η μέθοδος Monte Carlo δίνει μια διαφορετική προσέγγιση για την επίλυση ενός ολοκληρώμτατος Τυχαίοι

Διαβάστε περισσότερα

Οδηγός βαθμολόγησης Εξεταστικού Δοκιμίου Α Λυκείου

Οδηγός βαθμολόγησης Εξεταστικού Δοκιμίου Α Λυκείου ΛΥΚΕΙΟ ΜΑΚΑΡΙΟΥ Γ ΛΑΡΝΑΚΑΣ ΣΧΟΛΙΚΗ ΧΡΟΝΙΑ 2014-15 Οδηγός βαθμολόγησης Εξεταστικού Δοκιμίου Α Λυκείου 1) Να γράψετε 3 διανυσματικά μεγέθη και 2 μονόμετρα μεγέθη καθώς και τις μονάδες μέτρησής τους (στο

Διαβάστε περισσότερα

m (gr) 100 200 300 400 500 600 700 l (cm) 59.1 62.4 65.2 69.3 71.2 74.1 77.2

m (gr) 100 200 300 400 500 600 700 l (cm) 59.1 62.4 65.2 69.3 71.2 74.1 77.2 ΣΧΟΛΙΑ ΓΙΑ ΤΗΝ ΕΡΓΑΣΙΑ ΣΤΟ ΜΑΘΗΜΑ ΕΡΓΑΣΤΗΡΙΟ ΦΥΣΙΚΗΣ Η εργασία αυτή απευθύνεται σε όλους όσους επιθυµούν να ϐελτιώσουν την ϐαθµολογία τους. Βασικό στοιχείο της εργασίας είναι οι γραφικές παραστάσεις των

Διαβάστε περισσότερα

Κεφάλαιο 1 Εισαγωγή, Μετρήσεις, Προσεγγίσεις. Copyright 2009 Pearson Education, Inc.

Κεφάλαιο 1 Εισαγωγή, Μετρήσεις, Προσεγγίσεις. Copyright 2009 Pearson Education, Inc. Κεφάλαιο 1 Εισαγωγή, Μετρήσεις, Προσεγγίσεις Η Φύση της Επιστήµης Ενότητες Κεφαλαίου 1 Μοντέλα Θεωρίες και Νόµοι Μετρήσεις και αβεβαιότητα (σφάλµατα); Σηµαντικά ψηφία Μονάδες, Πρότυπα, και το Διεθνές Σύστηµα

Διαβάστε περισσότερα

ΕΦΑΡΜΟΣΜΕΝΗ ΣΤΑΤΙΣΤΙΚΗ Ι Συμπληρωματικές Σημειώσεις Δημήτριος Παντελής

ΕΦΑΡΜΟΣΜΕΝΗ ΣΤΑΤΙΣΤΙΚΗ Ι Συμπληρωματικές Σημειώσεις Δημήτριος Παντελής ΕΦΑΡΜΟΣΜΕΝΗ ΣΤΑΤΙΣΤΙΚΗ Ι Συμπληρωματικές Σημειώσεις Δημήτριος Παντελής ΣΤΑΤΙΣΤΙΚΕΣ ΕΚΤΙΜΗΣΕΙΣ Οι συναρτήσεις πιθανότητας ή πυκνότητας πιθανότητας των διαφόρων τυχαίων μεταβλητών χαρακτηρίζονται από κάποιες

Διαβάστε περισσότερα

Κεφάλαιο 1 o Εξισώσεις - Ανισώσεις

Κεφάλαιο 1 o Εξισώσεις - Ανισώσεις 2 ΕΡΩΤΗΣΕΙΙΣ ΘΕΩΡΙΙΑΣ ΑΠΟ ΤΗΝ ΥΛΗ ΤΗΣ Β ΤΑΞΗΣ ΜΕΡΟΣ Α -- ΑΛΓΕΒΡΑ Κεφάλαιο 1 o Εξισώσεις - Ανισώσεις Α. 1 1 1. Τι ονομάζεται Αριθμητική και τι Αλγεβρική παράσταση; Ονομάζεται Αριθμητική παράσταση μια παράσταση

Διαβάστε περισσότερα

Πρόσθεση αφαίρεση και πολλαπλασιασμός φυσικών αριθμών

Πρόσθεση αφαίρεση και πολλαπλασιασμός φυσικών αριθμών 2 Πρόσθεση αφαίρεση και πολλαπλασιασμός φυσικών αριθμών Προσθετέοι 18+17=35 α Προσθετέοι + β = γ Άθοι ρ σμα Άθοι ρ σμα 13 + 17 = 17 + 13 Πρόσθεση φυσικών αριθμών Πρόσθεση είναι η πράξη με την οποία από

Διαβάστε περισσότερα

Παράδειγμα #1 ΑΡΙΘΜΗΤΙΚΗ ΚΙΝΗΤΗΣ ΥΠΟΔΙΑΣΤΟΛΗΣ ΕΠΙΜΕΛΕΙΑ: Ι. Λυχναρόπουλος

Παράδειγμα #1 ΑΡΙΘΜΗΤΙΚΗ ΚΙΝΗΤΗΣ ΥΠΟΔΙΑΣΤΟΛΗΣ ΕΠΙΜΕΛΕΙΑ: Ι. Λυχναρόπουλος Παράδειγμα #1 ΑΡΙΘΜΗΤΙΚΗ ΚΙΝΗΤΗΣ ΥΠΟΔΙΑΣΤΟΛΗΣ ΕΠΙΜΕΛΕΙΑ: Ι. Λυχναρόπουλος 1. Πως ορίζεται και τι σημαίνει ο όρος flop στους επιστημονικούς υπολογισμούς. Απάντηση: Ο όρος flop σημαίνει floating point operation

Διαβάστε περισσότερα

Τμήμα Μηχανολόγων Μηχανικών Πανεπιστήμιο Θεσσαλίας ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ Η/Υ. Βασικές Έννοιες Προγραμματισμού. Ιωάννης Λυχναρόπουλος Μαθηματικός, MSc, PhD

Τμήμα Μηχανολόγων Μηχανικών Πανεπιστήμιο Θεσσαλίας ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ Η/Υ. Βασικές Έννοιες Προγραμματισμού. Ιωάννης Λυχναρόπουλος Μαθηματικός, MSc, PhD Τμήμα Μηχανολόγων Μηχανικών Πανεπιστήμιο Θεσσαλίας ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ Η/Υ Βασικές Έννοιες Προγραμματισμού Ιωάννης Λυχναρόπουλος Μαθηματικός, MSc, PhD Αριθμητικά συστήματα Υπάρχουν 10 τύποι ανθρώπων: Αυτοί

Διαβάστε περισσότερα

ΛΑΝΙΤΕΙΟ ΛΥΚΕΙΟ Α ΣΧΟΛΙΚΟ ΕΤΟΣ 2010-2011 ΓΡΑΠΤΕΣ ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΙΟΥΝΙΟΥ 2011 ΟΝΟΜΑ:... ΤΜΗΜΑ:... ΑΡ.:...

ΛΑΝΙΤΕΙΟ ΛΥΚΕΙΟ Α ΣΧΟΛΙΚΟ ΕΤΟΣ 2010-2011 ΓΡΑΠΤΕΣ ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΙΟΥΝΙΟΥ 2011 ΟΝΟΜΑ:... ΤΜΗΜΑ:... ΑΡ.:... ΛΑΝΙΤΕΙΟ ΛΥΚΕΙΟ Α ΣΧΟΛΙΚΟ ΕΤΟΣ 2010-2011 ΓΡΑΠΤΕΣ ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΙΟΥΝΙΟΥ 2011 ΜΑΘΗΜΑ: Φυσική ΤΑΞΗ: Α ΗΜΕΡΟΜΗΝΊΑ: 27 Μαίου 2011 ΧΡΟΝΟΣ: 2 ώρες ΩΡΑ: 11.00 1.00 ΒΑΘΜΟΣ: Αριθμητικά:... Ολογράφως:...

Διαβάστε περισσότερα

Μεγιστοποίηση μέσα από το τριώνυμο

Μεγιστοποίηση μέσα από το τριώνυμο Μεγιστοποίηση μέσα από το τριώνυμο Μια από τις πιο όμορφες εφαρμογές του τριωνύμου στη φυσική είναι η μεγιστοποίηση κάποιου μεγέθους μέσα από αυτό. Η ιδέα απλή και βασίζεται στη λογική επίλυσης του παρακάτω

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 3ο ΤΥΧΑΙΟΙ ΑΡΙΘΜΟΙ ΕΛΕΓΧΟΣ ΤΥΧΑΙΟΤΗΤΑΣ

ΚΕΦΑΛΑΙΟ 3ο ΤΥΧΑΙΟΙ ΑΡΙΘΜΟΙ ΕΛΕΓΧΟΣ ΤΥΧΑΙΟΤΗΤΑΣ ΚΕΦΑΛΑΙΟ 3ο ΤΥΧΑΙΟΙ ΑΡΙΘΜΟΙ ΕΛΕΓΧΟΣ ΤΥΧΑΙΟΤΗΤΑΣ 3.1 Τυχαίοι αριθμοί Στην προσομοίωση διακριτών γεγονότων γίνεται χρήση ακολουθίας τυχαίων αριθμών στις περιπτώσεις που απαιτείται η δημιουργία στοχαστικών

Διαβάστε περισσότερα

ΕΝΩΣΗ ΚΥΠΡΙΩΝ ΦΥΣΙΚΩΝ

ΕΝΩΣΗ ΚΥΠΡΙΩΝ ΦΥΣΙΚΩΝ 9η Ολυμπιάδα Φυσικής Γ Λυκείου (Β φάση) Κυριακή 9 Μαρτίου 01 Ώρα:.00-1.00 ΟΔΗΓΙΕΣ: 1. Το δοκιμιο αποτελειται απο εννεα (9) σελιδες και επτα (7) θεματα.. Να απαντησετε σε ολα τα θεματα του δοκιμιου.. Μαζι

Διαβάστε περισσότερα

Φυσικοί αριθμοί - Διάταξη φυσικών αριθμών - Στρογγυλοποίηση

Φυσικοί αριθμοί - Διάταξη φυσικών αριθμών - Στρογγυλοποίηση Φυσικοί αριθμοί - Διάταξη φυσικών αριθμών - Στρογγυλοποίηση TINΑ ΒΡΕΝΤΖΟΥ www.ma8eno.gr Βρέντζου Τίνα Φυσικός Μεταπτυχιακός τίτλος: «Σπουδές στην εκπαίδευση» ΜEd Email : stvrentzou@gmail.com 2 Φυσικοί

Διαβάστε περισσότερα

Δυαδικό Σύστημα Αρίθμησης

Δυαδικό Σύστημα Αρίθμησης Δυαδικό Σύστημα Αρίθμησης Το δυαδικό σύστημα αρίθμησης χρησιμοποιεί δύο ψηφία. Το 0 και το 1. Τα ψηφία ενός αριθμού στο δυαδικό σύστημα αρίθμησης αντιστοιχίζονται σε δυνάμεις του 2. Μονάδες, δυάδες, τετράδες,

Διαβάστε περισσότερα

ΣΥΣΚΕΥΗ ΜΕΤΡΗΣΗΣ ΙΞΩΔΟΥΣ ΥΓΡΩΝ

ΣΥΣΚΕΥΗ ΜΕΤΡΗΣΗΣ ΙΞΩΔΟΥΣ ΥΓΡΩΝ Environmental Fluid Mechanics Laboratory University of Cyprus Department Of Civil & Environmental Engineering ΣΥΣΚΕΥΗ ΜΕΤΡΗΣΗΣ ΙΞΩΔΟΥΣ ΥΓΡΩΝ ΕΓΧΕΙΡΙΔΙΟ ΟΔΗΓΙΩΝ HM 134 ΣΥΣΚΕΥΗ ΜΕΤΡΗΣΗΣ ΙΞΩΔΟΥΣ ΥΓΡΩΝ Εγχειρίδιο

Διαβάστε περισσότερα

Πολύμετρο Βασικές Μετρήσεις

Πολύμετρο Βασικές Μετρήσεις Πολύμετρο Βασικές Μετρήσεις 1. Σκοπός Σκοπός της εισαγωγικής άσκησης είναι η εξοικείωση του σπουδαστή με τη χρήση του πολύμετρου για τη μέτρηση βασικών μεγεθών ηλεκτρικού κυκλώματος, όπως μέτρηση της έντασης

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ Γ Γυμνασίου

ΜΑΘΗΜΑΤΙΚΑ Γ Γυμνασίου ΜΑΘΗΜΑΤΙΚΑ Γ Γυμνασίου Κεφάλαιο ο Αλγεβρικές Παραστάσεις ΛΕΜΟΝΙΑ ΜΠΟΥΤΣΚΟΥ Γυμνάσιο Αμυνταίου ΜΑΘΗΜΑ Α. Πράξεις με πραγματικούς αριθμούς ΑΣΚΗΣΕΙΣ ) ) Να συμπληρώσετε τα κενά ώστε στην κατακόρυφη στήλη

Διαβάστε περισσότερα

ΜΕΘΟΔΟΛΟΓΙΕΣ & ΑΣΚΗΣΕΙΣ ΓΙΑ ΤΗΝ ΑΛΓΕΒΡΑ ΤΗΣ Α ΛΥΚΕΙΟΥ

ΜΕΘΟΔΟΛΟΓΙΕΣ & ΑΣΚΗΣΕΙΣ ΓΙΑ ΤΗΝ ΑΛΓΕΒΡΑ ΤΗΣ Α ΛΥΚΕΙΟΥ ΜΕΘΟΔΟΛΟΓΙΕΣ & ΑΣΚΗΣΕΙΣ ΓΙΑ ΤΗΝ ΑΛΓΕΒΡΑ ΤΗΣ Α ΛΥΚΕΙΟΥ Επιμέλεια : Παλαιολόγου Παύλος Μαθηματικός Αγαπητοί μαθητές. αυτό το βιβλίο αποτελεί ένα βοήθημα στην ύλη της Άλγεβρας Α Λυκείου, που είναι ένα από

Διαβάστε περισσότερα

Συμπληρωματικό Φύλλο Εργασίας 3+ ( * ) Μετρήσεις Μάζας Τα Διαγράμματα

Συμπληρωματικό Φύλλο Εργασίας 3+ ( * ) Μετρήσεις Μάζας Τα Διαγράμματα Συμπληρωματικό Φύλλο Εργασίας 3+ ( * ) Μετρήσεις Μάζας Τα Διαγράμματα ( * ) + επιπλέον πληροφορίες, ιδέες και προτάσεις προαιρετικών πειραματικών δραστηριοτήτων, ερωτήσεις... Στην αρχαιότητα πίστευαν ότι

Διαβάστε περισσότερα

ΑΡΧΙΤΕΚΤΟΝΙΚΗ ΥΠΟΛΟΓΙΣΤΩΝ. Κεφάλαιο 3

ΑΡΧΙΤΕΚΤΟΝΙΚΗ ΥΠΟΛΟΓΙΣΤΩΝ. Κεφάλαιο 3 ΑΡΧΙΤΕΚΤΟΝΙΚΗ ΥΠΟΛΟΓΙΣΤΩΝ Κεφάλαιο 3 Κεντρική Μονάδα Επεξεργασίας Κεντρική Μονάδα Επεξεργασίας Μονάδα επεξεργασίας δεδομένων Μονάδα ελέγχου Μονάδα επεξεργασίας δεδομένων Δομή Αριθμητικής Λογικής Μονάδας

Διαβάστε περισσότερα

Σε γαλάζιο φόντο ΔΙΔΑΚΤΕΑ ΥΛΗ (2013 2014) Σε μαύρο φόντο ΘΕΜΑΤΑ ΕΚΤΟΣ ΔΙΔΑΚΤΕΑΣ ΥΛΗΣ (2013-2014)

Σε γαλάζιο φόντο ΔΙΔΑΚΤΕΑ ΥΛΗ (2013 2014) Σε μαύρο φόντο ΘΕΜΑΤΑ ΕΚΤΟΣ ΔΙΔΑΚΤΕΑΣ ΥΛΗΣ (2013-2014) > Φυσική Β Γυμνασίου >> Αρχική σελίδα ΕΙΙΣΑΓΩΓΗ ΕΕρρωττήήσσεει ιςς ΑΑσσκκήήσσεει ιςς χχωρρί ίςς ααππααννττήήσσεει ιςς (σελ. ) ΕΕρρωττήήσσεει ιςς ΑΑσσκκήήσσεει ιςς μμεε ααππααννττήήσσεει ιςς (σελ. 4) ΙΑΒΑΣΕ

Διαβάστε περισσότερα

ΕΝΟΤΗΤΑ 1.2 ΔΥΝΑΜΙΚΗ ΣΕ ΜΙΑ ΔΙΑΣΤΑΣΗ

ΕΝΟΤΗΤΑ 1.2 ΔΥΝΑΜΙΚΗ ΣΕ ΜΙΑ ΔΙΑΣΤΑΣΗ ΕΝΟΤΗΤΑ 1.2 ΔΥΝΑΜΙΚΗ ΣΕ ΜΙΑ ΔΙΑΣΤΑΣΗ 1. Τι λέμε δύναμη, πως συμβολίζεται και ποια η μονάδα μέτρησής της. Δύναμη είναι η αιτία που προκαλεί τη μεταβολή της κινητικής κατάστασης των σωμάτων ή την παραμόρφωσή

Διαβάστε περισσότερα

ΑΣΚΗΣΕΙΣ ΠΙΘΑΝΟΤΗΤΩΝ του Παν. Λ. Θεοδωρόπουλου 0

ΑΣΚΗΣΕΙΣ ΠΙΘΑΝΟΤΗΤΩΝ του Παν. Λ. Θεοδωρόπουλου 0 ΑΣΚΗΣΕΙΣ ΠΙΘΑΝΟΤΗΤΩΝ του Παν. Λ. Θεοδωρόπουλου 0 Η Θεωρία Πιθανοτήτων είναι ένας σχετικά νέος κλάδος των Μαθηματικών, ο οποίος παρουσιάζει πολλά ιδιαίτερα χαρακτηριστικά στοιχεία. Επειδή η ιδιαιτερότητα

Διαβάστε περισσότερα

Στοιχεία εισαγωγής για τη Φυσική Α Λυκείου

Στοιχεία εισαγωγής για τη Φυσική Α Λυκείου Στοιχεία εισαγωγής για τη Φυσική Α Λυκείου 1 ΑΛΓΕΒΡΙΚΕΣ ΠΑΡΑΣΤΑΣΕΙΣ ΚΑΙ ΠΡΟΤΕΡΑΙΟΤΗΤΑ ΠΡΑΞΕΩΝ 1.1 Προτεραιότητα Πράξεων Η προτεραιότητα των πράξεων είναι: (Από τις πράξεις που πρέπει να γίνονται πρώτες,

Διαβάστε περισσότερα

ΣΥΝΑΡΤΗΣΕΙΣ. Η σύνταξη μιας συνάρτησης σ ένα κελί έχει την γενική μορφή: =όνομα_συνάρτησης(όρισμα1; όρισμα2;.)

ΣΥΝΑΡΤΗΣΕΙΣ. Η σύνταξη μιας συνάρτησης σ ένα κελί έχει την γενική μορφή: =όνομα_συνάρτησης(όρισμα1; όρισμα2;.) ΣΥΝΑΡΤΗΣΕΙΣ Συνάρτηση είναι ένας έτοιμος τύπος ο οποίος δέχεται σαν είσοδο τιμές ή συνθήκες και επιστρέφει ένα αποτέλεσμα, το οποίο μπορεί να είναι μια τιμή αριθμητική, αλφαριθμητική, λογική, ημερομηνίας

Διαβάστε περισσότερα

Ibico Αριθμομηχανή με Εκτύπωση

Ibico Αριθμομηχανή με Εκτύπωση IBICO 1421X Εγχειρίδιο Οδηγιών Παρακαλείσθε να διαβάσετε αυτές τις οδηγίες προσεκτικά και να τις φυλάξετε σε ασφαλές μέρος για μελλοντική αναφορά. 2 Τεχνικές Προδιαγραφές Τύπος Πληκτρολόγιο 1421X Συσκευή

Διαβάστε περισσότερα

Τίτλος Άσκησης : ΜΕΤΡΗΣΗ ΑΝΤΙΣΤΑΣΕΩΝ ΜΕ ΤΗ ΓΕΦΥΡΑ WHEATSTONE

Τίτλος Άσκησης : ΜΕΤΡΗΣΗ ΑΝΤΙΣΤΑΣΕΩΝ ΜΕ ΤΗ ΓΕΦΥΡΑ WHEATSTONE ΤΕΙ ΧΑΛΚΙΔΑΣ ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΙΑΣ ΕΡΓΑΣΤΗΡΙΟ ΗΛΕΚΤΡΙΚΩΝ ΜΕΤΡΗΣΕΩΝ Α/Α ΕΡΓΑΣΤΗΡΙΑΚΗΣ ΑΣΚΗΣΗΣ : ΑΣΚΗΣΗ 3 η Τίτλος Άσκησης : ΜΕΤΡΗΣΗ ΑΝΤΙΣΤΑΣΕΩΝ ΜΕ ΤΗ ΓΕΦΥΡΑ WHEATSTONE Σκοπός Η κατανόηση της λειτουργίας και

Διαβάστε περισσότερα

Εισαγωγή στις Ηλεκτρικές Μετρήσεις

Εισαγωγή στις Ηλεκτρικές Μετρήσεις Εισαγωγή στις Ηλεκτρικές Μετρήσεις Σφάλματα Μετρήσεων Συμβατικά όργανα μετρήσεων Χαρακτηριστικά μεγέθη οργάνων Παλμογράφος Λέκτορας Σοφία Τσεκερίδου 1 Σφάλματα μετρήσεων Επιτυχημένη μέτρηση Σωστή εκλογή

Διαβάστε περισσότερα

ΕΡΩΤΗΣΕΙΣ ΦΥΣΙΚΗΣ Α ΓΥΜΝΑΣΙΟΥ

ΕΡΩΤΗΣΕΙΣ ΦΥΣΙΚΗΣ Α ΓΥΜΝΑΣΙΟΥ ΕΡΩΤΗΣΕΙΣ ΦΥΣΙΚΗΣ Α ΓΥΜΝΑΣΙΟΥ 1. Μετρήσεις μήκους Η μέση τιμή. 1. Ποια μεγέθη λέγονται φυσικά μεγέθη; Πως γίνεται η μέτρησή τους; Οι ποσότητες που μπορούν να μετρηθούν ονομάζονται φυσικά μεγέθη. Η μέτρησή

Διαβάστε περισσότερα

Υπενθύμιση Δ τάξης. Παιχνίδια στην κατασκήνωση

Υπενθύμιση Δ τάξης. Παιχνίδια στην κατασκήνωση ΚΕΦΑΛΑΙΟ 1ο Υπενθύμιση Δ τάξης Παιχνίδια στην κατασκήνωση Συγκρίνω δυο αριθμούς για να βρω αν είναι ίσοι ή άνισοι. Στην περίπτωση που είναι άνισοι μπορώ να βρω ποιος είναι μεγαλύτερος (ή μικρότερος). Ανάμεσα

Διαβάστε περισσότερα

Ε Υ Θ Υ Γ Ρ Α Μ Μ Η Κ Ι Ν Η Σ Η - Α Σ Κ Η Σ Ε Ι Σ

Ε Υ Θ Υ Γ Ρ Α Μ Μ Η Κ Ι Ν Η Σ Η - Α Σ Κ Η Σ Ε Ι Σ 0 ΕΡΩΤΗΣΕΙΣ ΚΑΤΑΝΟΗΣΗΣ ΠΟΛΛΑΠΛΗΣ ΕΠΙΛΟΓΗΣ ΑΣΚΗΣΕΙΣ Ε Υ Θ Υ Γ Ρ Α Μ Μ Η Κ Ι Ν Η Σ Η - Α Σ Κ Η Σ Ε Ι Σ 0 1 Στρατηγική επίλυσης προβλημάτων Α. Κάνε κατάλληλο σχήμα,τοποθέτησε τα δεδομένα στο σχήμα και ονόμασε

Διαβάστε περισσότερα

ΠΕΙΡΑΜΑ I Απλές Μετρήσεις και Σφάλµατα

ΠΕΙΡΑΜΑ I Απλές Μετρήσεις και Σφάλµατα ΠΕΙΡΑΜΑ I Απλές Μετρήσεις και Σφάλµατα Σκοπός πειράµατος Στο πείραµα αυτό θα χρησιµοποιήσουµε βασικά όργανα του εργαστηρίου (διαστηµόµετρο, µικρόµετρο, χρονόµετρο) προκειµένου να: Να µετρήσουµε την πυκνότητα

Διαβάστε περισσότερα

ΔΙΑΣΤΑΣΕΙΣ ΚΑΙ ΜΟΝΑΔΕΣ

ΔΙΑΣΤΑΣΕΙΣ ΚΑΙ ΜΟΝΑΔΕΣ Σχολή Χημικών Μηχανικών, 2 ο εξάμηνο ΑΝΑΛΥΣΗ ΣΥΣΤΗΜΑΤΩΝ ΧΗΜΙΚΗΣ ΜΗΧΑΝΙΚΗΣ ΔΙΑΣΤΑΣΕΙΣ ΚΑΙ ΜΟΝΑΔΕΣ Γιώργος Μαυρωτάς, Επ. Καθηγητής Εργαστήριο Βιομηχανικής & Ενεργειακής Οικονομίας, Σχολή ΧΜ, ΕΜΠ Εισαγωγή

Διαβάστε περισσότερα

CX-185 II. Αριθμομηχανή με εκτυπωτή. Εγχειρίδιο Οδηγιών

CX-185 II. Αριθμομηχανή με εκτυπωτή. Εγχειρίδιο Οδηγιών CX-185 II Αριθμομηχανή με εκτυπωτή Εγχειρίδιο Οδηγιών 1 ΠΕΡΙΓΡΑΦΗ ΠΛΗΚΤΡΩΝ ΚΑΙ ΔΙΑΚΟΠΤΩΝ έως Αριθμητικό Πλήκτρο Χρησιμοποιείται για την εισαγωγή αριθμού στην αριθμομηχανή. Πλήκτρο Υποδιαστολής Χρησιμοποιείται

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ II ΑΝΑΛΥΣΗ ΔΙΑΚΥΜΑΝΣΗΣ 1. ΑΝΑΛΥΣΗ ΔΙΑΚΥΜΑΝΣΗΣ ΚΑΤΑ ΕΝΑ ΚΡΙΤΗΡΙΟ 2. ΑΝΑΛΥΣΗ ΔΙΑΚΥΜΑΝΣΗΣ ΚΑΤΑ ΔΥΟ ΚΡΙΤΗΡΙΑ

ΚΕΦΑΛΑΙΟ II ΑΝΑΛΥΣΗ ΔΙΑΚΥΜΑΝΣΗΣ 1. ΑΝΑΛΥΣΗ ΔΙΑΚΥΜΑΝΣΗΣ ΚΑΤΑ ΕΝΑ ΚΡΙΤΗΡΙΟ 2. ΑΝΑΛΥΣΗ ΔΙΑΚΥΜΑΝΣΗΣ ΚΑΤΑ ΔΥΟ ΚΡΙΤΗΡΙΑ ΚΕΦΑΛΑΙΟ II ΑΝΑΛΥΣΗ ΔΙΑΚΥΜΑΝΣΗΣ ΕΝΟΤΗΤΕΣ 1. ΑΝΑΛΥΣΗ ΔΙΑΚΥΜΑΝΣΗΣ ΚΑΤΑ ΕΝΑ ΚΡΙΤΗΡΙΟ. ΑΝΑΛΥΣΗ ΔΙΑΚΥΜΑΝΣΗΣ ΚΑΤΑ ΔΥΟ ΚΡΙΤΗΡΙΑ 1. ΑΝΑΛΥΣΗ ΔΙΑΚΥΜΑΝΣΗΣ ΚΑΤΑ ΕΝΑ ΚΡΙΤΗΡΙΟ (One-Way Analyss of Varance) Η ανάλυση

Διαβάστε περισσότερα

ΦΥΣΙΚΗ. Θέμα: «Μελέτη της βολής με κατασκευή και εκτόξευση χάρτινων πυραύλων με χρήση εκτοξευτή που λειτουργεί με πιεσμένο αέρα»

ΦΥΣΙΚΗ. Θέμα: «Μελέτη της βολής με κατασκευή και εκτόξευση χάρτινων πυραύλων με χρήση εκτοξευτή που λειτουργεί με πιεσμένο αέρα» ΦΥΣΙΚΗ Θέμα: «Μελέτη της βολής με κατασκευή και εκτόξευση χάρτινων πυραύλων με χρήση εκτοξευτή που λειτουργεί με πιεσμένο αέρα» Τάξη Γ : Λεμπιδάκης Αποστόλης, Καπετανάκης Δημήτρης, Κοπιδάκης Γιώργος, Ζαμπετάκης

Διαβάστε περισσότερα

Ένωση Ελλήνων Φυσικών ΠΑΝΕΛΛΗΝΙΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΦΥΣΙΚΗΣ 2008 Πανεπιστήμιο Αθηνών Εργαστήριο Φυσικών Επιστημών, Τεχνολογίας, Περιβάλλοντος.

Ένωση Ελλήνων Φυσικών ΠΑΝΕΛΛΗΝΙΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΦΥΣΙΚΗΣ 2008 Πανεπιστήμιο Αθηνών Εργαστήριο Φυσικών Επιστημών, Τεχνολογίας, Περιβάλλοντος. Θεωρητικό Μέρος Θέμα 1o A Λυκείου 22 Μαρτίου 28 Στις ερωτήσεις Α,Β,Γ,Δ,E μια μόνο απάντηση είναι σωστή. Γράψτε στο τετράδιό σας το κεφαλαίο γράμμα της ερώτησης και το μικρό γράμμα της σωστής απάντησης.

Διαβάστε περισσότερα

B Γυμνασίου. Ενότητα 9

B Γυμνασίου. Ενότητα 9 B Γυμνασίου Ενότητα 9 Γραμμικές εξισώσεις με μία μεταβλητή Διερεύνηση (1) Να λύσετε τις πιο κάτω εξισώσεις και ακολούθως να σχολιάσετε το πλήθος των λύσεων που βρήκατε σε καθεμιά. α) ( ) ( ) ( ) Διερεύνηση

Διαβάστε περισσότερα

3.2 3.3 3.4 ΠΡΑΞΕΙΣ ΜΕ ΕΚΑ ΙΚΟΥΣ

3.2 3.3 3.4 ΠΡΑΞΕΙΣ ΜΕ ΕΚΑ ΙΚΟΥΣ 1 3.2 3.3 3.4 ΠΡΑΞΕΙΣ ΜΕ ΕΚΑ ΙΚΟΥΣ ΥΠΟΛΟΓΙΣΜΟΙ ΜΕ ΚΟΜΠΙΟΥΤΕΡΑΚΙ ΤΥΠΟΠΟΙΗΜΕΝΗ ΜΟΡΦΗ ΑΡΙΘΜΩΝ ΘΕΩΡΙΑ 1. Πρόσθεση αφαίρεση δεκαδικών Γίνονται όπως και στους φυσικούς αριθµούς. Προσθέτουµε ή αφαιρούµε τα ψηφία

Διαβάστε περισσότερα

Ν. Αντωνίου, καθηγητής ΕΚΠΑ - Π. Δημητριάδης, Δρ. Φυσικής - Κ. Καμπούρης, Msc. Φυσικής - Κ. Παπαμιχάλης, Δρ. Φυσικής - Λ. Παπατσίμπα, Δρ.

Ν. Αντωνίου, καθηγητής ΕΚΠΑ - Π. Δημητριάδης, Δρ. Φυσικής - Κ. Καμπούρης, Msc. Φυσικής - Κ. Παπαμιχάλης, Δρ. Φυσικής - Λ. Παπατσίμπα, Δρ. 1 Συγγραφική ομάδα Ν. Αντωνίου, καθηγητής ΕΚΠΑ - Π. Δημητριάδης, Δρ. Φυσικής - Κ. Καμπούρης, Msc. Φυσικής - Κ. Παπαμιχάλης, Δρ. Φυσικής - Λ. Παπατσίμπα, Δρ. Φυσικής Επεξεργασία εικόνων Θεόφιλος Χατζητσοπάνης

Διαβάστε περισσότερα

Το πρόγραμμα συγχρηματοδοτείται 75% από το Ευρωπαϊκό κοινωνικό ταμείο και 25% από εθνικούς πόρους.

Το πρόγραμμα συγχρηματοδοτείται 75% από το Ευρωπαϊκό κοινωνικό ταμείο και 25% από εθνικούς πόρους. «Nέες Tεχνολογίες στο Εργαστήριο Φυσικής: Ανάπτυξη Εκπαιδευτικού Υλικού με την χρήση του Ηλεκτρονικού Υπολογιστή και διαμόρφωση κατάλληλων και σύγχρονων διδακτικών προσεγγίσεων» Ερευνητικό πρόγραμμα Αρχιμήδης

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΑΚΑ ΦΡΟΝΤΙΣΤΗΡΙΑ ΚΟΛΛΙΝΤΖΑ. Ερωτήσεις πολλαπλής επιλογής. Συντάκτης: Δημήτριος Κρέτσης

ΠΑΝΕΠΙΣΤΗΜΙΑΚΑ ΦΡΟΝΤΙΣΤΗΡΙΑ ΚΟΛΛΙΝΤΖΑ. Ερωτήσεις πολλαπλής επιλογής. Συντάκτης: Δημήτριος Κρέτσης ΠΑΝΕΠΙΣΤΗΜΙΑΚΑ ΦΡΟΝΤΙΣΤΗΡΙΑ ΚΟΛΛΙΝΤΖΑ Ερωτήσεις πολλαπλής επιλογής Συντάκτης: Δημήτριος Κρέτσης 1. Ο κλάδος της περιγραφικής Στατιστικής: α. Ασχολείται με την επεξεργασία των δεδομένων και την ανάλυση

Διαβάστε περισσότερα

ΠΡΟΒΛΗΜΑΤΑ ΜΕΤΑΦΟΡΑΣ

ΠΡΟΒΛΗΜΑΤΑ ΜΕΤΑΦΟΡΑΣ (Transportation Problems) Βασίλης Κώστογλου E-mail: vkostogl@it.teithe.gr URL: www.it.teithe.gr/~vkostogl Περιγραφή Ένα πρόβλημα μεταφοράς ασχολείται με το πρόβλημα του προσδιορισμού του καλύτερου δυνατού

Διαβάστε περισσότερα

ΤΟ ΝΕΟ ΕΥΡΩΠΑΪΚΟ ΠΡΟΤΥΠΟ ΕΝ 12830 Καταγραφικά θερµόµετρα για την µεταφορά, αποθήκευση και διανοµή τροφίµων και παγωτού σε ψύξη, κατάψυξη, βαθιά - κατάψυξη / ταχεία κατάψυξη - οκιµές, απόδοση, καταλληλότητα

Διαβάστε περισσότερα

εξισώσεις-ανισώσεις Μαθηματικά α λυκείου Φροντιστήρια Μ.Ε. ΠΑΙΔΕΙΑ σύνολο) στα Μαθηματικά, τη Φυσική αλλά και σε πολλές επιστήμες

εξισώσεις-ανισώσεις Μαθηματικά α λυκείου Φροντιστήρια Μ.Ε. ΠΑΙΔΕΙΑ σύνολο) στα Μαθηματικά, τη Φυσική αλλά και σε πολλές επιστήμες Με τον διεθνή όρο φράκταλ (fractal, ελλ. μορφόκλασμα ή μορφοκλασματικό σύνολο) στα Μαθηματικά, τη Φυσική αλλά και σε πολλές επιστήμες ονομάζεται ένα γεωμετρικό σχήμα που επαναλαμβάνεται αυτούσιο σε άπειρο

Διαβάστε περισσότερα

ΕΡΓΑΣΤΗΡΙΑΚΗ ΑΣΚΗΣΗ ΜΕΛΕΤΗ ΤΗΣ ΚΙΝΗΣΗΣ ΣΩΜΑΤΟΣ ΣΕ ΠΛΑΓΙΟ ΕΠΙΠΕΔΟ ΜΕΤΡΗΣΗ ΤΟΥ ΣΥΝΤΕΛΕΣΤΗ ΤΡΙΒΗΣ ΟΛΙΣΘΗΣΗΣ

ΕΡΓΑΣΤΗΡΙΑΚΗ ΑΣΚΗΣΗ ΜΕΛΕΤΗ ΤΗΣ ΚΙΝΗΣΗΣ ΣΩΜΑΤΟΣ ΣΕ ΠΛΑΓΙΟ ΕΠΙΠΕΔΟ ΜΕΤΡΗΣΗ ΤΟΥ ΣΥΝΤΕΛΕΣΤΗ ΤΡΙΒΗΣ ΟΛΙΣΘΗΣΗΣ ΕΡΓΑΣΤΗΡΙΑΚΗ ΑΣΚΗΣΗ ΜΕΛΕΤΗ ΤΗΣ ΚΙΝΗΣΗΣ ΣΩΜΑΤΟΣ ΣΕ ΠΛΑΓΙΟ ΕΠΙΠΕΔΟ ΜΕΤΡΗΣΗ ΤΟΥ ΣΥΝΤΕΛΕΣΤΗ ΤΡΙΒΗΣ ΟΛΙΣΘΗΣΗΣ [Π. Μουρούζης, Γ. Παληός, Κ. Παπαμιχάλης, Γ. Τουντουλίδης, Τζ. Τσιτοπούλου, Ι. Χριστακόπουλος] Για

Διαβάστε περισσότερα

1.1.3 t. t = t2 - t1 1.1.4 x2 - x1. x = x2 x1 . . 1

1.1.3 t. t = t2 - t1 1.1.4  x2 - x1. x = x2 x1 . . 1 1 1 o Κεφάλαιο: Ευθύγραµµη Κίνηση Πώς θα µπορούσε να περιγραφεί η κίνηση ενός αγωνιστικού αυτοκινήτου; Πόσο γρήγορα κινείται η µπάλα που κλώτσησε ένας ποδοσφαιριστής; Απαντήσεις σε τέτοια ερωτήµατα δίνει

Διαβάστε περισσότερα

Συνδυαστική Απαρίθμηση Υπολογισμός αριθμού διαφορετικών αποτελεσμάτων πειράματος (με συνδυαστικά επιχειρήματα)

Συνδυαστική Απαρίθμηση Υπολογισμός αριθμού διαφορετικών αποτελεσμάτων πειράματος (με συνδυαστικά επιχειρήματα) Συνδυαστική Απαρίθμηση Υπολογισμός αριθμού διαφορετικών αποτελεσμάτων πειράματος (με συνδυαστικά επιχειρήματα) Πείραμα: διαδικασία που παράγει πεπερασμένο σύνολο αποτελεσμάτων Πληθικός αριθμός συνόλου

Διαβάστε περισσότερα

ΠΕΙΡΑΜΑ 2. Κρούσεις P 2 !!! - m2 = P1= / m2. Σκοπός του πειράµατος

ΠΕΙΡΑΜΑ 2. Κρούσεις P 2 !!! - m2 = P1= / m2. Σκοπός του πειράµατος Σκοπός του πειράµατος ΠΕΙΡΑΜΑ 2 Κρούσεις Σκοπός του πειράµατος είναι η µελέτη των νόµων της διατήρησης της ενέργειας και ορµής ενός συστήµατος. Σχετικές έννοιες, όπως η γραµµική κίνηση, η ταχύτητα, η ελαστική

Διαβάστε περισσότερα

1. Πειραματική διάταξη

1. Πειραματική διάταξη 1. Πειραματική διάταξη 1.1 Περιγραφή της διάταξης Η διάταξη του πειράματος αποτελείται από έναν αερόδρομο και ένα ή δύο κινητά τα οποία είναι συζευγμένα μέσω ελατήριου. Η κίνηση των ταλαντωτών καταγράφεται

Διαβάστε περισσότερα

ΑΝΑΛΥΣΗ ΤΗΣ ΙΑΚΥΜΑΝΣΗΣ (ΑΝOVA)

ΑΝΑΛΥΣΗ ΤΗΣ ΙΑΚΥΜΑΝΣΗΣ (ΑΝOVA) ΑΝΑΛΥΣΗ ΤΗΣ ΙΑΚΥΜΑΝΣΗΣ (ΑΝOVA). Εισαγωγή Η ανάλυση της διακύμανσης (ANalysis Of VAriance ANOVA) είναι μια στατιστική μεθόδος με την οποία η μεταβλητότητα που υπάρχει σ ένα σύνολο δεδομένων διασπάται στις

Διαβάστε περισσότερα

1. Πότε χρησιμοποιούμε την δομή επανάληψης; Ποιες είναι οι διάφορες εντολές (μορφές) της;

1. Πότε χρησιμοποιούμε την δομή επανάληψης; Ποιες είναι οι διάφορες εντολές (μορφές) της; 1. Πότε χρησιμοποιούμε την δομή επανάληψης; Ποιες είναι οι διάφορες (μορφές) της; Η δομή επανάληψης χρησιμοποιείται όταν μια σειρά εντολών πρέπει να εκτελεστεί σε ένα σύνολο περιπτώσεων, που έχουν κάτι

Διαβάστε περισσότερα

ΕΛΕΓΧΟΣ ΣΤΑΤΙΣΤΙΚΩΝ ΥΠΟΘΕΣΕΩΝ. Επαγωγική στατιστική (Στατιστική Συμπερασματολογία) Εκτιμητική Έλεγχος Στατιστικών Υποθέσεων

ΕΛΕΓΧΟΣ ΣΤΑΤΙΣΤΙΚΩΝ ΥΠΟΘΕΣΕΩΝ. Επαγωγική στατιστική (Στατιστική Συμπερασματολογία) Εκτιμητική Έλεγχος Στατιστικών Υποθέσεων ΕΛΕΓΧΟΣ ΣΤΑΤΙΣΤΙΚΩΝ ΥΠΟΘΕΣΕΩΝ Επαγωγική στατιστική (Στατιστική Συμπερασματολογία) Εκτιμητική Έλεγχος Στατιστικών Υποθέσεων α) Σημειοεκτιμητική β) Εκτιμήσεις Διαστήματος ΕΛΕΓΧΟΣ ΣΤΑΤΙΣΤΙΚΩΝ ΥΠΟΘΕΣΕΩΝ Παράδειγμα

Διαβάστε περισσότερα

Ποσοτικές Μέθοδοι., Εισηγητής: Ν.Κυρίτσης, MBA, Ph.D. Candidate,, e-mail: kyritsis@ist.edu.gr

Ποσοτικές Μέθοδοι., Εισηγητής: Ν.Κυρίτσης, MBA, Ph.D. Candidate,, e-mail: kyritsis@ist.edu.gr Ποσοτικές Μέθοδοι Εισηγητής: Ν.Κυρίτσης MBA Ph.D. Candidate e-mail: kyritsis@ist.edu.gr Εισαγωγή στη Στατιστική Διδακτικοί Στόχοι Μέτρα Σχετικής Διασποράς Κατανομές Πιθανοτήτων Η Κανονική Κατανομή Η Τυποποιημένες

Διαβάστε περισσότερα

Εργασία 4: Υπολογιστικά Φύλλα και Επεξεργασία Δεδομένων. Ομάδα Β: Επεξεργασία πειραματικών δεδομένων

Εργασία 4: Υπολογιστικά Φύλλα και Επεξεργασία Δεδομένων. Ομάδα Β: Επεξεργασία πειραματικών δεδομένων Εργασία 4: Υπολογιστικά Φύλλα και Επεξεργασία Δεδομένων Ομάδα Β: Επεξεργασία πειραματικών δεδομένων Τι είναι τα υπολογιστικά φύλλα Λογιστικό φύλλο (spreadsheet): ο λογιστικός πίνακας, (παλαιότερα «λογιστικό

Διαβάστε περισσότερα

Εύρεση της πυκνότητας στερεών και υγρών.

Εύρεση της πυκνότητας στερεών και υγρών. Μ4 Εύρεση της πυκνότητας στερεών και υγρών. 1 Σκοπός Στην άσκηση αυτή προσδιορίζεται πειραματικά η πυκνότητα του υλικού ενός στερεού σώματος. Το στερεό αυτό σώμα βυθίζεται ή επιπλέει σε υγρό γνωστής πυκνότητας

Διαβάστε περισσότερα

Η Κανονική Κατανομή κανονική κατανομή (normal distribution) Κεντρικό Οριακό Θεώρημα (Central Limit Theorem) συνδέει οποιαδήποτε άλλη κατανομή

Η Κανονική Κατανομή κανονική κατανομή (normal distribution) Κεντρικό Οριακό Θεώρημα (Central Limit Theorem) συνδέει οποιαδήποτε άλλη κατανομή Η Κανονική Κατανομή H κανονική κατανομή (ormal dstrbuto) θεωρείται η σπουδαιότερη κατανομή της Θεωρίας Πιθανοτήτων και της Στατιστικής. Οι λόγοι που εξηγούν την εξέχουσα θέση της, είναι βασικά δύο: ) Πολλές

Διαβάστε περισσότερα

4. Πόσο οξικό οξύ περιέχει το ξίδι;

4. Πόσο οξικό οξύ περιέχει το ξίδι; 4. Πόσο οξικό οξύ περιέχει το ξίδι; Σκοπός Σκοπός αυτού του πειράματος είναι να προσδιορίσετε την ποσότητα (γραμμομοριακή συγκέντρωση) του οξικού οξέος που υπάρχει σε ένα λευκό ξίδι μέσω ογκομέτρησης με

Διαβάστε περισσότερα

ΕΝΩΣΗ ΚΥΠΡΙΩΝ ΦΥΣΙΚΩΝ

ΕΝΩΣΗ ΚΥΠΡΙΩΝ ΦΥΣΙΚΩΝ ΕΝΩΣΗ ΚΥΠΡΙΩΝ ΦΥΣΙΚΩΝ 28 Η ΠΑΓΚΥΠΡΙΑ ΟΛΥΜΠΙΑΔΑ ΦΥΣΙΚΗΣ Β ΛΥΚΕΙΟΥ Κυριακή, 13 Απριλίου, 2014 Ώρα: 10:00-13:00 Παρακαλώ διαβάστε πρώτα τα πιο κάτω, πριν απαντήσετε οποιαδήποτε ερώτηση. Γενικές οδηγίες: 1.

Διαβάστε περισσότερα

ΘΕΜΑ Β Παράδειγμα 1. Να δικαιολογήσετε την επιλογή σας. (Μονάδες 8)

ΘΕΜΑ Β Παράδειγμα 1. Να δικαιολογήσετε την επιλογή σας. (Μονάδες 8) ΘΕΜΑ Β Παράδειγμα 1 Β1. Στο σχολικό εργαστήριο μια μαθήτρια περιεργάζεται ένα ελατήριο και λέει σε συμμαθητή της: «Θα μπορούσαμε να βαθμολογήσουμε αυτό το ελατήριο και με τον τρόπο αυτό να κατασκευάσουμε

Διαβάστε περισσότερα

7ο Μάθημα Η ΠΥΚΝΟΤΗΤΑ ΕΝΟΣ ΥΛΙΚΟΥ

7ο Μάθημα Η ΠΥΚΝΟΤΗΤΑ ΕΝΟΣ ΥΛΙΚΟΥ 7ο Μάθημα Η ΠΥΚΝΟΤΗΤΑ ΕΝΟΣ ΥΛΙΚΟΥ Συμβαίνει κι αυτό: ο όγκος ενός σώματος να 'ναι μεγάλος, αλλά η μάζα του να 'ναι μικρή Από την καθημερινή μας ζωή, ξέρουμε τι σημαίνει πυκνό και αραιό: πυκνό δάσος, αραιά

Διαβάστε περισσότερα

ΜΕΤΑ-ΑΝΑΛΥΣΗ (Meta-Analysis)

ΜΕΤΑ-ΑΝΑΛΥΣΗ (Meta-Analysis) ΚΕΦΑΛΑΙΟ 23 ΜΕΤΑ-ΑΝΑΛΥΣΗ (Meta-Analysis) ΕΙΣΑΓΩΓΗ Έχοντας παρουσιάσει τις βασικές έννοιες των ελέγχων υποθέσεων, θα ήταν, ίσως, χρήσιμο να αναφερθούμε σε μια άλλη περιοχή στατιστικής συμπερασματολογίας

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 3: ΔΥΝΑΜΕΙΣ Μέρος 1ο

ΚΕΦΑΛΑΙΟ 3: ΔΥΝΑΜΕΙΣ Μέρος 1ο ΚΕΦΑΛΑΙΟ 3: ΔΥΝΑΜΕΙΣ Μέρος 1ο Φυσική Β Γυμνασίου Βασίλης Γαργανουράκης http://users.sch.gr/vgargan Εισαγωγή Στο προηγούμενο κεφάλαιο μελετήσαμε τις κινήσεις των σωμάτων. Το επόμενο βήμα είναι να αναζητήσουμε

Διαβάστε περισσότερα

ΕΡΓΑΣΤΗΡΙΑΚΕΣ ΑΣΚΗΣΕΙΣ ΓΕΝΙΚΗΣ ΦΥΣΙΚΗΣ

ΕΡΓΑΣΤΗΡΙΑΚΕΣ ΑΣΚΗΣΕΙΣ ΓΕΝΙΚΗΣ ΦΥΣΙΚΗΣ ΕΡΓΑΣΤΗΡΙΑΚΕΣ ΑΣΚΗΣΕΙΣ ΓΕΝΙΚΗΣ ΦΥΣΙΚΗΣ Μηχανική Ηλεκτρισμός Θερμότητα Κυματική ΤΑ ΜΕΛΗ Δ.Ε.Π. ΤΟΥ ΤΟΜΕΑ ΦΥΣΙΚΗΣ ΣΤΕΡΕΑΣ ΚΑΤΑΣΤΑΣΗΣ ΤΟΥ ΤΜΗΜΑΤΟΣ ΦΥΣΙΚΗΣ ΤΟΥ Α.Π.Θ. ΕΡΓΑΣΤΗΡΙΑΚΕΣ ΑΣΚΗΣΕΙΣ ΓΕΝΙΚΗΣ ΦΥΣΙΚΗΣ

Διαβάστε περισσότερα

3 ο βήμα: Βγάζουμε παρενθέσεις 4 ο βήμα: Προσθέσεις και αφαιρέσεις

3 ο βήμα: Βγάζουμε παρενθέσεις 4 ο βήμα: Προσθέσεις και αφαιρέσεις 24 Κεφάλαιο ο. Να κάνετε τις πράξεις : α) 2 + 3 4-2 : (-4) + γ) -3 (-2) -5 +4: (-2) -6 β) 2 +3 (4-2): (-4 +) δ) -8 : (-3 +5) -4 (-2 + 6) Για να κάνουμε τις πράξεις ακολουθούμε τα εξής βήματα: ο βήμα: Πράξεις

Διαβάστε περισσότερα

1. Ποια μεγέθη ονομάζονται μονόμετρα και ποια διανυσματικά;

1. Ποια μεγέθη ονομάζονται μονόμετρα και ποια διανυσματικά; ΚΕΦΑΛΑΙΟ 2 ο ΚΙΝΗΣΗ 2.1 Περιγραφή της Κίνησης 1. Ποια μεγέθη ονομάζονται μονόμετρα και ποια διανυσματικά; Μονόμετρα ονομάζονται τα μεγέθη τα οποία, για να τα προσδιορίσουμε πλήρως, αρκεί να γνωρίζουμε

Διαβάστε περισσότερα

ΦΥΣΙΚΗ Γ ΛΥΚΕΙΟΥ ΠΑΝΕΛΛΗΝΙΕΣ ΘΕΜΑΤΑ

ΦΥΣΙΚΗ Γ ΛΥΚΕΙΟΥ ΠΑΝΕΛΛΗΝΙΕΣ ΘΕΜΑΤΑ ΦΥΣΙΚΗ Γ ΛΥΚΕΙΟΥ ΠΑΝΕΛΛΗΝΙΕΣ 2008 ΘΕΜΑΤΑ ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ ΑΠΟΛΥΤΗΡΙΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΠΕΜΠΤΗ 29 ΜΑÏΟΥ 2008 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΦΥΣΙΚΗ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ (ΚΑΙ

Διαβάστε περισσότερα

2 ΟΥ και 7 ΟΥ ΚΕΦΑΛΑΙΟΥ

2 ΟΥ και 7 ΟΥ ΚΕΦΑΛΑΙΟΥ ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ ΕΠΙΜΕΛΕΙΑ: ΜΑΡΙΑ Σ. ΖΙΩΓΑ ΚΑΘΗΓΗΤΡΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΘΕΩΡΙΑ 2 ΟΥ και 7 ΟΥ ΚΕΦΑΛΑΙΟΥ ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ ΑΛΓΟΡΙΘΜΩΝ και ΔΟΜΗ ΑΚΟΛΟΥΘΙΑΣ 2.1 Να δοθεί ο ορισμός

Διαβάστε περισσότερα

Τι ονομάζουμε Φυσική; Φυσική ονομάζουμε την επιστήμη η οποία μελετά τα φυσικά φαινόμενα. ΦΥΣΙΚΗ Α ΛΥΚΕΙΟΥ

Τι ονομάζουμε Φυσική; Φυσική ονομάζουμε την επιστήμη η οποία μελετά τα φυσικά φαινόμενα. ΦΥΣΙΚΗ Α ΛΥΚΕΙΟΥ ΦΥΣΙΚΗ Α ΛΥΚΕΙΟΥ Τι ονομάζουμε Φυσική; Φυσική ονομάζουμε την επιστήμη η οποία μελετά τα φυσικά φαινόμενα. ΦΥΣΙΚΗ Α ΛΥΚΕΙΟΥ ΠΡΟΛΟΓΟΣ Ξ εκινώντας τη προσπάθεια μου να γράψω αυτό το βιβλίο αναρωτιόμουν πως

Διαβάστε περισσότερα

Ιπτάμενες Μηχανές. Οδηγός για το Μαθητή

Ιπτάμενες Μηχανές. Οδηγός για το Μαθητή Ιπτάμενες Μηχανές Οδηγός για το Μαθητή Το ελικόπτερο Αφού βεβαιωθείτε ότι βρίσκεστε στο περιβάλλον του εκπαιδευτικού προγράμματος, επιλέξτε «Έναυσμα». Ακολουθώντας τις οδηγίες που παρουσιάζονται στην οθόνη

Διαβάστε περισσότερα

Προσδιορισμός της πυκνότητας με τη μέθοδο της άνωσης

Προσδιορισμός της πυκνότητας με τη μέθοδο της άνωσης Άσκηση 8 Προσδιορισμός της πυκνότητας με τη μέθοδο της άνωσης 1.Σκοπός Σκοπός της άσκησης είναι ο πειραματικός προσδιορισμός της πυκνότητας στερεών και υγρών με τη μέθοδο της άνωσης. Βασικές Θεωρητικές

Διαβάστε περισσότερα

Ελλιπή δεδομένα. Εδώ έχουμε 1275. Στον πίνακα που ακολουθεί δίνεται η κατά ηλικία κατανομή 1275 ατόμων

Ελλιπή δεδομένα. Εδώ έχουμε 1275. Στον πίνακα που ακολουθεί δίνεται η κατά ηλικία κατανομή 1275 ατόμων Ελλιπή δεδομένα Στον πίνακα που ακολουθεί δίνεται η κατά ηλικία κατανομή 75 ατόμων Εδώ έχουμε δ 75,0 75 5 Ηλικία Συχνότητες f 5-4 70 5-34 50 35-44 30 45-54 465 55-64 335 Δεν δήλωσαν 5 Σύνολο 75 Μπορεί

Διαβάστε περισσότερα

Στατιστικοί έλεγχοι για διακριτά δεδομένα

Στατιστικοί έλεγχοι για διακριτά δεδομένα Στατιστικοί έλεγχοι για διακριτά δεδομένα Διαστρωμάτωση Mantel-Haenszel test Γεωργία Σαλαντή Λέκτορας επιδημιολογίας Λεπτοσπείρωση Πιο πολλά κρούσματα στις αγροτικές περιοχές; Πόσο επί τις εκατό του πληθυσμού

Διαβάστε περισσότερα

Α Λυκείου Άλγεβρα Τράπεζα Θεμάτων Το Δεύτερο Θέμα

Α Λυκείου Άλγεβρα Τράπεζα Θεμάτων Το Δεύτερο Θέμα Α Λυκείου Άλγεβρα Τράπεζα Θεμάτων Το Δεύτερο Θέμα Θεωρούμε την ακολουθία (α ν ) των θετικών περιττών αριθμών: 1, 3, 5, 7, α) Να αιτιολογήσετε γιατί η (α ν ) είναι αριθμητική πρόοδος και να βρείτε τον εκατοστό

Διαβάστε περισσότερα

ΕΡΩΤΗΣΕΙΣ ΘΕΜΑΤΑ ΘΕΩΡΙΑΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΤΗΣ Α ΓΥΜΝΑΣΙΟΥ ΑΛΓΕΒΡΑ

ΕΡΩΤΗΣΕΙΣ ΘΕΜΑΤΑ ΘΕΩΡΙΑΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΤΗΣ Α ΓΥΜΝΑΣΙΟΥ ΑΛΓΕΒΡΑ 1 ο ΚΕΦΑΛΑΙΟ ΕΡΩΤΗΣΕΙΣ ΘΕΜΑΤΑ ΘΕΩΡΙΑΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΤΗΣ Α ΓΥΜΝΑΣΙΟΥ ΑΛΓΕΒΡΑ 1. α. Τι γνωρίζετε για την Ευκλείδεια διαίρεση; Πότε λέγεται τέλεια; β. Αν σε μια διαίρεση είναι Δ=δ, πόσο είναι το πηλίκο και

Διαβάστε περισσότερα

Εργαστήριο Οπτικής ΣΥΜΒΟΛΗ ΤΟΥ ΦΩΤΟΣ

Εργαστήριο Οπτικής ΣΥΜΒΟΛΗ ΤΟΥ ΦΩΤΟΣ ΣΥΜΒΟΛΗ ΤΟΥ ΦΩΤΟΣ Μάκης Αγγελακέρης 010 Σκοπός της άσκησης Να μπορείτε να εξηγήσετε το φαινόμενο της Συμβολής και κάτω από ποιες προϋποθέσεις δύο δέσμες φωτός, μπορεί να συμβάλουν. Να μπορείτε να περιγράψετε

Διαβάστε περισσότερα

Περιληπτικά, τα βήματα που ακολουθούμε γενικά είναι τα εξής:

Περιληπτικά, τα βήματα που ακολουθούμε γενικά είναι τα εξής: Αυτό που πρέπει να θυμόμαστε, για να μη στεναχωριόμαστε, είναι πως τόσο στις εξισώσεις, όσο και στις ανισώσεις 1ου βαθμού, που θέλουμε να λύσουμε, ακολουθούμε ακριβώς τα ίδια βήματα! Εκεί που πρεπει να

Διαβάστε περισσότερα

ΣΥΣΤΗΜΑΤΑ. 6.1 ΓΡΑΜΜΙΚΑ ΣΥΣΤΗΜΑΤΑ (Επαναλήψεις-Συμπληρώσεις)

ΣΥΣΤΗΜΑΤΑ. 6.1 ΓΡΑΜΜΙΚΑ ΣΥΣΤΗΜΑΤΑ (Επαναλήψεις-Συμπληρώσεις) 6 ΣΥΣΤΗΜΑΤΑ 6.1 ΓΡΑΜΜΙΚΑ ΣΥΣΤΗΜΑΤΑ (Επαναλήψεις-Συμπληρώσεις) Η εξίσωση αx βy γ Στο Γυμνάσιο διαπιστώσαμε με την βοήθεια παραδειγμάτων ότι η εξίσωση αx βy γ, με α 0 ή β 0, που λέγεται γραμμική εξίσωση,

Διαβάστε περισσότερα

Παράδειγμα 1 Γράψε ένα δεκαδικό αριθμό μεταξύ του 2 και του 3 που δεν περιέχει το 5 που περιέχει το 7 και που βρίσκεται όσο πιο κοντά γίνεται με το

Παράδειγμα 1 Γράψε ένα δεκαδικό αριθμό μεταξύ του 2 και του 3 που δεν περιέχει το 5 που περιέχει το 7 και που βρίσκεται όσο πιο κοντά γίνεται με το Παράδειγμα 1 Γράψε ένα δεκαδικό αριθμό μεταξύ του 2 και του 3 που δεν περιέχει το 5 που περιέχει το 7 και που βρίσκεται όσο πιο κοντά γίνεται με το 5/2 1 Παράδειγμα 2: Γράψε ένα κλάσμα που χρησιμοποιεί

Διαβάστε περισσότερα

Δύο κύριοι τρόποι παρουσίασης δεδομένων. Παράδειγμα

Δύο κύριοι τρόποι παρουσίασης δεδομένων. Παράδειγμα Δύο κύριοι τρόποι παρουσίασης δεδομένων Παράδειγμα Με πίνακες Με διαγράμματα Ονομαστικά δεδομένα Εδώ τα περιγραφικά μέτρα (μέσος, διάμεσος κλπ ) δεν έχουν νόημα Πήραμε ένα δείγμα από 25 άτομα και τα ρωτήσαμε

Διαβάστε περισσότερα

ΜΕΛΕΤΗ ΕΥΘ. ΟΜΑΛΑ ΕΠΙΤΑΧΥΝΟΜΕΝΗΣ ΚΙΝΗΣΗΣ ( ΜΕΣΩ ΤΗΣ ΕΛΕΥΘΕΡΗΣ ΠΤΩΣΗΣ )

ΜΕΛΕΤΗ ΕΥΘ. ΟΜΑΛΑ ΕΠΙΤΑΧΥΝΟΜΕΝΗΣ ΚΙΝΗΣΗΣ ( ΜΕΣΩ ΤΗΣ ΕΛΕΥΘΕΡΗΣ ΠΤΩΣΗΣ ) ο ΕΚΦΕ (Ν. ΣΜΥΡΝΗΣ) Δ Δ/ΝΣΗΣ Δ. Ε. ΑΘΗΝΑΣ ΜΕΛΕΤΗ ΕΥΘ. ΟΜΑΛΑ ΕΠΙΤΑΧΥΝΟΜΕΝΗΣ ΚΙΝΗΣΗΣ ( ΜΕΣΩ ΤΗΣ ΕΛΕΥΘΕΡΗΣ ΠΤΩΣΗΣ ) Α. ΣΤΟΧΟΙ Η ικανότητα συναρμολόγησης μιας απλής πειραματικής διάταξης. Η σύγκριση των πειραματικών

Διαβάστε περισσότερα

Π Α Ν Ε Λ Λ Η Ν Ι Ε Σ 2 0 1 5 Μ Α Θ Η Μ Α Τ Ι Κ Α K A I Σ Τ Ο Ι Χ Ε Ι Α Σ Τ Α Τ Ι Σ Τ Ι Κ Η

Π Α Ν Ε Λ Λ Η Ν Ι Ε Σ 2 0 1 5 Μ Α Θ Η Μ Α Τ Ι Κ Α K A I Σ Τ Ο Ι Χ Ε Ι Α Σ Τ Α Τ Ι Σ Τ Ι Κ Η Π Α Ν Ε Λ Λ Η Ν Ι Ε Σ 0 Μ Α Θ Η Μ Α Τ Ι Κ Α K A I Σ Τ Ο Ι Χ Ε Ι Α Σ Τ Α Τ Ι Σ Τ Ι Κ Η Ε π ι μ ε λ ε ι α : Τ α κ η ς Τ σ α κ α λ α κ ο ς o ΘΕΜΑ Π α ν ε λ λ α δ ι κ ε ς Ε ξ ε τ α σ ε ι ς ( 0 ) A. Aν οι συναρτησεις

Διαβάστε περισσότερα

μαθηματικά β γυμνασίου

μαθηματικά β γυμνασίου μαθηματικά β γυμνασίου Κάθε αντίτυπο φέρει την υπογραφή ενός εκ των συγγραφέων Σειρά: Γυμνάσιο, Θετικές Επιστήμες Μαθηματικά Β Γυμνασίου, Βασίλης Διολίτσης Ιωάννα Κοσκινά Νικολέττα Μπάκου Θεώρηση Κειμένου:

Διαβάστε περισσότερα

Διοίκηση Παραγωγής και Υπηρεσιών

Διοίκηση Παραγωγής και Υπηρεσιών Διοίκηση Παραγωγής και Υπηρεσιών Διαχείριση Αποθεμάτων Συστήματα Συνεχούς και Περιοδικής Αναθεώρησης Γιώργος Ιωάννου, Ph.D. Αναπληρωτής Καθηγητής Σύνοψη διάλεξης Συστήματα ελέγχου αποθεμάτων Σύστημα συνεχούς

Διαβάστε περισσότερα

ΘΕΜΑ Α Παράδειγμα 1. Α1. Ο ρυθμός μεταβολής της ταχύτητας ονομάζεται και α. μετατόπιση. β. επιτάχυνση. γ. θέση. δ. διάστημα.

ΘΕΜΑ Α Παράδειγμα 1. Α1. Ο ρυθμός μεταβολής της ταχύτητας ονομάζεται και α. μετατόπιση. β. επιτάχυνση. γ. θέση. δ. διάστημα. ΘΕΜΑ Α Παράδειγμα 1 Α1. Ο ρυθμός μεταβολής της ταχύτητας ονομάζεται και α. μετατόπιση. β. επιτάχυνση. γ. θέση. δ. διάστημα. Α2. Για τον προσδιορισμό μιας δύναμης που ασκείται σε ένα σώμα απαιτείται να

Διαβάστε περισσότερα

Τύποι, Σταθερές και Μεταβλητές

Τύποι, Σταθερές και Μεταβλητές ΚΕΦΑΛΑΙΟ 3 Τύποι, Σταθερές και Μεταβλητές Η έννοια της μεταβλητής Γενικά μπορούμε να πούμε ότι η έννοια της μεταβλητής στον προγραμματισμό είναι άμεσα συνδεδεμένη με την έννοια που αυτή έχει σε μαθηματικό

Διαβάστε περισσότερα

ΕΙΣΑΓΩΓΗ Πιθανότητες και Στατιστική

ΕΙΣΑΓΩΓΗ Πιθανότητες και Στατιστική ΚΕΦΑΛΑΙΟ 1 ΕΙΣΑΓΩΓΗ Πιθανότητες και Στατιστική Ο μεγάλος Γάλλος μαθηματικός Laplace έγραψε ότι οι Πιθανότητες δεν είναι τίποτα άλλο παρά η μετατροπή της κοινής λογικής σε μαθηματικές εκφράσεις. Η χρήση

Διαβάστε περισσότερα

Πίσω στα βασικά: Βασικές αρχές στατιστικής για κοινωνιολογικές έρευνες

Πίσω στα βασικά: Βασικές αρχές στατιστικής για κοινωνιολογικές έρευνες Σχετικές πληροφορίες: http://dlib.ionio.gr/~spver/seminars/statistics/ Πίσω στα βασικά: Βασικές αρχές στατιστικής για κοινωνιολογικές έρευνες Σπύρος Βερονίκης Τμήμα Αρχειονομίας - Βιβλιοθηκονομίας Θεματικές

Διαβάστε περισσότερα

ΦΥΣΙΚΗ Β ΓΥΜΝΑΣΙΟΥ ΚΕΦΑΛΑΙΟ 3 Ο ΔΥΝΑΜΕΙΣ

ΦΥΣΙΚΗ Β ΓΥΜΝΑΣΙΟΥ ΚΕΦΑΛΑΙΟ 3 Ο ΔΥΝΑΜΕΙΣ ΦΥΣΙΚΗ Β ΓΥΜΝΑΣΙΟΥ ΚΕΦΑΛΑΙΟ 3 Ο ΔΥΝΑΜΕΙΣ 3.1 Η έννοια της δύναμης ΣΤΟΙΧΕΙΑ ΘΕΩΡΙΑΣ Στο κεφάλαιο των κινήσεων ασχοληθήκαμε με τη μελέτη της κίνησης χωρίς να μας απασχολούν τα αίτια που προκαλούν την κίνηση

Διαβάστε περισσότερα

ΑΚΕΡΑΙΟΙ ΑΡΙΘΜΟΙ- ΠΡΑΞΕΙΣ ΑΥΤΩΝ 1.2 ΠΡΟΒΛΗΜΑΤΑ ΔΙΔΑΣΚΑΛΙΑΣ ΤΩΝ ΑΡΝΗΤΙΚΩΝ ΑΡΙΘΜΩΝ

ΑΚΕΡΑΙΟΙ ΑΡΙΘΜΟΙ- ΠΡΑΞΕΙΣ ΑΥΤΩΝ 1.2 ΠΡΟΒΛΗΜΑΤΑ ΔΙΔΑΣΚΑΛΙΑΣ ΤΩΝ ΑΡΝΗΤΙΚΩΝ ΑΡΙΘΜΩΝ ΑΚΕΡΑΙΟΙ ΑΡΙΘΜΟΙ- ΠΡΑΞΕΙΣ ΑΥΤΩΝ 1.1 ΕΙΣΑΓΩΓΗ Ασχολήθηκα 30 χρόνια με τη διδασκαλία των Μαθηματικών του Γυμνασίου, τόσο στην Μέση Εκπαίδευση όσο και σε Φροντιστήρια. Η μέθοδος που χρησιμοποιούσα για τη

Διαβάστε περισσότερα

Οι κλασσικότερες από αυτές τις προσεγγίσεις βασίζονται σε πολιτικές αναπαραγγελίας, στις οποίες προσδιορίζονται τα εξής δύο μεγέθη:

Οι κλασσικότερες από αυτές τις προσεγγίσεις βασίζονται σε πολιτικές αναπαραγγελίας, στις οποίες προσδιορίζονται τα εξής δύο μεγέθη: 4. ΔΙΑΧΕΙΡΙΣΗ ΑΠΟΘΕΜΑΤΩΝ ΥΠΟ ΑΒΕΒΑΙΑ ΖΗΤΗΣΗ Στις περισσότερες περιπτώσεις η ζήτηση είναι αβέβαια. Οι περιπτώσεις αυτές διαφέρουν ως προς το μέγεθος της αβεβαιότητας. Δηλαδή εάν η αβεβαιότητα είναι περιορισμένη

Διαβάστε περισσότερα

ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ ΜΑΘΗΜΑ 7 Ο. Αριθμητικές πράξεις Τυχαίοι αριθμοί Εφαρμογές σε προβλήματα ΣΙΝΑΤΚΑΣ Ι. ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ 2010-11 1

ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ ΜΑΘΗΜΑ 7 Ο. Αριθμητικές πράξεις Τυχαίοι αριθμοί Εφαρμογές σε προβλήματα ΣΙΝΑΤΚΑΣ Ι. ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ 2010-11 1 ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ ΜΑΘΗΜΑ 7 Ο Αριθμητικές πράξεις Τυχαίοι αριθμοί Εφαρμογές σε προβλήματα ΣΙΝΑΤΚΑΣ Ι. ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ 2010-11 1 Εισαγωγή Οι αριθμητικές πράξεις που εκτελούνται στον υπολογιστή αποτελούν το

Διαβάστε περισσότερα

Τ.Ε.Ι Λαμίας Σ.Τ.ΕΦ. Τμήμα Ηλεκτρονικής Εργασία Κεραίες

Τ.Ε.Ι Λαμίας Σ.Τ.ΕΦ. Τμήμα Ηλεκτρονικής Εργασία Κεραίες Τ.Ε.Ι Λαμίας Σ.Τ.ΕΦ. Τμήμα Ηλεκτρονικής Εργασία Κεραίες Μπαρμπάκος Δημήτριος Δεκέμβριος 2012 Περιεχόμενα 1. Εισαγωγή 2. Κεραίες 2.1. Κεραία Yagi-Uda 2.2. Δίπολο 2.3. Μονόπολο 2.4. Λογαριθμική κεραία 3.

Διαβάστε περισσότερα