Επίλυση Προβλημάτων και Τεχνικές Αναζήτησης Εισαγωγή

Save this PDF as:
 WORD  PNG  TXT  JPG

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "Επίλυση Προβλημάτων και Τεχνικές Αναζήτησης Εισαγωγή"

Transcript

1 Επίλυση Προβλημάτων και Τεχνικές Αναζήτησης Εισαγωγή επίλυση προβλημάτων μέσω αναζήτησης κάθε πρόβλημα το οποίο μπορεί να διατυπωθεί αυστηρά λύνεται μέσω αναζήτησης. Για τα περισσότερα ενδιαφέροντα προβλήματα ο χρόνος και ο χώρος που απαιτείται για την λύση τους μέσω αναζήτησης είναι απαγορευτικά μεγάλος και αυξάνει τουλάχιστον εκθετικά με το μέγεθος του προβλήματος.

2 Εισαγωγή Παράδειγμα: κρυφός συνδυασμός μιας ηλεκτρονικής κλειδαριάς που δέχεται ως κλειδί έναν αριθμό με 2 ψηφία έχουμε να ψάξουμε (δοκιμάσουμε) 100 συνδυασμούς. Αν η κάθε δοκιμή χρειάζεται 1 δευτερόλεπτο τότε θέλουμε 1 min και 40sec. Αν όμως το κλειδί αποτελείται από 4 ψηφία τότε πρέπει να ψάξουμε συνδυασμούς το οποίο μπορεί να μας πάρει μέχρι και 2 ώρες και 45 λεπτά. με 8 ψηφία; πάνω από 3 χρόνια στην χειρότερη περίπτωση. Εισαγωγή βλέπουμε την εκθετική αύξηση της πολυπλοκότητας που παρουσιάζουν πολλά προβλήματα. για μικρά μεγέθη προβλημάτων ή για πολύ απλά προβλήματα μπορούμε να χρησιμοποιήσουμε τυφλή αναζήτηση. αλλοιώς χρησιμοποιούμε extra πληροφορία. Αν για παράδειγμα, ξέραμε ότι αυτός που όρισε το κλειδί βάζει ως κλειδιά ημερομηνίες γεννήσεως συγγενικών του προσώπων τότε θα χρειαζόταν να δοκιμάσουμε πολύ λίγους συνδυασμούς (ευριστικός τρόπος). εξαρτάται από το πρόβλημα

3 Μισθοφόροι και κανίβαλοι A B cannibal cannibal cannibal missionary missionary missionary Μισθοφόροι και κανίβαλοι Έχουμε στην όχθη ενός ποταμού 3 μισθοφόρους και 3 κανίβαλους και μία βάρκα που χωράει το πολύ 2 άτομα. Περιορισμοί δεν υπάρχει κανένας τρόπος να περάσει κάποιος το ποτάμι πάρα μόνο με την βάρκα η βάρκα δεν μπορεί να μετακινηθεί παρά μόνο αν υπάρχει κάποιος μέσα. Ζητείται ένα σχέδιο μετακινήσεων με βάση το οποίο θα περάσουν το ποτάμι και οι μισθοφόροι και οι κανίβαλοι με τον επιπλέον περιορισμό ότι ποτέ δεν πρέπει σε μία όχθη να υπάρχουν μισθοφόροι, ο αριθμός των οποίων να είναι μικρότερος από τον αριθμό των κανιβάλων σε εκείνη την όχθη.

4 Σπαζοκεφαλιά Σπαζοκεφαλιά Έχουμε έναν πίνακα 3 x 3 (9 θέσεων). Η μία θέση του πίνακα είναι κενή ενώ στις άλλες υπάρχει κάποιος από τους αριθμούς 1 μέχρι 8. Ο κάθε αριθμός εμφανίζεται ακριβώς μία φορά. Στον πίνακα αυτόν επιτρέπονται οι μετακινήσεις των αριθμών με τον εξής τρόπο: ένας αριθμός μπορεί να μετακινηθεί μόνο οριζόντια ή κάθετα κατά μία θέση κάθε φορά εφόσον η θέση στην οποία θα μετακινηθεί ήταν προηγουμένως άδεια. Δεδομένου μίας αρχικής διάταξης ζητείται να γίνουν οι κατάλληλες κινήσεις έτσι ώστε ο πίνακας να φτάσει στην τελική του μορφή

5 Ο κόσμος των κύβων A B C A B C Ο κόσμος των κύβων Έχουμε πάνω σε ένα τραπέζι 3 κύβους ιδίου μεγέθους: Α, B, C. Αρχικά έχουμε τον κύβο C πάνω στον κύβο Α ενώ ο κύβος B βρίσκεται μόνος του πάνω στο τραπέζι. Κάθε φορά μπορούμε να μετακινήσουμε ένα μόνο κύβο και να τον τοποθετήσουμε πάνω στο τραπέζι ή πάνω σε κάποιο άλλο κύβο ο οποίος όμως δεν πρέπει να έχει άλλον κύβο πάνω του (πρέπει να είναι ο πάνω κύβος). Δεν μπορούμε να μετακινήσουμε τους κύβους που έχουν κάποιον άλλο κύβο πάνω τους. Ζητείται ένα σχέδιο κινήσεων έτσι ώστε να καταλήξουμε να έχουμε τον κύβο C πάνω στο τραπέζι, τον B πάνω στο C και τον Α πάνω στο Β.

6 Το πρόβλημα του πλανόδιου πωλητή C C1 C2 C3 C4 C5 C6 C7 B C8 C10 F C9 C12 A C13 C11 D C14 C15 E Το πρόβλημα του πλανόδιου πωλητή Έχουμε ένα σύνολο από πόλεις οι οποίες συνδέονται με διάφορους δρόμους μεταξύ τους. Για κάθε τέτοιο δρόμο ξέρουμε το μήκος του. Ένας πλανόδιος πωλητής θέλει να περάσει από όλες αυτές τις πόλεις. Ζητείται η σειρά με την οποία πρέπει να επισκεφτεί τις πόλεις ο πλανόδιος πωλητής έτσι ώστε από κάθε πόλη να περάσει ακριβώς μία φορά, να καταλήξει στην πόλη από την οποία ξεκίνησε και να κάνει τα ελάχιστα δυνατά χιλιόμετρα.

7 Επιλογή οδικής διαδρομής Δεδομένου ενός οδικού χάρτη που περιέχει πόλεις, δρόμους και χιλιομετρικές αποστάσεις για τους δρόμους, ζητείται να βρεθεί ο συντομότερος δρόμος που συνδέει δύο δεδομένες πόλεις. 150 ΙΩΑΝΝΙΝΑ ΤΡΙΚΑΛΑ ΗΓΟΥΜΕΝΙΤΣΑ ΑΡΤΑ ΚΟΖΑΝΗ 50 ΚΑΤΕΡΙΝΗ ΛΑΡΙΣΑ 60 ΒΟΛΟΣ ΦΑΡΣΑΛΑ 92 ΛΑΜΙΑ 120 ΔΕΛΦΟΙ ΑΙΓΙΟ 80 ΑΘΗΝΑ ΠΑΤΡΑ ΚΟΡΙΝΘΟΣ 75 ΝΑΥΠΛΙΟ Τα 12 νομίσματα Μας δίνονται 12 νομίσματα ένα από τα οποία είναι κάλπικο Στην διάθεση μας έχουμε μία ζυγαριά με την οποία μπορούμε να κάνουμε το πολύ 3 ζυγίσεις. Σε κάθε ζύγιση μπορούμε να συγκρίνουμε δύο ομάδες νομισμάτων και να δούμε πια ομάδα είναι βαρύτερη ή αν οι δύο ομάδες έχουν το ίδιο βάρος. Ζητείται ένα σχέδιο ζυγίσεων το οποίο βρίσκει σε κάθε περίπτωση ποιο είναι το κάλπικο νόμισμα.

8 Οι 8 βασίλισσες Έχουμε μία άδεια σκακιέρα και 8 βασίλισσες Ζητείται να τοποθετήσουμε τις βασίλισσες πάνω στην σκακιέρα έτσι ώστε καμία βασίλισσα να μην απειλεί κάποια άλλη. Αυτή είναι μία αποτυχημένη απόπειρα λύσης του προβλήματος: στην κυρίως λευκή διαγώνιο υπάρχουν 2 βασίλισσες. Κατηγοριοποίηση προβλημάτων Η λύση μπορεί να είναι απλώς μια τελική κατάσταση ή μπορεί να είναι το μονοπάτι προς κάποια τελική κατάσταση. Μπορεί να ψάχνουμε για την καλύτερη λύση ή απλώς για μια λύση. Η αρχική γνώση μπορεί να αρκεί ή μπορεί να μην αρκεί για να βρούμε μια λύση - εξωτερικοί παράγοντες μπορεί να επηρεάζουν τις επιλογές που έχουμε ή τα αποτελέσματα των πράξεων μας.

9 Επίλυση μέσω αναζήτησης Περιγραφή του προβλήματος ώς πρόβλημα αναζήτησης Μοντελοποίηση καταστάσεων Μοντελοποίηση μεταβάσεων Ορισμός αρχικής κατάστασης Ορισμός μεθόδου αναγνώρισης τελικών καταστάσεων Επιλογή αλγορίθμου αναζήτησης Παράδειγμα μοντελοποίησης Μισθοφόροι και κανίβαλοι: (M,K,O) Μεταβάσεις:» (x, y, Α) (x-1, y, B) αν x > 0.» (x, y, Α) (x-2, y, B) αν x > 1.» (x, y, Α) (x, y-1, B) αν y > 0.» (x, y, Α) (x, y-2, B) αν y > 1.» (x, y, Α) (x-1, y-1, B) αν x > 0 και y > 0.» (x, y, B) (x+1, y, A) αν x < 3.»... Αρχική κατάσταση: (3,3,Α) Τελική κατάσταση: (0,0,Β)

10 Γράφος καταστάσεων Περιγράφει των χώρο αναζήτησης και όλες τις δυνατές μεταβάσεις B E A C D Δέντρο αναζήτησης Το γενικό δέντρο αναζήτησης περιέχει όλα τα δυνατά μονοπάτια που μπορούν να ακολουθήσουν οι αλγόριθμοι αναζήτησης A C B D C E A D C B A

11 Παράδειγμα - Μισθ. Και Κανίβαλοι δέντρο αναζήτησης 3, 3, A 3, 2, B 3, 1, B 2, 2, B 1, 3, B 2, 3, B 3, 3, A 3, 2, A 3, 3, A 2, 3, A 3, 2, A 3, 3, A , 1, B 3, 0, B 2, 1, B 1, 2, B 2, 2, B Παράδειγμα - Μισθ. Και Κανίβαλοι 3, 3, A 3, 1, B 3, 2, B 2, 2, B 2, 3, B 1, 3, B 3, 2, A 1, 2, B 2, 3, A 3, 0, B 2, 1, B 2, 0, B Γράφος καταστάσεων 3, 1, A 1, 1, B 2, 1, A 1, 3, A 1, 2, A 2, 2, A 1, 1, A 0, 2, B 0, 3, A 0, 1, B 0, 2, A 0, 0, B

12 Περιγραφή Προβληµάτων µε Χώρο Καταστάσεων Κόσµος προβλήµατος Κλειστός κόσµος (closed world) Ανοιχτός κόσµος (open world) Κατάσταση προβλήµατος Κατάσταση ενός κόσµου είναι ένα στιγµιότυπο (instance) ή φωτογραφία (snapshot) µίας συγκεκριµένης χρονικής στιγµής της εξέλιξης του κόσµου. Κατάσταση (state) ενός κόσµου είναι µία επαρκής αναπαράσταση του κόσµου σε µία δεδοµένη χρονική στιγµή. Παράδειγµα Αντικείµενα Ιδιότητες Σχέσεις Κύβος Α Κύβος Α είναι ελεύθερος Κύβος Α πάνω στον κύβο Β Κύβος Β Κύβος Γ είναι ελεύθερος Κύβος Β πάνω στο Τ Κύβος Γ Τ έχει αρκετό ελεύθερο χώρο Κύβος Γ πάνω στο Τ Τ είναι Τραπέζι Κύβος Β δεν είναι ελεύθερος Αντικείµενα Ιδιότητες Σχέσεις 3 Ιεραπόστολοι Βάρκα δύο ατόµων Ιεραπόστολοι στην αριστερή όχθη 3 Κανίβαλοι Κανίβαλοι στην αριστερή όχθη Βάρκα Βάρκα στην αριστερή όχθη Αριστερή Όχθη εξιά Όχθη

13 Τελεστές µετάβασης Τελεστής µετάβασης (transition operator) είναι µια αντιστοίχηση µίας κατάστασης του κόσµου σε νέες καταστάσεις. Παράδειγµα Τελεστής: Μετέφερε δύο ιεραπόστολους από την αριστερή όχθη στη δεξιά Προϋποθέσεις: Υπάρχουν τουλάχιστον 2 ιεραπόστολοι στην αριστερή όχθη. Η βάρκα είναι στην αριστερή όχθη. Ο αριθµός των ιεραποστόλων που θα προκύψει στην αριστερή όχθη να µην είναι µικρότερος από τον αριθµό των κανιβάλων ή να µην υπάρχει άλλος ιεραπόστολος στην αριστερή όχθη. Αποτελέσµατα: Ο αριθµός των ιεραποστόλων στην αριστερή όχθη µειώνεται κατά 2. Ο αριθµός των ιεραποστόλων στην δεξιά όχθη αυξάνεται κατά 2. Η βάρκα είναι πλέον δεξιά και όχι αριστερά Χώρος Καταστάσεων Χώρος καταστάσεων (state space ή domain space) ενός προβλήµατος ονοµάζεται το σύνολο όλων των έγκυρων καταστάσεων.

14 Αρχικές και Τελικές καταστάσεις Η αρχική (initial state) και τελική (final ή goal state) κατάσταση εκφράζουν το δεδοµένο και το ζητούµενο αντίστοιχα. Ορισµός προβλήµατος Ένα πρόβληµα (Problem) ορίζεται ως η τετράδα P = ( I, G, T, S ) όπου: I είναι η αρχική κατάσταση, I S G είναι το σύνολο των τελικών καταστάσεων, G S T είναι το σύνολο των τελεστών µετάβασης, T: S S S είναι ο χώρος καταστάσεων. Λύση προβλήµατος Λύση (Solution) σε ένα πρόβληµα (I, G, T, S), είναι µία ακολουθία από τελεστές µετάβασης t 1, t 2,...t n T µε την ιδιότητα g = t n (...(t 2 (t 1 (I)))...), όπου g G Παράδειγµα Μετέφερε 1 ιεραπόστολο και 1 κανίβαλο από την αριστερή στη δεξιά όχθη Μετέφερε 1 ιεραπόστολο από τη δεξιά στην αριστερή όχθη Μετέφερε 2 κανίβαλους από την αριστερή στη δεξιά όχθη Μετέφερε 1 κανίβαλο από τη δεξιά στην αριστερή όχθη Μετέφερε 2 ιεραπόστολους από την αριστερή στη δεξιά όχθη Μετέφερε 1 ιεραπόστολο και 1 κανίβαλο από τη δεξιά στην αριστερή όχθη Μετέφερε 2 ιεραπόστολους από την αριστερή στη δεξιά όχθη Μετέφερε 1 κανίβαλο από τη δεξιά στην αριστερή όχθη Μετέφερε 2 κανίβαλους από την αριστερή στη δεξιά όχθη Μετέφερε 1 ιεραπόστολο από τη δεξιά στην αριστερή όχθη Μετέφερε 1 ιεραπόστολο και 1 κανίβαλο από την αριστερή στη δεξιά όχθη

15 Περιγραφή µε Αναγωγή (1/2) Μία ακολουθία από τελεστές ανάγουν την περιγραφή ενός προβλήµατος σε υποπροβλήµατα τα οποία είναι άµεσα επιλύσιµα, αρχέγονα (Primitive Problems). Για να µεταφερθούν n>1 δίσκοι από τον στύλο i στο στύλο k, πρέπει: να µεταφερθούν n-1 δίσκοι από το i στο j, να µεταφερθεί 1 δίσκος από το i στο k, να µεταφερθούν n-1 δίσκοι από το j στο k. Αρχική και τελική περιγραφή προβλήµατος Περιγραφή µε Αναγωγή (2/2) Τελεστής αναγωγής Ένας τελεστής αναγωγής (reduction operator) ανάγει ένα πρόβληµα σε υποπροβλή- µατα. Ορισµός προβλήµατος Ένα πρόβληµα ορίζεται τυπικά ως η τετράδα P = ( ID, GD, TR, PP ) όπου ID είναι η αρχική περιγραφή, GD είναι ένα σύνολο από τελικές περιγραφές, TR είναι ένα σύνολο τελεστών αναγωγής και PP είναι ένα σύνολο από αρχέγονα προβλήµατα.

16 Αλγόριθµοι Αναζήτησης Τυφλοί Όνοµα Αλγορίθµου Συντοµογραφία Ελληνική Ορολογία Depth-First Search DFS Αναζήτηση Πρώτα σε Βάθος Breadth-First Search BFS Αναζήτηση Πρώτα σε Πλάτος Iterative Deepening ID Επαναληπτική Εκβάθυνση Bi-directional Search BiS Αναζήτηση ιπλής Κατεύθυνσης Branch and Bound B&B Επέκταση και Οριοθέτηση Beam Search BS Ακτινωτή Αναζήτηση Ευριστικοί Hill Climbing HC Αναρρίχηση Λόφων Best-First Search BestFS Αναζήτηση Πρώτα στο Καλύτερο A* (A-star) A* Α* (Άλφα Άστρο) Παιχνιδιών 2 ατόµων Minimax Minimax Αναζήτηση Μεγίστου-Ελαχίστου Alpha-Beta AB Άλφα-Βήτα Χώρος Αναζήτησης οθέντος ενός προβλήµατος (I,G,T,S), χώρος αναζήτησης (search space) SP είναι το σύνολο όλων των καταστάσεων που είναι προσβάσιµες από την αρχική κατάσταση. Μία κατάσταση s ονοµάζεται προσβάσιµη (accessible) αν υπάρχει µια ακολουθία τελεστών µετάβασης t 1,t 2,...t k T τέτοια ώστε s=t k (...(t 2 (t 1 (I)))...). O χώρος αναζήτησης είναι υποσύνολο του χώρου καταστάσεων, δηλαδή SP S. Ο χώρος αναζήτησης µπορεί να αναπαρασταθεί µε γράφο. Είναι πάντα εφικτό να µετατραπεί ο γράφος σε δένδρο αναζήτησης (search tree), το οποίο όµως µπορεί να έχει µονοπάτια απείρου µήκους.

17 Χώρος Αναζήτησης ως ένδρο Αναζήτησης (1/2) Τµήµα ένδρου Κόµβος (Node) Ρίζα (Root) Φύλλο (Tip, Leaf) Κλαδί (Branch) Λύση (Solution) Επέκταση (Expansion) Παράγοντας ιακλάδωσης (Branching Factor) Αναπαράσταση Κατάσταση Αρχική Κατάσταση Τελική Κατάσταση ή Αδιέξοδο (Dead Node), δηλαδή κατάσταση στην οποία δεν µπορεί να εφαρµοστεί κανένας τελεστής µετάβασης. Τελεστής Μετάβασης που µετατρέπει µια κατάσταση-γονέα (Parent State) σε µία άλλη κατάσταση-παιδί (Child State). Μονοπάτι (Path) που ενώνει την αρχική µε µία τελική κατάσταση Η διαδικασία παραγωγής όλων των καταστάσεων-παιδιών ενός κόµβου. Ο αριθµός των καταστάσεων-παιδιών που προκύπτουν από µία επέκταση. Επειδή δεν είναι σταθερός αριθµός, αναφέρεται και ως Μέσος Παράγοντας ιακλάδωσης (Average Branching Factor). Ο παράγοντας διακλάδωσης (branching factor) εκφράζει τον αριθµό των καταστάσεων που προκύπτουν από µία άλλη κατάσταση. Χώρος Αναζήτησης ως ένδρο Αναζήτησης (2/2) Το φαινόµενο της εκθετικής αύξησης του αριθµού των κόµβων του δένδρου ονοµάζεται συνδυαστική έκρηξη (combinatorial explosion).

18 Χαρακτηριστικά Αλγορίθµων Ένας αλγόριθµος ονοµάζεται εξαντλητικός (exhaustive) όταν το σύνολο των καταστάσεων που εξετάζει ο αλγόριθµος για να βρει τις απαιτούµενες λύσεις είναι ίσο µε το χώρο αναζήτησης, δηλαδή V=SP. Ένας αλγόριθµος αναζήτησης ονοµάζεται πλήρης (complete) αν εγγυάται ότι θα βρει µία λύση για οποιαδήποτε τελική κατάσταση, αν τέτοια λύση υπάρχει. Σε αντίθετη περίπτωση, ο αλγόριθµος ονοµάζεται ατελής (incomplete). Μία λύση ονοµάζεται βέλτιστη (optimal) αν οδηγεί στην καλύτερη, σύµφωνα µε τη διάταξη, τελική κατάσταση. Όταν δεν υπάρχει διάταξη, µία λύση ονοµάζεται βέλτιστη αν είναι η συντοµότερη (shortest). Ένας αλγόριθµος αναζήτησης καλείται αποδεκτός (admissible) αν εγγυάται ότι θα βρει τη βέλτιστη λύση, αν µια τέτοια λύση υπάρχει. ιαδικασία Επιλογής Αλγορίθµου Αναζήτησης Η επιλογή ενός αλγορίθµου βασίζεται στα εξής κριτήρια: αριθµός των καταστάσεων που αυτός επισκέπτεται δυνατότητα εύρεσης λύσεων εφόσον αυτές υπάρχουν αριθµός των λύσεων ποιότητα των λύσεων αποδοτικότητά του σε χρόνο αποδοτικότητά του σε χώρο (µνήµη) ευκολία υλοποίησής του Κλάδεµα ή αποκοπή καταστάσεων (pruning) του χώρου αναζήτησης είναι η διαδικασία κατά την οποία ο αλγόριθµος απορρίπτει, κάτω από ορισµένες συνθήκες, κάποιες καταστάσεις.

19 Γενικός Αλγόριθµος Αναζήτησης Μέτωπο της αναζήτησης (search frontier) ενός αλγορίθµου είναι το διατεταγµένο σύνολο (λίστα) των καταστάσεων που ο αλγόριθµος έχει ήδη επισκεφτεί, αλλά δεν έχουν ακόµη επεκταθεί. Κλειστό σύνολο (closed set) ενός αλγορίθµου αναζήτησης είναι το σύνολο όλων των καταστάσεων που έχουν ήδη επεκταθεί από τον αλγόριθµο. Με έναν απλό έλεγχο, αν η κατάσταση προς επέκταση ανήκει ήδη στο κλειστό σύνολο, αποφεύγονται οι βρόχοι (loops). Γενικός Αλγόριθµος Αναζήτησης: 1. Βάλε την αρχική κατάσταση στο µέτωπο της αναζήτησης. 2. Αν το µέτωπο αναζήτησης είναι άδειο τότε σταµάτησε. 3. Πάρε την πρώτη σε σειρά κατάσταση του µετώπου της αναζήτησης. 4. Αν είναι η κατάσταση αυτή µέρος του κλειστού συνόλου τότε πήγαινε στο βήµα Αν είναι η κατάσταση αυτή τελική κατάσταση τότε τύπωσε τη λύση και πήγαινε στο βήµα Εφάρµοσε τους τελεστές µετάβασης για να παράγεις τις καταστάσεις-παιδιά. 7. Βάλε τις νέες καταστάσεις-παιδιά στο µέτωπο της αναζήτησης. 8. Κλάδεψε τις καταστάσεις που δε χρειάζονται (σύµφωνα µε κάποιο κριτήριο), βγάζοντάς τες από το µέτωπο της αναζήτησης. 9. Κάνε αναδιάταξη στο µέτωπο της αναζήτησης (σύµφωνα µε κάποιο κριτήριο). 10. Βάλε την κατάσταση-γονέα στο κλειστό σύνολο. 11. Πήγαινε στο βήµα 2.

20 Γενικός Αλγόριθµος (Ψευδοκώδικας) algorithm general(initialstate, FinalState) begin Closed ; Frontier <InitialState>; CurrentState First(Frontier); while CurrentState FinalState do Frontier delete(currentstate,frontier); if CurrentState ClosedSet then begin Next Expand(CurrentState); Frontier insert(next,frontier); Frontier prune(frontier); Frontier reorder(frontier); Closed Closed {CurrentState}; end; if Frontier= then exit; CurrentState First(Frontier); endwhile; end. Αλγόριθµοι Τυφλής Αναζήτησης Οι αλγόριθµοι τυφλής αναζήτησης (blind search algorithms) εφαρµόζονται σε προβλήµατα στα οποία δεν υπάρχει πληροφορία που να επιτρέπει την αξιολόγηση των καταστάσεων του χώρου αναζήτησης.

21 Παράδειγµα Το πρόβληµα των ποτηριών Τελεστής Γέµισε το ποτήρι των Χ ml µέχρι το χείλος από τη βρύση Προϋποθέσεις Το ποτήρι των Χ ml έχει 0 ml Αποτελέσµατα Το ποτήρι των Χ ml έχει Χ ml Τελεστής Γέµισε το ποτήρι των Χ ml από το ποτήρι των Υ ml Προϋποθέσεις Το ποτήρι των Χ ml έχει Ζ ml Το ποτήρι των Y ml έχει W ml (W 0) Αποτελέσµατα Το ποτήρι των Χ ml έχει Χ ml και Το ποτήρι των Υ ml έχει W-(X-Z), αν W X-Z ή Το ποτήρι των Χ ml έχει Ζ+W ml και Το ποτήρι των Υ ml έχει 0, αν W<X-Z Τελεστής Άδειασε το ποτήρι των Χ ml στο νεροχύτη Προϋποθέσεις Το ποτήρι έχει περιεχόµενο Αποτελέσµατα Το ποτήρι των Χ ml έχει 0 ml

22 ένδρο αναζήτησης στο πρόβληµα των ποτηριών Αναζήτηση Πρώτα σε Βάθος Ο αλγόριθµος πρώτα σε βάθος (Depth-First Search - DFS) επιλέγει προς επέκταση την κατάσταση που βρίσκεται πιο βαθιά στο δένδρο. Ο αλγόριθµος DFS: 1. Βάλε την αρχική κατάσταση στο µέτωπο της αναζήτησης. 2. Αν το µέτωπο της αναζήτησης είναι κενό τότε σταµάτησε. 3. Βγάλε την πρώτη κατάσταση από το µέτωπο της αναζήτησης. 4. Αν είναι η κατάσταση µέλος του κλειστού συνόλου τότε πήγαινε στο βήµα Αν η κατάσταση είναι µία από τις τελικές, τότε ανέφερε τη λύση. 6. Αν θέλεις και άλλες λύσεις πήγαινε στο βήµα 2. Αλλιώς σταµάτησε. 7. Εφάρµοσε τους τελεστές µετάβασης για να βρεις τις καταστάσεις-παιδιά. 8. Βάλε τις καταστάσεις-παιδιά στην αρχή του µετώπου της αναζήτησης. 9. Βάλε την κατάσταση-γονέα στο κλειστό σύνολο. 10. Πήγαινε στο βήµα 2.

23 Ο αλγόριθµος DFS (Ψευδοκώδικας) algorithm dfs(initialstate, FinalStates) begin Closed ; Frontier <InitialState>; CurrentState First(Frontier); while CurrentState FinalStates do Frontier delete(currentstate,frontier); if CurrentState ClosedSet then begin ChildrenStates Expand(CurrentState); Frontier ChildrenStates ^ Frontier; Closed Closed {CurrentState}; end; if Frontier= then exit; CurrentState First(Frontier); endwhile; end. Αναζήτηση Πρώτα σε Βάθος Σχόλια Το µέτωπο της αναζήτησης είναι µια δοµή στοίβας (Stack LIFO, Last In First Out) Η εξέταση αµέσως προηγουµένων (χρονικά) καταστάσεων ονοµάζεται χρονική οπισθοδρόµηση (chronological backtracking). Πλεονεκτήµατα: Έχει µικρές απαιτήσεις σε χώρο διότι το µέτωπο της αναζήτησης δε µεγαλώνει πάρα πολύ. Μειονεκτήµατα: εν εγγυάται ότι η πρώτη λύση που θα βρεθεί είναι η βέλτιστη (µονοπάτι µε το µικρότερο µήκος ή µε µικρότερο κόστος). Εν γένει θεωρείται ατελής (αν δεν υπάρχει έλεγχος βρόχων ή αν ο χώρος αναζήτησης είναι µη πεπερασµένος)

24 Αναζήτηση Πρώτα σε Βάθος Πρόβληµα των ποτηριών Μέτωπο της αναζήτησης Κλειστό Σύνολο Κατάσταση Παιδιά <Α> {} Α <Β, Γ> <Β, Γ> {Α} Β <Α, > <Α,, Γ> {Α,Β} Α - (βρόχος) <, Γ> {Α,Β} <Β,Ζ,Γ> <Β,Ζ,Γ,Γ> {Α,Β, } Β - (βρόχος) <Ζ,Γ,Γ> {Α,Β, } Ζ <Α,Θ, > <Α,Θ,,Γ,Γ> {Α,Β,,Ζ} Α - (βρόχος) <Θ,,Γ,Γ> {Α,Β,,Ζ} Θ <Ζ,,Ι> <Ζ,,Ι,,Γ,Γ> {Α,Β,,Ζ,Θ} Ζ - (βρόχος) <,Ι,,Γ,Γ> {Α,Β,,Ζ,Θ} - (βρόχος) <Ι,,Γ,Γ> {Α,Β,,Ζ,Θ} Ι <Κ,Γ,Β> <Κ,Γ,Β,,Γ,Γ> {Α,Β,,Ζ,Θ,Ι} Κ ΤΕΛΙΚΗ Αναζήτηση Πρώτα σε Πλάτος Ο αλγόριθµος αναζήτησης πρώτα σε πλάτος (Breadth First Search - BFS) εξετάζει πρώτα όλες τις καταστάσεις που βρίσκονται στο ίδιο βάθος και µετά συνεχίζει στην επέκταση καταστάσεων στο αµέσως επόµενο επίπεδο. Ο αλγόριθµος BFS: 1. Βάλε την αρχική κατάσταση στο µέτωπο της αναζήτησης. 2. Αν το µέτωπο της αναζήτησης είναι κενό τότε σταµάτησε. 3. Βγάλε την πρώτη κατάσταση από το µέτωπο της αναζήτησης. 4. Αν είναι η κατάσταση µέλος του κλειστού συνόλου τότε πήγαινε στο βήµα Αν η κατάσταση είναι µία τελική τότε ανέφερε τη λύση. 6. Αν θέλεις και άλλες λύσεις πήγαινε στο βήµα 2. Αλλιώς σταµάτησε. 7. Εφάρµοσε τους τελεστές µεταφοράς για να βρεις τις καταστάσεις-παιδιά. 8. Βάλε τις καταστάσεις-παιδιά στο τέλος του µετώπου της αναζήτησης. 9. Βάλε την κατάσταση-γονέα στο κλειστό σύνολο. 10. Πήγαινε στο βήµα 2.

25 Ο αλγόριθµος BFS (Ψευδοκώδικας) algorithm bfs(initialstate, FinalStates) begin Closed ; Frontier <InitialState>; CurrentState First(Frontier); while CurrentState FinalStates do Frontier delete(currentstate,frontier); if CurrentState ClosedSet begin ChildrenStates Expand(CurrentState); Frontier Frontier ^ ChildrenStates; Closed Closed {CurrentState}; end; if Frontier= then exit; CurrentState First(Frontier); endwhile; end. Αναζήτηση Πρώτα σε Πλάτος Σχόλια Το µέτωπο της αναζήτησης είναι µια δοµή ουράς (Queue FIFO, δηλαδή First In First Out). Πλεονεκτήµατα: Βρίσκει πάντα την καλύτερη λύση (µικρότερη σε µήκος). Είναι πλήρης. Μειονεκτήµατα: Το µέτωπο της αναζήτησης µεγαλώνει πολύ σε µέγεθος.

26 Αναζήτηση Πρώτα σε Πλάτος Πρόβληµα των ποτηριών Μέτωπο αναζήτησης Κλειστό Σύνολο Κατάσταση Παιδιά <Α> {} Α <Β, Γ> <Β, Γ> {Α} Β <Α, > <Γ,Α, > {Α,Β} Γ <Ε,Α> <Α,,Ε,Α> {Α,Β,Γ} Α - (βρόχος) <,Ε,Α> {Α,Β,Γ} <Β,Ζ,Γ> <Ε,Α,Β,Ζ,Γ> {Α,Β,Γ, } Ε <Α,Η> <Α,Β,Ζ,Γ,Α,Η> {Α,Β,Γ,,Ε} Α - (βρόχος) <Β,Ζ,Γ,Α,Η> {Α,Β,Γ,,Ε} Β - (βρόχος) <Ζ,Γ,Α,Η> {Α,Β,Γ,,Ε} Ζ <Α,Θ, > <Γ,Α,Η,Α,Θ, > {Α,Β,Γ,,Ε,Ζ} Γ - (βρόχος) <Α,Η,Α,Θ, > {Α,Β,Γ,,Ε,Ζ} Α - (βρόχος) <Η,Α,Θ, > {Α,Β,Γ,,Ε,Ζ} Η <Ε,Γ> <Α,Θ,,Ε,Γ> {Α,Β,Γ,,Ε,Ζ,Η} Α - (βρόχος) <Θ,,Ε,Γ> {Α,Β,Γ,,Ε,Ζ,Η} Θ <Ζ,,Ι> <,Ε,Γ,Ζ,,Ι> {Α,Β,Γ,,Ε,Ζ,Η} - (βρόχος) <Ε,Γ,Ζ,,Ι> {Α,Β,Γ,,Ε,Ζ,Η} Ε - (βρόχος) <Γ,Ζ,,Ι> {Α,Β,Γ,,Ε,Ζ,Η} Γ - (βρόχος) <Ζ,,Ι> {Α,Β,Γ,,Ε,Ζ,Η} Ζ - (βρόχος) <,Ι> {Α,Β,Γ,,Ε,Ζ,Η} - (βρόχος) <Ι> {Α,Β,Γ,,Ε,Ζ,Η} Ι <Κ,Γ,Β> <Κ,Γ,Β> {Α,Β,Γ,,Ε,Ζ,Η,Ι} Κ ΤΕΛΙΚΗ

27 Αλγόριθµος Επαναληπτικής Εκβάθυνσης Ο αλγόριθµος επαναληπτικής εκβάθυνσης (Iterative Deepening - ID) συνδυάζει µε τον καλύτερο τρόπο τους DFS και BFS. Ο αλγόριθµος ID: 1. Όρισε το αρχικό βάθος αναζήτησης (συνήθως 1). 2. Εφάρµοσε τον αλγόριθµο DFS µέχρι αυτό το βάθος αναζήτησης. 3. Αν έχεις βρει λύση σταµάτησε. 4. Αύξησε το βάθος αναζήτησης (συνήθως κατά 1). 5. Πήγαινε στο βήµα 2. Ο αλγόριθµος ID (Ψευδοκώδικας) algorithm id(initialstate, FinalStates) begin depth 1 while solution is not found do bounded_dfs(initialstate,finalstates,depth); depth depth+1 endwhile; end. Αναζήτηση ID Σχόλια Μειονεκτήµατα: Όταν αρχίζει ο DFS µε διαφορετικό βάθος δε θυµάται τίποτα από την προηγούµενη αναζήτηση. Πλεονεκτήµατα: Είναι πλήρης. Αν το βάθος αυξάνεται κατά 1 σε κάθε κύκλο και ο ID βρει λύση, τότε αυτή η λύση θα είναι η καλύτερη.

28 Αναζήτηση ιπλής Κατεύθυνσης (1/2) Η ιδέα της αναζήτησης διπλής κατεύθυνσης (Bidirectional Search - BiS) πηγάζει από τη δυνατότητα του παραλληλισµού (parallelism) στα υπολογιστικά συστήµατα. Προϋποθέσεις κάτω από τις οποίες µπορεί να εφαρµοστεί: Οι τελεστές µετάβασης είναι αντιστρέψιµοι (reversible), και Είναι πλήρως γνωστή η τελική κατάσταση. Μειονεκτήµατα: Υπάρχει επιπλέον κόστος που οφείλεται στην επικοινωνία µεταξύ των δύο αναζητήσεων. Αναζήτηση ιπλής Κατεύθυνσης (2/2)

29 Επέκταση και Οριοθέτηση Ο αλγόριθµος επέκτασης και οριοθέτησης (Branch and Bound - B&B) εφαρµόζεται σε προβλήµατα όπου αναζητείται η βέλτιστη λύση, δηλαδή εκείνη µε το ελάχιστο κόστος. Η λειτουργία του Β&Β βασίζεται στο κλάδεµα καταστάσεων (pruning) και κατά συνέπεια στην ελάττωση του χώρου αναζήτησης Ο αλγόριθµος B&B: 1. Βάλε την αρχική κατάσταση στο µέτωπο της αναζήτησης. 2. Αρχική τιµή της καλύτερης λύσης είναι το + (όριο). 3. Αν το µέτωπο της αναζήτησης είναι κενό, τότε σταµάτησε. Η καλύτερη µέχρι τώρα λύση είναι και η βέλτιστη. 4. Βγάλε την πρώτη σε σειρά κατάσταση από το µέτωπο της αναζήτησης. 5. Αν η κατάσταση ανήκει στο κλειστό σύνολο, τότε πήγαινε στο Αν η κατάσταση είναι τελική, τότε ανανέωσε τη λύση ως την καλύτερη µέχρι τώρα και ανανέωσε την τιµή του ορίου µε την τιµή που αντιστοιχεί στην τελική κατάσταση. Πήγαινε στο Εφάρµοσε τους τελεστές µεταφοράς για να παράγεις τις καταστάσειςπαιδιά και την τιµή που αντιστοιχεί σε αυτές. 8. Βάλε τις καταστάσεις-παιδιά, των οποίων η τιµή δεν υπερβαίνει το όριο, µπροστά στο µέτωπο της αναζήτησης. 9. Βάλε την κατάσταση-γονέα στο κλειστό σύνολο. 10. Πήγαινε στο 3.

30 Ο αλγόριθµος B&B (Ψευδοκώδικας) algorithm b&b(initialstate, FinalStates) begin Closed ; Frontier <InitialState>; BestCost ; while Frontier do CurrentState First(Frontier); CurrentCost Cost(Current_State); Frontier delete(currentstate,frontier); if CurrentState Closed then begin if CurrentState FinalStates and CurrentCost < BestCost then BestCost CurrentCost; else if CurrentCost < BestCost then begin ChildrenStates Expand(CurrentState); Frontier ChildrenStates ^ Frontier; Closed Closed {CurrentState}; end; end; endwhile; end. Ο αλγόριθµος B&B Σχόλια Ο B&B µπορεί να συνδυαστεί µε δυναµικό προγραµµατισµό (dynamic programming), όπου το κλάδεµα δε γίνεται µόνο σε σύγκριση µε το τρέχον όριο, δηλαδή τη βέλτιστη λύση µέχρι εκείνη τη στιγµή, αλλά γίνεται και για κάθε κατάσταση που είναι περιττή.

31 Ο αλγόριθµος B&B: Το πρόβληµα TSP Μέτωπο της αναζήτησης Κόστος Λύσης Κατάσταση Παιδιά <α> + α αβ 8,αγ 5,αδ 10,αε 8 <αβ 8,αγ 5,αδ 10,αε 8 > + αβ αβγ 15,αβδ 14, αβε 14 <αβγ 15,αβδ 14,αβε 14,αγ 5,...> + αβγ αβγδ 24, αβγε 18 <αβγδ 24,αβγε 18, αβδ 14,αβε 14...> + αβγδ αβγδε 28 <αβγδε 28,αβγε 18, αβδ 14,...> + αβγδε αβγδεα 36 < αβγδεα 36, αβγε 18, αβδ 14,..> 36 αβγδεα Τελική Κατάσταση <αβγε 18, αβδ 14,... > 36 αβγε αβγεδ 22 <αβγεδ 22,αβδ 14,...> 36 αβγεδ αβγεδα 32 < αβγεδα 32,αβδ 14,αβε 14...> 32 αβγεδα 32 Τελική Κατάσταση <αβδεγα 26,...> 26 αβδεγα Τελική Κατάσταση <αβεγδ 26,...> 26 αβεγδ Κλάδεµα <αεβγδ 30,...> 26 αεβγδ Κλάδεµα <> ΕλάχιστηΤιµή ΤΕΛΟΣ Εφαρµογή των Αλγορίθµων Τυφλής Αναζήτησης Το πρόβληµα του Λαβύρινθου

32 Ορισµός του Προβλήµατος του Λαβυρίνθου Αρχική κατάσταση είναι η θέση µε συντεταγµένες (1,4). Το σύνολο τελικών καταστάσεων περιέχει µόνο τη θέση (15,10). Οι τελεστές µεταφοράς είναι οι εξής: πήγαινε µία θέση αριστερά, πήγαινε µία θέση επάνω, πήγαινε µία θέση δεξιά, πήγαινε µία θέση κάτω, εφόσον η θέση είναι ελεύθερη. Ο χώρος καταστάσεων είναι όλες οι ελεύθερες θέσεις, χωρίς εµπόδια, του πλέγµατος. Εφαρµογή του αλγορίθµου DFS

33 Λύση στο πρόβληµα του λαβύρινθου µε χρήση DFS Εφαρµογή αλγορίθµου BFS

34 Λύση στο πρόβληµα του λαβύρινθου µε χρήση BFS Εφαρµογή του ID στο πρόβληµα του λαβυρίνθου

Κεφάλαιο 3. Αλγόριθµοι Τυφλής Αναζήτησης. Τεχνητή Νοηµοσύνη - Β' Έκδοση. Ι. Βλαχάβας, Π. Κεφαλάς, Ν. Βασιλειάδης, Φ. Κόκκορας, Η.

Κεφάλαιο 3. Αλγόριθµοι Τυφλής Αναζήτησης. Τεχνητή Νοηµοσύνη - Β' Έκδοση. Ι. Βλαχάβας, Π. Κεφαλάς, Ν. Βασιλειάδης, Φ. Κόκκορας, Η. Κεφάλαιο 3 Αλγόριθµοι Τυφλής Αναζήτησης Τεχνητή Νοηµοσύνη - Β' Έκδοση Ι. Βλαχάβας, Π. Κεφαλάς, Ν. Βασιλειάδης, Φ. Κόκκορας, Η. Σακελλαρίου Αλγόριθµοι Τυφλής Αναζήτησης Οι αλγόριθµοι τυφλής αναζήτησης (blind

Διαβάστε περισσότερα

Επίλυση Προβληµάτων. ! Αποτελεί ένα από τα βασικά χαρακτηριστικά γνωρίσµατα της νοηµοσύνης. ! Χαρακτηριστικά αλγορίθµων:

Επίλυση Προβληµάτων. ! Αποτελεί ένα από τα βασικά χαρακτηριστικά γνωρίσµατα της νοηµοσύνης. ! Χαρακτηριστικά αλγορίθµων: Επίλυση Προβληµάτων! Αποτελεί ένα από τα βασικά χαρακτηριστικά γνωρίσµατα της νοηµοσύνης.! Χαρακτηριστικά αλγορίθµων: # Αποδοτικότητα (efficiency) σε µνήµηκαιχρόνο, # Πολυπλοκότητα (complexity), # Πληρότητα

Διαβάστε περισσότερα

Αλγόριθμοι Τυφλής Αναζήτησης

Αλγόριθμοι Τυφλής Αναζήτησης Τεχνητή Νοημοσύνη 04 Αλγόριθμοι Τυφλής Αναζήτησης Αλγόριθμοι Τυφλής Αναζήτησης (Blind Search Algorithms) Εφαρμόζονται σε προβλήματα στα οποία δεν υπάρχει πληροφορία που να επιτρέπει αξιολόγηση των καταστάσεων.

Διαβάστε περισσότερα

Κεφάλαιο 2. Περιγραφή Προβληµάτων και Αναζήτηση Λύσης. Τεχνητή Νοηµοσύνη - Β' Έκδοση

Κεφάλαιο 2. Περιγραφή Προβληµάτων και Αναζήτηση Λύσης. Τεχνητή Νοηµοσύνη - Β' Έκδοση Κεφάλαιο 2 Περιγραφή Προβληµάτων και Αναζήτηση Λύσης Τεχνητή Νοηµοσύνη - Β' Έκδοση Ι. Βλαχάβας, Π. Κεφαλάς, Ν. Βασιλειάδης, Φ. Κόκκορας, Η. Σακελλαρίου Περιγραφή Προβληµάτων ιαισθητικά: υπάρχει µία δεδοµένη

Διαβάστε περισσότερα

Επίλυση προβληµάτων. Αλγόριθµοι Αναζήτησης

Επίλυση προβληµάτων. Αλγόριθµοι Αναζήτησης Επίλυση προβληµάτων! Περιγραφή προβληµάτων Αλγόριθµοι αναζήτησης Αλγόριθµοι τυφλής αναζήτησης Αλγόριθµοι ευρετικής αναζήτησης Παιχνίδια δύο αντιπάλων Προβλήµατα ικανοποίησης περιορισµών Γενικά " Τεχνητή

Διαβάστε περισσότερα

Τεχνητή Νοημοσύνη (ΥΠ23) 6 ο εξάμηνο Τμήμα Πληροφορικής και Τηλεματικής Χαροκόπειο Πανεπιστήμιο Ουρανία Χατζή

Τεχνητή Νοημοσύνη (ΥΠ23) 6 ο εξάμηνο Τμήμα Πληροφορικής και Τηλεματικής Χαροκόπειο Πανεπιστήμιο Ουρανία Χατζή Τεχνητή Νοημοσύνη (ΥΠ23) 6 ο εξάμηνο Τμήμα Πληροφορικής και Τηλεματικής Χαροκόπειο Πανεπιστήμιο Ουρανία Χατζή raniah@hua.gr 1 Αναζήτηση Δοθέντος ενός προβλήματος με περιγραφή είτε στον χώρο καταστάσεων

Διαβάστε περισσότερα

Επίλυση Προβλημάτων 1

Επίλυση Προβλημάτων 1 Επίλυση Προβλημάτων 1 Επίλυση Προβλημάτων Περιγραφή Προβλημάτων Αλγόριθμοι αναζήτησης Αλγόριθμοι τυφλής αναζήτησης Αναζήτηση πρώτα σε βάθος Αναζήτηση πρώτα σε πλάτος (ΒFS) Αλγόριθμοι ευρετικής αναζήτησης

Διαβάστε περισσότερα

Επίλυση Προβλημάτων και Τεχνικές Αναζήτησης Εισαγωγή

Επίλυση Προβλημάτων και Τεχνικές Αναζήτησης Εισαγωγή Επίλυση Προβλημάτων και Τεχνικές Αναζήτησης Εισαγωγή επίλυση προβλημάτων μέσω αναζήτησης κάθε πρόβλημα το οποίο μπορεί να διατυπωθεί αυστηρά λύνεται μέσω αναζήτησης. Για τα περισσότερα ενδιαφέροντα προβλήματα

Διαβάστε περισσότερα

Επίλυση Προβλημάτων 1

Επίλυση Προβλημάτων 1 Επίλυση Προβλημάτων 1 Επίλυση Προβλημάτων Περιγραφή Προβλημάτων Αλγόριθμοι αναζήτησης Αλγόριθμοι τυφλής αναζήτησης Αναζήτηση πρώτα σε βάθος Αναζήτηση πρώτα σε πλάτος (ΒFS) Αλγόριθμοι ευρετικής αναζήτησης

Διαβάστε περισσότερα

Επίλυση Προβλημάτων. Αποτελεί ένα από τα βασικά χαρακτηριστικά γνωρίσματα της νοημοσύνης.

Επίλυση Προβλημάτων. Αποτελεί ένα από τα βασικά χαρακτηριστικά γνωρίσματα της νοημοσύνης. Επίλυση Προβλημάτων Αποτελεί ένα από τα βασικά χαρακτηριστικά γνωρίσματα της νοημοσύνης. Τεχνητή Νοημοσύνη = Αναπαράσταση Γνώσης + Αλγόριθμοι Αναζήτησης Κατηγορίες Προβλημάτων Aναζήτησης Πραγματικά και

Διαβάστε περισσότερα

Επίλυση Προβληµάτων. Αποτελεί ένα από τα βασικά χαρακτηριστικά γνωρίσµατα της νοηµοσύνης.

Επίλυση Προβληµάτων. Αποτελεί ένα από τα βασικά χαρακτηριστικά γνωρίσµατα της νοηµοσύνης. Επίλυση Προβληµάτων Αποτελεί ένα από τα βασικά χαρακτηριστικά γνωρίσµατα της νοηµοσύνης. Χαρακτηριστικά αλγορίθµων: Αποδοτικότητα (efficiency) σε µνήµη και χρόνο, Πολυπλοκότητα (complexity), Πληρότητα

Διαβάστε περισσότερα

Επίλυση προβληµάτων. Περιγραφή προβληµάτων Αλγόριθµοι αναζήτησης

Επίλυση προβληµάτων. Περιγραφή προβληµάτων Αλγόριθµοι αναζήτησης Επίλυση προβληµάτων Περιγραφή προβληµάτων Αλγόριθµοι αναζήτησης! Αλγόριθµοι τυφλής αναζήτησης Αλγόριθµοι ευρετικής αναζήτησης Παιχνίδια δύο αντιπάλων Προβλήµατα ικανοποίησης περιορισµών Αλγόριθµοι τυφλής

Διαβάστε περισσότερα

Τεχνητή Νοημοσύνη (ΥΠ23) 6 ο εξάμηνο Τμήμα Πληροφορικής και Τηλεματικής Χαροκόπειο Πανεπιστήμιο Ουρανία Χατζή

Τεχνητή Νοημοσύνη (ΥΠ23) 6 ο εξάμηνο Τμήμα Πληροφορικής και Τηλεματικής Χαροκόπειο Πανεπιστήμιο Ουρανία Χατζή Τεχνητή Νοημοσύνη (ΥΠ23) 6 ο εξάμηνο Τμήμα Πληροφορικής και Τηλεματικής Χαροκόπειο Πανεπιστήμιο Ουρανία Χατζή raniah@hua.gr 1 Αλγόριθμοι Τυφλής Αναζήτησης Οι αλγόριθμοι τυφλής αναζήτησης εφαρμόζονται σε

Διαβάστε περισσότερα

ΧΑΡΟΚΟΠΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ & ΤΗΛΕΜΑΤΙΚΗΣ

ΧΑΡΟΚΟΠΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ & ΤΗΛΕΜΑΤΙΚΗΣ ΧΑΡΟΚΟΠΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ & ΤΗΛΕΜΑΤΙΚΗΣ ΤΕΧΝΗΤΗ ΝΟΗΜΟΣΥΝΗ ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ ΠΡΑΚΤΟΡΩΝ ΠΕΡΙΓΡΑΦΗ ΠΡΟΒΛΗΜΑΤΩΝ ΚΑΙ ΑΝΑΖΗΤΗΣΗ ΛΥΣΗΣ Καραγιώργου Σοφία Γενικά Περί Πρακτόρων Με το όρο πράκτορα

Διαβάστε περισσότερα

Περιγραφή Προβλημάτων

Περιγραφή Προβλημάτων Τεχνητή Νοημοσύνη 02 Περιγραφή Προβλημάτων Φώτης Κόκκορας Τμ.Τεχν/γίας Πληροφορικής & Τηλ/νιών - ΤΕΙ Λάρισας Παραδείγματα Προβλημάτων κύβοι (blocks) Τρεις κύβοι βρίσκονται σε τυχαία διάταξη πάνω στο τραπέζι

Διαβάστε περισσότερα

Τεχνητή Νοημοσύνη (ΥΠ23) 6 ο εξάμηνο Τμήμα Πληροφορικής και Τηλεματικής Χαροκόπειο Πανεπιστήμιο Ουρανία Χατζή

Τεχνητή Νοημοσύνη (ΥΠ23) 6 ο εξάμηνο Τμήμα Πληροφορικής και Τηλεματικής Χαροκόπειο Πανεπιστήμιο Ουρανία Χατζή Τεχνητή Νοημοσύνη (ΥΠ23) 6 ο εξάμηνο Τμήμα Πληροφορικής και Τηλεματικής Χαροκόπειο Πανεπιστήμιο Ουρανία Χατζή raniah@hua.gr 1 Περιγραφή Προβλημάτων Διαισθητικά, σε ένα πρόβλημα υπάρχει μια δεδομένη κατάσταση

Διαβάστε περισσότερα

ΤΥΦΛΗ ΑΝΑΖΗΤΗΣΗ (1) ΣΤΡΑΤΗΓΙΚΗ Ή ΑΛΓΟΡΙΘΜΟΣ ΑΝΑΖΗΤΗΣΗΣ

ΤΥΦΛΗ ΑΝΑΖΗΤΗΣΗ (1) ΣΤΡΑΤΗΓΙΚΗ Ή ΑΛΓΟΡΙΘΜΟΣ ΑΝΑΖΗΤΗΣΗΣ ΤΥΦΛΗ ΑΝΑΖΗΤΗΣΗ (1) ΣΤΡΑΤΗΓΙΚΗ Ή ΑΛΓΟΡΙΘΜΟΣ ΑΝΑΖΗΤΗΣΗΣ Μια αυστηρά καθορισµένη ακολουθία ενεργειών µε σκοπό τη λύση ενός προβλήµατος. Χαρακτηριστικά οθέν πρόβληµα: P= Επιλυθέν πρόβληµα: P s

Διαβάστε περισσότερα

Αλγόριθµοι Ευριστικής Αναζήτησης

Αλγόριθµοι Ευριστικής Αναζήτησης Αλγόριθµοι Ευριστικής Αναζήτησης Ευριστικός µηχανισµός (heuristic) είναι µία στρατηγική, βασισµένη στη γνώση για το συγκεκριµένο πρόβληµα, ηοποίαχρησιµοποιείται σα βοήθηµα στη γρήγορη επίλυσή του.! Ο ευριστικόςµηχανισµός

Διαβάστε περισσότερα

Τεχνητή Νοημοσύνη (ΥΠ23) 6 ο εξάμηνο Τμήμα Πληροφορικής και Τηλεματικής Χαροκόπειο Πανεπιστήμιο Ουρανία Χατζή

Τεχνητή Νοημοσύνη (ΥΠ23) 6 ο εξάμηνο Τμήμα Πληροφορικής και Τηλεματικής Χαροκόπειο Πανεπιστήμιο Ουρανία Χατζή Τεχνητή Νοημοσύνη (ΥΠ23) 6 ο εξάμηνο Τμήμα Πληροφορικής και Τηλεματικής Χαροκόπειο Πανεπιστήμιο Ουρανία Χατζή raniah@hua.gr 1 Αλγόριθμοι Ευριστικής Αναζήτησης Πολλές φορές η τυφλή αναζήτηση δεν επαρκεί

Διαβάστε περισσότερα

Τεχνητή Νοημοσύνη. 2η διάλεξη (2015-16) Ίων Ανδρουτσόπουλος. http://www.aueb.gr/users/ion/

Τεχνητή Νοημοσύνη. 2η διάλεξη (2015-16) Ίων Ανδρουτσόπουλος. http://www.aueb.gr/users/ion/ Τεχνητή Νοημοσύνη 2η διάλεξη (2015-16) Ίων Ανδρουτσόπουλος http://www.aueb.gr/users/ion/ 1 Οι διαφάνειες αυτής της διάλεξης βασίζονται στα βιβλία: Τεχνητή Νοημοσύνη των Βλαχάβα κ.ά., 3η έκδοση, Β. Γκιούρδας

Διαβάστε περισσότερα

Επίλυση Προβλημάτων. Περιγραφή Προβλημάτων Αλγόριθμοι αναζήτησης Αλγόριθμοι τυφλής αναζήτησης. Αλγόριθμοι ευρετικής αναζήτησης Παιχνίδια δύο αντιπάλων

Επίλυση Προβλημάτων. Περιγραφή Προβλημάτων Αλγόριθμοι αναζήτησης Αλγόριθμοι τυφλής αναζήτησης. Αλγόριθμοι ευρετικής αναζήτησης Παιχνίδια δύο αντιπάλων Επίλυση Προβλημάτων Περιγραφή Προβλημάτων Αλγόριθμοι αναζήτησης Αλγόριθμοι τυφλής αναζήτησης Αναζήτηση πρώτα σε βάθος Αναζήτηση πρώτα σε πλάτος (ΒFS) Αλγόριθμοι ευρετικής αναζήτησης Παιχνίδια δύο αντιπάλων

Διαβάστε περισσότερα

Εφαρμόζονται σε προβλήματα στα οποία δεν υπάρχει πληροφορία που να επιτρέπει την αξιολόγηση των καταστάσεων του χώρου αναζήτησης.

Εφαρμόζονται σε προβλήματα στα οποία δεν υπάρχει πληροφορία που να επιτρέπει την αξιολόγηση των καταστάσεων του χώρου αναζήτησης. Ανάλογα με το αν ένας αλγόριθμος αναζήτησης χρησιμοποιεί πληροφορία σχετική με το πρόβλημα για να επιλέξει την επόμενη κατάσταση στην οποία θα μεταβεί, οι αλγόριθμοι αναζήτησης χωρίζονται σε μεγάλες κατηγορίες,

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 1 - Επίλυση Προβλημάτων

ΚΕΦΑΛΑΙΟ 1 - Επίλυση Προβλημάτων ΚΕΦΑΛΑΙΟ 1 - Επίλυση Προβλημάτων Σύνοψη Στο κεφάλαιο αυτό θα παρουσιαστούν με παραδειγματικές περιπτώσεις οι θεμελιώδεις έννοιες για τον ορισμό ενός προβλήματος και η επίλυσή του μέσω αλγόριθμων αναζήτησης,

Διαβάστε περισσότερα

ΧΑΡΟΚΟΠΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ & ΤΗΛΕΜΑΤΙΚΗΣ

ΧΑΡΟΚΟΠΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ & ΤΗΛΕΜΑΤΙΚΗΣ ΧΑΡΟΚΟΠΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ & ΤΗΛΕΜΑΤΙΚΗΣ ΤΕΧΝΗΤΗ ΝΟΗΜΟΣΥΝΗ ΑΛΓΟΡΙΘΜΟΙ ΕΥΡΕΣΗΣ ΛΥΣΗΣ ΑΛΓΟΡΙΘΜΟΙ ΕΥΡΕΣΗΣ ΒΕΛΤΙΣΤΗΣ ΛΥΣΗΣ ΑΛΓΟΡΙΘΜΟΙ ΕΥΡΕΣΗΣ ΛΥΣΗΣ ΣΕ ΠΑΙΓΝΙΑ ΔΥΟ ΑΝΤΙΠΑΛΩΝ Καραγιώργου

Διαβάστε περισσότερα

Ε ανάληψη. Καταβολές. Ιστορική αναδροµή. Πράκτορες. Περιβάλλοντα. συνεισφορά άλλων επιστηµών στην ΤΝ. 1956 σήµερα

Ε ανάληψη. Καταβολές. Ιστορική αναδροµή. Πράκτορες. Περιβάλλοντα. συνεισφορά άλλων επιστηµών στην ΤΝ. 1956 σήµερα ΠΛΗ 405 Τεχνητή Νοηµοσύνη Α ληροφόρητη Αναζήτηση Τµήµα Ηλεκτρονικών Μηχανικών και Μηχανικών Υ ολογιστών Πολυτεχνείο Κρήτης Ε ανάληψη Καταβολές συνεισφορά άλλων επιστηµών στην ΤΝ Ιστορική αναδροµή 1956

Διαβάστε περισσότερα

Αλγόριθµοι Ευριστικής Αναζήτησης

Αλγόριθµοι Ευριστικής Αναζήτησης Αλγόριθµοι Ευριστικής Αναζήτησης Ευριστικός µηχανισµός (heuristic) είναι µία στρατηγική, βασισµένη στη γνώση για το συγκεκριµένο πρόβληµα, ηοποίαχρησιµοποιείται σα βοήθηµα στη γρήγορη επίλυσή του.! Ο ευριστικόςµηχανισµός

Διαβάστε περισσότερα

Αναζήτηση σε Γράφους. Μανόλης Κουμπαράκης. ΥΣ02 Τεχνητή Νοημοσύνη 1

Αναζήτηση σε Γράφους. Μανόλης Κουμπαράκης. ΥΣ02 Τεχνητή Νοημοσύνη 1 Αναζήτηση σε Γράφους Μανόλης Κουμπαράκης ΥΣ02 Τεχνητή Νοημοσύνη 1 Πρόλογος Μέχρι τώρα έχουμε δει αλγόριθμους αναζήτησης για την περίπτωση που ο χώρος καταστάσεων είναι δένδρο (υπάρχει μία μόνο διαδρομή

Διαβάστε περισσότερα

ΤΜΗΜΑ ΔΙΟΙΚΗΣΗΣ ΕΠΙΧΕΙΡΗΣΕΩΝ

ΤΜΗΜΑ ΔΙΟΙΚΗΣΗΣ ΕΠΙΧΕΙΡΗΣΕΩΝ ΤΕΙ Δυτικής Μακεδονίας ΤΜΗΜΑ ΔΙΟΙΚΗΣΗΣ ΕΠΙΧΕΙΡΗΣΕΩΝ 2015-2016 Τεχνητή Νοημοσύνη Επίλυση προβλημάτων με αναζήτηση Διδάσκων: Τσίπουρας Μάρκος Εκπαιδευτικό Υλικό: Τσίπουρας Μάρκος http://ai.uom.gr/aima/ 2

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΑΤΡΩΝ ΙΑΤΜΗΜΑΤΙΚΟ ΠΜΣ «ΜΑΘΗΜΑΤΙΚΑ ΤΩΝ ΥΠΟΛΟΓΙΣΤΩΝ & ΤΩΝ ΑΠΟΦΑΣΕΩΝ ΤΕΧΝΗΤΗ ΝΟΗΜΟΣΥΝΗ 2006-2007 2η Σειρά Ασκήσεων ΑΠΑΝΤΗΣΕΙΣ

ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΑΤΡΩΝ ΙΑΤΜΗΜΑΤΙΚΟ ΠΜΣ «ΜΑΘΗΜΑΤΙΚΑ ΤΩΝ ΥΠΟΛΟΓΙΣΤΩΝ & ΤΩΝ ΑΠΟΦΑΣΕΩΝ ΤΕΧΝΗΤΗ ΝΟΗΜΟΣΥΝΗ 2006-2007 2η Σειρά Ασκήσεων ΑΠΑΝΤΗΣΕΙΣ ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΑΤΡΩΝ ΙΑΤΜΗΜΑΤΙΚΟ ΠΜΣ «ΜΑΘΗΜΑΤΙΚΑ ΤΩΝ ΥΠΟΛΟΓΙΣΤΩΝ & ΤΩΝ ΑΠΟΦΑΣΕΩΝ ΤΕΧΝΗΤΗ ΝΟΗΜΟΣΥΝΗ 2006-2007 2η Σειρά Ασκήσεων ΑΠΑΝΤΗΣΕΙΣ 1. ίνεται το γνωστό πρόβληµα των δύο δοχείων: «Υπάρχουν δύο δοχεία

Διαβάστε περισσότερα

Κεφάλαιο 4. Αλγόριθµοι Ευριστικής Αναζήτησης. Τεχνητή Νοηµοσύνη - Β' Έκδοση. Ι. Βλαχάβας, Π. Κεφαλάς, Ν. Βασιλειάδης, Φ. Κόκκορας, Η.

Κεφάλαιο 4. Αλγόριθµοι Ευριστικής Αναζήτησης. Τεχνητή Νοηµοσύνη - Β' Έκδοση. Ι. Βλαχάβας, Π. Κεφαλάς, Ν. Βασιλειάδης, Φ. Κόκκορας, Η. Κεφάλαιο 4 Αλγόριθµοι Ευριστικής Αναζήτησης Τεχνητή Νοηµοσύνη - Β' Έκδοση Ι. Βλαχάβας, Π. Κεφαλάς, Ν. Βασιλειάδης, Φ. Κόκκορας, Η. Σακελλαρίου Αλγόριθµοι Ευριστικής Αναζήτησης Εισαγωγικά (/2) Ο χώρος αναζήτησης

Διαβάστε περισσότερα

Θεωρία Λήψης Αποφάσεων

Θεωρία Λήψης Αποφάσεων Θεωρία Λήψης Αποφάσεων Ενότητα 4: Επίλυση προβλημάτων με αναζήτηση Μπεληγιάννης Γρηγόριος Σχολή Οργάνωσης και Διοίκησης Επιχειρήσεων Τμήμα Διοίκησης Επιχειρήσεων Αγροτικών Προϊόντων & Τροφίμων (Δ.Ε.Α.Π.Τ.)

Διαβάστε περισσότερα

Τεχνητή Νοημοσύνη. 3η διάλεξη ( ) Ίων Ανδρουτσόπουλος.

Τεχνητή Νοημοσύνη. 3η διάλεξη ( ) Ίων Ανδρουτσόπουλος. Τεχνητή Νοημοσύνη 3η διάλεξη (2016-17) Ίων Ανδρουτσόπουλος http://www.aueb.gr/users/ion/ 1 Οι διαφάνειες αυτής της διάλεξης βασίζονται στα βιβλία Τεχνητή Νοημοσύνη των Βλαχάβα κ.ά., 3η έκδοση, Β. Γκιούρδας

Διαβάστε περισσότερα

Επίλυση Προβλημάτων 1

Επίλυση Προβλημάτων 1 Επίλυση Προβλημάτων 1 Επίλυση Προβλημάτων Περιγραφή Προβλημάτων Αλγόριθμοι αναζήτησης Αλγόριθμοι τυφλής αναζήτησης Αναζήτηση πρώτα σε βάθος Αναζήτηση πρώτα σε πλάτος (ΒFS) Αλγόριθμοι ευρετικής αναζήτησης

Διαβάστε περισσότερα

Αλγόριθμοι και Δομές Δεδομένων (IΙ) (γράφοι και δένδρα)

Αλγόριθμοι και Δομές Δεδομένων (IΙ) (γράφοι και δένδρα) Ιόνιο Πανεπιστήμιο Τμήμα Πληροφορικής Εισαγωγή στην Επιστήμη των Υπολογιστών 2016-17 Αλγόριθμοι και Δομές Δεδομένων (IΙ) (γράφοι και δένδρα) http://mixstef.github.io/courses/csintro/ Μ.Στεφανιδάκης Αφηρημένες

Διαβάστε περισσότερα

Προβλήματα, αλγόριθμοι, ψευδοκώδικας

Προβλήματα, αλγόριθμοι, ψευδοκώδικας Προβλήματα, αλγόριθμοι, ψευδοκώδικας October 11, 2011 Στο μάθημα Αλγοριθμική και Δομές Δεδομένων θα ασχοληθούμε με ένα μέρος της διαδικασίας επίλυσης υπολογιστικών προβλημάτων. Συγκεκριμένα θα δούμε τι

Διαβάστε περισσότερα

Πανεπιστήμιο Πειραιώς Σχολή Τεχνολογιών Πληροφορικής και Επικοινωνιών Τμήμα Ψηφιακών Συστημάτων ομές εδομένων

Πανεπιστήμιο Πειραιώς Σχολή Τεχνολογιών Πληροφορικής και Επικοινωνιών Τμήμα Ψηφιακών Συστημάτων ομές εδομένων Πανεπιστήμιο Πειραιώς Σχολή Τεχνολογιών Πληροφορικής και Επικοινωνιών Τμήμα Ψηφιακών Συστημάτων 6. Δυαδικά Δέντρα 2 ομές εδομένων 4 5 Χρήστος ουλκερίδης Τμήμα Ψηφιακών Συστημάτων 18/11/2016 Εισαγωγή Τα

Διαβάστε περισσότερα

Ε ανάληψη. Ορισµοί της Τεχνητής Νοηµοσύνης (ΤΝ) Καταβολές. Ιστορική αναδροµή. Πράκτορες. Περιβάλλοντα. κριτήρια νοηµοσύνης

Ε ανάληψη. Ορισµοί της Τεχνητής Νοηµοσύνης (ΤΝ) Καταβολές. Ιστορική αναδροµή. Πράκτορες. Περιβάλλοντα. κριτήρια νοηµοσύνης ΠΛΗ 405 Τεχνητή Νοηµοσύνη Αναζήτηση Search Τµήµα Ηλεκτρονικών Μηχανικών και Μηχανικών Υ ολογιστών Πολυτεχνείο Κρήτης Ε ανάληψη Ορισµοί της Τεχνητής Νοηµοσύνης (ΤΝ) κριτήρια νοηµοσύνης Καταβολές συνεισφορά

Διαβάστε περισσότερα

Ασκήσεις μελέτης της 4 ης διάλεξης. ), για οποιοδήποτε μονοπάτι n 1

Ασκήσεις μελέτης της 4 ης διάλεξης. ), για οποιοδήποτε μονοπάτι n 1 Οικονομικό Πανεπιστήμιο Αθηνών, Τμήμα Πληροφορικής Μάθημα: Τεχνητή Νοημοσύνη, 2016 17 Διδάσκων: Ι. Ανδρουτσόπουλος Ασκήσεις μελέτης της 4 ης διάλεξης 4.1. (α) Αποδείξτε ότι αν η h είναι συνεπής, τότε h(n

Διαβάστε περισσότερα

ΤΕΧΝΗΤΗ ΝΟΗΜΟΣΥΝΗ. Ενότητα 2: Δένδρο αναζήτησης. Ρεφανίδης Ιωάννης Τμήμα Εφαρμοσμένης Πληροφορικής

ΤΕΧΝΗΤΗ ΝΟΗΜΟΣΥΝΗ. Ενότητα 2: Δένδρο αναζήτησης. Ρεφανίδης Ιωάννης Τμήμα Εφαρμοσμένης Πληροφορικής Ενότητα 2: Δένδρο αναζήτησης Ρεφανίδης Ιωάννης Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό υλικό, όπως εικόνες, που υπόκειται σε άλλου τύπου

Διαβάστε περισσότερα

PROJECT ΣΤΟ ΜΑΘΗΜΑ "ΕΙΣΑΓΩΓΗ ΣΤΙΣ ΕΥΡΕΤΙΚΕΣ ΜΕΘΟΔΟΥΣ"

PROJECT ΣΤΟ ΜΑΘΗΜΑ ΕΙΣΑΓΩΓΗ ΣΤΙΣ ΕΥΡΕΤΙΚΕΣ ΜΕΘΟΔΟΥΣ ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΑΤΡΩΝ ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ Η/Υ ΚΑΙ ΠΛΗΡΟΦΟΡΙΚΗΣ PROJECT ΣΤΟ ΜΑΘΗΜΑ "ΕΙΣΑΓΩΓΗ ΣΤΙΣ ΕΥΡΕΤΙΚΕΣ ΜΕΘΟΔΟΥΣ" ΜΕΡΟΣ ΔΕΥΤΕΡΟ Υπεύθυνος Καθηγητής Λυκοθανάσης Σπυρίδων Ακαδημαικό Έτος:

Διαβάστε περισσότερα

Δομές Δεδομένων & Αλγόριθμοι

Δομές Δεδομένων & Αλγόριθμοι Θέματα Απόδοσης Αλγορίθμων 1 Η Ανάγκη για Δομές Δεδομένων Οι δομές δεδομένων οργανώνουν τα δεδομένα πιο αποδοτικά προγράμματα Πιο ισχυροί υπολογιστές πιο σύνθετες εφαρμογές Οι πιο σύνθετες εφαρμογές απαιτούν

Διαβάστε περισσότερα

Επίλυση Προβλημάτων 1

Επίλυση Προβλημάτων 1 Επίλυση Προβλημάτων 1 Επίλυση Προβλημάτων Περιγραφή Προβλημάτων Αλγόριθμοι αναζήτησης Αλγόριθμοι τυφλής αναζήτησης Αναζήτηση πρώτα σε βάθος Αναζήτηση πρώτα σε πλάτος (ΒFS) Αλγόριθμοι ευρετικής αναζήτησης

Διαβάστε περισσότερα

Ευφυείς Τεχνολογίες Πράκτορες

Ευφυείς Τεχνολογίες Πράκτορες Ευφυείς Τεχνολογίες Πράκτορες Ενότητα 2: Αναπαράσταση Γνώσης και Επίλυση Προβλημάτων Δημοσθένης Σταμάτης mos@it.tith.gr www.it.tith.gr/~mos Μαθησιακοί Στόχοι της ενότητας 2 Πως ορίζεται ένα πρόβλημα στα

Διαβάστε περισσότερα

Τεχνητή Νοημοσύνη Ι. Εργαστηριακή Άσκηση 4-6. Σγάρμπας Κυριάκος. Τμήμα Ηλεκτρολόγων Μηχανικών και Τεχνολογίας Υπολογιστων

Τεχνητή Νοημοσύνη Ι. Εργαστηριακή Άσκηση 4-6. Σγάρμπας Κυριάκος. Τμήμα Ηλεκτρολόγων Μηχανικών και Τεχνολογίας Υπολογιστων Τεχνητή Νοημοσύνη Ι Εργαστηριακή Άσκηση 4-6 Σγάρμπας Κυριάκος Τμήμα Ηλεκτρολόγων Μηχανικών και Τεχνολογίας Υπολογιστων ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΑΤΡΩΝ - ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ & ΤΕΧΝΟΛΟΓΙΑΣ

Διαβάστε περισσότερα

Θεωρήστε ένα puzzle (παιχνίδι σπαζοκεφαλιάς) με την ακόλουθη αρχική διαμόρφωση : b b b w w w e

Θεωρήστε ένα puzzle (παιχνίδι σπαζοκεφαλιάς) με την ακόλουθη αρχική διαμόρφωση : b b b w w w e Άσκηση 1 Θεωρήστε ένα puzzle (παιχνίδι σπαζοκεφαλιάς) με την ακόλουθη αρχική διαμόρφωση : b b b w w w e Υπάρχουν τρία μαύρα τετραγωνάκια (b), τρία άσπρα (w) και ένα κενό (e). Η σπαζοκεφαλιά έχει τις ακόλουθες

Διαβάστε περισσότερα

Αλγόριθμοι Ευρετικής Αναζήτησης

Αλγόριθμοι Ευρετικής Αναζήτησης Τεχνητή Νοημοσύνη Αλγόριθμοι Ευρετικής Αναζήτησης Εισαγωγικά (/) 05 Αλγόριθμοι Ευρετικής Αναζήτησης (Heuristic Search Algorithms) Ο χώρος αναζήτησης συνήθως αυξάνεται εκθετικά. Απαιτείται πληροφορία για

Διαβάστε περισσότερα

ΔΙΑΣΧΙΣΗ ΓΡΑΦΗΜΑΤΩΝ 1

ΔΙΑΣΧΙΣΗ ΓΡΑΦΗΜΑΤΩΝ 1 ΔΙΑΣΧΙΣΗ ΓΡΑΦΗΜΑΤΩΝ 1 Θέματα μελέτης Πρόβλημα αναζήτησης σε γραφήματα Αναζήτηση κατά βάθος (Depth-first search DFS) Αναζήτηση κατά πλάτος (Breadth-first search BFS) 2 Γράφημα (graph) Αναπαράσταση συνόλου

Διαβάστε περισσότερα

ΙΚΑΝΟΠΟΙΗΣΗ ΠΕΡΙΟΡΙΣΜΩΝ

ΙΚΑΝΟΠΟΙΗΣΗ ΠΕΡΙΟΡΙΣΜΩΝ ΙΚΑΝΟΠΟΙΗΣΗ ΠΕΡΙΟΡΙΣΜΩΝ (ΜΕ ΒΑΣΗ ΤΟ ΚΕΦ. 6 ΤΟΥ ΒΙΒΛΙΟΥ «ΤΕΧΝΗΤΗ ΝΟΗΜΟΣΥΝΗ» ΤΩΝ ΒΛΑΧΑΒΑ, ΚΕΦΑΛΑ, ΒΑΣΙΛΕΙΑ Η, ΚΟΚΚΟΡΑ & ΣΑΚΕΛΛΑΡΙΟΥ) Ι. ΧΑΤΖΗΛΥΓΕΡΟΥ ΗΣ ΠΡΟΒΛΗΜΑΤΑ ΙΚΑΝΟΠΟΙΗΣΗΣ ΠΕΡΙΟΡΙΣΜΩΝ Είναι γνωστές µερικές

Διαβάστε περισσότερα

Επίλυση προβληµάτων. Περιγραφή προβληµάτων Αλγόριθµοι αναζήτησης Αλγόριθµοι τυφλής αναζήτησης Αλγόριθµοι ευρετικής αναζήτησης

Επίλυση προβληµάτων. Περιγραφή προβληµάτων Αλγόριθµοι αναζήτησης Αλγόριθµοι τυφλής αναζήτησης Αλγόριθµοι ευρετικής αναζήτησης Επίλυση προβληµάτων Περιγραφή προβληµάτων Αλγόριθµοι αναζήτησης Αλγόριθµοι τυφλής αναζήτησης Αλγόριθµοι ευρετικής αναζήτησης! Παιχνίδια δύο αντιπάλων Προβλήµατα ικανοποίησης περιορισµών Γενικά " Ντετερµινιστικά

Διαβάστε περισσότερα

Επίλυση προβληµάτων µε αναζήτηση

Επίλυση προβληµάτων µε αναζήτηση Επίλυση προβληµάτων µε αναζήτηση Πράκτορες επίλυσης προβληµάτων (1/2) ιατύπωση στόχου: Σύνολο καταστάσεων του κόσµου ιατύπωση προβλήµατος Επιλογή επιπέδου λεπτοµέρειας (αφαίρεση) 3-2 Πράκτορες επίλυσης

Διαβάστε περισσότερα

Πανεπιστήμιο Δυτικής Μακεδονίας. Τμήμα Μηχανικών Πληροφορικής & Τηλεπικοινωνιών. Τεχνητή Νοημοσύνη. Ενότητα 2: Αναζήτηση (Search)

Πανεπιστήμιο Δυτικής Μακεδονίας. Τμήμα Μηχανικών Πληροφορικής & Τηλεπικοινωνιών. Τεχνητή Νοημοσύνη. Ενότητα 2: Αναζήτηση (Search) Τμήμα Μηχανικών Πληροφορικής & Τηλεπικοινωνιών Τεχνητή Νοημοσύνη Ενότητα 2: Αναζήτηση (Search) Αν. καθηγητής Στεργίου Κωνσταντίνος kstergiou@uowm.gr Τμήμα Μηχανικών Πληροφορικής και Τηλεπικοινωνιών Άδειες

Διαβάστε περισσότερα

Δομές Δεδομένων. Δημήτρης Μιχαήλ. Γραφήματα. Τμήμα Πληροφορικής και Τηλεματικής Χαροκόπειο Πανεπιστήμιο

Δομές Δεδομένων. Δημήτρης Μιχαήλ. Γραφήματα. Τμήμα Πληροφορικής και Τηλεματικής Χαροκόπειο Πανεπιστήμιο Δομές Δεδομένων Γραφήματα Δημήτρης Μιχαήλ Τμήμα Πληροφορικής και Τηλεματικής Χαροκόπειο Πανεπιστήμιο Γραφήματα Κατευθυνόμενο Γράφημα Ένα κατευθυνόμενο γράφημα G είναι ένα ζευγάρι (V, E) όπου V είναι ένα

Διαβάστε περισσότερα

Αλγόριθμοι Αναζήτησης σε Παίγνια Δύο Αντιπάλων

Αλγόριθμοι Αναζήτησης σε Παίγνια Δύο Αντιπάλων Τεχνητή Νοημοσύνη 06 Αλγόριθμοι Αναζήτησης σε Παίγνια Δύο Αντιπάλων Εισαγωγικά (1/3) Τα προβλήματα όπου η εξέλιξη των καταστάσεων εξαρτάται από δύο διαφορετικά σύνολα τελεστών μετάβασης που εφαρμόζονται

Διαβάστε περισσότερα

Κεφάλαιο 5. Αλγόριθµοι Αναζήτησης σε Παίγνια ύο Αντιπάλων. Τεχνητή Νοηµοσύνη - Β' Έκδοση

Κεφάλαιο 5. Αλγόριθµοι Αναζήτησης σε Παίγνια ύο Αντιπάλων. Τεχνητή Νοηµοσύνη - Β' Έκδοση Κεφάλαιο 5 Αλγόριθµοι Αναζήτησης σε Παίγνια ύο Αντιπάλων Τεχνητή Νοηµοσύνη - Β' Έκδοση Ι. Βλαχάβας, Π. Κεφαλάς, Ν. Βασιλειάδης, Φ. Κόκκορας, Η. Σακελλαρίου Αλγόριθµοι Αναζήτησης σε Παίγνια ύο Αντιπάλων

Διαβάστε περισσότερα

Δέντρα Απόφασης (Decision(

Δέντρα Απόφασης (Decision( Δέντρα Απόφασης (Decision( Trees) Το μοντέλο που δημιουργείται είναι ένα δέντρο Χρήση της τεχνικής «διαίρει και βασίλευε» για διαίρεση του χώρου αναζήτησης σε υποσύνολα (ορθογώνιες περιοχές) Ένα παράδειγμα

Διαβάστε περισσότερα

Προγραμματισμός Ι (ΗΥ120)

Προγραμματισμός Ι (ΗΥ120) Προγραμματισμός Ι (ΗΥ120) Διάλεξη 17: Λύση Προβλημάτων με Αναδρομή Οι πύργοι του Hanoi Δίνεται ένα χώρος με τρεις θέσεις αποθήκευσης. Δίνεται μια στοίβα από Ν πλάκες σε φθίνον μέγεθος, σε μια από τις τρεις

Διαβάστε περισσότερα

Αφηρημένες Δομές Δεδομένων. Στοίβα (Stack) Υλοποίηση στοίβας

Αφηρημένες Δομές Δεδομένων. Στοίβα (Stack) Υλοποίηση στοίβας Ιόνιο Πανεπιστήμιο Τμήμα Πληροφορικής ισαγωγή στην πιστήμη των Υπολογιστών 2015-16 λγόριθμοι και ομές εδομένων (IΙ) (γράφοι και δένδρα) http://di.ionio.gr/~mistral/tp/csintro/ Μ.Στεφανιδάκης φηρημένες

Διαβάστε περισσότερα

Για παράδειγμα η αρχική και η τελική κατάσταση αναπαριστώνται ως εξής: (ένα λίτρο)

Για παράδειγμα η αρχική και η τελική κατάσταση αναπαριστώνται ως εξής: (ένα λίτρο) 8 1 η ΕΡΓΑΣΙΑ ΣΤΟ ΜΑΘΗΜΑ ΤΕΧΝΗΤΗ ΝΟΗΜΟΣΥΝΗ Απάντηση 1ης άσκησης Κατάσταση (κόμβοι): Αναπαριστούμε μια κατάσταση του προβλήματος με ένα διατεταγμένο ζεύγος (X,Y) όπου X είναι τα λίτρα στο βάζο Α (χωρητικότητα

Διαβάστε περισσότερα

ΕΡΩΤΗΜΑΤΑ σε ΑΝΑΖΗΤΗΣΗ

ΕΡΩΤΗΜΑΤΑ σε ΑΝΑΖΗΤΗΣΗ ηµήτρης Ψούνης ΠΛΗ31, Απαντήσεις Ερωτήσεων Quiz - ΑΝΑΖΗΤΗΣΗ 1 ΕΡΩΤΗΜΑΤΑ σε ΑΝΑΖΗΤΗΣΗ ΕΡΩΤΗΜΑ 1 Έστω h µία παραδεκτή ευρετική συνάρτηση. Είναι η συνάρτηση h ½ παραδεκτή; a. Ναι, πάντα. b. Όχι, ποτέ. c.

Διαβάστε περισσότερα

Τεχνητή Νοημοσύνη. 4η διάλεξη ( ) Ίων Ανδρουτσόπουλος.

Τεχνητή Νοημοσύνη. 4η διάλεξη ( ) Ίων Ανδρουτσόπουλος. Τεχνητή Νοημοσύνη 4η διάλεξη (2016-17) Ίων Ανδρουτσόπουλος http://www.aueb.gr/users/ion/ 1 Οι διαφάνειες αυτής της διάλεξης βασίζονται κυρίως στα βιβλία Τεχνητή Νοημοσύνη των Βλαχάβα κ.ά., 3η έκδοση, Β.

Διαβάστε περισσότερα

Λυσεις προβλημάτων τελικής φάσης Παγκύπριου Μαθητικού Διαγωνισμού Πληροφορικής 2007

Λυσεις προβλημάτων τελικής φάσης Παγκύπριου Μαθητικού Διαγωνισμού Πληροφορικής 2007 Λυσεις προβλημάτων τελικής φάσης Παγκύπριου Μαθητικού Διαγωνισμού Πληροφορικής 2007 Πρόβλημα 1 Το πρώτο πρόβλημα λύνεται με τη μέθοδο του Δυναμικού Προγραμματισμού. Για να το λύσουμε με Δυναμικό Προγραμματισμό

Διαβάστε περισσότερα

auth Αλγόριθμοι - Τμήμα Πληροφορικής ΑΠΘ -4ο εξάμηνο 1

auth Αλγόριθμοι - Τμήμα Πληροφορικής ΑΠΘ -4ο εξάμηνο 1 Αλγόριθμοι Ωμή Βία http://delab.csd.auth.gr/courses/algorithms/ auth Αλγόριθμοι - Τμήμα Πληροφορικής ΑΠΘ -4ο εξάμηνο 1 Ωμή Βία Είναι μία άμεση προσέγγιση που βασίζεται στην εκφώνηση του προβλήματος και

Διαβάστε περισσότερα

Το Πρόβλημα του Περιοδεύοντος Πωλητή - The Travelling Salesman Problem

Το Πρόβλημα του Περιοδεύοντος Πωλητή - The Travelling Salesman Problem Το Πρόβλημα του Περιοδεύοντος Πωλητή - The Travelling Salesman Problem Έλενα Ρόκου Μεταδιδακτορική Ερευνήτρια ΕΜΠ Κηρυττόπουλος Κωνσταντίνος Επ. Καθηγητής ΕΜΠ Άδεια Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται

Διαβάστε περισσότερα

ΤΕΧΝΗΤΗ ΝΟΗΜΟΣΥΝΗ. Ενότητα 3: Αλγόριθμοι πληροφορημένης αναζήτησης. Ρεφανίδης Ιωάννης Τμήμα Εφαρμοσμένης Πληροφορικής

ΤΕΧΝΗΤΗ ΝΟΗΜΟΣΥΝΗ. Ενότητα 3: Αλγόριθμοι πληροφορημένης αναζήτησης. Ρεφανίδης Ιωάννης Τμήμα Εφαρμοσμένης Πληροφορικής Ενότητα 3: Αλγόριθμοι πληροφορημένης αναζήτησης Ρεφανίδης Ιωάννης Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό υλικό, όπως εικόνες, που υπόκειται

Διαβάστε περισσότερα

Επίλυση προβλημάτων με αναζήτηση

Επίλυση προβλημάτων με αναζήτηση Επίλυση προβλημάτων με αναζήτηση Αναζήτηση σημαίνει την εύρεση μιας λύσης (τελικής κατάστασης) ενός προβλήματος διά της συνεχούς δημιουργίας (νέων) καταστάσεων με την εφαρμογή των διαθέσιμων ενεργειών

Διαβάστε περισσότερα

Διάλεξη 22: Δυαδικά Δέντρα. Διδάσκων: Παναγιώτης Ανδρέου

Διάλεξη 22: Δυαδικά Δέντρα. Διδάσκων: Παναγιώτης Ανδρέου Διάλεξη 22: Δυαδικά Δέντρα Στην ενότητα αυτή θα μελετηθούν τα εξής επιμέρους θέματα: - Δυαδικά Δένδρα - Δυαδικά Δένδρα Αναζήτησης - Πράξεις Εισαγωγής, Εύρεσης Στοιχείου, Διαγραφής Μικρότερου Στοιχείου

Διαβάστε περισσότερα

Κεφάλαιο 6. Ικανοποίηση Περιορισµών. Τεχνητή Νοηµοσύνη - Β' Έκδοση. Ι. Βλαχάβας, Π. Κεφαλάς, Ν. Βασιλειάδης, Φ. Κόκκορας, Η.

Κεφάλαιο 6. Ικανοποίηση Περιορισµών. Τεχνητή Νοηµοσύνη - Β' Έκδοση. Ι. Βλαχάβας, Π. Κεφαλάς, Ν. Βασιλειάδης, Φ. Κόκκορας, Η. Κεφάλαιο 6 Ικανοποίηση Περιορισµών Τεχνητή Νοηµοσύνη - Β' Έκδοση Ι. Βλαχάβας, Π. Κεφαλάς, Ν. Βασιλειάδης, Φ. Κόκκορας, Η. Σακελλαρίου Ικανοποίηση Περιορισµών Ένα πρόβληµα ικανοποίησης περιορισµών (constraint

Διαβάστε περισσότερα

Θέματα Υπολογισμού στον Πολιτισμό - Δένδρα. Δένδρα

Θέματα Υπολογισμού στον Πολιτισμό - Δένδρα. Δένδρα Δένδρα Δένδρα Ειδική κατηγορία γραφημάτων: συνεκτικά γραφήματα που δεν περιέχουν απλά κυκλώματα [1857] Arthur Cayley: για απαρίθμηση ορισμένων ειδών χημικών ενώσεων Χρησιμοποιούνται σε πληθώρα προβλημάτων,

Διαβάστε περισσότερα

Ε ανάληψη. Ε αναλαµβανόµενες καταστάσεις. Αναζήτηση µε µερική ληροφόρηση. Πληροφορηµένη αναζήτηση. µέθοδοι αποφυγής

Ε ανάληψη. Ε αναλαµβανόµενες καταστάσεις. Αναζήτηση µε µερική ληροφόρηση. Πληροφορηµένη αναζήτηση. µέθοδοι αποφυγής ΠΛΗ 405 Τεχνητή Νοηµοσύνη Πληροφορηµένη Αναζήτηση II Τµήµα Ηλεκτρονικών Μηχανικών και Μηχανικών Υ ολογιστών Πολυτεχνείο Κρήτης Ε ανάληψη Ε αναλαµβανόµενες καταστάσεις µέθοδοι αποφυγής Αναζήτηση µε µερική

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 5: Αλγόριθµοι

ΚΕΦΑΛΑΙΟ 5: Αλγόριθµοι ΚΕΦΑΛΑΙΟ 5: Αλγόριθµοι 5.1 Η έννοια του αλγορίθµου 5.2 Αναπαράσταση αλγορίθµων 5.3 Επινόηση αλγορίθµων 5.4 Δοµές επανάληψης 5.5 Αναδροµικές δοµές 1 Αλγόριθµος: Ορισµός Ένας αλγόριθµος είναι ένα διατεταγµένο

Διαβάστε περισσότερα

Αλγόριθµοι Τύπου Μείωσης Προβλήµατος

Αλγόριθµοι Τύπου Μείωσης Προβλήµατος Αλγόριθµοι Τύπου Μείωσης Προβλήµατος Περίληψη Αλγόριθµοι Τύπου Μείωσης Προβλήµατος ( Decrease and Conquer ) Μείωση κατά µια σταθερά (decrease by a constant) Μείωση κατά ένα ποσοστό (decrease by a constant

Διαβάστε περισσότερα

ΠΛΗ 405 Τεχνητή Νοηµοσύνη

ΠΛΗ 405 Τεχνητή Νοηµοσύνη ΠΛΗ 405 Τεχνητή Νοηµοσύνη Πληροφορηµένη Αναζήτηση Τµήµα Ηλεκτρονικών Μηχανικών και Μηχανικών Υ ολογιστών Πολυτεχνείο Κρήτης Ε ανάληψη Πράκτορας ε ίλυσης ροβληµάτων πράκτορας µε στόχο Αναζήτηση διατύπωση

Διαβάστε περισσότερα

Δομές Δεδομένων. Καθηγήτρια Μαρία Σατρατζέμη. Τμήμα Εφαρμοσμένης Πληροφορικής. Δομές Δεδομένων. Τμήμα Εφαρμοσμένης Πληροφορικής

Δομές Δεδομένων. Καθηγήτρια Μαρία Σατρατζέμη. Τμήμα Εφαρμοσμένης Πληροφορικής. Δομές Δεδομένων. Τμήμα Εφαρμοσμένης Πληροφορικής Ενότητα 8: Γραμμική Αναζήτηση και Δυαδική Αναζήτηση-Εισαγωγή στα Δέντρα και Δυαδικά Δέντρα-Δυαδικά Δέντρα Αναζήτησης & Υλοποίηση ΔΔΑ με δείκτες Καθηγήτρια Μαρία Σατρατζέμη Άδειες Χρήσης Το παρόν εκπαιδευτικό

Διαβάστε περισσότερα

Αλγόριθµοι Οπισθοδρόµησης

Αλγόριθµοι Οπισθοδρόµησης Αλγόριθµοι Οπισθοδρόµησης Στην ενότητα αυτή θα µελετηθούν τα εξής επιµέρους θέµατα: Η οπισθοδρόµηση στο σχεδιασµό αλγορίθµων Το πρόβληµα των σταθερών γάµων και ο αλγόριθµος των Gale-Shapley Το πρόβληµα

Διαβάστε περισσότερα

Αναζήτηση (Search) Τµήµα Ψηφιακών Συστηµάτων Πανεπιστήµιο Πειραιώς

Αναζήτηση (Search) Τµήµα Ψηφιακών Συστηµάτων Πανεπιστήµιο Πειραιώς Αναζήτηση (Search) 1 Αλγόριθµοι και Πολυπλοκότητα n Ας υποθέσουµε ότι έχουµε δύο διαφορετικούς αλγόριθµους για την επίλυση ενός προβλήµατος. Πως θα βρούµε ποιος είναι ο καλύτερος? g Ποιος τρέχει πιο γρήγορα?

Διαβάστε περισσότερα

ΠΛΗ 405 Τεχνητή Νοηµοσύνη

ΠΛΗ 405 Τεχνητή Νοηµοσύνη ΠΛΗ 405 Τεχνητή Νοηµοσύνη Α ληροφόρητη και Πληροφορηµένη Αναζήτηση Τµήµα Ηλεκτρονικών Μηχανικών και Μηχανικών Υ ολογιστών Πολυτεχνείο Κρήτης Ε ανάληψη Πράκτορες χαρακτηριστικά στοιχεία και είδη πρακτόρων

Διαβάστε περισσότερα

Θεωρία Λήψης Αποφάσεων

Θεωρία Λήψης Αποφάσεων Θεωρία Λήψης Αποφάσεων Ενότητα 5: Πληροφορημένη Αναζήτηση και Εξερεύνηση Μπεληγιάννης Γρηγόριος Σχολή Οργάνωσης και Διοίκησης Επιχειρήσεων Τμήμα Διοίκησης Επιχειρήσεων Αγροτικών Προϊόντων & Τροφίμων (Δ.Ε.Α.Π.Τ.)

Διαβάστε περισσότερα

Δομές Δεδομένων. Δημήτρης Μιχαήλ. Δέντρα Αναζήτησης. Τμήμα Πληροφορικής και Τηλεματικής Χαροκόπειο Πανεπιστήμιο

Δομές Δεδομένων. Δημήτρης Μιχαήλ. Δέντρα Αναζήτησης. Τμήμα Πληροφορικής και Τηλεματικής Χαροκόπειο Πανεπιστήμιο Δομές Δεδομένων Δέντρα Αναζήτησης Δημήτρης Μιχαήλ Τμήμα Πληροφορικής και Τηλεματικής Χαροκόπειο Πανεπιστήμιο Το πρόβλημα Αναζήτηση Θέλουμε να διατηρήσουμε αντικείμενα με κλειδιά και να μπορούμε εκτός από

Διαβάστε περισσότερα

Κατ οίκον Εργασία 3 Σκελετοί Λύσεων

Κατ οίκον Εργασία 3 Σκελετοί Λύσεων Κατ οίκον Εργασία 3 Σκελετοί Λύσεων Άσκηση 1 (α) Έστω Α(n) και Κ(n) ο αριθμός των ακμών και ο αριθμός των κόμβων ενός αυστηρά δυαδικού δένδρου με n φύλλα. Θέλουμε να αποδείξουμε για κάθε n 1 την πρόταση

Διαβάστε περισσότερα

1 ΠΡΟΒΛΗΜΑΤΑ ΤΝ ΚΑΙ LISP

1 ΠΡΟΒΛΗΜΑΤΑ ΤΝ ΚΑΙ LISP 1 ΠΡΟΒΛΗΜΑΤΑ ΤΝ ΚΑΙ LISP 1.1 Αναζήτηση και Στρατηγικές Αναζήτησης Ένας τρόπος επίλυσης προβληµάτων µε µεθόδους Τεχνητής Νοηµοσύνης (ΤΝ) είναι η αναζήτηση λύσης (search). Σύµφωνα µ αυτήν, ένα πρόβληµα παριστάνεται

Διαβάστε περισσότερα

Θέμα 1: Robbie και Αναζήτηση

Θέμα 1: Robbie και Αναζήτηση Θέμα : Robbie και Αναζήτηση Ο Robbie, το ρομπότ του παρακάτω σχήματος-χάρτη, κατά τη διάρκεια των εργασιών που κάνει διαπιστώνει ότι πρέπει να γυρίσει όσο το δυνατόν πιο γρήγορα, από την τρέχουσα θέση,

Διαβάστε περισσότερα

2η Σειρά Γραπτών Ασκήσεων

2η Σειρά Γραπτών Ασκήσεων 2η Σειρά Γραπτών Ασκήσεων Αλγόριθμοι και Πολυπλοκότητα ΣΗΜΜΥ, Εθνικό Μετσόβιο Πολυτεχνείο 1/23 1 Κλειδιά και κλειδαριές 2 Puzzle 3 Διαστημικές Μάχες 4 Κεραίες 5 Εργοστάσιο Ποτηριών 2/23 Κλειδιά και κλειδαριές

Διαβάστε περισσότερα

Ε ανάληψη. Α ληροφόρητη αναζήτηση

Ε ανάληψη. Α ληροφόρητη αναζήτηση ΠΛΗ 405 Τεχνητή Νοηµοσύνη Το ική Αναζήτηση Local Search Τµήµα Ηλεκτρονικών Μηχανικών και Μηχανικών Υ ολογιστών Πολυτεχνείο Κρήτης Ε ανάληψη Α ληροφόρητη αναζήτηση σε πλάτος, οµοιόµορφου κόστους, σε βάθος,

Διαβάστε περισσότερα

Διάλεξη 16: Σωροί. Στην ενότητα αυτή θα μελετηθούν τα εξής επιμέρους θέματα: - Ουρές Προτεραιότητας - Ο ΑΤΔ Σωρός, Υλοποίηση και πράξεις

Διάλεξη 16: Σωροί. Στην ενότητα αυτή θα μελετηθούν τα εξής επιμέρους θέματα: - Ουρές Προτεραιότητας - Ο ΑΤΔ Σωρός, Υλοποίηση και πράξεις ΕΠΛ231 Δομές Δεδομένων και Αλγόριθμοι 1 Διάλεξη 16: Σωροί Στην ενότητα αυτή θα μελετηθούν τα εξής επιμέρους θέματα: - Ουρές Προτεραιότητας - Ο ΑΤΔ Σωρός, Υλοποίηση και πράξεις Ουρά Προτεραιότητας Η δομή

Διαβάστε περισσότερα

Εισαγωγή στους Αλγόριθμους

Εισαγωγή στους Αλγόριθμους Εισαγωγή στους Αλγόριθμους Εύη Παπαϊωάννου Σχολή Οργάνωσης και Διοίκησης Επιχειρήσεων Τμήμα Διαχείρισης Πολιτισμικού Περιβάλλοντος και Νέων Τεχνολογιών Σκοποί ενότητας Παρουσίαση και μελέτη αλγορίθμων

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 8: Αφαίρεση δεδοµένων

ΚΕΦΑΛΑΙΟ 8: Αφαίρεση δεδοµένων ΚΕΦΑΛΑΙΟ 8: Αφαίρεση δεδοµένων 8.1 Βασικές έννοιες δοµών δεδοµένων 8.2 Σχετικές έννοιες 8.3 Υλοποίηση δοµών δεδοµένων 8.4 Μια σύντοµη µελέτη περίπτωσης 8.5 Προσαρµοσµένοι τύποι δεδοµένων 1 Βασικές δοµές

Διαβάστε περισσότερα

Δομές Δεδομένων και Αλγόριθμοι

Δομές Δεδομένων και Αλγόριθμοι Δομές Δεδομένων και Αλγόριθμοι Χρήστος Γκόγκος ΤΕΙ Ηπείρου Χειμερινό Εξάμηνο 2014-2015 Παρουσίαση 1 Εισαγωγή 1 / 14 Δομές Δεδομένων και Αλγόριθμοι Δομή Δεδομένων Δομή δεδομένων είναι ένα σύνολο αποθηκευμένων

Διαβάστε περισσότερα

ΥΣ02 Τεχνητή Νοημοσύνη Χειμερινό Εξάμηνο

ΥΣ02 Τεχνητή Νοημοσύνη Χειμερινό Εξάμηνο ΥΣ02 Τεχνητή Νοημοσύνη Χειμερινό Εξάμηνο 2014-2015 Πρώτη Σειρά Ασκήσεων (Υποχρεωτική, 25% του συνολικού βαθμού στο μάθημα) Ημερομηνία Ανακοίνωσης: 22/10/2014 Ημερομηνία Παράδοσης: Μέχρι 14/11/2014 23:59

Διαβάστε περισσότερα

Δυαδικά Δένδρα Αναζήτησης, Δένδρα AVL

Δυαδικά Δένδρα Αναζήτησης, Δένδρα AVL Δυαδικά Δένδρα Αναζήτησης, Δένδρα AVL Υλικό από τις σηµειώσεις Ν. Παπασπύρου, 2006 Δέντρα δυαδικής αναζήτησης Δενδρικές δοµές δεδοµένων στις οποίες Όλα τα στοιχεία στο αριστερό υποδέντρο της ρίζας είναι

Διαβάστε περισσότερα

6η Διάλεξη Διάσχιση Γράφων και Δέντρων

6η Διάλεξη Διάσχιση Γράφων και Δέντρων ΘΕΩΡΙΑ ΓΡΑΦΩΝ 6 η Διάλεξη Διάσχιση Γράφων και Δέντρων Αλγόριθμος αναζήτησης σε Βαθος Αλγόριθμος αναζήτησης κατά Πλάτος Αλγόριθμοι για Δένδρα Εύρεση ελαχίστων Γεννητορικών (Επικαλύπτοντα) Δένδρων Διάσχιση

Διαβάστε περισσότερα

Εισαγωγή στην επιστήμη των υπολογιστών. Λογισμικό Υπολογιστών Κεφάλαιο 8ο Αλγόριθμοι

Εισαγωγή στην επιστήμη των υπολογιστών. Λογισμικό Υπολογιστών Κεφάλαιο 8ο Αλγόριθμοι Εισαγωγή στην επιστήμη των υπολογιστών Λογισμικό Υπολογιστών Κεφάλαιο 8ο Αλγόριθμοι 1 Έννοια Ανεπίσημα, ένας αλγόριθμος είναι μια βήμα προς βήμα μέθοδος για την επίλυση ενός προβλήματος ή την διεκπεραίωση

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΜΑΚΕ ΟΝΙΑΣ ΟΙΚΟΝΟΜΙΚΩΝ ΚΑΙ ΚΟΙΝΩΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΕΦΑΡΜΟΣΜΕΝΗΣ ΠΛΗΡΟΦΟΡΙΚΗΣ ΤΕΧΝΗΤΗ ΝΟΗΜΟΣΥΝΗ

ΠΑΝΕΠΙΣΤΗΜΙΟ ΜΑΚΕ ΟΝΙΑΣ ΟΙΚΟΝΟΜΙΚΩΝ ΚΑΙ ΚΟΙΝΩΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΕΦΑΡΜΟΣΜΕΝΗΣ ΠΛΗΡΟΦΟΡΙΚΗΣ ΤΕΧΝΗΤΗ ΝΟΗΜΟΣΥΝΗ ΘΕΜΑ 1 ο (2.5 µονάδες) ΠΑΝΕΠΙΣΤΗΜΙΟ ΜΑΚΕΟΝΙΑΣ ΟΙΚΟΝΟΜΙΚΩΝ ΚΑΙ ΚΟΙΝΩΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΕΦΑΡΜΟΣΜΕΝΗΣ ΠΛΗΡΟΦΟΡΙΚΗΣ ΤΕΧΝΗΤΗ ΝΟΗΜΟΣΥΝΗ Τελικές εξετάσεις 25 Ιουνίου 2003 ιάρκεια: 2 ώρες α) Σε ποια περίπτωση

Διαβάστε περισσότερα

ιαφάνειες παρουσίασης #11

ιαφάνειες παρουσίασης #11 ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ ΗΛΕΚΤΡΟΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ http://www.corelab.ece.ntua.gr/courses/programming/ ιδάσκοντες: Στάθης Ζάχος (zachos@cs.ntua.gr) Νίκος Παπασπύρου (nickie@softlab.ntua.gr) ιαφάνειες παρουσίασης

Διαβάστε περισσότερα

ΑΛΓΟΡΙΘΜΟΙ. Ενότητα 12: Αντιμετώπιση Περιορισμών Αλγοριθμικής Ισχύος

ΑΛΓΟΡΙΘΜΟΙ. Ενότητα 12: Αντιμετώπιση Περιορισμών Αλγοριθμικής Ισχύος ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ ΑΛΓΟΡΙΘΜΟΙ Ενότητα 12: Αντιμετώπιση Περιορισμών Αλγοριθμικής Ισχύος Ιωάννης Μανωλόπουλος, Καθηγητής Αναστάσιος Γούναρης, Επίκουρος Καθηγητής

Διαβάστε περισσότερα

Αλγόριθµοι και Πολυπλοκότητα

Αλγόριθµοι και Πολυπλοκότητα Αλγόριθµοι και Πολυπλοκότητα Ν. Μ. Μισυρλής Τµήµα Πληροφορικής και Τηλεπικοινωνιών, Πανεπιστήµιο Αθηνών Καθηγητής: Ν. Μ. Μισυρλής () Αλγόριθµοι και Πολυπλοκότητα Φεβρουαρίου 0 / ένδρα Ενα δένδρο είναι

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ Τμήμα Πληροφορικής

ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ Τμήμα Πληροφορικής ΕΠΛ132 Άσκηση 4 - Αρχές Προγραμματισμού ΙΙ Τμήμα Πληροφορικής Πανεπιστήμιο Κύπρου Ι. Στόχοι ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ Τμήμα Πληροφορικής ΕΠΛ 132 Αρχές Προγραμματισμού ΙΙ Άσκηση 4 Αυτόματη Επίλυση του Παιχνιδιού

Διαβάστε περισσότερα

ΑΣΚΗΣΕΙΣ ΓΙΑ ΤΟ ΕΡΓΑΣΤΗΡΙΟ 2

ΑΣΚΗΣΕΙΣ ΓΙΑ ΤΟ ΕΡΓΑΣΤΗΡΙΟ 2 Version 1.5 (16/03/2017) Σχολή Τεχνολογικών Εφαρμογών (ΣΤΕΦ) Τμήμα Μηχανικών Πληροφορικής Τ.Ε. Διδάσκων: Γκόγκος Χρήστος Μάθημα: Τεχνητή Νοημοσύνη (εργαστήριο Δ εξαμήνου) Ακαδημαϊκό έτος 2016-2017 εαρινό

Διαβάστε περισσότερα

Αλγοριθμικές Τεχνικές

Αλγοριθμικές Τεχνικές Αλγοριθμικές Τεχνικές Παύλος Εφραιμίδης, Λέκτορας http://pericles.ee.duth.gr Αλγοριθμικές Τεχνικές 1 Τεχνικές Σχεδιασμού Αλγορίθμων Ορισμένες γενικές αρχές για τον σχεδιασμό αλγορίθμων είναι: Διαίρει και

Διαβάστε περισσότερα

Δυναµικός Προγραµµατισµός (ΔΠ)

Δυναµικός Προγραµµατισµός (ΔΠ) Δυναµικός Προγραµµατισµός (ΔΠ) Περίληψη Δυναµικός Προγραµµατισµός Αρχή του Βέλτιστου Παραδείγµατα Δυναµικός Προγραµµατισµός ΔΠ (Dynamic Programming DP) Μέθοδος σχεδιασµού αλγορίθµων Είναι µια γενική µεθοδολογία

Διαβάστε περισσότερα

Πανεπιστήμιο Δυτικής Μακεδονίας. Τμήμα Μηχανικών Πληροφορικής & Τηλεπικοινωνιών. Τεχνητή Νοημοσύνη. Ενότητα 3: Αναζήτηση

Πανεπιστήμιο Δυτικής Μακεδονίας. Τμήμα Μηχανικών Πληροφορικής & Τηλεπικοινωνιών. Τεχνητή Νοημοσύνη. Ενότητα 3: Αναζήτηση Τμήμα Μηχανικών Πληροφορικής & Τηλεπικοινωνιών Τεχνητή Νοημοσύνη Ενότητα 3: Αναζήτηση Αν. καθηγητής Στεργίου Κωνσταντίνος kstergiou@uowm.gr Τμήμα Μηχανικών Πληροφορικής και Τηλεπικοινωνιών Άδειες Χρήσης

Διαβάστε περισσότερα