10.0 C N = = = electrons C/electron C/electron. ( N m 2 /C 2 )( C) 2 (0.050 m) 2.
|
|
- Αμύντα Βλαβιανός
- 8 χρόνια πριν
- Προβολές:
Transcript
1 Electric Forces and Fields Section Review, p. 633 Givens Chapter q 10.0 C q 10.0 C N electrons C/electron C/electron Practice 17A, p q C q 8.0 C r 5.0 c F k Cq 1q r F 30 N ( N /C )( C) (0.050 ). r 0.30 q C q C a. F k Cq 1q r F N ( N /C )( C)( C) (0.30 ) q C q C b. F k Cq 1q r ( N /C )( C) (0.30 ) N 3. q C r 0.1 q 4.3 C 4. q C q 50.0 C F 175 N a. F k Cq1q ( N /C )( C)( C) r (0.1 ) F 16 N q C c. N electrons C/electron C/electron q C d. N electrons C/electron C/electron r k Cq1 q ( N /C )( C)( C) F r c 175 N Section One Pupil s Edition Ch. 17 1
2 Practice 17B, p. 639 Givens 1. q C at x 0 c q 1.5 C at x 3.0 c q 3.0 C at x 5.0 c F 1, k Cq1q ( r 1,) F,3 k Cqq3 ( r,3) F 1,3 k Cq1q3 ( r 1,3) ( N /C )( C)( C) (0.030 ) ( N /C )( C)( C) (0.00 ) ( N /C )( C)( C) (0.050 ) F 1,tot F 1, + F 1,3 ( N) + (43 N) 47 N N 67 N 43 N F 1,tot 47 N, along the negative x-axis F,tot F 1, + F,3 ( N) + (67 N) 157 N F,tot 157 N, along the positive x-axis F 3,tot F,3 + F 1,3 (67 N) (43 N) N F 3,tot N, along the negative x-axis. q C q 6.0 C q 3.4 C q C r 1, r,4 r 3,4 r 1,3 15 c a. r 1,4 r,3 (1 5 c ) + ( 15 c ) r 1,4 r,3 1 c F 1, k Cq1q ( r 1,) F 1,3 k Cq1q3 ( r 1,3) 0 c + 0 c 44 0 c ( N /C )( C)( C) (0.15 ) ( N /C )( C)( C) (0.15 ) 7. N.9 N F 1,4 k Cq1q4 ( r 1,4) ( N /C )( C)( C) (0.1 ) F 1,x (7. N) + (5.5 N)(cos 45 ) 7. N N 11.1 N 5.5 N F 1,y (.9 N) (5.5 N)(sin 45 ).9 N 3.9 N 6.8 N F 1,tot (F 1, x ) + ( F 1, y ) ( N ) + ( 6. 8 N ) 1 3 N N F 1,tot 16 9 N 13.0 N q tan F 1,tot b. F,1 7. N (See a.) F,3 k Cqq3 ( r,3) F,4 k Cqq4 ( r,4) 13.0 N, 31 below the positive x-axis ( N /C )( C)( C) (0.1 ) ( N /C )( C)( C) (0.15 ).9 N N Ch. 17 Holt Physics Solution Manual
3 F,x (7. N) + (.9 N)(cos 45 ) 7. N +.1 N 5.1 N F,y ( N) + (.9 N)(sin 45 ) N +.1 N 4 N F,tot (F, x ) + ( F, y ) (5.1 N ) + ( 4 N ) 6 N N F,tot 61 0 N 5 N q tan F,tot 5 N, 78 above the negative x-axis c. F 4,1 5.5 N (See a.) F 4, N (See b.) F 4,3 k Cq4q3 ( r 4,3) ( N /C )( C)( C) (0.15 ) F 4,x (5.5 N)(cos 45 ) + (8.6 N) 3.9 N N 4.7 N F 4,y (5.5 N)(sin 45 ) ( N) 3.9 N N 18 N F 4,tot (F 4, x ) + ( F 4, y ) (4.7 N ) + ( 18 N ) N N F 4,tot 34 0 N 18 N q tan F 4,tot 18 N, 75 below the positive x-axis 8.6 N Practice 17C, p q C at the origin q C at x 1.5 q C ( r 1q3 1,3) k Cqq3 ( r,3) q1 q (r 1, 3) (r, 3) P C C ( 1. 5 P) ( C)(P ) ( C)(1.5 P) P 9 C (1.5 P) C P 1.1 (0.707)(P) (1.707)(P) 1.1 P 0.64 fro q 1, or x 0.64 Section One Pupil s Edition Ch. 17 3
4 Givens. q C q C r 1, 40.0 c q C ( r 1q3 1,3) k Cqq3 ( r,3) q1 q (r 1, 3) (r, 3) C C P ( P) ( C)(P ) ( C)(0.400 P) P C C (0.400 P) P 0.63 (1.58)(P) (.58)(P) 0.63 P c fro q 1 or (40.0 c 4.5 c) 15.5 c fro q 3. q 1 q C e kg F electric F g k C q 1q r e g r k Cq e 1g q ( N /C )( C) 5.07 ( kg)(9.81 /s ) Section Review, p q 1.0 C r 1 c q 3.5 C a. F k Cq 1q r F 4.4 N ( N /C )( C)( C) (0.1 ) 3. q C at x 1.5 q C at x.0 q C at the origin q C c. N electrons C/electron C/electron F 1,3 k Cq1q3 ( r 1,3) F 1, N F,3 k Cqq3 ( r,3) F, N ( N /C )( C)( C) (1.5 ) ( N /C )( C)( C) (.0 ) F 3,tot ( N) ( N) N F 3,tot N, along the negative x-axis Ch Holt Physics Solution Manual
5 4. q C q C r 1, 60.0 c ( r 1q3 1,3) k Cqq3 ( r,3) q1 q (r 1, 3) (r, 3) C C P ( P) ( C)(P ) ( C)(0.600 P) P C C (0.600 P) P (1.41)(P) (.41)(P) P 0.35 fro q c fro q 1 or (60.0 c 35. c) 4.8 c fro q Practice 17D, p q C at the origin q 3.00 C at x For the point y on the y-axis, E 1 k Cq1 r 1 ( N /C )( C) (0.500 ) N/C E k Cq ( N /C )( C) r ( ) + ( ) ( N /C )( C) E ( N /C )( C) E N/C q tan E y ( N/C) ( N/C)(cos 58.0 ) E y ( N/C) ( N/C) N/C E x ( N/C)(sin 58.0 ) N/C E tot (E y ) + ( E x ) ( N /C ) + ( N /C ) E tot ( N C / ) + ( N C / ) E tot N C / N/C j tan E tot N/C, 81.1 above the positive x-axis Section One Pupil s Edition Ch. 17 5
6 Givens. r E N/C, along the positive x-axis q e q p C E k Cq r ( N /C )( C) ( ) E N/C, away fro the proton a. F Eq e ( N/C)( C) F N, along the negative x-axis b. F Eq p ( N/C)( C) F N, along the positive x-axis N/C Section Review, p q C q C r 30.0 c 15.0 c E 1 k C r q 1 E k C r q ( N /C )( C) (0.150 ) ( N /C )( C) (0.150 ) N/C N/C E tot E 1 + E ( N/C) ( N/C) N/C E tot N/C toward the C charge Chapter Review and Assess, pp q 3.5 C q C N electrons C/electron C/electron 18. q 1 q (46)( C) r ()( ) F k Cq 1q r ( N /C )[(46)( C)] [()( )] 19. q 1.5 C q 5.0 C r 5.0 c 0. q 1.0e q 79e r e C F N F k Cq 1q r F 45 N F k Cq 1q r F 91 N ( N /C )( C)( C) (0.050 ) ( N /C )(.0)(79)( C) ( ) Ch Holt Physics Solution Manual
7 1. q nc q 6.0 nc q 3.0 nc r 1, r,3 (1.0 ) + ( 1. 0 ). q 1 q C q C r,1 1.0 r 3,1 r 3, r 1, r,3 F 1, k Cq1q ( r 1,) (1.0 ) + ( 1. 0 ) F 1, N F,3 k Cqq3 ( r,3) F, N F x ( N)(cos 45 ) + ( N)(cos 45 ) F x ( N) + ( N) N F y ( N)(sin 45 ) + ( N)(sin 45 ) F y ( N) + ( N) N F tot (F x ) + ( F y ) ( N ) + ( N ) F tot ( N ) + ( N ) N F tot N q tan ( N /C )( C)( C) (1.4 ) ( N /C )( C)( C) (1.4 ) F tot N, 1 below the positive x-axis r 3,1 r 3, (0.5 0 ) + ( ) 0.86 F 3,1 F 3, k Cq3q1 ( r 3,1) F 3,1 F 3, N ( N /C )( C)( C) (0.86 ) F x F 3,1 cos q + F 3, cos q F x ( N) ( N) F x N N N F y F 3,1 sin q + F 3, sin q F x ( N) ( N) N F tot (F 1 ) + ( F 4 ) ( N ) N q tan 1 0 N N 0 F tot N along the +x-axis Section One Pupil s Edition Ch. 17 7
8 Givens 3. q C at y 6.0 q 8.0 C at y 4.0 ( r 1q3 1,3) k Cqq3 ( r,3) C C P ( 10.0 P) ( C)(P ) ( C)(10.0 P) C C P (10.0 P) P 11 (1.1)(P) (.1)(P) 11 P 5. below q 1, or y q 3 is located at y q nc q 5.0 nc r 40.0 c q nc ( r 1q3 1,3) k Cqq3 ( r,3) C C P ( P) ( C)(P ) ( C)(0.400 P) C C P (0.400 P) P 0.33 (0.84)(P) (1.84)(P) 0.33 P c fro q q C q C r 30.0 c 15.0 c E 1 k C r q 1 E k C r q ( N /C )( C) (0.150 ) ( N /C )( C) (0.150 ) N/C N/C E tot ( N/C) ( N/C) N/C E tot N/C toward the C charge Ch Holt Physics Solution Manual
9 39. q C at x 3.0 q.0 C at x 1.0 For E at y.0 on the y-axis, r 1 (.0 ) + ( 3. 0 ) r (.0 ) + ( 1. 0 ) E 1 k Cq1 r 1 E k Cq r q 1 tan ( N /C )( C) (3.61 ) ( N /C )( C) (. ) N/C N/C q tan E x ( N/C)(cos 34 ) ( N/C)(cos 63 ) E x ( N/C) ( N/C) N/C E y ( N/C)(sin 34 ) + ( N/C)(sin 63 ) E y ( N/C) + ( N/C) N/C E tot (E x ) + ( E y ) ( N /C ) + ( N /C ) E tot ( N C / ) + ( N C / ) ( N C / ) N/C q tan E tot N/C, 75 above the positive x-axis 40. q 1 ( protons)(e) q ( electrons)(e) e C Q net q 1 + q [( ) ( )](e) ( )(e) Q net ( )( C) Q net C 41. a /s e kg g of Cu has atos. 1 Cu ato has 9 electrons. a. F e a ( kg)( /s ) N F N, in a direction opposite E b. E F 7 q N N/C C a g of Cu has ( atos)(9 electrons/ato) electrons b. q tot ( electrons)( C/electron) C Section One Pupil s Edition Ch. 17 9
10 Givens 43. q C q 1.5 C q 3.0 C r 1, 3.0 c r,3.0 c a. E at 1.0 c left of q E 1 + E + E 3 r 1 r 1, 1.0 c 3.0 c 1.0 c.0 c r 1.0 c r 3 r, c.0 c c 3.0 c E 1 k Cq1 r 1 E k Cq r ( N /C )( C) (0.00 ) ( N /C )( C) (0.010 ) N/C N/C E 3 k Cq3 ( N /C )( C) r N/C 3 (0.030 ) E tot ( N/C) ( N/C) + ( N/C) E tot N/C along the positive x-axis q 4.0 C b. F q 4 E ( C)( N/C) N 44. q nc q 6.0 nc q nc r 1, 0.30 r 1, a. F 1, k Cq1q ( r 1,) F 1, N F 1,3 k Cq1q3 ( r 1,3) F 1, N F 1,tot (F 1, ) + ( F 1, 3 ) F 1,tot ( N /C )( C)( C) (0.30 ) ( N /C )( C)( C) (0.10 ) ( ( N ) + ( N ) 6 N ) + ( N ) N N 45. q 1 ( )(e) q ( )(e) r ()( ) e C kg kg q tan F 1,tot N, 77 below the negative x-axis F b. E N q N/C, 77 below the negative x-axis C F k C q 1q r F N F g F electric G1 r k Cq r q G k 1 C ( N /C )[( )( C)] [()( )] ( N /kg )( kg)( kg) N /C q C Ch Holt Physics Solution Manual
11 g q 5.0 L 30.0 c ΣF y 0 N, so F g F T,y F T (cos 5.0 ) ΣF x 0 N, so F electric F T,x F T (sin 5.0 ) F el ec tric FT( sin 5. 0 ) tan 5.0 Fg F T ( cos 5. 0 ) r tan 5.0 g r ()(0.300 )(sin 5.0 ) q r g( a n 5.0 ) t kc [()(0.300 )(sin 5.0 )] q ( kg)(9.81 /s )(tan 5.0 ) N /C q C 49. e kg p kg a. F Eq g E e eg q E e b. E p pg q ( kg)(9.81 /s ) C N/C, downward ( kg)(9.81 /s ) C E p N/C upward N/C N/C 50. q nc q 6.0 nc q nc r 1,3 r, r,3 r 1, ( N /C )( C) E 1 ( r1,4) 670 N/C (0.0 ) ( N /C )( C) E ( r,4) 150 N/C (0.60 ) r 3,4 (0. 0 ) + ( ) r 3, ( N /C )( C) E 3 ( r3,4) 110 N/C (0.63 ) q tan E x (150 N/C) (110 N/C)(cos 18 ) 150 N/C ( N/C) E x 50 N/C E y (670 N/C) + (110 N/C)(sin 18 ) 670 N/C + 34 N/C E y N/C E tot (E x ) + ( E y ) ( 50 N /C ) + ( N /C ) ( N C / ) + ( N C / ) E tot j tan ( ) N C / N/C E tot N/C, ( ) above the negative x-axis Section One Pupil s Edition Ch
12 51. E 50 N/C t 48 ns a F qe v i 0 /s e kg p kg v f a t q E t For the electron, v f,e q E t ( C)(50 N/C)( s) e kg /s For the proton, v f,p q E t ( C)(50 N/C)( s) p kg /s 5. q C r 1.0 a. Because the doe is a closed conducting surface, E 0.0 N/C inside the doe. b. E k Cq ( N /C )( C) r (1.0 ) N/C c. E ( 4r) ( N /C )( C) (4.0 ) N/C 53. E N/C r.0 q E r kc ( N/C)(.0 ) ( N /C ) C 54. E N/C p kg 55. E N/C 56. q 5.0 C r.0 a. F qe ( C)( N/C) F N b. a /s p kg N F qe ( C)( N/C) N E 1 E E 3 k Cq ( N /C )( C) r N/C (.0 ) E x ( N/C)(sin 60 ) ( N)(sin 60 ) 0.0 N/C E y ( N/C) ( N/C)(cos 60 ) ( N/C)(cos 60 ) E y ( N/C) ( N/C) ( N/C) 0.0 N/C E tot (0.0 N /C ) + ( 0. 0 N /C ) 0.0 N/C Ch Holt Physics Solution Manual
13 57. q 4 C E 610 N/C 58. E 640 N/C v i 0 /s v f /s p kg F electric F g qe g q ( ge 6 C)(610 N/C) 3 kg 9.81 /s F qe ( C)(640 N/C) a. a /s p p kg b. t v f /s a /s s c. x 1 a t (0.5)( /s )( s) x 1 d. KE f 1 p v f (0.5)( kg)( /s) KE f J kg L 30.0 c q 45 ΣF x 0 N F electric F T,x F T,x F electric F T (sin 45 ) ΣF y 0 N F T,y F g F T,y F g F T (cos 45 ) F el ec tric FT( sin 45 ) tan 45 Fg F T ( cos 45 ) F electric (L sin q) + (L sin q) 4k Cq + 5 4L ( sin q) 4L ( sinq) F g g g L 0.0 c E N/C q 15 F el ec tric 5 Fg 4L ( sin tan 45 q)g 5k C q 4L (sin q)g(tan 45 ) q 4L (sin q)g(tan 45 ) L(sin q) g (t a n 5 k C 45 ) (0.10 kg)(9.81 /s q ()(0.300 )(sin 45 ) )(tan 45 ) (5)( N /C ) q C 5kC b. F T, y F g g FT,y g F T co s 15 co s15 qe F T,x F T (sin 15 ) g ( sin 15 ) g(tan 15 ) cos 15 q g(ta n15 ) E ( kg)(9.81 /s )(tan 15 ) N/C C Section One Pupil s Edition Ch
14 Givens 61. +y Because each charge is the sae size and all are the sae distance fro the center, q E 1 E E 3 E 4 E 5 k Cq r q E E 3 E 1,y 0 N/C q E 5,y E,y E(sin 7 ) 36 7 E 1 +x 7 E 4,y E 3,y E(sin 36 ) E 4 q E 5 E y E 1,y + E,y + E 3,y + E 4,y + E 5,y E y 0 N/C + E(sin 7 ) + E(sin 36 ) E(sin 36 ) E(sin 7 ) 0 N/C q E 1,x E E,x E 5,x E(cos 7 ) E 3,x E 4,x E(cos 36 ) E x E 1,x + E,x + E 3,x + E 4,x + E 5,x E x E + E(cos 7 ) E(cos 36 ) E(cos 36 ) + E(cos 7 ) E x E + E(cos 7 ) E(cos 36 ) E( ) E x 0 N/C E (E x ) + ( E y ) (0 N /C ) + ( 0 N /C ) 0 N/C 6. E N/C e kg v i 0 /s v f (0.100)( /s) p kg F qe ( C)( N/C) a. a /s e e kg b. v f a x x v f [(0.100)( /s)] a ()( /s ) F qe ( C)( N/C) c. a /s p p kg 63. r 1.17 q C q C r (0.0100)(.17 ) 64. E N/C t 1.00 s e kg p kg F electric F elastic k Cq1q r kr 1 k k Cq1q ( N /C )( C) r 1 r ( ) 3 (0.0100) k N/ F qe ( C)(370.0 N/C) a e /s e e kg x e 1 a e t (0.5)( /s )( s) 3.5 F qe ( C)(370.0 N/C) a p /s p p kg x p 1 a p t (0.5)( /s )( s) x p x tot x e + x p ( ) 3.5 Ch Holt Physics Solution Manual
15 65. E N/C e kg t s F qe ( C)(300.0 N/C) a. a /s e e kg b. v f a t ( /s )( s) /s 66. E N/C along the positive x-axis a. F qe ( C)( N/C) N F N, along the positive x-axis p kg 16 F N b. a p kg /s v f /s 67. v f,1 (0.010)( /s) x 1.0 e kg c. t v f /s s a /s vf,1 a. a x1 E ea evf,1 q x1q E ( kg)[(0.010)( /s)] ()( )( C) E N/C x 4.0 vf,1 [(0.010)( /s)] b. a /s x1 ()( ) 68. KE J x 1.5 v f 0 /s p kg v f, a x v f, KE 1 p v i v i K E p a v f v i x a x F qe p a E pa ( p ( vf v q () i ) q) ( x) E ( )( /s (4.0 ) ) /s p v f p K p E (q)( x) ( kg)(0 /s) ()( J) ( C)()(1.5 ) E N/C opposite the proton s velocity pvf KE (q)( x) N/C Section One Pupil s Edition Ch
( N m 2 /C 2 )( C)( C) J
Electrical Energy and Capacitance Practice 8A, p. 669 Chapter 8. PE electric = 6.3 0 9 J q = q = q p + q n = ().60 0 9 C + ()(0) = 3.0 0 9 C kcqq (8.99 0 9 N /C )(3.0 0 9 C) r = = P Ee lectric 6.3 0 9
Chapter 6 BLM Answers
Chapter 6 BLM Answers BLM 6 Chapter 6 Prerequisite Skills. a) i) II ii) IV iii) III i) 5 ii) 7 iii) 7. a) 0, c) 88.,.6, 59.6 d). a) 5 + 60 n; 7 + n, c). rad + n rad; 7 9,. a) 5 6 c) 69. d) 0.88 5. a) negative
Spherical Coordinates
Spherical Coordinates MATH 311, Calculus III J. Robert Buchanan Department of Mathematics Fall 2011 Spherical Coordinates Another means of locating points in three-dimensional space is known as the spherical
CHAPTER 25 SOLVING EQUATIONS BY ITERATIVE METHODS
CHAPTER 5 SOLVING EQUATIONS BY ITERATIVE METHODS EXERCISE 104 Page 8 1. Find the positive root of the equation x + 3x 5 = 0, correct to 3 significant figures, using the method of bisection. Let f(x) =
Homework 8 Model Solution Section
MATH 004 Homework Solution Homework 8 Model Solution Section 14.5 14.6. 14.5. Use the Chain Rule to find dz where z cosx + 4y), x 5t 4, y 1 t. dz dx + dy y sinx + 4y)0t + 4) sinx + 4y) 1t ) 0t + 4t ) sinx
Jackson 2.25 Homework Problem Solution Dr. Christopher S. Baird University of Massachusetts Lowell
Jackson 2.25 Hoework Proble Solution Dr. Christopher S. Baird University of Massachusetts Lowell PROBLEM: Two conducting planes at zero potential eet along the z axis, aking an angle β between the, as
9.09. # 1. Area inside the oval limaçon r = cos θ. To graph, start with θ = 0 so r = 6. Compute dr
9.9 #. Area inside the oval limaçon r = + cos. To graph, start with = so r =. Compute d = sin. Interesting points are where d vanishes, or at =,,, etc. For these values of we compute r:,,, and the values
Section 8.2 Graphs of Polar Equations
Section 8. Graphs of Polar Equations Graphing Polar Equations The graph of a polar equation r = f(θ), or more generally F(r,θ) = 0, consists of all points P that have at least one polar representation
Solution to Review Problems for Midterm III
Solution to Review Problems for Mierm III Mierm III: Friday, November 19 in class Topics:.8-.11, 4.1,4. 1. Find the derivative of the following functions and simplify your answers. (a) x(ln(4x)) +ln(5
Answers to practice exercises
Answers to practice exercises Chapter Exercise (Page 5). 9 kg 2. 479 mm. 66 4. 565 5. 225 6. 26 7. 07,70 8. 4 9. 487 0. 70872. $5, Exercise 2 (Page 6). (a) 468 (b) 868 2. (a) 827 (b) 458. (a) 86 kg (b)
Chapter 7 Transformations of Stress and Strain
Chapter 7 Transformations of Stress and Strain INTRODUCTION Transformation of Plane Stress Mohr s Circle for Plane Stress Application of Mohr s Circle to 3D Analsis 90 60 60 0 0 50 90 Introduction 7-1
Section 8.3 Trigonometric Equations
99 Section 8. Trigonometric Equations Objective 1: Solve Equations Involving One Trigonometric Function. In this section and the next, we will exple how to solving equations involving trigonometric functions.
UDZ Swirl diffuser. Product facts. Quick-selection. Swirl diffuser UDZ. Product code example:
UDZ Swirl diffuser Swirl diffuser UDZ, which is intended for installation in a ventilation duct, can be used in premises with a large volume, for example factory premises, storage areas, superstores, halls,
3.4 SUM AND DIFFERENCE FORMULAS. NOTE: cos(α+β) cos α + cos β cos(α-β) cos α -cos β
3.4 SUM AND DIFFERENCE FORMULAS Page Theorem cos(αβ cos α cos β -sin α cos(α-β cos α cos β sin α NOTE: cos(αβ cos α cos β cos(α-β cos α -cos β Proof of cos(α-β cos α cos β sin α Let s use a unit circle
Integrals in cylindrical, spherical coordinates (Sect. 15.7)
Integrals in clindrical, spherical coordinates (Sect. 5.7 Integration in spherical coordinates. Review: Clindrical coordinates. Spherical coordinates in space. Triple integral in spherical coordinates.
DESIGN OF MACHINERY SOLUTION MANUAL h in h 4 0.
DESIGN OF MACHINERY SOLUTION MANUAL -7-1! PROBLEM -7 Statement: Design a double-dwell cam to move a follower from to 25 6, dwell for 12, fall 25 and dwell for the remader The total cycle must take 4 sec
Solutions to Exercise Sheet 5
Solutions to Eercise Sheet 5 jacques@ucsd.edu. Let X and Y be random variables with joint pdf f(, y) = 3y( + y) where and y. Determine each of the following probabilities. Solutions. a. P (X ). b. P (X
d dx x 2 = 2x d dx x 3 = 3x 2 d dx x n = nx n 1
d dx x 2 = 2x d dx x 3 = 3x 2 d dx x n = nx n1 x dx = 1 2 b2 1 2 a2 a b b x 2 dx = 1 a 3 b3 1 3 a3 b x n dx = 1 a n +1 bn +1 1 n +1 an +1 d dx d dx f (x) = 0 f (ax) = a f (ax) lim d dx f (ax) = lim 0 =
For a wave characterized by the electric field
Problem 7.9 For a wave characterized by the electric field E(z,t) = ˆxa x cos(ωt kz)+ŷa y cos(ωt kz+δ) identify the polarization state, determine the polarization angles (γ, χ), and sketch the locus of
Approximation of distance between locations on earth given by latitude and longitude
Approximation of distance between locations on earth given by latitude and longitude Jan Behrens 2012-12-31 In this paper we shall provide a method to approximate distances between two points on earth
Areas and Lengths in Polar Coordinates
Kiryl Tsishchanka Areas and Lengths in Polar Coordinates In this section we develop the formula for the area of a region whose boundary is given by a polar equation. We need to use the formula for the
26 28 Find an equation of the tangent line to the curve at the given point Discuss the curve under the guidelines of Section
SECTION 5. THE NATURAL LOGARITHMIC FUNCTION 5. THE NATURAL LOGARITHMIC FUNCTION A Click here for answers. S Click here for solutions. 4 Use the Laws of Logarithms to epand the quantit.. ln ab. ln c. ln
PP #6 Μηχανικές αρχές και η εφαρµογή τους στην Ενόργανη Γυµναστική
PP #6 Μηχανικές αρχές και η εφαρµογή τους στην Ενόργανη Γυµναστική Υπολογισµός Γωνιών (1.2, 1.5) (2.0, 1.5) θ 3 θ 4 θ 2 θ 1 (1.3, 1.2) (1.7, 1.0) (0, 0) " 1 = tan #1 2.0 #1.7 1.5 #1.0 $ 310 " 2 = tan #1
Practice Exam 2. Conceptual Questions. 1. State a Basic identity and then verify it. (a) Identity: Solution: One identity is csc(θ) = 1
Conceptual Questions. State a Basic identity and then verify it. a) Identity: Solution: One identity is cscθ) = sinθ) Practice Exam b) Verification: Solution: Given the point of intersection x, y) of the
Pg The perimeter is P = 3x The area of a triangle is. where b is the base, h is the height. In our case b = x, then the area is
Pg. 9. The perimeter is P = The area of a triangle is A = bh where b is the base, h is the height 0 h= btan 60 = b = b In our case b =, then the area is A = = 0. By Pythagorean theorem a + a = d a a =
Graded Refractive-Index
Graded Refractive-Index Common Devices Methodologies for Graded Refractive Index Methodologies: Ray Optics WKB Multilayer Modelling Solution requires: some knowledge of index profile n 2 x Ray Optics for
Trigonometric Formula Sheet
Trigonometric Formula Sheet Definition of the Trig Functions Right Triangle Definition Assume that: 0 < θ < or 0 < θ < 90 Unit Circle Definition Assume θ can be any angle. y x, y hypotenuse opposite θ
1 String with massive end-points
1 String with massive end-points Πρόβλημα 5.11:Θεωρείστε μια χορδή μήκους, τάσης T, με δύο σημειακά σωματίδια στα άκρα της, το ένα μάζας m, και το άλλο μάζας m. α) Μελετώντας την κίνηση των άκρων βρείτε
Written Examination. Antennas and Propagation (AA ) April 26, 2017.
Written Examination Antennas and Propagation (AA. 6-7) April 6, 7. Problem ( points) Let us consider a wire antenna as in Fig. characterized by a z-oriented linear filamentary current I(z) = I cos(kz)ẑ
Areas and Lengths in Polar Coordinates
Kiryl Tsishchanka Areas and Lengths in Polar Coordinates In this section we develop the formula for the area of a region whose boundary is given by a polar equation. We need to use the formula for the
the total number of electrons passing through the lamp.
1. A 12 V 36 W lamp is lit to normal brightness using a 12 V car battery of negligible internal resistance. The lamp is switched on for one hour (3600 s). For the time of 1 hour, calculate (i) the energy
CHAPTER 101 FOURIER SERIES FOR PERIODIC FUNCTIONS OF PERIOD
CHAPTER FOURIER SERIES FOR PERIODIC FUNCTIONS OF PERIOD EXERCISE 36 Page 66. Determine the Fourier series for the periodic function: f(x), when x +, when x which is periodic outside this rge of period.
b. Use the parametrization from (a) to compute the area of S a as S a ds. Be sure to substitute for ds!
MTH U341 urface Integrals, tokes theorem, the divergence theorem To be turned in Wed., Dec. 1. 1. Let be the sphere of radius a, x 2 + y 2 + z 2 a 2. a. Use spherical coordinates (with ρ a) to parametrize.
3.4. Click here for solutions. Click here for answers. CURVE SKETCHING. y cos x sin x. x 1 x 2. x 2 x 3 4 y 1 x 2. x 5 2
SECTION. CURVE SKETCHING. CURVE SKETCHING A Click here for answers. S Click here for solutions. 9. Use the guidelines of this section to sketch the curve. cos sin. 5. 6 8 7 0. cot, 0.. 9. cos sin. sin
is like multiplying by the conversion factor of. Dividing by 2π gives you the
Chapter Graphs of Trigonometric Functions Answer Ke. Radian Measure Answers. π. π. π. π. 7π. π 7. 70 8. 9. 0 0. 0. 00. 80. Multipling b π π is like multipling b the conversion factor of. Dividing b 0 gives
Derivations of Useful Trigonometric Identities
Derivations of Useful Trigonometric Identities Pythagorean Identity This is a basic and very useful relationship which comes directly from the definition of the trigonometric ratios of sine and cosine
Differential equations
Differential equations Differential equations: An equation inoling one dependent ariable and its deriaties w. r. t one or more independent ariables is called a differential equation. Order of differential
Rectangular Polar Parametric
Harold s Precalculus Rectangular Polar Parametric Cheat Sheet 15 October 2017 Point Line Rectangular Polar Parametric f(x) = y (x, y) (a, b) Slope-Intercept Form: y = mx + b Point-Slope Form: y y 0 = m
If we restrict the domain of y = sin x to [ π, π ], the restrict function. y = sin x, π 2 x π 2
Chapter 3. Analytic Trigonometry 3.1 The inverse sine, cosine, and tangent functions 1. Review: Inverse function (1) f 1 (f(x)) = x for every x in the domain of f and f(f 1 (x)) = x for every x in the
EE1. Solutions of Problems 4. : a) f(x) = x 2 +x. = (x+ǫ)2 +(x+ǫ) (x 2 +x) ǫ
EE Solutions of Problems 4 ) Differentiation from first principles: f (x) = lim f(x+) f(x) : a) f(x) = x +x f(x+) f(x) = (x+) +(x+) (x +x) = x+ + = x++ f(x+) f(x) Thus lim = lim x++ = x+. b) f(x) = cos(ax),
If we restrict the domain of y = sin x to [ π 2, π 2
Chapter 3. Analytic Trigonometry 3.1 The inverse sine, cosine, and tangent functions 1. Review: Inverse function (1) f 1 (f(x)) = x for every x in the domain of f and f(f 1 (x)) = x for every x in the
Section 7.6 Double and Half Angle Formulas
09 Section 7. Double and Half Angle Fmulas To derive the double-angles fmulas, we will use the sum of two angles fmulas that we developed in the last section. We will let α θ and β θ: cos(θ) cos(θ + θ)
Laplace s Equation in Spherical Polar Coördinates
Laplace s Equation in Spheical Pola Coödinates C. W. David Dated: Januay 3, 001 We stat with the pimitive definitions I. x = sin θ cos φ y = sin θ sin φ z = cos θ thei inveses = x y z θ = cos 1 z = z cos1
Problem 3.1 Vector A starts at point (1, 1, 3) and ends at point (2, 1,0). Find a unit vector in the direction of A. Solution: A = 1+9 = 3.
Problem 3.1 Vector A starts at point (1, 1, 3) and ends at point (, 1,0). Find a unit vector in the direction of A. Solution: A = ˆx( 1)+ŷ( 1 ( 1))+ẑ(0 ( 3)) = ˆx+ẑ3, A = 1+9 = 3.16, â = A A = ˆx+ẑ3 3.16
16. 17. r t te 2t i t 1. 18 19 Find the derivative of the vector function. 19. r t e t cos t i e t sin t j ln t k. 31 33 Evaluate the integral.
SECTION.7 VECTOR FUNCTIONS AND SPACE CURVES.7 VECTOR FUNCTIONS AND SPACE CURVES A Click here for answers. S Click here for soluions. Copyrigh Cengage Learning. All righs reserved.. Find he domain of he
Inverse trigonometric functions & General Solution of Trigonometric Equations. ------------------ ----------------------------- -----------------
Inverse trigonometric functions & General Solution of Trigonometric Equations. 1. Sin ( ) = a) b) c) d) Ans b. Solution : Method 1. Ans a: 17 > 1 a) is rejected. w.k.t Sin ( sin ) = d is rejected. If sin
10/3/ revolution = 360 = 2 π radians = = x. 2π = x = 360 = : Measures of Angles and Rotations
//.: Measures of Angles and Rotations I. Vocabulary A A. Angle the union of two rays with a common endpoint B. BA and BC C. B is the vertex. B C D. You can think of BA as the rotation of (clockwise) with
Review Test 3. MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.
Review Test MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. Find the exact value of the expression. 1) sin - 11π 1 1) + - + - - ) sin 11π 1 ) ( -
1. (a) (5 points) Find the unit tangent and unit normal vectors T and N to the curve. r(t) = 3cost, 4t, 3sint
1. a) 5 points) Find the unit tangent and unit normal vectors T and N to the curve at the point P, π, rt) cost, t, sint ). b) 5 points) Find curvature of the curve at the point P. Solution: a) r t) sint,,
CHAPTER (2) Electric Charges, Electric Charge Densities and Electric Field Intensity
CHAPTE () Electric Chrges, Electric Chrge Densities nd Electric Field Intensity Chrge Configurtion ) Point Chrge: The concept of the point chrge is used when the dimensions of n electric chrge distriution
Solar Neutrinos: Fluxes
Solar Neutrinos: Fluxes pp chain Sun shines by : 4 p 4 He + e + + ν e + γ Solar Standard Model Fluxes CNO cycle e + N 13 =0.707MeV He 4 C 1 C 13 p p p p N 15 N 14 He 4 O 15 O 16 e + =0.997MeV O17
Variational Wavefunction for the Helium Atom
Technische Universität Graz Institut für Festkörperphysik Student project Variational Wavefunction for the Helium Atom Molecular and Solid State Physics 53. submitted on: 3. November 9 by: Markus Krammer
AREAS AND LENGTHS IN POLAR COORDINATES. 25. Find the area inside the larger loop and outside the smaller loop
SECTIN 9. AREAS AND LENGTHS IN PLAR CRDINATES 9. AREAS AND LENGTHS IN PLAR CRDINATES A Click here for answers. S Click here for solutions. 8 Find the area of the region that is bounded by the given curve
Phys460.nb Solution for the t-dependent Schrodinger s equation How did we find the solution? (not required)
Phys460.nb 81 ψ n (t) is still the (same) eigenstate of H But for tdependent H. The answer is NO. 5.5.5. Solution for the tdependent Schrodinger s equation If we assume that at time t 0, the electron starts
wave energy Superposition of linear plane progressive waves Marine Hydrodynamics Lecture Oblique Plane Waves:
3.0 Marine Hydrodynamics, Fall 004 Lecture 0 Copyriht c 004 MIT - Department of Ocean Enineerin, All rihts reserved. 3.0 - Marine Hydrodynamics Lecture 0 Free-surface waves: wave enery linear superposition,
(1) Describe the process by which mercury atoms become excited in a fluorescent tube (3)
Q1. (a) A fluorescent tube is filled with mercury vapour at low pressure. In order to emit electromagnetic radiation the mercury atoms must first be excited. (i) What is meant by an excited atom? (1) (ii)
Problem 3.16 Given B = ˆx(z 3y) +ŷ(2x 3z) ẑ(x+y), find a unit vector parallel. Solution: At P = (1,0, 1), ˆb = B
Problem 3.6 Given B = ˆxz 3y) +ŷx 3z) ẑx+y), find a unit vector parallel to B at point P =,0, ). Solution: At P =,0, ), B = ˆx )+ŷ+3) ẑ) = ˆx+ŷ5 ẑ, ˆb = B B = ˆx+ŷ5 ẑ = ˆx+ŷ5 ẑ. +5+ 7 Problem 3.4 Convert
Radiation Stress Concerned with the force (or momentum flux) exerted on the right hand side of a plane by water on the left hand side of the plane.
upplement on Radiation tress and Wave etup/et down Radiation tress oncerned wit te force (or momentum flu) eerted on te rit and side of a plane water on te left and side of te plane. plane z "Radiation
Two-mass Equivalent Link
Notes_08_0 1 of 0 Two-ass Equivalent ink B G JG C B G C = total ass B centroid location CG B = = BC BG BC check approxiate ass oent J J = ( BG ) ( CG ) G G _ APP (for slender rod J = J ) G _ APP G _ ACTUA
Capacitors - Capacitance, Charge and Potential Difference
Capacitors - Capacitance, Charge and Potential Difference Capacitors store electric charge. This ability to store electric charge is known as capacitance. A simple capacitor consists of 2 parallel metal
Section 9.2 Polar Equations and Graphs
180 Section 9. Polar Equations and Graphs In this section, we will be graphing polar equations on a polar grid. In the first few examples, we will write the polar equation in rectangular form to help identify
[1] P Q. Fig. 3.1
1 (a) Define resistance....... [1] (b) The smallest conductor within a computer processing chip can be represented as a rectangular block that is one atom high, four atoms wide and twenty atoms long. One
Second Order Partial Differential Equations
Chapter 7 Second Order Partial Differential Equations 7.1 Introduction A second order linear PDE in two independent variables (x, y Ω can be written as A(x, y u x + B(x, y u xy + C(x, y u u u + D(x, y
Trigonometry 1.TRIGONOMETRIC RATIOS
Trigonometry.TRIGONOMETRIC RATIOS. If a ray OP makes an angle with the positive direction of X-axis then y x i) Sin ii) cos r r iii) tan x y (x 0) iv) cot y x (y 0) y P v) sec x r (x 0) vi) cosec y r (y
Μονοβάθμια Συστήματα: Εξίσωση Κίνησης, Διατύπωση του Προβλήματος και Μέθοδοι Επίλυσης. Απόστολος Σ. Παπαγεωργίου
Μονοβάθμια Συστήματα: Εξίσωση Κίνησης, Διατύπωση του Προβλήματος και Μέθοδοι Επίλυσης VISCOUSLY DAMPED 1-DOF SYSTEM Μονοβάθμια Συστήματα με Ιξώδη Απόσβεση Equation of Motion (Εξίσωση Κίνησης): Complete
MathCity.org Merging man and maths
MathCity.org Merging man and maths Exercise 10. (s) Page Textbook of Algebra and Trigonometry for Class XI Available online @, Version:.0 Question # 1 Find the values of sin, and tan when: 1 π (i) (ii)
Mock Exam 7. 1 Hong Kong Educational Publishing Company. Section A 1. Reference: HKDSE Math M Q2 (a) (1 + kx) n 1M + 1A = (1) =
Mock Eam 7 Mock Eam 7 Section A. Reference: HKDSE Math M 0 Q (a) ( + k) n nn ( )( k) + nk ( ) + + nn ( ) k + nk + + + A nk... () nn ( ) k... () From (), k...() n Substituting () into (), nn ( ) n 76n 76n
Technical Information T-9100 SI. Suva. refrigerants. Thermodynamic Properties of. Suva Refrigerant [R-410A (50/50)]
d Suva refrigerants Technical Information T-9100SI Thermodynamic Properties of Suva 9100 Refrigerant [R-410A (50/50)] Thermodynamic Properties of Suva 9100 Refrigerant SI Units New tables of the thermodynamic
4.5 SUMMARY OF CURVE SKETCHING. Click here for answers. Click here for solutions. y cos x sin x. x 2 x 3 4. x 1 x y x 3 x
SECTION.5 SUMMARY OF CURVE SKETCHING.5 SUMMARY OF CURVE SKETCHING A Click here for answers. S Click here for solutions. 9. 8 Use the guidelines of this section to sketch the curve. cos sin. 5. 6 8 7. cot..
Strain gauge and rosettes
Strain gauge and rosettes Introduction A strain gauge is a device which is used to measure strain (deformation) on an object subjected to forces. Strain can be measured using various types of devices classified
6.4 Superposition of Linear Plane Progressive Waves
.0 - Marine Hydrodynamics, Spring 005 Lecture.0 - Marine Hydrodynamics Lecture 6.4 Superposition of Linear Plane Progressive Waves. Oblique Plane Waves z v k k k z v k = ( k, k z ) θ (Looking up the y-ais
Aquinas College. Edexcel Mathematical formulae and statistics tables DO NOT WRITE ON THIS BOOKLET
Aquinas College Edexcel Mathematical formulae and statistics tables DO NOT WRITE ON THIS BOOKLET Pearson Edexcel Level 3 Advanced Subsidiary and Advanced GCE in Mathematics and Further Mathematics Mathematical
Math221: HW# 1 solutions
Math: HW# solutions Andy Royston October, 5 7.5.7, 3 rd Ed. We have a n = b n = a = fxdx = xdx =, x cos nxdx = x sin nx n sin nxdx n = cos nx n = n n, x sin nxdx = x cos nx n + cos nxdx n cos n = + sin
Section 7.7 Product-to-Sum and Sum-to-Product Formulas
Section 7.7 Product-to-Sum and Sum-to-Product Fmulas Objective 1: Express Products as Sums To derive the Product-to-Sum Fmulas will begin by writing down the difference and sum fmulas of the cosine function:
Lecture 21: Scattering and FGR
ECE-656: Fall 009 Lecture : Scattering and FGR Professor Mark Lundstrom Electrical and Computer Engineering Purdue University, West Lafayette, IN USA Review: characteristic times τ ( p), (, ) == S p p
2. Chemical Thermodynamics and Energetics - I
. Chemical Thermodynamics and Energetics - I 1. Given : Initial Volume ( = 5L dm 3 Final Volume (V = 10L dm 3 ext = 304 cm of Hg Work done W = ext V ext = 304 cm of Hg = 304 atm [... 76cm of Hg = 1 atm]
Matrices and Determinants
Matrices and Determinants SUBJECTIVE PROBLEMS: Q 1. For what value of k do the following system of equations possess a non-trivial (i.e., not all zero) solution over the set of rationals Q? x + ky + 3z
Problem 7.19 Ignoring reflection at the air soil boundary, if the amplitude of a 3-GHz incident wave is 10 V/m at the surface of a wet soil medium, at what depth will it be down to 1 mv/m? Wet soil is
Answers - Worksheet A ALGEBRA PMT. 1 a = 7 b = 11 c = 1 3. e = 0.1 f = 0.3 g = 2 h = 10 i = 3 j = d = k = 3 1. = 1 or 0.5 l =
C ALGEBRA Answers - Worksheet A a 7 b c d e 0. f 0. g h 0 i j k 6 8 or 0. l or 8 a 7 b 0 c 7 d 6 e f g 6 h 8 8 i 6 j k 6 l a 9 b c d 9 7 e 00 0 f 8 9 a b 7 7 c 6 d 9 e 6 6 f 6 8 g 9 h 0 0 i j 6 7 7 k 9
Probability and Random Processes (Part II)
Probability and Random Processes (Part II) 1. If the variance σ x of d(n) = x(n) x(n 1) is one-tenth the variance σ x of a stationary zero-mean discrete-time signal x(n), then the normalized autocorrelation
Solutions to the Schrodinger equation atomic orbitals. Ψ 1 s Ψ 2 s Ψ 2 px Ψ 2 py Ψ 2 pz
Solutions to the Schrodinger equation atomic orbitals Ψ 1 s Ψ 2 s Ψ 2 px Ψ 2 py Ψ 2 pz ybridization Valence Bond Approach to bonding sp 3 (Ψ 2 s + Ψ 2 px + Ψ 2 py + Ψ 2 pz) sp 2 (Ψ 2 s + Ψ 2 px + Ψ 2 py)
Example Sheet 3 Solutions
Example Sheet 3 Solutions. i Regular Sturm-Liouville. ii Singular Sturm-Liouville mixed boundary conditions. iii Not Sturm-Liouville ODE is not in Sturm-Liouville form. iv Regular Sturm-Liouville note
Macromechanics of a Laminate. Textbook: Mechanics of Composite Materials Author: Autar Kaw
Macromechanics of a Laminate Tetboo: Mechanics of Composite Materials Author: Autar Kaw Figure 4.1 Fiber Direction θ z CHAPTER OJECTIVES Understand the code for laminate stacing sequence Develop relationships
CHAPTER 48 APPLICATIONS OF MATRICES AND DETERMINANTS
CHAPTER 48 APPLICATIONS OF MATRICES AND DETERMINANTS EXERCISE 01 Page 545 1. Use matrices to solve: 3x + 4y x + 5y + 7 3x + 4y x + 5y 7 Hence, 3 4 x 0 5 y 7 The inverse of 3 4 5 is: 1 5 4 1 5 4 15 8 3
DuPont Suva. DuPont. Thermodynamic Properties of. Refrigerant (R-410A) Technical Information. refrigerants T-410A ENG
Technical Information T-410A ENG DuPont Suva refrigerants Thermodynamic Properties of DuPont Suva 410A Refrigerant (R-410A) The DuPont Oval Logo, The miracles of science, and Suva, are trademarks or registered
ES440/ES911: CFD. Chapter 5. Solution of Linear Equation Systems
ES440/ES911: CFD Chapter 5. Solution of Linear Equation Systems Dr Yongmann M. Chung http://www.eng.warwick.ac.uk/staff/ymc/es440.html Y.M.Chung@warwick.ac.uk School of Engineering & Centre for Scientific
= 0.927rad, t = 1.16ms
P 9. [a] ω = 2πf = 800rad/s, f = ω 2π = 27.32Hz [b] T = /f = 7.85ms [c] I m = 25mA [d] i(0) = 25cos(36.87 ) = 00mA [e] φ = 36.87 ; φ = 36.87 (2π) = 0.6435 rad 360 [f] i = 0 when 800t + 36.87 = 90. Now
Fourier Analysis of Waves
Exercises for the Feynman Lectures on Physics by Richard Feynman, Et Al. Chapter 36 Fourier Analysis of Waves Detailed Work by James Pate Williams, Jr. BA, BS, MSwE, PhD From Exercises for the Feynman
MATSEC Intermediate Past Papers Index L. Bonello, A. Vella
2009 MATSEC Intermediate Past Papers Index Louisella Bonello Antonia Vella The Junior College Physics Department 2009 MATSEC INTERMEDIATE PAST PAPERS INDEX WITH ANSWERS TO NUMERICAL PROBLEMS by Louisella
ECE Spring Prof. David R. Jackson ECE Dept. Notes 2
ECE 634 Spring 6 Prof. David R. Jackson ECE Dept. Notes Fields in a Source-Free Region Example: Radiation from an aperture y PEC E t x Aperture Assume the following choice of vector potentials: A F = =
ΤΕΧΝΙΚΗ ΜΗΧΑΝΙΚΗ 2. ΔΥΝΑΜΕΙΣ ΚΑΙ ΡΟΠΕΣ
ΤΕΧΝΙΚΗ ΜΗΧΑΝΙΚΗ 2. ΔΥΝΑΜΕΙΣ ΚΑΙ ΡΟΠΕΣ ΓΚΛΩΤΣΟΣ ΔΗΜΗΤΡΗΣ dimglo@uniwa.gr Τμήμα Μηχανικών Βιοϊατρικής Πανεπιστήμιο Δυτικής Αττικής Οκτώβριος 2018 1 ΠΕΡΙΕΧΟΜΕΝΑ 1. Δυνάμεις και Ροπές 2. Ασκήσεις: Στατική,
ΘΕΡΜΟΚΗΠΙΑΚΕΣ ΚΑΛΛΙΕΡΓΕΙΕΣ ΕΚΤΟΣ ΕΔΑΦΟΥΣ ΘΡΕΠΤΙΚΑ ΔΙΑΛΥΜΑΤΑ
ΘΕΡΜΟΚΗΠΙΑΚΕΣ ΚΑΛΛΙΕΡΓΕΙΕΣ ΕΚΤΟΣ ΕΔΑΦΟΥΣ ΘΡΕΠΤΙΚΑ ΔΙΑΛΥΜΑΤΑ Θρεπτικό διάλυμα Είναι ένα αραιό υδατικό διάλυμα όλων των θρεπτικών στοιχείων που είναι απαραίτητα για τα φυτά, τα οποία βρίσκονται διαλυμένα
Review Exercises for Chapter 7
8 Chapter 7 Integration Techniques, L Hôpital s Rule, and Improper Integrals 8. For n, I d b For n >, I n n u n, du n n d, dv (a) d b 6 b 6 (b) (c) n d 5 d b n n b n n n d, v d 6 5 5 6 d 5 5 b d 6. b 6
CURVILINEAR COORDINATES
CURVILINEAR COORDINATES Cartesian Co-ordinate System A Cartesian coordinate system is a coordinate system that specifies each point uniquely in a plane by a pair of numerical coordinates, which are the
Similarly, we may define hyperbolic functions cosh α and sinh α from the unit hyperbola
Universit of Hperbolic Functions The trigonometric functions cos α an cos α are efine using the unit circle + b measuring the istance α in the counter-clockwise irection along the circumference of the
Lecture 6 Mohr s Circle for Plane Stress
P4 Stress and Strain Dr. A.B. Zavatsk HT08 Lecture 6 Mohr s Circle for Plane Stress Transformation equations for plane stress. Procedure for constructing Mohr s circle. Stresses on an inclined element.
Chapter 6: Systems of Linear Differential. be continuous functions on the interval
Chapter 6: Systems of Linear Differential Equations Let a (t), a 2 (t),..., a nn (t), b (t), b 2 (t),..., b n (t) be continuous functions on the interval I. The system of n first-order differential equations
Cashtester BC 141 SD
Εγχειρίδιο Χρήσης Οδέσους Α.Ε. www.odesus.gr Ανθ.Σταμ.Ρεγκούκου 17 - Τρείς Γέφυρες, 111 45 - Αθήνα τηλ. 210.32.27.140, 210.32.29.592, φαξ. 210.32.26.808 Μυκόνου 7 & Υδρας 41, 546 38 - Θεσσαλονίκη τηλ.
2 Composition. Invertible Mappings
Arkansas Tech University MATH 4033: Elementary Modern Algebra Dr. Marcel B. Finan Composition. Invertible Mappings In this section we discuss two procedures for creating new mappings from old ones, namely,
Navigation Mathematics: Kinematics (Coordinate Frame Transformation) EE 565: Position, Navigation and Timing
Lecture Navigation Mathematics: Kinematics (Coordinate Frame Transformation) EE 565: Position, Navigation and Timing Lecture Notes Update on Feruary 20, 2018 Aly El-Osery and Kevin Wedeward, Electrical