Glava 8 VIŠEDIMENZIONALNI KONTINUALNI SIGNALI

Save this PDF as:
 WORD  PNG  TXT  JPG

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "Glava 8 VIŠEDIMENZIONALNI KONTINUALNI SIGNALI"

Transcript

1 Glava 8 VIŠEDIMEZIOALI KOTIUALI SIGALI Višedimenzionani signali opisuju fizičke pojave koje zavise od dvije ili više nezavisnih varijabli. -dimenzionalni signal je matematička funkcija nezavisnih varijabli. ezavisne varijable se zapisuju u obliku uređenih -torki ( t t t ) ili vektora [,,, ] 1, 2,, t = t1 t2 t, gdje T označava operaciju transponovanja. Shodno usvojenom stilu označavanja nezavisnih varijabli, -dimenzionalni signal zapisujemo sa x( t1, t2,, t ) ili x( t ). -dimenzionalni signal je kontinualan ako su sve njegove nezavisne varijable kontinualne. Ako su sve nezavisne varijeble diskretne i -dimenzionalni signal je diskretan. Ukoliko su neke nezavisne varijable kontinualne a druge diskretne, kažemo da se radi o mješovitom -dimenzionalnom signalu. Radi lakšeg pisanja u nastavku ćemo koristiti skraćenicu D za -dimenzionalni. T

2 GLAVA 8 U praksi su od posebnog značaja i 3D signali. Slike su signali koji opisuju promjenu svjetline u prostoru. Umjesto oznake ( t1, t 2) za nezavisne varijable češće se kod signala koji opisuju prostornu zavisnot neke fizičke, x, y za nezavisne varijable, a sam signal veličine koriste oznake ( x1 x 2) ili ( ) označava sa f ( x, x ) ili (, ) 1 2 f x y. Kao primjere 3D signala možemo navesti 3D holografske slike i video signale. Za razliku od 3D slika koje su funkcije tri prostorne nezavisne varijable i najčešće označene sa f ( xyz,, ), video signal je funkcija dvije prostorne i jedne vremenske nezavisne varijable, pa je pogodan f x, y, t. način označavanja ( ) 8.1 Osnovni višedimenzionalni signali U analizi i obradi višedimenzionalnih signala značajnu ulogu imaju D jedinični odskočni signal, D pravougaoni impuls, D Dirakov impuls, te D eksponencijalni i sinusni signali. Posebnu klasu čine separabilni višedimenzionalni signali koji se formiraju u obliku proizvoda više 1D signala D jedinični odskočni signal D jedinični odskočni signal se definiše sa: u ( t) 1, = 0, t t, (8.1) + gdje je + skup vektora čije su sve komponente pozitivne, dok je skup vektora čije su sve komponente negativne. Vrijednosti signala za vektore čija je bar jedna komponenta jednaka nuli nisu definisane. jedinični odskočni signal je definisan sa: 282

3 Višedimenzionalni kontinualni siste emi 8. 1 jediničn odskočni signal. ( u x, y) ) 1, = 0, x > 0 y > 0 x < 0 y < 0 (8.2) i prikazan na Slicii 8..1.Vrijednosti signalaa za x = 0 y 0 definisane. i x 0 y =00 nisu D pravougaonii impuls D pravougaoni impuls se definiše sa: s ( t) = p t 1, 0, t t T+ T, (8.3) gdje je T+ skup vektora čije su sve komponente ograničene tako da je 283

4 GLAVAA pravougaoni impuls. t i < T i 2, i = =1, 2,,, T > 0, i a T skup vekv ktora čijee su sve komponente ograničene tako da je t i > T i, i =1,,2,,, T i > 0. Vrijednosti signala za vektore 2 čija je bar jedna komponenta t i = 0 ili t i = ± T i nisu definisane. 2 Kao primjer D pravougaonog impulsa posmatrajmo kauzalni pravougaoni impuls definisan sa: ( p x, y ) 1, = 0, x x < > X 2 X 2 y y Y < 2. Y > 2 (8.4) Ovaj pravougaoni impuls je prikazan na Slici 8.2. Vrij jednosti signala za x =0 0 y Y, x= X 0 y YY, 0 x X y = =0 definisane. i 0 x X y = Y nisu 284

5 Višedimenzionalni kontinualni siste emi D Dirakov impuls D Dirakov imp puls je D signal koji za t = 0 ima beskonačno veliku vrijednost, dok je za sve ostale vrijednostii vektora t jednak nuli: sa osobinom da je: δ ( t) =, = 0, t = 0, (8.5) t 0 δ (tt 1, t, 2 t )dtt 1dt 2 dt = ( 1 δ t, t, t 2 t ) dt1dt 2 dt =1. (8.6) Dirakov impuls definisan sa: : δ ( x, y), = 0, x = 0 y = 0 x 0 y 0, (8.7) je prikazan na Slici 8.3. δ ( x, y) dxdyy = δ ( x, y) dxdy = 1, (8.8) 8.3 Dirakov impuls. 285

6 GLAVA D kompleksni eksponencijalni i sinusni signali Kako bismo opisali D kompleksne eksponencijalne signale, definišimo D vektor kompleksnih učestanosti sa: [,,, ] s = s1 s2 s, (8.9) gdje je s = σ + jω, i= 1,2,,. Vektor ugaonih učestanosti je definisan sa: i i i [,,, ] Ω = Ω1 Ω2 Ω. (8.10) D kompleksni eksponencijalni signal se definiše sa: x () st t = Cα, (8.11) gdje su C i α u opštem slučaju kompleksne konstante. Za C, α signal dat sa (8.11) postaje D realni eksponencijalni signal. Primjer realnog eksponencijalnog signala je dat sa: f ( x, y) D eksponencijalni signal: x y 2, x> 0 y > 0 x+ y 2, x> 0 y< 0 =, (8.12) x y 2, x< 0 y > 0 x+ y 2, x< 0 y< 0 x j ( ) Ce Ω0t t = (8.13) je periodičan po svakoj nezavisnoj varijabli sa osnovnim periodom T0 Uz C j = C e θ (8.12) možemo zapisati u obliku: ( ) ( Ω t+ θ ) j ( θ) sin ( θ) i 2π =. Ω x t = C e 0 = C cos Ω t + + j C Ω t +. (8.14) Opšti oblik D sinusnih signala je dat sa: ( ) = cos( + ) 0 0 x t C Ω t θ. (8.15) 0 0i 286

7 Višedimenzionalni kontinualni siste emi 8.4 ekspe ponencijalni signal (8.15) Primjer sinusnog signala. Signal dat sa (8. 12) prikazan jee naa Slici 8.4, dok je na Slici 8.5 prikazan primjer sinusnog signala. apomenimo da su prilikom generisanjaa slika u ovoj knjizi korišćenee numeričke metode, te signale prikazane na slikama treba posmatrati kao aproksimacije stvarnih kontinualnih signala koje predp dstavljaju. 287

8 GLAVA Separabilni D signali Ako se višedimenzionalni signal može napisati u obliku proizvoda jednodimenzionalnih signala, takve višedimenzionalne signale nazivamo separabilnim signalima. U obradi višedimenzionalnih signala posebno su interesantni separabilni sinusni signali definisani sa: (,,, ) = sin( Ω ) sin( Ω ) sin( Ω ) x t t t t t t. (8.16) Realni i imaginarni dijelovi D kompleksnih signala definisanih sa (8.13) sačinjeni su od separabilnih sinusnih signala. Pokazaćemo to na primjeru signala: j( Ω xx+ωyy) jω j x x Ω y y f x y = e = e e = (, ) ( xx) j ( xx) ( yy) j ( yy) = cos sin cos sin Ω + Ω Ω + Ω. Realni i imaginarni dijelovi ovog signala su dati sa: { f ( xy) } ( xx) ( yy) ( xx) ( yy) (8.17) Re, = cos Ω cos Ω sin Ω sin Ω, (8.18) { f ( xy) } ( xx) ( yy) ( xx) ( yy) Im, = sin Ω cos Ω + cos Ω sin Ω. (8.19) Oblik separabilnog sinusnog signala f ( x, y) sin( x) sin( y) = prikazan je na Slici 8.6. a sličan način se definiše separabilni sinc signal: (, ) sinc( ) sinc( ) f x y = x y. (8.20) Oblik separabilnog sinc signala prikazan je na Slici

9 Višedimenzionalni kontinualni siste emi 8.6 Separabilni sinusni sign nal. Slik ka 8.7 Separabilni sinc signal. 289

10 GLAVA Obrada višedimenzionalnih signala u vremenskom domenu Višedimenzionalni kontinualni sistem transformiše višedimenzionalni kontinualni ulazni signal u višedimenzionalni kontinualni izlazni signal. Za D sistem tu transformaciju zapisujemo sa: ili kraće sa: odnosno: { } (,, ) = (,, ) y t t t T x t t t, (8.21) y y { } ( t) = x( t) T, (8.22) { } ( t) = x( t) T, (8.23) Blok dijagram višedimenzionalnog kontinualnog sistema sa jednim ulazom i jednim izlazom prikazan je na Slici 8.8. x( t ) T { } y( t) 8.8 Blok dijagram višedimenzionalnog kontinualnog sistema sa jednim ulazom i jednim izlazom. 290 Višedimenzionalni sistem je linearan ako vrijedi da je: { ( ) ( )} ( ) { } { ( )} T ax1 t + bx2 t = at x1 t + bt bx2 t, a, b. (8.24) Ako pomak ulaznog signala za vektor t 0 uzrokuje samo pomak izlaznog signala za isti vektor, bez promjene oblika signala, kažemo da je višedimenzionalni sistem invarijantan na pomak. To formalno zapisujemo sa: ( ) ( ) ( ) ( ) x t y t x t t y t t, (8.25) 0 0 a takve sisteme kratko zovemo LSI (Linear shift-invariant) sistemi.

11 Višedimenzionalni kontinualni sistemi Višedimenzionalni sistemi se opisuju parcijalnim diferencijalnim jednačinama. Uz poznatu pobudu, odziv sistema je moguće odrediti njihovim rješavanjem. Osim rješavanjem parcijalnih diferencijalnih jednačina, odziv LSI D sistema sa impulsnim odzivom ht ( 1, t2, t ) na pobudni signal x( t1, t2, t ) se može odrediti koristeći višedimenzionalnu konvoluciju: (,, t ) yt t 1 2 (,, ) (,, ) = x τ τ τ h t τ t τ t τ dτ dτ dτ = ( ) ( ) = h τ, τ, τ x t τ, t τ, t τ dτ dτ dτ. Kratko pišemo: = ( ) = ( ) ( ) = ( ) ( ) (8.26) y t h t x t x t h t. (8.27) Primjer konvolucije signala prikazan je na Slici 8.9, pri čemu je rezultat konvolucije normalizovan po amplitudi. 8.3 Višedimenzionalni Furijeov red Višedimenzionalni periodični signali mogu se razviti u višedimenzionalni Furijeov red, koji za D signale ima oblik: 0i 2π T0 i j 0 ( t) = k1, k2, k kω t x C e, (8.28) k1= k2= k = Ω =, = [ kω k Ω k Ω ] kω0 1 01, 2 02,, 0, sa koeficijentima: 1 j 0 Ck = x( ) e dtdt 1 2 dt, TT T t kω t k. (8.29) T01 T02 T0 291

12 GLAVAA 8 (a) (b) (c)) 8. 9 Primjer konvolucije signala: (a,b) signali; (c) rezultatt konvolucije Višedimenzionalna Furijeovaa transformacija Za analizu višedimenzionalnih neperiodičnih signala koristimo višedimenzionalnu Furijeovu transformaciju. D direktna i inverzna Furijeova transformacija se definiše sa: ( Ω) = X Ω = x( ( t)e j e Ω Ωt dt dt 1 2 dt, (8.30) 292

13 Višedimenzionalni kontinualni sistemi 1 x = X e dω dω dω. (8.31) ( t) ( 2π ) jωt ( Ω) 1 2 D Furijeova transformacija ima slične osobine kao 1D Furijeova transformacija. jihovo razmatranje izlazi van okvira ove knjige. aglasićemo samo da je prilikom odmjeravanja višedimenzionalnih sistema neophodno zadovoljiti ikvistov kriterij tako da učestanost odmjeravanja signala po svakoj nezavisnoj varijabli t i bude bar dva puta veća od odgovarajuće gornje granične učestanosti Ωgi spektra signalu. Ispunjenje ovog uslova garantuje idealnu 2π rekonstrukciju signala. Ako učestanost odmjeravanja označimo sa Ω =, Δ pri čemu je Δ t i korak odmjeravanja po nezavisnoj varijabli t i, ikvistov kriterij se može zapisati sa: Ω 2Ω. (8.32) si D Furijeova transformacija omogućava obradu signala u D frekvencijskom domenu. Označimo sa DF D Furijeovu transformaciju, 1 a sa DF inverznu D Furijeovu transformaciju. eka je sistem za obradu D signala sa impulsnim odzivom h( t ) pobuđen signalom x( t ). Slično kao kod 1D signala, obrada D signala u frekvencijskom domenu se provodi kroz sljedeći niz koraka: H X gi { } { x t } ( Ω) = h( t) DF, (8.33) ( Ω) = ( ) ( ) = ( ) ( ) y( t) = Y( Ω) DF, (8.34) Y Ω H Ω X Ω, (8.35) DF. (8.36) 1 { } Frekvencijska karakteristika D sistema se može izraziti kao: H ( Ω) ( Ω) ( Ω) = Y { h( )} X = DF t. (8.37) Primjeri neperiodičnih signala i njihovih amplitudnih spektara prikazani su na slikama si t i 293

14 GLAVAA sign nal pravougaonog oblika Amp plitudni spektar signalaa sa Slike

15 Višedimenzionalni kontinualni siste emi 8.12 signal piramidalnog oblika Amplitudni spektar signalaa sa Slike

16 GLAVAA signal valjkastog oblika Amp plitudni spektarr signala sa Slike

17 Višedimenzionalni kontinualni siste emi 8.16 signal kupastog oblika Amplitudni spektar signalaa sa Slike

18 GLAVAA Gau usova funkcija Am mplitudni spektar 2 Gausove funkcije. 298

19 Višedimenzionalni kontinualni siste emi 8.20 signal formf miran od Gausovih funkcija Amplitudni spektar signalaa sa Slike

20 GLAVAA signal eksponencijalnog obli ika Amp plitudni spektarr signala sa Slike

21 Višedimenzionalni kontinualni sistemi 8.5 Višedimenzionalna Laplasova transformacija Za višedimenzionalne kontinualne signale definiše se direktna i inverzna višedimenzionalna Laplasova transformacija sa: st ( s) = ( t) 1 2 X x e dtdt dt, (8.38) 1 x X e dsds ds. (8.39) ( t) = ( 2π ) st ( s) Označimo sa DL D Laplasovu transformaciju, a sa DL inverznu D Laplasovu transformaciju i posmatrajmo sistem za obradu D signala sa impulsnim odzivom h( t ) na čiji ulaz je doveden signal x() t. Prelaskom u domen D Laplasove transformacije, umjesto rješavanja parcijalnih diferencijalnih jednačina, traženje odziva ovog sistema se svodi na sljedeći niz koraka: H { } { x t } ( s) = h( t) DL, (8.40) ( s) = ( ) Y( ) = H( ) X( ) () t = Y() s X y DL, (8.41) s s s, (8.42) DL. (8.43) 1 { } Funkcija prenosa D sistema se može izraziti kao: H ( s) ( s) ( s) = Y { h( )} X = DL t. (8.43) 301

2. Ako je funkcija f(x) parna onda se Fourierov red funkcije f(x) reducira na Fourierov kosinusni red. f(x) cos

2. Ako je funkcija f(x) parna onda se Fourierov red funkcije f(x) reducira na Fourierov kosinusni red. f(x) cos . KOLOKVIJ PRIMIJENJENA MATEMATIKA FOURIEROVE TRANSFORMACIJE 1. Za periodičnu funkciju f(x) s periodom p=l Fourierov red je gdje su a,a n, b n Fourierovi koeficijenti od f(x) gdje su a =, a n =, b n =..

Διαβάστε περισσότερα

PRIMJER 3. MATLAB filtdemo

PRIMJER 3. MATLAB filtdemo PRIMJER 3. MATLAB filtdemo Prijenosna funkcija (IIR) Hz () =, 6 +, 3 z +, 78 z +, 3 z +, 53 z +, 3 z +, 78 z +, 3 z +, 6 z, 95 z +, 74 z +, z +, 9 z +, 4 z +, 5 z +, 3 z +, 4 z 3 4 5 6 7 8 3 4 5 6 7 8

Διαβάστε περισσότερα

UNIVERZITET U NIŠU ELEKTRONSKI FAKULTET SIGNALI I SISTEMI. Zbirka zadataka

UNIVERZITET U NIŠU ELEKTRONSKI FAKULTET SIGNALI I SISTEMI. Zbirka zadataka UNIVERZITET U NIŠU ELEKTRONSKI FAKULTET Goran Stančić SIGNALI I SISTEMI Zbirka zadataka NIŠ, 014. Sadržaj 1 Konvolucija Literatura 11 Indeks pojmova 11 3 4 Sadržaj 1 Konvolucija Zadatak 1. Odrediti konvoluciju

Διαβάστε περισσότερα

18. listopada listopada / 13

18. listopada listopada / 13 18. listopada 2016. 18. listopada 2016. 1 / 13 Neprekidne funkcije Važnu klasu funkcija tvore neprekidne funkcije. To su funkcije f kod kojih mala promjena u nezavisnoj varijabli x uzrokuje malu promjenu

Διαβάστε περισσότερα

3.1 Granična vrednost funkcije u tački

3.1 Granična vrednost funkcije u tački 3 Granična vrednost i neprekidnost funkcija 2 3 Granična vrednost i neprekidnost funkcija 3. Granična vrednost funkcije u tački Neka je funkcija f(x) definisana u tačkama x za koje je 0 < x x 0 < r, ili

Διαβάστε περισσότερα

PRAVA. Prava je u prostoru određena jednom svojom tačkom i vektorom paralelnim sa tom pravom ( vektor paralelnosti).

PRAVA. Prava je u prostoru određena jednom svojom tačkom i vektorom paralelnim sa tom pravom ( vektor paralelnosti). PRAVA Prava je kao i ravan osnovni geometrijski ojam i ne definiše se. Prava je u rostoru određena jednom svojom tačkom i vektorom aralelnim sa tom ravom ( vektor aralelnosti). M ( x, y, z ) 3 Posmatrajmo

Διαβάστε περισσότερα

III VEŽBA: FURIJEOVI REDOVI

III VEŽBA: FURIJEOVI REDOVI III VEŽBA: URIJEOVI REDOVI 3.1. eorijska osnova Posmatrajmo neki vremenski kontinualan signal x(t) na intervalu definisati: t + t t. ada se može X [ k ] = 1 t + t x ( t ) e j 2 π kf t dt, gde je f = 1/.

Διαβάστε περισσότερα

7 Algebarske jednadžbe

7 Algebarske jednadžbe 7 Algebarske jednadžbe 7.1 Nultočke polinoma Skup svih polinoma nad skupom kompleksnih brojeva označavamo sa C[x]. Definicija. Nultočka polinoma f C[x] je svaki kompleksni broj α takav da je f(α) = 0.

Διαβάστε περισσότερα

MATRICE I DETERMINANTE - formule i zadaci - (Matrice i determinante) 1 / 15

MATRICE I DETERMINANTE - formule i zadaci - (Matrice i determinante) 1 / 15 MATRICE I DETERMINANTE - formule i zadaci - (Matrice i determinante) 1 / 15 Matrice - osnovni pojmovi (Matrice i determinante) 2 / 15 (Matrice i determinante) 2 / 15 Matrice - osnovni pojmovi Matrica reda

Διαβάστε περισσότερα

Pismeni ispit iz matematike GRUPA A 1. Napisati u trigonometrijskom i eksponencijalnom obliku kompleksni broj, zatim naći 4 z.

Pismeni ispit iz matematike GRUPA A 1. Napisati u trigonometrijskom i eksponencijalnom obliku kompleksni broj, zatim naći 4 z. Pismeni ispit iz matematike 06 007 Napisati u trigonometrijskom i eksponencijalnom obliku kompleksni broj z = + i, zatim naći z Ispitati funkciju i nacrtati grafik : = ( ) y e + 6 Izračunati integral:

Διαβάστε περισσότερα

Zadatak 2 Odrediti tačke grananja, Riemann-ovu površ, opisati sve grane funkcije f(z) = z 3 z 4 i objasniti prelazak sa jedne na drugu granu.

Zadatak 2 Odrediti tačke grananja, Riemann-ovu površ, opisati sve grane funkcije f(z) = z 3 z 4 i objasniti prelazak sa jedne na drugu granu. Kompleksna analiza Zadatak Odrediti tačke grananja, Riemann-ovu površ, opisati sve grane funkcije f(z) = z z 4 i objasniti prelazak sa jedne na drugu granu. Zadatak Odrediti tačke grananja, Riemann-ovu

Διαβάστε περισσότερα

Matematika 4. t x(u)du + 4. e t u y(u)du, t e u t x(u)du + Pismeni ispit, 26. septembar e x2. 2 cos ax dx, a R.

Matematika 4. t x(u)du + 4. e t u y(u)du, t e u t x(u)du + Pismeni ispit, 26. septembar e x2. 2 cos ax dx, a R. Matematika 4 zadaci sa pro²lih rokova, emineter.wordpress.com Pismeni ispit, 26. jun 25.. Izra unati I(α, β) = 2. Izra unati R ln (α 2 +x 2 ) β 2 +x 2 dx za α, β R. sin x i= (x2 +a i 2 ) dx, gde su a i

Διαβάστε περισσότερα

Riješeni zadaci: Limes funkcije. Neprekidnost

Riješeni zadaci: Limes funkcije. Neprekidnost Riješeni zadaci: Limes funkcije. Neprekidnost Limes funkcije Neka je 0 [a, b] i f : D R, gdje je D = [a, b] ili D = [a, b] \ { 0 }. Kažemo da je es funkcije f u točki 0 jednak L i pišemo f ) = L, ako za

Διαβάστε περισσότερα

- pravac n je zadan s točkom T(2,0) i koeficijentom smjera k=2. (30 bodova)

- pravac n je zadan s točkom T(2,0) i koeficijentom smjera k=2. (30 bodova) MEHANIKA 1 1. KOLOKVIJ 04/2008. grupa I 1. Zadane su dvije sile F i. Sila F = 4i + 6j [ N]. Sila je zadana s veličinom = i leži na pravcu koji s koordinatnom osi x zatvara kut od 30 (sve komponente sile

Διαβάστε περισσότερα

5. Karakteristične funkcije

5. Karakteristične funkcije 5. Karakteristične funkcije Profesor Milan Merkle emerkle@etf.rs milanmerkle.etf.rs Verovatnoća i Statistika-proleće 2018 Milan Merkle Karakteristične funkcije ETF Beograd 1 / 10 Definicija Karakteristična

Διαβάστε περισσότερα

2 tg x ctg x 1 = =, cos 2x Zbog četvrtog kvadranta rješenje je: 2 ctg x

2 tg x ctg x 1 = =, cos 2x Zbog četvrtog kvadranta rješenje je: 2 ctg x Zadatak (Darjan, medicinska škola) Izračunaj vrijednosti trigonometrijskih funkcija broja ako je 6 sin =,,. 6 Rješenje Ponovimo trigonometrijske funkcije dvostrukog kuta! Za argument vrijede sljedeće formule:

Διαβάστε περισσότερα

radni nerecenzirani materijal za predavanja R(f) = {f(x) x D}

radni nerecenzirani materijal za predavanja R(f) = {f(x) x D} Matematika 1 Funkcije radni nerecenzirani materijal za predavanja Definicija 1. Neka su D i K bilo koja dva neprazna skupa. Postupak f koji svakom elementu x D pridružuje točno jedan element y K zovemo funkcija

Διαβάστε περισσότερα

SISTEMI NELINEARNIH JEDNAČINA

SISTEMI NELINEARNIH JEDNAČINA SISTEMI NELINEARNIH JEDNAČINA April, 2013 Razni zapisi sistema Skalarni oblik: Vektorski oblik: F = f 1 f n f 1 (x 1,, x n ) = 0 f n (x 1,, x n ) = 0, x = (1) F(x) = 0, (2) x 1 0, 0 = x n 0 Definicije

Διαβάστε περισσότερα

(P.I.) PRETPOSTAVKA INDUKCIJE - pretpostavimo da tvrdnja vrijedi za n = k.

(P.I.) PRETPOSTAVKA INDUKCIJE - pretpostavimo da tvrdnja vrijedi za n = k. 1 3 Skupovi brojeva 3.1 Skup prirodnih brojeva - N N = {1, 2, 3,...} Aksiom matematičke indukcije Neka je N skup prirodnih brojeva i M podskup od N. Ako za M vrijede svojstva: 1) 1 M 2) n M (n + 1) M,

Διαβάστε περισσότερα

Osnovne teoreme diferencijalnog računa

Osnovne teoreme diferencijalnog računa Osnovne teoreme diferencijalnog računa Teorema Rolova) Neka je funkcija f definisana na [a, b], pri čemu važi f je neprekidna na [a, b], f je diferencijabilna na a, b) i fa) fb). Tada postoji ξ a, b) tako

Διαβάστε περισσότερα

TRIGONOMETRIJSKE FUNKCIJE I I.1.

TRIGONOMETRIJSKE FUNKCIJE I I.1. TRIGONOMETRIJSKE FUNKCIJE I I Odredi na brojevnoj trigonometrijskoj kružnici točku Et, za koju je sin t =,cost < 0 Za koje realne brojeve a postoji realan broj takav da je sin = a? Izračunaj: sin π tg

Διαβάστε περισσότερα

IspitivaƬe funkcija: 1. Oblast definisanosti funkcije (ili domen funkcije) D f

IspitivaƬe funkcija: 1. Oblast definisanosti funkcije (ili domen funkcije) D f IspitivaƬe funkcija: 1. Oblast definisanosti funkcije (ili domen funkcije) D f IspitivaƬe funkcija: 1. Oblast definisanosti funkcije (ili domen funkcije) D f 2. Nule i znak funkcije; presek sa y-osom IspitivaƬe

Διαβάστε περισσότερα

MATEMATIKA 2. Grupa 1 Rexea zadataka. Prvi pismeni kolokvijum, Dragan ori

MATEMATIKA 2. Grupa 1 Rexea zadataka. Prvi pismeni kolokvijum, Dragan ori MATEMATIKA 2 Prvi pismeni kolokvijum, 14.4.2016 Grupa 1 Rexea zadataka Dragan ori Zadaci i rexea 1. unkcija f : R 2 R definisana je sa xy 2 f(x, y) = x2 + y sin 3 2 x 2, (x, y) (0, 0) + y2 0, (x, y) =

Διαβάστε περισσότερα

Neka je a 3 x 3 + a 2 x 2 + a 1 x + a 0 = 0 algebarska jednadžba trećeg stupnja. Rješavanje ove jednadžbe sastoji se od nekoliko koraka.

Neka je a 3 x 3 + a 2 x 2 + a 1 x + a 0 = 0 algebarska jednadžba trećeg stupnja. Rješavanje ove jednadžbe sastoji se od nekoliko koraka. Neka je a 3 x 3 + a x + a 1 x + a 0 = 0 algebarska jednadžba trećeg stupnja. Rješavanje ove jednadžbe sastoji se od nekoliko koraka. 1 Normiranje jednadžbe. Jednadžbu podijelimo s a 3 i dobivamo x 3 +

Διαβάστε περισσότερα

( , treći kolokvij) 3. Na dite lokalne ekstreme funkcije z = x 4 + y 4 2x 2 + 2y 2 3. (20 bodova)

( , treći kolokvij) 3. Na dite lokalne ekstreme funkcije z = x 4 + y 4 2x 2 + 2y 2 3. (20 bodova) A MATEMATIKA (.6.., treći kolokvij. Zadana je funkcija z = e + + sin(. Izračunajte a z (,, b z (,, c z.. Za funkciju z = 3 + na dite a diferencijal dz, b dz u točki T(, za priraste d =. i d =.. c Za koliko

Διαβάστε περισσότερα

IZVODI ZADACI (I deo)

IZVODI ZADACI (I deo) IZVODI ZADACI (I deo) Najpre da se podsetimo tablice i osnovnih pravila:. C`=0. `=. ( )`= 4. ( n )`=n n-. (a )`=a lna 6. (e )`=e 7. (log a )`= 8. (ln)`= ` ln a (>0) 9. = ( 0) 0. `= (>0) (ovde je >0 i a

Διαβάστε περισσότερα

41. Jednačine koje se svode na kvadratne

41. Jednačine koje se svode na kvadratne . Jednačine koje se svode na kvadrane Simerične recipročne) jednačine Jednačine oblika a n b n c n... c b a nazivamo simerične jednačine, zbog simeričnosi koeficijenaa koeficijeni uz jednaki). k i n k

Διαβάστε περισσότερα

Spektralna analiza audio signala

Spektralna analiza audio signala Spektralna analiza audio signala 24. oktobar 2016 Isak Njutn je u slavnom eksperimentu pokazao da je moguće bijelu svjetlost razložiti na komponente različitih boja, odnosno, talasnih dužina, kao i da

Διαβάστε περισσότερα

Matematička analiza 1 dodatni zadaci

Matematička analiza 1 dodatni zadaci Matematička analiza 1 dodatni zadaci 1. Ispitajte je li funkcija f() := 4 4 5 injekcija na intervalu I, te ako jest odredite joj sliku i inverz, ako je (a) I = [, 3), (b) I = [1, ], (c) I = ( 1, 0].. Neka

Διαβάστε περισσότερα

Zavrxni ispit iz Matematiqke analize 1

Zavrxni ispit iz Matematiqke analize 1 Građevinski fakultet Univerziteta u Beogradu 3.2.2016. Zavrxni ispit iz Matematiqke analize 1 Prezime i ime: Broj indeksa: 1. Definisati Koxijev niz. Dati primer niza koji nije Koxijev. 2. Dat je red n=1

Διαβάστε περισσότερα

Apsolutno neprekidne raspodele Raspodele apsolutno neprekidnih sluqajnih promenljivih nazivaju se apsolutno neprekidnim raspodelama.

Apsolutno neprekidne raspodele Raspodele apsolutno neprekidnih sluqajnih promenljivih nazivaju se apsolutno neprekidnim raspodelama. Apsolutno neprekidne raspodele Raspodele apsolutno neprekidnih sluqajnih promenljivih nazivaju se apsolutno neprekidnim raspodelama. a b Verovatno a da sluqajna promenljiva X uzima vrednost iz intervala

Διαβάστε περισσότερα

Ispitivanje toka i skiciranje grafika funkcija

Ispitivanje toka i skiciranje grafika funkcija Ispitivanje toka i skiciranje grafika funkcija Za skiciranje grafika funkcije potrebno je ispitati svako od sledećih svojstava: Oblast definisanosti: D f = { R f R}. Parnost, neparnost, periodičnost. 3

Διαβάστε περισσότερα

Laplaceova transformacija

Laplaceova transformacija Laplaceova transformacija Laplaceova transformacija je integralna transformacija s brojnim primjenama u matematici, fizici, elektrotehnici, teoriji vjerojatnosti i drugdje. Koristi se za rješavanje diferencijalnih

Διαβάστε περισσότερα

Glava 1. Z transformacija. 1.1 Pojam z transformacije

Glava 1. Z transformacija. 1.1 Pojam z transformacije Glava 1 Z transformacija 1.1 Pojam z transformacije U elektrotehnici se vrlo često susrećemo sa signalima koji su diskretnog tipa. To znači da je radimo sa signalima koji su zadati svoji vrednostima samo

Διαβάστε περισσότερα

MATEMATIKA Pokažite da za konjugiranje (a + bi = a bi) vrijedi. a) z=z b) z 1 z 2 = z 1 z 2 c) z 1 ± z 2 = z 1 ± z 2 d) z z= z 2

MATEMATIKA Pokažite da za konjugiranje (a + bi = a bi) vrijedi. a) z=z b) z 1 z 2 = z 1 z 2 c) z 1 ± z 2 = z 1 ± z 2 d) z z= z 2 (kompleksna analiza, vježbe ). Izračunajte a) (+i) ( i)= b) (i+) = c) i + i 4 = d) i+i + i 3 + i 4 = e) (a+bi)(a bi)= f) (+i)(i )= Skicirajte rješenja u kompleksnoj ravnini.. Pokažite da za konjugiranje

Διαβάστε περισσότερα

DRUGI KOLOKVIJUM IZ MATEMATIKE 9x + 6y + z = 1 4x 2y + z = 1 x + 2y + 3z = 2. je neprekidna za a =

DRUGI KOLOKVIJUM IZ MATEMATIKE 9x + 6y + z = 1 4x 2y + z = 1 x + 2y + 3z = 2. je neprekidna za a = x, y, z) 2 2 1 2. Rešiti jednačinu: 2 3 1 1 2 x = 1. x = 3. Odrediti rang matrice: rang 9x + 6y + z = 1 4x 2y + z = 1 x + 2y + 3z = 2. 2 0 1 1 1 3 1 5 2 8 14 10 3 11 13 15 = 4. Neka je A = x x N x < 7},

Διαβάστε περισσότερα

radni nerecenzirani materijal za predavanja

radni nerecenzirani materijal za predavanja Matematika 1 Funkcije radni nerecenzirani materijal za predavanja Definicija 1. Kažemo da je funkcija f : a, b R u točki x 0 a, b postiže lokalni minimum ako postoji okolina O(x 0 ) broja x 0 takva da je

Διαβάστε περισσότερα

FAKULTET PROMETNIH ZNANOSTI

FAKULTET PROMETNIH ZNANOSTI SVUČILIŠT U ZAGU FAKULTT POMTNIH ZNANOSTI predmet: Nastavnik: Prof. dr. sc. Zvonko Kavran zvonko.kavran@fpz.hr * Autorizirana predavanja 2016. 1 Pojačala - Pojačavaju ulazni signal - Zahtjev linearnost

Διαβάστε περισσότερα

Zadaci sa prethodnih prijemnih ispita iz matematike na Beogradskom univerzitetu

Zadaci sa prethodnih prijemnih ispita iz matematike na Beogradskom univerzitetu Zadaci sa prethodnih prijemnih ispita iz matematike na Beogradskom univerzitetu Trigonometrijske jednačine i nejednačine. Zadaci koji se rade bez upotrebe trigonometrijskih formula. 00. FF cos x sin x

Διαβάστε περισσότερα

2.2 Srednje vrijednosti. aritmetička sredina, medijan, mod. Podaci (realizacije varijable X): x 1,x 2,...,x n (1)

2.2 Srednje vrijednosti. aritmetička sredina, medijan, mod. Podaci (realizacije varijable X): x 1,x 2,...,x n (1) 2.2 Srednje vrijednosti aritmetička sredina, medijan, mod Podaci (realizacije varijable X): x 1,x 2,...,x n (1) 1 2.2.1 Aritmetička sredina X je numerička varijabla. Aritmetička sredina od (1) je broj:

Διαβάστε περισσότερα

Trigonometrija 2. Adicijske formule. Formule dvostrukog kuta Formule polovičnog kuta Pretvaranje sume(razlike u produkt i obrnuto

Trigonometrija 2. Adicijske formule. Formule dvostrukog kuta Formule polovičnog kuta Pretvaranje sume(razlike u produkt i obrnuto Trigonometrija Adicijske formule Formule dvostrukog kuta Formule polovičnog kuta Pretvaranje sume(razlike u produkt i obrnuto Razumijevanje postupka izrade složenijeg matematičkog problema iz osnova trigonometrije

Διαβάστε περισσότερα

INTEGRALNI RAČUN. Teorije, metodike i povijest infinitezimalnih računa. Lucija Mijić 17. veljače 2011.

INTEGRALNI RAČUN. Teorije, metodike i povijest infinitezimalnih računa. Lucija Mijić 17. veljače 2011. INTEGRALNI RAČUN Teorije, metodike i povijest infinitezimalnih računa Lucija Mijić lucija@ktf-split.hr 17. veljače 2011. Pogledajmo Predstavimo gornju sumu sa Dodamo još jedan Dobivamo pravokutnik sa Odnosno

Διαβάστε περισσότερα

a M a A. Može se pokazati da je supremum (ako postoji) jedinstven pa uvodimo oznaku sup A.

a M a A. Može se pokazati da je supremum (ako postoji) jedinstven pa uvodimo oznaku sup A. 3 Infimum i supremum Definicija. Neka je A R. Kažemo da je M R supremum skupa A ako je (i) M gornja meda skupa A, tj. a M a A. (ii) M najmanja gornja meda skupa A, tj. ( ε > 0)( a A) takav da je a > M

Διαβάστε περισσότερα

Digitalni sistemi automatskog upravljanja

Digitalni sistemi automatskog upravljanja Digitalni sistemi automatskog upravljanja Upotreba digitalnih računara u ulozi kompenzatora i regulatora, u poslednje dve decenije naglo raste. To je posledica rasta njihovih performansi i pouzdanosti,

Διαβάστε περισσότερα

Funkcija gustoće neprekidne slučajne varijable ima dva bitna svojstva: 1. Nenegativnost: f(x) 0, x R, 2. Normiranost: f(x)dx = 1.

Funkcija gustoće neprekidne slučajne varijable ima dva bitna svojstva: 1. Nenegativnost: f(x) 0, x R, 2. Normiranost: f(x)dx = 1. σ-algebra skupova Definicija : Neka je Ω neprazan skup i F P(Ω). Familija skupova F je σ-algebra skupova na Ω ako vrijedi:. F, 2. A F A C F, 3. A n, n N} F n N A n F. Borelova σ-algebra Definicija 2: Neka

Διαβάστε περισσότερα

PARCIJALNI IZVODI I DIFERENCIJALI. Sama definicija parcijalnog izvoda i diferencijala je malo teža, mi se njome ovde nećemo baviti a vi ćete je,

PARCIJALNI IZVODI I DIFERENCIJALI. Sama definicija parcijalnog izvoda i diferencijala je malo teža, mi se njome ovde nećemo baviti a vi ćete je, PARCIJALNI IZVODI I DIFERENCIJALI Sama definicija parcijalnog ivoda i diferencijala je malo teža, mi se njome ovde nećemo baviti a vi ćete je, naravno, naučiti onako kako vaš profesor ahteva. Mi ćemo probati

Διαβάστε περισσότερα

Induktivno spregnuta kola

Induktivno spregnuta kola Induktivno spregnuta kola 13. januar 2016 Transformatori se koriste u elektroenergetskim sistemima za povišavanje i snižavanje napona, u elektronskim i komunikacionim kolima za promjenu napona i odvajanje

Διαβάστε περισσότερα

3 Populacija i uzorak

3 Populacija i uzorak 3 Populacija i uzorak 1 3.1 Slučajni uzorak X varijabla/stat. obilježje koje izučavamo Cilj statističke analize na osnovi uzorka izvesti odredene zaključke o (populacijskoj) razdiobi od X 2 Primjer 3.1.

Διαβάστε περισσότερα

PREDMET: Upravljanje sistemima. Frekvencijske karakteristike

PREDMET: Upravljanje sistemima. Frekvencijske karakteristike Osnovne akademske studije PREDMET: Upravljanje sistemima TEMA: Frekvencijske karakteristike Predmetni nastavnik: Prof. dr Milorad Stanojević Asistent: mr Marko Đogatović Kompleksna funkcija prenosa Ukoliko

Διαβάστε περισσότερα

9. GRANIČNA VRIJEDNOST I NEPREKIDNOST FUNKCIJE GRANIČNA VRIJEDNOST ILI LIMES FUNKCIJE

9. GRANIČNA VRIJEDNOST I NEPREKIDNOST FUNKCIJE GRANIČNA VRIJEDNOST ILI LIMES FUNKCIJE Geodetski akultet, dr sc J Beban-Brkić Predavanja iz Matematike 9 GRANIČNA VRIJEDNOST I NEPREKIDNOST FUNKCIJE GRANIČNA VRIJEDNOST ILI LIMES FUNKCIJE Granična vrijednost unkcije kad + = = Primjer:, D( )

Διαβάστε περισσότερα

f n z n, (2) F (z) = pri čemu se pretpostavlja da red u (2) konvergira bar za jednu konačnu vrednost kompleksne promenljive Z(f n ) = F (z).

f n z n, (2) F (z) = pri čemu se pretpostavlja da red u (2) konvergira bar za jednu konačnu vrednost kompleksne promenljive Z(f n ) = F (z). Z-TRANSFORMACIJA Laplaceova transformacija je primer integralne transformacije koja se primenjuje na funkcije - originale. Ova transformacija se primenjuje u linearnim sistemima koji su opisani diferencijalnim

Διαβάστε περισσότερα

4.7. Zadaci Formalizam diferenciranja (teorija na stranama ) 343. Znajući izvod funkcije x arctg x, odrediti izvod funkcije x arcctg x.

4.7. Zadaci Formalizam diferenciranja (teorija na stranama ) 343. Znajući izvod funkcije x arctg x, odrediti izvod funkcije x arcctg x. 4.7. ZADACI 87 4.7. Zadaci 4.7.. Formalizam diferenciranja teorija na stranama 4-46) 340. Znajući izvod funkcije arcsin, odrediti izvod funkcije arccos. Rešenje. Polazeći od jednakosti arcsin + arccos

Διαβάστε περισσότερα

Zadaci iz Osnova matematike

Zadaci iz Osnova matematike Zadaci iz Osnova matematike 1. Riješiti po istinitosnoj vrijednosti iskaza p, q, r jednačinu τ(p ( q r)) =.. Odrediti sve neekvivalentne iskazne formule F = F (p, q) za koje je iskazna formula p q p F

Διαβάστε περισσότερα

Sume kvadrata. mn = (ax + by) 2 + (ay bx) 2.

Sume kvadrata. mn = (ax + by) 2 + (ay bx) 2. Sume kvadrata Koji se prirodni brojevi mogu prikazati kao zbroj kvadrata dva cijela broja? Propozicija 1. Ako su brojevi m i n sume dva kvadrata, onda je i njihov produkt m n takoder suma dva kvadrata.

Διαβάστε περισσότερα

SISTEMI AUTOMATSKOG UPRAVLJANJA

SISTEMI AUTOMATSKOG UPRAVLJANJA SISTEMI AUTOMATSKOG UPRAVLJANJA Predavanje 3 Modelovanje SAUa u s domenu Ishodi učenja: Nakon savladavanja gradiva sa ovog predavanja studenti će moći da: v Definišu polove, nule i pojačanje sistema i

Διαβάστε περισσότερα

numeričkih deskriptivnih mera.

numeričkih deskriptivnih mera. DESKRIPTIVNA STATISTIKA Numeričku seriju podataka opisujemo pomoću Numeričku seriju podataka opisujemo pomoću numeričkih deskriptivnih mera. Pokazatelji centralne tendencije Aritmetička sredina, Medijana,

Διαβάστε περισσότερα

1 Obične diferencijalne jednadžbe

1 Obične diferencijalne jednadžbe 1 Obične diferencijalne jednadžbe 1.1 Linearne diferencijalne jednadžbe drugog reda s konstantnim koeficijentima Diferencijalne jednadžbe oblika y + ay + by = f(x), (1) gdje su a i b realni brojevi a f

Διαβάστε περισσότερα

Osnovni primer. (Z, +,,, 0, 1) je komutativan prsten sa jedinicom: množenje je distributivno prema sabiranju

Osnovni primer. (Z, +,,, 0, 1) je komutativan prsten sa jedinicom: množenje je distributivno prema sabiranju RAČUN OSTATAKA 1 1 Prsten celih brojeva Z := N + {} N + = {, 3, 2, 1,, 1, 2, 3,...} Osnovni primer. (Z, +,,,, 1) je komutativan prsten sa jedinicom: sabiranje (S1) asocijativnost x + (y + z) = (x + y)

Διαβάστε περισσότερα

Odredivanje odziva u električnim kolima

Odredivanje odziva u električnim kolima Odredivanje odziva u električnim kolima 28. oktobar 2015 Kada se u električno kolo uključe naponski ili strujni generatori dolazi do promjene stanja kola. Na elementima kola se javljaju naponi, a kroz

Διαβάστε περισσότερα

Veleučilište u Rijeci Stručni studij sigurnosti na radu Akad. god. 2011/2012. Matematika. Monotonost i ekstremi. Katica Jurasić. Rijeka, 2011.

Veleučilište u Rijeci Stručni studij sigurnosti na radu Akad. god. 2011/2012. Matematika. Monotonost i ekstremi. Katica Jurasić. Rijeka, 2011. Veleučilište u Rijeci Stručni studij sigurnosti na radu Akad. god. 2011/2012. Matematika Monotonost i ekstremi Katica Jurasić Rijeka, 2011. Ishodi učenja - predavanja Na kraju ovog predavanja moći ćete:,

Διαβάστε περισσότερα

Prvi kolokvijum. y 4 dy = 0. Drugi kolokvijum. Treći kolokvijum

Prvi kolokvijum. y 4 dy = 0. Drugi kolokvijum. Treći kolokvijum 27. septembar 205.. Izračunati neodredjeni integral cos 3 x (sin 2 x 4)(sin 2 x + 3). 2. Izračunati zapreminu tela koje nastaje rotacijom dela površi ograničene krivama y = 3 x 2, y = x + oko x ose. 3.

Διαβάστε περισσότερα

π π ELEKTROTEHNIČKI ODJEL i) f (x) = x 3 x 2 x + 1, a = 1, b = 1;

π π ELEKTROTEHNIČKI ODJEL i) f (x) = x 3 x 2 x + 1, a = 1, b = 1; 1. Provjerite da funkcija f definirana na segmentu [a, b] zadovoljava uvjete Rolleova poučka, pa odredite barem jedan c a, b takav da je f '(c) = 0 ako je: a) f () = 1, a = 1, b = 1; b) f () = 4, a =,

Διαβάστε περισσότερα

4 INTEGRALI Neodredeni integral Integriranje supstitucijom Parcijalna integracija Odredeni integral i

4 INTEGRALI Neodredeni integral Integriranje supstitucijom Parcijalna integracija Odredeni integral i Sdržj 4 INTEGRALI 64 4. Neodredeni integrl........................ 64 4. Integrirnje supstitucijom.................... 68 4. Prcijln integrcij....................... 7 4.4 Odredeni integrl i rčunnje površine

Διαβάστε περισσότερα

Ako između tri slučajne varijable postoji veza ζ = f (ξ, η) i ako su poznate sve relevantne gustoće vjerojatnosti, tada je

Ako između tri slučajne varijable postoji veza ζ = f (ξ, η) i ako su poznate sve relevantne gustoće vjerojatnosti, tada je Višekomponentne slučajne varijable Srednje vrijednosti i momenti Definicija srednje vrijednosti Ako između tri slučajne varijable postoji veza ζ = f (ξ, η) i ako su poznate sve relevantne gustoće vjerojatnosti,

Διαβάστε περισσότερα

VEŽBA 3 Obrada signala u frekvencijskom domenu metodom overlap-add

VEŽBA 3 Obrada signala u frekvencijskom domenu metodom overlap-add VEŽBA 3 Obrada signala u frekvencijskom domenu metodom overlap-add Potrebno predznanje Poznavanje programskog jezika C Diskretna Furijeova transformacija Šta će biti naučeno tokom izrade vežbe Tokom izrade

Διαβάστε περισσότερα

5. PARCIJALNE DERIVACIJE

5. PARCIJALNE DERIVACIJE 5. PARCIJALNE DERIVACIJE 5.1. Izračunajte parcijalne derivacije sljedećih funkcija: (a) f (x y) = x 2 + y (b) f (x y) = xy + xy 2 (c) f (x y) = x 2 y + y 3 x x + y 2 (d) f (x y) = x cos x cos y (e) f (x

Διαβάστε περισσότερα

Signali i sustavi. Signal. Predstavljanje signala: mr. sc. Karmela Aleksić-Maslać dr. sc. Damir Seršić

Signali i sustavi. Signal. Predstavljanje signala: mr. sc. Karmela Aleksić-Maslać dr. sc. Damir Seršić Signali i susavi mr. sc. Karmela Aleksić-Maslać dr. sc. Damir Seršić FER-ZESOI Signal Funkcija koja sadrži informaciju o susavu. Funkcija - vremena (npr. zvučni signal), prosora (npr. slika - 2D signal),...

Διαβάστε περισσότερα

( x) ( ) ( ) ( x) ( ) ( x) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

( x) ( ) ( ) ( x) ( ) ( x) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) Zadatak 08 (Vedrana, maturantica) Je li unkcija () = cos (sin ) sin (cos ) parna ili neparna? Rješenje 08 Funkciju = () deiniranu u simetričnom području a a nazivamo: parnom, ako je ( ) = () neparnom,

Διαβάστε περισσότερα

Linearni vremenski invarijantni (LTI) kontinualni sistemi

Linearni vremenski invarijantni (LTI) kontinualni sistemi Linearni vremenski invarijantni (LTI) kontinualni sistemi LTI sistemi n LTI L - linear TI time-invariant n većina fizičkih procesa poseduje ova svojstva i mogu se modelirati kao LTI sistemi, n pogodni

Διαβάστε περισσότερα

INTELIGENTNO UPRAVLJANJE

INTELIGENTNO UPRAVLJANJE INTELIGENTNO UPRAVLJANJE Fuzzy sistemi zaključivanja Vanr.prof. Dr. Lejla Banjanović-Mehmedović Mehmedović 1 Osnovni elementi fuzzy sistema zaključivanja Fazifikacija Baza znanja Baze podataka Baze pravila

Διαβάστε περισσότερα

Algebra Vektora. pri rješavanju fizikalnih problema najčešće susrećemo skalarne i vektorske

Algebra Vektora. pri rješavanju fizikalnih problema najčešće susrećemo skalarne i vektorske Algebra Vektora 1 Algebra vektora 1.1 Definicija vektora pri rješavanju fizikalnih problema najčešće susrećemo skalarne i vektorske veličine za opis skalarne veličine trebamo zadati samo njezin iznos (npr.

Διαβάστε περισσότερα

ZBIRKA POTPUNO RIJEŠENIH ZADATAKA

ZBIRKA POTPUNO RIJEŠENIH ZADATAKA **** IVANA SRAGA **** 1992.-2011. ZBIRKA POTPUNO RIJEŠENIH ZADATAKA PRIRUČNIK ZA SAMOSTALNO UČENJE POTPUNO RIJEŠENI ZADACI PO ŽUTOJ ZBIRCI INTERNA SKRIPTA CENTRA ZA PODUKU α M.I.M.-Sraga - 1992.-2011.

Διαβάστε περισσότερα

4 Izvodi i diferencijali

4 Izvodi i diferencijali 4 Izvodi i diferencijali 8 4 Izvodi i diferencijali Neka je funkcija f() definisana u intervalu (a, b), i neka je 0 0 + (a, b). Tada se izraz (a, b) i f( 0 + ) f( 0 ) () zove srednja brzina promene funkcije

Διαβάστε περισσότερα

Termovizijski sistemi MS1TS

Termovizijski sistemi MS1TS Termovizijski sistemi MS1TS Vežbe 03 primer 1 Odredjivanje konvolucije numeričkom integracijom. x=(-2:0.01:2)'; f=triangle_function(x); y=zeros(length(x),1); for brojac=1:length(x) xt=x(brojac); r_f=@(u)triangle_function(u).*triangle_function(u-xt);

Διαβάστε περισσότερα

Moguća i virtuelna pomjeranja

Moguća i virtuelna pomjeranja Dnamka sstema sa vezama Moguća vrtuelna pomjeranja f k ( r 1,..., r N, t) = 0 (k = 1, 2,..., K ) df k dt = r + t = 0 d r = r dt moguća pomjeranja zadovoljavaju uvjet: df k = d r + dt = 0. t δ r = δx +

Διαβάστε περισσότερα

2. KOLOKVIJ IZ MATEMATIKE 1

2. KOLOKVIJ IZ MATEMATIKE 1 2 cos(3 π 4 ) sin( + π 6 ). 2. Pomoću linearnih transformacija funkcije f nacrtajte graf funkcije g ako je, g() = 2f( + 3) +. 3. Odredite domenu funkcije te odredite f i njenu domenu. log 3 2 + 3 7, 4.

Διαβάστε περισσότερα

PRAVAC. riješeni zadaci 1 od 8 1. Nađite parametarski i kanonski oblik jednadžbe pravca koji prolazi točkama. i kroz A :

PRAVAC. riješeni zadaci 1 od 8 1. Nađite parametarski i kanonski oblik jednadžbe pravca koji prolazi točkama. i kroz A : PRAVAC iješeni adaci od 8 Nađie aameaski i kanonski oblik jednadžbe aca koji olai očkama a) A ( ) B ( ) b) A ( ) B ( ) c) A ( ) B ( ) a) n a AB { } i ko A : j b) n a AB { 00 } ili { 00 } i ko A : j 0 0

Διαβάστε περισσότερα

Verovatnoća i Statistika I deo Teorija verovatnoće (zadaci) Beleške dr Bobana Marinkovića

Verovatnoća i Statistika I deo Teorija verovatnoće (zadaci) Beleške dr Bobana Marinkovića Verovatnoća i Statistika I deo Teorija verovatnoće zadaci Beleške dr Bobana Marinkovića Iz skupa, 2,, 00} bira se na slučajan način 5 brojeva Odrediti skup elementarnih dogadjaja ako se brojevi biraju

Διαβάστε περισσότερα

ASIMPTOTE FUNKCIJA. Dakle: Asimptota je prava kojoj se funkcija približava u beskonačno dalekoj tački. Postoje tri vrste asimptota:

ASIMPTOTE FUNKCIJA. Dakle: Asimptota je prava kojoj se funkcija približava u beskonačno dalekoj tački. Postoje tri vrste asimptota: ASIMPTOTE FUNKCIJA Naš savet je da najpre dobro proučite granične vrednosti funkcija Neki profesori vole da asimptote funkcija ispituju kao ponašanje funkcije na krajevima oblasti definisanosti, pa kako

Διαβάστε περισσότερα

MAGNETNO SPREGNUTA KOLA

MAGNETNO SPREGNUTA KOLA MAGNETNO SPEGNTA KOA Zadatak broj. Parametri mreže predstavljene na slici su otpornost otpornika, induktivitet zavojnica, te koeficijent manetne spree zavojnica k. Ako je na krajeve mreže -' priključen

Διαβάστε περισσότερα

Matematika I. Elvis Baraković, Edis Mekić. 4. studenog Pojam vektora. Sabiranje i oduzimanje vektora

Matematika I. Elvis Baraković, Edis Mekić. 4. studenog Pojam vektora. Sabiranje i oduzimanje vektora Matematika I Elvis Baraković, Edis Mekić 4. studenog 2011. 1 Analitička geometrija 1.1 Pojam vektora. Sabiranje i oduzimanje vektora Skalarnom veličinom ili skalarom nazivamo onu veličinu koja je potpuno

Διαβάστε περισσότερα

Karakteristične kontinualne funkcije Laplasova transformacija

Karakteristične kontinualne funkcije Laplasova transformacija Karakteristične kontinualne funkcije Laplasova transformacija Signali Fizikalne karakteristike signala ćemo opisati matematičkim modelima koji će s dovoljno tačnosti prikazati osnovna svojstva realnih

Διαβάστε περισσότερα

UVOD U ANALIZU I OBRADU SIGNALA

UVOD U ANALIZU I OBRADU SIGNALA UVOD U ANALIZU I OBRADU SIGNALA Prof. dr. sc. Viktor Sučić Tehnički fakultet, Rijeka . Uvod. Uvod Signal: funkcija vremena kojom predstavljamo željenu fizikalnu varijablu promatranog sustava.. Uvod Signale

Διαβάστε περισσότερα

KONVEKSNI SKUPOVI. Definicije: potprostor, afin skup, konveksan skup, konveksan konus. 1/5. Back FullScr

KONVEKSNI SKUPOVI. Definicije: potprostor, afin skup, konveksan skup, konveksan konus. 1/5. Back FullScr KONVEKSNI SKUPOVI Definicije: potprostor, afin skup, konveksan skup, konveksan konus. 1/5 KONVEKSNI SKUPOVI Definicije: potprostor, afin skup, konveksan skup, konveksan konus. 1/5 1. Neka su x, y R n,

Διαβάστε περισσότερα

Tretja vaja iz matematike 1

Tretja vaja iz matematike 1 Tretja vaja iz matematike Andrej Perne Ljubljana, 00/07 kompleksna števila Polarni zapis kompleksnega števila z = x + iy): z = rcos ϕ + i sin ϕ) = re iϕ Opomba: Velja Eulerjeva formula: e iϕ = cos ϕ +

Διαβάστε περισσότερα

2.7 Primjene odredenih integrala

2.7 Primjene odredenih integrala . INTEGRAL 77.7 Primjene odredenih integrala.7.1 Računanje površina Pořsina lika omedenog pravcima x = a i x = b te krivuljama y = f(x) i y = g(x) je b P = f(x) g(x) dx. a Zadatak.61 Odredite površinu

Διαβάστε περισσότερα

Sistemi veštačke inteligencije primer 1

Sistemi veštačke inteligencije primer 1 Sistemi veštačke inteligencije primer 1 1. Na jeziku predikatskog računa formalizovati rečenice: a) Miloš je slikar. b) Sava nije slikar. c) Svi slikari su umetnici. Uz pomoć metode rezolucije dokazati

Διαβάστε περισσότερα

2.6 Nepravi integrali

2.6 Nepravi integrali 66. INTEGRAL.6 Neprvi integrli Definicij. Nek je f : [, R funkcij koj je Riemnn integrbiln n svkom podsegmentu [, ] od [,. Ako postoji končn es f() (.4) ond se tj es zove neprvi integrl funkcije f n [,

Διαβάστε περισσότερα

Matematka 1 Zadaci za drugi kolokvijum

Matematka 1 Zadaci za drugi kolokvijum Matematka Zadaci za drugi kolokvijum 8 Limesi funkcija i neprekidnost 8.. Dokazati po definiciji + + = + = ( ) = + ln( ) = + 8.. Odrediti levi i desni es funkcije u datoj tački f() = sgn, = g() =, = h()

Διαβάστε περισσότερα

5 Ispitivanje funkcija

5 Ispitivanje funkcija 5 Ispitivanje funkcija 3 5 Ispitivanje funkcija Ispitivanje funkcije pretodi crtanju grafika funkcije. Opšti postupak ispitivanja funkcija koje su definisane eksplicitno y = f() sadrži sledeće elemente:

Διαβάστε περισσότερα

I.13. Koliki je napon između neke tačke A čiji je potencijal 5 V i referentne tačke u odnosu na koju se taj potencijal računa?

I.13. Koliki je napon između neke tačke A čiji je potencijal 5 V i referentne tačke u odnosu na koju se taj potencijal računa? TET I.1. Šta je Kulonova sila? elektrostatička sila magnetna sila c) gravitaciona sila I.. Šta je elektrostatička sila? sila kojom međusobno eluju naelektrisanja u mirovanju sila kojom eluju naelektrisanja

Διαβάστε περισσότερα

Dijagrami: Greda i konzola. Prosta greda. II. Dijagrami unutarnjih sila. 2. Popre nih sila TZ 3. Momenata savijanja My. 1. Uzdužnih sila N. 11.

Dijagrami: Greda i konzola. Prosta greda. II. Dijagrami unutarnjih sila. 2. Popre nih sila TZ 3. Momenata savijanja My. 1. Uzdužnih sila N. 11. Dijagrami:. Udužnih sia N Greda i konoa. Popre nih sia TZ 3. Momenata savijanja My. dio Prosta greda. Optere ena koncentriranom siom F I. Reaktivne sie:. M A = 0 R B F a = 0. M B = 0 R A F b = 0 3. F =

Διαβάστε περισσότερα

SOPSTVENE VREDNOSTI I SOPSTVENI VEKTORI LINEARNOG OPERATORA I KVADRATNE MATRICE

SOPSTVENE VREDNOSTI I SOPSTVENI VEKTORI LINEARNOG OPERATORA I KVADRATNE MATRICE 1 SOPSTVENE VREDNOSTI I SOPSTVENI VEKTORI LINEARNOG OPERATORA I KVADRATNE MATRICE Neka je (V, +,, F ) vektorski prostor konačne dimenzije i neka je f : V V linearno preslikavanje. Definicija. (1) Skalar

Διαβάστε περισσότερα

VJEROJATNOST I STATISTIKA Popravni kolokvij - 1. rujna 2016.

VJEROJATNOST I STATISTIKA Popravni kolokvij - 1. rujna 2016. Broj zadataka: 5 Vrijeme rješavanja: 120 min Ukupan broj bodova: 100 Zadatak 1. (a) Napišite aksiome vjerojatnosti ako je zadan skup Ω i σ-algebra F na Ω. (b) Dokažite iz aksioma vjerojatnosti da za A,

Διαβάστε περισσότερα

Zadaci iz trigonometrije za seminar

Zadaci iz trigonometrije za seminar Zadaci iz trigonometrije za seminar FON: 1. Vrednost izraza sin 1 cos 6 jednaka je: ; B) 1 ; V) 1 1 + 1 ; G) ; D). 16. Broj rexea jednaqine sin x cos x + cos x = sin x + sin x na intervalu π ), π je: ;

Διαβάστε περισσότερα

POTPUNO RIJEŠENIH ZADATAKA PRIRUČNIK ZA SAMOSTALNO UČENJE

POTPUNO RIJEŠENIH ZADATAKA PRIRUČNIK ZA SAMOSTALNO UČENJE **** MLADEN SRAGA **** 011. UNIVERZALNA ZBIRKA POTPUNO RIJEŠENIH ZADATAKA PRIRUČNIK ZA SAMOSTALNO UČENJE SKUP REALNIH BROJEVA α Autor: MLADEN SRAGA Grafički urednik: BESPLATNA - WEB-VARIJANTA Tisak: M.I.M.-SRAGA

Διαβάστε περισσότερα

Sadrˇzaj. Sadrˇzaj 1 9 DVODIMENZIONALNI SLUČAJNI VEKTOR DISKRETNI DVODIMENZIONALNI

Sadrˇzaj. Sadrˇzaj 1 9 DVODIMENZIONALNI SLUČAJNI VEKTOR DISKRETNI DVODIMENZIONALNI Sadrˇzaj Sadrˇzaj DVODIMENZIONALNI. DISKRETNI DVODIMENZIONALNI............................ KONTINUIRANI -dim tko želi znati više.............................. 5. KOVARIJANCA, KORELACIJA, PRAVCI REGRESIJE........

Διαβάστε περισσότερα

Grafičko prikazivanje atributivnih i geografskih nizova

Grafičko prikazivanje atributivnih i geografskih nizova Grafičko prikazivanje atributivnih i geografskih nizova Biserka Draščić Ban Pomorski fakultet u Rijeci 17. veljače 2011. Grafičko prikazivanje atributivnih nizova Atributivni nizovi prikazuju se grafički

Διαβάστε περισσότερα

3. poglavlje (korigirano) F U N K C I J E

3. poglavlje (korigirano) F U N K C I J E . Funkcije (sa svim korekcijama) 5. poglavlje (korigirano) F U N K C I J E U ovom poglavlju: Elementarne unkcije Inverzne unkcije elementarnih unkcija Domena složenih unkcija Inverz složenih unkcija Ispitivanje

Διαβάστε περισσότερα

Mate Vijuga: Rijeseni zadaci iz matematike za srednju skolu

Mate Vijuga: Rijeseni zadaci iz matematike za srednju skolu 7. KOMPLEKSNI BROJEVI 7. Opc pojmov Kompleksn brojev su sastavljen dva djela: Realnog djela (Re) magnarnog djela (Im) Promatrajmo broj a+ b = + 3 Realn do jednak je Re : Imagnarna jednca: = - l = (U elektrotehnc

Διαβάστε περισσότερα