Zadaci iz Osnova matematike

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "Zadaci iz Osnova matematike"

Transcript

1 Zadaci iz Osnova matematike 1. Riješiti po istinitosnoj vrijednosti iskaza p, q, r jednačinu τ(p ( q r)) =.. Odrediti sve neekvivalentne iskazne formule F = F (p, q) za koje je iskazna formula p q p F tautologija. 3. Odrediti sve neekvivalentne iskazne formule F = F (p, q) za koje je iskazna formula (q p) p F tautologija. 4. Naći iskaz F čija je istinitosna vrijednost predstavljena tablicom 5. Ispitati tačnost formula p q r F (i) ( x N)( y N)( z N) x + y = z; (ii) ( x N)( z N)( y N) x + y = z; (iii) ( z N)( x N)( y N) x + y = z; (iv) ( x Z)( y Z)( z Z) x + y = z. 6. Dokazati da za sve skupove A, B, C X vrijedi: (i) A\(A\B) = A B (ii) (A B)\C = (A\C) (B\C) (iii) (A\B)\C = (A\C)\(B\C) (iv) A B = A B (A B) (v) A B = A B (A B) (vi) P(A B) = P(A) P(B), gdje je P oznaka za partitivni skup. (vii) (A\B) C = (A C)\(B C) (viii) A (B\C) = (A B)\(A C) (ix) f(a B) = f(a) f(b) (x) f 1 (A) f 1 (B) = f 1 (A B) (x) f(a) B = f(a f 1 (B)) 1

2 7. (i) Neka su A, B, C podskupovi skupa X. Dokazati A B C ako i samo ako A B c C. (ii) Neka je {A i : i I} kolekcija skupova indeksirana skupom I. Dokazati da za proizvoljan skup B vrijedi B ( i I A i ) = i I(B A i ). 8. (i) Neka su A, B, C podskupovi skupa X. Dokazati C A B ako i samo ako B c C A. (ii) Neka je {A i : i I} kolekcija skupova indeksirana skupom I. Dokazati da za proizvoljan skup B vrijedi B ( i I A i ) = i I(B A i ). 9. Pokazati da za skupove A, B vrijedi (i) A B P (A) P (B); (ii) P (A) P (B) P (A B). Dati primjer skupova A, B tako da u (ii) vrijedi stroga inkluzija. 10. Za kakve skupove A, B, C sljedeći sistemi imaju rješenje (i) A X = B X, A X = C X, (ii) A\X = X\B, X\A = C\X? Šta je rješenje sistema? 11. Odrediti relacije R 1, R R, R R 1, ako je (i) R = {(x, y) : x, y N, x y} N N (ii) R = {(x, y) : x, y R, x + y 0} R R (iii) R = {(x, y) : x, y R, x 3y} R R 1. Ako su R, R 1, R A B relacije iz A u B, dokazati da je onda: (i) (R 1 R ) 1 = R 1 1 R 1 (ii) (R c ) 1 = (R 1 ) c. 13. Dokazati da je relacija biti djelitelj relacija poretka na N. 14. Dokazati da ako je R relacija poretka da je onda i R 1 relacija poretka. 15. Dokazati da ako su R 1 i R simetrične relacije da su onda i R 1 R, R 1 R, R 1 1 simetrične.

3 16. Neka su R 1 i R simetrične relacije. Dokazati da je R 1 R simetrična ako i samo ako je R 1 R = R R Navesti primjer relacije koja je: (i) refleksivna, simetrična i netranzitivna (ii) refleksivna, antisimetrična i netranzitivna. 18. Koja od sljedećih relacija je relacija ekvivalencije na S, (i) S = N\{0, 1}, x y nzd(x, y) > 1, gdje je nzd najveći zajednički djelilac; (ii) S = R, x y ( n Z) x = n y? 19. Neka su R 1 i R relacije ekvivalencije na X. Dokazati: (i) R 1 R 1 = X X R 1 = X X; (ii) R 1 R = X X R R 1 = X X. 0. Dokazati da je ρ A relacija ekvivalencije ako vrijedi A ρ, ρ = ρ 1, ρ ρ ρ. 1. Dokazati da je ρ A relacija poretka ako vrijedi A ρ, ρ ρ 1 A, ρ ρ ρ.. Dokazati da svaka particija nepraznog skupa X definiše jednu relaciju ekvivalencije na tom skupu čije su klase ekvivalencije skupovi iz posmatrane particije. 3. Ispitati da li je relacija ρ R definisana sa xρy def x n y n 0 relacija poretka za (i) n = 3; (ii) n = Neka je A relacija poretka na skupu A i B relacija poretka na skupu B. Na skupu A B definisana je relacija AB na sljedeći način (a 1, b 1 ) AB (a, b ) def a 1 A a b 1 B b. (i) Pokazati da je AB relacija poretka na A B. (ii) Ako su A i B linearna uredjenja, da li je tada i AB linearno uredjenje? 5. Dokazati da na nepraznom skupu A jedina relacija koja je istovremeno relacija ekvivalencije i relacija poretka jeste dijagonalna relacija A. 3

4 6. Ako je ρ relacija poretka na skupu A pokazati da je i ρ 1 relacija poretka na skupu A. Na osnovu toga dokazati da na svakom konačnom nepraznom skupu ima neparan broj relacija poretka. 7. Neka je ρ refleksivna i tranzitivna relacija na skupu A i relacija na skupu A definisana sa x y def xρy yρx. Pokazati da je relacija ekvivalencije i da je (A/, ) uredjen skup ako je relacija definisana sa def a b aρb. 8. Uz pomoć matematičke indukcije dokazati: n 1 (i) (3k )(3k + 1) = n 3n + 1 (ii) (iii) (iv) (v) (vi) n ( 1) k k n n(n + 1) = ( 1) n a k n a k, gdje su a 1,..., a n R proizvoljni; n cos x k = sin x n sin x, za proizvoljno x (0, π); n n ( 1 + x k) = 1 xn+1, za sve x 1; 1 x k=0 n 1 k < n, za n ; ( ) n, n+1 (vii) n! < za sve n > Neka je niz (a n ) rekurzivno dat sa a 1 = 1, a = 1, a n = 1 Dokazati da je 1 a n, za sve n N. 30. Neka je niz (a n ) rekurzivno dat sa ( a n 1 + ) a n (n 3). a 1 = 1, a = 1, a n = a n 1 + a n (n 3). Dokazati da je a n = 3 n 1 + ( 1) n, za sve n N. 31. Neka je niz (a n ) rekurzivno dat sa a n = a n 1 + 3a n (n 3). Dokazati: (i) Ako su a 1, a N neparni, onda su svi (a n ) neparni; (ii) a 1 = a = 1 a n = 1 ( 3 n 1 ( 1) n) (n N ). 4

5 3. Koje od sljedecih funkcija f : N N N je surjektivna, ako je (i) f(a, b) = a + b (ii) f(a, b) = ab (iii) f(a, b) = ab(b+1) (iv) f(a, b) = ab(a+b) (v) f(a, b) = 3 a 1 (3b 1) 33. Koja od sljedećih funkcija f : A R je injektivna, ako je (i) A = R, f(x) = x 1+x (ii) A = ( 1, 1), f(x) = (iii) A = R, f(x) = x 1+x (iv) A = [0, ), f(x) = (v) A = R, f(x) = x3 1+x. x 1+x x 1+x 34. Ispitati da li je funkcija f : R R data sa f(x) = injektivna. Da li je surjektivna? { x + 1, za x < 0 1 x, za x Neka je funkcija f : R R data sa f(x, y) = (4 + x y, y x 5). Pokazati da je f bijekcija i naći njenu inverznu funkciju. 36. Neka su f : A B i g : B C preslikavanja. Pokazati (i) Ako je g f injektivno preslikavanje onda je f injektivno preslikavanje; (ii) Ako je g f surjektivno preslikavanje onda je g surjektivno preslikavanje; (iii) Ako je g f bijektivno preslikavanje onda je f injektivno preslikavanje, a g surjektivno preslikavanje. 37. Pokazati da se svako preslikavanje može razložiti kao kompozicija dva preslikavanja od kojih je jedno injektivno a drugo surjektivno. 38. Neka je f : X X preslikavanje koje ima osobinu da postoji prirodan broj n tako da je f n = id X (pri čemu je f n = f n 1 f i id X je identičko preslikavanje na skupu X). Pokazati da je f bijekcija. 39. Neka je f : X Y prelikavanje i A X, B Y. Dokazati (i) A f 1 f(a); (ii) ff 1 (B) B; (iii) A = f 1 f(a) ako i samo ako je f 1-1 ; (iv) ff 1 (B) = B ako i samo ako je f na. 5

6 40. Preslikavanje f : A B je 1 1 ako i samo ako za sve neprazne skupove S i sva preslikavanja g : S A i h : S A vrijedi f g = f h g = h. Dokazati. 41. Preslikavanje f : A B je na ako i samo ako za sve neprazne skupove S i sva preslikavanja g : B S i h : B S vrijedi g f = h f g = h. Dokazati. 4. Neka je X skup. Pokazati da je funkcija f : P (X) {0, 1} X data sa f(a) = χ A (gdje je χ A karakteristična funkcija skupa A) bijekcija. 43. Neka su A, B, C X skupovi. Pomoću funkcija χ A, χ B i χ C izraziti funkcije χ A B, χ A B, χ A (B C), χ X\A i χ A B. 44. Dokazati da za proizvoljne skupove A 1,..., A n postoje disjunktni skupovi A 1,..., A n takvi da je A i A i za i = 1,..., n. 45. Neka su A, B, A 1, B 1 skupovi. Dokazati: (i) A B B A (ii) A A 1 B B 1 A B A 1 B 1 (iii) A A 1 B B 1 A B A B Neka su A, B, C skupovi. Dokazati (i) A C B C (A B) C ; (ii) (A B ) C A B C. 47. Dokazati da je za svaki skup X ispunjeno P (X) {0, 1} X. 48. Dokazati da ako je S N beskonačan, onda S nije ograničen odozgo. 49. Dokazati da je skup A beskonačan ako i samo ako postoji preslikavanje f : A A koje je injektivno a nije surjektivno. 50. Ako je A B tada postoji surjektivno preslikavanje f : B A. Dokazati. 51. Dokazati da je [a, b] Q Q, gdje je a, b R, a < b. 5. Dokazati da skup (0, 1) (0, 1) nije prebrojiv. 53. Dokazati da skupovi realnih i iracionalnih brojeva ekvipotentni. 54. Dokazati da konačnih podskupova od N ima prebrojivo mnogo. 55. Dokazati da je skup svih intervala (otvorenih, zatvorenih, poluotvorenih, poluzatvorenih) u R sa racionalnim granicama prebrojiv. 56. Pokazati da je bilo koja familija disjunktnih otvorenih intervala u R najviše prebrojiva. 57. Neka je A = {A N : A}. Pokazati da je A = c. 6

7 58. Neka je N relacija definisana na sljedeći način: Za m, n N (i) Pokazati da je relacija poretka. m n def m n. (ii) Ako je A N konačan skup naći (ako postoje) sup A, inf A, max A i min A. (iii) Ako je P N N skup prostih brojeva naći (ako postoje) sup A, inf A, max A i min A. 59. Neka je O = {(, a) : a R} P (R). Pokazati da za svaku familiju A O vrijedi A O. 60. Ako je = A R i B R i ako je za sve a A i sve b B ispunjeno a b, pokazati da je sup A inf B. 61. Neka su A, B R ograničeni skupovi i neka je Pokazati (i) sup(a + B) = sup A + sup B; (ii) inf(a + B) = inf A + inf B. A + B = {a + b : a A, b B}. 6. Neka je A R odozdo ograničen skup i neka je A = { a : a A}. Pokazati da je sup( A) = inf A. 63. Odrediti sup S, inf S, min S, max S, ako je skup S dat sa: { } { (i) x 1+ x : x R ; (ii) x + 1 x : 1 }; < x { { } 3n 1 (iii) 5n+ }; : n N m (iv) m+n : m, n N { } } 1 (v) m 1 n : m, n N (vi) {1 + 3 ( 1)n n : n N. 64. Dokazati da za sve n N vrijedi sljedeće: (i) k n je prirodan ili iracionalan broj, za svako k N; (ii) n + n + 1 je iracionalan broj; (iii) n + n je iracionalan broj. 65. Dokazati da za sve a, b R, a, b 0 i n N važi a < b n a < n b. 66. Dokazati k b k a < k b a, za sve 0 < a < b i k N. 67. Dokazati da svaki neprazan podskup skupa {1 + n : n N} ima najmanji element. 7

8 68. Neka je r Q. Dokazati da je funkcija f : (0, ) R, f(x) = x r strogo rastuća za r > 0, a strogo opadajuća za r < Ako je A = {x R, x > 0 : x > }, naći inf A. 70. Ako je A = {x Q : x 3 < 4}, naći sup A. 8

a M a A. Može se pokazati da je supremum (ako postoji) jedinstven pa uvodimo oznaku sup A.

a M a A. Može se pokazati da je supremum (ako postoji) jedinstven pa uvodimo oznaku sup A. 3 Infimum i supremum Definicija. Neka je A R. Kažemo da je M R supremum skupa A ako je (i) M gornja meda skupa A, tj. a M a A. (ii) M najmanja gornja meda skupa A, tj. ( ε > 0)( a A) takav da je a > M

Διαβάστε περισσότερα

(P.I.) PRETPOSTAVKA INDUKCIJE - pretpostavimo da tvrdnja vrijedi za n = k.

(P.I.) PRETPOSTAVKA INDUKCIJE - pretpostavimo da tvrdnja vrijedi za n = k. 1 3 Skupovi brojeva 3.1 Skup prirodnih brojeva - N N = {1, 2, 3,...} Aksiom matematičke indukcije Neka je N skup prirodnih brojeva i M podskup od N. Ako za M vrijede svojstva: 1) 1 M 2) n M (n + 1) M,

Διαβάστε περισσότερα

Skupovi, relacije, funkcije

Skupovi, relacije, funkcije Chapter 1 Skupovi, relacije, funkcije 1.1 Skup, torka, multiskup 1.1.1 Skup Pojam skupa ne definišemo eksplicitno. Intuitivno skup prihvatamo kao konačnu ili beskonačnu kolekciju objekata (ili elemenata)u

Διαβάστε περισσότερα

Osnovni primer. (Z, +,,, 0, 1) je komutativan prsten sa jedinicom: množenje je distributivno prema sabiranju

Osnovni primer. (Z, +,,, 0, 1) je komutativan prsten sa jedinicom: množenje je distributivno prema sabiranju RAČUN OSTATAKA 1 1 Prsten celih brojeva Z := N + {} N + = {, 3, 2, 1,, 1, 2, 3,...} Osnovni primer. (Z, +,,,, 1) je komutativan prsten sa jedinicom: sabiranje (S1) asocijativnost x + (y + z) = (x + y)

Διαβάστε περισσότερα

Zadaci sa prethodnih prijemnih ispita iz matematike na Beogradskom univerzitetu

Zadaci sa prethodnih prijemnih ispita iz matematike na Beogradskom univerzitetu Zadaci sa prethodnih prijemnih ispita iz matematike na Beogradskom univerzitetu Trigonometrijske jednačine i nejednačine. Zadaci koji se rade bez upotrebe trigonometrijskih formula. 00. FF cos x sin x

Διαβάστε περισσότερα

1 ISKAZNA I PREDIKATSKA LOGIKA Zadaci Rešenja SKUPOVI Zadaci RELACIJE Zadaci Rešenja...

1 ISKAZNA I PREDIKATSKA LOGIKA Zadaci Rešenja SKUPOVI Zadaci RELACIJE Zadaci Rešenja... Sadržaj 1 ISKAZNA I PREDIKATSKA LOGIKA 3 1.1 Zadaci............................... 6 1.2 Rešenja.............................. 8 2 SKUPOVI 13 2.1 Zadaci............................... 16 2.2 Rešenja..............................

Διαβάστε περισσότερα

18. listopada listopada / 13

18. listopada listopada / 13 18. listopada 2016. 18. listopada 2016. 1 / 13 Neprekidne funkcije Važnu klasu funkcija tvore neprekidne funkcije. To su funkcije f kod kojih mala promjena u nezavisnoj varijabli x uzrokuje malu promjenu

Διαβάστε περισσότερα

radni nerecenzirani materijal za predavanja R(f) = {f(x) x D}

radni nerecenzirani materijal za predavanja R(f) = {f(x) x D} Matematika 1 Funkcije radni nerecenzirani materijal za predavanja Definicija 1. Neka su D i K bilo koja dva neprazna skupa. Postupak f koji svakom elementu x D pridružuje točno jedan element y K zovemo funkcija

Διαβάστε περισσότερα

4 Funkcije. 4.1 Pojam funkcije

4 Funkcije. 4.1 Pojam funkcije 4 Funkcije 4.1 Pojam unkcije Neka su i neprazni skupovi i pravilo koje svakom elementu skupa pridružuje točno jedan element skupa. Tada se uredena trojka (,, ) naziva preslikavanje ili unkcija sa skupa

Διαβάστε περισσότερα

radni nerecenzirani materijal za predavanja

radni nerecenzirani materijal za predavanja Matematika 1 Funkcije radni nerecenzirani materijal za predavanja Definicija 1. Kažemo da je funkcija f : a, b R u točki x 0 a, b postiže lokalni minimum ako postoji okolina O(x 0 ) broja x 0 takva da je

Διαβάστε περισσότερα

Teorija skupova. Matko Males Split. lipanj 2003.

Teorija skupova. Matko Males Split. lipanj 2003. Teorija skupova Matko Males Split lipanj 2003. 2 O pojmu skupa A, B, C,... oznake za skupove a, b, c,... oznake za elemente skupa a A, a / A Skup je posve odredjen svojim elementima, tj u potpunosti je

Διαβάστε περισσότερα

Veleučilište u Rijeci Stručni studij sigurnosti na radu Akad. god. 2011/2012. Matematika. Monotonost i ekstremi. Katica Jurasić. Rijeka, 2011.

Veleučilište u Rijeci Stručni studij sigurnosti na radu Akad. god. 2011/2012. Matematika. Monotonost i ekstremi. Katica Jurasić. Rijeka, 2011. Veleučilište u Rijeci Stručni studij sigurnosti na radu Akad. god. 2011/2012. Matematika Monotonost i ekstremi Katica Jurasić Rijeka, 2011. Ishodi učenja - predavanja Na kraju ovog predavanja moći ćete:,

Διαβάστε περισσότερα

MATRICE I DETERMINANTE - formule i zadaci - (Matrice i determinante) 1 / 15

MATRICE I DETERMINANTE - formule i zadaci - (Matrice i determinante) 1 / 15 MATRICE I DETERMINANTE - formule i zadaci - (Matrice i determinante) 1 / 15 Matrice - osnovni pojmovi (Matrice i determinante) 2 / 15 (Matrice i determinante) 2 / 15 Matrice - osnovni pojmovi Matrica reda

Διαβάστε περισσότερα

Jednodimenzionalne slučajne promenljive

Jednodimenzionalne slučajne promenljive Jednodimenzionalne slučajne promenljive Definicija slučajne promenljive Neka je X f-ja def. na prostoru verovatnoća (Ω, F, P) koja preslikava prostor el. ishoda Ω u skup R realnih brojeva: (1)Skup {ω/

Διαβάστε περισσότερα

ANALIZA SA ALGEBROM I razred MATEMATI^KA LOGIKA I TEORIJA SKUPOVA. p q r F

ANALIZA SA ALGEBROM I razred MATEMATI^KA LOGIKA I TEORIJA SKUPOVA. p q r F ANALIZA SA ALGEBROM I razred MATEMATI^KA LOGIKA I TEORIJA SKUPOVA. Istinitosna tablica p q r F odgovara formuli A) q p r p r). B) q p r p r). V) q p r p r). G) q p r p r). D) q p r p r). N) Ne znam. Date

Διαβάστε περισσότερα

Zadaci iz trigonometrije za seminar

Zadaci iz trigonometrije za seminar Zadaci iz trigonometrije za seminar FON: 1. Vrednost izraza sin 1 cos 6 jednaka je: ; B) 1 ; V) 1 1 + 1 ; G) ; D). 16. Broj rexea jednaqine sin x cos x + cos x = sin x + sin x na intervalu π ), π je: ;

Διαβάστε περισσότερα

Diskretna matematika. Prof. dr Olivera Nikolić

Diskretna matematika. Prof. dr Olivera Nikolić Diskretna matematika Prof. dr Olivera Nikolić onikolic@singidunum.ac.rs 1 OSNOVNI POJMOVI MATEMATIČKE LOGIKE 2 1. Diskretna matematika 2. Kontinualna matematika 3 Pojam diskretne matematike Diskretna matematika

Διαβάστε περισσότερα

On predstavlja osnovni pojam, poput pojma tačke ili prave u geometriji. Suštinsko svojstvo skupa je da se on sastoji od elemenata ili članova.

On predstavlja osnovni pojam, poput pojma tačke ili prave u geometriji. Suštinsko svojstvo skupa je da se on sastoji od elemenata ili članova. Pojam skupa U matematici se pojam skup ne definiše eksplicitno. On predstavlja osnovni pojam, poput pojma tačke ili prave u geometriji. Suštinsko svojstvo skupa je da se on sastoji od elemenata ili članova.

Διαβάστε περισσότερα

SVEUĆILIŠTE U RIJECI UČITELJSKI FAKULTET U RIJECI ODSJEK ZA UČITELJSKI STUDIJ U GOSPIĆU MATEMATIKA I. Skupovi, funkcije, brojevi

SVEUĆILIŠTE U RIJECI UČITELJSKI FAKULTET U RIJECI ODSJEK ZA UČITELJSKI STUDIJ U GOSPIĆU MATEMATIKA I. Skupovi, funkcije, brojevi SVEUĆILIŠTE U RIJECI UČITELJSKI FAKULTET U RIJECI ODSJEK ZA UČITELJSKI STUDIJ U GOSPIĆU MATEMATIKA I Skupovi, funkcije, brojevi mr.sc. TATJANA STANIN 009. Kratak pregled predavanja koja se izvode na učiteljskom

Διαβάστε περισσότερα

1. Skupovi Algebra skupova

1. Skupovi Algebra skupova 1. Skupovi 1.1. Algebra skupova Temeljne definicije i oznake. Pod pojmom skupa razumijevamo bilo koju množinu elemenata. Npr.: (a) skup svih prirodnih brojeva N = {1, 2, 3,...} ; (b) skup svih cijelih

Διαβάστε περισσότερα

( , treći kolokvij) 3. Na dite lokalne ekstreme funkcije z = x 4 + y 4 2x 2 + 2y 2 3. (20 bodova)

( , treći kolokvij) 3. Na dite lokalne ekstreme funkcije z = x 4 + y 4 2x 2 + 2y 2 3. (20 bodova) A MATEMATIKA (.6.., treći kolokvij. Zadana je funkcija z = e + + sin(. Izračunajte a z (,, b z (,, c z.. Za funkciju z = 3 + na dite a diferencijal dz, b dz u točki T(, za priraste d =. i d =.. c Za koliko

Διαβάστε περισσότερα

Verovatnoća i Statistika I deo Teorija verovatnoće (zadaci) Beleške dr Bobana Marinkovića

Verovatnoća i Statistika I deo Teorija verovatnoće (zadaci) Beleške dr Bobana Marinkovića Verovatnoća i Statistika I deo Teorija verovatnoće zadaci Beleške dr Bobana Marinkovića Iz skupa, 2,, 00} bira se na slučajan način 5 brojeva Odrediti skup elementarnih dogadjaja ako se brojevi biraju

Διαβάστε περισσότερα

IZVODI ZADACI (I deo)

IZVODI ZADACI (I deo) IZVODI ZADACI (I deo) Najpre da se podsetimo tablice i osnovnih pravila:. C`=0. `=. ( )`= 4. ( n )`=n n-. (a )`=a lna 6. (e )`=e 7. (log a )`= 8. (ln)`= ` ln a (>0) 9. = ( 0) 0. `= (>0) (ovde je >0 i a

Διαβάστε περισσότερα

Algebarske strukture

Algebarske strukture i operacije Univerzitet u Nišu Prirodno Matematički Fakultet februar 2010 Istraživačka stanica Petnica i operacije Operacije Šta je to algebra i apstraktna algebra? Šta je to algebarska struktura? Cemu

Διαβάστε περισσότερα

Prvi pismeni zadatak iz Analize sa algebrom novembar Ispitati znak funkcije f(x) = tgx x x3. 2. Naći graničnu vrednost lim x a

Prvi pismeni zadatak iz Analize sa algebrom novembar Ispitati znak funkcije f(x) = tgx x x3. 2. Naći graničnu vrednost lim x a Testovi iz Analize sa algebrom 4 septembar - oktobar 009 Ponavljanje izvoda iz razreda (f(x) = x x ) Ispitivanje uslova Rolove teoreme Ispitivanje granične vrednosti f-je pomoću Lopitalovog pravila 4 Razvoj

Διαβάστε περισσότερα

Neprekinute funkcije i limesi Definicija neprekinute funkcije i njen odnos prema limesu Asimptote Svojstva neprekinutih funkcija

Neprekinute funkcije i limesi Definicija neprekinute funkcije i njen odnos prema limesu Asimptote Svojstva neprekinutih funkcija Sadržaj: Nizovi brojeva Pojam niza Limes niza. Konvergentni nizovi Neki važni nizovi. Broj e. Limes funkcije Definicija esa Računanje esa Jednostrani esi Neprekinute funkcije i esi Definicija neprekinute

Διαβάστε περισσότερα

Sistemi veštačke inteligencije primer 1

Sistemi veštačke inteligencije primer 1 Sistemi veštačke inteligencije primer 1 1. Na jeziku predikatskog računa formalizovati rečenice: a) Miloš je slikar. b) Sava nije slikar. c) Svi slikari su umetnici. Uz pomoć metode rezolucije dokazati

Διαβάστε περισσότερα

KONAČNA MATEMATIKA Egzistencija kombinatornih konfiguracija Dirichlet-ov i Ramseyev teorem

KONAČNA MATEMATIKA Egzistencija kombinatornih konfiguracija Dirichlet-ov i Ramseyev teorem Природно-математички факултет, Универзитет у Нишу, Србија http://www.pmf.ni.ac.yu/mii Математика и информатика 1 (3) (2009), 19-24 KONAČNA MATEMATIKA Egzistencija kombinatornih konfiguracija Dirichlet-ov

Διαβάστε περισσότερα

Zadatak 2 Odrediti tačke grananja, Riemann-ovu površ, opisati sve grane funkcije f(z) = z 3 z 4 i objasniti prelazak sa jedne na drugu granu.

Zadatak 2 Odrediti tačke grananja, Riemann-ovu površ, opisati sve grane funkcije f(z) = z 3 z 4 i objasniti prelazak sa jedne na drugu granu. Kompleksna analiza Zadatak Odrediti tačke grananja, Riemann-ovu površ, opisati sve grane funkcije f(z) = z z 4 i objasniti prelazak sa jedne na drugu granu. Zadatak Odrediti tačke grananja, Riemann-ovu

Διαβάστε περισσότερα

Geometrija (I smer) deo 1: Vektori

Geometrija (I smer) deo 1: Vektori Geometrija (I smer) deo 1: Vektori Srdjan Vukmirović Matematički fakultet, Beograd septembar 2013. Vektori i linearne operacije sa vektorima Definicija Vektor je klasa ekvivalencije usmerenih duži. Kažemo

Διαβάστε περισσότερα

MATEMATIČKA ANALIZA 1 1 / 192

MATEMATIČKA ANALIZA 1 1 / 192 MATEMATIČKA ANALIZA 1 1 / 192 2 / 192 prof.dr.sc. Miljenko Marušić Kontakt: miljenko.marusic@math.hr Konzultacije: Utorak, 10-12 WWW: http://web.math.pmf.unizg.hr/~rus/ nastava/ma1/ma1.html 3 / 192 Sadržaj

Διαβάστε περισσότερα

4.1 Elementarne funkcije

4.1 Elementarne funkcije . Elementarne funkcije.. Polinomi Funkcija f : R R zadana formulom f(x) = a n x n + a n x n +... + a x + a 0 gdje je n N 0 te su a n, a n,..., a, a 0 R, zadani brojevi takvi da a n 0 naziva se polinom

Διαβάστε περισσότερα

REALNA, KOMPLEKSNA ANALIZA I HILBERTOVI PROSTORI

REALNA, KOMPLEKSNA ANALIZA I HILBERTOVI PROSTORI RALNA, KOMPLKSNA ANALIZA I HILBRTOVI PROSTORI M. MATLJVIĆ Abstract. R R M M Uvod Radna verzija, 26 septembar 2007, 29 maj 2008. Kurs iz Teorije Realnih i Kompleksnih funkcija (TR-KF, popularno TRiK) sastoji

Διαβάστε περισσότερα

Osnove matematičke analize

Osnove matematičke analize Osnove matematičke analize prof.dr.sc. Nikola Koceić Bilan FPMOZ Sveučilište u Mostaru FPMOZ Sveučilište u Mostaru 1 / Sadržaj 1 Topološka i metrička struktura normiranog vektorskog prostora R n. Konvergencija

Διαβάστε περισσότερα

POGLAVLJE 1 BEZUSLOVNA OPTIMIZACIJA. U ovom poglavlju proučavaćemo problem bezuslovne optimizacije:

POGLAVLJE 1 BEZUSLOVNA OPTIMIZACIJA. U ovom poglavlju proučavaćemo problem bezuslovne optimizacije: POGLAVLJE 1 BEZUSLOVNA OPTIMIZACIJA U ovom poglavlju proučavaćemo problem bezuslovne optimizacije: min f(x) (1.1) pri čemu nema dodatnih ograničenja na X = (x 1,..., x n ) R n. Probleme bezuslovne optimizacije

Διαβάστε περισσότερα

Baza topologije. Definicija. Familija B podskupova od X je baza neke topologije na X ako: Topološki prostori. Baza topologije. tj.

Baza topologije. Definicija. Familija B podskupova od X je baza neke topologije na X ako: Topološki prostori. Baza topologije. tj. Opća topologija 24 Opća topologija 26 13. Baza topologije Baza topologije 2 TOPOLOŠKI PROSTORI I NEPREKIDNE FUNKCIJE Topološki prostori Baza topologije Uređajna topologija Produktna topologija na X Y Topologija

Διαβάστε περισσότερα

Granične vrednosti realnih nizova

Granične vrednosti realnih nizova Graiče vredosti realih izova Fukcija f : N R, gde je N skup prirodih brojeva a R skup realih brojeva, zove se iz realih brojeva ili reala iz. Opšti čla iza f je f(), N, i običo se obeležava sa f, dok se

Διαβάστε περισσότερα

UDŽBENICI UNIVERZITETA U BIHAĆU MANUALIA UNIVERSITATIS STUDIORUM BIHIGIENSIS. Bernadin Ibrahimpašić ELEMENTARNA MATEMATIKA. Bihać, 2014.

UDŽBENICI UNIVERZITETA U BIHAĆU MANUALIA UNIVERSITATIS STUDIORUM BIHIGIENSIS. Bernadin Ibrahimpašić ELEMENTARNA MATEMATIKA. Bihać, 2014. UDŽBENICI UNIVERZITETA U BIHAĆU MANUALIA UNIVERSITATIS STUDIORUM BIHIGIENSIS Bernadin Ibrahimpašić ELEMENTARNA MATEMATIKA Bihać, 014. c prof. dr. sc. Bernadin Ibrahimpašić ELEMENTARNA MATEMATIKA Recenzenti

Διαβάστε περισσότερα

Teorija brojeva Okvirni program rada sa nadarenim učenicima osnovnih škola. Hasan Jamak Prirodno-matematički fakultet Sarajevo

Teorija brojeva Okvirni program rada sa nadarenim učenicima osnovnih škola. Hasan Jamak Prirodno-matematički fakultet Sarajevo Teorija brojeva Okvirni program rada sa nadarenim učenicima osnovnih škola Hasan Jamak Prirodno-matematički fakultet Sarajevo January 24, 2012 Uvod U Bosni i Hercegovini već pedesetak godina se organizuju

Διαβάστε περισσότερα

Fakultet tehničkih nauka, Softverske i informacione tehnologije, Matematika 2 KOLOKVIJUM 1. Prezime, ime, br. indeksa:

Fakultet tehničkih nauka, Softverske i informacione tehnologije, Matematika 2 KOLOKVIJUM 1. Prezime, ime, br. indeksa: Fakultet tehničkih nauka, Softverske i informacione tehnologije, Matematika KOLOKVIJUM 1 Prezime, ime, br. indeksa: 4.7.1 PREDISPITNE OBAVEZE sin + 1 1) lim = ) lim = 3) lim e + ) = + 3 Zaokružiti tačne

Διαβάστε περισσότερα

Ministarstvo prosvete i sporta Republike Srbije Druxtvo matematiqara Srbije OPXTINSKO TAKMIQENjE IZ MATEMATIKE Prvi razred A kategorija

Ministarstvo prosvete i sporta Republike Srbije Druxtvo matematiqara Srbije OPXTINSKO TAKMIQENjE IZ MATEMATIKE Prvi razred A kategorija 18.1200 Prvi razred A kategorija Neka je K sredixte teжixne duжi CC 1 trougla ABC ineka je AK BC = {M}. Na i odnos CM : MB. Na i sve proste brojeve p, q i r, kao i sve prirodne brojeve n, takve da vaжi

Διαβάστε περισσότερα

POTPUNO RIJEŠENIH ZADATAKA PRIRUČNIK ZA SAMOSTALNO UČENJE

POTPUNO RIJEŠENIH ZADATAKA PRIRUČNIK ZA SAMOSTALNO UČENJE **** MLADEN SRAGA **** 011. UNIVERZALNA ZBIRKA POTPUNO RIJEŠENIH ZADATAKA PRIRUČNIK ZA SAMOSTALNO UČENJE SKUP REALNIH BROJEVA α Autor: MLADEN SRAGA Grafički urednik: BESPLATNA - WEB-VARIJANTA Tisak: M.I.M.-SRAGA

Διαβάστε περισσότερα

- pravac n je zadan s točkom T(2,0) i koeficijentom smjera k=2. (30 bodova)

- pravac n je zadan s točkom T(2,0) i koeficijentom smjera k=2. (30 bodova) MEHANIKA 1 1. KOLOKVIJ 04/2008. grupa I 1. Zadane su dvije sile F i. Sila F = 4i + 6j [ N]. Sila je zadana s veličinom = i leži na pravcu koji s koordinatnom osi x zatvara kut od 30 (sve komponente sile

Διαβάστε περισσότερα

PREDAVANJA O STRUKTURI SKUPA REALNIH BROJEVA

PREDAVANJA O STRUKTURI SKUPA REALNIH BROJEVA PREDAVANJA O STRUKTURI SKUPA REALNIH BROJEVA 1. Prvo predavanje - funkcije i prirodni brojevi Cilj predavanja u prvoj sedmici je podsećanje na skupove brojeva koji su se koristili u prethodnom školovanju,

Διαβάστε περισσότερα

Uvod u teoriju brojeva. Andrej Dujella

Uvod u teoriju brojeva. Andrej Dujella Uvod u teoriju brojeva (skripta) Andrej Dujella PMF - Matematički odjel Sveučilište u Zagrebu Sadržaj. Djeljivost.... Kongruencije... 3. Kvadratni ostatci... 9 4. Kvadratne forme... 38 5. Aritmetičke funkcije...

Διαβάστε περισσότερα

!! " &' ': " /.., c #$% & - & ' ()",..., * +,.. * ' + * - - * ()",...(.

!!  &' ':  /.., c #$% & - & ' (),..., * +,.. * ' + * - - * (),...(. ..,.. 00 !!.6 7 " 57 +: #$% & - & ' ()",..., * +,.. * ' + * - - * ()",.....(. 8.. &' ': " /..,... :, 00. c. " *+ ' * ' * +' * - * «/'» ' - &, $%' * *& 300.65 «, + *'». 3000400- -00 3-00.6, 006 3 4.!"#"$

Διαβάστε περισσότερα

Matematika. Viša razina. Marina Ninković, prof. Vesna Ovčina, prof. Zagreb, 2015.

Matematika. Viša razina. Marina Ninković, prof. Vesna Ovčina, prof. Zagreb, 2015. Matematika Viša razina Marina Ninković, prof. Vesna Ovčina, prof. Zagreb, 2015. Autor: Marina Ninković, prof. Vesna Ovčina, prof. Naslov: Matematika Viša razina Izdanje: 4. izdanje Urednica: Ana Belin,

Διαβάστε περισσότερα

PROBNI TEST ZA PRIJEMNI ISPIT IZ MATEMATIKE

PROBNI TEST ZA PRIJEMNI ISPIT IZ MATEMATIKE Fakultet Tehničkih Nauka, Novi Sad PROBNI TEST ZA PRIJEMNI ISPIT IZ MATEMATIKE 1 Za koje vrednosti parametra p R polinom f x) = x + p + 1)x p ima tačno jedan, i to pozitivan realan koren? U skupu realnih

Διαβάστε περισσότερα

2. KOLOKVIJ IZ MATEMATIKE 1

2. KOLOKVIJ IZ MATEMATIKE 1 2 cos(3 π 4 ) sin( + π 6 ). 2. Pomoću linearnih transformacija funkcije f nacrtajte graf funkcije g ako je, g() = 2f( + 3) +. 3. Odredite domenu funkcije te odredite f i njenu domenu. log 3 2 + 3 7, 4.

Διαβάστε περισσότερα

I N Ž E N J E R S K A M A T E M A T I K A 2. Glava IV : DIFERENCIJALNE JEDNAČINE PRVOG REDA

I N Ž E N J E R S K A M A T E M A T I K A 2. Glava IV : DIFERENCIJALNE JEDNAČINE PRVOG REDA I N Ž E N J E R S K A M A T E M A T I K A 64 Glava IV : DIFERENCIJALNE JEDNAČINE PRVOG REDA 4 Osnovni pojmovi Činjenica da se mnogi zakoni fizike i drugih nauka iskazuju uz pomoć diferencijalnih jednačina

Διαβάστε περισσότερα

Ovo nam govori da funkcija nije ni parna ni neparna, odnosno da nije simetrična ni u odnosu na y osu ni u odnosu na

Ovo nam govori da funkcija nije ni parna ni neparna, odnosno da nije simetrična ni u odnosu na y osu ni u odnosu na . Ispitati tok i skicirati grafik funkcij = Oblast dfinisanosti (domn) Ova funkcija j svuda dfinisana, jr nma razlomka a funkcija j dfinisana za svako iz skupa R. Dakl (, ). Ovo nam odmah govori da funkcija

Διαβάστε περισσότερα

Druxtvo matematiqara Srbije OPXTINSKO TAKMIQENjE IZ MATEMATIKE Prvi razred A kategorija. f(x + 1) x f(x) + 1.

Druxtvo matematiqara Srbije OPXTINSKO TAKMIQENjE IZ MATEMATIKE Prvi razred A kategorija. f(x + 1) x f(x) + 1. 09.0200 Prvi razred A kategorija Ako je n prirodan broj, dokazati da 3n 2 + 3n + 7 nije kub nijednog prirodnog broja. U trouglu ABC je ABC = 60. Neka su D i E redom preseqne taqke simetrala uglova CAB

Διαβάστε περισσότερα

OSNOVNI PRINCIPI PREBROJAVANJA. () 6. studenog 2011. 1 / 18

OSNOVNI PRINCIPI PREBROJAVANJA. () 6. studenog 2011. 1 / 18 OSNOVNI PRINCIPI PREBROJAVANJA () 6. studenog 2011. 1 / 18 TRI OSNOVNA PRINCIPA PREBROJAVANJA -vrlo često susrećemo se sa problemima prebrojavanja elemenata nekog konačnog skupa S () 6. studenog 2011.

Διαβάστε περισσότερα

ELEMENTARNA MATEMATIKA 2

ELEMENTARNA MATEMATIKA 2 ELEMENTARNA MATEMATIKA 1. Osnovni pojmovi o funkcijama Jedan od najvažnijih pojmova u matematici predstavlja pojam funkcije. Definicija 1.1. Neka su X i Y dva neprazna skupa. Funkcija f iz skupa X u skup

Διαβάστε περισσότερα

O SKUPOVIMA. Do pojma skupa može se vrlo lako doći empirijskim putem, posmatrajući razne grupe,

O SKUPOVIMA. Do pojma skupa može se vrlo lako doći empirijskim putem, posmatrajući razne grupe, O SKUPOVIM Do pojma skupa može se vrlo lako doći empirijskim putem, posmatrajući razne grupe, skupine, mnoštva neke vrste objekata, stvari, živih bića i dr. Tako imamo skup stanovnika nekog grada, skup

Διαβάστε περισσότερα

Norme vektora i matrica

Norme vektora i matrica 2 Norme vektora i matrica Pojam norme u vektorskim prostorima se najčešće povezuje sa određenom merom veličine elemenata tog prostora. Tako je u prostoru realnih brojeva R, norma elementa x R najčešće

Διαβάστε περισσότερα

ELEMENTI VISE ˇ MATEMATIKE

ELEMENTI VISE ˇ MATEMATIKE Nada Miličić Miloš Miličić ELEMENTI VISE ˇ MATEMATIKE II deo II izdanje Akademska misao Beograd, 2011 Dr Nada Miličić, redovni profesor Dr Miloš Miličić, redovni profesor ELEMENTI VIŠE MATEMATIKE II DEO

Διαβάστε περισσότερα

Program za tablično računanje Microsoft Excel

Program za tablično računanje Microsoft Excel Program za tablično računanje Microsoft Excel Teme Formule i funkcije Zbrajanje Oduzimanje Množenje Dijeljenje Izračun najveće vrijednosti Izračun najmanje vrijednosti 2 Formule i funkcije Naravno da je

Διαβάστε περισσότερα

x M kazemo da je slijed ogranicen. Weierstrass-Bolzano-v teorem tvrdi da svaki ograniceni slijed ima barem jednu granicnu tocku.

x M kazemo da je slijed ogranicen. Weierstrass-Bolzano-v teorem tvrdi da svaki ograniceni slijed ima barem jednu granicnu tocku. 1. FUNKCIJE, LIMES, NEPREKINUTOST 1.1 Brojevi - slijed, interval, limes Slijed realnih brojeva je postava brojeva na primjer u obliku 1,,3..., nn, + 1... koji na realnoj osi imaju oznaceno mjesto odgovarajucom

Διαβάστε περισσότερα

ELEMENTI ENUMERATIVNE KOMBINATORIKE

ELEMENTI ENUMERATIVNE KOMBINATORIKE DU KO JOJI ELEMENTI ENUMERATIVNE KOMBINATORIKE Banja Luka Sadrºaj Predgovor............................................... 7 1 O KOMBINATORICI................................ 9 1.1 ta je to kombinatorika?............................

Διαβάστε περισσότερα

2.7 Primjene odredenih integrala

2.7 Primjene odredenih integrala . INTEGRAL 77.7 Primjene odredenih integrala.7.1 Računanje površina Pořsina lika omedenog pravcima x = a i x = b te krivuljama y = f(x) i y = g(x) je b P = f(x) g(x) dx. a Zadatak.61 Odredite površinu

Διαβάστε περισσότερα

Dr. Miljenko Crnjac, Mr. Dragan Jukić, Dr. Rudolf Scitovski MATEMATIKA. Osijek, 1994.

Dr. Miljenko Crnjac, Mr. Dragan Jukić, Dr. Rudolf Scitovski MATEMATIKA. Osijek, 1994. Dr. Miljenko Crnjac, Mr. Dragan Jukić, Dr. Rudolf Scitovski MATEMATIKA Osijek, 994. M. Crnjac, D. Jukić, R. Scitovski Matematika Udžbenik U-6 Recenzenti: Prof.dr.sc. Hrvoje Kraljević Prof.dr.sc. Harry

Διαβάστε περισσότερα

Vektorski prostori. Vektorski prostor

Vektorski prostori. Vektorski prostor Vektorski prostori Vektorski prostor Neka je X neprazan skup i (K, +, ) polje. Skup X je vektorski ili linearni prostor nad poljem skalara K ako ima sledeću strukturu: (1) Definisana je operacija + u skupu

Διαβάστε περισσότερα

Operatori na normiranim prostorima vježbe 2015/2016. Tomislav Berić

Operatori na normiranim prostorima vježbe 2015/2016. Tomislav Berić Operatori na normiranim prostorima vježbe 2015/2016 Tomislav Berić tberic@math.hr Sadržaj 1 Operatori na Hilbertovim prostorima 1 1.1 Normalni operatori..................................... 3 1.2 Unitarni

Διαβάστε περισσότερα

VJEROJATNOST I STATISTIKA Popravni kolokvij - 1. rujna 2016.

VJEROJATNOST I STATISTIKA Popravni kolokvij - 1. rujna 2016. Broj zadataka: 5 Vrijeme rješavanja: 120 min Ukupan broj bodova: 100 Zadatak 1. (a) Napišite aksiome vjerojatnosti ako je zadan skup Ω i σ-algebra F na Ω. (b) Dokažite iz aksioma vjerojatnosti da za A,

Διαβάστε περισσότερα

Gradimir V. Milovanović MATEMATIČKA ANALIZA I

Gradimir V. Milovanović MATEMATIČKA ANALIZA I Gradimir V. Milovanović Radosav Ž. D ord ević MATEMATIČKA ANALIZA I Predgovor Ova knjiga predstavlja udžbenik iz predmeta Matematička analiza I koji se, počev od školske 2004/2005. godine, studentima Elektronskog

Διαβάστε περισσότερα

Periodične funkcije. Branimir Dakić, Zagreb

Periodične funkcije. Branimir Dakić, Zagreb Periodične funkcije Branimir Dakić, Zagreb Periodičnost 1 je pojava koju susrećemo na svakom koraku. Periodične su mnoge prirodne pojave, primjerice izmjena dana i noći ili izmjena godišnjih doba, pojava

Διαβάστε περισσότερα

3n an = 4n3/2 +2n+ n 5n 3/2 +5n+2 n a 2 n = n 2. ( 2) n Dodatak. = 0, lim n! 2n 6n + 1

3n an = 4n3/2 +2n+ n 5n 3/2 +5n+2 n a 2 n = n 2. ( 2) n Dodatak. = 0, lim n! 2n 6n + 1 Nizovi 5 a = 5 +3+ + 6 a = 3 00 + 00 3 +5 7 a = +)+) ) 3 3 8 a = 3 +3+ + +3 9 a = 3 5 0 a = 43/ ++ 5 3/ +5+ a = + + a = + ) 3 a = + + + 4 a = 3 3 + 3 ) 5 a = +++ 6 a = + ++ 3 a = +)!++)! +3)! a = ) +3

Διαβάστε περισσότερα

POLINOMI I RACIONALNE FUNKCIJE Nastava u Matematiqkoj gimnaziji, Vladimir Balti

POLINOMI I RACIONALNE FUNKCIJE Nastava u Matematiqkoj gimnaziji, Vladimir Balti POLINOMI I RACIONALNE FUNKCIJE Nastava u Matematiqkoj gimnaziji, 004. Vladimir Balti Pojam polinoma. Prsten polinoma.. Dati su polinomi P (x) = x + x +, Q(x) = x 4 x +, R(x) = x x +. Proveriti da li za

Διαβάστε περισσότερα

Matematika 1. Marcela Hanzer. Department of Mathematics, University of Zagreb. Marcela Hanzer (Dept of Math, Uni Zagreb) Matematika 1 1 / 135

Matematika 1. Marcela Hanzer. Department of Mathematics, University of Zagreb. Marcela Hanzer (Dept of Math, Uni Zagreb) Matematika 1 1 / 135 Matematika 1 Marcela Hanzer Department of Mathematics, University of Zagreb Marcela Hanzer (Dept of Math, Uni Zagreb) Matematika 1 1 / 135 Skupovi; brojevi Skupovi osnovni pojam u matematici (ne svodi

Διαβάστε περισσότερα

Domena kompozicije funkcija

Domena kompozicije funkcija Domena kompozicije funkcija Petar Žugec Fizički odsjek Prirodoslovno-matematičkog fakulteta Sveučilišta u Zagrebu Kompozicija dviju funkcija fx) i gx) u oznaci f g)x) definirana je na način: f g)x) fgx))

Διαβάστε περισσότερα

DISKRETNA MATEMATIKA

DISKRETNA MATEMATIKA Univerzitet singidunum Ivana Kovačević DISKRETNA MATEMATIKA SA ZBIRKOM ZADATAKA Treće izmenjeno i dopunjeno izdanje Beograd, 013. DISKRETNA MATEMATIKA SA ZBIRKOM ZADATAKA Autor: dr Ivana Kovačević Recezenti:

Διαβάστε περισσότερα

Iskazna logika. 1 Semantika iskazne logike

Iskazna logika. 1 Semantika iskazne logike Iskazna logika 1 Semantika iskazne logike Iskazna formula je niz simbola odredjenog alfabeta (skupa simbola). Postoje razni alfabeti u kojima se definišu iskazne formula, a razlikuju ih simboli logički

Διαβάστε περισσότερα

1.1 Definicija funkcije

1.1 Definicija funkcije . Definicija funkcije Realna funkcija predstavlja osnovni pojam u matematičkoj analizi i centralni objekat svih njenih razmatranja. Definicija Neka je dat skup D R. Ako je svakom x D po nekom zakonu (pravilu)

Διαβάστε περισσότερα

ASIMPTOTE FUNKCIJA. Dakle: Asimptota je prava kojoj se funkcija približava u beskonačno dalekoj tački. Postoje tri vrste asimptota:

ASIMPTOTE FUNKCIJA. Dakle: Asimptota je prava kojoj se funkcija približava u beskonačno dalekoj tački. Postoje tri vrste asimptota: ASIMPTOTE FUNKCIJA Naš savet je da najpre dobro proučite granične vrednosti funkcija Neki profesori vole da asimptote funkcija ispituju kao ponašanje funkcije na krajevima oblasti definisanosti, pa kako

Διαβάστε περισσότερα

4 Numeričko diferenciranje

4 Numeričko diferenciranje 4 Numeričko diferenciranje 7. Funkcija fx) je zadata tabelom: x 0 4 6 8 fx).17 1.5167 1.7044 3.385 5.09 7.814 Koristeći konačne razlike, zaključno sa trećim redom, odrediti tačku x minimuma funkcije fx)

Διαβάστε περισσότερα

OBLAST DEFINISANOSTI FUNKCIJE (DOMEN) Pre nego što krenete sa proučavanjem ovog fajla, obavezno pogledajte fajl ELEMENTARNE FUNKCIJE, jer se na

OBLAST DEFINISANOSTI FUNKCIJE (DOMEN) Pre nego što krenete sa proučavanjem ovog fajla, obavezno pogledajte fajl ELEMENTARNE FUNKCIJE, jer se na OBLAST DEFINISANOSTI FUNKCIJE (DOMEN) Prva tačka u ispitivanju toka unkcije je odredjivanje oblasti deinisanosti, u oznaci Pre nego što krenete sa proučavanjem ovog ajla, obavezno pogledajte ajl ELEMENTARNE

Διαβάστε περισσότερα

Determinante. Inverzna matrica

Determinante. Inverzna matrica Determinante Inverzna matrica Neka je A = [a ij ] n n kvadratna matrica Determinanta matrice A je a 11 a 12 a 1n a 21 a 22 a 2n det A = = ( 1) j a 1j1 a 2j2 a njn, a n1 a n2 a nn gde se sumiranje vrši

Διαβάστε περισσότερα

ISKAZI. U svakodnevnom govoru, a i u pisanom tekstu, obično se sreću rečenice koje su ili tačne

ISKAZI. U svakodnevnom govoru, a i u pisanom tekstu, obično se sreću rečenice koje su ili tačne ISKAZI U svakodnevnom govoru, a i u pisanom tekstu, obično se sreću rečenice koje su ili tačne ili netačne, tj rečenice koje imaju logičkog smisla.ovakve rečenice se u matematici nazivaju iskazi.dakle,

Διαβάστε περισσότερα

Prostori Soboljeva sa negativnim indeksom

Prostori Soboljeva sa negativnim indeksom UNIVERZITET U NOVOM SADU PRIRODNO-MATEMATIČKI FAKULTET DEPARTMAN ZA MATEMATIKU I INFORMATIKU Nevena Mutlak Prostori Soboljeva sa negativnim indeksom -master rad- Mentor: prof.dr Marko Nedeljkov Novi Sad,

Διαβάστε περισσότερα

O fiksnim točkama osnovnih trigonometrijskih funkcija

O fiksnim točkama osnovnih trigonometrijskih funkcija O fiksnim točkama... O fiksnim točkama osnovnih trigonometrijskih funkcija Matea Jelčić, Kristina Ivankić, Mirela Katić Žlepalo 3 i Bojan Kovačić Sažetak U ovom članku razmatramo fiksne točke četiriju

Διαβάστε περισσότερα

Pojam funkcije. Funkcija, preslikavanje, pridruživanje, transformacija

Pojam funkcije. Funkcija, preslikavanje, pridruživanje, transformacija Funkcije Pojam unkcije Funkcija, preslikavanje, pridruživanje, transormacija Primjer.: a) Odredite površinu kvadrata kojem je stranica 5cm. b) Odredite površinu pravokutnika sa stranicama duljine 7 i 5.

Διαβάστε περισσότερα

Tvrd enje 3: Ako su formule A i A B tautologije, onda je tautologija. Dokaz: Neka su A i A B tautologije.

Tvrd enje 3: Ako su formule A i A B tautologije, onda je tautologija. Dokaz: Neka su A i A B tautologije. Svojstva tautologija Tvrd enje 3: Ako su formule A i A B tautologije, onda je tautologija i formula B. Dokaz: Neka su A i A B tautologije. Pretpostavimo da B nije tautologija. Tada postoji valuacija v

Διαβάστε περισσότερα

FUNKCIONALNO GUSTE RELACIONE ALGEBRE

FUNKCIONALNO GUSTE RELACIONE ALGEBRE UNIVERZITET U NOVOM SADU PRIRODNO-MATEMATIČKI FAKULTET DEPARTMAN ZA MATEMATIKU I INFORMATIKU Ivan Prokić FUNKCIONALNO GUSTE RELACIONE ALGEBRE -master teza- Novi Sad, 2014 Sadržaj Predgovor 1 1 Uvod 3 1.1

Διαβάστε περισσότερα

Katedra za matematiku (FSB, Zagreb) Matematika 2 Poglavlje-2 1 / 43

Katedra za matematiku (FSB, Zagreb) Matematika 2 Poglavlje-2 1 / 43 Katedra za matematiku (FSB, Zagreb) Matematika Poglavlje- / 43 Ciljevi učenja Ciljevi učenja za predavanja i vježbe: Integral kao antiderivacija Prepoznavanje očiglednih supstitucija Metoda supstitucije-složeniji

Διαβάστε περισσότερα

ZBIRKA POTPUNO RIJEŠENIH ZADATAKA

ZBIRKA POTPUNO RIJEŠENIH ZADATAKA **** IVANA SRAGA **** 1992.-2011. ZBIRKA POTPUNO RIJEŠENIH ZADATAKA PRIRUČNIK ZA SAMOSTALNO UČENJE POTPUNO RIJEŠENI ZADACI PO ŽUTOJ ZBIRCI INTERNA SKRIPTA CENTRA ZA PODUKU α M.I.M.-Sraga - 1992.-2011.

Διαβάστε περισσότερα

Dijagrami: Greda i konzola. Prosta greda. II. Dijagrami unutarnjih sila. 2. Popre nih sila TZ 3. Momenata savijanja My. 1. Uzdužnih sila N. 11.

Dijagrami: Greda i konzola. Prosta greda. II. Dijagrami unutarnjih sila. 2. Popre nih sila TZ 3. Momenata savijanja My. 1. Uzdužnih sila N. 11. Dijagrami:. Udužnih sia N Greda i konoa. Popre nih sia TZ 3. Momenata savijanja My. dio Prosta greda. Optere ena koncentriranom siom F I. Reaktivne sie:. M A = 0 R B F a = 0. M B = 0 R A F b = 0 3. F =

Διαβάστε περισσότερα

MJERA I INTEGRAL. Bilješke s predavanja (Prof. dr. sc. Hrvoje Šikić) akademska godina 2010./2011. Natipkao i uredio: Ivan Krijan

MJERA I INTEGRAL. Bilješke s predavanja (Prof. dr. sc. Hrvoje Šikić) akademska godina 2010./2011. Natipkao i uredio: Ivan Krijan MJERA I INTEGRAL Bilješke s predavaja (Prof. dr. sc. Hrvoje Šikić) akademska godia 2010./2011. Natipkao i uredio: Iva Krija Zagreb, 23. 05. 2011. Sadržaj Sadržaj 1 UVOD 3 2 PRSTEN SKUPOVA 8 3 MJERE NA

Διαβάστε περισσότερα

MATEMATIČKA LOGIKA O MOGUĆNOSTIMA FORMALNOG METODA CID

MATEMATIČKA LOGIKA O MOGUĆNOSTIMA FORMALNOG METODA CID Slobodan Vujošević MATEMATIČKA LOGIKA O MOGUĆNOSTIMA FORMALNOG METODA CID PODGORICA 1996 Slobodan Vujošević, Matematička logika: o mogućnostima formalnog metoda ISBN 86-495-0019-6 Elektronsko izdanje Matematički

Διαβάστε περισσότερα

DIMENZIONISANJE PRAVOUGAONIH POPREČNIH PRESEKA NAPREGNUTIH NA PRAVO SLOŽENO SAVIJANJE

DIMENZIONISANJE PRAVOUGAONIH POPREČNIH PRESEKA NAPREGNUTIH NA PRAVO SLOŽENO SAVIJANJE TEORIJA ETONSKIH KONSTRUKCIJA T- DIENZIONISANJE PRAVOUGAONIH POPREČNIH PRESEKA NAPREGNUTIH NA PRAVO SLOŽENO SAVIJANJE 3.5 f "2" η y 2 D G N z d y A "" 0 Z a a G - tačka presek koja određje položaj sistemne

Διαβάστε περισσότερα

x + t x 2 x t x 2 t x = + x + = + x + = t 2. 3 y y [x množi cijelu zagradu] y y 2 x [na lijevu stranu prebacimo nepoznanicu y] [izlučimo 3 y ] x x x

x + t x 2 x t x 2 t x = + x + = + x + = t 2. 3 y y [x množi cijelu zagradu] y y 2 x [na lijevu stranu prebacimo nepoznanicu y] [izlučimo 3 y ] x x x Zadatak 00 (Sanja, gimnazija) Odredi realnu funkciju f() ako je f ( ) = Rješenje 00 Uvedemo supstituciju (zamjenu varijabli) = t Kvadriramo: t t t = = = = t Uvrstimo novu varijablu u funkciju: f(t) = t

Διαβάστε περισσότερα

QETVRTI KOLOKVIJUM IZ MATEMATIKE 1, Grupa A. x 2, g : x. 1 (x 2 + y 2 dx dy. QETVRTI KOLOKVIJUM IZ MATEMATIKE 1, Grupa B. ln x (x 1) 3/2.

QETVRTI KOLOKVIJUM IZ MATEMATIKE 1, Grupa A. x 2, g : x. 1 (x 2 + y 2 dx dy. QETVRTI KOLOKVIJUM IZ MATEMATIKE 1, Grupa B. ln x (x 1) 3/2. 1. Izraqunati QETVRTI KOLOKVIJUM IZ MATEMATIKE 1, 1995. x arctan x 1 + x dx. Grupa A. Izraqunati povrxinu koju ograniqavaju pozitivan deo x - ose i grafici funkcija 3. Ako je oblast ograniqena krivama

Διαβάστε περισσότερα

LEKCIJE IZ DISKRETNE MATEMATIKE

LEKCIJE IZ DISKRETNE MATEMATIKE LEKCIJE IZ DISKRETNE MATEMATIKE Igor Ž. Milovanović Ružica M. Stanković Emina I. Milovanović Branislav M. Randjelović Sadržaj 1 Elementi matematičke logike 5 1.1 Iskaz i predikat.............................

Διαβάστε περισσότερα

INTEGRALI Zadaci sa kolokvijuma

INTEGRALI Zadaci sa kolokvijuma INTEGRALI Zadaci sa kolokvijuma ragan ori Sadrжaj Neodređeni integral Određeni integral 6 Nesvojstveni integral 9 4 vojni integral 5 Redovi 5 Studentima generacije / (grupe A9, A i A) Ovo je jox jedna

Διαβάστε περισσότερα

Kazimir Majorinc. Povijest Lispa 12. Razmjena vještina Hacklab u mami 10. studeni 2012.

Kazimir Majorinc. Povijest Lispa 12. Razmjena vještina Hacklab u mami 10. studeni 2012. Kazimir Majorinc Povijest Lispa 12. j Razmjena vještina Hacklab u mami 10. studeni 2012. MIT Research Laboratory of Electronics, Quarterly Progress Report, 15. travnja, 1959. Sadrži jednu od bar četiri

Διαβάστε περισσότερα

dužina usmjerena (orijentirana) dužina (zna se koja je točka početna, a koja krajnja) vektor

dužina usmjerena (orijentirana) dužina (zna se koja je točka početna, a koja krajnja) vektor I. VEKTORI d. sc. Min Rodić Lipnović 009./010. 1 Pojm vekto A B dužin A B usmjeen (oijentin) dužin (n se koj je točk početn, koj kjnj) A B vekto - kls ( skup ) usmjeenih dužin C D E F AB je epeentnt vekto

Διαβάστε περισσότερα

( ) π. I slučaj-štap sa zglobovima na krajevima F. Opšte rešenje diferencijalne jednačine (1): min

( ) π. I slučaj-štap sa zglobovima na krajevima F. Opšte rešenje diferencijalne jednačine (1): min Kritična sia izvijanja Kritična sia je ona najmanja vrednost sie pritisa pri ojoj nastupa gubita stabinosti, odnosno, pri ojoj štap iz stabine pravoinijse forme ravnoteže preazi u nestabinu rivoinijsu

Διαβάστε περισσότερα

ISBN , 2009

ISBN , 2009 .... 2009 681.3.06(075.3) 32.973.26 721 367.. 367 : -. :.., 2009. 419.:.,. ISBN 978-5-88874-943-2. :. -,.,. (2006 2009),,,,.. 11-, -. matsievsky@newmail.ru. 681.3.06(075.3) 32.973.26 721 ISBN 978-5-88874-943-2..,

Διαβάστε περισσότερα

56. TAKMIČENJE MLADIH MATEMATIČARA BOSNE I HERCEGOVINE FEDERALNO PRVENSTVO UČENIKA SREDNJIH ŠKOLA. Sarajevo, godine

56. TAKMIČENJE MLADIH MATEMATIČARA BOSNE I HERCEGOVINE FEDERALNO PRVENSTVO UČENIKA SREDNJIH ŠKOLA. Sarajevo, godine 56. TAKMIČENJE MLADIH MATEMATIČARA BOSNE I HERCEGOVINE FEDERALNO PRVENSTVO UČENIKA SREDNJIH ŠKOLA Sarajevo, 3.04.016. godine 56. TAKMIČENJE MLADIH MATEMATIČARA BOSNE I HERCEGOVINE FEDERALNO PRVENSTVO UČENIKA

Διαβάστε περισσότερα

5 Sistemi linearnih jednačina. a 11 x 1 + a 12 x a 1n x n = b 1 a 21 x 1 + a 22 x a 2n x n = b 2.

5 Sistemi linearnih jednačina. a 11 x 1 + a 12 x a 1n x n = b 1 a 21 x 1 + a 22 x a 2n x n = b 2. 5 Sistemi linearnih jednačina 47 5 Sistemi linearnih jednačina U opštem slučaju, pod sistemom linearnih jednačina podrazumevamo sistem od m jednačina sa n nepoznatih x 1 + a 12 x 2 + + a 1n x n = b 1 a

Διαβάστε περισσότερα