8 Modelovanje performansi računarskih sistema. ETF Beograd Performanse Računarskih Sistema 1

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "8 Modelovanje performansi računarskih sistema. ETF Beograd Performanse Računarskih Sistema 1"

Transcript

1 8 Modelovanje performansi računarskih sistema Različiti pristupi: Sistemi masovnog opsluživanja (teorija redovi čekanja) Leonard Kleinrock Queueing theory 1. Analitičko modelovanje 2. Simulaciono modelovanje Ako su zavisnosti između nekih veličina nelinearne i promene stanja neregularne, matematički modeli su jako složeni ili ne daju rezultate simulacija ETF Beograd Performanse Računarskih Sistema 1

2 8.1 Fizički, funkcionalni i dinamički model Terminali Fizički model računara T 1 Centralni procesor T 2... Komunikacioni Kontroler Operativna Memorija Kontroler štampača Štampač T n Disk Kanali Kontroler Diskova disk disk disk ETF Beograd Performanse Računarskih Sistema 2

3 8.1 Fizički, funkcionalni i dinamički model Funkcionalni model računara Prihvatanje zahteva za obradu Prispeli poslovi T INPUT DASD Disciplina raspoređivanja poslova Direct Access Storage Device OM O.S. P1 P2 P3 Disciplina opsluživanja od strane procesora Centralni Procesor Baferisanje za zahteva za stampanje stampanje OUTPUT DASD Štampač Data files ETF Beograd Performanse Računarskih Sistema 3

4 8.1 Fizički, funkcionalni i dinamički model Discipline raspoređivanja anja procesa u memoriju i discipline opsluživanja poslova u memoriji od strane procesora 1. FIFO (FCFS) po redosledu dolaska 2. LCFS (LIFO) prvo poslednji 3. PRIORITETNO -opsluživanje prema prioritetu - moguće varijante sa i bez preuzimanja (preemption), tj. 3a) prekidanje tekućeg ako pristigne neki većeg prioriteta ili 3b) po završtetku, pri izboru novog zahteva bira se onaj sa najvišim prioritetom 4. RSS Random Selection Service - opsluživanje na slučajan način izabranog posla iz reda poslova koji čekaju ETF Beograd Performanse Računarskih Sistema 4

5 8.1 Fizički, funkcionalni i dinamički model Dinamički model Red za čekanje S λ n μ μ - intenzitet opsluživanja servera S λ intenzitet prispeća zahteva u red n kapacitet reda (ako ga nema nema podrazumeva se da je dovoljno veliki da se može smatrati beskonačnim) ETF Beograd Performanse Računarskih Sistema 5

6 8.1 Fizički, funkcionalni i dinamički model Dinamički model nasilno izbacivanje u cilju da se smanji opterećenje sistema Job hold() Red poslova Job queue istekao kvantum vremena Ready Procesorski red PQ Procesor Queue Glavna memorija Rd CP stop() centralni procesor Red za čekanje ispred stampaca Printer queue Pinter Štampač obrađeni zahtevi X X d D Rdq DQ wait() Disk Disk queue R ETF Beograd Performanse Računarskih Sistema 6

7 8.1 Fizički, funkcionalni i dinamički model Dinamički model R d vreme odziva diska(vreme boravka u predelu diska) 1 T qd vreme provedeno u Disk Queue X d intenzitet upućivanja (toka) iz diska ka procesorskom redu, tj. prispećazahtevaiz 0 diska stanja opsluživanja zauzet slobodan iskorišćenost U: 0 U 1 R (response time) vreme provedeno u sistemu (vreme odziva celog sistema) X intenzitet toka poslova(throughput) [job/s] [trans/s] Proces se može izvršavati dok se ne završi ili mu se dodeljuje kvantum vremena po čijem isteku se poslu oduzima procesor (ili, ako je prioritetno raspoređivanje, akodođe proces višegprioriteta) ETF Beograd Performanse Računarskih Sistema 7

8 8.1 Fizički, funkcionalni i dinamički model Dinamički model Zahtev prolazi kroz sledećih 6 stanja: SUBMIT HOLD Dijagram jg stanja kroz koja prolazi posao u toku opsluživanja 1 red 1 server READY WAIT 1 red 3 servera RUN 3reda 3servera COMPLETE ETF Beograd Performanse Računarskih Sistema 8

9 8.2 Osnovne veličine i komponente Osnovne veli ličine 1. Parametri konfiguracije sistena ( (Configuration parameters, CP) 2. Parametri opterećenja sistema (Workload,, WL) 3. Pokazatelji performansi (Performance indicators, PI) ETF Beograd Performanse Računarskih Sistema 9

10 8.2 Osnovne veličine i komponente Osnovne komponente 1. Parametri konfiguracije -CP Struktura (topologija topologija) gj sistema Brzina opsluživanja (service time) pojedinačnih nih komponenti sistema Disciplina opsluživanja 2. Parametri aa opterećenja eće - WL Intenzitet prispeća zahteva u sistem - λ Brzina kretanja zahteva kroz sistem Potra ražnja za resursima usistemu ETF Beograd Performanse Računarskih Sistema 10

11 8.2 Osnovne veličine i komponente 3. Pokazatelji performansi - PI iskorišćenja svih resursa Broj poslova (zahteva) u redovima za čekanje,, odnosno u servisnim i centrima Vreme odziva na nivou pojedinačne ne komponente i celog sistema (response time) = vreme čekanja+vreme opsluživanja Produktivnost MPI merljivi (measurable)) parametri performansi PI PMPI - potencijalno merljivi paramtri performansi ETF Beograd Performanse Računarskih Sistema 11

12 8.3 Opšti matematički model performansi računarskih sistema U opštem slučaju imamo nekakvu funkciju koja povezuje ove veličine (CP, WL i PI): F(CP,WL,PI)=0 F(CP,WL,MPI,PMPI)=0 Klase problema u modelovanju PRS-a 1. Analiza postojeceg računarskog sistema: poznajemo CP i WL treba odrediti PI=F a (CP,WL) predikcija performansi 2. Sinteza sistema poznato je WL, a zadajemo PI. Treba pronaći strukturu i parametre računarskog sistema koji ce za dato opterećenje dati tražen ene performanse: CP=Fs(WL,PI) 3. Optimizacija (podešavanje) sistema: pronaći one parametre konfiguracije CP opt takve da za dato opterećenje enje odgovarajući pokazatelji performansi budu bolji ( ) od pokazatelja performansi bilo koje druge konfiguracije iz skupa ostvarivih konfiguracija (AC) (allowable configuration AC) PI opt = F a (CPopt,WL) F a (CP,WL), CP AC, CPopt AC ETF Beograd Performanse Računarskih Sistema 12

13 8.3 Opšti matematički model performansi računarskih sistema 4. Izračunavanje potencijalno merljivih PI - PMPI: poznati su CP, WL i MPI i računamo PMPI=F (CP,WL,MPI) m 5. Testiranje (provera) konzistentnosti pretpostavki: sistem je sintetizovan na bazi pretpostavki, izmerimo merljive pokazatelje performansi, iz njih izvedemo PMPI. Zatim proveravamo da li se javljaju razlike izmedju postavljenih i dobijenih vrednosti (ako su bolji onda je dobro). Razlike se javljaju zbog loših pretpostavi. Računar se nalazi između ekonomskih sistema i električnih kola. 6. Analiza i karakterizacija opterećenja: poznati CP i PI trazimo WL=F w (CP,PI). Određujemo opterećenje enje WL koje u poznatom sistemu daje pretpostavljene pokazatelje performansi. Podešavanje ulaza u sistem. ETF Beograd Performanse Računarskih Sistema 13

14 8.4 Komponente, koncepti i klasifikacija sistema masovnog opsluživanja SMO Disciplina opsluživanja opslužni centar SMO Osnove stohastickih redova čekanja a prosečan interval vremena u dolasci odlasci kom dolaze novi poslovi Red čekanja S λ kapaciteta n μ λ -intenzitet prispeća zahteva u red (intenzitet ulaznog toka) λ = 1/a s srednje vreme opsluživanja zahtevi za obrađeni zahtevi opsluživanje korisnik μ - intenzitet opsluživanja broj zahteva koji u jedinici vremena opsluži server μ = 1/s x - intenzitet odlazaka (produktivnost) -mera kvaliteta sistema ETF Beograd Performanse Računarskih Sistema 14

15 8.4 Komponente, koncepti i klasifikacija sistema masovnog opsluživanja SMO Red čekanja ima dve osnovne karakteristike kapaciteta n disciplina opsluživanja zahteva Redosled opsluživanja ivanja: FCFS (FIFO) first in, first out LCFS (LIFO) last in, first out; RSS Random Selection Service PRIORITY- opsluživanje sa prioritetom, svaki zahtev nosi sa sobom prioritet Tok zahteva: ordinaran (prost) jedan po jedan neordinaran: u paketima ili u grupama ili rafalno Izlazni parametar SMO sistema je x - brzina kojom zahtevi napuštaju sistem ETF Beograd Performanse Računarskih Sistema 15

16 8.5 Označavanje (notacija) SMO A/S/c/n c/n/a /a oblik označavanja avanja SMO gde su: A(Arrival) - raspodela vremena izmedju prispeća zahteva za opsluživanje (normalna, Gausova, )- funkcija raspodele prispeća zahteva M eksponencijalna raspodela vremena između prispeća zahteva D konstantna raspodela vremena između prispeća zahteva G opšta ta(generalna generalna, neodređena đena) raspodela vremena između prispeća zahteva S (Service) raspodela vremena opsluživanja zahteva M eksponencijalna raspodela vreme opsluživanja D konstantno vreme opsluživanja (svi poslovi se opslužuju za podjednako vreme) G opšta (generaln generalna) a) raspodela r vremena opsluživanja ETF Beograd Performanse Računarskih Sistema 16

17 8.5 Označavanje (notacija) SMO c - (channels channels) broj kanala opsluživanja - koliko servera istovremeno opslužuje uje zahteve. Ako je to jedan server može se izostaviti (podrazumevana vrednost je 1) n - kapacitet reda čekanja - maksimalan broj poslova koji se može smestiti u red za čekanje (ako je kapacitet reda može se izostaviti, to je podrazumevana vrednost) a - disciplina opsluživanja (FCFS FCFS(FIFO FIFO), FCLS(LIFO LIFO), PRIORITY - prioritet, RSS -slučajna selekcija za opsluživanje). Podrazumevana vrednost je FCFS, ako se ne naglasi drugačije Primeri: M/M/1 D/M/3/20 ETF Beograd Performanse Računarskih Sistema 17

18 8.6 Tipovi SMO 1. Sistem sa jednim serverom (jednokanalni jednokanalni) λ x s λ [job/s][task/s] - intenzitet prispeća zahteva s [s] - vreme opsluživanja μ = 1/s [s¹ ] - intenzitet opsluživanja x - intenzitet kojim poslovi napuštaju sistem Jedan od najboljih j i najlakših pristupa p analizi dinamičkih sistema Kako ništa nije označeno podrazumevamo red za čekanje ETF Beograd Performanse Računarskih Sistema 18

19 8.6 Tipovi SMO 2. Sistem sa više servera (višekanalni) opslužni centar (sistem masovnog opsluživanja ivanja) Posmatramo c ekvivalentnih paralelnih servera (svi imaju isto μ ) Ukoliko μ nije isto za sve servere, pišemo S R je vreme odziva: R=T +s q T q je vreme provedeno u redu za čekanje λ Tq FCFS R μ μ... μ s 1 2 c ETF Beograd Performanse Računarskih Sistema 19

20 8.6 Tipovi SMO Pristupi serverima različite varijante: a) pristup se uvek pokušava polazeći od prvog servera pa do onog koji je slobodan b) pristupa se onom kanalu koji najduže čeka c) slučajan način pristupa kanalu Uravnotežavamoavamo iskorišć šćenost servera 3. Kolektor (sabirnica ) Kolektor predstavlja tačku povezivanja više tačaka, tačku u kojoj se stiču zahtevi λ 1 λ 2... λ λ k k λ = λ i i= 1 ETF Beograd Performanse Računarskih Sistema 20

21 8.6 Tipovi SMO 4. Element za grananje (razdelnik razdelnik) p1, p2 determinističke verovatnoće odlaska granama 1 i 2 respektivno p 1 p 1 λ λ 1 = λ p 1 p 1 2 λ λ λ 2 λ i = p i λ, i=1, 2,, k p i verovatnoća grananja λ 2 = p 2 λ p p 2 p k λ k k pi = 1 i= 1 p 1 + p 2 =1 ETF Beograd Performanse Računarskih Sistema 21

22 8.6 Tipovi SMO 5. Mreze SMO Ako 2 ili više opslužnih centara povežemoemo dobijamo mrežu. Podela mreža: otvorene Zatvorene Druga podela: bez povratne sprege sa povratnom spregom ETF Beograd Performanse Računarskih Sistema 22

23 8.6 Tipovi SMO Otvorene mreže: - Imaju ulaznu tačku (gde dolazi ulazni tok) - Imaju izlaznu tačku - Za sistem u ravnoteži ulazni i izlazni tok su istog intenziteta _ λ _ λ ETF Beograd Performanse Računarskih Sistema 23

24 8.6 Tipovi SMO Zatvorene mreže: - Nemaju ulaznu ni izlaznu tačku - Ima konstantan broj zahteva (korisnika) u mreži - Stepen multiprogramiranja je konstantan ETF Beograd Performanse Računarskih Sistema 24

25 8.7 Kvantitativna analiza osnovnih SMO računarskih sistema 1. Terminali z vreme razmišljanja terminala. Sa porastom broja korisnika opada vreme razmišljanja j Terminal je predstaljen vremenom kašnjenja (razmišljanja), j pretpostamo t da svaki korisnik ima svoj terminal tako da ne postoji red za čekanje, ni pojedinačni ni zajednički z z... z T 1 T 2 T n ETF Beograd Performanse Računarskih Sistema 25

26 8.7 Kvantitativna analiza osnovnih SMO računarskih sistema 2. Paketska (batch) obrada prispeli poslovi se razvrstavaju uredove za čekanje po prioritetima HPQ high priority queue -red višeg prioriteta MPQ medium priority queue red srednjeg prioriteta LPQ lowpriority queue red niskog prioriteta Unutar redova je raspoređivanje po principu FCFS Zahtev iz HPQ nikad ne ide na MPQ ili LPQ FCFS HPQ MPQ LPQ ETF Beograd Performanse Računarskih Sistema 26

27 8.7 Kvantitativna analiza osnovnih SMO računarskih sistema 3. Procesor (CPU) CP 1 Proceseor queue PQ t p t p CP 2... t p CP k ETF Beograd Performanse Računarskih Sistema 27

28 8.7 Kvantitativna analiza osnovnih SMO računarskih sistema 4. Procesor kvantum vremena je istekao PQ q Ako procesor svaki proces opslužujeuje sa vremenskim kvantumom q, po isteku tog q, ako se proces ne završi, vraća a se u PQ (Round Robin) ETF Beograd Performanse Računarskih Sistema 28

29 8.7 Kvantitativna analiza osnovnih SMO računarskih sistema 5. Diskovi p 1 D t 1 d DQ 1 p 2 DQ k t d D 2 p k DQ k t d D k ETF Beograd Performanse Računarskih Sistema 29

30 8.7 Kvantitativna analiza osnovnih SMO računarskih sistema 6. Diskovi sa malim DQ 1 t d D 1 t d D 2... t d D k Skup više neekvivalentnih paralelnih servera. Ako je dužina reda za čekanje diska Dq 1 (diskovi sa malim čekanjem) smanjuje se čekanje u redu (Tq 0) tj. vreme opsluživanja je kraće (malo vreme čekanja na pristup disku) ETF Beograd Performanse Računarskih Sistema 30

31 8.8 Osnovni SMO model računarskog sistema sa dijagramom prelaza stanja nasilno izbacivanje zahteva u cilju rasterećenja sistema DAQ zauzet nedeljivi dljiiresurs istekao kvant vremena HP HP CP 1 opsluženi poslovi MP LP LP stanja: [HOLD] [READY] [RUN] Disciplina opsluživanja memorije Disciplina Disciplina opsluživanja diskova opsluživanja diskova D 1 D 2 MP T T MT DQ 1 DQ 2 CP 2 terminali diskovi magnetne trake Disciplina opsluživanja procesora [WAIT] DAQ Device Allocation Queue MT P štampači P ETF Beograd Performanse Računarskih Sistema 31

32 8.8 Osnovni SMO model računarskog sistema sa dijagramom prelaza stanja Grube zamene: 1. Batch (paketska paketska) obrada BQ S S je reprezent svih opslužilaca za paketsku obradu BQ red poslova koji čekaju na paketsku obradu ETF Beograd Performanse Računarskih Sistema 32

33 8.8 Osnovni SMO model računarskog sistema sa dijagramom prelaza stanja 2. Ciklični model paketske obrade CP 1 PQ... CP n D 1 D m... DQ ETF Beograd Performanse Računarskih Sistema 33

34 8.8 Osnovni SMO model računarskog sistema sa dijagramom prelaza stanja 3. Model multiprogramiranja sa centralnim serverom erom PQ CP p 1 DQ 1 p 1 1 D 1 p 1... CP ima ulogu centralnog servera DQ k D k p k ETF Beograd Performanse Računarskih Sistema 34

35 8.8 Osnovni SMO model računarskog sistema sa dijagramom prelaza stanja 4. Interaktivni ni sistemi z... z T 1 T n PQ CP ETF Beograd Performanse Računarskih Sistema 35

36 8.8 Osnovni SMO model računarskog sistema sa dijagramom prelaza stanja 5. Model interaktivnog sistema sa centralnim serverom z z CP PQ z D 1 D k z DQ 1 z... DQ k ETF Beograd Performanse Računarskih Sistema 36

Elektrotehnički fakultet univerziteta u Beogradu 17.maj Odsek za Softversko inžinjerstvo

Elektrotehnički fakultet univerziteta u Beogradu 17.maj Odsek za Softversko inžinjerstvo Elektrotehnički fakultet univerziteta u Beogradu 7.maj 009. Odsek za Softversko inžinjerstvo Performanse računarskih sistema Drugi kolokvijum Predmetni nastavnik: dr Jelica Protić (35) a) (0) Posmatra

Διαβάστε περισσότερα

Elektrotehnički fakultet univerziteta u Beogradu 16.maj Odsek za Softversko inžinjerstvo

Elektrotehnički fakultet univerziteta u Beogradu 16.maj Odsek za Softversko inžinjerstvo Elektrotehnčk fakultet unverzteta u Beogradu 6.maj 8. Odsek za Softversko nžnjerstvo Performanse računarskh sstema Drug kolokvjum Predmetn nastavnk: dr Jelca Protć (35) a) () Posmatra se segment od N uzastonh

Διαβάστε περισσότερα

12. Zatvorene mreže (definicija)

12. Zatvorene mreže (definicija) 2. Zatvorene mreže (definicija). Zatvorena mreža : Mreža u kojoj j je broj poslova konstantan n =const - stepen multiprogramiranja Koliko poslova uđe u mrežu, toliko istovremeno i izađe (kada se jedan

Διαβάστε περισσότερα

UNIVERZITET U NIŠU ELEKTRONSKI FAKULTET SIGNALI I SISTEMI. Zbirka zadataka

UNIVERZITET U NIŠU ELEKTRONSKI FAKULTET SIGNALI I SISTEMI. Zbirka zadataka UNIVERZITET U NIŠU ELEKTRONSKI FAKULTET Goran Stančić SIGNALI I SISTEMI Zbirka zadataka NIŠ, 014. Sadržaj 1 Konvolucija Literatura 11 Indeks pojmova 11 3 4 Sadržaj 1 Konvolucija Zadatak 1. Odrediti konvoluciju

Διαβάστε περισσότερα

Otvorene mreže. Zadatak 1

Otvorene mreže. Zadatak 1 Otvorene mreže Zadatak Na slici je data otvorena mreža u kojoj je rocesor centralni server. Prosečan intenzitet ulaznog toka rocesa u sistem iznosi X rocesa/sec. Posle rocesorske obrade, roces u % slučajeva

Διαβάστε περισσότερα

DISKRETNA MATEMATIKA - PREDAVANJE 7 - Jovanka Pantović

DISKRETNA MATEMATIKA - PREDAVANJE 7 - Jovanka Pantović DISKRETNA MATEMATIKA - PREDAVANJE 7 - Jovanka Pantović Novi Sad April 17, 2018 1 / 22 Teorija grafova April 17, 2018 2 / 22 Definicija Graf je ure dena trojka G = (V, G, ψ), gde je (i) V konačan skup čvorova,

Διαβάστε περισσότερα

Ispitivanje toka i skiciranje grafika funkcija

Ispitivanje toka i skiciranje grafika funkcija Ispitivanje toka i skiciranje grafika funkcija Za skiciranje grafika funkcije potrebno je ispitati svako od sledećih svojstava: Oblast definisanosti: D f = { R f R}. Parnost, neparnost, periodičnost. 3

Διαβάστε περισσότερα

Operaciona analiza. 15. Operaciona analiza Operacioni modeli računarskih sistema. Analiza koja se sprovodi pomoću merljivih veličina na konačnom

Operaciona analiza. 15. Operaciona analiza Operacioni modeli računarskih sistema. Analiza koja se sprovodi pomoću merljivih veličina na konačnom 15. Operaciona analiza Operacioni modeli računarskih sistema Operaciona analiza Analiza koja se sprovodi pomoću merljivih veličina na konačnom vremenskom intervalu (za razliku od stohastičkih sistema gde

Διαβάστε περισσότερα

5. Karakteristične funkcije

5. Karakteristične funkcije 5. Karakteristične funkcije Profesor Milan Merkle emerkle@etf.rs milanmerkle.etf.rs Verovatnoća i Statistika-proleće 2018 Milan Merkle Karakteristične funkcije ETF Beograd 1 / 10 Definicija Karakteristična

Διαβάστε περισσότερα

Osnovni primer. (Z, +,,, 0, 1) je komutativan prsten sa jedinicom: množenje je distributivno prema sabiranju

Osnovni primer. (Z, +,,, 0, 1) je komutativan prsten sa jedinicom: množenje je distributivno prema sabiranju RAČUN OSTATAKA 1 1 Prsten celih brojeva Z := N + {} N + = {, 3, 2, 1,, 1, 2, 3,...} Osnovni primer. (Z, +,,,, 1) je komutativan prsten sa jedinicom: sabiranje (S1) asocijativnost x + (y + z) = (x + y)

Διαβάστε περισσότερα

Iskazna logika 3. Matematička logika u računarstvu. novembar 2012

Iskazna logika 3. Matematička logika u računarstvu. novembar 2012 Iskazna logika 3 Matematička logika u računarstvu Department of Mathematics and Informatics, Faculty of Science,, Serbia novembar 2012 Deduktivni sistemi 1 Definicija Deduktivni sistem (ili formalna teorija)

Διαβάστε περισσότερα

Apsolutno neprekidne raspodele Raspodele apsolutno neprekidnih sluqajnih promenljivih nazivaju se apsolutno neprekidnim raspodelama.

Apsolutno neprekidne raspodele Raspodele apsolutno neprekidnih sluqajnih promenljivih nazivaju se apsolutno neprekidnim raspodelama. Apsolutno neprekidne raspodele Raspodele apsolutno neprekidnih sluqajnih promenljivih nazivaju se apsolutno neprekidnim raspodelama. a b Verovatno a da sluqajna promenljiva X uzima vrednost iz intervala

Διαβάστε περισσότερα

IZRAČUNAVANJE POKAZATELJA NAČINA RADA NAČINA RADA (ISKORIŠĆENOSTI KAPACITETA, STEPENA OTVORENOSTI RADNIH MESTA I NIVOA ORGANIZOVANOSTI)

IZRAČUNAVANJE POKAZATELJA NAČINA RADA NAČINA RADA (ISKORIŠĆENOSTI KAPACITETA, STEPENA OTVORENOSTI RADNIH MESTA I NIVOA ORGANIZOVANOSTI) IZRAČUNAVANJE POKAZATELJA NAČINA RADA NAČINA RADA (ISKORIŠĆENOSTI KAPACITETA, STEPENA OTVORENOSTI RADNIH MESTA I NIVOA ORGANIZOVANOSTI) Izračunavanje pokazatelja načina rada OTVORENOG RM RASPOLOŽIVO RADNO

Διαβάστε περισσότερα

numeričkih deskriptivnih mera.

numeričkih deskriptivnih mera. DESKRIPTIVNA STATISTIKA Numeričku seriju podataka opisujemo pomoću Numeričku seriju podataka opisujemo pomoću numeričkih deskriptivnih mera. Pokazatelji centralne tendencije Aritmetička sredina, Medijana,

Διαβάστε περισσότερα

Verovatnoća i Statistika I deo Teorija verovatnoće (zadaci) Beleške dr Bobana Marinkovića

Verovatnoća i Statistika I deo Teorija verovatnoće (zadaci) Beleške dr Bobana Marinkovića Verovatnoća i Statistika I deo Teorija verovatnoće zadaci Beleške dr Bobana Marinkovića Iz skupa, 2,, 00} bira se na slučajan način 5 brojeva Odrediti skup elementarnih dogadjaja ako se brojevi biraju

Διαβάστε περισσότερα

Elementi spektralne teorije matrica

Elementi spektralne teorije matrica Elementi spektralne teorije matrica Neka je X konačno dimenzionalan vektorski prostor nad poljem K i neka je A : X X linearni operator. Definicija. Skalar λ K i nenula vektor u X se nazivaju sopstvena

Διαβάστε περισσότερα

3.1 Granična vrednost funkcije u tački

3.1 Granična vrednost funkcije u tački 3 Granična vrednost i neprekidnost funkcija 2 3 Granična vrednost i neprekidnost funkcija 3. Granična vrednost funkcije u tački Neka je funkcija f(x) definisana u tačkama x za koje je 0 < x x 0 < r, ili

Διαβάστε περισσότερα

ELEKTROTEHNIČKI ODJEL

ELEKTROTEHNIČKI ODJEL MATEMATIKA. Neka je S skup svih živućih državljana Republike Hrvatske..04., a f preslikavanje koje svakom elementu skupa S pridružuje njegov horoskopski znak (bez podznaka). a) Pokažite da je f funkcija,

Διαβάστε περισσότερα

Operacije s matricama

Operacije s matricama Linearna algebra I Operacije s matricama Korolar 3.1.5. Množenje matrica u vektorskom prostoru M n (F) ima sljedeća svojstva: (1) A(B + C) = AB + AC, A, B, C M n (F); (2) (A + B)C = AC + BC, A, B, C M

Διαβάστε περισσότερα

II-Jezgro operativnog sistema S A D R Ž A J 3.1

II-Jezgro operativnog sistema S A D R Ž A J 3.1 II-Jezgro operativnog sistema S A D R Ž A J 3.1 Raspoređivanje procesa i dodela procesora 3.2 Algoritmi za dodelu procesora 3.3 Raspoređivanje u više redova čekanja 3.4 Real Time sheduling algoritmi 3.5

Διαβάστε περισσότερα

MATRICE I DETERMINANTE - formule i zadaci - (Matrice i determinante) 1 / 15

MATRICE I DETERMINANTE - formule i zadaci - (Matrice i determinante) 1 / 15 MATRICE I DETERMINANTE - formule i zadaci - (Matrice i determinante) 1 / 15 Matrice - osnovni pojmovi (Matrice i determinante) 2 / 15 (Matrice i determinante) 2 / 15 Matrice - osnovni pojmovi Matrica reda

Διαβάστε περισσότερα

Zavrxni ispit iz Matematiqke analize 1

Zavrxni ispit iz Matematiqke analize 1 Građevinski fakultet Univerziteta u Beogradu 3.2.2016. Zavrxni ispit iz Matematiqke analize 1 Prezime i ime: Broj indeksa: 1. Definisati Koxijev niz. Dati primer niza koji nije Koxijev. 2. Dat je red n=1

Διαβάστε περισσότερα

Teorijske osnove informatike 1

Teorijske osnove informatike 1 Teorijske osnove informatike 1 9. oktobar 2014. () Teorijske osnove informatike 1 9. oktobar 2014. 1 / 17 Funkcije Veze me du skupovima uspostavljamo skupovima koje nazivamo funkcijama. Neformalno, funkcija

Διαβάστε περισσότερα

INTELIGENTNO UPRAVLJANJE

INTELIGENTNO UPRAVLJANJE INTELIGENTNO UPRAVLJANJE Fuzzy sistemi zaključivanja Vanr.prof. Dr. Lejla Banjanović-Mehmedović Mehmedović 1 Osnovni elementi fuzzy sistema zaključivanja Fazifikacija Baza znanja Baze podataka Baze pravila

Διαβάστε περισσότερα

Pismeni ispit iz matematike GRUPA A 1. Napisati u trigonometrijskom i eksponencijalnom obliku kompleksni broj, zatim naći 4 z.

Pismeni ispit iz matematike GRUPA A 1. Napisati u trigonometrijskom i eksponencijalnom obliku kompleksni broj, zatim naći 4 z. Pismeni ispit iz matematike 06 007 Napisati u trigonometrijskom i eksponencijalnom obliku kompleksni broj z = + i, zatim naći z Ispitati funkciju i nacrtati grafik : = ( ) y e + 6 Izračunati integral:

Διαβάστε περισσότερα

PARCIJALNI IZVODI I DIFERENCIJALI. Sama definicija parcijalnog izvoda i diferencijala je malo teža, mi se njome ovde nećemo baviti a vi ćete je,

PARCIJALNI IZVODI I DIFERENCIJALI. Sama definicija parcijalnog izvoda i diferencijala je malo teža, mi se njome ovde nećemo baviti a vi ćete je, PARCIJALNI IZVODI I DIFERENCIJALI Sama definicija parcijalnog ivoda i diferencijala je malo teža, mi se njome ovde nećemo baviti a vi ćete je, naravno, naučiti onako kako vaš profesor ahteva. Mi ćemo probati

Διαβάστε περισσότερα

M086 LA 1 M106 GRP. Tema: Baza vektorskog prostora. Koordinatni sustav. Norma. CSB nejednakost

M086 LA 1 M106 GRP. Tema: Baza vektorskog prostora. Koordinatni sustav. Norma. CSB nejednakost M086 LA 1 M106 GRP Tema: CSB nejednakost. 19. 10. 2017. predavač: Rudolf Scitovski, Darija Marković asistent: Darija Brajković, Katarina Vincetić P 1 www.fizika.unios.hr/grpua/ 1 Baza vektorskog prostora.

Διαβάστε περισσότερα

PRAVA. Prava je u prostoru određena jednom svojom tačkom i vektorom paralelnim sa tom pravom ( vektor paralelnosti).

PRAVA. Prava je u prostoru određena jednom svojom tačkom i vektorom paralelnim sa tom pravom ( vektor paralelnosti). PRAVA Prava je kao i ravan osnovni geometrijski ojam i ne definiše se. Prava je u rostoru određena jednom svojom tačkom i vektorom aralelnim sa tom ravom ( vektor aralelnosti). M ( x, y, z ) 3 Posmatrajmo

Διαβάστε περισσότερα

2 tg x ctg x 1 = =, cos 2x Zbog četvrtog kvadranta rješenje je: 2 ctg x

2 tg x ctg x 1 = =, cos 2x Zbog četvrtog kvadranta rješenje je: 2 ctg x Zadatak (Darjan, medicinska škola) Izračunaj vrijednosti trigonometrijskih funkcija broja ako je 6 sin =,,. 6 Rješenje Ponovimo trigonometrijske funkcije dvostrukog kuta! Za argument vrijede sljedeće formule:

Διαβάστε περισσότερα

KVADRATNA FUNKCIJA. Kvadratna funkcija je oblika: Kriva u ravni koja predstavlja grafik funkcije y = ax + bx + c. je parabola.

KVADRATNA FUNKCIJA. Kvadratna funkcija je oblika: Kriva u ravni koja predstavlja grafik funkcije y = ax + bx + c. je parabola. KVADRATNA FUNKCIJA Kvadratna funkcija je oblika: = a + b + c Gde je R, a 0 i a, b i c su realni brojevi. Kriva u ravni koja predstavlja grafik funkcije = a + b + c je parabola. Najpre ćemo naučiti kako

Διαβάστε περισσότερα

SISTEMI NELINEARNIH JEDNAČINA

SISTEMI NELINEARNIH JEDNAČINA SISTEMI NELINEARNIH JEDNAČINA April, 2013 Razni zapisi sistema Skalarni oblik: Vektorski oblik: F = f 1 f n f 1 (x 1,, x n ) = 0 f n (x 1,, x n ) = 0, x = (1) F(x) = 0, (2) x 1 0, 0 = x n 0 Definicije

Διαβάστε περισσότερα

3. Performanse operativne memorije. Sistema

3. Performanse operativne memorije. Sistema 3. Performanse operativne memorije Dva osnovna aspekta koja razmatramo: brzina i iskorišćenje Nije bitan samo fizički kapacitet memorije, nego nam je od značaja i efektivni adresni prostor -to je prostor

Διαβάστε περισσότερα

IZVODI ZADACI (I deo)

IZVODI ZADACI (I deo) IZVODI ZADACI (I deo) Najpre da se podsetimo tablice i osnovnih pravila:. C`=0. `=. ( )`= 4. ( n )`=n n-. (a )`=a lna 6. (e )`=e 7. (log a )`= 8. (ln)`= ` ln a (>0) 9. = ( 0) 0. `= (>0) (ovde je >0 i a

Διαβάστε περισσότερα

XI dvoqas veжbi dr Vladimir Balti. 4. Stabla

XI dvoqas veжbi dr Vladimir Balti. 4. Stabla XI dvoqas veжbi dr Vladimir Balti 4. Stabla Teorijski uvod Teorijski uvod Definicija 5.7.1. Stablo je povezan graf bez kontura. Definicija 5.7.1. Stablo je povezan graf bez kontura. Primer 5.7.1. Sva stabla

Διαβάστε περισσότερα

Kontrolni zadatak (Tačka, prava, ravan, diedar, poliedar, ortogonalna projekcija), grupa A

Kontrolni zadatak (Tačka, prava, ravan, diedar, poliedar, ortogonalna projekcija), grupa A Kontrolni zadatak (Tačka, prava, ravan, diedar, poliedar, ortogonalna projekcija), grupa A Ime i prezime: 1. Prikazane su tačke A, B i C i prave a,b i c. Upiši simbole Î, Ï, Ì ili Ë tako da dobijeni iskazi

Διαβάστε περισσότερα

Kaskadna kompenzacija SAU

Kaskadna kompenzacija SAU Kaskadna kompenzacija SAU U inženjerskoj praksi, naročito u sistemima regulacije elektromotornih pogona i tehnoloških procesa, veoma često se primenjuje metoda kaskadne kompenzacije, u čijoj osnovi su

Διαβάστε περισσότερα

radni nerecenzirani materijal za predavanja R(f) = {f(x) x D}

radni nerecenzirani materijal za predavanja R(f) = {f(x) x D} Matematika 1 Funkcije radni nerecenzirani materijal za predavanja Definicija 1. Neka su D i K bilo koja dva neprazna skupa. Postupak f koji svakom elementu x D pridružuje točno jedan element y K zovemo funkcija

Διαβάστε περισσότερα

Pismeni ispit iz matematike Riješiti sistem jednačina i diskutovati rješenja sistema u zavisnosti od parametra: ( ) + 1.

Pismeni ispit iz matematike Riješiti sistem jednačina i diskutovati rješenja sistema u zavisnosti od parametra: ( ) + 1. Pismeni ispit iz matematike 0 008 GRUPA A Riješiti sistem jednačina i diskutovati rješenja sistema u zavisnosti od parametra: λ + z = Ispitati funkciju i nacrtati njen grafik: + ( λ ) + z = e Izračunati

Διαβάστε περισσότερα

IspitivaƬe funkcija: 1. Oblast definisanosti funkcije (ili domen funkcije) D f

IspitivaƬe funkcija: 1. Oblast definisanosti funkcije (ili domen funkcije) D f IspitivaƬe funkcija: 1. Oblast definisanosti funkcije (ili domen funkcije) D f IspitivaƬe funkcija: 1. Oblast definisanosti funkcije (ili domen funkcije) D f 2. Nule i znak funkcije; presek sa y-osom IspitivaƬe

Διαβάστε περισσότερα

PID: Domen P je glavnoidealski [PID] akko svaki ideal u P je glavni (generisan jednim elementom; oblika ap := {ab b P }, za neko a P ).

PID: Domen P je glavnoidealski [PID] akko svaki ideal u P je glavni (generisan jednim elementom; oblika ap := {ab b P }, za neko a P ). 0.1 Faktorizacija: ID, ED, PID, ND, FD, UFD Definicija. Najava pojmova: [ID], [ED], [PID], [ND], [FD] i [UFD]. ID: Komutativan prsten P, sa jedinicom 1 0, je integralni domen [ID] oblast celih), ili samo

Διαβάστε περισσότερα

Strukture podataka i algoritmi 1. kolokvij 16. studenog Zadatak 1

Strukture podataka i algoritmi 1. kolokvij 16. studenog Zadatak 1 Strukture podataka i algoritmi 1. kolokvij Na kolokviju je dozvoljeno koristiti samo pribor za pisanje i službeni šalabahter. Predajete samo papire koje ste dobili. Rezultati i uvid u kolokvije: ponedjeljak,

Διαβάστε περισσότερα

APROKSIMACIJA FUNKCIJA

APROKSIMACIJA FUNKCIJA APROKSIMACIJA FUNKCIJA Osnovni koncepti Gradimir V. Milovanović MF, Beograd, 14. mart 2011. APROKSIMACIJA FUNKCIJA p.1/46 Osnovni problem u TA Kako za datu funkciju f iz velikog prostora X naći jednostavnu

Διαβάστε περισσότερα

KOMUTATIVNI I ASOCIJATIVNI GRUPOIDI. NEUTRALNI ELEMENT GRUPOIDA.

KOMUTATIVNI I ASOCIJATIVNI GRUPOIDI. NEUTRALNI ELEMENT GRUPOIDA. KOMUTATIVNI I ASOCIJATIVNI GRUPOIDI NEUTRALNI ELEMENT GRUPOIDA 1 Grupoid (G, ) je asocijativa akko važi ( x, y, z G) x (y z) = (x y) z Grupoid (G, ) je komutativa akko važi ( x, y G) x y = y x Asocijativa

Διαβάστε περισσότερα

Betonske konstrukcije 1 - vežbe 3 - Veliki ekscentricitet -Dodatni primeri

Betonske konstrukcije 1 - vežbe 3 - Veliki ekscentricitet -Dodatni primeri Betonske konstrukcije 1 - vežbe 3 - Veliki ekscentricitet -Dodatni primeri 1 1 Zadatak 1b Čisto savijanje - vezano dimenzionisanje Odrediti potrebnu površinu armature za presek poznatih dimenzija, pravougaonog

Διαβάστε περισσότερα

Zadaci sa prethodnih prijemnih ispita iz matematike na Beogradskom univerzitetu

Zadaci sa prethodnih prijemnih ispita iz matematike na Beogradskom univerzitetu Zadaci sa prethodnih prijemnih ispita iz matematike na Beogradskom univerzitetu Trigonometrijske jednačine i nejednačine. Zadaci koji se rade bez upotrebe trigonometrijskih formula. 00. FF cos x sin x

Διαβάστε περισσότερα

Dvanaesti praktikum iz Analize 1

Dvanaesti praktikum iz Analize 1 Dvaaesti praktikum iz Aalize Zlatko Lazovi 20. decembar 206.. Dokazati da fukcija f = 5 l tg + 5 ima bar jedu realu ulu. Ree e. Oblast defiisaosti fukcije je D f = k Z da postoji ula fukcije a 0, π 2.

Διαβάστε περισσότερα

III VEŽBA: FURIJEOVI REDOVI

III VEŽBA: FURIJEOVI REDOVI III VEŽBA: URIJEOVI REDOVI 3.1. eorijska osnova Posmatrajmo neki vremenski kontinualan signal x(t) na intervalu definisati: t + t t. ada se može X [ k ] = 1 t + t x ( t ) e j 2 π kf t dt, gde je f = 1/.

Διαβάστε περισσότερα

1. zadatak , 3 Dakle, sva kompleksna re{ewa date jedna~ine su x 1 = x 2 = 1 (dvostruko re{ewe), x 3 = 1 + i

1. zadatak , 3 Dakle, sva kompleksna re{ewa date jedna~ine su x 1 = x 2 = 1 (dvostruko re{ewe), x 3 = 1 + i PRIPREMA ZA II PISMENI IZ ANALIZE SA ALGEBROM. zadatak Re{avawe algebarskih jedna~ina tre}eg i ~etvrtog stepena. U skupu kompleksnih brojeva re{iti jedna~inu: a x 6x + 9 = 0; b x + 9x 2 + 8x + 28 = 0;

Διαβάστε περισσότερα

Osnovne teoreme diferencijalnog računa

Osnovne teoreme diferencijalnog računa Osnovne teoreme diferencijalnog računa Teorema Rolova) Neka je funkcija f definisana na [a, b], pri čemu važi f je neprekidna na [a, b], f je diferencijabilna na a, b) i fa) fb). Tada postoji ξ a, b) tako

Διαβάστε περισσότερα

41. Jednačine koje se svode na kvadratne

41. Jednačine koje se svode na kvadratne . Jednačine koje se svode na kvadrane Simerične recipročne) jednačine Jednačine oblika a n b n c n... c b a nazivamo simerične jednačine, zbog simeričnosi koeficijenaa koeficijeni uz jednaki). k i n k

Διαβάστε περισσότερα

10. STABILNOST KOSINA

10. STABILNOST KOSINA MEHANIKA TLA: Stabilnot koina 101 10. STABILNOST KOSINA 10.1 Metode proračuna koina Problem analize tabilnoti zemljanih maa vodi e na određivanje odnoa između rapoložive mičuće čvrtoće i proečnog mičućeg

Διαβάστε περισσότερα

a M a A. Može se pokazati da je supremum (ako postoji) jedinstven pa uvodimo oznaku sup A.

a M a A. Može se pokazati da je supremum (ako postoji) jedinstven pa uvodimo oznaku sup A. 3 Infimum i supremum Definicija. Neka je A R. Kažemo da je M R supremum skupa A ako je (i) M gornja meda skupa A, tj. a M a A. (ii) M najmanja gornja meda skupa A, tj. ( ε > 0)( a A) takav da je a > M

Διαβάστε περισσότερα

Klasifikacija blizu Kelerovih mnogostrukosti. konstantne holomorfne sekcione krivine. Kelerove. mnogostrukosti. blizu Kelerove.

Klasifikacija blizu Kelerovih mnogostrukosti. konstantne holomorfne sekcione krivine. Kelerove. mnogostrukosti. blizu Kelerove. Klasifikacija blizu Teorema Neka je M Kelerova mnogostrukost. Operator krivine R ima sledeća svojstva: R(X, Y, Z, W ) = R(Y, X, Z, W ) = R(X, Y, W, Z) R(X, Y, Z, W ) + R(Y, Z, X, W ) + R(Z, X, Y, W ) =

Διαβάστε περισσότερα

Interaktivni sistemi nastavak

Interaktivni sistemi nastavak Interaktivni sistemi nastavak Zadatak Jednoprocesorski računar obrađue smesu programa koi dominantno koriste procesor. Kada nema aktivnih terminala obrada smese trae 40s. Kada se u sistem vežu dva terminala,

Διαβάστε περισσότερα

Računarska grafika. Rasterizacija linije

Računarska grafika. Rasterizacija linije Računarska grafika Osnovni inkrementalni algoritam Drugi naziv u literaturi digitalni diferencijalni analizator (DDA) Pretpostavke (privremena ograničenja koja se mogu otkloniti jednostavnim uopštavanjem

Διαβάστε περισσότερα

7 Algebarske jednadžbe

7 Algebarske jednadžbe 7 Algebarske jednadžbe 7.1 Nultočke polinoma Skup svih polinoma nad skupom kompleksnih brojeva označavamo sa C[x]. Definicija. Nultočka polinoma f C[x] je svaki kompleksni broj α takav da je f(α) = 0.

Διαβάστε περισσότερα

Konstruisati efikasan algoritam znači dati skup preciznih uputstava kako doći do rešenja zadatog problema Algoritmi se mogu opisivati:

Konstruisati efikasan algoritam znači dati skup preciznih uputstava kako doći do rešenja zadatog problema Algoritmi se mogu opisivati: Staša Vujičić Konstruisati efikasan algoritam znači dati skup preciznih uputstava kako doći do rešenja zadatog problema Algoritmi se mogu opisivati: pseudo jezikom prirodnim jezikom dijagramom toka. 2

Διαβάστε περισσότερα

KVADRATNA FUNKCIJA. Kvadratna funkcija je oblika: Kriva u ravni koja predstavlja grafik funkcije y = ax + bx + c. je parabola.

KVADRATNA FUNKCIJA.   Kvadratna funkcija je oblika: Kriva u ravni koja predstavlja grafik funkcije y = ax + bx + c. je parabola. KVADRATNA FUNKCIJA Kvadratna funkcija je oblika: a + b + c Gde je R, a 0 i a, b i c su realni brojevi. Kriva u ravni koja predstavlja grafik funkcije a + b + c je parabola. Najpre ćemo naučiti kako izgleda

Διαβάστε περισσότερα

MATEMATIKA 2. Grupa 1 Rexea zadataka. Prvi pismeni kolokvijum, Dragan ori

MATEMATIKA 2. Grupa 1 Rexea zadataka. Prvi pismeni kolokvijum, Dragan ori MATEMATIKA 2 Prvi pismeni kolokvijum, 14.4.2016 Grupa 1 Rexea zadataka Dragan ori Zadaci i rexea 1. unkcija f : R 2 R definisana je sa xy 2 f(x, y) = x2 + y sin 3 2 x 2, (x, y) (0, 0) + y2 0, (x, y) =

Διαβάστε περισσότερα

FTN Novi Sad Katedra za motore i vozila. Teorija kretanja drumskih vozila Vučno-dinamičke performanse vozila: MAKSIMALNA BRZINA

FTN Novi Sad Katedra za motore i vozila. Teorija kretanja drumskih vozila Vučno-dinamičke performanse vozila: MAKSIMALNA BRZINA : MAKSIMALNA BRZINA Maksimalna brzina kretanja F O (N) F OI i m =i I i m =i II F Oid Princip određivanja v MAX : Drugi Njutnov zakon Dokle god je: F O > ΣF otp vozilo ubrzava Kada postane: F O = ΣF otp

Διαβάστε περισσότερα

( , treći kolokvij) 3. Na dite lokalne ekstreme funkcije z = x 4 + y 4 2x 2 + 2y 2 3. (20 bodova)

( , treći kolokvij) 3. Na dite lokalne ekstreme funkcije z = x 4 + y 4 2x 2 + 2y 2 3. (20 bodova) A MATEMATIKA (.6.., treći kolokvij. Zadana je funkcija z = e + + sin(. Izračunajte a z (,, b z (,, c z.. Za funkciju z = 3 + na dite a diferencijal dz, b dz u točki T(, za priraste d =. i d =.. c Za koliko

Διαβάστε περισσότερα

RAČUNSKE VEŽBE IZ PREDMETA POLUPROVODNIČKE KOMPONENTE (IV semestar modul EKM) IV deo. Miloš Marjanović

RAČUNSKE VEŽBE IZ PREDMETA POLUPROVODNIČKE KOMPONENTE (IV semestar modul EKM) IV deo. Miloš Marjanović Univerzitet u Nišu Elektronski fakultet RAČUNSKE VEŽBE IZ PREDMETA (IV semestar modul EKM) IV deo Miloš Marjanović MOSFET TRANZISTORI ZADATAK 35. NMOS tranzistor ima napon praga V T =2V i kroz njega protiče

Διαβάστε περισσότερα

MEHANIKA FLUIDA. Prosti cevovodi

MEHANIKA FLUIDA. Prosti cevovodi MEHANIKA FLUIDA Prosti ceooi zaatak Naći brzin oe kroz naglaak izlaznog prečnika =5 mm, postaljenog na kraj gmenog crea prečnika D=0 mm i žine L=5 m na čijem je prenjem el građen entil koeficijenta otpora

Διαβάστε περισσότερα

STATIČKE KARAKTERISTIKE DIODA I TRANZISTORA

STATIČKE KARAKTERISTIKE DIODA I TRANZISTORA Katedra za elektroniku Elementi elektronike Laboratorijske vežbe Vežba br. 2 STATIČKE KARAKTERISTIKE DIODA I TRANZISTORA Datum: Vreme: Studenti: 1. grupa 2. grupa Dežurni: Ocena: Elementi elektronike -

Διαβάστε περισσότερα

RIJEŠENI ZADACI I TEORIJA IZ

RIJEŠENI ZADACI I TEORIJA IZ RIJEŠENI ZADACI I TEORIJA IZ LOGARITAMSKA FUNKCIJA SVOJSTVA LOGARITAMSKE FUNKCIJE OSNOVE TRIGONOMETRIJE PRAVOKUTNOG TROKUTA - DEFINICIJA TRIGONOMETRIJSKIH FUNKCIJA - VRIJEDNOSTI TRIGONOMETRIJSKIH FUNKCIJA

Διαβάστε περισσότερα

Matematika 1 - vježbe. 11. prosinca 2015.

Matematika 1 - vježbe. 11. prosinca 2015. Matematika - vježbe. prosinca 5. Stupnjevi i radijani Ako je kut φ jednak i rad, tada je veza između i 6 = Zadatak.. Izrazite u stupnjevima: a) 5 b) 7 9 c). d) 7. a) 5 9 b) 7 6 6 = = 5 c). 6 8.5 d) 7.

Διαβάστε περισσότερα

5 Ispitivanje funkcija

5 Ispitivanje funkcija 5 Ispitivanje funkcija 3 5 Ispitivanje funkcija Ispitivanje funkcije pretodi crtanju grafika funkcije. Opšti postupak ispitivanja funkcija koje su definisane eksplicitno y = f() sadrži sledeće elemente:

Διαβάστε περισσότερα

I.13. Koliki je napon između neke tačke A čiji je potencijal 5 V i referentne tačke u odnosu na koju se taj potencijal računa?

I.13. Koliki je napon između neke tačke A čiji je potencijal 5 V i referentne tačke u odnosu na koju se taj potencijal računa? TET I.1. Šta je Kulonova sila? elektrostatička sila magnetna sila c) gravitaciona sila I.. Šta je elektrostatička sila? sila kojom međusobno eluju naelektrisanja u mirovanju sila kojom eluju naelektrisanja

Διαβάστε περισσότερα

Konstruisanje. Dobro došli na... SREDNJA MAŠINSKA ŠKOLA NOVI SAD DEPARTMAN ZA PROJEKTOVANJE I KONSTRUISANJE

Konstruisanje. Dobro došli na... SREDNJA MAŠINSKA ŠKOLA NOVI SAD DEPARTMAN ZA PROJEKTOVANJE I KONSTRUISANJE Dobro došli na... Konstruisanje GRANIČNI I KRITIČNI NAPON slajd 2 Kritični naponi Izazivaju kritične promene oblika Delovi ne mogu ispravno da vrše funkciju Izazivaju plastične deformacije Može doći i

Διαβάστε περισσότερα

IZVODI ZADACI ( IV deo) Rešenje: Najpre ćemo logaritmovati ovu jednakost sa ln ( to beše prirodni logaritam za osnovu e) a zatim ćemo

IZVODI ZADACI ( IV deo) Rešenje: Najpre ćemo logaritmovati ovu jednakost sa ln ( to beše prirodni logaritam za osnovu e) a zatim ćemo IZVODI ZADACI ( IV deo) LOGARITAMSKI IZVOD Logariamskim izvodom funkcije f(), gde je >0 i, nazivamo izvod logarima e funkcije, o jes: (ln ) f ( ) f ( ) Primer. Nadji izvod funkcije Najpre ćemo logarimovai

Διαβάστε περισσότερα

Program testirati pomoću podataka iz sledeće tabele:

Program testirati pomoću podataka iz sledeće tabele: Deo 2: Rešeni zadaci 135 Vrednost integrala je I = 2.40407 42. Napisati program za izračunavanje koeficijenta proste linearne korelacije (Pearsonovog koeficijenta) slučajnih veličina X = (x 1,..., x n

Διαβάστε περισσότερα

Matematička analiza 1 dodatni zadaci

Matematička analiza 1 dodatni zadaci Matematička analiza 1 dodatni zadaci 1. Ispitajte je li funkcija f() := 4 4 5 injekcija na intervalu I, te ako jest odredite joj sliku i inverz, ako je (a) I = [, 3), (b) I = [1, ], (c) I = ( 1, 0].. Neka

Διαβάστε περισσότερα

1.4 Tangenta i normala

1.4 Tangenta i normala 28 1 DERIVACIJA 1.4 Tangenta i normala Ako funkcija f ima derivaciju u točki x 0, onda jednadžbe tangente i normale na graf funkcije f u točki (x 0 y 0 ) = (x 0 f(x 0 )) glase: t......... y y 0 = f (x

Διαβάστε περισσότερα

TMO 1/15 MODELI MASOVNOG OPSLUŽIVANJA

TMO 1/15 MODELI MASOVNOG OPSLUŽIVANJA TMO /5 MODELI MASOVNOG OPSLUŽIVANJA Teorija redova, nagomilavanja, redova čekanja (Queueing theory, a često queuing theory, odnosno waiting lines, congestion), ili kako se označava u ruskim izvorima (Теория

Διαβάστε περισσότερα

Cauchyjev teorem. Postoji više dokaza ovog teorema, a najjednostvniji je uz pomoć Greenove formule: dxdy. int C i Cauchy Riemannovih uvjeta.

Cauchyjev teorem. Postoji više dokaza ovog teorema, a najjednostvniji je uz pomoć Greenove formule: dxdy. int C i Cauchy Riemannovih uvjeta. auchyjev teorem Neka je f-ja f (z) analitička u jednostruko (prosto) povezanoj oblasti G, i neka je zatvorena kontura koja čitava leži u toj oblasti. Tada je f (z)dz = 0. Postoji više dokaza ovog teorema,

Διαβάστε περισσότερα

Obrada signala

Obrada signala Obrada signala 1 18.1.17. Greška kvantizacije Pretpostavka je da greška kvantizacije ima uniformnu raspodelu 7 6 5 4 -X m p x 1,, za x druge vrednosti x 3 x X m 1 X m = 3 x Greška kvantizacije x x x p

Διαβάστε περισσότερα

1 Afina geometrija. 1.1 Afini prostor. Definicija 1.1. Pod afinim prostorom nad poljem K podrazumevamo. A - skup taqaka

1 Afina geometrija. 1.1 Afini prostor. Definicija 1.1. Pod afinim prostorom nad poljem K podrazumevamo. A - skup taqaka 1 Afina geometrija 11 Afini prostor Definicija 11 Pod afinim prostorom nad poljem K podrazumevamo svaku uređenu trojku (A, V, +): A - skup taqaka V - vektorski prostor nad poljem K + : A V A - preslikavanje

Διαβάστε περισσότερα

Elektrotehnički fakultet univerziteta u Beogradu 26. jun Katedra za Računarsku tehniku i informatiku

Elektrotehnički fakultet univerziteta u Beogradu 26. jun Katedra za Računarsku tehniku i informatiku Elektrotehički fakultet uiverziteta u Beogradu 6. ju 008. Katedra za Račuarku tehiku i iformatiku Performae račuarkih itema Rešeja zadataka..videti predavaja.. Kretaje Verovatoća Opi 4 4 Kretaje u itom

Διαβάστε περισσότερα

18. listopada listopada / 13

18. listopada listopada / 13 18. listopada 2016. 18. listopada 2016. 1 / 13 Neprekidne funkcije Važnu klasu funkcija tvore neprekidne funkcije. To su funkcije f kod kojih mala promjena u nezavisnoj varijabli x uzrokuje malu promjenu

Διαβάστε περισσότερα

Pismeni dio ispita iz Matematike Riješiti sistem jednačina i diskutovati rješenja u zavisnosti od parametra a:

Pismeni dio ispita iz Matematike Riješiti sistem jednačina i diskutovati rješenja u zavisnosti od parametra a: Zenica, 70006 + y+ z+ 4= 0 y+ z : i ( q) : = = y + z 4 = 0 a) Napisati pavu p u kanonskom, a pavu q u paametaskom obliku b) Naći jednačinu avni koja polazi koz pavu p i okomita je na pavu q ate su pave

Διαβάστε περισσότερα

Riješeni zadaci: Nizovi realnih brojeva

Riješeni zadaci: Nizovi realnih brojeva Riješei zadaci: Nizovi realih brojeva Nizovi, aritmetički iz, geometrijski iz Fukciju a : N R azivamo beskoači) iz realih brojeva i ozačavamo s a 1, a,..., a,... ili a ), pri čemu je a = a). Aritmetički

Διαβάστε περισσότερα

Uvod Teorija odlučivanja je analitički i sistematski pristup proučavanju procesa donošenja odluka Bez obzira o čemu donosimo odluku imamo 6 koraka za

Uvod Teorija odlučivanja je analitički i sistematski pristup proučavanju procesa donošenja odluka Bez obzira o čemu donosimo odluku imamo 6 koraka za Osnovne teorije odlučivanja Uvod Teorija odlučivanja je analitički i sistematski pristup proučavanju procesa donošenja odluka Bez obzira o čemu donosimo odluku imamo 6 koraka za donošenje dobre odluke:

Διαβάστε περισσότερα

4.7. Zadaci Formalizam diferenciranja (teorija na stranama ) 343. Znajući izvod funkcije x arctg x, odrediti izvod funkcije x arcctg x.

4.7. Zadaci Formalizam diferenciranja (teorija na stranama ) 343. Znajući izvod funkcije x arctg x, odrediti izvod funkcije x arcctg x. 4.7. ZADACI 87 4.7. Zadaci 4.7.. Formalizam diferenciranja teorija na stranama 4-46) 340. Znajući izvod funkcije arcsin, odrediti izvod funkcije arccos. Rešenje. Polazeći od jednakosti arcsin + arccos

Διαβάστε περισσότερα

(P.I.) PRETPOSTAVKA INDUKCIJE - pretpostavimo da tvrdnja vrijedi za n = k.

(P.I.) PRETPOSTAVKA INDUKCIJE - pretpostavimo da tvrdnja vrijedi za n = k. 1 3 Skupovi brojeva 3.1 Skup prirodnih brojeva - N N = {1, 2, 3,...} Aksiom matematičke indukcije Neka je N skup prirodnih brojeva i M podskup od N. Ako za M vrijede svojstva: 1) 1 M 2) n M (n + 1) M,

Διαβάστε περισσότερα

PRIMJER 3. MATLAB filtdemo

PRIMJER 3. MATLAB filtdemo PRIMJER 3. MATLAB filtdemo Prijenosna funkcija (IIR) Hz () =, 6 +, 3 z +, 78 z +, 3 z +, 53 z +, 3 z +, 78 z +, 3 z +, 6 z, 95 z +, 74 z +, z +, 9 z +, 4 z +, 5 z +, 3 z +, 4 z 3 4 5 6 7 8 3 4 5 6 7 8

Διαβάστε περισσότερα

π π ELEKTROTEHNIČKI ODJEL i) f (x) = x 3 x 2 x + 1, a = 1, b = 1;

π π ELEKTROTEHNIČKI ODJEL i) f (x) = x 3 x 2 x + 1, a = 1, b = 1; 1. Provjerite da funkcija f definirana na segmentu [a, b] zadovoljava uvjete Rolleova poučka, pa odredite barem jedan c a, b takav da je f '(c) = 0 ako je: a) f () = 1, a = 1, b = 1; b) f () = 4, a =,

Διαβάστε περισσότερα

Pošto pretvaramo iz veće u manju mjernu jedinicu broj 2.5 množimo s 1000,

Pošto pretvaramo iz veće u manju mjernu jedinicu broj 2.5 množimo s 1000, PRERAČUNAVANJE MJERNIH JEDINICA PRIMJERI, OSNOVNE PRETVORBE, POTENCIJE I ZNANSTVENI ZAPIS, PREFIKSKI, ZADACI S RJEŠENJIMA Primjeri: 1. 2.5 m = mm Pretvaramo iz veće u manju mjernu jedinicu. 1 m ima dm,

Διαβάστε περισσότερα

( , 2. kolokvij)

( , 2. kolokvij) A MATEMATIKA (0..20., 2. kolokvij). Zadana je funkcija y = cos 3 () 2e 2. (a) Odredite dy. (b) Koliki je nagib grafa te funkcije za = 0. (a) zadanu implicitno s 3 + 2 y = sin y, (b) zadanu parametarski

Διαβάστε περισσότερα

Funkcija gustoće neprekidne slučajne varijable ima dva bitna svojstva: 1. Nenegativnost: f(x) 0, x R, 2. Normiranost: f(x)dx = 1.

Funkcija gustoće neprekidne slučajne varijable ima dva bitna svojstva: 1. Nenegativnost: f(x) 0, x R, 2. Normiranost: f(x)dx = 1. σ-algebra skupova Definicija : Neka je Ω neprazan skup i F P(Ω). Familija skupova F je σ-algebra skupova na Ω ako vrijedi:. F, 2. A F A C F, 3. A n, n N} F n N A n F. Borelova σ-algebra Definicija 2: Neka

Διαβάστε περισσότερα

Sortiranje prebrajanjem (Counting sort) i Radix Sort

Sortiranje prebrajanjem (Counting sort) i Radix Sort Sortiranje prebrajanjem (Counting sort) i Radix Sort 15. siječnja 2016. Ante Mijoč Uvod Teorem Ako je f(n) broj usporedbi u algoritmu za sortiranje temeljenom na usporedbama (eng. comparison-based sorting

Διαβάστε περισσότερα

nvt 1) ukoliko su poznate struje dioda. Struja diode D 1 je I 1 = I I 2 = 8mA. Sada je = 1,2mA.

nvt 1) ukoliko su poznate struje dioda. Struja diode D 1 je I 1 = I I 2 = 8mA. Sada je = 1,2mA. IOAE Dioda 8/9 I U kolu sa slike, diode D su identične Poznato je I=mA, I =ma, I S =fa na 7 o C i parametar n= a) Odrediti napon V I Kolika treba da bude struja I da bi izlazni napon V I iznosio 5mV? b)

Διαβάστε περισσότερα

Sistemi za rad u realnom vremenu. Raspoređivanje zadataka

Sistemi za rad u realnom vremenu. Raspoređivanje zadataka Sistemi za rad u realnom vremenu --------------------------------------- Raspoređivanje zadataka Raspoređivanje Redefinisanje zadatka Stanja zadataka Sadržaj Raspoređivanje bez istiskivanja Raspoređivanje

Διαβάστε περισσότερα

Jednodimenzionalne slučajne promenljive

Jednodimenzionalne slučajne promenljive Jednodimenzionalne slučajne promenljive Definicija slučajne promenljive Neka je X f-ja def. na prostoru verovatnoća (Ω, F, P) koja preslikava prostor el. ishoda Ω u skup R realnih brojeva: (1)Skup {ω/

Διαβάστε περισσότερα

Funkcije dviju varjabli (zadaci za vježbu)

Funkcije dviju varjabli (zadaci za vježbu) Funkcije dviju varjabli (zadaci za vježbu) Vidosava Šimić 22. prosinca 2009. Domena funkcije dvije varijable Ako je zadano pridruživanje (x, y) z = f(x, y), onda se skup D = {(x, y) ; f(x, y) R} R 2 naziva

Διαβάστε περισσότερα

Glava 1. Realne funkcije realne promen ive. 1.1 Elementarne funkcije

Glava 1. Realne funkcije realne promen ive. 1.1 Elementarne funkcije Glava 1 Realne funkcije realne promen ive 1.1 Elementarne funkcije Neka su dati skupovi X i Y. Ukoliko svakom elementu skupa X po nekom pravilu pridruimo neki, potpuno odreeni, element skupa Y kaemo da

Διαβάστε περισσότερα

DIMENZIONISANJE PRAVOUGAONIH POPREČNIH PRESEKA NAPREGNUTIH NA PRAVO SLOŽENO SAVIJANJE

DIMENZIONISANJE PRAVOUGAONIH POPREČNIH PRESEKA NAPREGNUTIH NA PRAVO SLOŽENO SAVIJANJE TEORIJA ETONSKIH KONSTRUKCIJA T- DIENZIONISANJE PRAVOUGAONIH POPREČNIH PRESEKA NAPREGNUTIH NA PRAVO SLOŽENO SAVIJANJE 3.5 f "2" η y 2 D G N z d y A "" 0 Z a a G - tačka presek koja određje položaj sistemne

Διαβάστε περισσότερα

radni nerecenzirani materijal za predavanja

radni nerecenzirani materijal za predavanja Matematika 1 Funkcije radni nerecenzirani materijal za predavanja Definicija 1. Kažemo da je funkcija f : a, b R u točki x 0 a, b postiže lokalni minimum ako postoji okolina O(x 0 ) broja x 0 takva da je

Διαβάστε περισσότερα

Semestar 2 treće pitanje

Semestar 2 treće pitanje Semestar 2 treće pitanje 1. Princip optimalnosti kod dinamičkog programiranja - 298 2. Prosta raspodela jednorodnog resursa metodom DP - 304 3. Složena raspodela jednorodnog resursa metodom DP - 309 4.

Διαβάστε περισσότερα

Algoritmi zadaci za kontrolni

Algoritmi zadaci za kontrolni Algoritmi zadaci za kontrolni 1. Nacrtati algoritam za sabiranje ulaznih brojeva a i b Strana 1 . Nacrtati algoritam za izračunavanje sledeće funkcije: x y x 1 1 x x ako ako je : je : x x 1 x x 1 Strana

Διαβάστε περισσότερα

- pravac n je zadan s točkom T(2,0) i koeficijentom smjera k=2. (30 bodova)

- pravac n je zadan s točkom T(2,0) i koeficijentom smjera k=2. (30 bodova) MEHANIKA 1 1. KOLOKVIJ 04/2008. grupa I 1. Zadane su dvije sile F i. Sila F = 4i + 6j [ N]. Sila je zadana s veličinom = i leži na pravcu koji s koordinatnom osi x zatvara kut od 30 (sve komponente sile

Διαβάστε περισσότερα