TMO 1/15 MODELI MASOVNOG OPSLUŽIVANJA

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "TMO 1/15 MODELI MASOVNOG OPSLUŽIVANJA"

Transcript

1 TMO /5 MODELI MASOVNOG OPSLUŽIVANJA Teorija redova, nagomilavanja, redova čekanja (Queueing theory, a često queuing theory, odnosno waiting lines, congestion), ili kako se označava u ruskim izvorima (Теория массового обслуживания, Ivčenko i dr. 982), ili u nekim od domaćih izvora (Teorija masovnog opsluživanja, Vukadinović 988) predstavlja deo operacionih istraživanja koji se bavi istraživanjem veze zahteva za opslugom i karakteristika procesa opsluživanja, odnosno mogućnosti zadovoljenja tih zahteva. Ova teorija posmatra se i kao deo primenjene teorije verovatnoće čiji se početak vezuje za danskog inžinjera Agner Krarup Erlanga koji je 909 publikovao prvi rad iz ove oblasti. Erlang je bio inžinjer zaposlen u telefonskoj centrali u Kopenhagenu, i primenom ove teorije rešavao je praktične zadatke koji su se odnosili na opslugu korisnika. Nakon pojave Erlangovog pionirskog rada, tokom jednog celog veka razvoja, napisan je zaista impozantan broj radova i knjiga iz ove oblasti (neke od najpoznatijih su Kleinrock 975; Arnold, 978; Nelson 995, Gross, Harris, ), a danas praktično da i ne postoji udžbenik operacionih istraživanja u kome ova teorija nije pomenuta (Hillier, Lieberman 995; Taha 2003). Takodje, veliki broj knjiga iz ove oblasti postoji i na srpskom jeziku (napr. Petrić 983; Vukadinović 988). Isto tako, popularnost i široka mogućnost primene TMO uticala je i na pojavu specijalizovanih web stranica posvećenih ovoj oblasti (napr. Myron Hlynka's Queueing Theory Page: www2.uwindsor.ca/~hlynka/queue.html ).

2 TMO 2/5 Paralelno sa time, razvijen je i veliki broj softverskih paketa, dobrim delom i shareware, odnosno freeware softvera, kakav je QTSPlus, koji se može besplatno naći na Internetu, a obuhvata veliki broj modela TMO, ili RAQS, takodje besplatan: bubba.acc.okstate.edu/cocim/raqs.html. Predmet TMO je određivanje funkcionalnih veza između pokazatelja efektivnosti funkcionisanja sistema masovnog opsluživanja (SMO) - verovatnoće opsluživanja zahteva (klijenata), verovatnoće stajanja kanala opsluživanja, dužine reda, vremena čekanja klijenata i dr., i karakteristika potoka zahteva za opsluživanjem, vremena opsluge zahteva, strategije opsluge itd. Kao cilj TMO često se navodi i nalaženje balansa izmedju investiranja u resurse i nivoa opsluge korisnika, što je, kako je to prikazano u nastavku, ideja na kojoj je zasnovano korišćene ove teorije u dimenzionisanju sistema rukovanja materijalom. U okviru sistema rukovanja materijalom brojni su primeri procesa koji se mogu predstaviti kao SMO, s obzirom da se većina procesa vezanih za tokove materijala može predstaviti kao sistem u kome "klijent" biva "opslužen" nekim "kanalom opsluge" - "serverom". Primena ove teorije bazira se na analogiji predstavljenoj na slici Ovaj Excelov paket obuhvata modele obradjene u knjizi (Gross, Harris, 998)

3 TMO 3/5 Analogija pretovarnog sistema i SMO Prostor za čekanje tran. sredstava PRETOVARNI SISTEM KAO SMO Transportna sredstva koja dolaze na pretovar RED Opslužena transportna sredstva ULAZNI POTOK KANALI OPSLUGE IZLAZNI POTOK Pretovarna sredstva Pretovarna mesta Pojmovi korišćeni u TMO, u slučaju pretovarnih sistema imaju sledeće značenje: kanali opsluge (sredstva - resursi koji realizuju zahtev: pretovarna mesta, viljuškari,...) opsluga (aktivnosti kojima se realizuje neki zahtev - istovar vozila viljuškarem, postavljanje vozila na front pretovara, uskladištenje jedinice u regalsku ćeliju,...) klijent (osoba, predmet, zahtev - vozilo, paleta,...) ulazni potok (zakon nailaska klijenata broj paleta ili vozila u nekom vremenskom intervalu,...) izlazni potok (zakon po kome se vrši opsluga broj paleta ili vozila u nekom vremenskom intervalu,...) red (klijenti koji čekaju na opslugu, vozila na parkingu, palete u pufernoj zoni,...)

4 TMO 4/5 Posmatranje realnog sistema kao SMO, u skladu sa prikazanom analogijom i utvrdjivanje funkcionalnih veza, odnosno vrednosti odgovarajućih pokazatelja primenom TMO, pruža onda mogućnost za davanje odgovora na neka pitanja (Heragu, 997): Koliki je očekivani broj klijenata koji čekaju u redu? Koliko je očekivano vreme koje klijent provodi u sistemu? Kolika je verovatnoća da če klijent po dolasku u sistem zateći slobodan kanal opsluživanja? Kolika je verovatnoća zauzetosti svih kanala opsluživanja? i sl. TMO MOGUĆNOST PRAKTIČNE PRIMENE I OGRANIČENJA Primena TMO podrazumeva, prvo, analizu realnog sistema, potom njegovu simplifikaciju, obično apstrahovanjem manje važnih detalja i korišćenjem odgovarajućih aproksimacija, a potom, ali i tokom ovog procesa, raspoznaje se odgovarajući model TMO koji na najbolji način opisuje taj pojednostavljeni sistem. U većini slučajeva aproksimacije se koriste u procesu transformacije često nepotpunih ili neodredjenih podataka u matematički korektne veličine koje primenu modela čine mogućom. Shodno tome, i rezultate primene TMO na realnim sistemima, pa tako i na sistemima rukovanja materijalom, treba prihvatiti uslovno i tretirati kao približne ocene, odnosno indikatore ponašanja realnog sistema

5 TMO 5/5 Kada se govori o dostignućima u razvoju TMO tokom gotovo jednog veka od uspostavljanja ove teorije, treba imati u vidu da se praktično svi postignuti rezultati odnose na stacionarni režim rada sistema Medjutim, ne retko, i u slučaju kada se radi o stacionarnim režimima, izrazi kojima se odredjuje neka od veličina mogu biti veoma su komplikovani za primenu, a da je, pri tome, sistem koji se posmatra već uprošćen do nivoa kada predstavlja samo grubu sliku realnosti. Najveći deo modela TMO, kod kojih postoje egzaktna rešenja, odnosi se na one sisteme kod kojih su potoci klijenata Puasonovski, a vreme opsluge podleže eksponencijalnoj raspodeli. Na sreću, veliki broj procesa u realnim sistemima ima ove karakteristike, pa tako na primer, dolazak vozila na utovar, odnosno istovar, u sistemima rukovanja materijalom najčešće i ima karakteristike Puasonovog potoka dogadjaja, odnosno karakteristike približne ovom. U principu, TMO se koristi za odredjivanje tačkastih ocena relevantnih karakteristika sistema kao što su na primer: srednji broj klijenata u sistemu, srednji broj klijenata u redu, prosečno vreme opsluge klijenta, prosečno vreme čekanja u redu i sl.

6 TMO 6/5 Sa druge strane modeli TMO najčešće nisu pogodni za utvrdjivanje raspodela verovatnoća pojedinih veličina. U tu svrhu, mada odredjeni modeli TMO daju tu mogućnost, ipak je uputnije koristiti simulaciju. Primena TMO u sistemima rukovanja materijalom PROBLEM KLIJENT SERVER Broj (kapacitet) sredstava za realizaciju zadatka Dužina akumulacionog konvejera, veličina pufera VoziLo, ili bilo koji drugi pretovarni zahtev jedinica tereta Viljuškar, konvejer, trakasti transporter, pret. mesto... Proces (operacija) koja izuzima jedinicu iz sistema KONVENCIONALNA NOTACIJA U TMO Da bi se ukazalo na konkretan model uobičajeno se koristi Kendalova (Kendall, 953), odnosno kako se u nekim izvorima navodi (Heragu, 997), Kendal-Lijeva notacija, s obzirom da je Lee izvršio odredjene modifikacije u notaciji (Lee, 966). Interesantno je pomenuti da je veliki engleski matematičar David G. Kendall, u radu koji je publikovao u časopisu Kraljevskog statističkog društva prvi upotrebio i termin "queueing system", još daleke 95. godine (Kendall, 95). Saglasno Kendalovoj notaciji za opis tipa modela SMO koristi se sledeća generalna forma: A/ B/ C/ D/ E/ F, pri čemu slovne oznake imaju sledeće značenje:

7 TMO 7/5 A priroda ulaznog potoka (M-Puasonov, tj Markovski proces, D-konstantno vreme između klijenata, E k -Erlangov reda k, H k -Hiper eksponencijalna reda k, G-generalna (bilo koja) raspodela) B karakter vremena opsluge (oznake kao i za prirodu ulaznog potoka) C broj kanala opsluživanja S (S ) D disciplina opsluge (FCFS /First Come First Served/ prvi došao, prvi opslužen; LCFS /Last Come First Served/ poslednji došao, prvi opslužen, SIRO /Service In Random Order/ opsluga prema slučajnom redosledu,..., GD generalna disciplina opsluge) E kapacitet sistema C, koji obuhvata broj mesta u redu (C, S C) F veličina populacije Tako će, saglasno Kendalovoj notaciji, SMO sa eksponcijalno rasporedjenim intervalima izmedju klijenata i eksponencijalnim vremenom opsluge, sa 2 kanala opsluživanja, kod koga se opsluga vrši po principu FCFS, bez ograničenja broja mesta u redu, sa neograničenom kapacitetom sistema i neograničenom veličinom populacije koja pristupa opsluzi, imati oznaku M / M / 2 / FCFS / / U praktičnoj primeni, često se koriste modeli sa FCFS disciplinom opsluge, beskonačnim kapacitetom sistema i beskonačnom veličinom populacije, pa onda oznake D, E, F imaju fiksirane vrednosti. Otuda se često koristi skraćena notacija oblika A/ B/ C.

8 TMO 8/5 OSNOVNI MODELI TMO U ANALIZI SISTEMA RUKOVANJA MATERIJALOM U literaturi se može naći veliki broj modela TMO, ali su u principu analitička rešenja najčešće poznata samo za sisteme sa beskonačnom populacijom, kada su interval nailazaka klijenata, kao i vreme opsluge, nezavisno od discipline opsluge i kapaciteta sistema, eksponencijalno rasporedjeni. Pored ovih, tzv. osnovnih, ili eksponencijalnih modela, postoji niz rešenja za tzv. neeksponencijalne modele, ali samo za neke specijalne slučajeve kada su, neretko, poznate samo donja i gornja granica relevantih veličina čije se vrednosti utvrdjuju primenom TMO (od ovoga je izuzetak jedino M / G / model kod koga su izvedena analitička rešenja svih relevantnih veličina). Imajući to u vidu, shodno osnovnoj intenciji ove knjige, prezentirani su samo modeli koji podrazumevaju eksponencijalnu raspodelu intervala nailazaka klijenata i eksponencijalno vreme opsluge, za slučajeve koji se mogu smatrati tipičnim za sisteme rukovanja materijalom. Za slučajeve kada se ni intervali nailaska klijenata, niti vremena opsluge ne mogu aproksimirati eksponencijalnom raspodelom, u praktičnoj primeni za analizu sistema rukovanja materijalom preporučuje se korišćenje simulacije. Ipak, treba istaći da softverski alati iz oblasti TMO najčešće pružaju mogućnost utvrdjivanja relevantnih veličina i za slučaj neeksponencijalnih modela pa se oni mogu koristiti, ali veoma obazrivo, s obzirom na mogućnost pojave značajnijih greški. Primena modela TMO bazirana je na nekoliko osnovnih ulaznih veličina kojima se opisuju karakter ulaznog potoka klijenata, proces opsluge i resursi sistema opsluživanja,

9 TMO 9/5 tj. broj kanala opsluživanja i broj mesta u redu, odnosno kapacitet sistema. Dakle, kao ulazne veličine koriste se: S broj kanala opsluživanja (servera) C broj mesta u redu intenzitet ulaznog potoka [klijenata u jedinici vremena] μ intenzitet opsluge (izlazni potok) [klijenata u jedinici vremena] Primenom odgovarajućih relacija, u modelima TMO, utvrdjuju se sledeće osnovne izlazne veličine: ρ = S μ iskorišćenje kanala opsluge (servera) P 0 verovatnoća da u sistemu nema klijenata P n verovatnoća da se u sistemu nalazi n klijenata L srednji broj klijenata u sistemu L q srednji broj klijenata u redu L S srednji broj klijenata na opsluzi W srednje vreme boravka klijenta u sistemu [vremenskih jed.] W q srednje vreme boravka klijenta u redu [vremenskih jed.] W S srednje vreme boravka klijenta na opsluzi [vremenskih jed.]

10 TMO 0/5 EKSPONENCIJALNI MODELI TMO Na bazi rezultata TMO i korišćenjem Litlove formule dobijeni su izrazi za utvrdjivanje relevantnih veličina koje opisuju performanse SMO. U tabelama su prikazani su rezultati (Heragu, 997), koji se odnose na četiri modela koji se mogu preporučiti kao najpogodniji za analizu performansi i dimenzionisanje sistema rukovanja materijalom. Eksponencijalni modeli sa neograničenim kapacitetom sistema VELIČINA KOJA SE TIP MODELA UTVRDJUJE M/M//GD/ / M/M/S/GD/ / S S P 0 ρ ( ρs) ( ρs) + S!( ρ) n! c n L L q W n ρ μ n= 0 n ρ, za n S n! n ρ, za n > S n S S!S L q + μ S ( ρs) P0ρ L ρ 2 S!( ρ) μ W q μ( μ ) W + q μ L q n

11 TMO /5 Eksponencijalni modeli sa ograničenim kapacitetom sistema VELIČINA KOJA TIP MODELA SE UTVRDJUJE M/M//GD/C/ M/M/S/GD/C/ ( ρ) P 0 C+ ( ρ ) n c n ρ, za n C 0, za n > C ρ ρ (C + ) ρ ρ C+ L C+ L q L P W S n= ( ρs) n! n S ρ + S! C ρ n= S+ n S n ( ρs), za n S n! n ( ρs), za S < n C n S S!S 0, za n > C ( PC ) Lq + μ [( ρs) P ρ][ ρ (C S)( ρ) ρ S!( ρ) S C S L L ( P ) ( P ) C Lq Lq W q ( P ) ( P ) C Efektivni intenzitet ulaznog potoka klijenata eff, u sistemima sa fiksnom dužinom reda može se odrediti na bazi: C eff = P n = ( PC ) n= 0 C C C S ]

12 TMO 2/5 OKVIR ZA PRIMENU TMO U SISTEMIMA RUKOVANJA MATERIJALOM Primena TMO u pretovarnim, i uopšte u sistemima rukovanja materijalom najčešće se realizuje u dva osnovna pravca: analiza performansi sistema, optimalno dimenzionisanje sistema. Analiza performansi sistema može se opisati kao «direktna primena TMO», koja se odnosi na utvrdjivanje jedne ili više veličina prikazanih u tabelama, sa ciljem da se sagledaju neke od karakteristika sistema za definisanu strukturu i karakteristike elemenata sa jedne i parametara zahteva koji se realizuju sa druge strane Pored toga TMO se, ne retko, primenjuje i za optimalno dimenzionisanje elemenata pretovarnih sistema. Ova primena rezultat je postojanja funkcionalnih veza izmedju karakteristika zahteva za opslugom i resursa opsluživanja kao ulaznih veličina, i performansi sistema, kao izlaznih veličina primene modela TMO, koje opisuju ponašanje sistema u datim uslovima. T Pristup dimenzionisanju resursa pretovarnog sistema, predstavljenog modelom SMO na bazi analogije sa slike, počiva najčešće na konceptu izbora optimalnog intenziteta opsluge μ, u osnovi zavisnog od broja i S kapaciteta elemenata S, za poznati intenzitet ulaznog potoka, min primenom troškovnog modela. U slučaju korišćenja troškovnog modela, definiše se odgovarajuća funkcija cilja koja obuhvata ukupne troškove sistema a optimalno rešenje podrazumeva nalaženje vrednosti μ*, S* i C* koje minimiziraju ciljnu funkciju oblika:

13 TMO 3/5 T (μ,, S, C) min U suštini, proces nalaženja vrednosti μ*, S* i C*, koje minimiziraju ciljnu funkciju, svodi se na sukcesivnu primenu modela odgovarajućeg modela TMO za različite vrednosti ulaznih veličina, i sračunavanjem vrednosti funkcije cilja u svakoj od iteracija. Funkcija ukupnih troškova T (μ,, S, C) utvrđuje se u zavisnosti od konkretnog problema, ali se po pravilu uzimaju u obzir troškovi povezani sa resursima SMO i radom, kao i oni povezani sa klijentima koji se opslužuju. Tako se, na primer, pri opsluzi drumskih vozila viljuškarima može koristiti sledeća funkcija ukupnih troškova: gde su: S C C 2 C 3 C 4 IS T(S) = (C + C2) S + Lq C3 + L (W IS) C4 broj angažovanih viljuškara troškovi pretovarnog mesta troškovi viljuškara troškovi jednog parking mesta troškovi zadržavanja jednog vozila interval strpljivosti vozila (period u kome se ne generišu troškovi zadržavanja vozila)

14 TMO 4/5 PRIMERI PRIMENE TMO U SISTEMIMA RUKOVANJA MATERIJALOM Zadatak. Neka na front pretovara vozila dolaze po Puasonovom potuku intenzitetom =2 [vozila na čas] i neka je intenzitet opsluge koji se obezbedjuje jednim pretovarnim mestom, koga opslužuje jedan viljuškar, takodje Puasonov μ=2.5 [vozila na čas]. Ukoliko je pretovarno mesto zauzeto vozila se upućuju na parking prostor za koji je predvidjen dovoljan prostor da se može smatrati neograničenim, pri čemu je gradnja i korišćenje parking mesta povezana sa odredjenim troškovima. Primenom odgovarajućeg modela TMO potrebno je odrediti optimalni broj pretovarnih mesta, ukoliko je poznato da je period u kome se ne generišu troškovi čekanja vozila IS=30 minuta (interval strpljivosti vozila). Neka su poznati i sledeći troškovi rada sistema: troškovi pretovarnog mesta [novčanih jed./pret.mestu], C =50 troškovi viljuškara [novčanih jed./viljuškaru], C 2 =20 troškovi parking mesta [novčanih jed./park.mestu], C 3 =30 troškovi zadržavanja vozila [novčanih jed./čas], C 4 =250 Rešenje: PRORAČUN OSNOVNIH PARAMETARA SISTEMA PRIMENOM TMO Imajući u vidu da je potrebno odrediti broj pretovarnih mesta u sistemu kod koga su i dolazak vozila i opsluga Puasonovski procesi, gde se vozila, kada su sva mesta zauzeta upućuju na parking koji je praktično neograničenog kapaciteta, očigledno je da se ovaj sistem može opisati modelom M/M/S/GD/ /. Kako iskorišćenje kanala opsluge (servera) mora biti manje od, tj. ρ = S = 4.8 S μ μ očigledno je da ovaj pretovarni sistem mora imati više od četiri pretovarna mesta, tj. 5,6,7,...ili više. Da bi se utvrdilo koji je optimalan broj pretovarnih mesta, primenom relacija koje važe za razmatrani model SMO potrebno je utvrditi one veličine čija je primena neophodna za proračun vrednosti funkcije cilja.

15 TMO 5/5 Ukoliko se za proračun koristi troškovna funkcija oblika T(S) = (C + C2) S + Lq C3 + L (W IS) C4 za svaki razmatrani broj pretovarnih mesta (servera), potrebno je odrediti samo tri veličine: srednji broj klijenata us sistemu (L), Srednji broj vozila u redu (Lq) i ukupno vreme boravka vozila u sistemu (W). Primenom odgovarajućih relacija, odnosno nekog od softverskih alata za date ulazne veličine dobijaju se sledeće vrednosti posmatranih veličina. Kako se vidi iz tabele u nastavku, za svaku od varijanti, kao ilustracija, utvrdjivano je i iskorišćenje servera. Performanse sistema utvrđene na bazi primene odgovarajućih relacija TMO prikazane su tabelom u nastavku S=5 S=6 S=7 S=8 S=9 ρ ρ ρ ρ ρ L L 6.87 L 5.4 L 5.0 L 4.87 Lq 2.64 Lq 2.07 Lq 0.6 Lq 0.2Lq 0.07 W 2.20 W 0.57 W 0.45 W 0.42 W 0.4 PRORAČUN VREDNOSTI FUNKCIJE CILJA Na bazi vrednosti prikazanih u tabeli i poznatih jediničnih troškova, moguće je utvrditi vrednosti definisane funkcije cilja za različit broj pretovarnih mesta. Tako vrednost funkcije cilja za sistem sa 5 pretovarnih mesta T(5) ima sledeću vrednost: T (5) = ( ) ( ) 250 = T(5) 2,736.2 Na ovaj način dobijaju se i ostale vrednosti funkcije cilja, 4,000 2,000 T(6) prikazane u tabeli i na slici. Očigledno je da se najniži 0,000 ukupni troškovi rada sistema mogu očekivati za slučaj kada 8,000 T(7) ,000 T(8) se u sistemu nalazi šest pretovarnih mesta, što predstavlja 4,000 2,000 T(9) 532. optimalno rešenje za ovaj primer

3.1 Granična vrednost funkcije u tački

3.1 Granična vrednost funkcije u tački 3 Granična vrednost i neprekidnost funkcija 2 3 Granična vrednost i neprekidnost funkcija 3. Granična vrednost funkcije u tački Neka je funkcija f(x) definisana u tačkama x za koje je 0 < x x 0 < r, ili

Διαβάστε περισσότερα

UNIVERZITET U NIŠU ELEKTRONSKI FAKULTET SIGNALI I SISTEMI. Zbirka zadataka

UNIVERZITET U NIŠU ELEKTRONSKI FAKULTET SIGNALI I SISTEMI. Zbirka zadataka UNIVERZITET U NIŠU ELEKTRONSKI FAKULTET Goran Stančić SIGNALI I SISTEMI Zbirka zadataka NIŠ, 014. Sadržaj 1 Konvolucija Literatura 11 Indeks pojmova 11 3 4 Sadržaj 1 Konvolucija Zadatak 1. Odrediti konvoluciju

Διαβάστε περισσότερα

Elektrotehnički fakultet univerziteta u Beogradu 17.maj Odsek za Softversko inžinjerstvo

Elektrotehnički fakultet univerziteta u Beogradu 17.maj Odsek za Softversko inžinjerstvo Elektrotehnički fakultet univerziteta u Beogradu 7.maj 009. Odsek za Softversko inžinjerstvo Performanse računarskih sistema Drugi kolokvijum Predmetni nastavnik: dr Jelica Protić (35) a) (0) Posmatra

Διαβάστε περισσότερα

SISTEMI NELINEARNIH JEDNAČINA

SISTEMI NELINEARNIH JEDNAČINA SISTEMI NELINEARNIH JEDNAČINA April, 2013 Razni zapisi sistema Skalarni oblik: Vektorski oblik: F = f 1 f n f 1 (x 1,, x n ) = 0 f n (x 1,, x n ) = 0, x = (1) F(x) = 0, (2) x 1 0, 0 = x n 0 Definicije

Διαβάστε περισσότερα

IZRAČUNAVANJE POKAZATELJA NAČINA RADA NAČINA RADA (ISKORIŠĆENOSTI KAPACITETA, STEPENA OTVORENOSTI RADNIH MESTA I NIVOA ORGANIZOVANOSTI)

IZRAČUNAVANJE POKAZATELJA NAČINA RADA NAČINA RADA (ISKORIŠĆENOSTI KAPACITETA, STEPENA OTVORENOSTI RADNIH MESTA I NIVOA ORGANIZOVANOSTI) IZRAČUNAVANJE POKAZATELJA NAČINA RADA NAČINA RADA (ISKORIŠĆENOSTI KAPACITETA, STEPENA OTVORENOSTI RADNIH MESTA I NIVOA ORGANIZOVANOSTI) Izračunavanje pokazatelja načina rada OTVORENOG RM RASPOLOŽIVO RADNO

Διαβάστε περισσότερα

III VEŽBA: FURIJEOVI REDOVI

III VEŽBA: FURIJEOVI REDOVI III VEŽBA: URIJEOVI REDOVI 3.1. eorijska osnova Posmatrajmo neki vremenski kontinualan signal x(t) na intervalu definisati: t + t t. ada se može X [ k ] = 1 t + t x ( t ) e j 2 π kf t dt, gde je f = 1/.

Διαβάστε περισσότερα

Apsolutno neprekidne raspodele Raspodele apsolutno neprekidnih sluqajnih promenljivih nazivaju se apsolutno neprekidnim raspodelama.

Apsolutno neprekidne raspodele Raspodele apsolutno neprekidnih sluqajnih promenljivih nazivaju se apsolutno neprekidnim raspodelama. Apsolutno neprekidne raspodele Raspodele apsolutno neprekidnih sluqajnih promenljivih nazivaju se apsolutno neprekidnim raspodelama. a b Verovatno a da sluqajna promenljiva X uzima vrednost iz intervala

Διαβάστε περισσότερα

Elementi spektralne teorije matrica

Elementi spektralne teorije matrica Elementi spektralne teorije matrica Neka je X konačno dimenzionalan vektorski prostor nad poljem K i neka je A : X X linearni operator. Definicija. Skalar λ K i nenula vektor u X se nazivaju sopstvena

Διαβάστε περισσότερα

Ispitivanje toka i skiciranje grafika funkcija

Ispitivanje toka i skiciranje grafika funkcija Ispitivanje toka i skiciranje grafika funkcija Za skiciranje grafika funkcije potrebno je ispitati svako od sledećih svojstava: Oblast definisanosti: D f = { R f R}. Parnost, neparnost, periodičnost. 3

Διαβάστε περισσότερα

DISKRETNA MATEMATIKA - PREDAVANJE 7 - Jovanka Pantović

DISKRETNA MATEMATIKA - PREDAVANJE 7 - Jovanka Pantović DISKRETNA MATEMATIKA - PREDAVANJE 7 - Jovanka Pantović Novi Sad April 17, 2018 1 / 22 Teorija grafova April 17, 2018 2 / 22 Definicija Graf je ure dena trojka G = (V, G, ψ), gde je (i) V konačan skup čvorova,

Διαβάστε περισσότερα

PRAVA. Prava je u prostoru određena jednom svojom tačkom i vektorom paralelnim sa tom pravom ( vektor paralelnosti).

PRAVA. Prava je u prostoru određena jednom svojom tačkom i vektorom paralelnim sa tom pravom ( vektor paralelnosti). PRAVA Prava je kao i ravan osnovni geometrijski ojam i ne definiše se. Prava je u rostoru određena jednom svojom tačkom i vektorom aralelnim sa tom ravom ( vektor aralelnosti). M ( x, y, z ) 3 Posmatrajmo

Διαβάστε περισσότερα

numeričkih deskriptivnih mera.

numeričkih deskriptivnih mera. DESKRIPTIVNA STATISTIKA Numeričku seriju podataka opisujemo pomoću Numeričku seriju podataka opisujemo pomoću numeričkih deskriptivnih mera. Pokazatelji centralne tendencije Aritmetička sredina, Medijana,

Διαβάστε περισσότερα

MATRICE I DETERMINANTE - formule i zadaci - (Matrice i determinante) 1 / 15

MATRICE I DETERMINANTE - formule i zadaci - (Matrice i determinante) 1 / 15 MATRICE I DETERMINANTE - formule i zadaci - (Matrice i determinante) 1 / 15 Matrice - osnovni pojmovi (Matrice i determinante) 2 / 15 (Matrice i determinante) 2 / 15 Matrice - osnovni pojmovi Matrica reda

Διαβάστε περισσότερα

5. Karakteristične funkcije

5. Karakteristične funkcije 5. Karakteristične funkcije Profesor Milan Merkle emerkle@etf.rs milanmerkle.etf.rs Verovatnoća i Statistika-proleće 2018 Milan Merkle Karakteristične funkcije ETF Beograd 1 / 10 Definicija Karakteristična

Διαβάστε περισσότερα

Osnovni primer. (Z, +,,, 0, 1) je komutativan prsten sa jedinicom: množenje je distributivno prema sabiranju

Osnovni primer. (Z, +,,, 0, 1) je komutativan prsten sa jedinicom: množenje je distributivno prema sabiranju RAČUN OSTATAKA 1 1 Prsten celih brojeva Z := N + {} N + = {, 3, 2, 1,, 1, 2, 3,...} Osnovni primer. (Z, +,,,, 1) je komutativan prsten sa jedinicom: sabiranje (S1) asocijativnost x + (y + z) = (x + y)

Διαβάστε περισσότερα

Iskazna logika 3. Matematička logika u računarstvu. novembar 2012

Iskazna logika 3. Matematička logika u računarstvu. novembar 2012 Iskazna logika 3 Matematička logika u računarstvu Department of Mathematics and Informatics, Faculty of Science,, Serbia novembar 2012 Deduktivni sistemi 1 Definicija Deduktivni sistem (ili formalna teorija)

Διαβάστε περισσότερα

2 tg x ctg x 1 = =, cos 2x Zbog četvrtog kvadranta rješenje je: 2 ctg x

2 tg x ctg x 1 = =, cos 2x Zbog četvrtog kvadranta rješenje je: 2 ctg x Zadatak (Darjan, medicinska škola) Izračunaj vrijednosti trigonometrijskih funkcija broja ako je 6 sin =,,. 6 Rješenje Ponovimo trigonometrijske funkcije dvostrukog kuta! Za argument vrijede sljedeće formule:

Διαβάστε περισσότερα

Kontrolni zadatak (Tačka, prava, ravan, diedar, poliedar, ortogonalna projekcija), grupa A

Kontrolni zadatak (Tačka, prava, ravan, diedar, poliedar, ortogonalna projekcija), grupa A Kontrolni zadatak (Tačka, prava, ravan, diedar, poliedar, ortogonalna projekcija), grupa A Ime i prezime: 1. Prikazane su tačke A, B i C i prave a,b i c. Upiši simbole Î, Ï, Ì ili Ë tako da dobijeni iskazi

Διαβάστε περισσότερα

18. listopada listopada / 13

18. listopada listopada / 13 18. listopada 2016. 18. listopada 2016. 1 / 13 Neprekidne funkcije Važnu klasu funkcija tvore neprekidne funkcije. To su funkcije f kod kojih mala promjena u nezavisnoj varijabli x uzrokuje malu promjenu

Διαβάστε περισσότερα

Zavrxni ispit iz Matematiqke analize 1

Zavrxni ispit iz Matematiqke analize 1 Građevinski fakultet Univerziteta u Beogradu 3.2.2016. Zavrxni ispit iz Matematiqke analize 1 Prezime i ime: Broj indeksa: 1. Definisati Koxijev niz. Dati primer niza koji nije Koxijev. 2. Dat je red n=1

Διαβάστε περισσότερα

Elektrotehnički fakultet univerziteta u Beogradu 16.maj Odsek za Softversko inžinjerstvo

Elektrotehnički fakultet univerziteta u Beogradu 16.maj Odsek za Softversko inžinjerstvo Elektrotehnčk fakultet unverzteta u Beogradu 6.maj 8. Odsek za Softversko nžnjerstvo Performanse računarskh sstema Drug kolokvjum Predmetn nastavnk: dr Jelca Protć (35) a) () Posmatra se segment od N uzastonh

Διαβάστε περισσότερα

Zadaci sa prethodnih prijemnih ispita iz matematike na Beogradskom univerzitetu

Zadaci sa prethodnih prijemnih ispita iz matematike na Beogradskom univerzitetu Zadaci sa prethodnih prijemnih ispita iz matematike na Beogradskom univerzitetu Trigonometrijske jednačine i nejednačine. Zadaci koji se rade bez upotrebe trigonometrijskih formula. 00. FF cos x sin x

Διαβάστε περισσότερα

APROKSIMACIJA FUNKCIJA

APROKSIMACIJA FUNKCIJA APROKSIMACIJA FUNKCIJA Osnovni koncepti Gradimir V. Milovanović MF, Beograd, 14. mart 2011. APROKSIMACIJA FUNKCIJA p.1/46 Osnovni problem u TA Kako za datu funkciju f iz velikog prostora X naći jednostavnu

Διαβάστε περισσότερα

ELEKTROTEHNIČKI ODJEL

ELEKTROTEHNIČKI ODJEL MATEMATIKA. Neka je S skup svih živućih državljana Republike Hrvatske..04., a f preslikavanje koje svakom elementu skupa S pridružuje njegov horoskopski znak (bez podznaka). a) Pokažite da je f funkcija,

Διαβάστε περισσότερα

RAČUNSKE VEŽBE IZ PREDMETA POLUPROVODNIČKE KOMPONENTE (IV semestar modul EKM) IV deo. Miloš Marjanović

RAČUNSKE VEŽBE IZ PREDMETA POLUPROVODNIČKE KOMPONENTE (IV semestar modul EKM) IV deo. Miloš Marjanović Univerzitet u Nišu Elektronski fakultet RAČUNSKE VEŽBE IZ PREDMETA (IV semestar modul EKM) IV deo Miloš Marjanović MOSFET TRANZISTORI ZADATAK 35. NMOS tranzistor ima napon praga V T =2V i kroz njega protiče

Διαβάστε περισσότερα

IZVODI ZADACI ( IV deo) Rešenje: Najpre ćemo logaritmovati ovu jednakost sa ln ( to beše prirodni logaritam za osnovu e) a zatim ćemo

IZVODI ZADACI ( IV deo) Rešenje: Najpre ćemo logaritmovati ovu jednakost sa ln ( to beše prirodni logaritam za osnovu e) a zatim ćemo IZVODI ZADACI ( IV deo) LOGARITAMSKI IZVOD Logariamskim izvodom funkcije f(), gde je >0 i, nazivamo izvod logarima e funkcije, o jes: (ln ) f ( ) f ( ) Primer. Nadji izvod funkcije Najpre ćemo logarimovai

Διαβάστε περισσότερα

Računarska grafika. Rasterizacija linije

Računarska grafika. Rasterizacija linije Računarska grafika Osnovni inkrementalni algoritam Drugi naziv u literaturi digitalni diferencijalni analizator (DDA) Pretpostavke (privremena ograničenja koja se mogu otkloniti jednostavnim uopštavanjem

Διαβάστε περισσότερα

Teorijske osnove informatike 1

Teorijske osnove informatike 1 Teorijske osnove informatike 1 9. oktobar 2014. () Teorijske osnove informatike 1 9. oktobar 2014. 1 / 17 Funkcije Veze me du skupovima uspostavljamo skupovima koje nazivamo funkcijama. Neformalno, funkcija

Διαβάστε περισσότερα

5 Ispitivanje funkcija

5 Ispitivanje funkcija 5 Ispitivanje funkcija 3 5 Ispitivanje funkcija Ispitivanje funkcije pretodi crtanju grafika funkcije. Opšti postupak ispitivanja funkcija koje su definisane eksplicitno y = f() sadrži sledeće elemente:

Διαβάστε περισσότερα

IspitivaƬe funkcija: 1. Oblast definisanosti funkcije (ili domen funkcije) D f

IspitivaƬe funkcija: 1. Oblast definisanosti funkcije (ili domen funkcije) D f IspitivaƬe funkcija: 1. Oblast definisanosti funkcije (ili domen funkcije) D f IspitivaƬe funkcija: 1. Oblast definisanosti funkcije (ili domen funkcije) D f 2. Nule i znak funkcije; presek sa y-osom IspitivaƬe

Διαβάστε περισσότερα

2log. se zove numerus (logaritmand), je osnova (baza) log. log. log =

2log. se zove numerus (logaritmand), je osnova (baza) log. log. log = ( > 0, 0)!" # > 0 je najčešći uslov koji postavljamo a još je,, > 0 se zove numerus (aritmand), je osnova (baza). 0.. ( ) +... 7.. 8. Za prelazak na neku novu bazu c: 9. Ako je baza (osnova) 0 takvi se

Διαβάστε περισσότερα

IZVODI ZADACI (I deo)

IZVODI ZADACI (I deo) IZVODI ZADACI (I deo) Najpre da se podsetimo tablice i osnovnih pravila:. C`=0. `=. ( )`= 4. ( n )`=n n-. (a )`=a lna 6. (e )`=e 7. (log a )`= 8. (ln)`= ` ln a (>0) 9. = ( 0) 0. `= (>0) (ovde je >0 i a

Διαβάστε περισσότερα

Kaskadna kompenzacija SAU

Kaskadna kompenzacija SAU Kaskadna kompenzacija SAU U inženjerskoj praksi, naročito u sistemima regulacije elektromotornih pogona i tehnoloških procesa, veoma često se primenjuje metoda kaskadne kompenzacije, u čijoj osnovi su

Διαβάστε περισσότερα

Strukture podataka i algoritmi 1. kolokvij 16. studenog Zadatak 1

Strukture podataka i algoritmi 1. kolokvij 16. studenog Zadatak 1 Strukture podataka i algoritmi 1. kolokvij Na kolokviju je dozvoljeno koristiti samo pribor za pisanje i službeni šalabahter. Predajete samo papire koje ste dobili. Rezultati i uvid u kolokvije: ponedjeljak,

Διαβάστε περισσότερα

FTN Novi Sad Katedra za motore i vozila. Teorija kretanja drumskih vozila Vučno-dinamičke performanse vozila: MAKSIMALNA BRZINA

FTN Novi Sad Katedra za motore i vozila. Teorija kretanja drumskih vozila Vučno-dinamičke performanse vozila: MAKSIMALNA BRZINA : MAKSIMALNA BRZINA Maksimalna brzina kretanja F O (N) F OI i m =i I i m =i II F Oid Princip određivanja v MAX : Drugi Njutnov zakon Dokle god je: F O > ΣF otp vozilo ubrzava Kada postane: F O = ΣF otp

Διαβάστε περισσότερα

Operacije s matricama

Operacije s matricama Linearna algebra I Operacije s matricama Korolar 3.1.5. Množenje matrica u vektorskom prostoru M n (F) ima sljedeća svojstva: (1) A(B + C) = AB + AC, A, B, C M n (F); (2) (A + B)C = AC + BC, A, B, C M

Διαβάστε περισσότερα

Osnovne teoreme diferencijalnog računa

Osnovne teoreme diferencijalnog računa Osnovne teoreme diferencijalnog računa Teorema Rolova) Neka je funkcija f definisana na [a, b], pri čemu važi f je neprekidna na [a, b], f je diferencijabilna na a, b) i fa) fb). Tada postoji ξ a, b) tako

Διαβάστε περισσότερα

M086 LA 1 M106 GRP. Tema: Baza vektorskog prostora. Koordinatni sustav. Norma. CSB nejednakost

M086 LA 1 M106 GRP. Tema: Baza vektorskog prostora. Koordinatni sustav. Norma. CSB nejednakost M086 LA 1 M106 GRP Tema: CSB nejednakost. 19. 10. 2017. predavač: Rudolf Scitovski, Darija Marković asistent: Darija Brajković, Katarina Vincetić P 1 www.fizika.unios.hr/grpua/ 1 Baza vektorskog prostora.

Διαβάστε περισσότερα

PARCIJALNI IZVODI I DIFERENCIJALI. Sama definicija parcijalnog izvoda i diferencijala je malo teža, mi se njome ovde nećemo baviti a vi ćete je,

PARCIJALNI IZVODI I DIFERENCIJALI. Sama definicija parcijalnog izvoda i diferencijala je malo teža, mi se njome ovde nećemo baviti a vi ćete je, PARCIJALNI IZVODI I DIFERENCIJALI Sama definicija parcijalnog ivoda i diferencijala je malo teža, mi se njome ovde nećemo baviti a vi ćete je, naravno, naučiti onako kako vaš profesor ahteva. Mi ćemo probati

Διαβάστε περισσότερα

nvt 1) ukoliko su poznate struje dioda. Struja diode D 1 je I 1 = I I 2 = 8mA. Sada je = 1,2mA.

nvt 1) ukoliko su poznate struje dioda. Struja diode D 1 je I 1 = I I 2 = 8mA. Sada je = 1,2mA. IOAE Dioda 8/9 I U kolu sa slike, diode D su identične Poznato je I=mA, I =ma, I S =fa na 7 o C i parametar n= a) Odrediti napon V I Kolika treba da bude struja I da bi izlazni napon V I iznosio 5mV? b)

Διαβάστε περισσότερα

a M a A. Može se pokazati da je supremum (ako postoji) jedinstven pa uvodimo oznaku sup A.

a M a A. Može se pokazati da je supremum (ako postoji) jedinstven pa uvodimo oznaku sup A. 3 Infimum i supremum Definicija. Neka je A R. Kažemo da je M R supremum skupa A ako je (i) M gornja meda skupa A, tj. a M a A. (ii) M najmanja gornja meda skupa A, tj. ( ε > 0)( a A) takav da je a > M

Διαβάστε περισσότερα

Verovatnoća i Statistika I deo Teorija verovatnoće (zadaci) Beleške dr Bobana Marinkovića

Verovatnoća i Statistika I deo Teorija verovatnoće (zadaci) Beleške dr Bobana Marinkovića Verovatnoća i Statistika I deo Teorija verovatnoće zadaci Beleške dr Bobana Marinkovića Iz skupa, 2,, 00} bira se na slučajan način 5 brojeva Odrediti skup elementarnih dogadjaja ako se brojevi biraju

Διαβάστε περισσότερα

Konstruisanje. Dobro došli na... SREDNJA MAŠINSKA ŠKOLA NOVI SAD DEPARTMAN ZA PROJEKTOVANJE I KONSTRUISANJE

Konstruisanje. Dobro došli na... SREDNJA MAŠINSKA ŠKOLA NOVI SAD DEPARTMAN ZA PROJEKTOVANJE I KONSTRUISANJE Dobro došli na... Konstruisanje GRANIČNI I KRITIČNI NAPON slajd 2 Kritični naponi Izazivaju kritične promene oblika Delovi ne mogu ispravno da vrše funkciju Izazivaju plastične deformacije Može doći i

Διαβάστε περισσότερα

41. Jednačine koje se svode na kvadratne

41. Jednačine koje se svode na kvadratne . Jednačine koje se svode na kvadrane Simerične recipročne) jednačine Jednačine oblika a n b n c n... c b a nazivamo simerične jednačine, zbog simeričnosi koeficijenaa koeficijeni uz jednaki). k i n k

Διαβάστε περισσότερα

INTEGRALNI RAČUN. Teorije, metodike i povijest infinitezimalnih računa. Lucija Mijić 17. veljače 2011.

INTEGRALNI RAČUN. Teorije, metodike i povijest infinitezimalnih računa. Lucija Mijić 17. veljače 2011. INTEGRALNI RAČUN Teorije, metodike i povijest infinitezimalnih računa Lucija Mijić lucija@ktf-split.hr 17. veljače 2011. Pogledajmo Predstavimo gornju sumu sa Dodamo još jedan Dobivamo pravokutnik sa Odnosno

Διαβάστε περισσότερα

OSNOVI ELEKTRONIKE VEŽBA BROJ 1 OSNOVNA KOLA SA DIODAMA

OSNOVI ELEKTRONIKE VEŽBA BROJ 1 OSNOVNA KOLA SA DIODAMA ELEKTROTEHNIČKI FAKULTET U BEOGRADU KATEDRA ZA ELEKTRONIKU OSNOVI ELEKTRONIKE SVI ODSECI OSIM ODSEKA ZA ELEKTRONIKU LABORATORIJSKE VEŽBE VEŽBA BROJ 1 OSNOVNA KOLA SA DIODAMA Autori: Goran Savić i Milan

Διαβάστε περισσότερα

STATIČKE KARAKTERISTIKE DIODA I TRANZISTORA

STATIČKE KARAKTERISTIKE DIODA I TRANZISTORA Katedra za elektroniku Elementi elektronike Laboratorijske vežbe Vežba br. 2 STATIČKE KARAKTERISTIKE DIODA I TRANZISTORA Datum: Vreme: Studenti: 1. grupa 2. grupa Dežurni: Ocena: Elementi elektronike -

Διαβάστε περισσότερα

Matematika 1 - vježbe. 11. prosinca 2015.

Matematika 1 - vježbe. 11. prosinca 2015. Matematika - vježbe. prosinca 5. Stupnjevi i radijani Ako je kut φ jednak i rad, tada je veza između i 6 = Zadatak.. Izrazite u stupnjevima: a) 5 b) 7 9 c). d) 7. a) 5 9 b) 7 6 6 = = 5 c). 6 8.5 d) 7.

Διαβάστε περισσότερα

Računarska grafika. Rasterizacija linije

Računarska grafika. Rasterizacija linije Računarska grafika Osnovni inkrementalni algoritam Drugi naziv u literaturi digitalni diferencijalni analizator (DDA) Pretpostavke (privremena ograničenja koja se mogu otkloniti jednostavnim uopštavanjem

Διαβάστε περισσότερα

MATEMATIKA 2. Grupa 1 Rexea zadataka. Prvi pismeni kolokvijum, Dragan ori

MATEMATIKA 2. Grupa 1 Rexea zadataka. Prvi pismeni kolokvijum, Dragan ori MATEMATIKA 2 Prvi pismeni kolokvijum, 14.4.2016 Grupa 1 Rexea zadataka Dragan ori Zadaci i rexea 1. unkcija f : R 2 R definisana je sa xy 2 f(x, y) = x2 + y sin 3 2 x 2, (x, y) (0, 0) + y2 0, (x, y) =

Διαβάστε περισσότερα

XI dvoqas veжbi dr Vladimir Balti. 4. Stabla

XI dvoqas veжbi dr Vladimir Balti. 4. Stabla XI dvoqas veжbi dr Vladimir Balti 4. Stabla Teorijski uvod Teorijski uvod Definicija 5.7.1. Stablo je povezan graf bez kontura. Definicija 5.7.1. Stablo je povezan graf bez kontura. Primer 5.7.1. Sva stabla

Διαβάστε περισσότερα

RIJEŠENI ZADACI I TEORIJA IZ

RIJEŠENI ZADACI I TEORIJA IZ RIJEŠENI ZADACI I TEORIJA IZ LOGARITAMSKA FUNKCIJA SVOJSTVA LOGARITAMSKE FUNKCIJE OSNOVE TRIGONOMETRIJE PRAVOKUTNOG TROKUTA - DEFINICIJA TRIGONOMETRIJSKIH FUNKCIJA - VRIJEDNOSTI TRIGONOMETRIJSKIH FUNKCIJA

Διαβάστε περισσότερα

Testiranje statistiqkih hipoteza

Testiranje statistiqkih hipoteza Testiranje statistiqkih hipoteza Testiranje statistiqkih hipoteza Testiranje statistiqkih hipoteza je vid statistiqkog zakljuqivanja koji se primenjuje u situacijama: kada se unapred pretpostavlja postojanje određene

Διαβάστε περισσότερα

Više dokaza jedne poznate trigonometrijske nejednakosti u trokutu

Više dokaza jedne poznate trigonometrijske nejednakosti u trokutu Osječki matematički list 000), 5 9 5 Više dokaza jedne poznate trigonometrijske nejednakosti u trokutu Šefket Arslanagić Alija Muminagić Sažetak. U radu se navodi nekoliko različitih dokaza jedne poznate

Διαβάστε περισσότερα

( ) ( ) 2 UNIVERZITET U ZENICI POLITEHNIČKI FAKULTET. Zadaci za pripremu polaganja kvalifikacionog ispita iz Matematike. 1. Riješiti jednačine: 4

( ) ( ) 2 UNIVERZITET U ZENICI POLITEHNIČKI FAKULTET. Zadaci za pripremu polaganja kvalifikacionog ispita iz Matematike. 1. Riješiti jednačine: 4 UNIVERZITET U ZENICI POLITEHNIČKI FAKULTET Riješiti jednačine: a) 5 = b) ( ) 3 = c) + 3+ = 7 log3 č) = 8 + 5 ć) sin cos = d) 5cos 6cos + 3 = dž) = đ) + = 3 e) 6 log + log + log = 7 f) ( ) ( ) g) ( ) log

Διαβάστε περισσότερα

Betonske konstrukcije 1 - vežbe 3 - Veliki ekscentricitet -Dodatni primeri

Betonske konstrukcije 1 - vežbe 3 - Veliki ekscentricitet -Dodatni primeri Betonske konstrukcije 1 - vežbe 3 - Veliki ekscentricitet -Dodatni primeri 1 1 Zadatak 1b Čisto savijanje - vezano dimenzionisanje Odrediti potrebnu površinu armature za presek poznatih dimenzija, pravougaonog

Διαβάστε περισσότερα

Cauchyjev teorem. Postoji više dokaza ovog teorema, a najjednostvniji je uz pomoć Greenove formule: dxdy. int C i Cauchy Riemannovih uvjeta.

Cauchyjev teorem. Postoji više dokaza ovog teorema, a najjednostvniji je uz pomoć Greenove formule: dxdy. int C i Cauchy Riemannovih uvjeta. auchyjev teorem Neka je f-ja f (z) analitička u jednostruko (prosto) povezanoj oblasti G, i neka je zatvorena kontura koja čitava leži u toj oblasti. Tada je f (z)dz = 0. Postoji više dokaza ovog teorema,

Διαβάστε περισσότερα

Pošto pretvaramo iz veće u manju mjernu jedinicu broj 2.5 množimo s 1000,

Pošto pretvaramo iz veće u manju mjernu jedinicu broj 2.5 množimo s 1000, PRERAČUNAVANJE MJERNIH JEDINICA PRIMJERI, OSNOVNE PRETVORBE, POTENCIJE I ZNANSTVENI ZAPIS, PREFIKSKI, ZADACI S RJEŠENJIMA Primjeri: 1. 2.5 m = mm Pretvaramo iz veće u manju mjernu jedinicu. 1 m ima dm,

Διαβάστε περισσότερα

radni nerecenzirani materijal za predavanja

radni nerecenzirani materijal za predavanja Matematika 1 Funkcije radni nerecenzirani materijal za predavanja Definicija 1. Kažemo da je funkcija f : a, b R u točki x 0 a, b postiže lokalni minimum ako postoji okolina O(x 0 ) broja x 0 takva da je

Διαβάστε περισσότερα

Veleučilište u Rijeci Stručni studij sigurnosti na radu Akad. god. 2011/2012. Matematika. Monotonost i ekstremi. Katica Jurasić. Rijeka, 2011.

Veleučilište u Rijeci Stručni studij sigurnosti na radu Akad. god. 2011/2012. Matematika. Monotonost i ekstremi. Katica Jurasić. Rijeka, 2011. Veleučilište u Rijeci Stručni studij sigurnosti na radu Akad. god. 2011/2012. Matematika Monotonost i ekstremi Katica Jurasić Rijeka, 2011. Ishodi učenja - predavanja Na kraju ovog predavanja moći ćete:,

Διαβάστε περισσότερα

21. ŠKOLSKO/OPĆINSKO/GRADSKO NATJECANJE IZ GEOGRAFIJE GODINE 8. RAZRED TOČNI ODGOVORI

21. ŠKOLSKO/OPĆINSKO/GRADSKO NATJECANJE IZ GEOGRAFIJE GODINE 8. RAZRED TOČNI ODGOVORI 21. ŠKOLSKO/OPĆINSKO/GRADSKO NATJECANJE IZ GEOGRAFIJE 2014. GODINE 8. RAZRED TOČNI ODGOVORI Bodovanje za sve zadatke: - boduju se samo točni odgovori - dodatne upute navedene su za pojedine skupine zadataka

Διαβάστε περισσότερα

4.7. Zadaci Formalizam diferenciranja (teorija na stranama ) 343. Znajući izvod funkcije x arctg x, odrediti izvod funkcije x arcctg x.

4.7. Zadaci Formalizam diferenciranja (teorija na stranama ) 343. Znajući izvod funkcije x arctg x, odrediti izvod funkcije x arcctg x. 4.7. ZADACI 87 4.7. Zadaci 4.7.. Formalizam diferenciranja teorija na stranama 4-46) 340. Znajući izvod funkcije arcsin, odrediti izvod funkcije arccos. Rešenje. Polazeći od jednakosti arcsin + arccos

Διαβάστε περισσότερα

VJEŽBE 3 BIPOLARNI TRANZISTORI. Slika 1. Postoje npn i pnp bipolarni tranziostori i njihovi simboli su dati na slici 2 i to npn lijevo i pnp desno.

VJEŽBE 3 BIPOLARNI TRANZISTORI. Slika 1. Postoje npn i pnp bipolarni tranziostori i njihovi simboli su dati na slici 2 i to npn lijevo i pnp desno. JŽ 3 POLAN TANZSTO ipolarni tranzistor se sastoji od dva pn spoja kod kojih je jedna oblast zajednička za oba i naziva se baza, slika 1 Slika 1 ipolarni tranzistor ima 3 izvoda: emitor (), kolektor (K)

Διαβάστε περισσότερα

Trigonometrija 2. Adicijske formule. Formule dvostrukog kuta Formule polovičnog kuta Pretvaranje sume(razlike u produkt i obrnuto

Trigonometrija 2. Adicijske formule. Formule dvostrukog kuta Formule polovičnog kuta Pretvaranje sume(razlike u produkt i obrnuto Trigonometrija Adicijske formule Formule dvostrukog kuta Formule polovičnog kuta Pretvaranje sume(razlike u produkt i obrnuto Razumijevanje postupka izrade složenijeg matematičkog problema iz osnova trigonometrije

Διαβάστε περισσότερα

Eliminacijski zadatak iz Matematike 1 za kemičare

Eliminacijski zadatak iz Matematike 1 za kemičare Za mnoge reakcije vrijedi Arrheniusova jednadžba, koja opisuje vezu koeficijenta brzine reakcije i temperature: K = Ae Ea/(RT ). - T termodinamička temperatura (u K), - R = 8, 3145 J K 1 mol 1 opća plinska

Διαβάστε περισσότερα

Skup svih mogućih ishoda datog opita, odnosno skup svih elementarnih događaja se najčešće obeležava sa E. = {,,,... }

Skup svih mogućih ishoda datog opita, odnosno skup svih elementarnih događaja se najčešće obeležava sa E. = {,,,... } VEROVTNOĆ - ZDI (I DEO) U računu verovatnoće osnovni pojmovi su opit i događaj. Svaki opit se završava nekim ishodom koji se naziva elementarni događaj. Elementarne događaje profesori različito obeležavaju,

Διαβάστε περισσότερα

KOMUTATIVNI I ASOCIJATIVNI GRUPOIDI. NEUTRALNI ELEMENT GRUPOIDA.

KOMUTATIVNI I ASOCIJATIVNI GRUPOIDI. NEUTRALNI ELEMENT GRUPOIDA. KOMUTATIVNI I ASOCIJATIVNI GRUPOIDI NEUTRALNI ELEMENT GRUPOIDA 1 Grupoid (G, ) je asocijativa akko važi ( x, y, z G) x (y z) = (x y) z Grupoid (G, ) je komutativa akko važi ( x, y G) x y = y x Asocijativa

Διαβάστε περισσότερα

Linearna algebra 2 prvi kolokvij,

Linearna algebra 2 prvi kolokvij, 1 2 3 4 5 Σ jmbag smjer studija Linearna algebra 2 prvi kolokvij, 7. 11. 2012. 1. (10 bodova) Neka je dano preslikavanje s : R 2 R 2 R, s (x, y) = (Ax y), pri čemu je A: R 2 R 2 linearan operator oblika

Διαβάστε περισσότερα

HEMIJSKA VEZA TEORIJA VALENTNE VEZE

HEMIJSKA VEZA TEORIJA VALENTNE VEZE TEORIJA VALENTNE VEZE Kovalentna veza nastaje preklapanjem atomskih orbitala valentnih elektrona, pri čemu je region preklapanja između dva jezgra okupiran parom elektrona. - Nastalu kovalentnu vezu opisuje

Διαβάστε περισσότερα

Prvi kolokvijum. y 4 dy = 0. Drugi kolokvijum. Treći kolokvijum

Prvi kolokvijum. y 4 dy = 0. Drugi kolokvijum. Treći kolokvijum 27. septembar 205.. Izračunati neodredjeni integral cos 3 x (sin 2 x 4)(sin 2 x + 3). 2. Izračunati zapreminu tela koje nastaje rotacijom dela površi ograničene krivama y = 3 x 2, y = x + oko x ose. 3.

Διαβάστε περισσότερα

1 UPUTSTVO ZA IZRADU GRAFIČKOG RADA IZ MEHANIKE II

1 UPUTSTVO ZA IZRADU GRAFIČKOG RADA IZ MEHANIKE II 1 UPUTSTVO ZA IZRADU GRAFIČKOG RADA IZ MEHANIKE II Zadatak: Klipni mehanizam se sastoji iz krivaje (ekscentarske poluge) OA dužine R, klipne poluge AB dužine =3R i klipa kompresora B (ukrsne glave). Krivaja

Διαβάστε περισσότερα

OBRTNA TELA. Vladimir Marinkov OBRTNA TELA VALJAK

OBRTNA TELA. Vladimir Marinkov OBRTNA TELA VALJAK OBRTNA TELA VALJAK P = 2B + M B = r 2 π M = 2rπH V = BH 1. Zapremina pravog valjka je 240π, a njegova visina 15. Izračunati površinu valjka. Rešenje: P = 152π 2. Površina valjka je 112π, a odnos poluprečnika

Διαβάστε περισσότερα

INTELIGENTNO UPRAVLJANJE

INTELIGENTNO UPRAVLJANJE INTELIGENTNO UPRAVLJANJE Fuzzy sistemi zaključivanja Vanr.prof. Dr. Lejla Banjanović-Mehmedović Mehmedović 1 Osnovni elementi fuzzy sistema zaključivanja Fazifikacija Baza znanja Baze podataka Baze pravila

Διαβάστε περισσότερα

10. STABILNOST KOSINA

10. STABILNOST KOSINA MEHANIKA TLA: Stabilnot koina 101 10. STABILNOST KOSINA 10.1 Metode proračuna koina Problem analize tabilnoti zemljanih maa vodi e na određivanje odnoa između rapoložive mičuće čvrtoće i proečnog mičućeg

Διαβάστε περισσότερα

TRIGONOMETRIJSKE FUNKCIJE I I.1.

TRIGONOMETRIJSKE FUNKCIJE I I.1. TRIGONOMETRIJSKE FUNKCIJE I I Odredi na brojevnoj trigonometrijskoj kružnici točku Et, za koju je sin t =,cost < 0 Za koje realne brojeve a postoji realan broj takav da je sin = a? Izračunaj: sin π tg

Διαβάστε περισσότερα

Pismeni ispit iz matematike Riješiti sistem jednačina i diskutovati rješenja sistema u zavisnosti od parametra: ( ) + 1.

Pismeni ispit iz matematike Riješiti sistem jednačina i diskutovati rješenja sistema u zavisnosti od parametra: ( ) + 1. Pismeni ispit iz matematike 0 008 GRUPA A Riješiti sistem jednačina i diskutovati rješenja sistema u zavisnosti od parametra: λ + z = Ispitati funkciju i nacrtati njen grafik: + ( λ ) + z = e Izračunati

Διαβάστε περισσότερα

Pravilo 1. Svaki tip entiteta ER modela postaje relaciona šema sa istim imenom.

Pravilo 1. Svaki tip entiteta ER modela postaje relaciona šema sa istim imenom. 1 Pravilo 1. Svaki tip entiteta ER modela postaje relaciona šema sa istim imenom. Pravilo 2. Svaki atribut entiteta postaje atribut relacione šeme pod istim imenom. Pravilo 3. Primarni ključ entiteta postaje

Διαβάστε περισσότερα

ZBIRKA POTPUNO RIJEŠENIH ZADATAKA

ZBIRKA POTPUNO RIJEŠENIH ZADATAKA **** IVANA SRAGA **** 1992.-2011. ZBIRKA POTPUNO RIJEŠENIH ZADATAKA PRIRUČNIK ZA SAMOSTALNO UČENJE POTPUNO RIJEŠENI ZADACI PO ŽUTOJ ZBIRCI INTERNA SKRIPTA CENTRA ZA PODUKU α M.I.M.-Sraga - 1992.-2011.

Διαβάστε περισσότερα

Riješeni zadaci: Nizovi realnih brojeva

Riješeni zadaci: Nizovi realnih brojeva Riješei zadaci: Nizovi realih brojeva Nizovi, aritmetički iz, geometrijski iz Fukciju a : N R azivamo beskoači) iz realih brojeva i ozačavamo s a 1, a,..., a,... ili a ), pri čemu je a = a). Aritmetički

Διαβάστε περισσότερα

radni nerecenzirani materijal za predavanja R(f) = {f(x) x D}

radni nerecenzirani materijal za predavanja R(f) = {f(x) x D} Matematika 1 Funkcije radni nerecenzirani materijal za predavanja Definicija 1. Neka su D i K bilo koja dva neprazna skupa. Postupak f koji svakom elementu x D pridružuje točno jedan element y K zovemo funkcija

Διαβάστε περισσότερα

Obrada signala

Obrada signala Obrada signala 1 18.1.17. Greška kvantizacije Pretpostavka je da greška kvantizacije ima uniformnu raspodelu 7 6 5 4 -X m p x 1,, za x druge vrednosti x 3 x X m 1 X m = 3 x Greška kvantizacije x x x p

Διαβάστε περισσότερα

KVADRATNA FUNKCIJA. Kvadratna funkcija je oblika: Kriva u ravni koja predstavlja grafik funkcije y = ax + bx + c. je parabola.

KVADRATNA FUNKCIJA. Kvadratna funkcija je oblika: Kriva u ravni koja predstavlja grafik funkcije y = ax + bx + c. je parabola. KVADRATNA FUNKCIJA Kvadratna funkcija je oblika: = a + b + c Gde je R, a 0 i a, b i c su realni brojevi. Kriva u ravni koja predstavlja grafik funkcije = a + b + c je parabola. Najpre ćemo naučiti kako

Διαβάστε περισσότερα

Trigonometrijske nejednačine

Trigonometrijske nejednačine Trignmetrijske nejednačine T su nejednačine kd kjih se nepznata javlja ka argument trignmetrijske funkcije. Rešiti trignmetrijsku nejednačinu znači naći sve uglve kji je zadvljavaju. Prilikm traženja rešenja

Διαβάστε περισσότερα

ASIMPTOTE FUNKCIJA. Dakle: Asimptota je prava kojoj se funkcija približava u beskonačno dalekoj tački. Postoje tri vrste asimptota:

ASIMPTOTE FUNKCIJA. Dakle: Asimptota je prava kojoj se funkcija približava u beskonačno dalekoj tački. Postoje tri vrste asimptota: ASIMPTOTE FUNKCIJA Naš savet je da najpre dobro proučite granične vrednosti funkcija Neki profesori vole da asimptote funkcija ispituju kao ponašanje funkcije na krajevima oblasti definisanosti, pa kako

Διαβάστε περισσότερα

4 Numeričko diferenciranje

4 Numeričko diferenciranje 4 Numeričko diferenciranje 7. Funkcija fx) je zadata tabelom: x 0 4 6 8 fx).17 1.5167 1.7044 3.385 5.09 7.814 Koristeći konačne razlike, zaključno sa trećim redom, odrediti tačku x minimuma funkcije fx)

Διαβάστε περισσότερα

Linearna algebra 2 prvi kolokvij,

Linearna algebra 2 prvi kolokvij, Linearna algebra 2 prvi kolokvij, 27.. 20.. Za koji cijeli broj t je funkcija f : R 4 R 4 R definirana s f(x, y) = x y (t + )x 2 y 2 + x y (t 2 + t)x 4 y 4, x = (x, x 2, x, x 4 ), y = (y, y 2, y, y 4 )

Διαβάστε περισσότερα

Mašinsko učenje. Regresija.

Mašinsko učenje. Regresija. Mašinsko učenje. Regresija. Danijela Petrović May 17, 2016 Uvod Problem predviđanja vrednosti neprekidnog atributa neke instance na osnovu vrednosti njenih drugih atributa. Uvod Problem predviđanja vrednosti

Διαβάστε περισσότερα

Numerička matematika 2. kolokvij (1. srpnja 2009.)

Numerička matematika 2. kolokvij (1. srpnja 2009.) Numerička matematika 2. kolokvij (1. srpnja 29.) Zadatak 1 (1 bodova.) Teorijsko pitanje. (A) Neka je G R m n, uz m n, pravokutna matrica koja ima puni rang po stupcima, tj. rang(g) = n. (a) Napišite puni

Διαβάστε περισσότερα

Uvod Teorija odlučivanja je analitički i sistematski pristup proučavanju procesa donošenja odluka Bez obzira o čemu donosimo odluku imamo 6 koraka za

Uvod Teorija odlučivanja je analitički i sistematski pristup proučavanju procesa donošenja odluka Bez obzira o čemu donosimo odluku imamo 6 koraka za Osnovne teorije odlučivanja Uvod Teorija odlučivanja je analitički i sistematski pristup proučavanju procesa donošenja odluka Bez obzira o čemu donosimo odluku imamo 6 koraka za donošenje dobre odluke:

Διαβάστε περισσότερα

Poglavlje 7. Blok dijagrami diskretnih sistema

Poglavlje 7. Blok dijagrami diskretnih sistema Poglavlje 7 Blok dijagrami diskretnih sistema 95 96 Poglavlje 7. Blok dijagrami diskretnih sistema Stav 7.1 Strukturni dijagram diskretnog sistema u kome su sve veliqine prikazane svojim Laplasovim transformacijama

Διαβάστε περισσότερα

Program testirati pomoću podataka iz sledeće tabele:

Program testirati pomoću podataka iz sledeće tabele: Deo 2: Rešeni zadaci 135 Vrednost integrala je I = 2.40407 42. Napisati program za izračunavanje koeficijenta proste linearne korelacije (Pearsonovog koeficijenta) slučajnih veličina X = (x 1,..., x n

Διαβάστε περισσότερα

IZVODI ZADACI (I deo)

IZVODI ZADACI (I deo) IZVODI ZADACI (I deo Najpre da se podsetimo tablice i osnovnih pravila:. C0.. (. ( n n n-. (a a lna 6. (e e 7. (log a 8. (ln ln a (>0 9. ( 0 0. (>0 (ovde je >0 i a >0. (cos. (cos - π. (tg kπ cos. (ctg

Διαβάστε περισσότερα

SOPSTVENE VREDNOSTI I SOPSTVENI VEKTORI LINEARNOG OPERATORA I KVADRATNE MATRICE

SOPSTVENE VREDNOSTI I SOPSTVENI VEKTORI LINEARNOG OPERATORA I KVADRATNE MATRICE 1 SOPSTVENE VREDNOSTI I SOPSTVENI VEKTORI LINEARNOG OPERATORA I KVADRATNE MATRICE Neka je (V, +,, F ) vektorski prostor konačne dimenzije i neka je f : V V linearno preslikavanje. Definicija. (1) Skalar

Διαβάστε περισσότερα

Otvorene mreže. Zadatak 1

Otvorene mreže. Zadatak 1 Otvorene mreže Zadatak Na slici je data otvorena mreža u kojoj je rocesor centralni server. Prosečan intenzitet ulaznog toka rocesa u sistem iznosi X rocesa/sec. Posle rocesorske obrade, roces u % slučajeva

Διαβάστε περισσότερα

S t r a n a 1. 1.Povezati jonsku jačinu rastvora: a) MgCl 2 b) Al 2 (SO 4 ) 3 sa njihovim molalitetima, m. za so tipa: M p X q. pa je jonska jačina:

S t r a n a 1. 1.Povezati jonsku jačinu rastvora: a) MgCl 2 b) Al 2 (SO 4 ) 3 sa njihovim molalitetima, m. za so tipa: M p X q. pa je jonska jačina: S t r a n a 1 1.Povezati jonsku jačinu rastvora: a MgCl b Al (SO 4 3 sa njihovim molalitetima, m za so tipa: M p X q pa je jonska jačina:. Izračunati mase; akno 3 bba(no 3 koje bi trebalo dodati, 0,110

Διαβάστε περισσότερα

Algoritmi i strukture podataka - 1.cas

Algoritmi i strukture podataka - 1.cas Algoritmi i strukture podataka - 1.cas Aleksandar Veljković October 2016 Materijali su zasnovani na materijalima Mirka Stojadinovića 1 Složenost algoritama Približna procena vremena ili prostora potrebnog

Διαβάστε περισσότερα

Riješeni zadaci: Limes funkcije. Neprekidnost

Riješeni zadaci: Limes funkcije. Neprekidnost Riješeni zadaci: Limes funkcije. Neprekidnost Limes funkcije Neka je 0 [a, b] i f : D R, gdje je D = [a, b] ili D = [a, b] \ { 0 }. Kažemo da je es funkcije f u točki 0 jednak L i pišemo f ) = L, ako za

Διαβάστε περισσότερα

Funkcije dviju varjabli (zadaci za vježbu)

Funkcije dviju varjabli (zadaci za vježbu) Funkcije dviju varjabli (zadaci za vježbu) Vidosava Šimić 22. prosinca 2009. Domena funkcije dvije varijable Ako je zadano pridruživanje (x, y) z = f(x, y), onda se skup D = {(x, y) ; f(x, y) R} R 2 naziva

Διαβάστε περισσότερα

NOMENKLATURA ORGANSKIH SPOJEVA. Imenovanje aromatskih ugljikovodika

NOMENKLATURA ORGANSKIH SPOJEVA. Imenovanje aromatskih ugljikovodika NOMENKLATURA ORGANSKIH SPOJEVA Imenovanje aromatskih ugljikovodika benzen metilbenzen (toluen) 1,2-dimetilbenzen (o-ksilen) 1,3-dimetilbenzen (m-ksilen) 1,4-dimetilbenzen (p-ksilen) fenilna grupa 2-fenilheptan

Διαβάστε περισσότερα

Univerzitet u Nišu, Prirodno-matematički fakultet Prijemni ispit za upis OAS Matematika

Univerzitet u Nišu, Prirodno-matematički fakultet Prijemni ispit za upis OAS Matematika Univerzitet u Nišu, Prirodno-matematički fakultet Prijemni ispit za upis OAS Matematika Rešenja. Matematičkom indukcijom dokazati da za svaki prirodan broj n važi jednakost: + 5 + + (n )(n + ) = n n +.

Διαβάστε περισσότερα