Einsteinove rovnice. obrázkový úvod do Všeobecnej teórie relativity. Pavol Ševera. Katedra teoretickej fyziky a didaktiky fyziky

Save this PDF as:
 WORD  PNG  TXT  JPG

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "Einsteinove rovnice. obrázkový úvod do Všeobecnej teórie relativity. Pavol Ševera. Katedra teoretickej fyziky a didaktiky fyziky"

Transcript

1 Einsteinove rovnice obrázkový úvod do Všeobecnej teórie relativity Pavol Ševera Katedra teoretickej fyziky a didaktiky fyziky

2 (Pseudo)historický úvod Gravitácia / Elektromagnetizmus

3 (Pseudo)historický úvod Gravitácia / Elektromagnetizmus Newton (1687) F = κ m 1m 2 r 2

4 (Pseudo)historický úvod Gravitácia / Elektromagnetizmus Newton (1687) F = κ m 1m 2 r 2 Najlepšia fyzikálna teória vôbec

5 (Pseudo)historický úvod Gravitácia / Elektromagnetizmus Newton (1687) F = κ m 1m 2 r 2 Najlepšia fyzikálna teória vôbec záhada chýbajúcej planéty ( )

6 (Pseudo)historický úvod Gravitácia / Elektromagnetizmus Newton (1687) F = κ m 1m 2 r 2 Coulomb (1785) F = k q 1q 2 r 2 Najlepšia fyzikálna teória vôbec záhada chýbajúcej planéty ( )

7 (Pseudo)historický úvod Gravitácia / Elektromagnetizmus Newton (1687) F = κ m 1m 2 r 2 Najlepšia fyzikálna teória vôbec záhada chýbajúcej planéty ( ) Coulomb (1785) F = k q 1q 2 r 2 Maxwellove rovnice (1864)

8 (Pseudo)historický úvod Gravitácia / Elektromagnetizmus Newton (1687) F = κ m 1m 2 r 2 Najlepšia fyzikálna teória vôbec záhada chýbajúcej planéty ( ) Coulomb (1785) F = k q 1q 2 r 2 Maxwellove rovnice (1864) Špeciálna teória relativity (1905)

9 (Pseudo)historický úvod Gravitácia / Elektromagnetizmus Newton (1687) F = κ m 1m 2 r 2 Najlepšia fyzikálna teória vôbec záhada chýbajúcej planéty ( ) Coulomb (1785) F = k q 1q 2 r 2 Maxwellove rovnice (1864) Špeciálna teória relativity (1905) Čo teraz s gravitáciou?

10 (Pseudo)historický úvod Gravitácia / Elektromagnetizmus Newton (1687) F = κ m 1m 2 r 2 Najlepšia fyzikálna teória vôbec záhada chýbajúcej planéty ( ) Coulomb (1785) F = k q 1q 2 r 2 Maxwellove rovnice (1864) Špeciálna teória relativity (1905) Čo teraz s gravitáciou? Galilei (1604) vol ný pád: všetko padá s rovnakým zrýchlením

11 Einsteinov bláznivý nápad

12 Einsteinov bláznivý nápad

13 Einsteinov bláznivý nápad Einstein (1907) Gravitácia neexistuje, to podlaha zrýchl uje smerom nahor

14 Einsteinov bláznivý nápad Einstein (1907) Gravitácia neexistuje, to podlaha zrýchl uje smerom nahor naša vzt ažná sústava je neinerciálna

15 Einsteinov bláznivý nápad Einstein (1907) Gravitácia neexistuje, to podlaha zrýchl uje smerom nahor naša vzt ažná sústava je neinerciálna vol né častice = vol ne padajúce

16 Problémy s Einsteinovým nápadom Zem stále rovnako vel ká

17 Problémy s Einsteinovým nápadom Zem stále rovnako vel ká vzájomné zrýchlenie padajúcich telies

18 Problémy s Einsteinovým nápadom Zem stále rovnako vel ká vzájomné zrýchlenie padajúcich telies

19 Riešenie: časopriestor je zakrivený

20 Riešenie: časopriestor je zakrivený krivost nerozvinutel nost do roviny

21 Riešenie: časopriestor je zakrivený krivost nerozvinutel nost do roviny zmena vnútornej geometrie

22 Riešenie: časopriestor je zakrivený krivost nerozvinutel nost do roviny zmena vnútornej geometrie

23 Riešenie: časopriestor je zakrivený krivost nerozvinutel nost do roviny zmena vnútornej geometrie čo sa rozvinút dá (približne): malý kúsok plochy

24 Riešenie: časopriestor je zakrivený krivost nerozvinutel nost do roviny zmena vnútornej geometrie čo sa rozvinút dá (približne): malý kúsok plochy úzky pásik

25 Riešenie: časopriestor je zakrivený krivost nerozvinutel nost do roviny zmena vnútornej geometrie čo sa rozvinút dá (približne): malý kúsok plochy úzky pásik

26 Riešenie: časopriestor je zakrivený krivost nerozvinutel nost do roviny zmena vnútornej geometrie čo sa rozvinút dá (približne): malý kúsok plochy úzky pásik geodetiky (čiže priamky)

27 Riešenie: časopriestor je zakrivený krivost nerozvinutel nost do roviny zmena vnútornej geometrie čo sa rozvinút dá (približne): malý kúsok plochy úzky pásik geodetiky (čiže priamky) vzájomné zrýchlenie geodetík

28 Všeobecná teória relativity Gravitácia neexistuje, to podlaha zrýchl uje smerom nahor

29 Všeobecná teória relativity Gravitácia neexistuje, to podlaha zrýchl uje smerom nahor... a časopriestor je zakrivený

30 Všeobecná teória relativity Gravitácia neexistuje, to podlaha zrýchl uje smerom nahor... a časopriestor je zakrivený časopriestor

31 Všeobecná teória relativity Gravitácia neexistuje, to podlaha zrýchl uje smerom nahor... a časopriestor je zakrivený časopriestor lokálne rozvinutel ný do Minkowského časopriestoru

32 Všeobecná teória relativity Gravitácia neexistuje, to podlaha zrýchl uje smerom nahor... a časopriestor je zakrivený časopriestor lokálne rozvinutel ný do Minkowského časopriestoru krivost je určená hmotou

33 Všeobecná teória relativity Gravitácia neexistuje, to podlaha zrýchl uje smerom nahor... a časopriestor je zakrivený časopriestor lokálne rozvinutel ný do Minkowského časopriestoru krivost je určená hmotou ako? Einsteinove rovnice

34 Einsteinove rovnice

35 Einsteinove rovnice Geometrická verzia Plocha sféry s polomerom r : S = 4πr 2 r S < 4πr 2

36 Einsteinove rovnice Geometrická verzia Plocha sféry s polomerom r : S = 4π r 2, S = 4πr 2 r r = κ 3c 2 M r S < 4πr 2

37 Einsteinove rovnice Geometrická verzia Plocha sféry s polomerom r : S = 4π r 2, S = 4πr 2 r r = κ 3c 2 M r S < 4πr 2 Dynamická verzia Gaussov zákon pre gravitačné zrýchlenie: div g = 4πκρ g

38 Einsteinove rovnice Geometrická verzia Plocha sféry s polomerom r : S = 4π r 2, S = 4πr 2 r r = κ 3c 2 M r S < 4πr 2 Dynamická verzia Gaussov zákon pre gravitačné zrýchlenie: div g = 4πκρ ( div g = 4πκ ρ + p ) x + p y + p z c 2 g

39 Tlak vyvoláva gravitáciu: div g = 4πκ ( ρ + 3p/c 2)

40 Tlak vyvoláva gravitáciu: div g = 4πκ ( ρ + 3p/c 2) stabilita hviezd tlak prispieva ku gravitácii hviezdy sú menej stabilné

41 Tlak vyvoláva gravitáciu: div g = 4πκ ( ρ + 3p/c 2) stabilita hviezd tlak prispieva ku gravitácii hviezdy sú menej stabilné rozpínajúci sa vesmír dominuje tmavá energia (p = ρc 2 ): ρ + 3p/c 2 < 0

42 Tlak vyvoláva gravitáciu: div g = 4πκ ( ρ + 3p/c 2) stabilita hviezd tlak prispieva ku gravitácii hviezdy sú menej stabilné rozpínajúci sa vesmír dominuje tmavá energia (p = ρc 2 ): ρ + 3p/c 2 < 0 gravitácia je odpudivá

43 Tlak vyvoláva gravitáciu: div g = 4πκ ( ρ + 3p/c 2) stabilita hviezd tlak prispieva ku gravitácii hviezdy sú menej stabilné rozpínajúci sa vesmír dominuje tmavá energia (p = ρc 2 ): ρ + 3p/c 2 < 0 gravitácia je odpudivá exponenciálne rozpínanie (inflácia)

44 Tlak vyvoláva gravitáciu: div g = 4πκ ( ρ + 3p/c 2) stabilita hviezd tlak prispieva ku gravitácii hviezdy sú menej stabilné rozpínajúci sa vesmír dominuje tmavá energia (p = ρc 2 ): ρ + 3p/c 2 < 0 gravitácia je odpudivá exponenciálne rozpínanie (inflácia) 3 r r = 4πκ( ρ + 3p/c 2) const.

45 Odvodenie Einsteinových rovníc Gaussov zákon a krivost

46 Odvodenie Einsteinových rovníc Gaussov zákon a krivost 1. krivost ako otočenie: δ u u nov. u st. a b δ u = R( a, b) u

47 Odvodenie Einsteinových rovníc Gaussov zákon a krivost 1. krivost ako otočenie: δ u u nov. u st. a b δ u = R( a, b) u 2. zrýchlenie ako krivost x u u x δ u g = x = u = R( u, x) u

48 Odvodenie Einsteinových rovníc Gaussov zákon a krivost 1. krivost ako otočenie: δ u u nov. u st. a b δ u = R( a, b) u 2. zrýchlenie ako krivost x u u x δ u g = x = u = R( u, x) u 3. div g, čiže stopa krivosti, čiže Ricciho tenzor div g = Ric( u, u)

49 Odvodenie Einsteinových rovníc Gaussov zákon a krivost 1. krivost ako otočenie: δ u u nov. u st. a b δ u = R( a, b) u 2. zrýchlenie ako krivost x u u x δ u g = x = u = R( u, x) u 3. div g, čiže stopa krivosti, čiže Ricciho tenzor div g = Ric( u, u) div g = 4πκρ Ric = 4πκT

50 Odvodenie Einsteinových rovníc oprava Gaussovho zákona à la Maxwell Maxwell a Ampérov zákon rot B = j

51 Odvodenie Einsteinových rovníc oprava Gaussovho zákona à la Maxwell Maxwell a Ampérov zákon rot B = j + E t

52 Odvodenie Einsteinových rovníc oprava Gaussovho zákona à la Maxwell Maxwell a Ampérov zákon rot B = j + E t identita divrot = 0; div j = 0 div j + ρ/ t = 0

53 Odvodenie Einsteinových rovníc oprava Gaussovho zákona à la Maxwell Maxwell a Ampérov zákon rot B = j + E t identita divrot = 0; div j = 0 div j + ρ/ t = 0 Einstein a Gaussov zákon Ric = 4πκT

54 Odvodenie Einsteinových rovníc oprava Gaussovho zákona à la Maxwell Maxwell a Ampérov zákon rot B = j + E t identita divrot = 0; div j = 0 div j + ρ/ t = 0 Einstein a Gaussov zákon Ric = 4πκT + 4πκ(T (TrT)g)

55 Odvodenie Einsteinových rovníc oprava Gaussovho zákona à la Maxwell Maxwell a Ampérov zákon rot B = j + E t identita divrot = 0; div j = 0 div j + ρ/ t = 0 Einstein a Gaussov zákon Ric = 4πκT + 4πκ(T (TrT)g) identita divric = gradσ/2, Σ = TrRic divt = grad(trt)/2 divt = 0

56 Chýbajúci polomer

57 Chýbajúci polomer 1. Odklon geodetík t ɛ + t3 6 R( u, ɛ) u

58 Chýbajúci polomer 1. Odklon geodetík t ɛ + t3 6 R( u, ɛ) u 2. Krivost a plocha sféry det (t ɛ t ɛ + t36 ) R( u, ɛ) u = 1 + Tr...

59 Chýbajúci polomer 1. Odklon geodetík t ɛ + t3 6 R( u, ɛ) u 2. Krivost a plocha sféry det (t ɛ t ɛ + t36 ) R( u, ɛ) u = 1 + Tr... ds = ds E ( 1 t2 6 Ric( u, u) )

60 Chýbajúci polomer 1. Odklon geodetík t ɛ + t3 6 R( u, ɛ) u 2. Krivost a plocha sféry det (t ɛ t ɛ + t36 ) R( u, ɛ) u = 1 + Tr... ds = ds E ( 1 t2 6 Ric( u, u) ) ) S(r) = S E (r) (1 r2 3 6 Σ

61 Chýbajúci polomer 1. Odklon geodetík t ɛ + t3 6 R( u, ɛ) u 2. Krivost a plocha sféry det (t ɛ t ɛ + t36 ) R( u, ɛ) u = 1 + Tr... ds = ds E ( 1 t2 6 Ric( u, u) ) ) S(r) = S E (r) (1 r2 3 6 Σ 3. Einsteinove rovnice a plocha sféry Σ = 16πκρ

62 Chýbajúci polomer 1. Odklon geodetík t ɛ + t3 6 R( u, ɛ) u 2. Krivost a plocha sféry det (t ɛ t ɛ + t36 ) R( u, ɛ) u = 1 + Tr... ds = ds E ( 1 t2 6 Ric( u, u) ) ) S(r) = S E (r) (1 r2 3 6 Σ 3. Einsteinove rovnice a plocha sféry Σ = 16πκρ δr = κ 3c 2 M

63 Ďakujem za pozornost

Zrýchľovanie vesmíru. Zrýchľovanie vesmíru. o výprave na kraj vesmíru a čo tam astronómovia objavili

Zrýchľovanie vesmíru. Zrýchľovanie vesmíru. o výprave na kraj vesmíru a čo tam astronómovia objavili Zrýchľovanie vesmíru o výprave na kraj vesmíru a čo tam astronómovia objavili Zrýchľovanie vesmíru o výprave na kraj vesmíru a čo tam astronómovia objavili Zrýchľovanie vesmíru o výprave na kraj vesmíru

Διαβάστε περισσότερα

Elektromagnetické pole

Elektromagnetické pole Elektromagnetické pole Elektromagnetická vlna. Maxwellove rovnice v integrálnom tvare a diferenciálnom tvare. Vlnové rovnice pre E a. Vjadrenie rýchlosti elektromagnetickej vln. Vlastnosti a znázornenie

Διαβάστε περισσότερα

O matematike, fyzike a vôbec (fyzika v kocke)

O matematike, fyzike a vôbec (fyzika v kocke) O matematike, fyzike a vôbec (fyzika v kocke) Samuel Kováčik Commenius University samuel.kovacik@gmail.com 20. septembra 2013 Samuel Kováčik (KTF FMFI) mat-fyz 20. septembra 2013 1 / 42 Úvod O čom sa buďeme

Διαβάστε περισσότερα

Základné poznatky molekulovej fyziky a termodynamiky

Základné poznatky molekulovej fyziky a termodynamiky Základné poznatky molekulovej fyziky a termodynamiky Opakovanie učiva II. ročníka, Téma 1. A. Príprava na maturity z fyziky, 2008 Outline Molekulová fyzika 1 Molekulová fyzika Predmet Molekulovej fyziky

Διαβάστε περισσότερα

MIDTERM (A) riešenia a bodovanie

MIDTERM (A) riešenia a bodovanie MIDTERM (A) riešenia a bodovanie 1. (7b) Nech vzhl adom na štandardnú karteziánsku sústavu súradníc S 1 := O, e 1, e 2 majú bod P a vektory u, v súradnice P = [0, 1], u = e 1, v = 2 e 2. Aký predpis bude

Διαβάστε περισσότερα

Prechod z 2D do 3D. Martin Florek 3. marca 2009

Prechod z 2D do 3D. Martin Florek 3. marca 2009 Počítačová grafika 2 Prechod z 2D do 3D Martin Florek florek@sccg.sk FMFI UK 3. marca 2009 Prechod z 2D do 3D Čo to znamená? Ako zobraziť? Súradnicové systémy Čo to znamená? Ako zobraziť? tretia súradnica

Διαβάστε περισσότερα

Priamkové plochy. Ak každým bodom plochy Φ prechádza aspoň jedna priamka, ktorá (celá) na nej leží potom plocha Φ je priamková. Santiago Calatrava

Priamkové plochy. Ak každým bodom plochy Φ prechádza aspoň jedna priamka, ktorá (celá) na nej leží potom plocha Φ je priamková. Santiago Calatrava Priamkové plochy Priamkové plochy Ak každým bodom plochy Φ prechádza aspoň jedna priamka, ktorá (celá) na nej leží potom plocha Φ je priamková. Santiago Calatrava Priamkové plochy rozdeľujeme na: Rozvinuteľné

Διαβάστε περισσότερα

M6: Model Hydraulický systém dvoch zásobníkov kvapaliny s interakciou

M6: Model Hydraulický systém dvoch zásobníkov kvapaliny s interakciou M6: Model Hydraulický ytém dvoch záobníkov kvapaliny interakciou Úlohy:. Zotavte matematický popi modelu Hydraulický ytém. Vytvorte imulačný model v jazyku: a. Matlab b. imulink 3. Linearizujte nelineárny

Διαβάστε περισσότερα

#%" )*& ##+," $ -,!./" %#/%0! %,!

#% )*& ##+, $ -,!./ %#/%0! %,! -!"#$% -&!'"$ & #("$$, #%" )*& ##+," $ -,!./" %#/%0! %,! %!$"#" %!#0&!/" /+#0& 0.00.04. - 3 3,43 5 -, 4 $ $.. 04 ... 3. 6... 6.. #3 7 8... 6.. %9: 3 3 7....3. % 44 8... 6.4. 37; 3,, 443 8... 8.5. $; 3

Διαβάστε περισσότερα

Termodynamika. Doplnkové materiály k prednáškam z Fyziky I pre SjF Dušan PUDIŠ (2008)

Termodynamika. Doplnkové materiály k prednáškam z Fyziky I pre SjF Dušan PUDIŠ (2008) ermodynamika nútorná energia lynov,. veta termodynamická, Izochorický dej, Izotermický dej, Izobarický dej, diabatický dej, Práca lynu ri termodynamických rocesoch, arnotov cyklus, Entroia Dolnkové materiály

Διαβάστε περισσότερα

Gramatická indukcia a jej využitie

Gramatická indukcia a jej využitie a jej využitie KAI FMFI UK 29. Marec 2010 a jej využitie Prehľad Teória formálnych jazykov 1 Teória formálnych jazykov 2 3 a jej využitie Na počiatku bolo slovo. A slovo... a jej využitie Definícia (Slovo)

Διαβάστε περισσότερα

VÝVOJ VESMÍRU A JEHO BUDÚCNOSŤ

VÝVOJ VESMÍRU A JEHO BUDÚCNOSŤ VÝVOJ VESMÍRU A JEHO BUDÚCNOSŤ Martin Vaňko Astronomický ústav SAV, 059 60 Tatranská Lomnica Hvezdáreň a planetárium Prešov, 8.10.2015 História v kocke (Starovek) Najstaršie zmienky (úvahy) o vzniku sveta

Διαβάστε περισσότερα

Bubliny, kvapky a krivosti

Bubliny, kvapky a krivosti Bubliny, kvapky a krivosti Marián Fecko KTF&DF, FMFI UK, Bratislava Text prednesený na Akadémii Trojstenu dňa 9.12.2011 1 Rozhranie medzi kvapalinou a vzduchom sa správa tak, akoby to bola pružná blanka.

Διαβάστε περισσότερα

Start. Vstup r. O = 2*π*r S = π*r*r. Vystup O, S. Stop. Start. Vstup P, C V = P*C*1,19. Vystup V. Stop

Start. Vstup r. O = 2*π*r S = π*r*r. Vystup O, S. Stop. Start. Vstup P, C V = P*C*1,19. Vystup V. Stop 1) Vytvorte algoritmus (vývojový diagram) na výpočet obvodu kruhu. O=2xπxr ; S=πxrxr Vstup r O = 2*π*r S = π*r*r Vystup O, S 2) Vytvorte algoritmus (vývojový diagram) na výpočet celkovej ceny výrobku s

Διαβάστε περισσότερα

ss rt çã r s t Pr r Pós r çã ê t çã st t t ê s 1 t s r s r s r s r q s t r r t çã r str ê t çã r t r r r t r s

ss rt çã r s t Pr r Pós r çã ê t çã st t t ê s 1 t s r s r s r s r q s t r r t çã r str ê t çã r t r r r t r s P P P P ss rt çã r s t Pr r Pós r çã ê t çã st t t ê s 1 t s r s r s r s r q s t r r t çã r str ê t çã r t r r r t r s r t r 3 2 r r r 3 t r ér t r s s r t s r s r s ér t r r t t q s t s sã s s s ér t

Διαβάστε περισσότερα

Kontrolné otázky na kvíz z jednotiek fyzikálnych veličín. Upozornenie: Umiestnenie správnej a nesprávnych odpovedí sa môže v teste meniť.

Kontrolné otázky na kvíz z jednotiek fyzikálnych veličín. Upozornenie: Umiestnenie správnej a nesprávnych odpovedí sa môže v teste meniť. Kontrolné otázky na kvíz z jednotiek fyzikálnych veličín Upozornenie: Umiestnenie správnej a nesprávnych odpovedí sa môže v teste meniť. Ktoré fyzikálne jednotky zodpovedajú sústave SI: a) Dĺžka, čas,

Διαβάστε περισσότερα

Dinamika krutog tijela ( ) Gibanje krutog tijela. Gibanje krutog tijela. Pojmovi: C. Složeno gibanje. A. Translacijsko gibanje krutog tijela. 14.

Dinamika krutog tijela ( ) Gibanje krutog tijela. Gibanje krutog tijela. Pojmovi: C. Složeno gibanje. A. Translacijsko gibanje krutog tijela. 14. Pojmo:. Vektor se F (transacja). oment se (rotacja) Dnamka krutog tjea. do. oment tromost masa. Rad krutog tjea A 5. Knetka energja k 6. oment kona gbanja 7. u momenta kone gbanja momenta se f ( ) Gbanje

Διαβάστε περισσότερα

Úvod. Na čo nám je numerická matematika? Poskytuje nástroje na matematické riešenie problémov reálneho sveta (fyzika, biológia, ekonómia,...

Úvod. Na čo nám je numerická matematika? Poskytuje nástroje na matematické riešenie problémov reálneho sveta (fyzika, biológia, ekonómia,... Úvod Na čo nám je numerická matematika? Poskytuje nástroje na matematické riešenie problémov reálneho sveta (fyzika, biológia, ekonómia,...) Postup pri riešení problémov: 1. formulácia problému 2. formulácia

Διαβάστε περισσότερα

! "# $ % $&'& () *+ (,-. / 0 1(,21(,*) (3 4 5 "$ 6, ::: ;"<$& = = 7 + > + 5 $?"# 46(A *( / A 6 ( 1,*1 B"',CD77E *+ *),*,*) F? $G'& 0/ (,.

! # $ % $&'& () *+ (,-. / 0 1(,21(,*) (3 4 5 $ 6, ::: ;<$& = = 7 + > + 5 $?# 46(A *( / A 6 ( 1,*1 B',CD77E *+ *),*,*) F? $G'& 0/ (,. ! " #$%&'()' *('+$,&'-. /0 1$23(/%/4. 1$)('%%'($( )/,)$5)/6%6 7$85,-9$(- /0 :/986-$, ;2'$(2$ 1'$-/-$)('')5( /&5&-/ 5(< =(4'($$,'(4 1$%$2/996('25-'/(& ;/0->5,$ 1'$-/%'')$(($/3?$%9'&-/?$( 5(< @6%-'9$

Διαβάστε περισσότερα

Physique des réacteurs à eau lourde ou légère en cycle thorium : étude par simulation des performances de conversion et de sûreté

Physique des réacteurs à eau lourde ou légère en cycle thorium : étude par simulation des performances de conversion et de sûreté Physique des réacteurs à eau lourde ou légère en cycle thorium : étude par simulation des performances de conversion et de sûreté Alexis Nuttin To cite this version: Alexis Nuttin. Physique des réacteurs

Διαβάστε περισσότερα

Život vedca krajší od vysnívaného... s prírodou na hladine α R-P-R

Život vedca krajší od vysnívaného... s prírodou na hladine α R-P-R Život vedca krajší od vysnívaného... s prírodou na hladine α R-P-R Ako nadprirodzené stretnutie s murárikom červenokrídlym naformátovalo môj profesijný i súkromný život... Osudové stretnutie s murárikom

Διαβάστε περισσότερα

Akvizicija tereta. 5660t. Y= masa drva, X=masa cementa. Na brod će se ukrcati 1733 tona drva i 3927 tona cementa.

Akvizicija tereta. 5660t. Y= masa drva, X=masa cementa. Na brod će se ukrcati 1733 tona drva i 3927 tona cementa. Akvizicija tereta. Korisna nosivost broda je 6 t, a na brodu ia 8 cu. ft. prostora raspoloživog za sještaj tereta pod palubu. Navedeni brod treba krcati drvo i ceent, a na palubu ože aksialno ukrcati 34

Διαβάστε περισσότερα

2). : 1).. 2). &. 3).. /

2). : 1).. 2). &. 3).. / 1, 14-05-2012.. N.Y: 119/2012 :.. / :..: 70014,..: 2813-404639 FAX: 2813-404608 e-mail: i.pachiadakis@hersonisos.gr : 1). 2).. : 1).. 2). &. 3).. / - 16 (7 15-05-2012):. ------------------------------------------

Διαβάστε περισσότερα

Metodicko pedagogické centrum. Národný projekt VZDELÁVANÍM PEDAGOGICKÝCH ZAMESTNANCOV K INKLÚZII MARGINALIZOVANÝCH RÓMSKYCH KOMUNÍT

Metodicko pedagogické centrum. Národný projekt VZDELÁVANÍM PEDAGOGICKÝCH ZAMESTNANCOV K INKLÚZII MARGINALIZOVANÝCH RÓMSKYCH KOMUNÍT Moderné vzdelávanie pre vedomostnú spoločnosť / Projekt je spolufinancovaný zo zdrojov EÚ Kód ITMS: 26130130051 číslo zmluvy: OPV/24/2011 Metodicko pedagogické centrum Národný projekt VZDELÁVANÍM PEDAGOGICKÝCH

Διαβάστε περισσότερα

2. Dva hmotné body sa navzájom priťahujú zo vzdialenosti r silou 12 N. Akou silou sa budú priťahovať zo vzdialenosti r/2? [48 N]

2. Dva hmotné body sa navzájom priťahujú zo vzdialenosti r silou 12 N. Akou silou sa budú priťahovať zo vzdialenosti r/2? [48 N] Gravitačné pole 1. Akou veľkou silou sa navzájom priťahujú dve homogénne olovené gule s priemerom 1 m, ktoré sa navzájom dotýkajú? Hustota olova je 11,3 g cm 3. [2,33 mn] 2. Dva hmotné body sa navzájom

Διαβάστε περισσότερα

= (2)det (1)det ( 5)det 1 2. u

= (2)det (1)det ( 5)det 1 2. u www.maths.gr, Ενδεικτικές Λύσεις ης Εργασίας ΦΥΕ4 έτους -. Οι Λύσεις είναι για την βοήθεια των φοιτητών, σε ΘΕΜΑ ο 5 6 4 6 4 5 det 4 5 6 ()det ()det ()det 8 9 7 9 7 8 7 8 9 ()( ) ()( 6 ) ()( ) 5 4 4 det

Διαβάστε περισσότερα

Kontrolné otázky z jednotiek fyzikálnych veličín

Kontrolné otázky z jednotiek fyzikálnych veličín Verzia zo dňa 6. 9. 008. Kontrolné otázky z jednotiek fyzikálnych veličín Upozornenie: Umiestnenie správnej odpovede sa môže v kontrolnom teste meniť. Takisto aj znenie nesprávnych odpovedí. Uvedomte si

Διαβάστε περισσότερα

FYZIKA DUSˇAN OLCˇA K - ZUZANA GIBOVA - OL GA FRICˇOVA Aprı l 2006

FYZIKA DUSˇAN OLCˇA K - ZUZANA GIBOVA - OL GA FRICˇOVA Aprı l 2006 FYZIKA DUŠAN OLČÁK - ZUZANA GIBOVÁ - OL GA FRIČOVÁ Apríl 2006 2 Obsah 1 o-g-f:mechanický pohyb tuhého telesa 5 1.1 Kinematika hmotného bodu......................... 6 1.1.1 Rýchlost a zrýchlenie pohybu....................

Διαβάστε περισσότερα

SLOVENSKO maloobchodný cenník (bez DPH)

SLOVENSKO maloobchodný cenník (bez DPH) Hofatex UD strecha / stena - exteriér Podkrytinová izolácia vhodná aj na zaklopenie drevených rámových konštrukcií; pero a drážka EN 13171, EN 622 22 580 2500 1,45 5,7 100 145,00 3,19 829 hustota cca.

Διαβάστε περισσότερα

Š Š Œ Š Œ ƒˆ. Œ. ϵ,.. ÊÏ,.. µ ±Ê

Š Š Œ Š Œ ƒˆ. Œ. ϵ,.. ÊÏ,.. µ ±Ê ˆ ˆŠ Œ ˆ ˆ Œ ƒ Ÿ 2003.. 34.. 7 Š 524.8+[530.12:531.51] Š Š Œ Š Œ ƒˆ. Œ. ϵ,.. ÊÏ,.. µ ±Ê Ñ Ò É ÉÊÉ Ö ÒÌ ² µ, Ê ˆ 138 Š Šˆ Š Š ˆ ˆ Š Œ ƒˆˆ 140 Š Œ ƒˆÿ œ 141 Š Ÿ Š Œ ƒˆÿ 143 ˆ Ÿ Š Œ ƒˆÿ ˆ Œ 144 ˆŸ Ä ˆ Œ

Διαβάστε περισσότερα

IspitivaƬe funkcija: 1. Oblast definisanosti funkcije (ili domen funkcije) D f

IspitivaƬe funkcija: 1. Oblast definisanosti funkcije (ili domen funkcije) D f IspitivaƬe funkcija: 1. Oblast definisanosti funkcije (ili domen funkcije) D f IspitivaƬe funkcija: 1. Oblast definisanosti funkcije (ili domen funkcije) D f 2. Nule i znak funkcije; presek sa y-osom IspitivaƬe

Διαβάστε περισσότερα

n n 1 2 n+1 2 i N j j A j D j U [0,θ j (1 e j )] θ j (0, 1] e j [0, 1] LD j L

Διαβάστε περισσότερα

Úvod. Na čo nám je numerická matematika? Poskytuje nástroje na matematické riešenie problémov reálneho sveta (fyzika, biológia, ekonómia,...

Úvod. Na čo nám je numerická matematika? Poskytuje nástroje na matematické riešenie problémov reálneho sveta (fyzika, biológia, ekonómia,... Úvod Na čo nám je numerická matematika? Poskytuje nástroje na matematické riešenie problémov reálneho sveta (fyzika, biológia, ekonómia,...) Postup pri riešení problémov: 1. formulácia problému 2. formulácia

Διαβάστε περισσότερα

Orientácia na Zemi a vo vesmíre

Orientácia na Zemi a vo vesmíre Orientácia na Zemi a vo vesmíre Orientácia na Zemi Podmienky: a) rovina b) smer podľazačiatku: 1) súradnice topocentrické 2) súradnice geocentrické 3) súradnice heliocentrické pravouhlá sústava súradníc

Διαβάστε περισσότερα

m i N 1 F i = j i F ij + F x

m i N 1 F i = j i F ij + F x N m i i = 1,..., N m i Fi x N 1 F ij, j = 1, 2,... i 1, i + 1,..., N m i F i = j i F ij + F x i mi Fi j Fj i mj O P i = F i = j i F ij + F x i, i = 1,..., N P = i F i = N F ij + i j i N i F x i, i = 1,...,

Διαβάστε περισσότερα

UNIVERZITET U NIŠU ELEKTRONSKI FAKULTET SIGNALI I SISTEMI. Zbirka zadataka

UNIVERZITET U NIŠU ELEKTRONSKI FAKULTET SIGNALI I SISTEMI. Zbirka zadataka UNIVERZITET U NIŠU ELEKTRONSKI FAKULTET Goran Stančić SIGNALI I SISTEMI Zbirka zadataka NIŠ, 014. Sadržaj 1 Konvolucija Literatura 11 Indeks pojmova 11 3 4 Sadržaj 1 Konvolucija Zadatak 1. Odrediti konvoluciju

Διαβάστε περισσότερα

Sarò signor io sol. α α. œ œ. œ œ œ œ µ œ œ. > Bass 2. Domenico Micheli. Canzon, ottava stanza. Soprano 1. Soprano 2. Alto 1

Sarò signor io sol. α α. œ œ. œ œ œ œ µ œ œ. > Bass 2. Domenico Micheli. Canzon, ottava stanza. Soprano 1. Soprano 2. Alto 1 Sarò signor io sol Canzon, ottava stanza Domenico Micheli Soprano Soprano 2 Alto Alto 2 Α Α Sa rò si gnor io sol del mio pen sie io sol Sa rò si gnor io sol del mio pen sie io µ Tenor Α Tenor 2 Α Sa rò

Διαβάστε περισσότερα

Veliine u mehanici. Rad, snaga i energija. Dinamika. Meunarodni sustav mjere (SI) 1. Skalari. 2. Vektori - poetak. 12. dio. 1. Skalari. 2.

Veliine u mehanici. Rad, snaga i energija. Dinamika. Meunarodni sustav mjere (SI) 1. Skalari. 2. Vektori - poetak. 12. dio. 1. Skalari. 2. Vele u ehc Rd, g eegj D. do. Sl. Veo 3. Tezo II. ed 4. Tezo IV. ed. Sl: 3 0 pod je jedc (ezo ulog ed). Veo: 3 3 pod je jedc (ezo pog ed) 3. Tezo dugog ed 3 9 pod je jedc 4. Tezoeog ed 3 4 8 pod je jedc

Διαβάστε περισσότερα

radni nerecenzirani materijal za predavanja R(f) = {f(x) x D}

radni nerecenzirani materijal za predavanja R(f) = {f(x) x D} Matematika 1 Funkcije radni nerecenzirani materijal za predavanja Definicija 1. Neka su D i K bilo koja dva neprazna skupa. Postupak f koji svakom elementu x D pridružuje točno jedan element y K zovemo funkcija

Διαβάστε περισσότερα

Řečtina I průvodce prosincem a začátkem ledna prezenční studium

Řečtina I průvodce prosincem a začátkem ledna prezenční studium Řečtina I průvodce prosincem a začátkem ledna prezenční studium Dobson číst si Dobsona 9. až 12. lekci od 13. lekce už nečíst (minulý čas probírán na stažených slovesech velmi matoucí) Bartoň pořídit si

Διαβάστε περισσότερα

Apsolutno neprekidne raspodele Raspodele apsolutno neprekidnih sluqajnih promenljivih nazivaju se apsolutno neprekidnim raspodelama.

Apsolutno neprekidne raspodele Raspodele apsolutno neprekidnih sluqajnih promenljivih nazivaju se apsolutno neprekidnim raspodelama. Apsolutno neprekidne raspodele Raspodele apsolutno neprekidnih sluqajnih promenljivih nazivaju se apsolutno neprekidnim raspodelama. a b Verovatno a da sluqajna promenljiva X uzima vrednost iz intervala

Διαβάστε περισσότερα

6 Gravitačné pole. 6.1 Keplerove zákony

6 Gravitačné pole. 6.1 Keplerove zákony 89 6 Gravitačné pole Pojem pole patrí k najzákladnejším pojmom fyziky. Predstavuje formu interakcie (tzv. silového pôsobenia) v prostredí medzi materiálnymi objektmi ako sú častice, atómy, molekuly a zložitejšie

Διαβάστε περισσότερα

Για να εμφανιστούν σωστά οι χαρακτήρες της Γραμμικής Β, πρέπει να κάνετε download και install τα fonts της Linear B που υπάρχουν στο τμήμα Downloads.

Για να εμφανιστούν σωστά οι χαρακτήρες της Γραμμικής Β, πρέπει να κάνετε download και install τα fonts της Linear B που υπάρχουν στο τμήμα Downloads. Για να εμφανιστούν σωστά οι χαρακτήρες της Γραμμικής Β, πρέπει να κάνετε download και install τα fonts της Linear B που υπάρχουν στο τμήμα Downloads. Η μυκηναϊκή Γραμμική Β γραφή ονομάστηκε έτσι από τον

Διαβάστε περισσότερα

M8 Model "Valcová a kužeľová nádrž v sérií bez interakcie"

M8 Model Valcová a kužeľová nádrž v sérií bez interakcie M8 Model "Valcová a kužeľová nádrž v sérií bez interakcie" Úlohy: 1. Zostavte matematický popis modelu M8 2. Vytvorte simulačný model v prostredí: a) Simulink zostavte blokovú schému, pomocou rozkladu

Διαβάστε περισσότερα

4 Dynamika hmotného bodu

4 Dynamika hmotného bodu 61 4 Dynamika hmotného bodu V predchádzajúcej kapitole - kinematike hmotného bodu sme sa zaoberali pohybom a pokojom telies, čiže formou pohybu. Neriešili sme príčiny vzniku pohybu hmotného bodu. A práve

Διαβάστε περισσότερα

ΚΩΝΣΤΑΝΤΟΠΟΥΛΟΣ ΙΩΑΝΝΗΣ (ΟΛΥΜΠΙΑΚΗ ΦΛΟΓΑ ΠΥΡΓΟΥ ) ΜΑΝΤΙΚΑΣ ΕΜΜΑΝΟΥΗΛ (Ο ΜΑΚΕΔΑΝΟΣ) ΣΚΡΙΒΑΝΟΣ ΔΗΜΗΤΡΙΟΣ (DO-LING-SUNG ΚΑΛΑΜΑΤΑΣ)

ΚΩΝΣΤΑΝΤΟΠΟΥΛΟΣ ΙΩΑΝΝΗΣ (ΟΛΥΜΠΙΑΚΗ ΦΛΟΓΑ ΠΥΡΓΟΥ ) ΜΑΝΤΙΚΑΣ ΕΜΜΑΝΟΥΗΛ (Ο ΜΑΚΕΔΑΝΟΣ) ΣΚΡΙΒΑΝΟΣ ΔΗΜΗΤΡΙΟΣ (DO-LING-SUNG ΚΑΛΑΜΑΤΑΣ) Kumite Mens -kg ΠΑΝΕΛΛΗΝΙΟ ΠΡΩΤΑΘΛΗΜΑ ΑΝΔΡΩΝ ΓΥΝΑΙΚΩΝ ΑΡΒΑΝΙΤΗΣ ΕΜΜΑΝΟΥΗΛ (ΤΟ ΣΠΙΤΙ ΤΩΝ ΠΡΩΤΑΘΛΗΤΩΝ) ΚΙΟΥΡΤΣΗΣ ΔΗΜΗΤΡΙΟΣ (ΜΑΚΕΔΟΝΙΑ ) ΠΑΠΑΓΡΗΓΟΡΙΟΥ ΕΛΕΥΘΕΡΙΟΣ (ΑΣΚ) ΓΙΔΑΚΟΣ ΝΙΚΟΛΑΟΣ (ΑΝΑΤ ΠΟΛ ΤΕΧ ) ΚΩΝΣΤΑΝΤΟΠΟΥΛΟΣ

Διαβάστε περισσότερα

Mate Vijuga: Rijeseni zadaci iz matematike za srednju skolu

Mate Vijuga: Rijeseni zadaci iz matematike za srednju skolu 7. KOMPLEKSNI BROJEVI 7. Opc pojmov Kompleksn brojev su sastavljen dva djela: Realnog djela (Re) magnarnog djela (Im) Promatrajmo broj a+ b = + 3 Realn do jednak je Re : Imagnarna jednca: = - l = (U elektrotehnc

Διαβάστε περισσότερα

KONVEKSNI SKUPOVI. Definicije: potprostor, afin skup, konveksan skup, konveksan konus. 1/5. Back FullScr

KONVEKSNI SKUPOVI. Definicije: potprostor, afin skup, konveksan skup, konveksan konus. 1/5. Back FullScr KONVEKSNI SKUPOVI Definicije: potprostor, afin skup, konveksan skup, konveksan konus. 1/5 KONVEKSNI SKUPOVI Definicije: potprostor, afin skup, konveksan skup, konveksan konus. 1/5 1. Neka su x, y R n,

Διαβάστε περισσότερα

DRUGI KOLOKVIJUM IZ MATEMATIKE 9x + 6y + z = 1 4x 2y + z = 1 x + 2y + 3z = 2. je neprekidna za a =

DRUGI KOLOKVIJUM IZ MATEMATIKE 9x + 6y + z = 1 4x 2y + z = 1 x + 2y + 3z = 2. je neprekidna za a = x, y, z) 2 2 1 2. Rešiti jednačinu: 2 3 1 1 2 x = 1. x = 3. Odrediti rang matrice: rang 9x + 6y + z = 1 4x 2y + z = 1 x + 2y + 3z = 2. 2 0 1 1 1 3 1 5 2 8 14 10 3 11 13 15 = 4. Neka je A = x x N x < 7},

Διαβάστε περισσότερα

ΓΗ ΚΑΙ ΣΥΜΠΑΝ. Εικόνα 1. Φωτογραφία του γαλαξία μας (από αρχείο της NASA)

ΓΗ ΚΑΙ ΣΥΜΠΑΝ. Εικόνα 1. Φωτογραφία του γαλαξία μας (από αρχείο της NASA) ΓΗ ΚΑΙ ΣΥΜΠΑΝ Φύση του σύμπαντος Η γη είναι μία μονάδα μέσα στο ηλιακό μας σύστημα, το οποίο αποτελείται από τον ήλιο, τους πλανήτες μαζί με τους δορυφόρους τους, τους κομήτες, τα αστεροειδή και τους μετεωρίτες.

Διαβάστε περισσότερα

A) gravitačné pole, Newtonov gravitačný zákon

A) gravitačné pole, Newtonov gravitačný zákon A) gravitačné pole, Newtonov gravitačný zákon (Hajko, II/78 - skrátené) 1. Vypočítajte potenciál φ gravitačného poľa kruhovej dosky (zanedbateľnej hrúbky) hmotnosti m a polomeru v bode P ležiacom na osi

Διαβάστε περισσότερα

ΠΑΡΑΤΗΡΗΣΙΜΑ ΣΧΕΤΙΚΙΣΤΙΚΑ ΦΑΙΝΟΜΕΝΑ ΣΕ ΣΥΜΠΑΓΕΙΣ ΑΣΤΕΡΕΣ

ΠΑΡΑΤΗΡΗΣΙΜΑ ΣΧΕΤΙΚΙΣΤΙΚΑ ΦΑΙΝΟΜΕΝΑ ΣΕ ΣΥΜΠΑΓΕΙΣ ΑΣΤΕΡΕΣ ΤΖΙΑΜΠΑΖΛΗΣ ΒΑΣΙΛΕΙΟΣ ΠΑΡΑΤΗΡΗΣΙΜΑ ΣΧΕΤΙΚΙΣΤΙΚΑ ΦΑΙΝΟΜΕΝΑ ΣΕ ΣΥΜΠΑΓΕΙΣ ΑΣΤΕΡΕΣ ΕΠΙΒΛΕΠΩΝ: ΝΙΚΟΛΑΟΣ ΣΤΕΡΓΙΟΥΛΑΣ Περιεχόµενα Ηµιπεριοδικές ταλαντώσεις (khz QPOs) Μοντέλα περιγραφής Θεωρία ευσταθών κυκλικών

Διαβάστε περισσότερα

KATALÓG KRUHOVÉ POTRUBIE

KATALÓG KRUHOVÉ POTRUBIE H KATALÓG KRUHOVÉ POTRUBIE 0 Základné požiadavky zadávania VZT potrubia pre výrobu 1. Zadávanie do výroby v spoločnosti APIAGRA s.r.o. V digitálnej forme na tlačive F05-8.0_Rozpis_potrubia, zaslané mailom

Διαβάστε περισσότερα

Matematický zápis Maxwellových rovníc ( história zápisu v matematike )

Matematický zápis Maxwellových rovníc ( história zápisu v matematike ) Slovenská Akadémia Vied Fyzikálny ústav SAV Matematický zápis Maxwellových rovníc ( história zápisu v matematike ) RNDr. Robert Turanský Bratislava 8.6.2009 Maxwellove publikácie ( Maxwellove rovnice )

Διαβάστε περισσότερα

QUALITY & RELIABILITY AE

QUALITY & RELIABILITY AE μ μ 1 31 2008 μμ μ «QUALITY & RELIABILITY A E.» 27 2008 μ, www.qnr.com.gr. μ μ μ μ μ μ μ μ, μ. μ,, μ μ μ μ. QUALITY & RELIABILITY AE 1 μ μ 1 31 2008...3...4...5-6...7...8...9-10...11-25...25-27 ( -...28-30...30...31...32-34

Διαβάστε περισσότερα

PRUŽNOSŤ A PEVNOSŤ PRE ŠPECIÁLNE INŽINIERSTVO

PRUŽNOSŤ A PEVNOSŤ PRE ŠPECIÁLNE INŽINIERSTVO ŽILINSKÁ UNIVERZITA V ŽILINE Fakulta špeciálneho inžinierstva Doc. Ing. Jozef KOVAČIK, CSc. Ing. Martin BENIAČ, PhD. PRUŽNOSŤ A PEVNOSŤ PRE ŠPECIÁLNE INŽINIERSTVO Druhé doplnené a upravené vydanie Určené

Διαβάστε περισσότερα

Fyzika. Úvodný kurz pre poslucháčov prvého ročníka bakalárskych programov v rámci štúdia geológie Druhá prednáška mechanika (1)

Fyzika. Úvodný kurz pre poslucháčov prvého ročníka bakalárskych programov v rámci štúdia geológie Druhá prednáška mechanika (1) Fyzika Úvodný kurz pre poslucháčov prvého ročníka bakalárskych programov v rámci štúdia geológie Druhá prednáška mechanika (1) 1 Poznámka: Silové interakcie definované v súčasnej fyzike 1. Gravitačná interakcia:

Διαβάστε περισσότερα

γ 1 6 M = 0.05 F M = 0.05 F M = 0.2 F M = 0.2 F M = 0.05 F M = 0.05 F M = 0.05 F M = 0.2 F M = 0.05 F 2 2 λ τ M = 6000 M = 10000 M = 15000 M = 6000 M = 10000 M = 15000 1 6 τ = 36 1 6 τ = 102 1 6 M = 5000

Διαβάστε περισσότερα

Symetrie a zákony zachovania v Nambuovej mechanike

Symetrie a zákony zachovania v Nambuovej mechanike v Nambuovej mechanike Oddelenie teoretickej fyziky Fakulta matematiky, fyziky a informatiky Univerzita Komenského Bratislava fecko@fmph.uniba.sk Konferencia slovenských fyzikov, Prešov, 3.-6. septembra

Διαβάστε περισσότερα

3.1 Granična vrednost funkcije u tački

3.1 Granična vrednost funkcije u tački 3 Granična vrednost i neprekidnost funkcija 2 3 Granična vrednost i neprekidnost funkcija 3. Granična vrednost funkcije u tački Neka je funkcija f(x) definisana u tačkama x za koje je 0 < x x 0 < r, ili

Διαβάστε περισσότερα

ΣΤΟΙΧΕΙΑ ΔΙΑΝΥΣΜΑΤΙΚΟΥ ΛΟΓΙΣΜΟΥ

ΣΤΟΙΧΕΙΑ ΔΙΑΝΥΣΜΑΤΙΚΟΥ ΛΟΓΙΣΜΟΥ ΣΤΟΙΧΕΙΑ ΔΙΑΝΥΣΜΑΤΙΚΟΥ ΛΟΓΙΣΜΟΥ A u B Μέτρο Διεύθυνση Κατεύθυνση (φορά) Σημείο Εφαρμογής Διανυσματικά Μεγέθη : μετάθεση, ταχύτητα, επιτάχυνση, δύναμη Μονόμετρα Μεγέθη : χρόνος, μάζα, όγκος, θερμοκρασία,

Διαβάστε περισσότερα

2 μ Gauss 1. Equation Chapter 1 Section 1 GAUSS GAUSS

2 μ Gauss 1. Equation Chapter 1 Section 1 GAUSS GAUSS 2 μ Gauss 1 Equation Chapter 1 Section 1 2 GAUSS GAUSS 2 2 μ Gauss μ μ μ μ μ μ μ. μ μ μ μ. μ μ μ μ Coulomb μ. μ 1: μ μ μ μ μ, μ. μ μ. μ μ. μ μ μ μ μμ. μμ μ μ μ. μ μ μμ μ. μ μ μ. μ μ μ μ μ. μ μ μ μ μ μ

Διαβάστε περισσότερα

Ispitivanje toka i skiciranje grafika funkcija

Ispitivanje toka i skiciranje grafika funkcija Ispitivanje toka i skiciranje grafika funkcija Za skiciranje grafika funkcije potrebno je ispitati svako od sledećih svojstava: Oblast definisanosti: D f = { R f R}. Parnost, neparnost, periodičnost. 3

Διαβάστε περισσότερα

Fyzika. Úvodný kurz pre poslucháčov prvého ročníka bakalárskych programov v rámci štúdia geológie Úvodná prednáška

Fyzika. Úvodný kurz pre poslucháčov prvého ročníka bakalárskych programov v rámci štúdia geológie Úvodná prednáška Fyzika Úvodný kurz pre poslucháčov prvého ročníka bakalárskych programov v rámci štúdia geológie Úvodná prednáška kontaktné osoby: prednášky: doc. R. Pašteka, Katedra aplikovanej a envrionmentálnej geofyziky

Διαβάστε περισσότερα

Trigonometrijske nejednačine

Trigonometrijske nejednačine Trignmetrijske nejednačine T su nejednačine kd kjih se nepznata javlja ka argument trignmetrijske funkcije. Rešiti trignmetrijsku nejednačinu znači naći sve uglve kji je zadvljavaju. Prilikm traženja rešenja

Διαβάστε περισσότερα

Dinamika krutog tijela. 14. dio

Dinamika krutog tijela. 14. dio Dnaka kutog tjela 14. do 1 Pojov: 1. Vekto sle F (tanslacja). Moent sle (otacja) 3. Moent toost asa 4. Rad kutog tjela A 5. Knetka enegja E k 6. Moent kolna gbanja 7. u oenta kolne gbanja oenta sle M (

Διαβάστε περισσότερα

Αξιολόγηση Ευριστικών Αλγορίθµων

Αξιολόγηση Ευριστικών Αλγορίθµων Προσεγγιστικοί Αλγόριθµοι Πολλές ϕορές η εύρεση της ϐέλτιστων λύσεων προβληµάτων ακέραιου γραµµικού προγραµµατισµού είναι µια χρονοβόρα διαδικασία (εκθετική πολυπλοκότητα) Προσεγγιστικοί Αλγόριθµοι Πολλές

Διαβάστε περισσότερα

m 1, m 2 F 12, F 21 F12 = F 21

m 1, m 2 F 12, F 21 F12 = F 21 m 1, m 2 F 12, F 21 F12 = F 21 r 1, r 2 r = r 1 r 2 = r 1 r 2 ê r = rê r F 12 = f(r)ê r F 21 = f(r)ê r f(r) f(r) < 0 f(r) > 0 m 1 r1 = f(r)ê r m 2 r2 = f(r)ê r r = r 1 r 2 r 1 = 1 m 1 f(r)ê r r 2 = 1 m

Διαβάστε περισσότερα

Veleučilište u Rijeci Stručni studij sigurnosti na radu Akad. god. 2011/2012. Matematika. Monotonost i ekstremi. Katica Jurasić. Rijeka, 2011.

Veleučilište u Rijeci Stručni studij sigurnosti na radu Akad. god. 2011/2012. Matematika. Monotonost i ekstremi. Katica Jurasić. Rijeka, 2011. Veleučilište u Rijeci Stručni studij sigurnosti na radu Akad. god. 2011/2012. Matematika Monotonost i ekstremi Katica Jurasić Rijeka, 2011. Ishodi učenja - predavanja Na kraju ovog predavanja moći ćete:,

Διαβάστε περισσότερα

, ορίζουμε deta = ad bc. Πρόταση Ένας πίνακας Α είναι αντιστρέψιμος τότε και μόνο αν deta 0.

, ορίζουμε deta = ad bc. Πρόταση Ένας πίνακας Α είναι αντιστρέψιμος τότε και μόνο αν deta 0. Για κάθε πίνακα Α ορίζουμε μία τιμή που λέγεται ορίζουσα και συμβολίζεται deta ή Α Ο ορισμός γίνεται επαγωγικά για = 2, 3, 4, και ισχύουν τα εξής: a b Για 22 πίνακα Α = c d, ορίζουμε deta = ad bc a 1 b

Διαβάστε περισσότερα

- - - - RWC( %) PF PS = 100 PT PS (%) PF PS = 100 PF WC TW BW FW PF PS PS PD PS PS TW BW = = = C 7.12 A A 660 + 16. 8 = 642.5 µ logn = log N0 + a exp(

Διαβάστε περισσότερα

( , treći kolokvij) 3. Na dite lokalne ekstreme funkcije z = x 4 + y 4 2x 2 + 2y 2 3. (20 bodova)

( , treći kolokvij) 3. Na dite lokalne ekstreme funkcije z = x 4 + y 4 2x 2 + 2y 2 3. (20 bodova) A MATEMATIKA (.6.., treći kolokvij. Zadana je funkcija z = e + + sin(. Izračunajte a z (,, b z (,, c z.. Za funkciju z = 3 + na dite a diferencijal dz, b dz u točki T(, za priraste d =. i d =.. c Za koliko

Διαβάστε περισσότερα

MATRICE I DETERMINANTE - formule i zadaci - (Matrice i determinante) 1 / 15

MATRICE I DETERMINANTE - formule i zadaci - (Matrice i determinante) 1 / 15 MATRICE I DETERMINANTE - formule i zadaci - (Matrice i determinante) 1 / 15 Matrice - osnovni pojmovi (Matrice i determinante) 2 / 15 (Matrice i determinante) 2 / 15 Matrice - osnovni pojmovi Matrica reda

Διαβάστε περισσότερα

ZBIERKA ÚLOH Z FYZIKY PRE 3. ROČNÍK

ZBIERKA ÚLOH Z FYZIKY PRE 3. ROČNÍK Kód ITMS projektu: 26110130519 Gymnázium Pavla Jozefa Šafárika moderná škola tretieho tisícročia ZBIERKA ÚLOH Z FYZIKY PRE 3. ROČNÍK (zbierka úloh) Vzdelávacia oblasť: Predmet: Ročník: Vypracoval: Človek

Διαβάστε περισσότερα

Μάθημα 4 Mέγεθος πυρήνα

Μάθημα 4 Mέγεθος πυρήνα Πυρηνική Φυσική και Φυσική Στοιχειωδών Σωματιδίων (5ου εξαμήνου, χειμερινό 2016-17) Τμήμα T3: Κ. Κορδάς & Χ. Πετρίδου Μάθημα 4 Mέγεθος πυρήνα Κώστας Κορδάς Αριστοτέλειο Πανεπιστήμιο Θεσσαλονίκης Πυρηνική

Διαβάστε περισσότερα

Φαινόμενο Unruh. Δημήτρης Μάγγος. Εθνικό Μετσόβιο Πολυτεχνείο September 26, / 20. Δημήτρης Μάγγος Φαινόμενο Unruh 1/20

Φαινόμενο Unruh. Δημήτρης Μάγγος. Εθνικό Μετσόβιο Πολυτεχνείο September 26, / 20. Δημήτρης Μάγγος Φαινόμενο Unruh 1/20 Φαινόμενο Unruh Δημήτρης Μάγγος Εθνικό Μετσόβιο Πολυτεχνείο September 26, 2012 1 / 20 Δημήτρης Μάγγος Φαινόμενο Unruh 1/20 Outline Σχετικότητα Ειδική & Γενική Θεωρία Κβαντική Θεωρία Πεδίου Πεδία Στον Χωρόχρονο

Διαβάστε περισσότερα

Ακτινοβολία Hawking. Πιέρρος Ντελής. Εθνικό Μετσόβιο Πολυτεχνείο Σ.Ε.Μ.Φ.Ε. July 3, / 29. Πιέρρος Ντελής Ακτινοβολία Hawking 1/29

Ακτινοβολία Hawking. Πιέρρος Ντελής. Εθνικό Μετσόβιο Πολυτεχνείο Σ.Ε.Μ.Φ.Ε. July 3, / 29. Πιέρρος Ντελής Ακτινοβολία Hawking 1/29 Ακτινοβολία Hawking Πιέρρος Ντελής Εθνικό Μετσόβιο Πολυτεχνείο ΣΕΜΦΕ July 3, 2013 1 / 29 Πιέρρος Ντελής Ακτινοβολία Hawking 1/29 Outline Σχετικότητα Ειδική & Γενική Θεωρία Κβαντική Θεωρία Πεδίου Πεδία

Διαβάστε περισσότερα

OM2 V3 Ime i prezime: Index br: I SAVIJANJE SILAMA TANKOZIDNIH ŠTAPOVA

OM2 V3 Ime i prezime: Index br: I SAVIJANJE SILAMA TANKOZIDNIH ŠTAPOVA OM V me i preime: nde br: 1.0.01. 0.0.01. SAVJANJE SLAMA TANKOZDNH ŠTAPOVA A. TANKOZDN ŠTAPOV PROZVOLJNOG OTVORENOG POPREČNOG PRESEKA Preposavka: Smičući napon je konsanan po debljini ida (duž pravca upravnog

Διαβάστε περισσότερα

θ I λ dl dz I λ +di λ ΔΙΑΔΟΣΗ ΤΗΣ ΑΚΤΙΝΟΒΟΛΙΑΣ ΣΤΗΝ ΑΤΜΟΣΦΑΙΡΑ Η ένταση I λ προσεγγίζεται ως δέσμη παράλληλων ακτίνων (dω 0) Δέσμη ηλιακών ακτίνων

θ I λ dl dz I λ +di λ ΔΙΑΔΟΣΗ ΤΗΣ ΑΚΤΙΝΟΒΟΛΙΑΣ ΣΤΗΝ ΑΤΜΟΣΦΑΙΡΑ Η ένταση I λ προσεγγίζεται ως δέσμη παράλληλων ακτίνων (dω 0) Δέσμη ηλιακών ακτίνων ΔΙΑΔΟΣΗ ΤΗΣ ΑΚΤΙΝΟΒΟΛΙΑΣ ΣΤΗΝ ΑΤΜΟΣΦΑΙΡΑ Η ένταση I προσεγγίζεται ως δέσμη παράηων ακτίνων (dω 0) θ I Δέσμη ηιακών ακτίνων Ατμοσφαιρικό στρώμα ρ dl dz I +di Εξασθένιση: di = kρidl k = k α + k (Απορρόφηση

Διαβάστε περισσότερα

Moguća i virtuelna pomjeranja

Moguća i virtuelna pomjeranja Dnamka sstema sa vezama Moguća vrtuelna pomjeranja f k ( r 1,..., r N, t) = 0 (k = 1, 2,..., K ) df k dt = r + t = 0 d r = r dt moguća pomjeranja zadovoljavaju uvjet: df k = d r + dt = 0. t δ r = δx +

Διαβάστε περισσότερα

Η δική μας γωνιά! Κωνσταντίνα. Λευτέρης. Λευτέρης. Βασίλης. Μαριάννα

Η δική μας γωνιά! Κωνσταντίνα. Λευτέρης. Λευτέρης. Βασίλης. Μαριάννα Η δική μας γωνιά! Στείλε μας τις ζωγραφιές σου, τις σκέψεις σου, τις κατασκευές σου, τα γράμματά σου! Το κλαμπ μας έχει χώρο για εσένα! Χρησιμοποίησε τη Fun Club κάλπη που θα βρεις στα εστιατόρια Goody

Διαβάστε περισσότερα

ΠΑΝΔΛΛΖΝΗΔ ΔΞΔΣΑΔΗ Γ ΣΑΞΖ ΖΜΔΡΖΗΟΤ ΓΔΝΗΚΟΤ ΛΤΚΔΗΟΤ ΣΔΣΑΡΣΖ 23 MAΪΟΤ 2012 ΔΞΔΣΑΕΟΜΔΝΟ ΜΑΘΖΜΑ: ΦΤΗΚΖ ΓΔΝΗΚΖ ΠΑΗΓΔΗΑ ΤΝΟΛΟ ΔΛΗΓΩΝ: ΔΞΗ (6)

ΠΑΝΔΛΛΖΝΗΔ ΔΞΔΣΑΔΗ Γ ΣΑΞΖ ΖΜΔΡΖΗΟΤ ΓΔΝΗΚΟΤ ΛΤΚΔΗΟΤ ΣΔΣΑΡΣΖ 23 MAΪΟΤ 2012 ΔΞΔΣΑΕΟΜΔΝΟ ΜΑΘΖΜΑ: ΦΤΗΚΖ ΓΔΝΗΚΖ ΠΑΗΓΔΗΑ ΤΝΟΛΟ ΔΛΗΓΩΝ: ΔΞΗ (6) ΠΑΝΔΛΛΖΝΗΔ ΔΞΔΣΑΔΗ Γ ΣΑΞΖ ΖΜΔΡΖΗΟΤ ΓΔΝΗΚΟΤ ΛΤΚΔΗΟΤ ΣΔΣΑΡΣΖ 3 MAΪΟΤ 0 ΔΞΔΣΑΕΟΜΔΝΟ ΜΑΘΖΜΑ: ΦΤΗΚΖ ΓΔΝΗΚΖ ΠΑΗΓΔΗΑ ΤΝΟΛΟ ΔΛΗΓΩΝ: ΔΞΗ (6) ΘΔΜΑ Α Σηις ερφηήζεις Α-Α3 να γράυεηε ζηο ηεηράδιό ζας ηον αριθμό ηης

Διαβάστε περισσότερα

LANCI & ELEMENTI ZA KAČENJE

LANCI & ELEMENTI ZA KAČENJE LANCI & ELEMENTI ZA KAČENJE 0 4 0 1 Lanci za vešanje tereta prema standardu MSZ EN 818-2 Lanci su izuzetno pogodni za obavljanje zahtevnih operacija prenošenja tereta. Opseg radne temperature se kreće

Διαβάστε περισσότερα

MATEMATIKA 4.OA - 5 h týždenne 165 h ročne školský rok 2014/2015

MATEMATIKA 4.OA - 5 h týždenne 165 h ročne školský rok 2014/2015 MATEMATIKA 4.OA - 5 h týždenne 165 h ročne školský rok 2014/2015 Mgr. Valeria Godovičová 1. Mesiac 1 Úvodná hodina Telo 2-5 Druhá a tretia mocnina - čo už poznáme - opačné čísla a ich mocniny SEPTEMBER

Διαβάστε περισσότερα

Matematka 1 Zadaci za drugi kolokvijum

Matematka 1 Zadaci za drugi kolokvijum Matematka Zadaci za drugi kolokvijum 8 Limesi funkcija i neprekidnost 8.. Dokazati po definiciji + + = + = ( ) = + ln( ) = + 8.. Odrediti levi i desni es funkcije u datoj tački f() = sgn, = g() =, = h()

Διαβάστε περισσότερα

ELEKTRICKÉ POLE. Elektrický náboj je základná vlastnosť častíc, je viazaný na častice látky a vyjadruje stav elektricky nabitých telies.

ELEKTRICKÉ POLE. Elektrický náboj je základná vlastnosť častíc, je viazaný na častice látky a vyjadruje stav elektricky nabitých telies. ELEKTRICKÉ POLE 1. ELEKTRICKÝ NÁBOJ, COULOMBOV ZÁKON Skúmajme napr. trenie celuloidového pravítka látkou, hrebeň suché vlasy, mikrotén slabý prúd vody... Príčinou spomenutých javov je elektrický náboj,

Διαβάστε περισσότερα

O čo sa snažia fyzici

O čo sa snažia fyzici 1 O čo sa snažia fyzici Nasledujúci text je malým pohľadom do dejín fyziky a zároveň ukážkou toho, ako vlastne fyzici rozmýšľajú a o čo sa pri skúmaní sveta okolo nás snažia. Aby to neboli iba také abstraktné

Διαβάστε περισσότερα

Πρόγραμμα σπουδών Φυσικής για τις τάξεις Α Γυμνασίου έως και Α Λυκείου

Πρόγραμμα σπουδών Φυσικής για τις τάξεις Α Γυμνασίου έως και Α Λυκείου Πρόγραμμα σπουδών Φυσικής για τις τάξεις Α Γυμνασίου έως και Α Λυκείου 3 ο Μέρος Ποιες ενότητες προτείνονται για διδασκαλία και ποια η εξέλιξή τους ανά τάξη; Ποια η ύλη κάθε τάξης και τα προτεινόμενα σχέδια

Διαβάστε περισσότερα

TRIGONOMETRIJSKE FUNKCIJE I I.1.

TRIGONOMETRIJSKE FUNKCIJE I I.1. TRIGONOMETRIJSKE FUNKCIJE I I Odredi na brojevnoj trigonometrijskoj kružnici točku Et, za koju je sin t =,cost < 0 Za koje realne brojeve a postoji realan broj takav da je sin = a? Izračunaj: sin π tg

Διαβάστε περισσότερα

Rozsah hodnotenia a spôsob výpočtu energetickej účinnosti rozvodu tepla

Rozsah hodnotenia a spôsob výpočtu energetickej účinnosti rozvodu tepla Rozsah hodnotenia a spôsob výpočtu energetickej účinnosti príloha č. 7 k vyhláške č. 428/2010 Názov prevádzkovateľa verejného : Spravbytkomfort a.s. Prešov Adresa: IČO: Volgogradská 88, 080 01 Prešov 31718523

Διαβάστε περισσότερα

PRIEMER DROTU d = 0,4-6,3 mm

PRIEMER DROTU d = 0,4-6,3 mm PRUŽINY PRUŽINY SKRUTNÉ PRUŽINY VIAC AKO 200 RUHOV SKRUTNÝCH PRUŽÍN PRIEMER ROTU d = 0,4-6,3 mm èíslo 3.0 22.8.2008 8:28:57 22.8.2008 8:28:58 PRUŽINY SKRUTNÉ PRUŽINY TECHNICKÉ PARAMETRE h d L S Legenda

Διαβάστε περισσότερα

Φυσική για Μηχανικούς

Φυσική για Μηχανικούς Φυσική για Μηχανικούς Εικόνα: Μητέρα και κόρη απολαμβάνουν την επίδραση της ηλεκτρικής φόρτισης των σωμάτων τους. Κάθε μια ξεχωριστή τρίχα των μαλλιών τους φορτίζεται και προκύπτει μια απωθητική δύναμη

Διαβάστε περισσότερα

a M a A. Može se pokazati da je supremum (ako postoji) jedinstven pa uvodimo oznaku sup A.

a M a A. Može se pokazati da je supremum (ako postoji) jedinstven pa uvodimo oznaku sup A. 3 Infimum i supremum Definicija. Neka je A R. Kažemo da je M R supremum skupa A ako je (i) M gornja meda skupa A, tj. a M a A. (ii) M najmanja gornja meda skupa A, tj. ( ε > 0)( a A) takav da je a > M

Διαβάστε περισσότερα

Μαγνητικά Υλικά Υπεραγωγοί

Μαγνητικά Υλικά Υπεραγωγοί ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Μαγνητικά Υλικά Υπεραγωγοί ΥΠΕΡΑΓΩΓΙΜΟΤΗΤΑ Διδάσκων: Καθηγητής Ιωάννης Παναγιωτόπουλος Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης

Διαβάστε περισσότερα

Κλασική Ηλεκτροδυναμική

Κλασική Ηλεκτροδυναμική Κλασική Ηλεκτροδυναμική Ενότητα 18: Νόμοι Maxwell Ανδρέας Τερζής Σχολή Θετικών Επιστημών Τμήμα Φυσικής Σκοποί ενότητας Σκοπός της ενότητας είναι να παρουσίασει τις εξισώσεις Maxwell. 2 Περιεχόμενα ενότητας

Διαβάστε περισσότερα

Zadaci sa prethodnih prijemnih ispita iz matematike na Beogradskom univerzitetu

Zadaci sa prethodnih prijemnih ispita iz matematike na Beogradskom univerzitetu Zadaci sa prethodnih prijemnih ispita iz matematike na Beogradskom univerzitetu Trigonometrijske jednačine i nejednačine. Zadaci koji se rade bez upotrebe trigonometrijskih formula. 00. FF cos x sin x

Διαβάστε περισσότερα

π π ELEKTROTEHNIČKI ODJEL i) f (x) = x 3 x 2 x + 1, a = 1, b = 1;

π π ELEKTROTEHNIČKI ODJEL i) f (x) = x 3 x 2 x + 1, a = 1, b = 1; 1. Provjerite da funkcija f definirana na segmentu [a, b] zadovoljava uvjete Rolleova poučka, pa odredite barem jedan c a, b takav da je f '(c) = 0 ako je: a) f () = 1, a = 1, b = 1; b) f () = 4, a =,

Διαβάστε περισσότερα