Διόπτρα, ο πρόδρομος του Θεοδόλιχου

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "Διόπτρα, ο πρόδρομος του Θεοδόλιχου"

Transcript

1 Διόπτρα, ο πρόδρομος του Θεοδόλιχου Η σημαντικότερη συμβολή του Ήρωνος στην Γεωμετρία φαίνεται στο έργο του Περί διόπτρας, στον πρόλογο του οποίου αναφέρεται ότι είναι το πρώτο εγχειρίδιο διοπτρικής, επιστήμης που ασχολείται με τις μεθόδους της πρακτικής γεωμετρίας σε συνδυασμό με τη χρήση της διόπτρας, σημαντικού οργάνου εκείνης της εποχής, ανάλογου με τον σημερινό θεοδόλιχο. Στο σύγγραμμα αυτό, που αποτελεί πολύ χρήσιμο εγκόλπιο για τον τοπογράφο μέχρι τον 16ο αιώνα, ο Ήρωνας: 1. Περιγράφει τη διόπτρα και τα παρελκόμενά της ώστε να χρησιμοποιηθεί ως όργανο χάραξης και μέτρησης γωνιών αλλά και ως χωροβάτης, δίνοντας και αναλυτικές οδηγίες για την κατασκευή τους. 2. Διατυπώνει και δίνει τη λύση σε μια σειρά από τοπογραφικά προβλήματα, που περιλαμβάνουν μεθόδους μέτρησης αποστάσεων, επιφανειών, υψομέτρων, βαθών, μεθόδους χάραξης σήραγγας, διαίρεσης επιφανειών κλπ. 3. Αναλύει μια τεχνική μέτρησης-υπολογισμού της απόστασης μεταξύ δύο τόπων, χρησιμοποιώντας τη διαφορά ώρας μιας έκλειψης και αναφέρεται στην απόσταση Αλεξάνδρειας-Ρώμης. 4. Περιγράφει το οδόμετρο για τη μέτρηση αποστάσεων στην ξηρά αλλά και στη θάλασσα. Θα πω με λίγα λόγια γιατί ή μελέτη αυτή είναι πολύ χρήσιμη στην ζωή: διότι μπορεί να βρει εφαρμογή και στη μεταφορά υδάτων, και στη κατασκευή τειχών και λιμανιών και κάθε οικοδομήματος. Ακόμη έχει εφαρμογές και στην εξέταση των ουρανίων σωμάτων, γιατί μετρά τα διαστήματα μεταξύ των αστεριών καθώς και τις αποστάσεις και τα μεγέθη και τις εκλείψεις του ήλιου και της σελήνης. Επιπλέον είναι χρήσιμη σε όσους ασχολούνται με την γεωγραφία επειδή μπορούν να μετρήσουν και νησιά και πελάγη και οποιαδήποτε περιοχή από μακριά. Γιατί πολλές φορές παρεμβάλλεται ένα εμπόδιο που μας εμποδίζει να κάνουμε τη δουλειά μας, όπως μια εχθρική περιοχή, ή επειδή ένας τόπος είναι απρόσιτος και άβατος λόγω φυσικής ανωμαλίας ή ύπαρξης ορμητικού ρεύματος. Πολλοί μάλιστα, κατά την πολιορκία κατασκεύασαν σκάλες ή πολιορκητικές μηχανές κοντύτερες από το αναγκαίο ύψος, και αφού τις μετέφεραν στα εχθρικά τείχη, έγιναν θύματα των αντιπάλων, επειδή έπεσαν έξω στον υπολογισμό του ύψους των τειχών, επειδή ήσαν άπειροι στην επιστήμη της διοπτρικής. Διότι πρέπει να μετρώνται πάντοτε τα διαστήματα που προαναφέραμε από τέτοια απόσταση, ώστε να μη φθάνει το εχθρικό βέλος. Η πρώτη έκδοση του έργου μεταφρασμένου στα Ιταλικά έγινε από τον Venturi (Commentari Sopra la storia e le teorie dell ottica, Bologna 1814). To ελληνικό κείμενο δημοσιεύθηκε για πρώτη φορά από τον A. J. Vincent (Notices et extraits, Paris 1858) συνοδευόμενο από γαλλική μετάφραση, με λεπτομερή σχόλια και ερμηνευτικά σχήματα. Σημαντική είναι και η έκδοση του εκδοτικού οίκου Teubner, που επιμελήθηκε ο H. Schοne (1903) και περιέχεται στον 3ο τόμο των απάντων του Ήρωνα. Με τον όρο διόπτρα (δι(α)-οπτεύω) είναι γνωστό το σκοπευτικό σύστημα που χρησιμοποιούσαν οι Έλληνες αστρονόμοι και γεωδαίτες. Στην αρχική του μορφή δεν

2 ήταν ούτε καν ένας κλειστός αυλός, παρά ένα κομμάτι ξύλο με σύστημα σκόπευσης στην κάθε του άκρη. Μπορούμε να υποθέσουμε τις διάφορες μορφές του οργάνου αυτού από τις περιγραφές αρχαίων συγγραφέων. Ο Ευκλείδης κάνει αναφορά στη χρήση διόπτρας στο στοιχειώδες αστρονομικό του έργο, τα Φαινόμενα: σκοπεύουμε με τη διόπτρα τον αστερισμό του Καρκίνου, καθώς ανατέλλει. Αν αντιστρέψουμε το όργανο και κοιτάξουμε από την άλλη πλευρά θα δούμε τον αστερισμό του Αιγόκερου. Σ αυτή την απλοϊκή της μορφή πιθανώς να κατασκευάστηκε από τον Θαλή τον Μιλήσιο, και να χρησιμοποιήθηκε και από τον Ευπαλίνο τον Μεγαρέα στη Σάμο για τη χάραξη της σήραγγας χρησιμοποιώντας όμοια τρίγωνα. Ο όρος διόπτρα χρησιμοποιείται και για ένα άλλο όργανο, ένα είδος εγκάρσιου πήχη, που το χρησιμοποιούσαν για να μετρούν μεγέθη όπως τη διάμετρο του ήλιου ή της σελήνης. Αυτό το όργανο περιγράφεται στη Μεγίστη του Πτολεμαίου, κατασκευάστηκε από τον Αρχιμήδη αλλά η τελική του μορφή εφείλεται στον Ίππαρχο. Από αποσπάσματα του Γέμινου από το έργο του Εισαγωγή στα φαινόμενα προκύπτει μια εκδοχή της διόπτρας πολυπλοκότερης μορφής: Όλα τα αστέρια, παρατηρούμενα με την διόπτρα φαίνονται να κινούνται κυκλικά κατά τη διάρκεια της ολόκληρης περιστροφής της διόπτρας. Ο Γέμινος παρατηρώντας ότι μπορεί να χρησιμοποιηθεί η διόπτρα για την διαίρεση του ζωδιακού κύκλου σε 12 ίσα μέρη, αναφέρεται σε όργανο εφοδιασμένο με κάποια βαθμολογημένη κλίμακα για τη μέτρηση γωνιών. Eίναι μάλον η διόπτρα που περιγράφει ο Ήρωνας ο Αλεξανδρινός, στην πιο εξελιγμένη της μορφή, ανάλογη με αυτήν των σύγχρονων θεοδολίχων. Ωστόσο, το όργανο που χρησιμοποιεί ο Πτολεμαίος, και πιθανώς να χρησιμοποιείται από τα χρόνια του Ίππαρχου, για τη μέτρηση των θέσεων των αστέρων δεν είναι η διόπτρα, αλλά η κρικωτή σφαίρα (ή σφαιρικός αστρολάβος). Στη διόπτρα αναφέρεται και ο Βίτων ο Τακτικός, αρχές του 2ου αιώνα π.χ., στο έργο του Περί κατασκευών πολεμικών οργάνων και καταπελτών: Θα πρέπει να τονίσουμε ότι το μέγεθος των πολιορκητικών πύργων πρέπει να είναι ειδικά σχεδιασμένο για την κατάληψη των τειχών, και αυτοί οι πύργοι πρέπει να είναι ψηλότεροι από τα τείχη. Αυτό μπορεί να επιτευχθεί με συστηματική παρατήρηση, όπως περιγράφω στα Οπτικά, στο κεφάλαιο διοπτρικά, που κυρίως ασχολούμαι. Στη γνώση της οπτικής ώστε να κατασκευάζονται στις σωστές διαστάσεις οι πολιορκητικές μηχανές αναφέρεται και ο Αθήναιος ο Τακτικός, μηχανικός του 1ου π.χ. αιώνα στο έργο του Περί μηχανημάτων. Αναφορές στη διόπτρα κάνει ο Στράβων, σχολιάζοντας τους χάρτες και τα γεωγραφικά πλάτη του Ερατοσθένη: οι διαφορές είναι μικρότερες (τα σφάλματα στο γεωγραφικό πλάτος) αν δουλέψουμε με γνώμονες και διόπτρες. Ο Θέων ο Σμυρναίος (2ος αι. μ.χ.), ο Θέων ο Αλεξανδρεύς (4ος αι.) και ο Σιμπλίκιος (6ος αι.) αναφέρουν ότι ο Ερατοσθένης μετρώντας με τη διόπτρα από μακριά

3 υπολόγισε το υψηλότερο βουνό στα 10 στάδια. Ο Πρόκλος (4ος αι. μ.χ.), μνημονεύοντας έργο του Γέμινου, σχετικά με τα μέρη των μαθηματικών, αναφέρει: Τα μέρη της αστρονομίας είναι η γνωμονική, η μετεωρολογία και η διοπτρική, που προσδιορίζουν τη θέση του ήλιου και άλλων αστέρων με τη βοήθεια οργάνων. Η Άννα η Κομνηνή (12ος αι.) στο έργο της Αλεξιάς, περιγράφει την πολιορκία του Δυρραχίου, το 1107 από τον πρίγκιπα της Αντιόχειας: Πραγματικά, φαίνεται ότι οι βάρβαροι που πολιορκούσαν το Δυρράχιο γνώριζαν καλά την επιστήμη της οπτικής, χωρίς την οποία δεν θα είχαν μετρήσει τα ύψη των τειχών. Τουλάχιστον ήξεραν, αν όχι οπτική, να μετρούν τα ύψη με τη διόπτρα. Και άλλοι συγγραφείς, Ρωμαίοι Βυζάντιος, όπως ο Biton, Balbus, Julius Africanus Βυζαντινοί, όπως ο Ήρων ο, Άραβες και Πέρσες, όπως ο Al-Karaji, αναφέρονται στη διόπτρα, στο έργο τους όμως θα αναφερθούμε πιο αναλυτικά στα επόμενα δύο κεφάλαια. Δυστυχώς, η βασική μορφή της διόπτρας, ως όργανο μέτρησης γωνιών περιγράφεται στο χαμένο τμήμα του συγγράμματος του Ήρωνα. Η ανακατασκευή της από διάφορους μελετητές βασίσθηκε στις περιγραφές των εφαρμογών που δίνει ο Ήρωνας στις επόμενες παραγράφους του συγγράμματός του. Σύμφωνα με τις αναφορές αυτές ανάμεσα στα δύο παράλληλα στηρίγματα προσαρμόζεται ημικυκλικός οδοντωτός δίσκος που περιστρέφεται με τη βοήθεια του ατέρμωνα κοχλία γύρω από οριζόντιο άξονα. Πάνω στον δίσκο αυτόν στηρίζεται άλλος μεγαλύτερος δίσκος, όπου υπήρχαν χαραγμένες δύο κάθετες μεταξύ τους διάμετροι, καθώς και κύκλος μικρότερης ακτίνας υποδιαιρεμένος σε 360 μοίρες, μόνο όμως για αστρονομικές εφαρμογές. Στο μέσο του κύκλου υπήρχε κανόνας περιστρεφόμενος γύρω από κατακόρυφο άξονα στο κέντρο του δίσκου, εφοδιασμένος και προς τις δύο πλευρές με σύστημα σκόπευσης. Η μορφή του συστήματος σκόπευσης δεν προκύπτει από τις εφαρμογές. Το σύστημα στήριξης της διόπτρας, ο παγεύς (από το ρήμα πήγνυμι), όπως αναφέρεται στο κείμενο, δεν περιγράφεται με σαφήνεια. Αιχμηρός πάσσαλος μπηγμένος στο έδαφος (όπως τουλάχιστον φαίνεται στα εικονίδια του κώδικα..) ή κάποιο άλλο σύστημα, π.χ. τρίποδας; Με τη βοήθεια της διόπτρας ήταν δυνατή η χάραξη ευθυγραμμιών, ορθών γωνιών, κατασκευή όμοιων τριγώνων και για αστρονομικές μόνο εφαρμογές η μέτρηση γωνιών, όπως θα δούμε παρακάτω στο σχολιασμό των προβλημάτων του συγγράμματος. Εντυπωσιακό είναι το σύστημα των δύο κοχλίων που δίνουν τη δυνατότητα μικροβατικών κινήσεων των δίσκων και που πιθανότατα είναι καινοτομία του Ήρωνα. Στη συνέχεια, στο κείμενο του Ήρωνα, περιγράφεται μια εναλλακτική μορφή της διόπτρας, ο χωροβάτης για τη μέτρηση των υψομετρικών διαφορών. Στη θέση του σκοπευτικού κανόνα, χρησιμοποιείται κανόνας εφοδιασμένος με οριζόντιο χάλκινο σωλήνα, που έχει καμφθεί κατά τα δύο άκρα του. Τα άκρα καταλήγουν σε μικρούς κατακόρυφους γυάλινους σωλήνες, που επιτρέπουν την απευθείας παρατήρηση της στάθμης του υγρού. Ο κανόνας αριζοντιώνεται με την αρχή των συγκοινωνούντων

4 δοχείων. Για τη διευκόλυσνη της σκόπευσης δια μέσου της ελεύθερης επιφάνειας του υγρού, οι γυάλινοι σωλήνες ήταν εφοδιασμένοι με κατακόρυφα πλακίδια που έφεραν λεπτή οριζόντια σχισμή. Η μορφή αυτή της διόπτρας χρησιμοποιείται σε συνδυασμό με κανόνα, που σύμφωνα με την περιγραφή του Ήρωνα, μοιάζει με τη σημερινή χωροσταθμική σταδία των οπτικών χωροβατών. Είναι κατασκευασμένη από ξύλο, φέρει υποδιαιρέσεις, σύστημα σκόπευης και σύστημα κατακορύφωσης. Μετά την περιγραφή των οργάνων, της διόπτρας και των παρελκόμενών της, ο Ήρων δίνει στη συνέχεια μια σειρά από πρακτικά προβλήματα που επιλύονται με τη βοήθεια της διόπτρας και που αποτελούν χρήσιμες εφαρμογές για εκπαιδευτικούς, στρατιωτικούς και κτηματολογικούς σκοπούς καθώς και για χαράξεις τεχνικών και εγγειοβελτιωτικών έργων. Από τη λύση των προβλημάτων αυτών φαίνεται πως η διόπτρα για τις επίγειες εφαρμογές δεν είναι βαθμολογημένη. Η λειτουργία της στηρίζεται στη χάραξη ορθών γωνιών με τη βοήθεια του σταυρού στον δίσκο, στη χάραξη ευθυγραμμιών σκοπεύοντας από τις δύο πλευρές του συστήματος σκόπευσης, και στην κατασκευή ομοίων τριγώνων. Τα όμοια τρίγωνα χρησιμοποιούνται για τον υπολογισμό αποστάσεων και υψομετρικών διαφορών. Για παράδειγμα, για να υπολογισθούν οι πλευρές ενός τριγώνου, δημιουργείται ένα όμοιό του με τη βοήθεια της διόπτρας, με κοινή κορυφή στην πιο απλή περίπτωση, και με ορισμένο μήκος πλευρών. Γνωρίζοντας το λόγο δύο αντίστοιχων πλευρών, υπολογίζονται οι πλευρές του πρώτου τριγώνου. Η μέθοδος αυτή χρησιμοποιείται και για τον υπολογισμό υψομετρικών διαφορών σκοπεύοντας με τη διόπτρα από μακριά, όπου η κάθετος πλευρά είναι μία κατακόρυφη ράβδος, στην οποία σημειώνεται το σημείο τομής της με τη σκόπευση προς το απομακρυσμένο σημείο. Η μέθοδος αυτή χρησμοποιείται πιθανότατα από τον 6ο αι. π.χ. (Θαλής ο Μιλήσιος), όπου όμως η διόπτρα δεν είχε οριζόντιο δίσκο, παρά μόνο έναν κανόνα σκόπευσης.

5 Ο Πτολεμαίος και η Αστρονομία. Ο Πτολεμαίος παρατηρεί με το τεταρτοκύκλιο το ύψος της σελήνης. Πρόκειται για μεταγενέστερη μορφή του οργάνου. Στο έδαφος και ο σφαιρικός αστρολάβος. Τα όργανα του Πτολεμαίου Στα κείμενα του ο Πτολεμαίος περιγράφει επτά όργανα: τη διόπτρα (του Ίππαρχου), τον επίπεδο αστρολάβο, τον σφαιρικό αστρολάβο (ή κρικωτή σφαίρα) για τη μέτρηση των θέσεων των αστέρων, τον παραλλακτικό κανόνα και τον τετράντα (ή τεταρτοκύκλιο ή πλινθίς) για τη μέτρηση κατακόρυφων γωνιών, τον ισημερινό κύκλο για τον προσδιορισμό του χρόνου των ισημεριών και το μεσημβρινό ή τροπικό κύκλο για τον προσδιορισμό του ύψους του ήλιου κατά τη μεσουράνηση. Από τα όργανα αυτά επινοήθηκαν και κατασκευάστηκαν από τον Πτολεμαίο ο σφαιρικός αστρολάβος και ο παραλακτικός κανόνας, τα υπόλοιπα χρησιμοποιήθηκαν από τον Ίππαρχο και τους έλληνες αστρονόμους του 3ου π.χ. αιώνα. Το πιο διάσημο από τα όργανα αυτά και ίσως το διασημότερο στην ιστορία των οργάνων μέτρησης, είναι ο (επίπεδος) αστρολάβος, ή όπως τον ονομάζει ο Πρόκλος, ο μικρός αστρολάβος. Αν και η αρχή της κατασκευής του ανάγεται στον Ίππαρχο, και πιθανότατα να χρησιμοποιήθηκε από τον Πτολεμαίο, τουλάχιστον σε μια αρχική του μορφή, θα αναφερθούμε αναλυτικότερα στο όργανο αυτό σε επόμενο κεφάλαιο, μια και χαρακτηρίζει τη βυζαντινή εποχή και χρησιμοποιείται από τους Άραβες του 9ου αι., στη μεσαιωνική Ευρώπη, έως και τον 17ο αι.

6 Πάνω: Η πλινθίς (ή τετράντας) του Ίππαρχου. Δεξιά μια παραλλαγή του οργάνου (Λιβιεράτος, 1998) όπου η σκιά του γνώμονα αντικαταστάθηκε με κανόνα σκόπευσης (πιθανώς από τον Πρόκλο). Η πλινθίς του Ίππαρχου Η πλινθίς αποτελείται από ένα κομμάτι ξύλου ή μαρμάρου, σχήματος ορθογωνίου παραλληλεπιπέδου. Στη μία πλευρά του χαράσσεται τεταρτοκύκλιο και βαθμονομείται. Στο πάνω και κάτω άκρο του τεταρτοκυκλίου πακτώνονται δύο ξύλινοι πείροι. Ο πάνω πείρος χρησιμοποιείται ως γνώμων, η σκιά του οποίου περιστρέφεται πάνω στο βαθμολογημένο τεταρτοκύκλιο. Το όργανο προσανατολίζεται στη διεύθυνση του βορρά και κατακορυφώνεται με τη βοήθεια νήματος της στάθμης που κρέμεται από τον πάνω πείρο και ακουμπά ελαφρά τον κάτω. Το γεωγραφικό πλάτος προκύπτει ως ο μέσος όρος των ενδείξεων της σκιάς του γνώμoνα κατά το θερινό και χειμερινό ηλιοστάσιο (ισημερία). Από την εξέλιξη του οργάνου αυτού προέρχεται το τεταρτοκύκλιο ή τετράντας, ένα από τα κύρια γεωδαιτικά και αστρονομικά όργανα μέχρι τα σύγχρονα σχεδόν χρόνια. Ο ισημερινός κύκλος του Τύχο Μπράχε, όργανο που εμπνεύστηκε από τον κύκλο του Πτολεμαίου. Ο Τύχο Μπράχε ήταν αυτός που κατασκεύασε και χρησιμοποίησε τα όργανα του Πτολεμαίου, εγκαινιάζοντας την νέα εποχή στην κατασκευή αστρονομικών οργάνων στο τέλος του 16 ου αι.

7 Αριστερά: Σύγχρονη αναπαράσταση του σφαιρικού αστρολάβου σύμφωνα με την περιγραφή του Πτολεμαίου στη Μεγίστη. Δεξιά: Ανακατασκευή του σφαιρικού αστρολάβου του Πτολεμαίου από τον Tycho Brahe. Κάτω: Η διόπτρα του Ίππαρχου και ο μεσημβρινός κύκλος. Από τον μεσημβρινό κύκλο προέκυψε ο μεσημβρινός τετράντας και τα όργανα διέλευσης της νεότερης αστρονομίας. Η τετραπήχυς διόπτρα του Ίππαρχου Αστρονομικό όργανο για τη μέτρηση πολύ μικρών γωνιών, ακατάλληλο για τοπογραφικές εφαρμογές, αποτελεί βελτίωση της ράβδου του Αρχιμήδη. Ήταν μία ξύλινη ράβδος μήκους δύο μέτρων περίπου (τεσσάρων πήχεων) με δύο πλακίδια στο πάνω μέρος. Το ακίνητο πλακίδιο, το προσοφθάλμιο, είχε μια τρύπα στη μέση για τη σκόπευση. Το κινητό πλακίδιο όταν σκέπαζε τον ήλιο ή τη σελήνη έδειχνε τη φαινόμενη γωνία. Το πλακίδιο αυτό αντικαταστάθηκε αργότερα από ένα μεγαλύτερο, ώστε να περιέχει δύο μικρές τρύπες για τη σκόπευση σημείων της περιφέρειας του ήλιου ή της σελήνης. Χρησιμοποιήθηκε και από τον Πτολεμαίο. Ο ισημερινός και ο μεσημβρινός κύκλος Όργανα που αποδίδονται στον Ίππαρχο, είχαν εγκατασταθεί στο Μουσείο της Αλεξάνδρειας. Ο ισημερινός κύκλος, προσανατολισμένος ώστε να είναι παράλληλος με τον ισημερινό, έδειχνε την ώρα της ισημερίας όταν η σκιά του κύκλου περνούσε από τα τέσσερα σημεία στη βάση του. Ο μεσημβρινός κύκλος ήταν ένας κατακόρυφος

8 βαθμονομημένος μπρούτζινος κρίκος με ένα δεύτερο ομόκεντρο και κινητό στο εσωτερικό του που έφερε δύο αντιδιαμετρικά πλακίδια. Όταν ο ήλιος διέσχιζε το επίπεδο του οργάνου, ο εσωτερικός δίσκος περιστρεφόταν ώστε η σκιά του ενός πλακιδίου να πέσει πάνω στο άλλο. Έτσι προέκυπτε η γωνία ύψους του ήλιου. Αν το όργανο ήταν προσανατολισμένο στο βορρά, από τις παρατηρήσεις του ήλιου κατά το θερινό και χειμερινό ηλιοστάσιο προέκυπτε το πλάτος του τόπου και η λόξωση της εκλειπτικής. Ο Πρόκλος αντικατέστησε τα δύο πλα- με σύστημα κίδια σκόπευσης. Ο (σφαιρικός) αστρολάβος Το σημαντικότερο από τα όργανα που χρησιμοποιεί ο Πτολεμαίος, και πιθανώς να χρησιμοποιείται από τα χρόνια του Ίππαρχου, για τη μέτρηση των θέσεω ν των αστέρων είναι ο (σφαιρικός) αστρολάβος ή κρικωτή σφαίρα. Όργανο σύνθετο αποτελούμενο από επτά ομόκεντρος κρίκους, χρησιμοποιήθηκε σε διάφορες παραλλαγές μέχρι τα χρόνια του Tycho Brahe. Οι δύο ακίνητοι κύκλοι ήταν ο κατακόρυφος, που τον τοποθετούσαν στη διεύθυνση του μεσημβρινού του τόπου όπου γινόταν η παρατήρηση, και ο εκλειπτικός, κάθετος και ίσος με τον κατακόρυφο και σταθερά συνδεμένος με αυτόν. Οι κινητοί κύκλοι ήταν και αυτοί δύο και στηρίζονταν στους δύο πόλους του εκλειπτικού, γύρω από τους οποίους περιστρέφονταν: o εσωτερικός κύκλος, εντός του κατακορύφου και του εκλειπτικού και ο εξωτερικός που περιελάμβανε τους δύο ακίνητους. Ο εσωτερικός περιελάμβανε και άλλον δακτύλιο, κείμενο στο ίδιο επίπεδο και δακτύλιος αυτός έφερε δύο κινητό γύρω από το κοινό τους κέντρο. Ο αντιδιαμμετρικά συστήματα σκόπευσης. Το σύστημα αυτό ήταν προσαρμοσμένο μέσω δύο σημείων, ώστε να περιστρέφεται γύρω από αυτά, πάνω σε δύο ομόκεντρους και συνεπίπεδους κρίκους προσανατολισμένος στη διεύθυνση του μεσημβρινού. Ο εξωτερικός κύκλος ήταν σταθερός ενώ ο εσωτερικός, κινητός γύρο από κέντρο, έδινε την τιμή του γεωγραφικού πλάτους της σκόπευσης. Πιο εξελιγμένη έκδοση σφαιρικού αστρολάβου είναι το μετεωροσκόπιο, με εννέα δακτύλιους, που αναφέρει ο Πτολεμαίος στην Γεωγραφική Υφήγηση και το περιγράφει σε χαμένο έργο του. Ο Πτολεμαίος πρόσθεσε άλλους δύο δακτύλιους για να υλοποιήσει το τοπικό οριζόντιο σύστημα. To όργανο που χρησιμοποιεί ο Πτολεμαίος για μετρήσεις γωνιών δεν είναι η διόπτρα, αλλά ο σφαιρικός αστρολάβος για τον προσδιορισμό της θέσης των άστρων και το μετεωροσκόπιο για τις μετρήσεις γωνιών και αποστάσεων (σε συνδυασμό με τα στάδια που αντιστοιχούν σε μια μοίρα).

9 Ο κανών του Πτολεμαίου. Δεξιά το όργανο σε μεταγενέστερη έκδοση από τον Κοπέρνικο και τον Τύχο Μπράχε. Από τον Πτολεμαίο χρησιμοποιήθηκε για τη μέτρηση της παραλλακτικής γωνίας της σελήνης, απ όπου προήλθε και η ονομασία του. Ο παραλλακτικός κανόνας Tο τριγωνικόν (triquertum) ή παραλλακτικός κανών, ή κανόνας του Πτολεμαίου, είναι όργανο μέτρησης κατακορύφων γωνιών και θεωρείται επινόηση του Πτολεμαίου. Η κατασκευή του περιγράφεται στο κεφάλαιο 12 του V βιβλίου της Μεγάλης Σύνταξης καθώς και στα σχετικά σχόλια του Πάππου του Αλεξανδρέως. Είναι σχεδιασμένο ειδικά, ώστε να ξεπεραστεί το πρόβλημα βαθμονόμησης κυκλικών τόξων. Αποτελείται από δύο ράβδους ίδιου μηκους, δύο μέτρων περίπου (σταθερού μήκους τεσσάρων πήχεων), αρθρωμένες στο ένα τους άκρο. Η μία από τις ράβδους αυτές είναι σταθερή και κατακόρυφη (η κατακορυφότητά της εξασφαλίζεται με το νήμα της στάθμης) και βαθμονομημένη (υποδιαιρείται σε 60 ίσα μέρη). Η άλλη περιστρέφεται γύρω από το σημείο άρθρωσης πάνω στο επίπεδο που σχηματίζουν, φέρει σύστημα σκόπευσης και η ελεύθερη άκρη της ολισθαίνει πάνω σε τρίτη ράβδο. Η τρίτη αυτή ράβδος είναι αρθρωμένη στη βάση της κατακόρυφης και αποτελεί τη βάση του ισοσκελούς τριγώνου που σχηματίζεται. Η σκόπευση σημειώνεται στην τρίτη ράβδο και η τιμή της (το μήκος της βάσης του ισοσκελούς τριγώνου) λαμβάνεται από την προβολή της πάνω στις υποδιαιρέσεις της κατακόρυφης. Από την επίλυση του ισοσκελούς τριγώνου με τη βοήθεια πινάκων χορδών, υπολογίζεται η κατακόρυφη γωνία σκόπευσης. Ο Άραβας μαθηματικός και αστρονόμος Αλ-Μπατανί βαθμονόμησε την τρίτη ράβδο, ώστε οι αναγνώσεις να παίρνονται απευθείας. Στη μορφή αυτή χρησιμοποιήθηκε από τους μεταγενέστερους αστρονόμους, μέχρι τον Κοπέρνικο και τον Τύχο Μπράχε. Για τη μέτρηση της παραλλακτικής γωνίας της σελήνης το όργανο έπρεπε να προσανατολισθεί στη διεύθυνση βορρά-νότου (του μεσημβρινού).

Το πείραμα του Ερατοσθένη και η μέτρηση της περιφέρειας της Γης

Το πείραμα του Ερατοσθένη και η μέτρηση της περιφέρειας της Γης Το πείραμα του Ερατοσθένη και η μέτρηση της περιφέρειας της Γης Οδηγός για τον εκπαιδευτικό Περιεχόμενα Προετοιμασία δραστηριότητας Α. Υλικά και φύλλα εργασίας 3 Β. Εγκατάσταση του προγράμματος "Google

Διαβάστε περισσότερα

Να το πάρει το ποτάµι;

Να το πάρει το ποτάµι; Να το πάρει το ποτάµι; Είναι η σκιά ενός σώµατος που το φωτίζει ο Ήλιος. Όπως η σκιά του γνώµονα ενός ηλιακού ρολογιού που µε το αργό πέρασµά της πάνω απ τα σηµάδια των ωρών και µε το ύφος µιας άλλης εποχής

Διαβάστε περισσότερα

Η Λ Ι Α Κ Α Ρ Ο Λ Ο Γ Ι Α

Η Λ Ι Α Κ Α Ρ Ο Λ Ο Γ Ι Α Η Λ Ι Α Κ Α Ρ Ο Λ Ο Γ Ι Α Αναγνωστοπούλου Στρατηγούλα (5553), Σταυρίδη Δήμητρα (5861) 1 ΛΙΓΗ ΑΣΤΡΟΝΟΜΙΑ 1.1 Η κίνηση της Γης Η Γη κινείται με τρεις τρόπους: περιστρέφεται γύρω από τον άξονά της σε 24h,

Διαβάστε περισσότερα

Εκπαιδευτήριο ΤΟ ΠΑΓΚΡΗΤΙΟΝ - ΓΥΜΝΑΣΙΟ. Αρχαϊκή Εποχή και στο Ισλάμ. Ανάτυπο από τον τόμο «ΣΥΝΘΕΤΙΚΕΣ ΕΡΓΑΣΙΕΣ, ΣΤ, 2011-2012»

Εκπαιδευτήριο ΤΟ ΠΑΓΚΡΗΤΙΟΝ - ΓΥΜΝΑΣΙΟ. Αρχαϊκή Εποχή και στο Ισλάμ. Ανάτυπο από τον τόμο «ΣΥΝΘΕΤΙΚΕΣ ΕΡΓΑΣΙΕΣ, ΣΤ, 2011-2012» Ανάτυπο από τον τόμο «ΣΥΝΘΕΤΙΚΕΣ ΕΡΓΑΣΙΕΣ, ΣΤ, 2011-2012» Εκπαιδευτήριο ΤΟ ΠΑΓΚΡΗΤΙΟΝ - ΓΥΜΝΑΣΙΟ Χαρτογραφία στην Αρχαϊκή Εποχή και στο Ισλάμ Ανάτυπο από τον τόμο «ΣΥΝΘΕΤΙΚΕΣ ΕΡΓΑΣΙΕΣ, ΣΤ, 2011-2012» Τάξη

Διαβάστε περισσότερα

Γεωµετρία Α Γυµνασίου. Ορισµοί Ιδιότητες Εξηγήσεις

Γεωµετρία Α Γυµνασίου. Ορισµοί Ιδιότητες Εξηγήσεις Γεωµετρία Α Γυµνασίου Ορισµοί Ιδιότητες Εξηγήσεις Ευθεία γραµµή Ορισµός δεν υπάρχει. Η απλούστερη από όλες τις γραµµές. Κατασκευάζεται µε τον χάρακα (κανόνα) πάνω σε επίπεδο. 1. ύο σηµεία ορίζουν την θέση

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΕΣ ΕΚΔΡΟΜΕΣ. ΤΟ ΘΕΩΡΗΜΑ ΤΟΥ ΘΑΛΗ. 1 η εκδρομή (21/11/05): Επίσκεψη στο Αστεροσκοπείο.

ΜΑΘΗΜΑΤΙΚΕΣ ΕΚΔΡΟΜΕΣ. ΤΟ ΘΕΩΡΗΜΑ ΤΟΥ ΘΑΛΗ. 1 η εκδρομή (21/11/05): Επίσκεψη στο Αστεροσκοπείο. ΜΑΘΗΜΑΤΙΚΕΣ ΕΚΔΡΟΜΕΣ. ΤΟ ΘΕΩΡΗΜΑ ΤΟΥ ΘΑΛΗ 1 η εκδρομή (21/11/05): Επίσκεψη στο Αστεροσκοπείο. Στόχοι: Οι εκπαιδευόμενοι: Να ενημερωθούν για το σύμπαν. Να παρατηρήσουν τα ουράνια σώματα. Να σκεφτούν -να

Διαβάστε περισσότερα

ΠΑΡΑΡΤΗΜΑ Α. Γεωμετρικές κατασκευές. 1. Μεσοκάθετος ευθυγράμμου τμήματος. 2. ιχοτόμος γωνίας. 3. ιχοτόμος γωνίας με άγνωστη κορυφή. 4.

ΠΑΡΑΡΤΗΜΑ Α. Γεωμετρικές κατασκευές. 1. Μεσοκάθετος ευθυγράμμου τμήματος. 2. ιχοτόμος γωνίας. 3. ιχοτόμος γωνίας με άγνωστη κορυφή. 4. ΠΑΡΑΡΤΗΜΑ Α Γεωμετρικές κατασκευές Σκοπός των σημειώσεων αυτών είναι να υπενθυμίζουν γεωμετρικές κατασκευές, που θα φανούν ιδιαίτερα χρήσιμες στο μάθημα της παραστατικής γεωμετρίας, της προοπτικής, αξονομετρίας

Διαβάστε περισσότερα

Οι επιστήμες στην Αρχαία Ελλάδα. Από τον Θαλή στον Αναξίμανδρο. Θαλής ο Μιλήσιος

Οι επιστήμες στην Αρχαία Ελλάδα. Από τον Θαλή στον Αναξίμανδρο. Θαλής ο Μιλήσιος ΕΝΟΤΗΤΑ 1 - ΕΙΣΑΓΩΓΙΚΑ ΕΛΛΗΝΙΚΑ Κείμενο 1 Οι επιστήμες στην Αρχαία Ελλάδα. Από τον Θαλή στον Αναξίμανδρο. Είναι γνωστό πως στην Αρχαία Ελλάδα γίνονται τα πρώτα σημαντικά βήματα για την ανάπτυξη των επιστημών,

Διαβάστε περισσότερα

Περιεχόμενο διδασκαλίας Στόχοι Παρατηρήσεις. υπολογίζουν το λόγο δύο λόγο δύο τμημάτων

Περιεχόμενο διδασκαλίας Στόχοι Παρατηρήσεις. υπολογίζουν το λόγο δύο λόγο δύο τμημάτων Νίκος Γ. Τόμπρος ΣΧΕΔΙΟ ΜΑΘΗΜΑΤΩΝ Ενότητα : ΟΜΟΙΟΤΗΤΑ (ΛΟΓΟΣ ΑΝΑΛΟΓΙΑ) Σκοποί: Η ανάπτυξη ενδιαφέροντος για το θέμα, η εξοικείωση με τη χρήση τεχνολογίας, η παρότρυνση για αναζήτηση πληροφοριών (εδώ σε

Διαβάστε περισσότερα

Τεύχος B - Διδακτικών Σημειώσεων

Τεύχος B - Διδακτικών Σημειώσεων Τεύχος B - Διδακτικών Σημειώσεων ΟΙ ΚΙΝΗΣΕΙΣ ΤΗΣ ΓΗΣ ΚΑΙ ΟΙ ΕΠΙΠΤΩΣΕΙΣ ΣΤΑ ΣΥΣΤΗΜΑΤΑ ΑΝΑΦΟΡΑΣ Δημήτρης Δεληκαράογλου Αναπλ. Καθ., Σχολή Αγρονόμων και Τοπογράφων Μηχανικών, Εθνικό Μετσόβιο Πολυτεχνείο Επισκ.

Διαβάστε περισσότερα

ΠΕΡΙ ΟΙΚΩΝ. Τεταρτημόρια

ΠΕΡΙ ΟΙΚΩΝ. Τεταρτημόρια ΠΕΡΙ ΟΙΚΩΝ Οι οίκοι είναι ένα από τα κυριότερα ερμηνευτικά μέσα που χρησιμοποιεί η αστρολογία. Μαζί με τους πλανήτες, τα ζώδια και τις όψεις αποτελούν τις βασικές αρχές στις οποίες στηρίζεται η ερμηνεία

Διαβάστε περισσότερα

ΤΕΧΝΙΚΗ ΓΕΩΛΟΓΙΑ ΕΡΓΑΣΤΗΡΙΟ 1 Ο ΤΟΠΟΓΡΑΦΙΚΟΙ ΧΑΡΤΕΣ Δρ. ΜΑΡΙΑ ΦΕΡΕΝΤΙΝΟΥ 2008-2009

ΤΕΧΝΙΚΗ ΓΕΩΛΟΓΙΑ ΕΡΓΑΣΤΗΡΙΟ 1 Ο ΤΟΠΟΓΡΑΦΙΚΟΙ ΧΑΡΤΕΣ Δρ. ΜΑΡΙΑ ΦΕΡΕΝΤΙΝΟΥ 2008-2009 ΤΕΧΝΙΚΗ ΓΕΩΛΟΓΙΑ ΕΡΓΑΣΤΗΡΙΟ 1 Ο ΤΟΠΟΓΡΑΦΙΚΟΙ ΧΑΡΤΕΣ Δρ. ΜΑΡΙΑ ΦΕΡΕΝΤΙΝΟΥ 2008-2009 Τοπογραφικοί Χάρτες Περίγραμμα - Ορισμοί - Χαρακτηριστικά Στοιχεία - Ισοϋψείς Καμπύλες - Κατασκευή τοπογραφικής τομής

Διαβάστε περισσότερα

Η ΤΡΟΧΙΑ ΤΟΥ ΗΛΙΟΥ. Σελίδα 1 από 6

Η ΤΡΟΧΙΑ ΤΟΥ ΗΛΙΟΥ. Σελίδα 1 από 6 Η ΤΡΟΧΙΑ ΤΟΥ ΗΛΙΟΥ Στόχος(οι): Η παρατήρηση της τροχιάς του ήλιου στον ουρανό και της διακύμανση της ανάλογα με την ώρα της ημέρας ή την εποχή. Εν τέλει, η δραστηριότητα αυτή θα βοηθήσει τους μαθητές να

Διαβάστε περισσότερα

Η φιλοσοφία και οι επιστήμες στα Αρχαϊκά χρόνια. Μαριάννα Μπιτσάνη Α 2

Η φιλοσοφία και οι επιστήμες στα Αρχαϊκά χρόνια. Μαριάννα Μπιτσάνη Α 2 Η φιλοσοφία και οι επιστήμες στα Αρχαϊκά χρόνια Μαριάννα Μπιτσάνη Α 2 Τι είναι η φιλοσοφία; Φιλοσοφία είναι η επιστήμη που ασχολείται με: ερωτήματα προβλήματα ή απορίες που μπορούμε να αποκαλέσουμε οριακά,

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 11 Ο ΜΕΤΡΗΣΗ ΚΥΚΛΟΥ 11.1 ΟΡΙΣΜΟΣ ΚΑΝΟΝΙΚΟΥ ΠΟΛΥΓΩΝΟΥ 11.2 ΙΔΙΟΤΗΤΕΣ ΚΑΙ ΣΤΟΙΧΕΙΑ ΚΑΝΟΝΙΚΩΝ ΠΟΛΥΓΩΝΩΝ

ΚΕΦΑΛΑΙΟ 11 Ο ΜΕΤΡΗΣΗ ΚΥΚΛΟΥ 11.1 ΟΡΙΣΜΟΣ ΚΑΝΟΝΙΚΟΥ ΠΟΛΥΓΩΝΟΥ 11.2 ΙΔΙΟΤΗΤΕΣ ΚΑΙ ΣΤΟΙΧΕΙΑ ΚΑΝΟΝΙΚΩΝ ΠΟΛΥΓΩΝΩΝ ΚΕΦΑΛΑΙΟ 11 Ο ΜΕΤΡΗΣΗ ΚΥΚΛΟΥ 11.1 ΟΡΙΣΜΟΣ ΚΑΝΟΝΙΚΟΥ ΠΟΛΥΓΩΝΟΥ 11. ΙΔΙΟΤΗΤΕΣ ΚΑΙ ΣΤΟΙΧΕΙΑ ΚΑΝΟΝΙΚΩΝ ΠΟΛΥΓΩΝΩΝ ΘΕΩΡΙΑ 1 (Ορισμός κανονικού πολυγώνου) Ένα πολύγωνο λέγεται κανονικό, όταν έχει όλες τις πλευρές

Διαβάστε περισσότερα

ΚΙΝΗΣΗ ΠΛΑΝΗΤΩΝ - ΛΟΞΩΣΗ

ΚΙΝΗΣΗ ΠΛΑΝΗΤΩΝ - ΛΟΞΩΣΗ ΚΙΝΗΣΗ ΠΛΑΝΗΤΩΝ - ΛΟΞΩΣΗ Η κίνηση των πλανητών είναι το αποτέλεσμα της σύνθεσης 2 κινήσεων: μίας περιστροφής γύρω από τον Ήλιο, η περίοδος της οποίας μας δίνει το έτος κάθε πλανήτη, και πραγματοποιείται

Διαβάστε περισσότερα

ΓΕΩΔΑΙΤΙΚΗ ΑΣΤΡΟΝΟΜΙΑ

ΓΕΩΔΑΙΤΙΚΗ ΑΣΤΡΟΝΟΜΙΑ ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΑΚ. ΕΤΟΣ 2006-2007 ΣΧΟΛΗ ΑΓΡΟΝΟΜΩΝ ΤΟΠΟΓΡΑΦΩΝ ΜΗΧΑΝΙΚΩΝ ΚΕΝΤΡΟ ΔΟΡΥΦΟΡΩΝ ΔΙΟΝΥΣΟΥ Ηρώων Πολυτεχνείου 9, 157 80 Ζωγράφος Αθήνα Τηλ.: 210 772 2666 2668, Fax: 210 772 2670 ΓΕΩΔΑΙΤΙΚΗ

Διαβάστε περισσότερα

ΜηχανισμΟς ΑντικυθΗρων

ΜηχανισμΟς ΑντικυθΗρων Με δυο λόγια Ο Μηχανισμός των Αντικυθήρων ήταν ένας αναλογικός υπολογιστής εκπληκτικής τεχνολογίας. Κατασκευάστηκε πριν από 2000 χρόνια και χρησιμοποιείτο για τον ακριβή υπολογισμό της θέσης του Ηλίου,

Διαβάστε περισσότερα

ΕΛΠ22 ΤΕΤΑΡΤΗ ΕΡΓΑΣΙΑ

ΕΛΠ22 ΤΕΤΑΡΤΗ ΕΡΓΑΣΙΑ ΕΛΠ22 ΤΕΤΑΡΤΗ ΕΡΓΑΣΙΑ Υποστηρίζεται η άποψη ότι η ελληνιστική περίοδος (3ος - 2ος αι. π.χ.) αποτελεί το «απόγειο» της αρχαίας ελληνικής επιστήµης. Επίσης, ορισµένοι ιστορικοί της επιστήµης εκτιµούν ότι

Διαβάστε περισσότερα

ΕΡΓΑΛΕΙΟ. Βάρος: 500 gr

ΕΡΓΑΛΕΙΟ. Βάρος: 500 gr ΟΝΟΜΑ Αλφάδι Μεταλλικό πλαίσιο που συγκρατεί μικρό γυάλινο σωλήνα με νερό και φυσαλίδα αέρα. Διαστάσεις: Μήκος ~ 30cm Βάρος: 500 gr Επαλήθευση οριζόντιου επιπέδου. Τρόπος Χρήσης: (πως χρησιμοποιείται το

Διαβάστε περισσότερα

ΛΑΝΙΤΕΙΟ ΛΥΚΕΙΟ Β ΣΧΟΛΙΚΗ ΧΡΟΝΙΑ 2009-2010 ΓΡΑΠΤΕΣ ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΣΤΗ ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ. Επιτρεπόμενη διάρκεια γραπτού 2,5 ώρες (150 λεπτά)

ΛΑΝΙΤΕΙΟ ΛΥΚΕΙΟ Β ΣΧΟΛΙΚΗ ΧΡΟΝΙΑ 2009-2010 ΓΡΑΠΤΕΣ ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΣΤΗ ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ. Επιτρεπόμενη διάρκεια γραπτού 2,5 ώρες (150 λεπτά) ΛΑΝΙΤΕΙΟ ΛΥΚΕΙΟ Β ΣΧΟΛΙΚΗ ΧΡΟΝΙΑ 2009-2010 ΓΡΑΠΤΕΣ ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΣΤΗ ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ ΣΕΙΡΑ: Α ΗΜΕΡΟΜΗΝΙΑ: 31/05/2010 ΤΑΞΗ: Β ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ ΧΡΟΝΟΣ: 07:30 10:00 π.μ. ΟΝΟΜΑΤΕΠΩΝΥΜΟ:... ΤΜΗΜΑ:...

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΕΛΛΗΝΙΚΟΣ ΠΟΛΙΤΙΣΜΟΣ ΕΛΠ22 ΤΡΙΤΗ ΕΡΓΑΣΙΑ ΠΡΟΤΥΠΗ

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΕΛΛΗΝΙΚΟΣ ΠΟΛΙΤΙΣΜΟΣ ΕΛΠ22 ΤΡΙΤΗ ΕΡΓΑΣΙΑ ΠΡΟΤΥΠΗ ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΕΛΛΗΝΙΚΟΣ ΠΟΛΙΤΙΣΜΟΣ ΕΛΠ22 ΤΡΙΤΗ ΕΡΓΑΣΙΑ ΠΡΟΤΥΠΗ ΠΕΡΙΕΧΟΜΕΝΑ ΠΕΡΙΕΧΟΜΕΝΑ... 2 Εισαγωγή... 3 Οι αρχές του σύμπαντος κατά τον Αριστοτέλη... 3 Ο υποσελήνιος χώρος... 3 Ο χώρος

Διαβάστε περισσότερα

ΣΧΟΛΗ ΝΑΥΤΙΚΩΝ ΔΟΚΙΜΩΝ ΧΑΡΤΟΓΡΑΦΙΚΕΣ ΠΡΟΒΟΛΕΣ ΕΦΑΡΜΟΓΕΣ ΣΤΗ ΝΑΥΤΙΛΙΑ ΚΑΙ ΤΙΣ ΝΑΥΤΙΚΕΣ ΕΠΙΧΕΙΡΗΣΕΙΣ. Δρ. ΑΘΑΝΑΣΙΟΣ Η. ΠΑΛΛΗΚΑΡΗΣ Αν.

ΣΧΟΛΗ ΝΑΥΤΙΚΩΝ ΔΟΚΙΜΩΝ ΧΑΡΤΟΓΡΑΦΙΚΕΣ ΠΡΟΒΟΛΕΣ ΕΦΑΡΜΟΓΕΣ ΣΤΗ ΝΑΥΤΙΛΙΑ ΚΑΙ ΤΙΣ ΝΑΥΤΙΚΕΣ ΕΠΙΧΕΙΡΗΣΕΙΣ. Δρ. ΑΘΑΝΑΣΙΟΣ Η. ΠΑΛΛΗΚΑΡΗΣ Αν. ΣΧΟΛΗ ΝΑΥΤΙΚΩΝ ΔΟΚΙΜΩΝ ΧΑΡΤΟΓΡΑΦΙΚΕΣ ΠΡΟΒΟΛΕΣ ΕΦΑΡΜΟΓΕΣ ΣΤΗ ΝΑΥΤΙΛΙΑ ΚΑΙ ΤΙΣ ΝΑΥΤΙΚΕΣ ΕΠΙΧΕΙΡΗΣΕΙΣ Δρ. ΑΘΑΝΑΣΙΟΣ Η. ΠΑΛΛΗΚΑΡΗΣ Αν. καθηγητής ΣΝΔ ΠΕΙΡΑΙΑΣ 2011 Απαγορεύεται η αντιγραφή, αποθήκευση και διανομή

Διαβάστε περισσότερα

ΓΑΛΑΝΑΚΗΣ ΓΙΩΡΓΟΣ ΔΗΜΗΤΡΑΚΟΠΟΥΛΟΣ ΜΙΧΑΛΗΣ

ΓΑΛΑΝΑΚΗΣ ΓΙΩΡΓΟΣ ΔΗΜΗΤΡΑΚΟΠΟΥΛΟΣ ΜΙΧΑΛΗΣ ΘΕΜΑ Α Στις ερωτήσεις -4 να γράψετε στο τετράδιό σας τον αριθμό της ερώτησης και δίπλα το γράμμα που αντιστοιχεί η σωστή απάντηση. Ένας ακίνητος τρoχός δέχεται σταθερή συνιστάμενη ροπή ως προς άξονα διερχόμενο

Διαβάστε περισσότερα

ΠΡΟΣΟΧΗ: Διαβάστε προσεκτικά τις κάτωθι Οδηγίες για την συμμετοχή σας στην 1 η φάση «Εύδοξος»

ΠΡΟΣΟΧΗ: Διαβάστε προσεκτικά τις κάτωθι Οδηγίες για την συμμετοχή σας στην 1 η φάση «Εύδοξος» ΠΡΟΣΟΧΗ: Διαβάστε προσεκτικά τις κάτωθι Οδηγίες για την συμμετοχή σας στην 1 η φάση «Εύδοξος» Για να θεωρηθεί έγκυρη η συμμετοχή σας στην 1 η φάση, θα πρέπει απαραίτητα να έχετε συμπληρώσει τον πίνακα

Διαβάστε περισσότερα

Γ ΛΥΚΕΙΟΥ (Επαναληπτικός ιαγωνισμός)

Γ ΛΥΚΕΙΟΥ (Επαναληπτικός ιαγωνισμός) 4 Η ΠΑΓΚΥΠΡΙΑ ΟΛΥΜΠΙΑ Α ΦΥΣΙΚΗΣ Γ ΛΥΚΕΙΟΥ (Επαναληπτικός ιαγωνισμός) Κυριακή, 5 Απριλίου, 00, Ώρα:.00 4.00 Προτεινόμενες Λύσεις Άσκηση ( 5 μονάδες) Δύο σύγχρονες πηγές, Π και Π, που απέχουν μεταξύ τους

Διαβάστε περισσότερα

ΘΕΩΡΙΑ Α ΓΥΜΝΑΣΙΟΥ. Η διαίρεση καλείται Ευκλείδεια και είναι τέλεια όταν το υπόλοιπο είναι μηδέν.

ΘΕΩΡΙΑ Α ΓΥΜΝΑΣΙΟΥ. Η διαίρεση καλείται Ευκλείδεια και είναι τέλεια όταν το υπόλοιπο είναι μηδέν. ΑΛΓΕΒΡΑ 1 ο ΚΕΦΑΛΑΙΟ ΘΕΩΡΙΑ Α ΓΥΜΝΑΣΙΟΥ 1. Τι είναι αριθμητική παράσταση; Με ποια σειρά εκτελούμε τις πράξεις σε μια αριθμητική παράσταση ώστε να βρούμε την τιμή της; Αριθμητική παράσταση λέγεται κάθε

Διαβάστε περισσότερα

Τα Ρολόγια. Τανανάκη Ειρήνη. Μαθήτρια Β1 Γυμνασίου, Ελληνικό Κολλέγιο Θεσσαλονίκης

Τα Ρολόγια. Τανανάκη Ειρήνη. Μαθήτρια Β1 Γυμνασίου, Ελληνικό Κολλέγιο Θεσσαλονίκης Τα Ρολόγια Τανανάκη Ειρήνη Μαθήτρια Β1 Γυμνασίου, Ελληνικό Κολλέγιο Θεσσαλονίκης Επιβλέπων Καθηγητής : Κωνσταντίνος Παρασκευόπουλος Καθηγητής Πληροφορικής, Ελληνικό Κολλέγιο Θεσσαλονίκης ΠΕΡΙΛΗΨΗ Τα ψηφιακά

Διαβάστε περισσότερα

ΕΝΩΣΗ ΚΥΠΡΙΩΝ ΦΥΣΙΚΩΝ

ΕΝΩΣΗ ΚΥΠΡΙΩΝ ΦΥΣΙΚΩΝ ΕΝΩΣΗ ΚΥΠΡΙΩΝ ΦΥΣΙΚΩΝ 28 Η ΠΑΓΚΥΠΡΙΑ ΟΛΥΜΠΙΑΔΑ ΦΥΣΙΚΗΣ Β ΛΥΚΕΙΟΥ Κυριακή, 13 Απριλίου, 2014 Ώρα: 10:00-13:00 Παρακαλώ διαβάστε πρώτα τα πιο κάτω, πριν απαντήσετε οποιαδήποτε ερώτηση. Γενικές οδηγίες: 1.

Διαβάστε περισσότερα

ΦΥΛΛΟ ΕΡΓΑΣΙΑΣ: ΔΥΝΑΜΕΙΣ ΚΑΙ ΡΟΠΕΣ

ΦΥΛΛΟ ΕΡΓΑΣΙΑΣ: ΔΥΝΑΜΕΙΣ ΚΑΙ ΡΟΠΕΣ ΦΥΛΛΟ ΕΡΓΑΣΙΑΣ: ΔΥΝΑΜΕΙΣ ΚΑΙ ΡΟΠΕΣ Σ ένα στερεό ασκούνται ομοεπίπεδες δυνάμεις. Όταν το στερεό ισορροπεί, δηλαδή ισχύει ότι F 0 και δεν περιστρέφεται τότε το αλγεβρικό άθροισμα των ροπών είναι μηδέν Στ=0,

Διαβάστε περισσότερα

ΛΥΚΕΙΟ ΑΓΙΟΥ ΣΠΥΡΙΔΩΝΑ ΣΧΟΛΙΚΗ ΧΡΟΝΙΑ 2011-2012 ΓΡΑΠΤΕΣ ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ Β ΛΥΚΕΙΟΥ

ΛΥΚΕΙΟ ΑΓΙΟΥ ΣΠΥΡΙΔΩΝΑ ΣΧΟΛΙΚΗ ΧΡΟΝΙΑ 2011-2012 ΓΡΑΠΤΕΣ ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ Β ΛΥΚΕΙΟΥ ΛΥΚΕΙΟ ΑΓΙΟΥ ΠΥΡΙΔΩΝΑ ΧΟΛΙΚΗ ΧΡΟΝΙΑ 2011-2012 ΓΡΑΠΤΕ ΠΡΟΑΓΩΓΙΚΕ ΕΞΕΤΑΕΙ ΦΥΙΚΗ ΚΑΤΕΥΘΥΝΗ Β ΛΥΚΕΙΟΥ ΗΜΕΡΟΜΗΝΙΑ: 31-05-2012 ΔΙΑΡΚΕΙΑ: 07.45 10.15 Οδηγίες 1. Το εξεταστικό δοκίμιο αποτελείται από 9 σελίδες.

Διαβάστε περισσότερα

ΣΧΟΛΕΙΟ ΓΙΑΝΝΙΤΣΩΝ. ΣΧΕΔΙΟ ΕΡΓΑΣΙΑΣ ΣΤΗ ΓΕΩΜΕΤΡΙΑ Πολυτίδης Δημήτρης. 1 ο ΕΤΟΣ

ΣΧΟΛΕΙΟ ΓΙΑΝΝΙΤΣΩΝ. ΣΧΕΔΙΟ ΕΡΓΑΣΙΑΣ ΣΤΗ ΓΕΩΜΕΤΡΙΑ Πολυτίδης Δημήτρης. 1 ο ΕΤΟΣ ΣΧΟΛΕΙΟ ΓΙΑΝΝΙΤΣΩΝ ΣΧΕΔΙΟ ΕΡΓΑΣΙΑΣ ΣΤΗ ΓΕΩΜΕΤΡΙΑ Πολυτίδης Δημήτρης 1 ο ΕΤΟΣ 1 η φάση: Ερώτημα συζήτησης: Που χρησιμοποιείται τη γεωμετρία στην εργασία σας και στην καθημερινή σας ζωή. (Μια διδακτική ώρα).

Διαβάστε περισσότερα

0 0 30 π/6 45 π/4 60 π/3 90 π/2

0 0 30 π/6 45 π/4 60 π/3 90 π/2 Βασικός Πίνακας Μοίρες (Degrees) Ακτίνια (Radians) ΓΩΝΙΕΣ 0 0 30 π/6 45 π/4 60 π/3 90 π/2 Έστω ότι θέλω να μετατρέψω μοίρες σε ακτίνια : Έχω μία γωνία σε φ μοίρες. Για να την κάνω σε ακτίνια, πολλαπλασιάζω

Διαβάστε περισσότερα

ΕΡΩΤΗΣΕΙΣ ΘΕΜΑΤΑ ΘΕΩΡΙΑΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΤΗΣ Α ΓΥΜΝΑΣΙΟΥ ΑΛΓΕΒΡΑ

ΕΡΩΤΗΣΕΙΣ ΘΕΜΑΤΑ ΘΕΩΡΙΑΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΤΗΣ Α ΓΥΜΝΑΣΙΟΥ ΑΛΓΕΒΡΑ 1 ο ΚΕΦΑΛΑΙΟ ΕΡΩΤΗΣΕΙΣ ΘΕΜΑΤΑ ΘΕΩΡΙΑΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΤΗΣ Α ΓΥΜΝΑΣΙΟΥ ΑΛΓΕΒΡΑ 1. α. Τι γνωρίζετε για την Ευκλείδεια διαίρεση; Πότε λέγεται τέλεια; β. Αν σε μια διαίρεση είναι Δ=δ, πόσο είναι το πηλίκο και

Διαβάστε περισσότερα

ΟΜΟΣΠΟΝ ΙΑ ΕΚΠΑΙ ΕΥΤΙΚΩΝ ΦΡΟΝΤΙΣΤΩΝ ΕΛΛΑ ΟΣ (Ο.Ε.Φ.Ε.) ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 2012. Ηµεροµηνία: Τετάρτη 18 Απριλίου 2012 ΕΚΦΩΝΗΣΕΙΣ

ΟΜΟΣΠΟΝ ΙΑ ΕΚΠΑΙ ΕΥΤΙΚΩΝ ΦΡΟΝΤΙΣΤΩΝ ΕΛΛΑ ΟΣ (Ο.Ε.Φ.Ε.) ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 2012. Ηµεροµηνία: Τετάρτη 18 Απριλίου 2012 ΕΚΦΩΝΗΣΕΙΣ ΤΑΞΗ: ΚΑΤΕΥΘΥΝΣΗ: ΜΑΘΗΜΑ: ΘΕΜΑ Α Γ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΘΕΤΙΚΗ & ΤΕΧΝΟΛΟΓΙΚΗ ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ Ηµεροµηνία: Τετάρτη 18 Απριλίου 2012 ΕΚΦΩΝΗΣΕΙΣ Στις ερωτήσεις 1 έως 4 να γράψετε στο τετράδιο σας τον αριθµό

Διαβάστε περισσότερα

Πεδίο, ονομάζεται μια περιοχή του χώρου, όπου σε κάθε σημείο της ένα ορισμένο φυσικό μέγεθος

Πεδίο, ονομάζεται μια περιοχή του χώρου, όπου σε κάθε σημείο της ένα ορισμένο φυσικό μέγεθος ΗΛΕΚΤΡΙΚΟ ΠΕΔΙΟ Πεδίο, ονομάζεται μια περιοχή του χώρου, όπου σε κάθε σημείο της ένα ορισμένο φυσικό μέγεθος παίρνει καθορισμένη τιμή. Ηλεκτρικό πεδίο Ηλεκτρικό πεδίο ονομάζεται ο χώρος, που σε κάθε σημείο

Διαβάστε περισσότερα

Μονάδες 5. Μονάδες 5. Μονάδες 5. Μονάδες 5 ΑΡΧΗ 1ΗΣ ΣΕΛΙΔΑΣ

Μονάδες 5. Μονάδες 5. Μονάδες 5. Μονάδες 5 ΑΡΧΗ 1ΗΣ ΣΕΛΙΔΑΣ ΘΕΜΑ ο ΑΡΧΗ ΗΣ ΣΕΛΙΔΑΣ ΕΞΕΤΑΣΕΙΣ ΠΡΟΣΟΜΟΙΩΣΗΣ Γ ΤΑΞΗΣ ου ΓΕΛ ΠΕΤΡΟΥΠΟΛΗΣ ΔΕΥΤΕΡΑ 3 ΜΑΪΟΥ 200 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ : ΦΥΣΙΚΗ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΣΥΝΟΛΟ ΣΕΛΙΔΩΝ: ΠΕΝΤΕ () Να γράψετε στο τετράδιό

Διαβάστε περισσότερα

Να υπολογίζουν αποστάσεις με τη βοήθεια ημ. και συν. Να είναι σε θέση να χρησιμοποιούν τους τριγωνομετρικούς πίνακες στους υπολογισμούς τους.

Να υπολογίζουν αποστάσεις με τη βοήθεια ημ. και συν. Να είναι σε θέση να χρησιμοποιούν τους τριγωνομετρικούς πίνακες στους υπολογισμούς τους. ΣΧΕΔΙΟ ΜΑΘΗΜΑΤΩΝ Νίκος Γ. Τόμπρος Ενότητα : ΤΡΙΓΩΝΟΜΕΤΡΙΑ Περιεχόμενα ενότητας Τριγωνομετρικοί οξείας γωνίας αριθμοί Διδακτικοί στόχοι Διδακτικές οδηγίες - επισημάνσεις Πρέπει οι μαθητές να γνωρίζουν:

Διαβάστε περισσότερα

ΛΥΜΕΝΕΣ ΑΣΚΗΣΕΙΣ ΣΤΗΝ LOGO ΓΙΑ ΤΗΝ Γ ΤΑΞΗ

ΛΥΜΕΝΕΣ ΑΣΚΗΣΕΙΣ ΣΤΗΝ LOGO ΓΙΑ ΤΗΝ Γ ΤΑΞΗ ΛΥΜΕΝΕΣ ΑΣΚΗΣΕΙΣ ΣΤΗΝ LOGO ΓΙΑ ΤΗΝ Γ ΤΑΞΗ ΑΣΚΗΣΕΙΣ 1. Γράψτε πρόγραμμα σχεδίασης ενός τετραγώνου πλευράς 100. επανάλαβε 4 [μπ 100 δε 90] 2. Γράψτε πρόγραμμα σχεδίασης ενός ισόπλευρου τριγώνου πλευράς 100.

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 11 Ο ΜΕΤΡΗΣΗ ΚΥΚΛΟΥ 11.3 ΕΓΓΡΑΦΗ ΒΑΣΙΚΩΝ ΚΑΝΟΝΙΚΩΝ ΠΟΛΥΓΩΝΩΝ ΣΕ ΚΥΚΛΟ ΚΑΙ ΤΑ ΣΤΟΙΧΕΙΑ ΤΟΥΣ

ΚΕΦΑΛΑΙΟ 11 Ο ΜΕΤΡΗΣΗ ΚΥΚΛΟΥ 11.3 ΕΓΓΡΑΦΗ ΒΑΣΙΚΩΝ ΚΑΝΟΝΙΚΩΝ ΠΟΛΥΓΩΝΩΝ ΣΕ ΚΥΚΛΟ ΚΑΙ ΤΑ ΣΤΟΙΧΕΙΑ ΤΟΥΣ ΚΕΦΑΛΑΙΟ 11 Ο ΜΕΤΡΗΣΗ ΚΥΚΛΟΥ 113 ΕΓΓΡΑΦΗ ΒΑΣΙΚΩΝ ΚΑΝΟΝΙΚΩΝ ΠΟΛΥΓΩΝΩΝ ΣΕ ΚΥΚΛΟ ΚΑΙ ΤΑ ΣΤΟΙΧΕΙΑ ΤΟΥΣ ΘΕΩΡΙΑ Θα ασχοληθούμε με την εγγραφή μερικών βασικών κανονικών πολυγώνων σε κύκλο και θα υπολογίσουμε

Διαβάστε περισσότερα

Εκπαιδευτήριο TO ΠΑΓΚΡΗΤΙΟΝ Σχολικό Έτος 2008-2009 Συνθετικές εργασίες στο μάθημα Πληροφορική Τεχνολογία της Β Γυμνασίου: Όψεις της Τεχνολογίας

Εκπαιδευτήριο TO ΠΑΓΚΡΗΤΙΟΝ Σχολικό Έτος 2008-2009 Συνθετικές εργασίες στο μάθημα Πληροφορική Τεχνολογία της Β Γυμνασίου: Όψεις της Τεχνολογίας Εκπαιδευτήριο TO ΠΑΓΚΡΗΤΙΟΝ Σχολικό Έτος 2008-2009 Συνθετικές εργασίες στο μάθημα Πληροφορική Τεχνολογία της Β Γυμνασίου: Όψεις της Τεχνολογίας Θέμα: Χρόνος - Ρολόι Τμήμα: ΗΥ: Ομάδα: Β1 pcneo Σαμπαθιανάκης

Διαβάστε περισσότερα

Η ΓΗ ΣΑΝ ΠΛΑΝΗΤΗΣ. Γεωγραφικά στοιχεία της Γης Σχήµα και µέγεθος της Γης - Κινήσεις της Γης Βαρύτητα - Μαγνητισµός

Η ΓΗ ΣΑΝ ΠΛΑΝΗΤΗΣ. Γεωγραφικά στοιχεία της Γης Σχήµα και µέγεθος της Γης - Κινήσεις της Γης Βαρύτητα - Μαγνητισµός Η ΓΗ ΣΑΝ ΠΛΑΝΗΤΗΣ Γεωγραφικά στοιχεία της Γης Σχήµα και µέγεθος της Γης - Κινήσεις της Γης Βαρύτητα - Μαγνητισµός ρ. Ε. Λυκούδη Αθήνα 2005 Γεωγραφικά στοιχεία της Γης Η Φυσική Γεωγραφία εξετάζει: τον γήινο

Διαβάστε περισσότερα

ΘΕΜΑ Α Στις παρακάτω προτάσεις Α1-Α4 να γράψετε στο τετράδιό σας τον αριθμό της πρότασης και δίπλα το γράμμα που αντιστοιχεί στη σωστή απάντηση.

ΘΕΜΑ Α Στις παρακάτω προτάσεις Α1-Α4 να γράψετε στο τετράδιό σας τον αριθμό της πρότασης και δίπλα το γράμμα που αντιστοιχεί στη σωστή απάντηση. 53 Χρόνια ΦΡΟΝΤΙΣΤΗΡΙΑ ΜΕΣΗΣ ΕΚΠΑΙΔΕΥΣΗΣ ΣΑΒΒΑΪΔΗ-ΜΑΝΩΛΑΡΑΚΗ ΠΑΓΚΡΑΤΙ : Φιλολάου & Εκφαντίδου 26 : Τηλ.: 2107601470 ΔΙΑΓΩΝΙΣΜΑ : ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ 2013 ΘΕΜΑ Α Στις παρακάτω προτάσεις Α1-Α4 να

Διαβάστε περισσότερα

ΕΝΩΣΗ ΚΥΠΡΙΩΝ ΦΥΣΙΚΩΝ

ΕΝΩΣΗ ΚΥΠΡΙΩΝ ΦΥΣΙΚΩΝ 9η Ολυμπιάδα Φυσικής Γ Λυκείου (Β φάση) Κυριακή 9 Μαρτίου 01 Ώρα:.00-1.00 ΟΔΗΓΙΕΣ: 1. Το δοκιμιο αποτελειται απο εννεα (9) σελιδες και επτα (7) θεματα.. Να απαντησετε σε ολα τα θεματα του δοκιμιου.. Μαζι

Διαβάστε περισσότερα

Ένωση Ελλήνων Φυσικών ΠΑΝΕΛΛΗΝΙΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΦΥΣΙΚΗΣ 2008 Πανεπιστήμιο Αθηνών Εργαστήριο Φυσικών Επιστημών, Τεχνολογίας, Περιβάλλοντος.

Ένωση Ελλήνων Φυσικών ΠΑΝΕΛΛΗΝΙΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΦΥΣΙΚΗΣ 2008 Πανεπιστήμιο Αθηνών Εργαστήριο Φυσικών Επιστημών, Τεχνολογίας, Περιβάλλοντος. Θεωρητικό Μέρος Θέμα 1o A Λυκείου 22 Μαρτίου 28 Στις ερωτήσεις Α,Β,Γ,Δ,E μια μόνο απάντηση είναι σωστή. Γράψτε στο τετράδιό σας το κεφαλαίο γράμμα της ερώτησης και το μικρό γράμμα της σωστής απάντησης.

Διαβάστε περισσότερα

3.6 ΕΜΒΑ ΟΝ ΚΥΚΛΙΚΟΥ ΤΟΜΕΑ

3.6 ΕΜΒΑ ΟΝ ΚΥΚΛΙΚΟΥ ΤΟΜΕΑ 1 3.6 ΕΜΝ ΚΥΚΛΙΚΥ ΤΜΕ ΘΕΩΡΙ 1. Εµβαδόν κυκλικού τοµέα γωνίας µ ο : Ε = πρ. µ, όπου ρ η ακτίνα του κύκλου και π ο γνωστός αριθµός. Εµβαδόν κυκλικού τοµέα γωνίας α rad: Ε = 1 αρ, όπου ρ η ακτίνα του κύκλου

Διαβάστε περισσότερα

Θαλής Α' Λυκείου 1995-1996

Θαλής Α' Λυκείου 1995-1996 Θαλής Α' Λυκείου 1995-1996 1. Δυο μαθητές Α και Β παίζουν το ακόλουθο παιχνίδι: Τους δίνεται ένα κανονικό πολύγωνο με άρτιο πλήθος πλευρών, μεγαλύτερο από 6 (π.χ. ένα 100-γωνο). Κάθε παίκτης συνδέει δυο

Διαβάστε περισσότερα

ΦΡΟΝΤΙΣΤΗΡΙΟ ΕΠΙΛΟΓΗ ΔΙΑΓΩΝΙΣΜΑ ΦΥΣΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ ΚΕΦ. 4Ο

ΦΡΟΝΤΙΣΤΗΡΙΟ ΕΠΙΛΟΓΗ ΔΙΑΓΩΝΙΣΜΑ ΦΥΣΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ ΚΕΦ. 4Ο Όνοµα:... Ηµεροµηνία:... Βαθµός : ΘΕΜΑ Ο Στις παρακάτω ερωτήσεις να επιλέξετε τη σωστή απάντηση. Όταν ένα σώµα πραγµατοποιεί µόνο στροφική κίνηση : α) όλα τα σηµεία του έχουν την ίδια γραµµική ταχύτητα

Διαβάστε περισσότερα

18 ος Πανελλήνιος Διαγωνισμός Αστρονομίας και Διαστημικής 2013. 4 η φάση: «ΠΤΟΛΕΜΑΙΟΣ» Ανάλυση Δεδομένων

18 ος Πανελλήνιος Διαγωνισμός Αστρονομίας και Διαστημικής 2013. 4 η φάση: «ΠΤΟΛΕΜΑΙΟΣ» Ανάλυση Δεδομένων 18 ος Πανελλήνιος Διαγωνισμός Αστρονομίας και Διαστημικής 2013 4 η φάση: «ΠΤΟΛΕΜΑΙΟΣ» Ανάλυση Δεδομένων Παρακαλούμε, διαβάστε προσεκτικά τα παρακάτω: 1. Μπορείτε να χρησιμοποιήσετε τον χάρακα και το κομπιουτεράκι

Διαβάστε περισσότερα

Οδηγίες για το SKETCHPAD Μωυσιάδης Πολυχρόνης - Δόρτσιος Κώστας. Με την εκτέλεση του Sketchpad παίρνουμε το παρακάτω παράθυρο σχεδίασης:

Οδηγίες για το SKETCHPAD Μωυσιάδης Πολυχρόνης - Δόρτσιος Κώστας. Με την εκτέλεση του Sketchpad παίρνουμε το παρακάτω παράθυρο σχεδίασης: Οδηγίες για το SKETCHPAD Μωυσιάδης Πολυχρόνης - Δόρτσιος Κώστας Με την εκτέλεση του Sketchpad παίρνουμε το παρακάτω παράθυρο σχεδίασης: παρόμοιο με του Cabri με αρκετές όμως διαφορές στην αρχιτεκτονική

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 3: ΔΥΝΑΜΕΙΣ Μέρος 1ο

ΚΕΦΑΛΑΙΟ 3: ΔΥΝΑΜΕΙΣ Μέρος 1ο ΚΕΦΑΛΑΙΟ 3: ΔΥΝΑΜΕΙΣ Μέρος 1ο Φυσική Β Γυμνασίου Βασίλης Γαργανουράκης http://users.sch.gr/vgargan Εισαγωγή Στο προηγούμενο κεφάλαιο μελετήσαμε τις κινήσεις των σωμάτων. Το επόμενο βήμα είναι να αναζητήσουμε

Διαβάστε περισσότερα

Β ΛΥΚΕΙΟΥ: ΦΥΣΙΚΗΣ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ

Β ΛΥΚΕΙΟΥ: ΦΥΣΙΚΗΣ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΛΥΚΕΙΟΥ: ΦΥΣΙΚΗΣ ΠΡΟΣΑΑΤΟΛΙΣΜΟΥ Διαγωνίσματα 2014-2015 1 ο Διαγώνισμα Θεματικό πεδίο: Επαναληπτικό (Οριζόντια ολή Κυκλική Κίνηση Κρούσεις) Ημερομηνία 16 οεμβρίου 2014 Διάρκεια Επιμέλεια 2 Ώρες ΘΕΜΑ 1 25

Διαβάστε περισσότερα

Πρόγραμμα Παρατήρησης

Πρόγραμμα Παρατήρησης Πρόγραμμα Παρατήρησης Η αναζήτηση του ζοφερού ουρανού Άγγελος Κιοσκλής Οκτώβριος 2005 ΒΑΣΙΚΕΣ ΠΛΗΡΟΦΟΡΙΕΣ * η παρατήρηση πραγματοποιείται κατά προτίμηση όταν η Σελήνη δεν εμφανίζεται στον ουρανό, διότι

Διαβάστε περισσότερα

ΟΔΗΓΙΕΣ ΓΙΑ ΕΓΚΑΤΑΣΤΑΣΗ ΚΑΙ ΧΡΗΣΗ ΤΟΥ GOOGLE EARTH [ΠΛΟΗΓΗΣΗ ΚΑΙ ΕΚΤΥΠΩΣΗ ΑΕΡΟΦΩΤΟΓΡΑΦΙΩΝ]

ΟΔΗΓΙΕΣ ΓΙΑ ΕΓΚΑΤΑΣΤΑΣΗ ΚΑΙ ΧΡΗΣΗ ΤΟΥ GOOGLE EARTH [ΠΛΟΗΓΗΣΗ ΚΑΙ ΕΚΤΥΠΩΣΗ ΑΕΡΟΦΩΤΟΓΡΑΦΙΩΝ] ΟΔΗΓΙΕΣ ΓΙΑ ΕΓΚΑΤΑΣΤΑΣΗ ΚΑΙ ΧΡΗΣΗ ΤΟΥ GOOGLE EARTH [ΠΛΟΗΓΗΣΗ ΚΑΙ ΕΚΤΥΠΩΣΗ ΑΕΡΟΦΩΤΟΓΡΑΦΙΩΝ] Τι είναι το Google Earth Το Google Earth είναι λογισμικό-εργαλείο γραφικής απεικόνισης, χαρτογράφησης και εξερεύνησης

Διαβάστε περισσότερα

ΦΥΣΙΚΗ Γ' ΛΥΚΕΙΟΥ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ 2006 ΕΚΦΩΝΗΣΕΙΣ

ΦΥΣΙΚΗ Γ' ΛΥΚΕΙΟΥ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ 2006 ΕΚΦΩΝΗΣΕΙΣ ΦΥΣΙΚΗ Γ' ΛΥΚΕΙΟΥ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ 006 ΕΚΦΩΝΗΣΕΙΣ ΘΕΜΑ ο Να γράψετε στο τετράδιό σας τον αριθµό καθεµιάς από τις παρακάτω ερωτήσεις - 4 και δίπλα το γράµµα που αντιστοιχεί στη σωστή

Διαβάστε περισσότερα

ΛΑΝΙΤΕΙΟ ΛΥΚΕΙΟ Α ΣΧΟΛΙΚΟ ΕΤΟΣ 2010-2011 ΓΡΑΠΤΕΣ ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΙΟΥΝΙΟΥ 2011 ΟΝΟΜΑ:... ΤΜΗΜΑ:... ΑΡ.:...

ΛΑΝΙΤΕΙΟ ΛΥΚΕΙΟ Α ΣΧΟΛΙΚΟ ΕΤΟΣ 2010-2011 ΓΡΑΠΤΕΣ ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΙΟΥΝΙΟΥ 2011 ΟΝΟΜΑ:... ΤΜΗΜΑ:... ΑΡ.:... ΛΑΝΙΤΕΙΟ ΛΥΚΕΙΟ Α ΣΧΟΛΙΚΟ ΕΤΟΣ 2010-2011 ΓΡΑΠΤΕΣ ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΙΟΥΝΙΟΥ 2011 ΜΑΘΗΜΑ: Φυσική ΤΑΞΗ: Α ΗΜΕΡΟΜΗΝΊΑ: 27 Μαίου 2011 ΧΡΟΝΟΣ: 2 ώρες ΩΡΑ: 11.00 1.00 ΒΑΘΜΟΣ: Αριθμητικά:... Ολογράφως:...

Διαβάστε περισσότερα

8. Σύνθεση και ανάλυση δυνάμεων

8. Σύνθεση και ανάλυση δυνάμεων 8. Σύνθεση και ανάλυση δυνάμεων Βασική θεωρία Σύνθεση δυνάμεων Συνισταμένη Σύνθεση δυνάμεων είναι η διαδικασία με την οποία προσπαθούμε να προσδιορίσουμε τη δύναμη εκείνη που προκαλεί τα ίδια αποτελέσματα

Διαβάστε περισσότερα

1 Εισαγωγή. 1.1 Tο αντικείμενο της Γεωδαισίας

1 Εισαγωγή. 1.1 Tο αντικείμενο της Γεωδαισίας Κεφάλαιο 1: Εισαγωγή 23 1 Εισαγωγή 1.1 Tο αντικείμενο της Γεωδαισίας H Γεωδαισία είναι λέξη ελληνική, γράφεται και προφέρεται παρόμοια σε όλες σχεδόν τις γλώσσες, π.χ. Geodesy, Géodesie, Geodäsie, Geodesia.

Διαβάστε περισσότερα

w w w.k z a c h a r i a d i s.g r

w w w.k z a c h a r i a d i s.g r ΦΥΣΙΚΗ Γ ΛΥΚΕΙΟΥ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Ασκήσεις με δοκό που ισορροπεί, και το ένα άκρο της συνδέεται με άρθρωση Έστω ότι έχουμε ομογενή δοκό η οποία συνδέεται στο ένα άκρο της με άρθρωση.

Διαβάστε περισσότερα

«Εισαγωγή στον Τριγωνομετρικό Κύκλο» Διδάσκοντας Μαθηματικά με Τ.Π.Ε.

«Εισαγωγή στον Τριγωνομετρικό Κύκλο» Διδάσκοντας Μαθηματικά με Τ.Π.Ε. «Εισαγωγή στον Τριγωνομετρικό Κύκλο» Διδάσκοντας Μαθηματικά με Τ.Π.Ε. Μπολοτάκης Γιώργος Μαθηματικός, Επιμορφωτής Β επιπέδου, Διευθυντής Γυμνασίου Αγ. Αθανασίου Δράμας, Τραπεζούντος 7, Άγιος Αθανάσιος,

Διαβάστε περισσότερα

ΦΥΣΙΚΗ. Θέμα: «Μελέτη της βολής με κατασκευή και εκτόξευση χάρτινων πυραύλων με χρήση εκτοξευτή που λειτουργεί με πιεσμένο αέρα»

ΦΥΣΙΚΗ. Θέμα: «Μελέτη της βολής με κατασκευή και εκτόξευση χάρτινων πυραύλων με χρήση εκτοξευτή που λειτουργεί με πιεσμένο αέρα» ΦΥΣΙΚΗ Θέμα: «Μελέτη της βολής με κατασκευή και εκτόξευση χάρτινων πυραύλων με χρήση εκτοξευτή που λειτουργεί με πιεσμένο αέρα» Τάξη Γ : Λεμπιδάκης Αποστόλης, Καπετανάκης Δημήτρης, Κοπιδάκης Γιώργος, Ζαμπετάκης

Διαβάστε περισσότερα

Κεφάλαιο 9 Ο κύκλος Ορισμός. Ο κύκλος (Κ, r) με κέντρο Κ και ακτίνα r είναι το σχήμα που αποτελείται από όλα τα σημεία του επιπέδου που απέχουν απόσταση r από το σημείο Κ. Σχήμα 9.1: Στοιχεία ενός κύκλου.

Διαβάστε περισσότερα

ΣΕΙΡΑ ΟΡΓΑΝΩΝ ΜΗΧΑΝΙΚΗΣ

ΣΕΙΡΑ ΟΡΓΑΝΩΝ ΜΗΧΑΝΙΚΗΣ ΣΕΙΡΑ ΟΡΓΑΝΩΝ ΜΗΧΑΝΙΚΗΣ ΕΓΧΕΙΡΙΔΙΟ ΛΕΙΤΟΥΡΓΙΑΣ 1 Συσκευή Κεκλιμένου Επιπέδου Πολλαπλών Χρήσεων 1.1 Συναρμολόγηση Οριζοντίωση σχήμα 1 σχήμα 2 σχήμα 3 σχήμα 4 σχήμα 5 σχήμα 6 ΓΕΝΙΚΗ ΜΗΧΑΝΟΥΡΓΙΚΗ Α.Ε. 1 Απαιτούνται:

Διαβάστε περισσότερα

Περιεχόµενα. Περιεχόµενα... 7. Ευρετήριο Γραφηµάτων... 11. Ευρετήριο Εικόνων... 18. Κεφάλαιο 1

Περιεχόµενα. Περιεχόµενα... 7. Ευρετήριο Γραφηµάτων... 11. Ευρετήριο Εικόνων... 18. Κεφάλαιο 1 Περιεχόµενα Περιεχόµενα... 7 Ευρετήριο Γραφηµάτων... 11 Ευρετήριο Εικόνων... 18 Κεφάλαιο 1 ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ ΚΑΙ ΟΡΙΣΜΟΙ... 19 Θεωρία... 19 1.1 Έννοιες και ορισµοί... 20 1.2 Μονάδες µέτρησης γωνιών και µηκών...

Διαβάστε περισσότερα

ΥΠΕΠΘ ΣΥΜΒΑΣΗ 19/2005 ΣΕΙΡΑ ΓΕΝΙΚΩΝ ΕΡΓΑΣΤΗΡΙΑΚΩΝ ΟΡΓΑΝΩΝ

ΥΠΕΠΘ ΣΥΜΒΑΣΗ 19/2005 ΣΕΙΡΑ ΓΕΝΙΚΩΝ ΕΡΓΑΣΤΗΡΙΑΚΩΝ ΟΡΓΑΝΩΝ ΥΠΕΠΘ ΣΥΜΒΑΣΗ 19/2005 ΣΕΙΡΑ ΓΕΝΙΚΩΝ ΕΡΓΑΣΤΗΡΙΑΚΩΝ ΟΡΓΑΝΩΝ ΧΥΤΟΣΙΔΗΡΑ ΒΑΣΗ ΤΥΠΟΥ Β (ΓΕ.010.0) Η βάση είναι χυτοσιδηρά και διαστάσεων 20 cm περίπου x 12 cm περίπου x 1 cm περίπου, και εδράζεται σε τέσσερα

Διαβάστε περισσότερα

ΔΙΑΓΩΝΙΣΜΑ ΦΥΣΙΚΗΣ Γ ΛΥΚΕΙΟΥ

ΔΙΑΓΩΝΙΣΜΑ ΦΥΣΙΚΗΣ Γ ΛΥΚΕΙΟΥ ΔΙΑΓΩΝΙΣΜΑ ΦΥΣΙΚΗΣ Γ ΛΥΚΕΙΟΥ ΘΕΜΑ 1 Να γράψετε στο τετράδιό σας τον αριθμό καθεμιάς από τις παρακάτω ερωτήσεις και δίπλα το γράμμα που αντιστοιχεί στη σωστή απάντηση. 1. Δύο χορδές μιας κιθάρας Χ1, Χ2

Διαβάστε περισσότερα

ΔÔ Û Ì Î È ÔÈ ÎÈÓ ÛÂÈ ÙË Ë

ΔÔ Û Ì Î È ÔÈ ÎÈÓ ÛÂÈ ÙË Ë ΚΕΦΑΛΑΙΟ 1 ΔÔ Û Ì Î È ÔÈ ÎÈÓ ÛÂÈ ÙË Ë Tα βασικά σημεία του μαθήματος Η Γη είναι ένα ουράνιο σώμα, που κινείται συνεχώς στο διάστημα. Το σχήμα της είναι γεωειδές, δηλαδή είναι ελαφρά συμπιεσμένο στις κορυφές

Διαβάστε περισσότερα

ΓΛΩΣΣΑΡΙΟ ΓΕΩΓΡΑΦΙΚΩΝ ΟΡΩΝ ΓΙΑ ΤΙΣ ΤΑΞΕΙΣ Α ΚΑΙ Β

ΓΛΩΣΣΑΡΙΟ ΓΕΩΓΡΑΦΙΚΩΝ ΟΡΩΝ ΓΙΑ ΤΙΣ ΤΑΞΕΙΣ Α ΚΑΙ Β ΓΛΩΣΣΑΡΙΟ ΓΕΩΓΡΑΦΙΚΩΝ ΟΡΩΝ ΓΙΑ ΤΙΣ ΤΑΞΕΙΣ Α ΚΑΙ Β ΕΙΣΑΓΩΓΗ Στο έγγραφο παρουσιάζονται οι ορισμοί λέξεων που αντιπροσωπεύουν έννοιες που απαντώνται στις ενότητες των τάξεων Α και Β. Η ερμηνείες που δίνονται

Διαβάστε περισσότερα

ΕΚΠΑΙΔΕΥΤΙΚΗ ΚΛΙΜΑΚΑ http://edu.klimaka.gr ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ

ΕΚΠΑΙΔΕΥΤΙΚΗ ΚΛΙΜΑΚΑ http://edu.klimaka.gr ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ ΑΠΟΛΥΤΗΡΙΕΣ ΕΞΕΤΑΣΕΙΣ ΤΑΞΗΣ ΕΣΠΕΡΙΝΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΚΑΙ ΠΑΝΕΛΛΑ ΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΕΣΠΕΡΙΝΟΥ ΕΠΑΛ (ΟΜΑ ΑΣ Β ) ΠΕΜΠΤΗ 27 MAΪΟΥ 2010 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ:

Διαβάστε περισσότερα

8.1 8.2. Ερωτήσεις Κατανόησης. Ασκήσεις σχολικού βιβλίου σελίδας 177 179

8.1 8.2. Ερωτήσεις Κατανόησης. Ασκήσεις σχολικού βιβλίου σελίδας 177 179 8. 8. σκήσεις σχολικού βιβλίου σελίδας 77 79 ρωτήσεις Κατανόησης. i) ν δύο τρίγωνα είναι ίσα τότε είναι όµοια; ii) ν δύο τρίγωνα είναι όµοια προς τρίτο τότε είναι µεταξύ τους όµοια πάντηση i) Προφανώς

Διαβάστε περισσότερα

2ηέκδοση 20Ιανουαρίου2015

2ηέκδοση 20Ιανουαρίου2015 ηέκδοση 0Ιανουαρίου015 ΦΡΟΝΤΙΣΤΗΡΙΟ Μ.Ε. ΣΥΓΧΡΟΝΗ ΜΑΘΗΣΗ (β-πακέτο ασκήσεων) 1 89 Δίνεται τρίγωνο ΑΒΓ και Δ εσωτερικό σημείο του ΒΓ. Φέρουμε από το Δ παράλληλες στις πλευρές ΑΒ και ΑΓ. Η παράλληλη στην

Διαβάστε περισσότερα

Τρεις ενδιαφέρουσες αποδείξεις του Πυθαγορείου Θεωρήματος

Τρεις ενδιαφέρουσες αποδείξεις του Πυθαγορείου Θεωρήματος Τρεις ενδιαφέρουσες αποδείξεις του Πυθαγορείου Θεωρήματος Δρ. Παναγιώτης Λ. Θεοδωρόπουλος Σχολικός Σύμβουλος κλάδου ΠΕ03 www.p-theodoropoulos.gr Εισαγωγή Είναι γνωστό ότι για το Πυθαγόρειο θεώρημα έχουν

Διαβάστε περισσότερα

ΦΥΣΙΚΗ Β ΓΥΜΝΑΣΙΟΥ ΚΕΦΑΛΑΙΟ 3 Ο ΔΥΝΑΜΕΙΣ

ΦΥΣΙΚΗ Β ΓΥΜΝΑΣΙΟΥ ΚΕΦΑΛΑΙΟ 3 Ο ΔΥΝΑΜΕΙΣ ΦΥΣΙΚΗ Β ΓΥΜΝΑΣΙΟΥ ΚΕΦΑΛΑΙΟ 3 Ο ΔΥΝΑΜΕΙΣ 3.1 Η έννοια της δύναμης ΣΤΟΙΧΕΙΑ ΘΕΩΡΙΑΣ Στο κεφάλαιο των κινήσεων ασχοληθήκαμε με τη μελέτη της κίνησης χωρίς να μας απασχολούν τα αίτια που προκαλούν την κίνηση

Διαβάστε περισσότερα

ΔΙΑΙΡΕΤΗΣ. Το ΤΕ είναι συνήθως κυλινδρικό, μπορεί όμως να είναι και κωνικό ή πρισματικό.

ΔΙΑΙΡΕΤΗΣ. Το ΤΕ είναι συνήθως κυλινδρικό, μπορεί όμως να είναι και κωνικό ή πρισματικό. ΔΙΑΙΡΕΤΗΣ ΓΕΝΙΚΑ O διαιρέτης είναι μηχανουργική συσκευή, με την οποία μπορούμε να εκτελέσουμε στην επιφάνεια τεμαχίου (TE) κατεργασίες υπό ίσες ακριβώς γωνίες ή σε ίσες αποστάσεις. Το ΤΕ είναι συνήθως

Διαβάστε περισσότερα

1. Ένας κασκαντέρ θέλει με το αυτοκίνητό του, να πηδήξει πάνω από

1. Ένας κασκαντέρ θέλει με το αυτοκίνητό του, να πηδήξει πάνω από 1. Ένας κασκαντέρ θέλει με το αυτοκίνητό του, να πηδήξει πάνω από 8 αυτοκίνητα σταθμευμένα ένα μετά το άλλο κάτω από μια οριζόντια πλατφόρμα. Το κάθε αυτοκίνητο έχει μήκος d = 3 m και ύψος h = 1,2 m. Τo

Διαβάστε περισσότερα

Να σχεδιάσετε και να υπολογίσετε τη συνισταμένη δύναμη στις πιο κάτω περιπτώσεις.

Να σχεδιάσετε και να υπολογίσετε τη συνισταμένη δύναμη στις πιο κάτω περιπτώσεις. ΔΥΝΑΜΕΙΣ ΝΟΜΟΙ ΤΟΥ ΝΕΥΤΩΝΑ ΓΙΑ ΤΗΝ ΚΙΝΗΣΗ Να σχεδιάσετε και να υπολογίσετε τη συνισταμένη δύναμη στις πιο κάτω περιπτώσεις. F 2=2N F 1=6N F 3=3N F 4=5N (α) (β) F 5=4N F 6=1N F 7=3N (γ) Να σχεδιάσετε και

Διαβάστε περισσότερα

Δ 4. Το ποσοστό της αρχικής κινητικής ενέργειας του βέλους που μεταφέρεται στο περιβάλλον του συστήματος μήλο-βέλος κατά τη διάρκεια της διάτρησης.

Δ 4. Το ποσοστό της αρχικής κινητικής ενέργειας του βέλους που μεταφέρεται στο περιβάλλον του συστήματος μήλο-βέλος κατά τη διάρκεια της διάτρησης. Σε οριζόντιο επίπεδο βρίσκεται ακίνητο ένα μήλο μάζας Μ = 200 g. Ένα μικρό βέλος μάζας m = 40 g κινείται οριζόντια με ταχύτητα μέτρου, υ 1 = 10 m / s, χτυπά το μήλο με αποτέλεσμα να το διαπεράσει. Αν γνωρίζετε

Διαβάστε περισσότερα

Γεωργικές και Θερμοκηπιακές κατασκευές (Εργαστήριο)

Γεωργικές και Θερμοκηπιακές κατασκευές (Εργαστήριο) Ελληνική Δημοκρατία Τεχνολογικό Εκπαιδευτικό Ίδρυμα Ηπείρου Γεωργικές και Θερμοκηπιακές κατασκευές (Εργαστήριο) Ενότητα 3: Χαράξεις σημείων και γραμμών στο έδαφος Δρ. Μενέλαος Θεοχάρης 2. ΧΑΡΑΞΕΙΣ ΣΗΜΕΙΩΝ

Διαβάστε περισσότερα

ΣΤΟΙΧΕΙΑ ΑΣΤΡΟΝΟΜΙΑΣ & ΔΙΑΣΤΗΜΙΚΗΣ. Β' Τάξη Γενικού Λυκείου

ΣΤΟΙΧΕΙΑ ΑΣΤΡΟΝΟΜΙΑΣ & ΔΙΑΣΤΗΜΙΚΗΣ. Β' Τάξη Γενικού Λυκείου ΣΤΟΙΧΕΙΑ ΑΣΤΡΟΝΟΜΙΑΣ & ΔΙΑΣΤΗΜΙΚΗΣ Β' Τάξη Γενικού Λυκείου Ομάδα συγγραφής: Κων/νος Γαβρίλης, καθηγητής Μαθηματικών Β/θμιας Εκπαίδευσης. Μαργαρίτα Μεταξά, Δρ. Αστροφυσικής, καθηγήτρια Φυσικής του Τοσιτσείου-Αρσακείου

Διαβάστε περισσότερα

ΕΙΝΑΙ Η ΑΣΤΡΟΛΟΓΙΑ ΜΙΑ ΜΕΘΟΔΟΣ ΑΥΤΟΓΝΩΣΙΑΣ; 1

ΕΙΝΑΙ Η ΑΣΤΡΟΛΟΓΙΑ ΜΙΑ ΜΕΘΟΔΟΣ ΑΥΤΟΓΝΩΣΙΑΣ; 1 ΕΙΝΑΙ Η ΑΣΤΡΟΛΟΓΙΑ ΜΙΑ ΜΕΘΟΔΟΣ ΑΥΤΟΓΝΩΣΙΑΣ; 1 Στο σημείο αυτό του οδοιπορικού γνωριμίας με τις διάφορες μεθόδους αυτογνωσίας θα συναντήσουμε την Αστρολογία και θα μιλήσουμε για αυτή. Θα ερευνήσουμε δηλαδή

Διαβάστε περισσότερα

ΙΑΓΝΩΣΤΙΚΗ ΚΑΙ ΘΕΡΑΠΕΥΤΙΚΗ ΧΡΗΣΗ ΤΩΝ ΠΡΙΣΜΑΤΩΝ

ΙΑΓΝΩΣΤΙΚΗ ΚΑΙ ΘΕΡΑΠΕΥΤΙΚΗ ΧΡΗΣΗ ΤΩΝ ΠΡΙΣΜΑΤΩΝ Αλέξανδρος Γ. αµανάκις ΙΑΓΝΩΣΤΙΚΗ ΚΑΙ ΘΕΡΑΠΕΥΤΙΚΗ ΧΡΗΣΗ ΤΩΝ ΠΡΙΣΜΑΤΩΝ Το διαθλαστικό µέσο που µεταβάλλει την κατεύθυνση µιας φωτεινής δέσµης, δεν επηρεάζει όµως την κλίση των ακτίνων της, είναι το πρίσµα.

Διαβάστε περισσότερα

Στα 1849 ο Sir David Brewster περιγράφει τη μακροσκοπική μηχανή λήψης και παράγονται οι πρώτες στερεοσκοπικές φωτογραφίες (εικ. 5,6).

Στα 1849 ο Sir David Brewster περιγράφει τη μακροσκοπική μηχανή λήψης και παράγονται οι πρώτες στερεοσκοπικές φωτογραφίες (εικ. 5,6). ΣΤΕΡΕΟΣΚΟΠΙΑ Η στερεοσκοπία είναι μια τεχνική που δημιουργεί την ψευδαίσθηση του βάθους σε μια εικόνα. Στηρίζεται στο ότι η τρισδιάστατη φυσική όραση πραγματοποιείται διότι κάθε μάτι βλέπει το ίδιο αντικείμενο

Διαβάστε περισσότερα

7.2. ΤΟΡΝΟΙ. Σχήμα 111

7.2. ΤΟΡΝΟΙ. Σχήμα 111 ΤΕΧΝΟΛΟΓΙΑ ΠΑΡΑΓΩΓΗΣ Ι 109 7.2. ΤΟΡΝΟΙ Ο τόρνος είναι ιστορικά η αρχαιότερη ίσως εργαλειομηχανή που χρησιμοποίησε ο άνθρωπος, προερχόμενη κατά πάσα πιθανότητα από τον τροχό του αγγειοπλάστη. Στο σχήμα

Διαβάστε περισσότερα

r r r r r r r r r r r Μονάδες 5 ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ Γ ΗΜΕΡΗΣΙΩΝ

r r r r r r r r r r r Μονάδες 5 ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ Γ ΗΜΕΡΗΣΙΩΝ ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ Γ ΗΜΕΡΗΣΙΩΝ ΠΑΝΕΛΛΗΝΙΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΚΑΙ Γ ΤΑΞΗΣ ΕΠΑΛ (ΟΜΑ Α Β ) ΠΑΡΑΣΚΕΥΗ 0 ΜΑÏΟΥ 011 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΦΥΣΙΚΗ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ (ΚΑΙ

Διαβάστε περισσότερα

ΗλιακήΓεωµετρία. Γιάννης Κατσίγιαννης

ΗλιακήΓεωµετρία. Γιάννης Κατσίγιαννης ΗλιακήΓεωµετρία Γιάννης Κατσίγιαννης ΗηλιακήενέργειαστηΓη Φασµατικήκατανοµήτηςηλιακής ακτινοβολίας ΗκίνησητηςΓηςγύρωαπότονήλιο ΗκίνησητηςΓηςγύρωαπότονήλιοµπορεί να αναλυθεί σε δύο κύριες συνιστώσες: Περιφορά

Διαβάστε περισσότερα

ΦΥΣΙΚΗ Γ ΛΥΚΕΙΟΥ ΠΑΝΕΛΛΗΝΙΕΣ ΘΕΜΑΤΑ

ΦΥΣΙΚΗ Γ ΛΥΚΕΙΟΥ ΠΑΝΕΛΛΗΝΙΕΣ ΘΕΜΑΤΑ ΦΥΣΙΚΗ Γ ΛΥΚΕΙΟΥ ΠΑΝΕΛΛΗΝΙΕΣ 2002 ΘΕΜΑΤΑ ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ ΑΠΟΛΥΤΗΡΙΕΣ ΕΞΕΤΑΣΕΙΣ Σ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ ΠΕΜΠΤΗ 6 ΙΟΥΝΙΟΥ 2002 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ (ΚΑΙ ΤΩΝ ΥΟ ΚΥΚΛΩΝ): ΦΥΣΙΚΗ

Διαβάστε περισσότερα

Εύρεση της πυκνότητας στερεών και υγρών.

Εύρεση της πυκνότητας στερεών και υγρών. Μ4 Εύρεση της πυκνότητας στερεών και υγρών. 1 Σκοπός Στην άσκηση αυτή προσδιορίζεται πειραματικά η πυκνότητα του υλικού ενός στερεού σώματος. Το στερεό αυτό σώμα βυθίζεται ή επιπλέει σε υγρό γνωστής πυκνότητας

Διαβάστε περισσότερα

ΣΤΑΣΙΜΑ ΚΥΜΑΤΑ. + 1) με Ν=0,1,2,3..., όπου d το μήκος της χορδής. 4 χορδή με στερεωμένο το ένα άκρο ΗΛΕΚΤΡΟΜΑΓΝΗΤΙΚΑ ΚΥΜΑΤΑ. ,στο κενό (αέρα) co

ΣΤΑΣΙΜΑ ΚΥΜΑΤΑ. + 1) με Ν=0,1,2,3..., όπου d το μήκος της χορδής. 4 χορδή με στερεωμένο το ένα άκρο ΗΛΕΚΤΡΟΜΑΓΝΗΤΙΚΑ ΚΥΜΑΤΑ. ,στο κενό (αέρα) co ΣΤΑΣΙΜΑ ΚΥΜΑΤΑ Κύματα που t x t x σχηματίζουν το y1 = A. hm2 p ( - ), y2 = A. hm2 p ( + ) T l T l στάσιμο Εξίσωση στάσιμου c κύματος y = 2 A. sun 2 p. hm2p t l T Πλάτος ταλάντωσης c A = 2A sun 2p l Κοιλίες,

Διαβάστε περισσότερα

Κεφάλαιο 5. Θεμελιώδη προβλήματα της Τοπογραφίας

Κεφάλαιο 5. Θεμελιώδη προβλήματα της Τοπογραφίας Κεφάλαιο 5 Θεμελιώδη προβλήματα της Τοπογραφίας ΚΕΦΑΛΑΙΟ 5. 5 Θεμελιώδη προβλήματα της Τοπογραφίας. Στο Κεφάλαιο αυτό περιέχονται: 5.1 Γωνία διεύθυνσης. 5. Πρώτο θεμελιώδες πρόβλημα. 5.3 εύτερο θεμελιώδες

Διαβάστε περισσότερα

Από το επίπεδο στο χώρο (Στερεομετρία)

Από το επίπεδο στο χώρο (Στερεομετρία) Από το επίπεδο στο χώρο (Στερεομετρία) (Διεπιστημονική προσέγγιση αριθμητικού και οπτικού γραμματισμού) Εκπαιδευτικοί: Αθανασοπούλου Ζαφειρία (οπτικός γραμματισμός) Σαρακινίδου Σοφία (αριθμητικός γραμματισμός)

Διαβάστε περισσότερα

ΜΕΣΑΙΟΥ ΜΕΓΕΘΟΥΣ ΜΕ 4 ΧΟΡΔΕΣ. ΟΤΑΝ ΜΕ ΠΡΩΤΟΕΦΙΑΞΑΝ ΕΙΧΑ 2 ΜΕΓΕΘΗ, ΑΛΛΑ ΠΕΡΙΠΟΥ ΤΟ 1800 ΤΟ ΜΕΓΕΘΟΣ ΜΟΥ ΣΤΑΘΕΡΟΠΟΙΗΘΗΚΕ.

ΜΕΣΑΙΟΥ ΜΕΓΕΘΟΥΣ ΜΕ 4 ΧΟΡΔΕΣ. ΟΤΑΝ ΜΕ ΠΡΩΤΟΕΦΙΑΞΑΝ ΕΙΧΑ 2 ΜΕΓΕΘΗ, ΑΛΛΑ ΠΕΡΙΠΟΥ ΤΟ 1800 ΤΟ ΜΕΓΕΘΟΣ ΜΟΥ ΣΤΑΘΕΡΟΠΟΙΗΘΗΚΕ. Εικόνα 1 ΒΙΟΛΙ ΕΙΜΑΙ ΕΝΑ ΕΓΧΟΡΔΟ ΜΕ 4 ΧΟΡΔΕΣ. ΤΑ ΚΛΕΙΔΙΑ ΣΤΟ «ΚΕΦΑΛΙ» ΜΟΥ ΤΑ Ι ΓΙΑ ΝΑ ΚΟΥΡΔΙΖΟΥΝ ΤΙΣ ΧΟΡΔΕΣ ΜΟΥ. ΠΑΡΑΓΩ ΗΧΟ ΟΤΑΝ ΟΙ ΧΟΡΔΕΣ ΜΟΥ ΠΙΕΖΟΝΤΑΙ ΚΑΙ ΟΤΑΝ ΤΟ ΔΟΞΑΡΙ ΤΙΣ ΧΑΪΔΕΥΕΙ. ΕΦΕΥΡΕΘΗΚΑ ΓΥΡΩ

Διαβάστε περισσότερα

Μαθηματικά Θετικής Τεχνολογικής Κατεύθυνσης Β Λυκείου

Μαθηματικά Θετικής Τεχνολογικής Κατεύθυνσης Β Λυκείου Μαθηματικά Θετικής Τεχνολογικής Κατεύθυνσης Β Λυκείου Κεφάλαιο ο : Κωνικές Τομές Επιμέλεια : Παλαιολόγου Παύλος Μαθηματικός ΚΕΦΑΛΑΙΟ Ο : ΚΩΝΙΚΕΣ ΤΟΜΕΣ. Ο ΚΥΚΛΟΣ ΣΤΟΙΧΕΙΑ ΘΕΩΡΙΑΣ Ένας κύκλος ορίζεται αν

Διαβάστε περισσότερα

ENOTHTA 1: ΚΡΟΥΣΕΙΣ ΣΗΜΕΙΩΣΕΙΣ

ENOTHTA 1: ΚΡΟΥΣΕΙΣ ΣΗΜΕΙΩΣΕΙΣ ΚΕΦΑΛΑΙΟ 5 Ο : ΚΡΟΥΣΕΙΣ ΦΑΙΝΟΜΕΝΟ DOPPLER ENOTHT 1: ΚΡΟΥΣΕΙΣ ΣΗΜΕΙΩΣΕΙΣ Κρούση: Κρούση ονομάζουμε το φαινόμενο κατά το οποίο δύο ή περισσότερα σώματα έρχονται σε επαφή για πολύ μικρό χρονικό διάστημα κατά

Διαβάστε περισσότερα

ΜΕΤΑΒΛΗΤΟΙ ΚΑΙ ΣΤΑΘΕΡΟΙ ΣΥΝΔΕΣΜΟΙ ΚΟΜΒΟΙ ΓΙΑ ΤΗ ΔΙΑΣΥΝΔΕΣΗ ΣΩΛΗΝΩΝ, ΡΑΒΔΩΝ, ΔΟΚΩΝ ΓΙΑ ΚΑΤΑΣΚΕΥΗ ΧΩΡΟΔΙΚΤΥΩΜΑΤΩΝ

ΜΕΤΑΒΛΗΤΟΙ ΚΑΙ ΣΤΑΘΕΡΟΙ ΣΥΝΔΕΣΜΟΙ ΚΟΜΒΟΙ ΓΙΑ ΤΗ ΔΙΑΣΥΝΔΕΣΗ ΣΩΛΗΝΩΝ, ΡΑΒΔΩΝ, ΔΟΚΩΝ ΓΙΑ ΚΑΤΑΣΚΕΥΗ ΧΩΡΟΔΙΚΤΥΩΜΑΤΩΝ ΙΟΥΛΙΟΣ-ΑΥΓΟΥΣΤΟΣ 2006 ΤΕΧΝΙΚΑ ΧΡΟΝΙΚΑ 1 ΜΕΤΑΒΛΗΤΟΙ ΚΑΙ ΣΤΑΘΕΡΟΙ ΣΥΝΔΕΣΜΟΙ ΚΟΜΒΟΙ ΓΙΑ ΤΗ ΔΙΑΣΥΝΔΕΣΗ ΣΩΛΗΝΩΝ, ΡΑΒΔΩΝ, ΔΟΚΩΝ ΓΙΑ ΚΑΤΑΣΚΕΥΗ ΧΩΡΟΔΙΚΤΥΩΜΑΤΩΝ Αριθμός Κατάθεσης Διπλώματος Ευρεσιτεχνίας Ο.Β.Ι.

Διαβάστε περισσότερα

ΑΣΤΡΙΚΑ ΣΜΗΝΗ Τα ρολόγια του σύμπαντος. Δρ Μάνος Δανέζης Επίκουρος Καθηγητής Αστροφυσικής Πανεπιστήμιο Αθηνών Τμήμα Φυσικής

ΑΣΤΡΙΚΑ ΣΜΗΝΗ Τα ρολόγια του σύμπαντος. Δρ Μάνος Δανέζης Επίκουρος Καθηγητής Αστροφυσικής Πανεπιστήμιο Αθηνών Τμήμα Φυσικής ΑΣΤΡΙΚΑ ΣΜΗΝΗ Τα ρολόγια του σύμπαντος Δρ Μάνος Δανέζης Επίκουρος Καθηγητής Αστροφυσικής Πανεπιστήμιο Αθηνών Τμήμα Φυσικής Αστρικό σμήνος είναι 1 ομάδα από άστρα που Καταλαμβάνουν σχετικά μικρό χώρο στο

Διαβάστε περισσότερα

Σωματίδιο μάζας m κινείται στο οριζόντιο επίπεδο xy σε κυκλική τροχιά με σταθερή γωνιακή ταχύτητα ω. Τι συμπεραίνετε για τη στροφορμή του;

Σωματίδιο μάζας m κινείται στο οριζόντιο επίπεδο xy σε κυκλική τροχιά με σταθερή γωνιακή ταχύτητα ω. Τι συμπεραίνετε για τη στροφορμή του; Άσκηση Σωματίδιο μάζας m κινείται στο οριζόντιο επίπεδο xy σε κυκλική τροχιά με σταθερή γωνιακή ταχύτητα ω. Τι συμπεραίνετε για τη στροφορμή του; Απάντηση Έστω R n η ακτίνα του κύκλου. Αφού η κίνηση είναι

Διαβάστε περισσότερα

ΕΥΘΥΓΡΑΜΜΗ ΚΙΝΗΣΗ ΦΥΣΙΚΗ Α ΛΥΚΕΙΟΥ ΦΡΟΝΤΙΣΤΗΡΙΟ ΕΠΙΛΟΓΗ

ΕΥΘΥΓΡΑΜΜΗ ΚΙΝΗΣΗ ΦΥΣΙΚΗ Α ΛΥΚΕΙΟΥ ΦΡΟΝΤΙΣΤΗΡΙΟ ΕΠΙΛΟΓΗ ΕΥΘΥΓΡΑΜΜΗ ΚΙΝΗΣΗ ΕΡΩΤΗΣΕΙΣ ΘΕΩΡΙΑΣ 1. Τι ονομάζουμε κίνηση ενός κινητού; 2. Τι ονομάζουμε τροχιά ενός κινητού; 3. Τι ονομάζουμε υλικό σημείο; 4. Ποια μεγέθη ονομάζονται μονόμετρα και ποια διανυσματικά;

Διαβάστε περισσότερα

ΤΕΧΝΙΚΗ ΠΕΡΙΓΡΑΦΗ 26.15 ΣΥΝΘΕΤΟ ΠΕΡΙΣΤΡΟΦΙΚΗΣ ΤΣΟΥΛΗΘΡΑΣ

ΤΕΧΝΙΚΗ ΠΕΡΙΓΡΑΦΗ 26.15 ΣΥΝΘΕΤΟ ΠΕΡΙΣΤΡΟΦΙΚΗΣ ΤΣΟΥΛΗΘΡΑΣ ΤΕΧΝΙΚΗ ΠΕΡΙΓΡΑΦΗ 26.15 ΣΥΝΘΕΤΟ ΠΕΡΙΣΤΡΟΦΙΚΗΣ ΤΣΟΥΛΗΘΡΑΣ Ενδεικτικές διαστάσεις οργάνου Απαιτήσεις ασφαλείας Πλάτος 6900mm Απαιτούμενος χώρος 10150Χ10500mm Μήκος 8000mm Μέγιστο Ύψος Πτώσης 1550 mm Ύψος

Διαβάστε περισσότερα

ΒΑΣΙΚΕΣ ΑΡΧΕΣ ΤΗΣ ΟΠΤΙΚΗΣ

ΒΑΣΙΚΕΣ ΑΡΧΕΣ ΤΗΣ ΟΠΤΙΚΗΣ ΒΑΣΙΚΕΣ ΑΡΧΕΣ ΤΗΣ ΟΠΤΙΚΗΣ Μάθημα προς τους ειδικευόμενους γιατρούς στην Οφθαλμολογία, Στο Κ.Οφ.Κ.Α. την 18/11/2003. Υπό: Δρος Κων. Ρούγγα, Οφθαλμιάτρου. 1. ΑΝΑΚΛΑΣΗ ΤΟΥ ΦΩΤΟΣ Όταν μια φωτεινή ακτίνα ή

Διαβάστε περισσότερα

ΘΕΜΑΤΑ ΕΞΕΤΑΣΕΩΝ ΦΥΣΙΚΗΣ ΙΙ

ΘΕΜΑΤΑ ΕΞΕΤΑΣΕΩΝ ΦΥΣΙΚΗΣ ΙΙ ΘΕΜΑΤΑ ΕΞΕΤΑΣΕΩΝ ΦΥΣΙΚΗΣ ΙΙ ΘΕΜΑ 1 ο (βαθµοί 2) Σώµα µε µάζα m=5,00 kg είναι προσαρµοσµένο στο ελεύθερο άκρο ενός κατακόρυφου ελατηρίου και ταλαντώνεται εκτελώντας πέντε (5) πλήρης ταλαντώσεις σε χρονικό

Διαβάστε περισσότερα