Γεωµετρία Α Γυµνασίου. Ορισµοί Ιδιότητες Εξηγήσεις
|
|
- Ζώνα Βασιλικός
- 9 χρόνια πριν
- Προβολές:
Transcript
1 Γεωµετρία Α Γυµνασίου Ορισµοί Ιδιότητες Εξηγήσεις Ευθεία γραµµή Ορισµός δεν υπάρχει. Η απλούστερη από όλες τις γραµµές. Κατασκευάζεται µε τον χάρακα (κανόνα) πάνω σε επίπεδο. 1. ύο σηµεία ορίζουν την θέση µόνο µίας ευθείας γραµµής. 2. Μία ευθεία αν επεκταθεί και από τα δύο µέρη παραµένει ευθεία γραµµή. 3. Πάνω της µπορούµε να σηµαδέψουµε άπειρα σηµεία. 4. Σαν σχήµα είναι απέραντο δηλαδή δεν έχει αρχή ούτε τέλος. 5. Από ένα σηµείο του επιπέδου περνάνε άπειρες ευθείες. 6. Ονοµάζεται µε ένα (πεζό) γράµµα στην άκρη του ορατού µέρους της. Ευθύγραµµο τµήµα Σε µία ευθεία αν πάρω δύο σηµεία ορίζω ένα κοµµάτι (τµήµα) από αυτήν. 1. Το ευθύγραµµο τµήµα ονοµάζεται µε δύο κεφαλαία γράµµατα. Τα σηµεία Αρχής Τέλους. 2. Ανάµεσα στα άκρα Α και Β του τµήµατος µπορώ να σηµαδέψω άπειρα σηµεία. 3. Οµοίως εξωτερικά και στην προέκταση προς το µέρος του Α ή του Β. 4. Ένα µόνο σηµείο µεταξύ Α και Β µπορεί να απέχει ίσα από τα άκρα. Το σηµείο αυτό ονοµάζεται µέσο του ευθυγράµµου τµήµατος και ισχύει αν Μ µέσο του ΑΒ τότε ΑΜ=ΜΒ. Ηµιευθεία Αν σηµαδέψω ένα σηµείο πάνω σε µία ευθεία ορίζω δύο µέρη της που το καθένα λέγεται ηµιευθεία. 1. Η ηµιευθεία έχει αρχή µα δεν έχει τέλος. 2. Ονοµάζουµε την αρχή µε κεφαλαίο γράµµα και την κατεύθυνση µε πεζό. Π.χ. Αχ 3. Ένα σηµείο µπορεί να γίνει αρχή για άπειρες ηµιευθείες. 4. Αντικείµενες είναι δύο ηµιευθείες µε κοινή αρχή, στην ίδια πάνω ευθεία και αντίθετα κατευθυνόµενες. Ευθείες στο επίπεδο: Αν χαράξω δύο ευθείες πάνω σε επίπεδο τότε ή θα τέµνονται ή δεν θα τέµνονται δηλαδή θα είναι παράλληλες. 1. Στην περίπτωση τεµνοµένων ευθειών αν σχηµατίζουν 4 ίσες γωνίες (ορθές) γύρω από το ση- µείο τοµής τις λέµε κάθετες (Το εξακριβώνουµε µε το ορθογώνιο τρίγωνο γνώµονας). 2. Από σηµείο εκτός ευθείας µία παράλληλη στην ευθεία µπορώ να χαράξω. 3. Από σηµείο εκτός ευθείας µία κάθετη στην ευθεία µπορώ να χαράξω. Το κάθετο ευθύγραµµο τµήµα από το σηµείο στη ευθεία λέγεται απόσταση του σηµείου από την ευθεία. 4. Από σηµείο πάνω σε ευθεία µία κάθετη στην ευθεία µπορώ να χαράξω. Μεσοκάθετος ευθυγράµµου τµήµατος: είναι µία ευθεία γραµµή κάθετη στο µέσο του ευθυγράµ- µου τµήµατος Ιδιότητα µεσοκαθέτου: Κάθε σηµείο της µεσοκαθέτου απέχει ίσα από τα άκρα του ευθυγράµ- µου τµήµατος. Αντίστροφα: Αν ένα σηµείο εκτός ευθυγράµµου τµήµατος απέχει το ίδιο από τα άκρα τότε θα βρίσκεται πάνω στη µεσοκάθετο ευθεία του ευθ. τµήµατος. Ονοµασία γωνίας: ύο ηµιευθείες µε κοινή αρχή ορίζουν ένα επίπεδο που το χωρίζουν σε δύο µέρη. Αυτά τα επίπεδα µέρη είναι οι γωνίες. Ορθή µία από τις γωνίες που σχηµατίζουν δύο κάθετες ευθείες. ( = µε 90 µοίρες) Αµβλεία η µεγαλύτερη της ορθής. ( > 90 0 ) Οξεία η µικρότερη της ορθής. ( < 90 0 ) Ευθεία οι πλευρές είναι αντικείµενες ηµιευθείες. (= ) 1 ο ΓΥΜΝΑΣΙΟ ΝΑΥΠΛΙΟΥ 1
2 ιχοτόµος είναι µία ηµιευθεία (µε αρχή την κορυφή της γωνίας) που χωρίζει την γωνία σε δύο ίσες γωνίες Τρίγωνο Ονοµασία τριγώνου από τις πλευρές: 1. Αν και οι τρεις πλευρές του είναι άνισες τότε το τρίγωνο λέγεται σκαληνό. 2. Αν µόνο οι δύο πλευρές είναι ίσες λέγεται ισοσκελές. 3. Αν και οι τρεις πλευρές του είναι ίσες λέγεται ισόπλευρο. Ονοµασία τριγώνου από τις γωνίες: 1. Αν έχει µία µόνο γωνία ορθή ονοµάζεται ορθογώνιο. 2. Αν έχει µία µόνο γωνία αµβλεία ονοµάζεται αµβλυγώνιο. 3. Αν και οι τρεις γωνίες είναι οξείες ονοµάζεται οξυγώνιο. Το ορθογώνιο που έχει τις πλευρές της ορθής γωνίας του ίσες λέγεται ισοσκελές ορθογώνιο. Το αµβλυγώνιο που έχει τις πλευρές της αµβλείας γωνίας του ίσες λέγεται ισοσκελές αµβλυγώνιο. Κύρια στοιχεία του τριγώνου είναι οι τρεις γωνίες του και οι τρεις πλευρές του. ευτερεύοντα στοιχεία του τριγώνου είναι τα: Τρία ύψη του, οι τρεις διάµεσοι και οι τρεις διχοτόµοι των γωνιών του. Ύψος τριγώνου είναι το κάθετο ευθύγραµµο τµήµα από την κορυφή στην απέναντι πλευρά ή απόσταση της κορυφής από την απέναντι πλευρά. ιάµεσος είναι το ευθύγραµµο τµήµα από την κορυφή στο µέσο της απέναντι πλευράς ιχοτόµος γωνία τριγώνου είναι το ευθύγραµµο τµήµα που χωρίζει την γωνία του τριγώνου σε δύο ίσες γωνίες. ΠΡΟΣΟΧΗ! Πρέπει να γνωρίζουµε ότι η απλή γωνία έχει για πλευρές ηµιευθείες και διχοτόµο πάλι ηµιευθεία ενώ η γωνία του τριγώνου έχει πλευρές και διχοτόµο ευθύγραµµα τµήµατα. Το ύψους διχοτόµος διάµεσος της κορυφής των ίσων πλευρών ισοσκελούς τριγώνου είναι το ίδιο ευθύγραµµο τµήµα. Όµοια και στο ισόπλευρο. Τα ύψη των οξειών γωνιών ορθογωνίου τριγώνου συµπίπτουν µε τις κάθετες πλευρές. Ενώ το ύψη των οξειών γωνιών αµβλυγωνίου τριγώνου βρίσκονται εκτός του τριγώνου. Εφεξής λέγονται δύο γωνίες που έχουν: 1. Κοινή κορυφή 2. Κοινή την µία πλευρά τους 3. εν έχουν κανένα άλλο κοινό σηµείο Παρατήρηση: ιαδοχικές λέγονται τρεις και περισσότερες γωνίες όταν είναι ανά δύο εφεξής. Για να προσθέσω (ενώσω σχηµατικά) δύο γωνίες πρέπει να τις κάνω εφεξής ενώ για τρεις και περισσότερες διαδοχικές. Παραπληρωµατικές λέγονται δύο γωνίες µε άθροισµα Συµπληρωµατικές λέγονται δύο γωνίες µε άθροισµα 90 0 Κατακορυφήν λέγονται δύο γωνίες που οι πλευρές της µίας είναι αντικείµενες ηµιευθείες των πλευρών της άλλης.. Οι κατακορυφήν γωνίες είναι ίσες. 1 ο ΓΥΜΝΑΣΙΟ ΝΑΥΠΛΙΟΥ 2
3 Αν δύο ευθείες παράλληλες τέµνονται από τρίτη ευθεία οι σχηµατιζόµενες γωνίες εντός των παραλλήλων και εναλλάξ της τέµνουσας είναι ίσες. Αντίστροφα: Αν δύο ευθείες που τέµνονται από τρίτη σχηµατίζουν εντός (των δύο πρώτων) ε- ναλλάξ (της τέµνουσας τρίτης) γωνίες που είναι ίσες τότε οι δύο πρώτες ευθείες είναι παράλληλες. Σε τρίγωνο και οι τρεις γωνίες µαζί δίνουν άθροισµα 180 µοιρών δηλαδή Αν ΑΒΓ τρίγωνο τότε Α + Β + Γ = Παρατήρηση: Η ισότητα αυτή µας δίνει να καταλάβουµε γιατί δεν µπορώ να έχω τρίγωνο µε δύο ορθές ή δύο αµβλείες γωνίες. Οι γωνίες του ισοπλεύρου τριγώνου είναι όλες ίσες µε 60 µοίρες. Οι οξείες γωνίες του ορθογωνίου και ισοσκελούς είναι ίσες µε 45 µοίρες η καθεµία. ΚΥΚΛΟΣ Ορισµός: Κύκλος είναι το επίπεδο γεωµετρικό σχήµα (σύνολο σηµείων) του οποίου τα σηµεία ι- σαπέχουν από ένα χαρακτηριστικό σηµείο το κέντρο. Η απόσταση αυτή (του κάθε σηµείου από το κέντρο) ονοµάζεται ακτίνα. 1. Χορδή: είναι ένα ευθύγραµµο τµήµα µε τα άκρα πάνω στον κύκλο. 2. Τόξο: είναι ένα κοµµάτι από τον κύκλο. 3. ιάµετρος: είναι µία χορδή που περνά από το κέντρο του κύκλου. 4. Κυκλικός δίσκος: Είναι ο κύκλος και το εσωτερικό επίπεδο µέρος. Παρατήρηση: ύο σηµεία του κύκλου ορίζουν δύο τόξα και µία χορδή. Αν τα τόξα είναι ίσα η χορδή τότε έγινε διάµετρος άρα η διάµετρος χωρίζει τον κύκλο σε δύο ίσα µέρη 5. Θέση µίας ευθείας και κύκλου. Α. Η ευθεία τέµνει τον κύκλο άρα η απόσταση του κέντρου από την ευθεία είναι µικρότερη της ακτίνας. Β. Η ευθεία εφάπτεται του κύκλου άρα η απόσταση του κέντρου από την ευθεία είναι ίση µε την ακτίνα. Γ. Κανένα από τα δύο παραπάνω άρα η απόσταση του κέντρου από την ευθεία είναι µεγαλύτερη της ακτίνας. 1 ο ΓΥΜΝΑΣΙΟ ΝΑΥΠΛΙΟΥ 3
4 ΑΣΚΉΣΕΙΣ ΣΤΟΝ ΟΓΚΟ 1. Να βρεθεί ο όγκος ορθογωνίου παραλληλεπιπέδου µε διαστάσεις µήκος 6,4 m πλάτος 25 dm και ύψος 3850 mm. (απ. 61,6 m 3 ) 2. Να βρεθεί ο όγκος κύβου µε ακµή 28dm σε α] m 3, β] dm 3, γ] cm 3 (απ. 21,952m 3, dm 3, cm 3 ) 3. Το εµβαδόν µίας έδρας κύβου είναι 64 τετραγωνικά µέτρα. Να βρεθεί ο όγκος του. (V=512 m 3 ) 4. Σε ένα ορθογώνιο παραλληλεπίπεδο το µήκος είναι 70 dm, το πλάτος 5 m. Αν ο όγκος είναι 217 m 3, να βρεθεί το ύψος του. (ύψος=6,2 µέτρα) 5. Ένα δοχείο λαδιού σχήµατος ορθογωνίου παραλληλεπιπέδου και µε διαστάσεις 2,9µέτρα µήκος, 1,5 µέτρα πλάτος και 0,72 µέτρα ύψος είναι γεµάτο. Πόσα λίτρα λάδι έχει και πόσο κοστίζει το λάδι αν το ένα λίτρο κοστίζει 1725 δραχµές; (απ l και δραχµές) 6. Ένα βάθρο σε σχήµα ορθογωνίου παραλληλεπιπέδου και µε διαστάσεις µήκος 1,8 m, πλάτος 1,2 m και ύψος 8,5 dm, θα κτιστεί µε τσιµεντόλιθους διαστάσεων 37cm, 15 cm, 17 cm. Πόσους τσιµεντόλιθους θα χρειαστούµε; (απ. 195 τσιµεν/θοι) 7. Οι νόµοι προβλέπουν χώρο για µία σχολική αίθουσα 8 m 3 για κάθε άτοµο. Με µέγιστο αριθµό 34 µαθητών να βρεθεί το κατάλληλο µήκος για την αίθουσα αν το πλάτος της είναι 6,5 m και το ύψος της 3,5 m. (απ. 11,956 m) 8. Μία γυάλα για ψάρια σχήµατος ορθογωνίου παραλληλεπιπέδου και µε διαστάσεις µήκος 80 cm, πλάτος 45cm και ύψος νερού 60 cm. α] Να βρεθεί όγκος της. β] Αν προσθέσουµε ακόµη 120 λίτρα νερό κατά πόσο θα υπερυψωθεί; (απ. 216dm 3, 33,33 cm περίπου) 9. Ένας συνεταιρισµός κρασιού έχει στις δεξαµενές του λίτρα κρασί. Για να το µεταφέρει σε άλλο χώρο µίσθωσε ένα ειδικό όχηµα µεταφοράς µε χωρητικότητα 15,4 κυβικά µέτρα. Αν το κάθε δροµολόγιο χρεώνεται 7000 δραχµές, πόσα θα τους κοστίσει η µεταφορά συνολικά; (απ δραχµές ) 10. ίνεται ένα ορθογώνιο παραλληλεπίπεδο µε διαστάσεις: µήκος 10 cm, πλάτος 5 cm και ύψος 13,2 cm. Αν αυξήσουµε τις διαστάσεις της βάσης κατά 0,1 dm πόσο πρέπει να ελαττώσουµε το ύψος ώστε ο όγκος να παραµείνει σταθερός; (απ. 3,2 cm ) 11. Ένας κύβος έχει ακµή α. να βρείτε πόσο αυξάνετε ο όγκος του αν: α] διπλασιάσουµε την ακµή. β] τριπλασιάσουµε την ακµή. (απ. 8 πάσιος, 27 πλάσιος) Ασκήσεις στο εµβαδόν. 1. Να βρεθεί η περίµετρος και το εµβαδόν ορθογωνίου παραλληλογράµµου µε µήκος 0,68m και πλάτος 50cm. (απ. Π=2,36 m, Ε=0,34 m 2 ) 1 ο ΓΥΜΝΑΣΙΟ ΝΑΥΠΛΙΟΥ 4
5 2. Η περίµετρος ενός ορθογωνίου παραλληλογράµµου είναι 1,28 km και το µήκος του 360m. Να βρεθούν, το πλάτος του και το εµβαδόν του σχήµατος. (απ. Πλάτος=280m, E=100800m 2 ) 3. Ένα ορθογώνιο παραλληλόγραµµο έχει µήκος 7,8 m και εµβαδόν 50,7 m 2. Να βρεθεί το πλάτος και η περίµετρος του ορθογωνίου. (απ. Πλάτος 6,5m, Περίµετρος=28,6m) 4. Να βρεθεί το εµβαδόν ενός τετραγώνου που έχει περίµετρο 36,8m. (απ. Ε=84,64m 2 ) 5. Ένα ορθογώνιο έχει εµβαδόν όσο και ένα τετράγωνο µε πλευρά 20 µέτρα. Αν το µήκος του ορθογωνίου είναι 25 µέτρα, να βρεθεί το πλάτος του ορθογωνίου. (απ. 16 µέτρα) 6. Ένα χαλί µε µήκος 65dm και πλάτος 3,4 m πουλήθηκε αντί δραχµές το µέτρο. Πόσο κόστισε η αγορά του; ( απ δραχµές) 7. Μία σχολική αίθουσα έχει σχήµα ορθογωνίου παραλληλογράµµου µε διαστάσεις µήκος 6 µέτρα και πλάτος 3,6 µέτρα. Θέλουµε να στρώσουµε την αίθουσα µε τετράγωνα πλακάκια πλευράς 40 cm. Πόσα πλακάκια θα χρειαστούµε και πόσα χρήµατα θα πληρώσουµε αν το ένα πλακάκι έχει 856 δραχµές; (απ. 135 πλακάκια, δραχµές) 8. Ένα αγρόκτηµα σε σχήµα ορθογωνίου έχει µήκος 48,5 µέτρα και πουλήθηκε χιλιάδες το στρέµµα κόστισε συνολικά δραχµές. Να βρεθεί το εµβαδόν του αγροκτήµατος και το πλάτος του. (απ. Ε=5820 m 2, µήκος=120 m) 9. Αγρόκτηµα σχήµατος ορθογωνίου µε µήκος 120 m και εµβαδόν 6240 m 2.Στο ένα άκρο του χωραφιού χωρίζουµε ένα τετράγωνο πλευράς ίσης µε το πλάτος του ορθογωνίου. Πόσο είναι το εµβαδόν του χωραφιού που αποµένει; (απ m 2 ) 10. Σε οικόπεδο σχήµατος ορθογωνίου το µήκος είναι τετραπλάσιο από το πλάτος και η περίµετρος του είναι 80 µέτρα. Να βρεθεί η αξία του οικοπέδου αν το ένα µέτρο κοστίζει δραχ- µές. (απ. Ε=256m 2, drx) 11. Σε µία οικοδοµική περιοχή σχήµατος τετραγώνου µε πλευρά 70 m πρόκειται να κατασκευαστεί πεζοδρόµιο πλάτους 150 cm. Πόσες πλάκες θα χρειαστεί ο εργολάβος για το πεζοδρόµια αν ξέρουµε ότι η κάθε πλάκα είναι σχήµατος ορθογωνίου µε διαστάσεις 50 cm και 30 cm. (απ πλάκες) 12. Να υπολογίσετε σε τετραγωνικά µέτρα το εµβαδόν ενός ορθογωνίου, στο οποίο το µήκος του είναι τριπλάσιο από το πλάτος του και η περίµετρός του είναι 88 dam. (απ. E = m 2 ) 1 ο ΓΥΜΝΑΣΙΟ ΝΑΥΠΛΙΟΥ 5
ΕΡΩΤΗΣΕΙΣ ΓΕΩΜΕΤΡΙΑΣ Α ΓΥΜΝΑΣΙΟΥ
ΚΕΦΑΛΑΙΟ 1 ΕΡΩΤΗΣΕΙΣ ΓΕΩΜΕΤΡΙΑΣ Α ΓΥΜΝΑΣΙΟΥ Τι είναι ένα ευθύγραμμο τμήμα ΑΒ; Πώς ονομάζονται τα σημεία Α και Β; 1 ος ορισμός : Είναι η «ίσια» γραμμή που ενώνει τα δύο σημεία Α και Β. 2 ος ορισμός : Είναι
Διαβάστε περισσότεραΘΕΩΡΙΑ ΣΤΗ ΓΕΩΜΕΤΡΙΑ ΓΙΑ ΤΗΝ Α ΓΥΜΝΑΣΙΟΥ Α. ΓΩΝΙΕΣ - ΚΥΚΛΟΣ
ΘΕΩΡΙΑ ΣΤΗ ΓΕΩΜΕΤΡΙΑ ΓΙΑ ΤΗΝ Α ΓΥΜΝΑΣΙΟΥ Α. ΓΩΝΙΕΣ - ΚΥΚΛΟΣ 1. Απόσταση δύο σηµείων Α και Β είναι το µήκος του ευθύγραµµου τµήµατος που τα ενώνει. 2. Γωνία είναι το µέρος του επιπέδου που βρίσκεται µεταξύ
Διαβάστε περισσότεραΕΡΩΤΗΣΕΙΣ ΘΕΩΡΙΑΣ Α ΓΥΜΝΑΣΙΟΥ ΣΤΗΝ ΓΕΩΜΕΤΡΙΑ
ΕΡΩΤΗΣΕΙΣ ΘΕΩΡΙΑΣ Α ΓΥΜΝΑΣΙΟΥ ΣΤΗΝ ΓΕΩΜΕΤΡΙΑ 1)Τι ονομάζεται διχοτόμος μιας γωνίας ; Διχοτόμος γωνίας ονομάζεται η ημιευθεία που έχει αρχή την κορυφή της γωνίας και τη χωρίζει σε δύο ίσες γωνίες. 2)Να
Διαβάστε περισσότερα2 Β Βάσεις παραλληλογράµµου Βαρύκεντρο Γ Γεωµετρική κατασκευή Γεωµετρικός τόπος (ς) Γωνία Οι απέναντι πλευρές του. Κέντρο βάρους τριγώνου, δηλ. το σηµ
1 ΛΕΞΙΚΟ ΓΕΩΜΕΤΡΙΚΩΝ ΟΡΩΝ Α Ακτίνιο Ακτίνα κύκλου Ακτίνα σφαίρας Άκρα ευθύγραµµου τµήµατος Αµβλεία γωνία Αµβλυγώνιο Ανάλογα ευθύγραµµα τµήµατα Αντιδιαµετρικό σηµείο Αντικείµενες ηµιευθείες Άξονας συµµετρίας
Διαβάστε περισσότεραΒ.1.8. Παραπληρωματικές και Συμπληρωματικές γωνίες Κατά κορυφήν γωνίες
Β.1.6. Είδη γωνιών Κάθετες ευθείες 1. Ορθή γωνία λέγεται η γωνία της οποίας το μέτρο είναι ίσο με 90 ο. 2. Οξεία γωνία λέγεται κάθε γωνία με μέτρο μικρότερο των 90 ο. 3. Αμβλεία γωνία λέγεται κάθε γωνία
Διαβάστε περισσότεραΣωστό -λάθος. 2) Δύο τρίγωνα που έχουν τις γωνίες τους ίσες μία προς μία είναι ίσα
Σωστό -λάθος Α. Για καθεμιά από τις παρακάτω προτάσεις να γράψετε στο τετράδιό σας τον αριθμό της και, ακριβώς δίπλα, την ένδειξη (Σ), αν η πρόταση είναι σωστή, ή (Λ), αν αυτή είναι λανθασμένη. 1)Δύο ισόπλευρα
Διαβάστε περισσότεραΓΕΩΜΕΤΡΙΑ ΤΗΣ Α ΛΥΚΕΙΟΥ. ΚΕΦΑΚΑΙΟ 3 ο -ΤΡΙΓΩΝΑ
ΓΕΩΜΕΤΡΙΑ ΤΗΣ Α ΛΥΚΕΙΟΥ ΟΙ ΕΡΩΤΗΣΕΙΣ ΚΛΕΙΣΤΟΥ ΤΥΠΟΥ ΑΠΟΤΕΛΟΥΝ ΜΕΡΟΣ ΤΟΥ ΘΕΜΑΤΟΣ Α ΤΩΝ ΕΞΕΤΑΣΕΩΝ (ΘΕΜΑ ΘΕΩΡΙΑΣ) Α. ΕΡΩΤΗΣΕΙΣ ΣΩΣΤΟΥ - ΛΑΘΟΥΣ ΚΕΦΑΚΑΙΟ 3 ο -ΤΡΙΓΩΝΑ 1. Ένα τρίγωνο είναι οξυγώνιο όταν έχει
Διαβάστε περισσότεραΓεωμετρία. 63. Σε περίπτωση που η αρχή, το σημείο Ο, βρίσκεται πάνω σε μια ευθεία χχ τότε η
Γεωμετρία Κεφάλαιο 1: Βασικές γεωμετρικές έννοιες Β.1.1 61.Η ευθεία είναι βασική έννοια της γεωμετρίας που την αντιλαμβανόμαστε ως την γραμμή που αφήνει ο κανόνας (χάρακας).συμβολίζεται με μικρά γράμματα
Διαβάστε περισσότεραΚΕΦΑΛΑΙΟ 1 ο ΠΡΩΤΑΡΧΙΚΕΣ ΓΕΩΜΕΤΡΙΚΕΣ ΕΝΝΟΙΕΣ Τα αξιώματα είναι προτάσεις που δεχόμαστε ως αληθείς, χωρίς απόδειξη: Από δύο σημεία διέρχεται μοναδική ευθεία. Για κάθε ευθεία υπάρχει τουλάχιστον ένα σημείο
Διαβάστε περισσότεραΘΕΜΑΤΑ & ΕΡΩΤΗΣΕΙΣ ΘΕΩΡΙΑΣ ΜΑΘΗΜΑΤΙΚΩΝ Α ΓΥΜΝΑΣΙΟΥ
ΘΕΜΤ & ΕΡΩΤΗΣΕΙΣ ΘΕΩΡΙΣ ΜΘΗΜΤΙΚΩΝ ΥΜΝΣΙΟΥ ΘΕΜ 1. α) Να συµπληρώσετε τις παρακάτω ισότητες. α+0=.. α 1=. α-α=.. α:α=. 0 α=. 0:α=. Το α είναι ένας αριθµός διαφορετικός του 0. β) Στις παρακάτω προτάσεις να
Διαβάστε περισσότεραΜαθηματικά Α' Γυμ. - Ερωτήσεις Θεωρίας 1 ΕΡΩΤΗΣΕΙΣ. (1) Ποιοι είναι οι φυσικοί αριθμοί; Γράψε τέσσερα παραδείγματα.
Μαθηματικά Α' Γυμ. - Ερωτήσεις Θεωρίας 1 ΕΡΩΤΗΣΕΙΣ (1) Ποιοι είναι οι φυσικοί αριθμοί; Γράψε τέσσερα παραδείγματα. (2) Ποιοι είναι οι άρτιοι και ποιοι οι περιττοί αριθμοί; Γράψε από τρία παραδείγματα.
Διαβάστε περισσότεραΠΩΣ ΕΙΧΝΩ ΟΤΙ ΥΟ ΕΥΘΕΙΕΣ ΕΙΝΑΙ ΠΑΡΑΛΛΗΛΕΣ 1. είχνω ότι τέµνονται από τρίτη ευθεία και σχηµατίζονται γωνίες
ΠΑΡΑΤΗΡΗΣΕΙΣ ΣΧΟΛΙΑ στη γεωµετρία της Α τάξης ΠΩΣ ΕΙΧΝΩ ΟΤΙ ΥΟ ΕΥΘΕΙΕΣ ΕΙΝΑΙ ΚΑΘΕΤΕΣ 1. είχνω ότι η γωνία τους είναι 90 ο 2. είχνω ότι είναι διχοτόµοι δύο εφεξής και παραπληρωµατικών γωνιών. 3. είχνω ότι
Διαβάστε περισσότεραΕΙΣΑΓΩΓΗ ΣΤΗΝ ΘΕΩΡΗΤΙΚΗ ΓΕΩΜΕΤΡΙΑ
ΓΕΩΜΕΤΡΙΑ Α ΛΥΚΕΙΟΥ ΘΕΩΡΙΑ ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΘΕΩΡΗΤΙΚΗ ΓΕΩΜΕΤΡΙΑ ΟΡΙΣΜΟΙ Ευθύγραμμο τμήμα είναι το κομμάτι της ευθείας που έχει αρχή και τέλος. Ημιευθεια Είναι το κομμάτι της ευθείας που έχει αρχή αλλά όχι
Διαβάστε περισσότεραΜαθηματικά Α Γυμνασίου. Επαναληπτικές ερωτήσεις θεωρίας
Μαθηματικά Α Γυμνασίου Επαναληπτικές ερωτήσεις θεωρίας Επαναληπτικές Ερωτήσεις Θεωρίας 1. Τι ονομάζεται Ελάχιστο Κοινό Πολλαπλάσιο (ΕΚΠ) δύο ή περισσότερων αριθμών; Ελάχιστο Κοινό Πολλαπλάσιο (ΕΚΠ) δύο
Διαβάστε περισσότεραΒασικές Γεωμετρικές έννοιες
Βασικές Γεωμετρικές έννοιες Σημείο Με την άκρη του μολυβιού μου ακουμπώντας την σε ένα κομμάτι χαρτί αφήνω ένα σημάδι το οποίο το λέω σημείο. Το σημείο το δίνω όνομα γράφοντας πάνω απ αυτό ένα κεφαλαίο
Διαβάστε περισσότεραΣυνοπτική Θεωρία Μαθηματικών Α Γυμνασίου
Web page: www.ma8eno.gr e-mail: vrentzou@ma8eno.gr Η αποτελεσματική μάθηση δεν θέλει κόπο αλλά τρόπο, δηλαδή ma8eno.gr Συνοπτική Θεωρία Μαθηματικών Α Γυμνασίου Αριθμητική - Άλγεβρα Γεωμετρία Άρτιος λέγεται
Διαβάστε περισσότερα3.1 ΣΤΟΙΧΕΙΑ ΤΡΙΓΩΝΟΥ ΕΙ Η ΤΡΙΓΩΝΩΝ
1 3.1 ΣΤΟΙΧΕΙ ΤΡΙΩΝΟΥ ΕΙΗ ΤΡΙΩΝΩΝ ΘΕΩΡΙ 1. Κύρια στοιχεία τριγώνου Τα κύρια στοιχεία ενός τριγώνου είναι οι πλευρές, οι γωνίες και οι κορυφές. Ονοµασία : Πλευρές είναι οι,, Κορυφές είναι τα σηµεία,, ωνίες
Διαβάστε περισσότεραΣωστό -λάθος. 3) Δύο ευθείες κάθετες προς μία τρίτη ευθεία είναι μεταξύ τους παράλληλες.
Σωστό -λάθος Α. Για καθεμιά από τις παρακάτω προτάσεις να γράψετε στο τετράδιό σας τον αριθμό της και, ακριβώς δίπλα, την ένδειξη (Σ), αν η πρόταση είναι σωστή, ή (Λ), αν αυτή είναι λανθασμένη. 1) Οι οξείες
Διαβάστε περισσότεραΜΑΘΗΜΑΤΙΚΑ Α ΓΥΜΝΑΣΙΟΥ ΓΕΩΜΕΤΡΙΑ ΑΝΔΡΕΣΑΚΗΣ ΔΗΜΗΤΡΗΣ
ΦΥΛΛΟ ΕΡΓΑΣΙΑΣ ΕΝΟΤΗΤΑ.1.1. Σημείο - Ευθύγραμμο τμήμα - Ευθεία - Ημιευθεία - Επίπεδο - Ημιεπίπεδο. ΟΝΟΜΑΤΕΠΩΝΥΜΟ ΗΜΕΡΟΜΗΝΙΑ / / 1. Σχεδιάστε το ευθύγραμμο τμήμα Α και το ευθύγραμμο τμήμα ΓΔ A B Γ Δ 2.
Διαβάστε περισσότερα1.1 ΙΣΟΤΗΤΑ ΤΡΙΓΩΝΩΝ. 1. Κύρια στοιχεία τριγώνου : Είναι οι πλευρές του και οι γωνίες του. 2. Είδη τριγώνων από την άποψη των γωνιών : A
1 1.1 ΙΣΟΤΗΤ ΤΡΙΩΝΩΝ ΘΕΩΡΙ 1. Κύρια στοιχεία τριγώνου : Είναι οι πλευρές του και οι γωνίες του 2. Είδη τριγώνων από την άποψη των γωνιών : A Οξυγώνιο τρίγωνο, όλες οι γωνίες οξείες B A µβλυγώνιο τρίγωνο,
Διαβάστε περισσότεραΓΕΩΜΕΤΡΙΑ Α ΓΥΜΝΑΣΙΟΥ
ΚΕΦΑΛΑΙΟ 1 Ο Βασικές Γεωμετρικές Έννοιες ΕΡΩΤΗΣΕΙΣ ΘΕΩΡΙΑΣ 1. Μια τεντωμένη κλωστή με άκρα δύο σημεία Α και Β μας δίνει μια εικόνα της έννοιας του.. Τα σημεία Α και Β λέγονται.. 2. Τι ονομάζεται ευθεία;..
Διαβάστε περισσότεραΕΡΩΤΗΣΕΙΣ ΘΕΩΡΙΑΣ ΜΑΘΗΜΑΤΙΚΑ Α ΓΥΜΝΑΣΙΟΥ
ΕΡΩΤΗΣΕΙΣ ΘΕΩΡΙΑΣ ΜΑΘΗΜΑΤΙΚΑ Α ΓΥΜΝΑΣΙΟΥ 1. Τι είναι η Ευκλείδια διαίρεση; Είναι η διαδικασία κατά την οποία όταν δοθούν δύο φυσικοί αριθμοί Δ και δ, τότε βρίσκουμε άλλους δύο φυσικούς αριθμούς π και υ,
Διαβάστε περισσότεραΛΥΣΕΙΣ ΙΑΓΩΝΙΣΜΑΤΟΣ ΓΕΩΜΕΤΡΙΑΣ Α ΛΥΚΕΙΟΥ 1 / 11 / 09 ΘΕΜΑ 1 ο
ΥΣΕΙΣ ΙΩΝΙΣΜΤΣ ΕΩΜΕΤΡΙΣ ΥΚΕΙΥ 1 / 11 / 09 ΘΕΜ 1 ο ) Χαρακτηρίστε ως σωστή (Σ) ή ως λάθος () καθεµία από τις επόµενες προτάσεις. ύο τόξα ενός κύκλου είναι ίσα, όταν οι αντίστοιχες χορδές τους είναι ίσες.
Διαβάστε περισσότεραΙωάννης Σ. Μιχέλης Μαθηματικός
1 Άλγεβρα 1 ο Κεφάλαιο Ερώτηση 1 : Ποιες είναι οι ιδιότητες της πρόσθεσης των φυσικών; Το άθροισμα ενός φυσικού αριθμού με το 0 ισούται με τον ίδιο αριθμό. α+0=α Αντιμεταθετική ιδιότητα. Με βάση την οποία
Διαβάστε περισσότερα3, ( 4), ( 3),( 2), 2017
ΕΡΩΤΗΣΕΙΣ ΘΕΜΑΤΑ ΘΕΩΡΙΑΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΤΗΣ Α ΓΥΜΝΑΣΙΟΥ ΑΛΓΕΒΡΑ 1 ο ΚΕΦΑΛΑΙΟ 1. α. Τι γνωρίζετε για την Ευκλείδεια διαίρεση; Πότε λέγεται τέλεια; β. Αν σε μια διαίρεση είναι Δ=δ, πόσο είναι το πηλίκο και
Διαβάστε περισσότεραΕΠΑΝΑΛΗΨΗ Α ΓΥΜΝΑΣΙΟΥ
ΕΠΑΝΑΛΗΨΗ Α ΓΥΜΝΑΣΙΟΥ ΘΕΩΡΙΑ ΑΛΓΕΒΡΑ ΚΕΦΑΛΑΙΟ Α.1. 1) Ποιοι φυσικοί αριθμοί λέγονται άρτιοι και ποιοι περιττοί; ( σ. 11 ) 2) Από τι καθορίζεται η αξία ενός ψηφίου σ έναν φυσικό αριθμό; ( σ. 11 ) 3) Τι
Διαβάστε περισσότεραΚεφάλαιο 1 ο. Βασικές γεωμετρικές έννοιες.
Μαθηματικά A Γυμνασίου Κεφάλαιο 1 ο. Βασικές γεωμετρικές έννοιες. 1. Τι λέμε σημείο; Η άκρη του μολυβιού μας, οι κορυφές ενός σχήματος, η μύτη μιας βελόνας, μας δίνουν την έννοια του σημείου. 2. Τι λέμε
Διαβάστε περισσότεραΘΕΩΡΙΑ Α ΓΥΜΝΑΣΙΟΥ. Η διαίρεση καλείται Ευκλείδεια και είναι τέλεια όταν το υπόλοιπο είναι μηδέν.
ΑΛΓΕΒΡΑ 1 ο ΚΕΦΑΛΑΙΟ ΘΕΩΡΙΑ Α ΓΥΜΝΑΣΙΟΥ 1. Τι είναι αριθμητική παράσταση; Με ποια σειρά εκτελούμε τις πράξεις σε μια αριθμητική παράσταση ώστε να βρούμε την τιμή της; Αριθμητική παράσταση λέγεται κάθε
Διαβάστε περισσότεραΓΕΩΜΕΤΡΙΑ ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ. Το σημείο το ονομάζουμε με ένα κεφαλαίο γράμμα. Λέμε: το σημείο Α.
ΓΕΩΜΕΤΡΙΑ ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ ΟΝΟΜΑΣΙΕΣ Σημείο Το σημείο το ονομάζουμε με ένα κεφαλαίο γράμμα. Λέμε: το σημείο Α. Ευθύγραμμο τμήμα Το ευθύγραμμο τμήμα, το ονομάζουμε με δύο κεφαλαία γράμματα (των σημείων που
Διαβάστε περισσότεραΕΡΩΤΗΣΕΙΣ ΘΕΜΑΤΑ ΘΕΩΡΙΑΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΤΗΣ Α ΓΥΜΝΑΣΙΟΥ ΑΛΓΕΒΡΑ
1 ο ΚΕΦΑΛΑΙΟ ΕΡΩΤΗΣΕΙΣ ΘΕΜΑΤΑ ΘΕΩΡΙΑΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΤΗΣ Α ΓΥΜΝΑΣΙΟΥ ΑΛΓΕΒΡΑ 1. α. Τι γνωρίζετε για την Ευκλείδεια διαίρεση; Πότε λέγεται τέλεια; β. Αν σε μια διαίρεση είναι Δ=δ, πόσο είναι το πηλίκο και
Διαβάστε περισσότεραΟι γωνίες και που ονομάζονται «εντός εναλλάξ γωνίες» και είναι ίσες. «εντός-εκτός και επί τα αυτά μέρη γωνίες» και είναι ίσες.
ΠΡΟΤΥΠΟ ΠΕΙΡΑΜΑΤΙΚΟ ΛΥΚΕΙΟ ΑΝΑΒΡΥΤΩΝ ΜΑΘΗΜΑΤΑ ΓΙΑ ΤΟΝ ΔΙΑΓΩΝΙΣΜΟ «ΘΑΛΗΣ» ΤΑΞΗ Α ΘΕΜΑΤΙΚΗ ΕΝΟΤΗΤΑ: ΓΕΩΜΕΤΡΙΑ ΒΑΣΙΚΕΣ ΓΝΩΣΕΙΣ 1. Μεσοκάθετος ενός ευθύγραμμου τμήματος ΑΒ ονομάζεται η ευθεία που είναι κάθετη
Διαβάστε περισσότεραΜΑΘΗΜΑΤΙΚΑ ΑΛΓΕΒΡΑ ΚΕΦΑΛΑΙΟ 1 ΚΕΦΑΛΑΙΟ 2
ΕΠΝΛΗΠΤΙΚ ΘΕΜΤ ΓΥΝΜΣΙΟΥ ΜΘΗΜΤΙΚ ΛΓΕΡ ΚΕΦΛΙΟ. Να διατυπώσετε τα κριτήρια διαιρετότητας. πό τους αριθμούς 675, 0, 4404, 7450 να γράψετε αυτούς που διαιρούνται με το, με το, με το 4, με το 9.. Ποια είναι
Διαβάστε περισσότεραΓΕΩΜΕΤΡΙΑ Α ΓΥΜΝΑΣΙΟΥ ΑΣΚΗΣΕΙΣ ΓΙΑ ΛΥΣΗ - ΑΝΔΡΕΣΑΚΗΣ ΔΗΜΗΤΡΗΣ
Τι ονοµάζουµε γωνία σε ένα επίπεδο; Tι ονοµάζουµε κορυφή µιας γωνίας και τι πλευρά µιας γωνίας; Πότε δύο σχήµατα λέγονται ίσα; Τι ονοµάζουµε απόσταση δύο σηµείων; Τι ονοµάζουµε µέσο ενός ευθυγράµµου τµήµατος;
Διαβάστε περισσότεραΕΠΑΝΑΛΗΨΗ ΓΕΩΜΕΤΡΙΑΣ Α ΛΥΚΕΙΟΥ ( α μέρος )
Πυθαγόρειο ενικό Λύκειο Σάμου ΕΠΝΛΗΨΗ ΕΩΜΕΤΡΙΣ ΛΥΚΕΙΟΥ ( α μέρος ) Να βρείτε στην αντίστοιχη σελίδα του σχολικού σας βιβλίου το ζητούμενο της κάθε ερώτησης που δίνεται παρακάτω και να το γράψετε στο τετράδιό
Διαβάστε περισσότεραΜαθηματικά A Γυμνασίου
Μαθηματικά A Γυμνασίου ΘΕΩΡΙΑ Α ΓΥΜΝΑΣΙΟΥ Μέρος Α - Άλγεβρα 1. Ποιες είναι οι ιδιότητες της πρόσθεσης των φυσικών; (σελ. 15) 2. Πως ορίζεται η πράξη της αφαίρεσης στους φυσικούς και πότε αυτή μπορεί να
Διαβάστε περισσότεραΤο εγχειρίδιο αυτό, δεν είναι απλό τυπολόγιο αλλά μία εγκυκλοπαίδεια όλων των μαθηματικών του ενιαίου λυκείου.
Τυπολόγιο Μαθηματικών Πρόλογος Το εγχειρίδιο αυτό, δεν είναι απλό τυπολόγιο αλλά μία εγκυκλοπαίδεια όλων των μαθηματικών του ενιαίου λυκείου. Π ε ρ ι ε χ ό μ ε ν α Λυκείου Άλγεβρα 001 018 Γεωμετρία 019
Διαβάστε περισσότεραΤρίγωνο λέγεται το σχήμα που ορίζεται από τρία σημεία A,B και Γ, μη περιεχόμενα σε μία και μόνον ευθεία, καθώς και τα ευθύγραμμα τμήματα που τα
Τρίγωνο λέγεται το σχήμα που ορίζεται από τρία σημεία A,B και Γ, μη περιεχόμενα σε μία και μόνον ευθεία, καθώς και τα ευθύγραμμα τμήματα που τα ενώνουν. Τα τρία σημεία αυτά λέγονται κορυφές του τριγώνου.
Διαβάστε περισσότεραΑ Γυμνασίου, Μέρο Β, Γεωμετρία, Κεφάλαιο 2, Συμμετρία
Α Γυμνασίου, Μέρο Β, Γεωμετρία, Κεφάλαιο 2, Συμμετρία Περιοδική Έκδοση για τα Μαθηματικά Γυμνασίου Μαθηματικά Α Γυμνασίου Μέρο Β - Κεφάλαιο 2, Β. 2.2. Άξονα συμμετρία σχήματο ονομάζεται η ευθεία που χωρίζει
Διαβάστε περισσότεραΤρίγωνα. Αθανασίου Δημήτρης (Μαθηματικός)
Τρίγωνα Αθανασίου Δημήτρης (Μαθηματικός) www.peira.gr asepfreedom@yahoo.gr 1 3.1 Στοιχεία και είδη τριγώνων 2 Ένα τρίγωνο ΑΒΓ έχει τρεις κορυφές Α, Β, Γ, τρεις πλευρές ΒΓ, ΓΑ, ΑΒ και τρεις γωνίες Β ΑΓ,
Διαβάστε περισσότεραΜΑΘΗΜΑΤΙΚΑ Α ΓΥΜΝΑΣΙΟΥ ΜΙΑ ΠΡΟΕΤΟΙΜΑΣΙΑ ΓΙΑ ΤΙΣ ΕΞΕΤΑΣΕΙΣ
ΓΥΜΝΣΙΟ ΥΜΗΤΤΟΥ ΜΘΗΜΤΙΚ ΓΥΜΝΣΙΟΥ ΜΙ ΠΡΟΕΤΟΙΜΣΙ ΓΙ ΤΙΣ ΕΞΕΤΣΕΙΣ - Σελίδα 1 από 11 - 1. Η ΔΟΜΗ ΤΩΝ ΘΕΜΤΩΝ ΤΩΝ ΕΞΕΤΣΕΩΝ Στις εξετάσεις του Μαίου-Ιουνίου µας δίνονται δύο θέµατα θεωρίας και τρείς ασκήσεις.
Διαβάστε περισσότεραΤάξη A Μάθημα: Γεωμετρία
Τάξη A Μάθημα: Γεωμετρία Η Θεωρία σε Ερωτήσεις Ερωτήσεις Κατανόησης Επαναληπτικά Θέματα Επαναληπτικά Διαγωνίσματα Περιεχόμενα Τρίγωνα Α. Θεωρία-Αποδείξεις Σελ.2 Β. Θεωρία-Ορισμοί..Σελ.9 Γ. Ερωτήσεις Σωστού
Διαβάστε περισσότεραΓραμμή. Σημείο. κεφαλαίο γράμμα. Κάθε γραμμή. αποτελείται. Ευθεία κι αν αρχή και χωρίς. τέλος! x x
1. Οι Πρωταρχικές Γεωμετρικές Έννοιες Σημείο Γραμμή Δεν έχει διαστάσεις!! Υπάρχει μόνο στο μυαλό μας. Συμβολίζεται με κεφαλαίο γράμμα. Κάθε γραμμή αποτελείται από άπειρα σημεία. Ευθεία Δεν είναι εύκολο
Διαβάστε περισσότεραΓΕΩΜΕΤΡΙΑ Α ΓΥΜΝΑΣΙΟΥ
ΓΕΩΜΕΤΡΙΑ Α ΓΥΜΝΑΣΙΟΥ Χρήστος Π. Μουρατίδης 2013 2014 ΠΡΟΤΥΠΟ ΠΕΙΡΑΜΑΤΙΚΟ ΓΥΜΝΑΣΙΟ ΑΓΙΩΝ ΑΝΑΡΓΥΡΩΝ ΤΑΞΗ Α ΦΥΛΛΟ ΕΡΓΑΣΙΑΣ B Κ 1.1 ΕΝΟΤΗΤΑ : Βασικές Γεωμετρικές ένοιες Τάξη : A Γυμνασίου. Καθ. Χρήστος Μουρατίδης
Διαβάστε περισσότεραΜΑΘΗΜΑΤΙΚΑ Β ΓΥΜΝΑΣΙΟΥ
ΜΑΘΗΜΑΤΙΚΑ Β ΓΥΜΝΑΣΙΟΥ Μέρος Β Κεφάλαιο 4ο Γεωμετρικά Στερεά Χρύσα Παπαγεωργίου Μαθηματικός - Πληροφορικός Το ορθό πρίσμα και τα στοιχεία του Κάθε ορθό πρίσμα έχει: Δύο έδρες παράλληλες, που είναι ίσα
Διαβάστε περισσότεραΚύρια και δευτερεύοντα στοιχεία τριγώνου Είδη τριγώνων.
ΜΕΡΟΣ Β 1.1 ΙΣΟΤΗΤΑ ΤΡΙΓΩΝΩΝ 397 1. 1 ΙΣΟΤΗΤΑ ΤΡΙΓΩΝΩΝ Κύρια και δευτερεύοντα στοιχεία τριγώνου Είδη τριγώνων. Σε κάθε τρίγωνο οι πλευρές και οι γωνίες του ονομάζονται κύρια στοιχεία του τριγώνου. Οι πλευρές
Διαβάστε περισσότεραΕΠΑΝΑΛΗΨΗ ΓΕΩΜΕΤΡΙΑΣ Β ΛΥΚΕΙΟΥ ( α μέρος )
ΕΠΑΝΑΛΗΨΗ ΓΕΩΜΕΤΡΙΑΣ Β ΛΥΚΕΙΟΥ ( α μέρος ) Ερωτήσεις Θεωρίας Να βρείτε στην αντίστοιχη σελίδα του σχολικού σας βιβλίου το ζητούμενο της κάθε ερώτησης που δίνεται παρακάτω και να το γράψετε στο τετράδιό
Διαβάστε περισσότερα1. ** Σε κύκλο ακτίνας R = 3 cm είναι περιγεγραµµένο ισόπλευρο τρίγωνο. Να υπολογίσετε: α) Την πλευρά του. β) Το εµβαδόν του.
Ερωτήσεις ανάπτυξης 1. ** Σε κύκλο ακτίνας R = 3 cm είναι περιγεγραµµένο ισόπλευρο τρίγωνο. Να υπολογίσετε: α) Την πλευρά του. β) Το εµβαδόν του. 2. ** Υπάρχει κανονικό πολύγωνο εγγεγραµµένο σε κύκλο ακτίνας
Διαβάστε περισσότεραΙΑΓΩΝΙΣΜΑ ΓΕΩΜΕΤΡΙΑΣ Α ΛΥΚΕΙΟΥ 6/ 11/ 2016
εν είναι δυνατή η προβολή αυτής της εικόνας αυτή τη στιγµή. ΕΠΩΝΥΜΟ:... ΟΝΟΜΑ:... ΤΜΗΜΑ:... ΤΣΙΜΙΣΚΗ &ΚΑΡΟΛΟΥ ΝΤΗΛ ΓΩΝΙΑ THΛ: 270727 222594 ΑΡΤΑΚΗΣ 12 - Κ. ΤΟΥΜΠΑ THΛ: 919113 949422 www.syghrono.gr ΗΜΕΡΟΜΗΝΙΑ:...
Διαβάστε περισσότεραΑσκήσεις - Πυθαγόρειο Θεώρηµα
Ασκήσεις - Πυθαγόρειο Θεώρηµα. Έστω ορθογώνιο τρίγωνο ΑΒΓ ( Â = 90 ο ) µε ΒΓ = 0 και ΑΓ =. Αν το µέσο της ΒΓ και Ε ΒΓ (Ε σηµείο της ΑΒ) τότε το µήκος της ΑΕ είναι: i) 3 3,5 i 4 iv) 4,5 v) 5. Έστω ορθογώνιο
Διαβάστε περισσότερα3 o ΓΕ.Λ. ΚΕΡΑΤΣΙΝΙΟΥ. ΖΟΥΖΙΑΣ ΠΑΝΑΓΙΩΤΗΣ Μαθηματικός 2013 2014 EΠΑΝΑΛΗΨΗ ΣΤΗ ΓΕΩΜΕΤΡΙΑ ΤΗΣ Α ΛΥΚΕΙΟΥ ΠΕΡΙΕΧΟΜΕΝΑ
3 o ΓΕ.Λ. ΚΕΡΑΤΣΙΝΙΟΥ Μαθηματικός 2013 2014 EΠΑΝΑΛΗΨΗ ΣΤΗ ΓΕΩΜΕΤΡΙΑ ΤΗΣ Α ΛΥΚΕΙΟΥ ΠΕΡΙΕΧΟΜΕΝΑ 1) ΘΕΩΡΙΑ... 2 2) ΕΡΩΤΗΣΕΙΣ... 5 2.1. ΤΡΙΓΩΝΑ... 5 2.1.1. ΕΡΩΤΗΣΕΙΣ Σωστού - Λάθους στα τρίγωνα... 5 2.1.2.
Διαβάστε περισσότερα1. ** Σε ισοσκελές τρίγωνο ΑΒΓ µε κορυφή το Α, έχουµε ΒΓ = 4 cm και ΑΒ = 7 cm. Να υπολογίσετε: ii. Το ύψος ΒΚ
Ερωτήσεις ανάπτυξης 1. ** Σε ισοσκελές τρίγωνο ΑΒΓ µε κορυφή το Α, έχουµε ΒΓ = 4 cm και ΑΒ = 7 cm. Να υπολογίσετε: i. Το ύψος ΑΗ ii. Το ύψος ΒΚ. ** Σε ένα τετράγωνο ΑΒΓ ισχύει ΑΒ + ΑΓ = +. Να υπολογίσετε:
Διαβάστε περισσότεραΕρωτήσεις θεωρίας για τα Μαθηματικά Γ γυμνασίου. Άλγεβρα...
Ερωτήσεις θεωρίας για τα Μαθηματικά Γ γυμνασίου Άλγεβρα 1.1 Β: Δυνάμεις πραγματικών αριθμών. 1. Πως ορίζεται η δύναμη ενός πραγματικού αριθμού ; Η δύναμη με βάση έναν πραγματικό αριθμό α και εκθέτη ένα
Διαβάστε περισσότεραΜαθηματικά Α Γυμνασίου. Επαναληπτικές Ασκήσεις
Μαθηματικά Α Γυμνασίου Επαναληπτικές Ασκήσεις.: Δυνάμεις φυσικών αριθμών.4: Ευκλείδεια διαίρεση - διαιρετότητα.: Χαρακτήρες διαιρετότητας - ΜΚΔ - ΕΚΠ - Ανάλυση αριθμού σε γινόμενο πρώτων παραγόντων Κεφάλαιο
Διαβάστε περισσότεραΕΠΑΝΑΛΗΠΤΙΚΕΣ ΑΣΚΗΣΕΙΣ
ΠΝΠΤΙΣ ΣΣΙΣ > 90. 1. ίνεται ισοσκελές τρίγωνο µε = και 0 πό την κορυφή φέρνουµε τις ηµιευθείες x κάθετη στην πλευρά και y κάθετη στην πλευρά που τέµνουν την στα σηµεία και αντίστοιχα. Να αποδείξετε α)
Διαβάστε περισσότεραΣε κάθε ισοσκελές τρίγωνο η διχοτόµος της γωνίας της κορυφής είναι και διάµεσος και ύψος.
ΙΩΝΙΣΜ ΕΩΜΕΤΡΙΣ ΥΚΕΙΟΥ 3/0/0 ΕΝΕΙΚΤΙΚΕΣ ΠΝΤΗΣΕΙΣ ΘΕΜ ο ) Να αποδείξετε ότι δύο χορδές ενός κύκλου είναι ίσες αν και µόνο αν τα αποστήµατά τους είναι ίσα. Θεωρία, σελίδα 46 σχολικού βιβλίου Θεώρηµα III
Διαβάστε περισσότεραΛΥΣΕΙΣ ΙΑΓΩΝΙΣΜΑ ΓΕΩΜΕΤΡΙΑΣ Α ΛΥΚΕΙΟΥ 05/01/10
ΥΕΙ ΙΑΩΝΙΜΑ ΕΩΜΕΤΡΙΑ Α ΥΚΕΙΟΥ 05/0/0 ΘΕΜΑ ο Α. Να αποδειχτεί ότι σε κάθε παραλληλόγραµµο οι απέναντι πλευρές είναι ίσες. Θεωρία σελίδα 97 B. Να χαρακτηρίσετε µε την ένδειξη σωστό () ή λάθος () καθεµιά
Διαβάστε περισσότεραΕΠΑΝΑΛΗΨΗ ΓΕΩΜΕΤΡΙΑΣ Β ΛΥΚΕΙΟΥ
ΕΠΝΛΗΨΗ ΕΩΜΕΤΡΙΣ ΛΥΚΕΙΟΥ 1 Σε τρίγωνο με > και ορθόκεντρο Η να δείξετε ότι: Δίνεται τρίγωνο στο οποίο ισχύει: α β γ βγ Να δείξετε ότι: A 10 Δίνεται τρίγωνο με πλευρές α, β, γ και διάμεσο μα ν ισχύει η
Διαβάστε περισσότεραΙΣΟΤΗΤΑ ΤΡΙΓΩΝΩΝ Γ ΓΥΜΝΑΣΙΟΥ - ΘΕΩΡΙΑ
ΙΣΟΤΗΤΑ ΤΡΙΓΩΝΩΝ Γ ΓΥΜΝΑΣΙΟΥ - ΘΕΩΡΙΑ Α. ύο τρίγωνα είναι ίσα όταν µε κατάλληλη µετατόπιση, το ένα συµπίπτει µε το άλλο. Β. Κριτήρια ισότητας τριγώνων Πρώτο κριτήριο Αν όλες οι πλευρές του ενός τριγώνου
Διαβάστε περισσότεραΜΕΡΟΣ Α. 1 ο ΚΕΦΑΛΑΙΟ
ΜΕΡΟΣ Α ο ΚΕΦΑΛΑΙΟ. Τι ονομάζεται Αριθμητική και τι Αλγεβρική παράσταση; Ονομάζεται Αριθμητική παράσταση μια παράσταση που περιέχει πράξεις μεταξύ αριθμών. Ονομάζεται αλγεβρική παράσταση μια παράσταση
Διαβάστε περισσότεραΑρβανιτίδης Θεόδωρος, - Μαθηματικά Ε
Μαθηματικά Ε Τεύχος 3οο ΑΡΒΑΝΙΤΙΔΗΣ ΘΕΟΔΩΡΟΣ ΣΠΥΡΙΔΩΝΙΔΗΣ ΑΝΤΩΝΙΟΣ ΑΚΡΙΒΟΠΟΥΛΟΥΥ ΓΕΩΡΓΙΑ Μαθηματικά Ε Μαθηματικά Ε Βασικές Γεωμετρικές έννοιες Σημείο Μάθημα 34 ο Με την άκρη του μολυβιού μου ακουμπώντας
Διαβάστε περισσότεραΑΣΚΗΣΕΙΣ ΕΠΑΝΑΛΗΨΗΣ 3 η ΕΚΑ Α
ΣΚΗΣΕΙΣ ΕΠΝΛΗΨΗΣ η ΕΚ. Έστω οι παραστάσεις = 4 4 + 5, Β = 5 (8 + 0) : (7 5) και Γ = 6 : 5 4 Να υπολογίσετε την τιµή των παραστάσεων ν = 5, Β = 6 και Γ = να βρείτε : i) Το ελάχιστο κοινό πολλαπλάσιο των,
Διαβάστε περισσότεραΔΡΑΣΤΗΡΙΟΤΗΤΑ. Θυμόμαστε - Μαθαίνουμε Κύρια στοιχεία τριγώνου. Σκεφτόμαστε. Β.3.1. Στοιχεία τριγώνου - Είδη τριγώνων. Όχι κάθετες πλευρές
- 218 - Μέρος Kεφάλαιο 3 ο - Τρίγωνα - Παραλληλόγραμμα - Τραπέζια.3.1. Στοιχεία τριγώνου - Είδη τριγώνων Θυμόμαστε - Μαθαίνουμε Κύρια στοιχεία τριγώνου κορυφή Κάθε τρίγωνο έχει τρεις κορυφές,,, τρεις πλευρές,,
Διαβάστε περισσότεραΑΣΚΗΣΕΙΣ ΕΠΑΝΑΛΗΨΗΣ 1 η ΕΚΑ Α
ΑΣΚΗΣΕΙΣ ΕΠΑΝΑΛΗΨΗΣ η ΕΚΑ Α. Πότε δύο γωνίες λέγονται εφεξής; Ποιο σχήµα ονοµάζουµε κύκλο µε κέντρο Ο και ακτίνα ρ ; Στον παρακάτω πίνακα να αντιστοιχίσετε κάθε αριθµό της πρώτης στήλης µε ένα γράµµα της
Διαβάστε περισσότεραΕρωτήσεις θεωρίας για τα Μαθηματικά Γ γυμνασίου
Ερωτήσεις θεωρίας για τα Μαθηματικά Γ γυμνασίου Άλγεβρα 1.1 Β : Δυνάμεις πραγματικών αριθμών. 1. Πως ορίζεται η δύναμη ενός πραγματικού αριθμού ; Η δύναμη με βάση έναν πραγματικό αριθμό α και εκθέτη ένα
Διαβάστε περισσότεραΓενικό Ενιαίο Λύκειο Γεωμετρία - Τάξη Α
ενικό νιαίο Λύκειο εωμετρία - Τάξη 61 Θέματα εξετάσεων περιόδου Μαΐου-Ιουνίου στην εωμετρία Τάξη! Λυκείου ενικό νιαίο Λύκειο εωμετρία - Τάξη 6. Να αποδείξετε ότι διάμεσος τραπεζίου είναι παράλληλη προς
Διαβάστε περισσότεραΚεφάλαιο 9 Ο κύκλος Ορισμός. Ο κύκλος (Κ, r) με κέντρο Κ και ακτίνα r είναι το σχήμα που αποτελείται από όλα τα σημεία του επιπέδου που απέχουν απόσταση r από το σημείο Κ. Σχήμα 9.1: Στοιχεία ενός κύκλου.
Διαβάστε περισσότερα2 η εκάδα θεµάτων επανάληψης
η εκάδα θεµάτων επανάληψης. Έστω τρίγωνο µε + Ένα πρόχειρο σχήµα είναι το διπλανό
Διαβάστε περισσότεραΛΥΣΕΙΣ ΙΑΓΩΝΙΣΜΑ ΓΕΩΜΕΤΡΙΑ Α ΛΥΚΕΙΟΥ 08/04/10
ΥΣΙΣ ΙΑΩΝΙΣΜΑ ΩΜΤΡΙΑ Α ΥΚΙΟΥ ΘΜΑ ο 08/04/0 Α. Να αποδείξετε ότι η διάµεσος ορθογωνίου τριγώνου που φέρουµε από την κορυφή της ορθής γωνίας είναι ίση µε το µισό της υποτείνουσας. Θεωρία σχολικό βιβλίο σελ.09
Διαβάστε περισσότερα1. ** Σε ορθό τριγωνικό πρίσµα µε βάση ορθογώνιο τρίγωνο ΑΒΓ (A = 90 ) και πλευρές ΑΓ = 3 cm, ΒΓ = 5 cm, η παράπλευρη ακµή του είναι 7 cm.
Ερωτήσεις ανάπτυξης 1. ** Σε ορθό τριγωνικό πρίσµα µε βάση ορθογώνιο τρίγωνο (A = 90 ) και πλευρές = 3 cm, = 5 cm, η παράπλευρη ακµή του είναι 7 cm. Να βρείτε: α) Το εµβαδό Ε Π της παράπλευρης επιφάνειας.
Διαβάστε περισσότερα1 ΘΕΩΡΙΑΣ...με απάντηση
1 ΘΕΩΡΙΑΣ.....με απάντηση ΑΛΓΕΒΡΑ Κεφάλαιο 1 0 Εξισώσεις Ανισώσεις 1. Τι ονομάζεται Αριθμητική και τι Αλγεβρική παράσταση; Ονομάζεται Αριθμητική παράσταση μια παράσταση που περιέχει πράξεις μεταξύ αριθμών.
Διαβάστε περισσότεραΘέματα ενδοσχολικών εξετάσεων Άλγεβρας Α Λυκείου Σχ. έτος , Ν. Δωδεκανήσου ΘΕΜΑΤΑ ΕΝΔΟΣΧΟΛΙΚΩΝ ΕΞΕΤΑΣΕΩΝ ΤΑΞΗ: Α ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ
ΘΕΜΑΤΑ ΕΝΔΟΣΧΟΛΙΚΩΝ ΕΞΕΤΑΣΕΩΝ ΤΑΞΗ: Α ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΓΕΩΜΕΤΡΙΑ ΣΧΟΛΙΚΟ ΕΤΟΣ: 2013-2014 Επιμέλεια: Καραγιάννης Ιωάννης Σχολικός Σύμβουλος Μαθηματικών Μαθηματικός Περιηγητής 1 ΠΡΟΛΟΓΟΣ Η συλλογή των θεμάτων
Διαβάστε περισσότεραΑσκήσεις σχολικού βιβλίου σελίδας Ερωτήσεις Κατανόησης. Ποια από τα παρακάτω τετράπλευρα είναι παραλληλόγραµµα ποια όχι και γιατί;
5. 5.2 σκήσεις σχολικού βιβλίου σελίδας 99 00 ρωτήσεις ατανόησης. Ποια από τα παρακάτω τετράπλευρα είναι παραλληλόγραµµα ποια όχι και γιατί; 3 Π 5 4 Π 2 5 5 Ο 3 4 Ο 4 Π 3 Ν 3 3 Μ 3,5 3,5 Λ Ρ φ Π 4 φ ω
Διαβάστε περισσότεραΘΕΜΑ 1 ο. ΘΕΜΑ 2 ο. ΘΕΜΑ 3 ο
ΕΚΕΜΒΡΙΟΣ 2011 ΘΕΜΑ 1 ο (α) Να αποδειχθεί ότι στον ίδιο ή σε ίσους κύκλους, ίσα αποστήµατα αντιστοιχούν σε ίσες χορδές. (β) Να αποδειχθεί ότι κάθε σηµείο της µεσοκαθέτου ενός ευθύγραµµου τµήµατος ισαπέχει
Διαβάστε περισσότεραΤο επίπεδο του ημιεπιπέδου σ χωρίζει το χώρο σε δύο ημιχώρους. Καλούμε Π τ τον ημιχώρο στον οποίο βρίσκεται το ημιεπίπεδο τ Επίσης, το επίπεδο του
ΣΤΕΡΕΑ ΜΑΘΗΜΑ 10 Δίεδρες γωνίες Δύο επίπεδα α και β που τέμνονται, χωρίζουν τον χώρο σε τέσσερα μέρη, που λέγονται τεταρτημόρια. Ορίζουν επίσης σχήματα ανάλογα των γωνιών που ορίζουν δύο τεμνόμενες ευθείες
Διαβάστε περισσότεραΓΕΩΜΕΤΡΙΑ. 1 o ΔΙΑΓΩΝΙΣΜΑ ΘΕΜΑ 1
ΩΜΤΡΙ ΛΥΚΙΟΥ ΩΜΤΡΙ ΘΜ o ΙΩΝΙΣΜ. Να αποδείξετε ότι : Ι) διάμεσος που αντιστοιχεί στην υποτείνουσα ορθογωνίου τριγώνου είναι ίση με το μισό της υποτείνουσας. ΙΙ) ν μια διάμεσος τριγώνου είναι ίση με το μισό
Διαβάστε περισσότεραΤΕΤΡΑΔΙΟ ΕΠΑΝΑΛΗΨΗΣ ΕΡΩΤΗΣΕΙΣ ΘΕΩΡΙΑΣ ΘΕΜΑΤΑ ΓΙΑ ΕΞΕΤΑΣΕΙΣ ΘΕΜΑΤΑ ΑΠΟ ΕΞΕΤΑΣΕΙΣ ΕΠΙΜΕΛΕΙΑ. Βαγγέλης. Βαγγέλης Νικολακάκης Μαθηματικός.
01 ςεδς ΤΕΤΡΑΔΙΟ ΕΠΑΝΑΛΗΨΗΣ ΕΡΩΤΗΣΕΙΣ ΘΕΩΡΙΑΣ ΘΕΜΑΤΑ ΓΙΑ ΕΞΕΤΑΣΕΙΣ ΘΕΜΑΤΑ ΑΠΟ ΕΞΕΤΑΣΕΙΣ Βαγγέλης ΕΠΙΜΕΛΕΙΑ Βαγγέλης Νικολακάκης Μαθηματικός ΣΗΜΕΙΩΜΑ Το παρον φυλλάδιο φτιάχτηκε για να προσφέρει λίγη βοήθεια
Διαβάστε περισσότεραΚΕΦΑΛΑΙΟ 1 Ο ΓΕΩΜΕΤΡΙΑ
ΜΕΡΟΣ ΚΕΦΛΙΟ 1 Ο ΕΩΜΕΤΡΙ 1.1 ΙΣΟΤΗΤ ΤΡΙΩΝΩΝ 1. Ποια ονομάζονται κύρια και ποια δευτερεύοντα στοιχεία τριγώνων; Κύρια στοιχεία ενός τριγώνου ονομάζουμε τις πλευρές και τις γωνίες του. Δευτερεύοντα στοιχεία
Διαβάστε περισσότεραΓΕΩΜΕΤΡΙΑ Β ΓΥΜΝΑΣΙΟΥ
ΕΩΜΕΤΡΙΑ ΥΜΝΑΣΙΟΥ Χρήστος Π. Μουρατίδης 2014 2015 ΤΑΞΗ ΦΥΛΛΟ ΕΡΑΣΙΑΣ Κ 1.1 ΕΝΟΤΗΤΑ : Εμβαδόν επίπεδης επιφάνειας Τάξη : υμνασίου. Καθ. Χρήστος Μουρατίδης Όνομα Μαθητή :.. Ημ/νία :. 1. Να βρείτε το εμβαδόν
Διαβάστε περισσότεραΓΕΩΜΕΤΡΙΑ - ΚΕΦΑΛΑΙΟ 3ο Παραλληλόγραµµα - Τραπέζια
ΓΕΩΜΕΤΡΙΑ - ΚΕΦΑΛΑΙΟ 3ο Παραλληλόγραµµα - Τραπέζια 184 ΕΡΩΤΗΣΕΙΣ ΑΝΑΠΤΥΞΗΣ ΚΑΙ ΑΝΤΙΚΕΙΜΕΝΙΚΟΥ ΤΥΠΟΥ 1. Να αντιστοιχίσετε κάθε στοιχείο της στήλης (Α) µε ένα µόνο στοιχείο της στήλης (Β): στήλη (Α) τετράπλευρα
Διαβάστε περισσότεραÊåöÜëáéï 7 ï. âéâëéïììüèçìá 22: -ºóá ó Þìáôá -ºóá ôñßãùíá -ÊáôáóêåõÝò ìå êáíüíá êáé äéáâþôç -Åßäç ôåôñáðëåýñùí -Éäéüôçôåò ôïõ ðáñáëëçëïãñüììïõ
ÊåöÜëáéï 7 ï Åõèýãñáììá ó Þìáôá âéâëéïììüèçìá : -ºóá ó Þìáôá -ºóá ôñßãùíá -ÊáôáóêåõÝò ìå êáíüíá êáé äéáâþôç -Åßäç ôåôñáðëåýñùí -Éäéüôçôåò ôïõ ðáñáëëçëïãñüììïõ âéâëéïììüèçìá 3: -Åìâáäü ôñéãþíïõ -Åìâáäü
Διαβάστε περισσότεραΤρύφων Παύλος - Ευκλείδεια Γεωµετρία Α τάξης Γενικού Λυκείου
Τρύφων Παύλος - Ευκλείδεια εωµετρία τάξης ενικού υκείου ΩΝΙΕΣ ρισµός: Έστω χ και ψ δύο ηµιευθείες που δεν έχουν κοινό φορέα και έστω p το ηµιεπίπεδο που έχει ακµή τον φορέα της Oχ και περιέχει την ψ και
Διαβάστε περισσότεραΓεωμετρία Βˊ Λυκείου. Κεφάλαιο 9 ο. Μετρικές Σχέσεις
Γεωμετρία Β Λυκείου Κεφάλαιο 9 Γεωμετρία Βˊ Λυκείου Κεφάλαιο 9 ο Μετρικές Σχέσεις ΚΕΦΑΛΑΙΟ 9 ο ΜΕΤΡΙΚΕΣ ΣΧΕΣΕΙΣ ΣΕ ΟΡΘΟΓΩΝΙΑ ΤΡΙΓΩΝΑ Μετρικές σχέσεις ονομάζουμε τις σχέσεις μεταξύ των μέτρων των στοιχείων
Διαβάστε περισσότεραΓΕΩΜΕΤΡΙΚΑ ΣΤΕΡΕΑ. Κεφάλαιο 13: Ερωτήσεις του τύπου «Σωστό-Λάθος»
Κεφάλαιο 13: ΓΕΩΜΕΤΡΙΚΑ ΣΤΕΡΕΑ Ερωτήσεις του τύπου «Σωστό-Λάθος» 1. * Θεωρούµε ένα επίπεδο p, µια κλειστή πολυγωνική γραµµή του p και µια ευθεία ε που έχει µε το p ένα µόνο κοινό σηµείο. Από κάθε σηµείο
Διαβάστε περισσότερα1. Ποια είναι τα κύρια στοιχεία ενός τριγώνου; 2. Ποια είναι τα δευτερεύοντα στοιχεία ενός τριγώνου;
ΜΕΡΟΣ Β : ΓΕΩΜΕΤΡΙΑ -ΤΡΙΓΩΝΟΜΕΤΡΙΑ ΚΕΦΑΛΑΙΟ 1 Ο ΓΕΩΜΕΤΡΙΑ 1.1 Ισότητα τριγώνων 1. Ποια είναι τα κύρια στοιχεία ενός τριγώνου; Κυρια στοιχεια του τριγωνου ειναι: οι πλευρες του ΑΒ,ΒΓ,ΓΑ οι γωνιες του Α,Β,Γ.
Διαβάστε περισσότεραΣΧΗΜΑΤΑ-ΓΡΑΜΜΕΣ-ΜΕΤΡΗΣΗ Μιχάλης Χριστοφορίδης Ανδρέας Σάββα Σύμβουλοι Μαθηματικών
ΕΦΑΡΜΟΓΙΔΙΟ: Σχήματα-Γραμμές-Μέτρηση Είναι ένα εργαλείο που μας βοηθά στην κατασκευή και μέτρηση σχημάτων, γωνιών και γραμμών. Μας παρέχει ένα χάρακα, μοιρογνωμόνιο και υπολογιστική μηχανή για να μας βοηθάει
Διαβάστε περισσότεραΜΕΤΡΙΚΕΣ ΣΧΕΣΕΙΣ. ΓΕΩΜΕΤΡΙΑ Β ΛΥΚΕΙΟΥ Κεφάλαιο 9ο: Ερωτήσεις του τύπου «Σωστό-Λάθος»
ΕΩΜΕΤΡΙΑ Β ΥΚΕΙΟΥ Κεφάλαιο 9ο: ΜΕΤΡΙΚΕ ΧΕΕΙ Ερωτήσεις του τύπου «ωστό-άθος» Να χαρακτηρίσετε με (σωστό) ή (λάθος) τις παρακάτω προτάσεις. 1. * Αν σε τρίγωνο ΑΒ ισχύει ΑΒ = Α + Β, τότε το τρίγωνο είναι:
Διαβάστε περισσότεραΚεφάλαιο 1 ο : Βασικές Γεωμετρικές έννοιες
17 ΕΡΩΤΗΣΕΙΙΣ ΘΕΩΡΙΙΑΣ ΑΠΟ ΤΗΝ ΥΛΗ ΤΗΣ ΓΕΩΜΕΤΡΙΙΑΣ Κεφάλαιο 1 ο : Βασικές Γεωμετρικές έννοιες Β. 1. 1 81. Τι ονομάζεται ευθεία και ποιες προτάσεις αναφέρονται σ αυτή; Ονομάζεται ευθεία το σχήμα που προκύπτει
Διαβάστε περισσότεραΠΑΝΑΓΟΠΟΥΛΟΣ ΑΝΤΩΝΗΣ ΜΑΘΗΜΑΤΙΚΟΣ Β ΛΥΚΕΙΟΥ ΓΕΩΜΕΤΡΙΑ Σελίδα 1
ΚΕΦΑΛΑΙΟ 11 Ο ΜΕΤΡΗΣΗ ΚΥΚΛΟΥ 11.6 ΠΡΟΣΕΓΓΙΣΗ ΤΟΥ ΕΜΒΑΔΟΥ ΚΥΚΛΟΥ ΜΕ ΚΑΝΟΝΙΚΑ ΠΟΛΥΓΩΝΑ 11.7 ΕΜΒΑΔΟΝ ΚΥΚΛΙΚΟΥ ΤΟΜΕΑ ΚΑΙ ΚΥΚΛΙΚΟΥ ΤΜΗΜΑΤΟΣ 11.8 ΤΕΤΡΑΓΩΝΙΣΜΟΣ ΚΥΚΛΟΥ ΘΕΩΡΙΑ 1 (Εμβαδόν κυκλικού δίσκου) Θεωρούμε
Διαβάστε περισσότεραγεωµετρία του ευκλείδη µε λίγα λόγια για µαθητές α λυκείου (www.sonom.gr) 1 γωνίες Β ευθεία (2 ) οξεία (< 1 ) ορθή ( =1 ) αµβλεία ( > 1 )
γεωµετρία του ευκλείδη µε λίγα λόγια για µαθητές α λυκείου (www.sonom.gr) 1 γωνίες µη κυρτή ευθεία ( ) πλήρης (4 ) κυρτή, οξεία (< 1 ) ορθή ( =1 ) αµβλεία ( > 1 ) συµπληρωµατικές παραπληρωµατικές φ ω ω
Διαβάστε περισσότεραΣτοιχεία τριγώνου Κύρια στοιχεία : Πλευρές και γωνίες ευτερεύοντα στοιχεία : ιάµεσος, διχοτόµος, ύψος
3. 3.9 ΘΕΩΡΙ. Στοιχεία τριγώνου Κύρια στοιχεία : Πλευρές και γωνίες ευτερεύοντα στοιχεία : ιάµεσος, διχοτόµος, ύψος 2. Είδη τριγώνων Ως προς τις πλευρές : Σκαληνό, ισοσκελές, ισόπλευρο. Ως προς τις γωνίες
Διαβάστε περισσότεραΕΝΟΤΗΤΑ Β.3.1. Στοιχεία τριγώνου - Είδη τριγώνων
ΕΝΟΤΗΤΑ Β.3.1. Στοιχεία τριγώνου - Είδη τριγώνων ΟΝΟΜΑΤΕΠΩΝΥΜΟ ΗΜΕΡΟΜΗΝΙΑ / / Σελίδα 37 Στο παρακάτω σχήμα σχεδιάστε την διάμεσο ΑΜ, την διάμεσο ΒΛ και την διάμεσο ΓΝ. Τι παρατηρείτε; Να κατασκευάσετε
Διαβάστε περισσότεραΜΑΘΗΜΑΤΙΚΑ Α ΓΥΜΝΑΣΙΟΥ. Α σ κ ή σ ε ι ς γ ι α τ ι ς δ ι α κ ο π έ ς τ ω ν Χ ρ ι σ τ ο υ γ έ ν ν ω ν
ΜΑΘΗΜΑΤΙΚΑ Α ΓΥΜΝΑΣΙΟΥ Α σ κ ή σ ε ι ς γ ι α τ ι ς δ ι α κ ο π έ ς τ ω ν Χ ρ ι σ τ ο υ γ έ ν ν ω ν () Στρογγυλοποίησε τον αριθμό 8.987. στις πλησιέστερες: (α) δ ε- κάδες, (β) εκατοντάδες, (γ) χιλιάδες,
Διαβάστε περισσότερα2 η δεκάδα θεµάτων επανάληψης
1 η δεκάδα θεµάτων επανάληψης 11. Σε κάθε τρίγωνο να αποδείξετε ότι το τετράγωνο µιας πλευράς που βρίσκεται απέναντι από οξεία γωνία, ισούται µε το άθροισµα των τετραγώνων των δύο άλλων πλευρών ελαττωµένο
Διαβάστε περισσότεραΜαθηματικά Ε. Μάθημα 34 ο. Ασκήσεις. 1. Να σχεδιάσεις δύο ευθύγραμμα τμήματα, ΑΒ = 4 εκατ. και ΓΔ = 5,5 εκατ.:
Μάθημα 34 ο Ασκήσεις 1. Να σχεδιάσεις δύο ευθύγραμμα τμήματα, ΑΒ = 4 εκατ. και ΓΔ = 5,5 εκατ.: A B Γ Δ 2. Να σχεδιάσεις δύο ημιευθείες Λx και Κy: Λ x K y 3. Να σχεδιάσεις δύο ευθείες ε 1 και ε 2 οι οποίες
Διαβάστε περισσότεραΘΕΩΡΙΑ Α ΓΥΜΝΑΣΙΟΥ. 1. Να γράψετε τον τύπο της Ευκλείδειας διαίρεσης. Πώς ονομάζεται κάθε σύμβολο του τύπου;
ΘΕΩΡΙΑ Α ΓΥΜΝΑΣΙΟΥ 1. Να γράψετε τον τύπο της Ευκλείδειας διαίρεσης. Πώς ονομάζεται κάθε σύμβολο του τύπου; 2. Τι ξέρετε για το υπόλοιπο που προκύπτει από μια Ευκλείδεια διαίρεση; 3. Τι ονομάζουμε τέλεια
Διαβάστε περισσότεραΜαθηματικά: Αριθμητική και Άλγεβρα. Μάθημα 11 ο, Τμήμα Α. Γεωμετρία
Μαθηματικά: ριθμητική και Άλγεβρα Μάθημα 11 ο, Τμήμα Γεωμετρία Η γεωμετρία σε σχέση με την άλγεβρα ή την αριθμητική έχει την εξής ιδιαιτερότητα: πρέπει να είμαστε πολύ ακριβείς στην περιγραφή μας (σκέψη
Διαβάστε περισσότεραΜΑΘΗΜΑΤΙΚΑ Α' ΓΥΜΝΑΣΙΟΥ ΕΡΩΤΗΣΕΙΣ ΘΕΩΡΙΑΣ σε word! ΕΠΙΜΕΛΕΙΑ: ΚΩΝΣΤΑΝΤΙΝΟΣ ΤΣΟΛΚΑΣ
ΜΑΘΗΜΑΤΙΚΑ Α' ΓΥΜΝΑΣΙΟΥ ΕΡΩΤΗΣΕΙΣ ΘΕΩΡΙΑΣ σε word! ΕΠΙΜΕΛΕΙΑ: ΚΩΝΣΤΑΝΤΙΝΟΣ ΤΣΟΛΚΑΣ Ένα «ανοικτό» αρχείο, δηλαδή επεξεργάσιμο που όλοι μπορούν να συμμετέχουν είτε προσθέτοντας είτε διορθώνοντας υλικό. Μετά
Διαβάστε περισσότεραΓΕΩΜΕΤΡΙΑ Α ΛΥΚΕΙΟΥ ΕΠΑΝΑΛΗΠΤΙΚΟ ΦΥΛΛΑΔΙΟ ΕΠΙΜΕΛΕΙΑ ΑΥΓΕΡΙΝΟΣ ΒΑΣΙΛΗΣ ΕΠΙΜΕΛΕΙΑ: ΑΥΓΕΡΙΝΟΣ ΒΑΣΙΛΗΣ
ΩΜΤΡΙ ΛΥΚΙΟΥ ΠΝΛΗΠΤΙΚΟ ΦΥΛΛΙΟ ΠΙΜΛΙ ΥΡΙΝΟΣ ΣΙΛΗΣ ΠΙΜΛΙ: ΥΡΙΝΟΣ ΣΙΛΗΣ ΘΜΤ ΘΩΡΙΣ ΚΦΛΙΟ ο Τ ΣΙΚ ΩΜΤΡΙΚ ΣΧΗΜΤ ΘΜ ο Τι καλείται μέσο ενός ευθυγράμμου τμήματος και τι ισχύει γι αυτό ; ΠΝΤΗΣΗ Μέσο ενός ευθύγραμμου
Διαβάστε περισσότεραΜαθηματικά Α Γυμνασίου
Μαθηματικά Α Γυμνασίου Επαναληπτικές ασκήσεις Στέλιος Μιχαήλογλου Ασκήσεις. Δίνεται η παράσταση 7 : α) Να αποδείξετε ότι Α=8. β) Ο αριθμός Α είναι πρώτος ή σύνθετος; γ) Να αναλύσετε τον αριθμό Α σε γινόμενο
Διαβάστε περισσότερα