ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΚΑΙ ΜΗΧΑΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΚΑΙ ΜΗΧΑΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ"

Transcript

1 ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΚΑΙ ΜΗΧΑΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ ΗΜΥ 311: Διακριτή Ανάλυση και Δομές Χειμερινό Εξάμηνο 016 Σειρά Ασκήσεων : Συναρτήσεις, Σχέσεις, Σειρές και Αθροίσματα, Αλγόριθμοι και Πολυπλοκότητα Exercise 1 Problem.3.1 Why is f ot a fuctio from R to R if a) f (x) = 1/x The expressio 1/x is meaigless for x = 0, which is oe of the elemets i the domai; thus the "rule" is o rule at all. I other words, f (0) is ot defied. b) f (x) = x Thigs lie 3 udefied (or, at best, are complex umbers). c) f (x) = ± (x + 1 The "rule" for f is ambiguous. We must have f (x) defied uiquely, but here there are two values associated with every x, the positive square root ad the egative square root of x + 1. Problem.3.5 (optioal) I each case we wat to fid the domai (the set o which the fuctio operates, which is implicitly stated i the problem) ad the rage (the set of possible output values). a) Clearly the domai is the set of all bit strigs. The rage is Z; the fuctio evaluated at a strig with l's ad o 0's is, ad the fuctio evaluated at a strig with 0's ad o l's is -. b) Agai the domai is clearly the set of all bit strigs. Sice there ca be ay atural umber of 0's i a bit strig, the value of the fuctio ca be 0,, 4,... Therefore the rage is the set of eve atural umbers. c) Agai the domai is the set of all bit strigs. Sice the umber of leftover bits ca be ay whole umber from 0 to 7 (if it were more, the we could form aother byte), the rage is {0, 1,, 3, 4, 5, 6, 7}. 1

2 d) As the problem states, the domai is the set of positive itegers. Oly perfect squares ca be fuctio values, ad clearly every positive perfect square is possible. Therefore, the rage is {l, 4, 9, 16,... }. Problem.3.3 a) Oe way to determie whether a fuctio is a bijectio is to try to costruct its iverse. This fuctio is a bijectio, sice its iverse (obtaied by solvig y = x + 1 for x) is the fuctio g(y) = (y - 1) /.Alteratively, we ca argue directly. To show that the fuctio is oe-to-oe, ote that if x + 1 = x' + 1, the x = x'. To show that the fuctio is oto, ote that ( (y - 1) /) + 1 = y, so every umber is i the rage. b) This fuctio is ot a bijectio, sice its rage is the set of real umbers greater tha or equal to 1 (which is sometimes writte [1, )), ot all of R. (It is ot ijective either.) c) This fuctio is a bijectio, sice it has a iverse fuctio, amely the fuctio f(y) = y 1/3 (obtaied by solvig y = x 3 for x). d) This fuctio is ot a bijectio. It is easy to see that it is ot ijective, sice x ad -x have the same image, for all real umbers x. A little wor shows that the rage is oly { y 0.5 y < 1} = [0.5, 1). Problem.4.7 Oe patter is that each term is twice the precedig term. A formula for this would be that the th term is -l. Aother patter is that we obtai the ext term by addig icreasig values to the previous term. Thus to move from the first term to the secod we add 1; to move from the secod to the third we add ; the add 3, ad so o. So the sequece would start out 1,, 4, 7, 11, 16,,... We could also have trivial aswers such as the rule that the first three terms are 1,, 4 ad all the rest are 17 (so the sequece is 1,, 4, 17, 17, 17,... ), or that the terms simply repeat 1,, 4, 1,, 4, 1,, 4,... Here is aother patter: Tae poits o the uit circle, ad coect each of them to all the others by lie segmets. The iside of the circle will be divided ito a umber of regios. What is the largest this umber ca be? Call that value a. If there is oe poit, the there are o lies ad therefore just the oe origial regio iside the circle; thus a1 = 1. If =, the the oe chord divides the iterior ito two parts, so a =. Three poits give us a triagle, ad that maes four regios (the iside of the triagle ad the three pieces outside the triagle), so a3 = 4. Careful drawig shows that the sequece starts out 1,, 4, 8, 16, 31. That's right: 31, ot 3.

3 Problem.4.9 (optioal) We eed to compute the terms of the sequece oe at a time, sice each term is depedet upo oe or more of the previous terms. a) We are give ao =. The, by the recurrece relatio a = 6a-1, we see (by lettig = 1) that a1 = 6ao = 6 = 1. Similarly a = 6a1 = 6 1 = 7, the a3 = 6a = 6 7 = 43, ad a4 = 6a3 = 6 43 = 59. b) a1 = (give), a = a1 = = 4, a3 =a = 4 = 16, a4 =a3 = 16 = 56, a5 =a4 = 56 = c) This time each term depeds o the two previous terms. We are give a0 = 1 ad a1 =. To compute a we let = i the recurrece relatio, obtaiig a = a1 + 3a0 = = 5. The we have a3 = a + 3a1 = = 11 ad a4 = a3 + 3a = = 6. d) ao = 1 (give), a1 = 1 (give), a = a1+ ao = = 6, a3 = 3a + 3 a1 = = 7, a4 = 4a3 + 4 a = = 04. e) We are give ao = 1, a1 =, ad a = 0. The a3 = a + a0 = = 1 ad a4 = a3 + a1 = 1 + = 3. Problem a) Note that = 8 ad x = 9. Iitially, i is set equal to 1. The while loop is executed as log as i 8 ad the i th elemet of the list is ot equal to 9. Thus, o the first pass we chec that 1 8 ad that 9 1 (sice a1 = 1), ad therefore perform the statemet i := i + 1. At this poit i =. We chec that 8 ad the i th elemet of the list is ot equal to 9. Thus o the first pass we chec that 1 8 ad 9 3, ad therefore agai icremet i, this time to 3. This process cotiues util i = 7. At that poit the coditio "i 8 ad 9 a," is false, sice a1 = 9. Therefore the body of the loop is ot executed (so i is still equal to 7), ad cotrol passes beyod the loop. The ext statemet is the if... the statemet. The coditio is satisfied, sice 7 8, so the statemet locatio := i is executed, ad locatio receives the value 7. The else clause is ot executed. This completes the procedure, so locatio has the correct value, amely 7, which idicates the locatio of the elemet x (amely 9) i the list: 9 is the seveth elemet. b) Iitially, i is set equal to 1 ad j is set equal to 8. Sice i < j at this poit, the steps of the while loop are executed. First m is set equal to [(l + 8)/] = 4. The sice x (which equals 9) is greater tha a4 (which equals 5), the statemet i := m + 1 is executed, so i ow has the value 5. At this poit the first iteratio through the loop is fiished, ad the search has bee arrowed to the sequece a5,..., a8. I the ext pass through the loop (there is aother pass sice i < j is still true), m becomes [(5 + 8)/] = 6. Sice agai x > am, we reset i to be m + 1, which is 7. The loop is ow repeated with i = 7 ad j = 8. This time m becomes 7, so the test x > am (i.e., 9 > 9) fails; thus j := m is executed, so ow j = 7. At this poit i j, so there are o more iteratios of the loop. Istead cotrol passes to the statemet beyod the loop. Sice the coditio x = a, is true, locatio is set to 7, as it should be, ad the algorithm is fiished. 3

4 Problem There are four passes through the list. O the first pass, the 3 ad the 1 are iterchaged first, the the ext two comparisos produce o iterchages, ad fially the last compariso results i the iterchage of the 7 ad the 4. Thus after oe pass the list reads 1, 3, 5, 4, 7. Durig the ext pass, the 5 ad the 4 are iterchaged, yieldig 1, 3, 4, 5, 7. There are two more passes, but o further iterchages are made, sice the list is ow i order. Problem If f(x) is Θ (g(x)), the f(x) C g(x) ad g(x) (x)i for all x >. Thus f(x) is O(g(x)) ad g(x) is O(f(x)). Coversely, suppose that f(x) is O(g(x)) ad g(x) is O(f(x)). The (with appropriate choice of variable ames) we may assume that f(x) Cg(x) ad g(x) Cf(x) for all x >. (The here will be the larger of the two 's ivolved i the hypotheses.) If C > 0 the we ca tae C1 = C -1 to obtai the desired iequalities i "f(x) is Θ (g(x))." If C 0, the g(x) = 0 for all x >, ad hece by the first iequality f(x) = 0 for all x > ; thus we have f(x) = g(x) for all x >, ad we ca tae C1=C=1. Problem (optioal) a) We ca express the suggested algorithm i pseudocode as follows. Notice that the Boolea variable disjoit is set to true at the begiig of the compariso of sets S, ad S1, ad becomes false if ad whe we fid a elemet commo to those two sets. If disjoit is ever set to false, the we have foud a disjoit pair, ad aswer is set to true. This process is repeated for each pair of sets (cotrolled by the outer two loops). procedure disjoitpair(s1, S,..., S : subsets of {1,,..., }) aswer:= false for i := 1 to for j := i + 1 to disjoit := true for := 1 to if ϵ Si ad ϵ Sj the disjoit:= false if disjoit the aswer := true retur aswer b) The three ested loops imply that the elemethood test eeds to be applied O( 3 ) times. 4

5 Problem Recall the defiitios: R is reflexive if (a,a)ϵr for all a; R is symmetric if (a,b)ϵr always implies (b, a)ϵr; R is atisymmetric if (a, b)ϵr ad (b, a)ϵr always implies a = b; ad R is trasitive if (a, b)ϵr ad (b, c)ϵr always implies (a, c)ϵr. a) It is tautological that everyoe who has visited Web page a has also visited Web page a, so R is reflexive. It is ot symmetric, because there surely are Web pages a ad b such that the set of people who visited a is a proper subset of the set of people who visited b (for example, the oly li to page a may be o page b). Whether R is atisymmetric i truth is hard to say, but it is certaily coceivable that there are two differet Web pages a ad b that have had exactly the same set of visitors. I this case, (a, b)ϵr ad (b, a)ϵr, so R is ot atisymmetric. Fially, R is trasitive: if everyoe who has visited a has also visited b, ad everyoe who has visited b has also visited c, the clearly everyoe who has visited a has also visited c. b) This relatio is ot reflexive, because for ay page a that has lis o it, (a, a) R. The defiitio of R is symmetric i its very statemet, so R is clearly symmetric. Also R is certaily ot atisymmetric, because there surely are two differet Web pages a ad b out there that have o commo lis foud o them. Fially, R is ot trasitive, because the two Web pages just metioed, assumig they have lis at all, give a example of the failure of the defiitio: (a, b)ϵr ad (b, a)ϵr, but (a, a) R. c) This relatio is ot reflexive, because for ay page a that has o lis o it, (a, a) R. The defiitio of R is symmetric i its very statemet, so R is clearly symmetric. Also R is certaily ot atisymmetric, because there surely are two differet Web pages a ad b out there that have a commo li foud o them. Fially, R is surely ot trasitive. Page a might have oly oe li (say to this textboo), page c might have oly oe li differet from this (say to the Erdos Number Project), ad page b may have oly the two lis metioed i this setece. The (a, b)ϵr ad (b, c)ϵr, but (a, c) R. d) This relatio is probably ot reflexive, because there probably exist Web pages out there with o lis at all to them (for example, whe they are i the process of beig writte ad tested); for ay such page a we have (a, a) R. The defiitio of R is symmetric i its very statemet, so R is clearly symmetric. Also R is certaily ot atisymmetric, because there surely are two differet Web pages a ad b out there that are refereced by some third page. Fially, R is surely ot trasitive. Page a might have oly oe page that lis. 5

6 Problem We eed to show two thigs. First, we eed to show that if a relatio R is symmetric, the R=R -1, which meas we must show that R R -1 ad R -1 R. To do this, let (a, b) R. Sice R is symmetric, this implies that (b,a) R. But sice R -1 cosists of all pairs (a,b) such that (b,a) R, this meas that (a, b) R -1. Thus we have show that R R -1. Next let (a, b) R -1. By defiitio this meas that (b,a) R. Sice R is symmetric, this implies that (a,b) R as well. Thus we have show that R -1 R. Secod we eed to show that R = R -1 implies that R is symmetric. To this ed we let (a, b) R ad try to show that (b, a) is also ecessarily a elemet of R. Sice (a, b) R, the defiitio tells us that (b, a) R -1. But sice we are uder the hypothesis that R = R -1, this tells us that (b, a) R, exactly as desired. Problem 9..1 We simply eed to fid solutios of the iequality, which we ca do by commo sese. The set is { (1,, 3),(1,,4),(1,3,4), (,3,4)}. Exercise..: Όλα τα ζεύγη θετικών ακέραιων αριθμών a) ( (x,y) όπου x,yz με x>0 και y>0)..: Το σύνολο των θετικών ακέραιων αριθμών b) c) d)..: Z..: Z= 0,1,,...9..: Όλα τα πιθανά bit strigs..: Z= 0,1,,.....: Όλα τα πιθανά bit strigs..: Z= 0,1,,... όπου ο αριθμός του ψηφίου του strig 6

7 Exercise 3 a) 1:1 και επί b) Όχι 1:1, όχι επί c) 1:1 και επί Exercise 4 a) ΝΑΙ b) ΟΧΙ c) ΝΑΙ d) ΟΧΙ Exercise 5 a), ακέραιο υπάρχει άθροισμα ακεραίων που να δίνει τον ακέραιο για Z, f (,0) b) OXI π.χ. δεν μπορούν να εκφραστούν οι αρνητικοί αριθμοί c) OXI π.χ. δεν μπορούν να εκφραστούν οι αρνητικοί αριθμοί d), f (,0) ίδια αιτιολογία με διαφορά ακεραίου 7

8 Exercise 6 a) Cotrapositive Proof Αν η g δεν είναι 1:1, τότε: x, x (.. της g), ώστε x x και g( x ) g( x ) και f g( x ) f ( g( x )) f ( g( x )) 1 1 οπότε θα είχαμε f g όχι 1:1 αρα αναγκαστικά η g πρέπει να είναι 1:1 b) g όχι επί f επί a a a a b b b b c c c f g =>f g a a a a a b b b b b c c c ΔΕΝ ΙΣΧΥΕΙ 8

9 Exercise 7 Η f είναι αντιστρέψιμη είναι 1:1 1 για α=0 έχουμε f(x)=0 x R ot 1:1 για α 0 έχουμε f(x )-f(x )=α( x x ) f(x ) f(x ) για x x f είναι 1:1 για α 0 y y ax x y 1 με f ( ) y Exercise 8 a) f ( x) f ( x) f ( x) A B A B 1 Περίπτωση: x A xb x A B f ( x) f ( x) f ( x) 0 00 TRUE A B A B Περίπτωση: x A xb x A B f ( x) f ( x) f ( x) 0 01TRUE A B A B 3 Περίπτωση: x A xb x A B f ( x) f ( x) f ( x) 0 10 TRUE A B A B 4 Περίπτωση: x A xb x A B f ( x) f ( x) f ( x) 111 TRUE A B A B Ισχύει για όλες τις περιπτώσεις και άρα ΙΣΧΥΕΙ b) f ( x) f ( x) f ( x) f ( x) f ( x) A B A B A B 1 Περίπτωση: x A x B x A B f ( x) f ( x) f ( x) f ( x) f ( x) TRUE A B A B A B 9

10 Περίπτωση: x A x B x A B f ( x) f ( x) f ( x) f ( x) f ( x) TRUE A B A B A B 3 Περίπτωση: x A x B x A B f ( x) f ( x) f ( x) f ( x) f ( x) TRUE A B A B A B 4 Περίπτωση: x A xb x A B f ( x) f ( x) f ( x) f ( x) f ( x) 11111TRUE A B A B A B Ισχύει για όλες τις περιπτώσεις και άρα ΙΣΧΥΕΙ c) f ( x) 1 f ( x) A A 1 Περίπτωση: x A x A f ( x) 1 f ( x) 0 11 TRUE A A Περίπτωση: x A x A f ( x) 1 f ( x) 11 0 TRUE A A Ισχύει για όλες τις περιπτώσεις και άρα ΙΣΧΥΕΙ d) f ( x) f ( x) f ( x) f ( x) f ( x) A B A B A B 1 Περίπτωση: x A x B x A B f ( x) f ( x) f ( x) f ( x) f ( x) TRUE AB A B A B Περίπτωση: x A x B x A B f ( x) f ( x) f ( x) f ( x) f ( x) TRUE AB A B A B 3 Περίπτωση: x A x B x A B f ( x) f ( x) f ( x) f ( x) f ( x) TRUE AB A B A B 10

11 4 Περίπτωση: x A x B x A B f ( x) f ( x) f ( x) f ( x) f ( x) TRUE AB A B A B Ισχύει για όλες τις περιπτώσεις και άρα ΙΣΧΥΕΙ Exercise 9 a) x x Θέτουμε m x τότε m x m 1 m x ( m 1) m x m 1 m x και m x x x b) Με τον ίδιο τρόπο λύνεται και το δεύτερο ερώτημα. Exercise 10 Αυτοπαθής Συμμετρική Αντισυμμετρική Μεταβατική a) b) c) d) e) f) 11

12 Exercise 11 Αυτοπαθής Συμμετρική Αντισυμμετρική Μεταβατική a) b) c) d) S R =>R S R S = {(1,),(1,3),(1,4),(,),(,3),(,4),(3,),(3,3),(3,4)} R S S R (,) (1,1) (,1) (,3) (1,) (,) (,4) (,1) (,3) (3,) (,) (,4) (3,3) (3,3) (3,1) (3,4) (4,4) (3,) (3,3) (3,4) 1

13 R R R R (,) (,) (,) (,3) (,3) (,3) (,4) (,4) (,4) (3,) (3,) (3,) (3,3) (3,3) (3,3) (3,4) (3,4) (3,4) S T T S (1,1) (,4) (1,4) (1,) (4,) (,4) (,1) (4,) (,) (3,3) (4,4) T S S T (,4) (1,1) (,4) (4,) (1,) (4,1) (,1) (4,) (,) (3,3) (4,4) 13

14 S T R R (S T) (,4) (,) (4,) (4,1) (,3) (4,3) (4,) (,4) (4,4) (3,) (3,3) (3,4) T R S (R S) T) (,4) (1,) (4,) (4,) (1,3) (4,3) (1,4) (4,4) (,) (,3) (,4) (3,) (3,3) (3,4) R ( S T) ( R S) T Exercise R R R R R Έστω R: αυτοπαθής R Rή, ό a,( a, a) R ( a, a) R R Έστω R : αυτοπαθής a a a R R a a R R 1 1,(, ) και (, ) (, ), άρα αυτοπαθής Οπότε με επαγωγή R αυτοπαθής 14

15 Exercise 13 R R R R R 1 1 R : ή, R R ή ό : R : ή ( a, b) R ( b, a) R ( b a) R : ή ( c, d) R ( d, c) R ( c d) 1 1 Θέλω νδο για τυχαίο ( x, y) R ( y, x) R ( x y) 1 ( x, y) R c, ώστε ( x, c) R και ( c, y) με ( x, c) R ( c, x) R ( c, y) R ( y, c) R R με R R R, έχουμε ( y, c) R ( c, x) R ( y, x) R 1 1 Άρα ( x, y) R ( y, x) R 1 1 ε επαγωγή R : ή 15

16 Exercise 14 a) a1 a a3 a4 a5 a6 a7 a8 3 *3+5 *11+5 *7+5 * b) a1 a a3 a4 a5 a6 a7 a Exercise 15 a) ( 1) 1 ( ) b) c) 4 j0 or js j ( ) ( ) ( ) ( ) ( ) ( ) 11 4 j0 41 ( ) 1 j ( ) (1/ j) d) 1 (1 111) 4 js Exercise 16 a) b) c) 8 j0 8 j1 81 j j j j 0 1 ( ) 1 ( ) ( ) ( ) ( ) (1 ) 17 j j 1 16

17 d) 8 j0 81 ( 3) 1 j ( 3) Exercise 17 a) b) c) d) (i 3 j) i 3 j 4 i 9 j 4(1 3) 9(1 ) 51 i1 j1 i1 j1 i1 j1 i1 j (3i j) 3i j 1 i 6 j 1(0 1 ) 6(0 1 3) 0 i0 j0 i0 j0 i0 j0 i0 j0 3 3 ( j) j 3 j 3(0 1 ) 9 i1 j0 j0 i1 j i j i j i j (1 3 ) (0 1 ) 180 i0 j1 i0 j1 i0 j1 Exercise έ a a 1 1 ( 1) ( ) ( a a 1) ( a a0) ( 1) ( 1) Exercise 19 Bubble sort

18 Exercise 0 a) b) c) d) e) f) f x x x x x O x C ( ) , ( ), 8 f x x x x x O x C ( ) , ( ), 1001 f x x x x x x O x C ( ) log, ( ), 1 4 x f ( x) O( x ) l (l ) f x x x f ( x) floor( x) ceil( x) x x x( x 1) x x x x ( ) (lim lim lim O( x ) x x x x x x x x O x C, ( ), Exercise 1 a) 3 x 7 f ( x ) O ( x ) f ( x) ( x) f ( x) 3 x, ( x) b) f x x x ( ) 7 f ( x) x x 3 x O( x ) f x f ( x) x ( for x 7) ( x ) ( ) ( x ) c) 1 1 f ( x) x x 1 x 3x f ( x) x x O( x) 1 x x f ( x) x x ( x) f ( x) ( x) 18

19 d) f x ( ) log( x 1) f ( x) log ( x x ) log ( x ) log( x) log() 3log x, x f x x x f x x ( ) log( ) log ( ) (log ), Με κατάλληλη αλλαγή βάσης e) f ( x)log x (log x), f ( x) log () log x O(log x) (log x) (log x) Exercise Έστω f(x)=x, g(x)=x (f(x) O(g(x)) όμως x C x C x x, Άρα δεν ισχύει 19

20 Exercise j x j 1 j 1 x j 1 1 x ( j, j 1), Therefore x j dx ( 1) x dx (3 1) x dx (+) x 1 1 dx x j j 1 H dx 1 l( ) 1 l( ), e H O(log ) x 1 0

21 Exercise 4 M max{ a, a,... a } 1 f ( x) a x... a a x a x... a a x a x... a x M ( 1) x Cx, O( x ) , m, m : logest of ai, i a a a Τότε i i, x x a 1 a0 a f ( x) ax... a0 x a... x x x f ( x) ( x ) Αποδείχτηκε Exercise 5 x for example: 0 x x 1 x x ( 1), x ( x ) θέλω τετραγωνίζοντας για, πολ/σμοί. 1 Με απλό αλγόριθμο θέλω συνολικά πολ/σμούς η Πιο αποδοτική η 1 μέθοδος. 1

ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΚΑΙ ΜΗΧΑΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ

ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΚΑΙ ΜΗΧΑΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ ΗΜΥ 3: ΔΙΑΚΡΙΤΗ ΑΝΑΛΥΣΗ ΚΑΙ ΔΟΜΕΣ ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΚΑΙ ΜΗΧΑΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ ΗΜΥ 3: Διακριτή Ανάλυση και Δομές Χειμερινό Εξάμηνο 06 Σειρά Ασκήσεων : Συναρτήσεις, Σχέσεις, Σειρές και Αθροίσματα,

Διαβάστε περισσότερα

L.K.Gupta (Mathematic Classes) www.pioeermathematics.com MOBILE: 985577, 4677 + {JEE Mai 04} Sept 0 Name: Batch (Day) Phoe No. IT IS NOT ENOUGH TO HAVE A GOOD MIND, THE MAIN THING IS TO USE IT WELL Marks:

Διαβάστε περισσότερα

1. For each of the following power series, find the interval of convergence and the radius of convergence:

1. For each of the following power series, find the interval of convergence and the radius of convergence: Math 6 Practice Problems Solutios Power Series ad Taylor Series 1. For each of the followig power series, fid the iterval of covergece ad the radius of covergece: (a ( 1 x Notice that = ( 1 +1 ( x +1.

Διαβάστε περισσότερα

IIT JEE (2013) (Trigonomtery 1) Solutions

IIT JEE (2013) (Trigonomtery 1) Solutions L.K. Gupta (Mathematic Classes) www.pioeermathematics.com MOBILE: 985577, 677 (+) PAPER B IIT JEE (0) (Trigoomtery ) Solutios TOWARDS IIT JEE IS NOT A JOURNEY, IT S A BATTLE, ONLY THE TOUGHEST WILL SURVIVE

Διαβάστε περισσότερα

CHAPTER 25 SOLVING EQUATIONS BY ITERATIVE METHODS

CHAPTER 25 SOLVING EQUATIONS BY ITERATIVE METHODS CHAPTER 5 SOLVING EQUATIONS BY ITERATIVE METHODS EXERCISE 104 Page 8 1. Find the positive root of the equation x + 3x 5 = 0, correct to 3 significant figures, using the method of bisection. Let f(x) =

Διαβάστε περισσότερα

Last Lecture. Biostatistics Statistical Inference Lecture 19 Likelihood Ratio Test. Example of Hypothesis Testing.

Last Lecture. Biostatistics Statistical Inference Lecture 19 Likelihood Ratio Test. Example of Hypothesis Testing. Last Lecture Biostatistics 602 - Statistical Iferece Lecture 19 Likelihood Ratio Test Hyu Mi Kag March 26th, 2013 Describe the followig cocepts i your ow words Hypothesis Null Hypothesis Alterative Hypothesis

Διαβάστε περισσότερα

2 Composition. Invertible Mappings

2 Composition. Invertible Mappings Arkansas Tech University MATH 4033: Elementary Modern Algebra Dr. Marcel B. Finan Composition. Invertible Mappings In this section we discuss two procedures for creating new mappings from old ones, namely,

Διαβάστε περισσότερα

The Heisenberg Uncertainty Principle

The Heisenberg Uncertainty Principle Chemistry 460 Sprig 015 Dr. Jea M. Stadard March, 015 The Heiseberg Ucertaity Priciple A policema pulls Werer Heiseberg over o the Autobah for speedig. Policema: Sir, do you kow how fast you were goig?

Διαβάστε περισσότερα

Homework 4.1 Solutions Math 5110/6830

Homework 4.1 Solutions Math 5110/6830 Homework 4. Solutios Math 5/683. a) For p + = αp γ α)p γ α)p + γ b) Let Equilibria poits satisfy: p = p = OR = γ α)p ) γ α)p + γ = α γ α)p ) γ α)p + γ α = p ) p + = p ) = The, we have equilibria poits

Διαβάστε περισσότερα

C.S. 430 Assignment 6, Sample Solutions

C.S. 430 Assignment 6, Sample Solutions C.S. 430 Assignment 6, Sample Solutions Paul Liu November 15, 2007 Note that these are sample solutions only; in many cases there were many acceptable answers. 1 Reynolds Problem 10.1 1.1 Normal-order

Διαβάστε περισσότερα

SUPERPOSITION, MEASUREMENT, NORMALIZATION, EXPECTATION VALUES. Reading: QM course packet Ch 5 up to 5.6

SUPERPOSITION, MEASUREMENT, NORMALIZATION, EXPECTATION VALUES. Reading: QM course packet Ch 5 up to 5.6 SUPERPOSITION, MEASUREMENT, NORMALIZATION, EXPECTATION VALUES Readig: QM course packet Ch 5 up to 5. 1 ϕ (x) = E = π m( a) =1,,3,4,5 for xa (x) = πx si L L * = πx L si L.5 ϕ' -.5 z 1 (x) = L si

Διαβάστε περισσότερα

CHAPTER 103 EVEN AND ODD FUNCTIONS AND HALF-RANGE FOURIER SERIES

CHAPTER 103 EVEN AND ODD FUNCTIONS AND HALF-RANGE FOURIER SERIES CHAPTER 3 EVEN AND ODD FUNCTIONS AND HALF-RANGE FOURIER SERIES EXERCISE 364 Page 76. Determie the Fourier series for the fuctio defied by: f(x), x, x, x which is periodic outside of this rage of period.

Διαβάστε περισσότερα

Homework 3 Solutions

Homework 3 Solutions Homework 3 Solutions Igor Yanovsky (Math 151A TA) Problem 1: Compute the absolute error and relative error in approximations of p by p. (Use calculator!) a) p π, p 22/7; b) p π, p 3.141. Solution: For

Διαβάστε περισσότερα

Homework for 1/27 Due 2/5

Homework for 1/27 Due 2/5 Name: ID: Homework for /7 Due /5. [ 8-3] I Example D of Sectio 8.4, the pdf of the populatio distributio is + αx x f(x α) =, α, otherwise ad the method of momets estimate was foud to be ˆα = 3X (where

Διαβάστε περισσότερα

Presentation of complex number in Cartesian and polar coordinate system

Presentation of complex number in Cartesian and polar coordinate system 1 a + bi, aεr, bεr i = 1 z = a + bi a = Re(z), b = Im(z) give z = a + bi & w = c + di, a + bi = c + di a = c & b = d The complex cojugate of z = a + bi is z = a bi The sum of complex cojugates is real:

Διαβάστε περισσότερα

Finite Field Problems: Solutions

Finite Field Problems: Solutions Finite Field Problems: Solutions 1. Let f = x 2 +1 Z 11 [x] and let F = Z 11 [x]/(f), a field. Let Solution: F =11 2 = 121, so F = 121 1 = 120. The possible orders are the divisors of 120. Solution: The

Διαβάστε περισσότερα

n r f ( n-r ) () x g () r () x (1.1) = Σ g() x = Σ n f < -n+ r> g () r -n + r dx r dx n + ( -n,m) dx -n n+1 1 -n -1 + ( -n,n+1)

n r f ( n-r ) () x g () r () x (1.1) = Σ g() x = Σ n f < -n+ r> g () r -n + r dx r dx n + ( -n,m) dx -n n+1 1 -n -1 + ( -n,n+1) 8 Higher Derivative of the Product of Two Fuctios 8. Leibiz Rule about the Higher Order Differetiatio Theorem 8.. (Leibiz) Whe fuctios f ad g f g are times differetiable, the followig epressio holds. r

Διαβάστε περισσότερα

Μαθηματικά Πληροφορικής Συνδυαστικά Θεωρήματα σε Πεπερασμένα Σύνολα

Μαθηματικά Πληροφορικής Συνδυαστικά Θεωρήματα σε Πεπερασμένα Σύνολα Μαθηματικά Πληροφορικής Συνδυαστικά Θεωρήματα σε Πεπερασμένα Σύνολα Μια διμελής σχέση πάνω σε ένα σύνολο X καλείται μερική διάταξη αν η είναι ανακλαστική, αντισυμμετρική και μεταβατική, δηλαδή: a X, a

Διαβάστε περισσότερα

EE512: Error Control Coding

EE512: Error Control Coding EE512: Error Control Coding Solution for Assignment on Finite Fields February 16, 2007 1. (a) Addition and Multiplication tables for GF (5) and GF (7) are shown in Tables 1 and 2. + 0 1 2 3 4 0 0 1 2 3

Διαβάστε περισσότερα

MATH 38061/MATH48061/MATH68061: MULTIVARIATE STATISTICS Solutions to Problems on Matrix Algebra

MATH 38061/MATH48061/MATH68061: MULTIVARIATE STATISTICS Solutions to Problems on Matrix Algebra MATH 38061/MATH48061/MATH68061: MULTIVARIATE STATISTICS Solutios to Poblems o Matix Algeba 1 Let A be a squae diagoal matix takig the fom a 11 0 0 0 a 22 0 A 0 0 a pp The ad So, log det A t log A t log

Διαβάστε περισσότερα

Ordinal Arithmetic: Addition, Multiplication, Exponentiation and Limit

Ordinal Arithmetic: Addition, Multiplication, Exponentiation and Limit Ordinal Arithmetic: Addition, Multiplication, Exponentiation and Limit Ting Zhang Stanford May 11, 2001 Stanford, 5/11/2001 1 Outline Ordinal Classification Ordinal Addition Ordinal Multiplication Ordinal

Διαβάστε περισσότερα

Matrices and Determinants

Matrices and Determinants Matrices and Determinants SUBJECTIVE PROBLEMS: Q 1. For what value of k do the following system of equations possess a non-trivial (i.e., not all zero) solution over the set of rationals Q? x + ky + 3z

Διαβάστε περισσότερα

Concrete Mathematics Exercises from 30 September 2016

Concrete Mathematics Exercises from 30 September 2016 Concrete Mathematics Exercises from 30 September 2016 Silvio Capobianco Exercise 1.7 Let H(n) = J(n + 1) J(n). Equation (1.8) tells us that H(2n) = 2, and H(2n+1) = J(2n+2) J(2n+1) = (2J(n+1) 1) (2J(n)+1)

Διαβάστε περισσότερα

derivation of the Laplacian from rectangular to spherical coordinates

derivation of the Laplacian from rectangular to spherical coordinates derivation of the Laplacian from rectangular to spherical coordinates swapnizzle 03-03- :5:43 We begin by recognizing the familiar conversion from rectangular to spherical coordinates (note that φ is used

Διαβάστε περισσότερα

Μια εισαγωγή στα Μαθηματικά για Οικονομολόγους

Μια εισαγωγή στα Μαθηματικά για Οικονομολόγους Μια εισαγωγή στα Μαθηματικά για Οικονομολόγους Μαθηματικά Ικανές και αναγκαίες συνθήκες Έστω δυο προτάσεις Α και Β «Α είναι αναγκαία συνθήκη για την Β» «Α είναι ικανή συνθήκη για την Β» Α is ecessary for

Διαβάστε περισσότερα

ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΚΑΙ ΜΗΧΑΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ

ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΚΑΙ ΜΗΧΑΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΚΑΙ ΜΗΧΑΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ ΗΜΥ 11: Διακριτή Ανάλυση και Δοµές Χειµερινό Εξάµηνο 016 Σειρά Ασκήσεων : Συναρτήσεις, Σχέσεις, Σειρές και Αθροίσµατα, Αλγόριθµοι και Πολυπλοκότητα

Διαβάστε περισσότερα

Inverse trigonometric functions & General Solution of Trigonometric Equations. ------------------ ----------------------------- -----------------

Inverse trigonometric functions & General Solution of Trigonometric Equations. ------------------ ----------------------------- ----------------- Inverse trigonometric functions & General Solution of Trigonometric Equations. 1. Sin ( ) = a) b) c) d) Ans b. Solution : Method 1. Ans a: 17 > 1 a) is rejected. w.k.t Sin ( sin ) = d is rejected. If sin

Διαβάστε περισσότερα

Example Sheet 3 Solutions

Example Sheet 3 Solutions Example Sheet 3 Solutions. i Regular Sturm-Liouville. ii Singular Sturm-Liouville mixed boundary conditions. iii Not Sturm-Liouville ODE is not in Sturm-Liouville form. iv Regular Sturm-Liouville note

Διαβάστε περισσότερα

3.4 SUM AND DIFFERENCE FORMULAS. NOTE: cos(α+β) cos α + cos β cos(α-β) cos α -cos β

3.4 SUM AND DIFFERENCE FORMULAS. NOTE: cos(α+β) cos α + cos β cos(α-β) cos α -cos β 3.4 SUM AND DIFFERENCE FORMULAS Page Theorem cos(αβ cos α cos β -sin α cos(α-β cos α cos β sin α NOTE: cos(αβ cos α cos β cos(α-β cos α -cos β Proof of cos(α-β cos α cos β sin α Let s use a unit circle

Διαβάστε περισσότερα

Ψηφιακή Επεξεργασία Εικόνας

Ψηφιακή Επεξεργασία Εικόνας ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Ψηφιακή Επεξεργασία Εικόνας Φιλτράρισμα στο πεδίο των συχνοτήτων Διδάσκων : Αναπληρωτής Καθηγητής Νίκου Χριστόφορος Άδειες Χρήσης Το παρόν εκπαιδευτικό

Διαβάστε περισσότερα

Lecture 17: Minimum Variance Unbiased (MVUB) Estimators

Lecture 17: Minimum Variance Unbiased (MVUB) Estimators ECE 830 Fall 2011 Statistical Sigal Processig istructor: R. Nowak, scribe: Iseok Heo Lecture 17: Miimum Variace Ubiased (MVUB Estimators Ultimately, we would like to be able to argue that a give estimator

Διαβάστε περισσότερα

HOMEWORK 4 = G. In order to plot the stress versus the stretch we define a normalized stretch:

HOMEWORK 4 = G. In order to plot the stress versus the stretch we define a normalized stretch: HOMEWORK 4 Problem a For the fast loading case, we want to derive the relationship between P zz and λ z. We know that the nominal stress is expressed as: P zz = ψ λ z where λ z = λ λ z. Therefore, applying

Διαβάστε περισσότερα

ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 19/5/2007

ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 19/5/2007 Οδηγίες: Να απαντηθούν όλες οι ερωτήσεις. Αν κάπου κάνετε κάποιες υποθέσεις να αναφερθούν στη σχετική ερώτηση. Όλα τα αρχεία που αναφέρονται στα προβλήματα βρίσκονται στον ίδιο φάκελο με το εκτελέσιμο

Διαβάστε περισσότερα

The Simply Typed Lambda Calculus

The Simply Typed Lambda Calculus Type Inference Instead of writing type annotations, can we use an algorithm to infer what the type annotations should be? That depends on the type system. For simple type systems the answer is yes, and

Διαβάστε περισσότερα

Fractional Colorings and Zykov Products of graphs

Fractional Colorings and Zykov Products of graphs Fractional Colorings and Zykov Products of graphs Who? Nichole Schimanski When? July 27, 2011 Graphs A graph, G, consists of a vertex set, V (G), and an edge set, E(G). V (G) is any finite set E(G) is

Διαβάστε περισσότερα

Every set of first-order formulas is equivalent to an independent set

Every set of first-order formulas is equivalent to an independent set Every set of first-order formulas is equivalent to an independent set May 6, 2008 Abstract A set of first-order formulas, whatever the cardinality of the set of symbols, is equivalent to an independent

Διαβάστε περισσότερα

SOLVING CUBICS AND QUARTICS BY RADICALS

SOLVING CUBICS AND QUARTICS BY RADICALS SOLVING CUBICS AND QUARTICS BY RADICALS The purpose of this handout is to record the classical formulas expressing the roots of degree three and degree four polynomials in terms of radicals. We begin with

Διαβάστε περισσότερα

Quadratic Expressions

Quadratic Expressions Quadratic Expressions. The standard form of a quadratic equation is ax + bx + c = 0 where a, b, c R and a 0. The roots of ax + bx + c = 0 are b ± b a 4ac. 3. For the equation ax +bx+c = 0, sum of the roots

Διαβάστε περισσότερα

Μηχανική Μάθηση Hypothesis Testing

Μηχανική Μάθηση Hypothesis Testing ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Μηχανική Μάθηση Hypothesis Testing Γιώργος Μπορμπουδάκης Τμήμα Επιστήμης Υπολογιστών Procedure 1. Form the null (H 0 ) and alternative (H 1 ) hypothesis 2. Consider

Διαβάστε περισσότερα

2. THEORY OF EQUATIONS. PREVIOUS EAMCET Bits.

2. THEORY OF EQUATIONS. PREVIOUS EAMCET Bits. EAMCET-. THEORY OF EQUATIONS PREVIOUS EAMCET Bits. Each of the roots of the equation x 6x + 6x 5= are increased by k so that the new transformed equation does not contain term. Then k =... - 4. - Sol.

Διαβάστε περισσότερα

ST5224: Advanced Statistical Theory II

ST5224: Advanced Statistical Theory II ST5224: Advanced Statistical Theory II 2014/2015: Semester II Tutorial 7 1. Let X be a sample from a population P and consider testing hypotheses H 0 : P = P 0 versus H 1 : P = P 1, where P j is a known

Διαβάστε περισσότερα

Section 8.3 Trigonometric Equations

Section 8.3 Trigonometric Equations 99 Section 8. Trigonometric Equations Objective 1: Solve Equations Involving One Trigonometric Function. In this section and the next, we will exple how to solving equations involving trigonometric functions.

Διαβάστε περισσότερα

Statistical Inference I Locally most powerful tests

Statistical Inference I Locally most powerful tests Statistical Inference I Locally most powerful tests Shirsendu Mukherjee Department of Statistics, Asutosh College, Kolkata, India. shirsendu st@yahoo.co.in So far we have treated the testing of one-sided

Διαβάστε περισσότερα

Math221: HW# 1 solutions

Math221: HW# 1 solutions Math: HW# solutions Andy Royston October, 5 7.5.7, 3 rd Ed. We have a n = b n = a = fxdx = xdx =, x cos nxdx = x sin nx n sin nxdx n = cos nx n = n n, x sin nxdx = x cos nx n + cos nxdx n cos n = + sin

Διαβάστε περισσότερα

Other Test Constructions: Likelihood Ratio & Bayes Tests

Other Test Constructions: Likelihood Ratio & Bayes Tests Other Test Constructions: Likelihood Ratio & Bayes Tests Side-Note: So far we have seen a few approaches for creating tests such as Neyman-Pearson Lemma ( most powerful tests of H 0 : θ = θ 0 vs H 1 :

Διαβάστε περισσότερα

ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 6/5/2006

ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 6/5/2006 Οδηγίες: Να απαντηθούν όλες οι ερωτήσεις. Ολοι οι αριθμοί που αναφέρονται σε όλα τα ερωτήματα είναι μικρότεροι το 1000 εκτός αν ορίζεται διαφορετικά στη διατύπωση του προβλήματος. Διάρκεια: 3,5 ώρες Καλή

Διαβάστε περισσότερα

Introduction of Numerical Analysis #03 TAGAMI, Daisuke (IMI, Kyushu University)

Introduction of Numerical Analysis #03 TAGAMI, Daisuke (IMI, Kyushu University) Itroductio of Numerical Aalysis #03 TAGAMI, Daisuke (IMI, Kyushu Uiversity) web page of the lecture: http://www2.imi.kyushu-u.ac.jp/~tagami/lec/ Strategy of Numerical Simulatios Pheomea Error modelize

Διαβάστε περισσότερα

Bessel function for complex variable

Bessel function for complex variable Besse fuctio for compex variabe Kauhito Miuyama May 4, 7 Besse fuctio The Besse fuctio Z ν () is the fuctio wich satisfies + ) ( + ν Z ν () =. () Three kids of the soutios of this equatio are give by {

Διαβάστε περισσότερα

Section 7.6 Double and Half Angle Formulas

Section 7.6 Double and Half Angle Formulas 09 Section 7. Double and Half Angle Fmulas To derive the double-angles fmulas, we will use the sum of two angles fmulas that we developed in the last section. We will let α θ and β θ: cos(θ) cos(θ + θ)

Διαβάστε περισσότερα

α β

α β 6. Eerg, Mometum coefficiets for differet velocit distributios Rehbock obtaied ) For Liear Velocit Distributio α + ε Vmax { } Vmax ε β +, i which ε v V o Give: α + ε > ε ( α ) Liear velocit distributio

Διαβάστε περισσότερα

FREE VIBRATION OF A SINGLE-DEGREE-OF-FREEDOM SYSTEM Revision B

FREE VIBRATION OF A SINGLE-DEGREE-OF-FREEDOM SYSTEM Revision B FREE VIBRATION OF A SINGLE-DEGREE-OF-FREEDOM SYSTEM Revisio B By Tom Irvie Email: tomirvie@aol.com February, 005 Derivatio of the Equatio of Motio Cosier a sigle-egree-of-freeom system. m x k c where m

Διαβάστε περισσότερα

Math 446 Homework 3 Solutions. (1). (i): Reverse triangle inequality for metrics: Let (X, d) be a metric space and let x, y, z X.

Math 446 Homework 3 Solutions. (1). (i): Reverse triangle inequality for metrics: Let (X, d) be a metric space and let x, y, z X. Math 446 Homework 3 Solutions. (1). (i): Reverse triangle inequalit for metrics: Let (X, d) be a metric space and let x,, z X. Prove that d(x, z) d(, z) d(x, ). (ii): Reverse triangle inequalit for norms:

Διαβάστε περισσότερα

ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 24/3/2007

ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 24/3/2007 Οδηγίες: Να απαντηθούν όλες οι ερωτήσεις. Όλοι οι αριθμοί που αναφέρονται σε όλα τα ερωτήματα μικρότεροι του 10000 εκτός αν ορίζεται διαφορετικά στη διατύπωση του προβλήματος. Αν κάπου κάνετε κάποιες υποθέσεις

Διαβάστε περισσότερα

SCHOOL OF MATHEMATICAL SCIENCES G11LMA Linear Mathematics Examination Solutions

SCHOOL OF MATHEMATICAL SCIENCES G11LMA Linear Mathematics Examination Solutions SCHOOL OF MATHEMATICAL SCIENCES GLMA Linear Mathematics 00- Examination Solutions. (a) i. ( + 5i)( i) = (6 + 5) + (5 )i = + i. Real part is, imaginary part is. (b) ii. + 5i i ( + 5i)( + i) = ( i)( + i)

Διαβάστε περισσότερα

Econ 2110: Fall 2008 Suggested Solutions to Problem Set 8 questions or comments to Dan Fetter 1

Econ 2110: Fall 2008 Suggested Solutions to Problem Set 8  questions or comments to Dan Fetter 1 Eon : Fall 8 Suggested Solutions to Problem Set 8 Email questions or omments to Dan Fetter Problem. Let X be a salar with density f(x, θ) (θx + θ) [ x ] with θ. (a) Find the most powerful level α test

Διαβάστε περισσότερα

Partial Differential Equations in Biology The boundary element method. March 26, 2013

Partial Differential Equations in Biology The boundary element method. March 26, 2013 The boundary element method March 26, 203 Introduction and notation The problem: u = f in D R d u = ϕ in Γ D u n = g on Γ N, where D = Γ D Γ N, Γ D Γ N = (possibly, Γ D = [Neumann problem] or Γ N = [Dirichlet

Διαβάστε περισσότερα

Srednicki Chapter 55

Srednicki Chapter 55 Srednicki Chapter 55 QFT Problems & Solutions A. George August 3, 03 Srednicki 55.. Use equations 55.3-55.0 and A i, A j ] = Π i, Π j ] = 0 (at equal times) to verify equations 55.-55.3. This is our third

Διαβάστε περισσότερα

Phys460.nb Solution for the t-dependent Schrodinger s equation How did we find the solution? (not required)

Phys460.nb Solution for the t-dependent Schrodinger s equation How did we find the solution? (not required) Phys460.nb 81 ψ n (t) is still the (same) eigenstate of H But for tdependent H. The answer is NO. 5.5.5. Solution for the tdependent Schrodinger s equation If we assume that at time t 0, the electron starts

Διαβάστε περισσότερα

Degenerate Perturbation Theory

Degenerate Perturbation Theory R.G. Griffi BioNMR School page 1 Degeerate Perturbatio Theory 1.1 Geeral Whe cosiderig the CROSS EFFECT it is ecessary to deal with degeerate eergy levels ad therefore degeerate perturbatio theory. The

Διαβάστε περισσότερα

Lecture 2. Soundness and completeness of propositional logic

Lecture 2. Soundness and completeness of propositional logic Lecture 2 Soundness and completeness of propositional logic February 9, 2004 1 Overview Review of natural deduction. Soundness and completeness. Semantics of propositional formulas. Soundness proof. Completeness

Διαβάστε περισσότερα

Συστήματα Διαχείρισης Βάσεων Δεδομένων

Συστήματα Διαχείρισης Βάσεων Δεδομένων ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Συστήματα Διαχείρισης Βάσεων Δεδομένων Φροντιστήριο 9: Transactions - part 1 Δημήτρης Πλεξουσάκης Τμήμα Επιστήμης Υπολογιστών Tutorial on Undo, Redo and Undo/Redo

Διαβάστε περισσότερα

6.1. Dirac Equation. Hamiltonian. Dirac Eq.

6.1. Dirac Equation. Hamiltonian. Dirac Eq. 6.1. Dirac Equation Ref: M.Kaku, Quantum Field Theory, Oxford Univ Press (1993) η μν = η μν = diag(1, -1, -1, -1) p 0 = p 0 p = p i = -p i p μ p μ = p 0 p 0 + p i p i = E c 2 - p 2 = (m c) 2 H = c p 2

Διαβάστε περισσότερα

4.6 Autoregressive Moving Average Model ARMA(1,1)

4.6 Autoregressive Moving Average Model ARMA(1,1) 84 CHAPTER 4. STATIONARY TS MODELS 4.6 Autoregressive Moving Average Model ARMA(,) This section is an introduction to a wide class of models ARMA(p,q) which we will consider in more detail later in this

Διαβάστε περισσότερα

Areas and Lengths in Polar Coordinates

Areas and Lengths in Polar Coordinates Kiryl Tsishchanka Areas and Lengths in Polar Coordinates In this section we develop the formula for the area of a region whose boundary is given by a polar equation. We need to use the formula for the

Διαβάστε περισσότερα

ANSWERSHEET (TOPIC = DIFFERENTIAL CALCULUS) COLLECTION #2. h 0 h h 0 h h 0 ( ) g k = g 0 + g 1 + g g 2009 =?

ANSWERSHEET (TOPIC = DIFFERENTIAL CALCULUS) COLLECTION #2. h 0 h h 0 h h 0 ( ) g k = g 0 + g 1 + g g 2009 =? Teko Classes IITJEE/AIEEE Maths by SUHAAG SIR, Bhopal, Ph (0755) 3 00 000 www.tekoclasses.com ANSWERSHEET (TOPIC DIFFERENTIAL CALCULUS) COLLECTION # Question Type A.Single Correct Type Q. (A) Sol least

Διαβάστε περισσότερα

Reminders: linear functions

Reminders: linear functions Reminders: linear functions Let U and V be vector spaces over the same field F. Definition A function f : U V is linear if for every u 1, u 2 U, f (u 1 + u 2 ) = f (u 1 ) + f (u 2 ), and for every u U

Διαβάστε περισσότερα

Biorthogonal Wavelets and Filter Banks via PFFS. Multiresolution Analysis (MRA) subspaces V j, and wavelet subspaces W j. f X n f, τ n φ τ n φ.

Biorthogonal Wavelets and Filter Banks via PFFS. Multiresolution Analysis (MRA) subspaces V j, and wavelet subspaces W j. f X n f, τ n φ τ n φ. Chapter 3. Biorthogoal Wavelets ad Filter Baks via PFFS 3.0 PFFS applied to shift-ivariat subspaces Defiitio: X is a shift-ivariat subspace if h X h( ) τ h X. Ex: Multiresolutio Aalysis (MRA) subspaces

Διαβάστε περισσότερα

DESIGN OF MACHINERY SOLUTION MANUAL h in h 4 0.

DESIGN OF MACHINERY SOLUTION MANUAL h in h 4 0. DESIGN OF MACHINERY SOLUTION MANUAL -7-1! PROBLEM -7 Statement: Design a double-dwell cam to move a follower from to 25 6, dwell for 12, fall 25 and dwell for the remader The total cycle must take 4 sec

Διαβάστε περισσότερα

Tridiagonal matrices. Gérard MEURANT. October, 2008

Tridiagonal matrices. Gérard MEURANT. October, 2008 Tridiagonal matrices Gérard MEURANT October, 2008 1 Similarity 2 Cholesy factorizations 3 Eigenvalues 4 Inverse Similarity Let α 1 ω 1 β 1 α 2 ω 2 T =......... β 2 α 1 ω 1 β 1 α and β i ω i, i = 1,...,

Διαβάστε περισσότερα

Απόκριση σε Μοναδιαία Ωστική Δύναμη (Unit Impulse) Απόκριση σε Δυνάμεις Αυθαίρετα Μεταβαλλόμενες με το Χρόνο. Απόστολος Σ.

Απόκριση σε Μοναδιαία Ωστική Δύναμη (Unit Impulse) Απόκριση σε Δυνάμεις Αυθαίρετα Μεταβαλλόμενες με το Χρόνο. Απόστολος Σ. Απόκριση σε Δυνάμεις Αυθαίρετα Μεταβαλλόμενες με το Χρόνο The time integral of a force is referred to as impulse, is determined by and is obtained from: Newton s 2 nd Law of motion states that the action

Διαβάστε περισσότερα

Solutions: Homework 3

Solutions: Homework 3 Solutios: Homework 3 Suppose that the radom variables Y,, Y satisfy Y i = βx i + ε i : i,, where x,, x R are fixed values ad ε,, ε Normal0, σ ) with σ R + kow Fid ˆβ = MLEβ) IND Solutio: Observe that Y

Διαβάστε περισσότερα

Nowhere-zero flows Let be a digraph, Abelian group. A Γ-circulation in is a mapping : such that, where, and : tail in X, head in

Nowhere-zero flows Let be a digraph, Abelian group. A Γ-circulation in is a mapping : such that, where, and : tail in X, head in Nowhere-zero flows Let be a digraph, Abelian group. A Γ-circulation in is a mapping : such that, where, and : tail in X, head in : tail in X, head in A nowhere-zero Γ-flow is a Γ-circulation such that

Διαβάστε περισσότερα

Areas and Lengths in Polar Coordinates

Areas and Lengths in Polar Coordinates Kiryl Tsishchanka Areas and Lengths in Polar Coordinates In this section we develop the formula for the area of a region whose boundary is given by a polar equation. We need to use the formula for the

Διαβάστε περισσότερα

ORDINAL ARITHMETIC JULIAN J. SCHLÖDER

ORDINAL ARITHMETIC JULIAN J. SCHLÖDER ORDINAL ARITHMETIC JULIAN J. SCHLÖDER Abstract. We define ordinal arithmetic and show laws of Left- Monotonicity, Associativity, Distributivity, some minor related properties and the Cantor Normal Form.

Διαβάστε περισσότερα

A study on generalized absolute summability factors for a triangular matrix

A study on generalized absolute summability factors for a triangular matrix Proceedigs of the Estoia Acadey of Scieces, 20, 60, 2, 5 20 doi: 0.376/proc.20.2.06 Available olie at www.eap.ee/proceedigs A study o geeralized absolute suability factors for a triagular atrix Ere Savaş

Διαβάστε περισσότερα

A Note on Intuitionistic Fuzzy. Equivalence Relation

A Note on Intuitionistic Fuzzy. Equivalence Relation International Mathematical Forum, 5, 2010, no. 67, 3301-3307 A Note on Intuitionistic Fuzzy Equivalence Relation D. K. Basnet Dept. of Mathematics, Assam University Silchar-788011, Assam, India dkbasnet@rediffmail.com

Διαβάστε περισσότερα

Chapter 6: Systems of Linear Differential. be continuous functions on the interval

Chapter 6: Systems of Linear Differential. be continuous functions on the interval Chapter 6: Systems of Linear Differential Equations Let a (t), a 2 (t),..., a nn (t), b (t), b 2 (t),..., b n (t) be continuous functions on the interval I. The system of n first-order differential equations

Διαβάστε περισσότερα

Tired Waiting in Queues? Then get in line now to learn more about Queuing!

Tired Waiting in Queues? Then get in line now to learn more about Queuing! Tired Waitig i Queues? The get i lie ow to lear more about Queuig! Some Begiig Notatio Let = the umber of objects i the system s = the umber of servers = mea arrival rate (arrivals per uit of time with

Διαβάστε περισσότερα

CHAPTER 48 APPLICATIONS OF MATRICES AND DETERMINANTS

CHAPTER 48 APPLICATIONS OF MATRICES AND DETERMINANTS CHAPTER 48 APPLICATIONS OF MATRICES AND DETERMINANTS EXERCISE 01 Page 545 1. Use matrices to solve: 3x + 4y x + 5y + 7 3x + 4y x + 5y 7 Hence, 3 4 x 0 5 y 7 The inverse of 3 4 5 is: 1 5 4 1 5 4 15 8 3

Διαβάστε περισσότερα

Solution Series 9. i=1 x i and i=1 x i.

Solution Series 9. i=1 x i and i=1 x i. Lecturer: Prof. Dr. Mete SONER Coordinator: Yilin WANG Solution Series 9 Q1. Let α, β >, the p.d.f. of a beta distribution with parameters α and β is { Γ(α+β) Γ(α)Γ(β) f(x α, β) xα 1 (1 x) β 1 for < x

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ. Ψηφιακή Οικονομία. Διάλεξη 7η: Consumer Behavior Mαρίνα Μπιτσάκη Τμήμα Επιστήμης Υπολογιστών

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ. Ψηφιακή Οικονομία. Διάλεξη 7η: Consumer Behavior Mαρίνα Μπιτσάκη Τμήμα Επιστήμης Υπολογιστών ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Ψηφιακή Οικονομία Διάλεξη 7η: Consumer Behavior Mαρίνα Μπιτσάκη Τμήμα Επιστήμης Υπολογιστών Τέλος Ενότητας Χρηματοδότηση Το παρόν εκπαιδευτικό υλικό έχει αναπτυχθεί

Διαβάστε περισσότερα

On Inclusion Relation of Absolute Summability

On Inclusion Relation of Absolute Summability It. J. Cotemp. Math. Scieces, Vol. 5, 2010, o. 53, 2641-2646 O Iclusio Relatio of Absolute Summability Aradhaa Dutt Jauhari A/66 Suresh Sharma Nagar Bareilly UP) Idia-243006 aditya jauhari@rediffmail.com

Διαβάστε περισσότερα

Uniform Convergence of Fourier Series Michael Taylor

Uniform Convergence of Fourier Series Michael Taylor Uniform Convergence of Fourier Series Michael Taylor Given f L 1 T 1 ), we consider the partial sums of the Fourier series of f: N 1) S N fθ) = ˆfk)e ikθ. k= N A calculation gives the Dirichlet formula

Διαβάστε περισσότερα

Αλγόριθμοι και πολυπλοκότητα NP-Completeness (2)

Αλγόριθμοι και πολυπλοκότητα NP-Completeness (2) ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Αλγόριθμοι και πολυπλοκότητα NP-Completeness (2) Ιωάννης Τόλλης Τμήμα Επιστήμης Υπολογιστών NP-Completeness (2) x 1 x 1 x 2 x 2 x 3 x 3 x 4 x 4 12 22 32 11 13 21

Διαβάστε περισσότερα

( ) 2 and compare to M.

( ) 2 and compare to M. Problems and Solutions for Section 4.2 4.9 through 4.33) 4.9 Calculate the square root of the matrix 3!0 M!0 8 Hint: Let M / 2 a!b ; calculate M / 2!b c ) 2 and compare to M. Solution: Given: 3!0 M!0 8

Διαβάστε περισσότερα

CHAPTER 101 FOURIER SERIES FOR PERIODIC FUNCTIONS OF PERIOD

CHAPTER 101 FOURIER SERIES FOR PERIODIC FUNCTIONS OF PERIOD CHAPTER FOURIER SERIES FOR PERIODIC FUNCTIONS OF PERIOD EXERCISE 36 Page 66. Determine the Fourier series for the periodic function: f(x), when x +, when x which is periodic outside this rge of period.

Διαβάστε περισσότερα

On Generating Relations of Some Triple. Hypergeometric Functions

On Generating Relations of Some Triple. Hypergeometric Functions It. Joural of Math. Aalysis, Vol. 5,, o., 5 - O Geeratig Relatios of Some Triple Hypergeometric Fuctios Fadhle B. F. Mohse ad Gamal A. Qashash Departmet of Mathematics, Faculty of Educatio Zigibar Ade

Διαβάστε περισσότερα

department listing department name αχχουντσ ϕανε βαλικτ δδσϕηασδδη σδηφγ ασκϕηλκ τεχηνιχαλ αλαν ϕουν διξ τεχηνιχαλ ϕοην µαριανι

department listing department name αχχουντσ ϕανε βαλικτ δδσϕηασδδη σδηφγ ασκϕηλκ τεχηνιχαλ αλαν ϕουν διξ τεχηνιχαλ ϕοην µαριανι She selects the option. Jenny starts with the al listing. This has employees listed within She drills down through the employee. The inferred ER sttricture relates this to the redcords in the databasee

Διαβάστε περισσότερα

Στα επόμενα θεωρούμε ότι όλα συμβαίνουν σε ένα χώρο πιθανότητας ( Ω,,P) Modes of convergence: Οι τρόποι σύγκλισης μιας ακολουθίας τ.μ.

Στα επόμενα θεωρούμε ότι όλα συμβαίνουν σε ένα χώρο πιθανότητας ( Ω,,P) Modes of convergence: Οι τρόποι σύγκλισης μιας ακολουθίας τ.μ. Στα πόμνα θωρούμ ότι όλα συμβαίνουν σ ένα χώρο πιθανότητας ( Ω,,). Modes of covergece: Οι τρόποι σύγκλισης μιας ακολουθίας τ.μ. { } ίναι οι ξής: σ μια τ.μ.. Ισχυρή σύγκλιση strog covergece { } lim = =.

Διαβάστε περισσότερα

9.09. # 1. Area inside the oval limaçon r = cos θ. To graph, start with θ = 0 so r = 6. Compute dr

9.09. # 1. Area inside the oval limaçon r = cos θ. To graph, start with θ = 0 so r = 6. Compute dr 9.9 #. Area inside the oval limaçon r = + cos. To graph, start with = so r =. Compute d = sin. Interesting points are where d vanishes, or at =,,, etc. For these values of we compute r:,,, and the values

Διαβάστε περισσότερα

Overview. Transition Semantics. Configurations and the transition relation. Executions and computation

Overview. Transition Semantics. Configurations and the transition relation. Executions and computation Overview Transition Semantics Configurations and the transition relation Executions and computation Inference rules for small-step structural operational semantics for the simple imperative language Transition

Διαβάστε περισσότερα

[1] P Q. Fig. 3.1

[1] P Q. Fig. 3.1 1 (a) Define resistance....... [1] (b) The smallest conductor within a computer processing chip can be represented as a rectangular block that is one atom high, four atoms wide and twenty atoms long. One

Διαβάστε περισσότερα

Παραμετρικές εξισώσεις καμπύλων. ΗΥ111 Απειροστικός Λογισμός ΙΙ

Παραμετρικές εξισώσεις καμπύλων. ΗΥ111 Απειροστικός Λογισμός ΙΙ ΗΥ-111 Απειροστικός Λογισμός ΙΙ Παραμετρικές εξισώσεις καμπύλων Παραδείγματα ct (): U t ( x ( t), x ( t)) 1 ct (): U t ( x ( t), x ( t), x ( t)) 3 1 3 Θέσης χρόνου ταχύτητας χρόνου Χαρακτηριστικού-χρόνου

Διαβάστε περισσότερα

PARTIAL NOTES for 6.1 Trigonometric Identities

PARTIAL NOTES for 6.1 Trigonometric Identities PARTIAL NOTES for 6.1 Trigonometric Identities tanθ = sinθ cosθ cotθ = cosθ sinθ BASIC IDENTITIES cscθ = 1 sinθ secθ = 1 cosθ cotθ = 1 tanθ PYTHAGOREAN IDENTITIES sin θ + cos θ =1 tan θ +1= sec θ 1 + cot

Διαβάστε περισσότερα

INTEGRATION OF THE NORMAL DISTRIBUTION CURVE

INTEGRATION OF THE NORMAL DISTRIBUTION CURVE INTEGRATION OF THE NORMAL DISTRIBUTION CURVE By Tom Irvie Email: tomirvie@aol.com March 3, 999 Itroductio May processes have a ormal probability distributio. Broadbad radom vibratio is a example. The purpose

Διαβάστε περισσότερα

forms This gives Remark 1. How to remember the above formulas: Substituting these into the equation we obtain with

forms This gives Remark 1. How to remember the above formulas: Substituting these into the equation we obtain with Week 03: C lassification of S econd- Order L inear Equations In last week s lectures we have illustrated how to obtain the general solutions of first order PDEs using the method of characteristics. We

Διαβάστε περισσότερα

Section 9.2 Polar Equations and Graphs

Section 9.2 Polar Equations and Graphs 180 Section 9. Polar Equations and Graphs In this section, we will be graphing polar equations on a polar grid. In the first few examples, we will write the polar equation in rectangular form to help identify

Διαβάστε περισσότερα

Homework 8 Model Solution Section

Homework 8 Model Solution Section MATH 004 Homework Solution Homework 8 Model Solution Section 14.5 14.6. 14.5. Use the Chain Rule to find dz where z cosx + 4y), x 5t 4, y 1 t. dz dx + dy y sinx + 4y)0t + 4) sinx + 4y) 1t ) 0t + 4t ) sinx

Διαβάστε περισσότερα

Block Ciphers Modes. Ramki Thurimella

Block Ciphers Modes. Ramki Thurimella Block Ciphers Modes Ramki Thurimella Only Encryption I.e. messages could be modified Should not assume that nonsensical messages do no harm Always must be combined with authentication 2 Padding Must be

Διαβάστε περισσότερα