# MATRICES

Save this PDF as:

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

## Transcript

1 MARICES 1. Matrix: he arrangement of numbers or letters in the horizontal and vertical lines so that each horizontal line contains same number of elements and each vertical row contains the same numbers of elements Ex: a b c. Horizontal lines are called rows. Vertical lines are called columns. 3. Order of a matrix: he number of rows and number of columns of a matrix is called order of matrix. If a matrix contains m rows and n columns then its order is denoted by m x n {It is read as a m by n} 4. Generally matrix of order m x n is denoted by ( aij ) m n 5. Row matrix: If a matrix contains only one row then the matrix is called row matrix 1 3 general form of representing a row matrix is ( aij ) 1 n Ex: [ ] Column matrix: If a matrix contains only one column then the matrix is called column matrix Ex: a b c 31 General form of representing a column matrix is ( aij ) m 1 7. Rectangular matrix: If the number of rows of a matrix in not equal to the number of columns of the matrix the matrix then the matrix is called rectangular matrix Ex : a b c p q r 3

2 8. Square matrix: If the number of rows of a matrix is equal to the number of columns of the matrix then the matrix is called a square matrix. Ex: a c b d a h g h b f g f c 9. Principal diagonal : In a square matrix the diagonal joining the first row first column to the last row last column is called principal diagonal (or) leading diagonal the principal diagonal is as shown below. a c b d a1 b1 c1 a b c a 3 b3 c race of a matrix: he sum of the principal diagonal elements of a square matrix is called trace of a matrix If A ( aij ) n n is a square matrix then a11 + a + a ann i.e trace of matrix A denoted by tr (A) n aij is called i Lower triangular matrix: A square matrix ( aij ) n n matrix when aij 0 i< j is said to be a lower triangular Ex : a a1 a 0 a 33 a3 a Upper triangular matrix: A square matrix ( aij ) n n is said to be upper triangular matrix when aij 0 i > j Eg : riangular matrix: A square matrix is said to be a triangular matrix if it is either upper triangular matrix or lower triangular matrix

3 14. Diagonal matrix: A square matrix is said to be a diagonal matrix if all the principal diagonal elements are non zero and all the remaining elements are zero A square matrix ( aij i j ) n n is said to be diagonal matrix when aij 0 i j, 0 Ex: he matrix a b c is also denoted by diag {a, b, c} 15. Scalar matrix: A square matrix aij k ( 0) when i j 0 when i j Eg : Unit matrix: A square matrix ( aij ) n n is said to be unit matrix when aij 1 when i j 0 when i j Eg : Generally unit matrix is denoted by I 17. Null Matrix: A matrix is said to be a null matrix if all the elements are zeros. 18. Equality of matrices: wo matrices A and B are said to be equal if i) A and B are of same order and ii) he corresponding elements of A and B are the same

4 if A a a a a1 a a 3 and B b b b b1 b b 3 are equal then a 11 b11 a1 b a b a 1 b1 a b 3 3 a b 19. Definition: {sum of two matrices}: Let A and B be matrices of same order. hen the sum of A and B denoted by A + B is defined as the matrix of the same order in which each element is the sum of corresponding elements of A and B If A ( aij ) m n ; B ( bij ) m n then A+ B ( cij ) m n cij aij + bij 0. (i) matrix addition is commutative i.e. A + B B + A ii) Matrix addition is associative i.e. A + (B + C) (A + B) + C iii) If A is m x n matrix and O is the m x n null matrix A + O O +A A O is called the additive identify iv) If A is m x n matrix there is unique m x n matrix B such that A + B B + A O, O being the m x n null matrix. his B is denoted by A and is called the additive inverse of A. 1. Scalar multiplication of matrix: Let A be a matrix of order m x n and k be a scalar then the m x n matrix obtained by multiplying each element of A by k is called a scalar multiple of A and is denoted by k A. Properties of scalar multiplication: Let A and B be matrices of the same order and α, β be scalar then i) α( β A) ( αβ) A β( α A) ii) ( α + β )A α A+ β A iii) OA O iv) α( A+ β ) αa+ αβ

5 1. Multiplication of Matrices: wo matrices A and B are confirmable for multiplication when the number of columns of A is equal to the number of rows of B.. Definition: (Product of two matrices) Let A ( aij ) m n and B ( bij ) n p where n cij aik bkj is called product of A and B and is denoted by AB. k 1 i) If A, B are two matrices such that AB exist then BA need not exist ii) If AB and BA both exist then they need not be equal iii) Matrix product is not commutative Properties of Multiplication: 1) If A, B, C are three matrices then A (BC) (AB) C ) i.e. matrix product is associative i) Matrix product is distributive over addition i.e. A (B + C) AB + AC ii) If A, B are two matrices such that AB 0 then it is not necessary that either A 0 or B 0 or both A and B are null matrices iii) If A, B, C are three matrices such that AB AC then it is not necessary that either a 0 or B C iv) If A is a square matrix of order n and I is an identify matrix of order n then AI IA A 3. Idem potent matrix: A square matrix A is said to be an idempotent matrix if A A 4. Involutory matrix: A square matrix A is said to be involutory matrix if A I 5. Nill Potent matrix: A square matrix A is said to be nill point matrix when n A 0 the least value of n is called the index of nill point matrix 6. ranspose of a matrix: If A ( aij ) m n is a matrix then the matrix obtained by interchanging the rows into columns is called the transpose of A this is denoted by A or A If A ( aij ) m n then A ( aij ) n m

6 7. Properties of ranspose: i) ( A ) A ii) ( A + B) A + B iii) ( A B) A B iv) ( AB) B A v) ( KA) KA 8. Symmetric matrix: A square matrix A is said to be symmetric matrix if A A 9. Skew symmetric matrix: A square matrix A is said to be skew symmetric matrix if A A 10. Every square matrix can be uniquely expressed as the sum of symmetric and skew symmetric matrices 1 1 A A+ A + A A 1 matrix. { } { } Where { A+ A } is a symmetric matrix and { A A } 3.4 Determinants 1. Determinant of x matrix 1 is skew symmetric Def : If a c b d is a x matrix then ad ac is called determinant of a matrix. Minor of an element: he determinant of a square matrix obtained by eliminating the row and column in which the element is present. his is denoted by Mij. 3. Cofactor of an element: he cofactor of an element in the i th row and its minor multidied by ( 1) i+ j generally this is denoted by Aij th j defined as 4. Definition {determinant of 3 x 3 matrix}: he sum of the products of the elements of a row or column with their cofactor is called determinant of the matrix

7 Singular matrix : If the determinant of a matrix is zero then the matrix is called singular matrix Non-singular matrix : If the determinant of a matrix is non zero then the matrix is called non- singular matrix. Properties of Determinant : 1. he sum of the products of the element of a row or column of a square matrix with their corresponding cofactors is the determinant of matrix this is denoted by A. he determinant of a matrix A is same as the determinant of its transpose i.e. A A 3. If two rows or columns of a square matrix are interchanged then the determinant changes its sign. 4. It two rows or column of a square matrix are identical then the value of the determinant is zero 5. If all the elements of a row or column of a square matrix are multiplied by a constant k then the determinant is also multiplied by the same constant k 6. If A is a square matrix of order n then n KA K A 7. If all the elements of a row or column of a square matrix are k times the elements of any row or column then the value of the determinant is zero 8. If all the elements of a row are expressed as the sum of two elements then the determinant can also be expressed as the sum of two determinants. 9. If all the elements of a row or column of a square matrix are added to k times of the corresponding elements of any other row or column then the value of the determinant remains un altered 10. Sum of the product of the element of row with the corresponding cofactor of any other row or column is zero 11. If A, B are two square matrices of same order then AB A B 1. If all the elements of a determinant of a square are the polynomials of x and by wrify x a if two rows are identical then x a is a factor for the determinant n n 13. If A is a square matrix then det ( A ) ( det A).

9 heorem : If A, B are two non singular matrices then prove that ( AB) B A Sol: A is a non singular matrix 1 1 AA A A I (1) B is a non singular matrix 1 1 BB BB I () Let AB P; B A 1 1 Q PQ ( AB)( B A ) A( BB ) A A( IA ) AA I QP ( B A )( AB) A( BB ) A B ( IB) B B I PQ QP I Q P 1 B A ( AB) heorem 3: If A is a non singular matrix then A 1 adj A det A Sol: Let a1 b1 c1 A a b c a 3 b3 c 3 A1 A A3 adj A B B B 1 3 C 1 C C 3 Where A1, B1, C 1 are the cofactors of a1, b1, c 1 A, B, C are the cofactors of a, b, c A3, B3, C 3 are the cofactors of a3, b3, c 3

10 a b c A A A A( adj A) a b c B B B a 3 b3 c 3 C1 C C 3 a1a1+ bb 1 1+ cc 1 1 a1a + bb 1 + cc 1 a1a3 + bb cc 1 3 aa1 bb1 cc1 aa bb cc aa3 bb3 cc a 3A1+ b3b1+ c3c1 a3a + b3b + c3c a3a3 + b3b3 + c3c 3 def A def A 0 0 def A adj A A( adj A) (det A) I A I def A Similarly we can prove adj A A I def A adj A adj A A A I det A det A adj A A det A 1 Sub Matrix: A matrix obtained by eliminating some row or columns (or both) of a matrix is called sub matrix r rowed minor : he determinant of square sub matrix of order r is called r-rowed minor Rank of a matrix: A positive integer r is said to be the rank of the matrix of there exist i) At least one non-zero r-rowed minor ii) Every (r + 1) rowed minor is zero iii) rank of null matrix is O

11 Elementary transformation : 1. Interchanging any two row (or column). Multiplication of elements of a row (or column) 3. Subtracting from (adding to) the elements of one row, the corresponding elements of any other row multiplied by a non zero number. Echelon form: A matrix A is said to be in Echelon form if the number of zeros before the first non zero element in a row is less than the number of such zeros in the net row Ex: A Equivalent matrices : wo matrices A and B are called equivalent if one can be btained from the other by a finite number of elementary transformation it is denoted by A B he equations ax 1 + by 1 + ax d1; ax + by + cz d And a3x+ b3y+ c3z d3 are called system of linear equations he equations can be expressed in the matrix form as Ax B a1 b1 c1 x d1 A a b c x y B d a 3 b3 c 3 z d 3 A is called coefficient matrix X is called variable matrix B is called constant matrix he matrix a1 b1 c1 d1 a b c d a 3 b3 c3 d 3

12 Is called augmented matrix denoted by k If rank of A rank of k no. of variables hen system of equations has unique solutions Rank of A rank of k no. of variables the system of equations have infinite solutions If rank of A rank of k then the system has no solution. A system of equations is said to be consistent if it has a solution A system of equations is said to be inconsistent if it has no solution Matrix inversion method of solving the equation he matrix form of equations is Ax B If A 0 then x 1 A B Cramer s rule a b c a b c a b c d d c d d c 1 d d c a d c a d c a d c a b d a b d 3 a b d 3 3 3

13 x 1 ; y 3 z Gauss Jordan method Augmented matrix a1 b1 c1 d1 a b c d a 3 b3 c3 d 3 By applying finite no. of row transformations the matrix will be transformed into α β γ x α, y β, z γ

14 EXERCISE 3(A) I. 1. Write the following as a single matrix. Sol. i) [ 1 3] + [0 0 0] [ ] [ 1 3] ii) iii) iv) If A , B 3 5 and X values of x 1, x, x 3 and x 4. Sol. A + B X x1 x x3 x x x x3 x 4 x 1,x 4,x 7,x x x x 1 x 3 4 and A + B X, then find the

15 If A 1 4, B 0 and C Sol. A + B + C then find A + B + C If A 0, B 1 3 and X A + B then find the matrix X Sol. X A + B X If Sol. x3 y8 5 z+ 6 a4, find the values of x, y, z and a. x3 y8 5 Given z+ 6 a4 x 3 5 x y 8 y y 5 z + z 4 a 4 6 a

16 II. 1. x1 5y 1 3 If 0 z a then find the values of x, y, z and a. Sol. x1 5y 1 3 Given 0 z a x 1 1 x y 3 y 5 3 z 1 4 z a 5 0 a Find trace of A if A Sol. race of A Sum of the diagonal elements If A 3 4 and B find B A and 4A 5B Sol. Given A 3 4, B B A A 5B

17 If A 3 1 and B 1 3 find 3B A Sol. A 3 1, B B A EXERCISE-3(B) I. 1. Find the following products wherever possible. Hint: (1 3) by (3 1) Sol. i) [ 1 4 ] 1 [ ] [ ] [ ] ii) ( )

18 iii) iv) v) First matrix is a 3 3 matrix and second matrix is 3 matrix. Number of columns in first matrix Number of rows in second matrix. Matrix product is not possible vi) Number of columns in first matrix 1 Number of rows in second matrix Number of columns in first matrix Number of rows in second matrix Multiplication of matrices is not possible vii)

19 0 c b a ab ac viii) c 0 a ab b bc b a 0 ac bc c 0+ abcabc b cb c bc bc a c + a c abc + abc ac + ac a b a b ab ab abc abc If A 4 5 and B 4 5, do AB and BA exist? If they exist, find 1 them. Do A and B commutative with respect to multiplication of matrices Sol. Given A 4 5 and B AB BA AB BA A and B are not commutative with respect to multiplication of matrices. 3. Find A 4 where A 1 1 Sol. A 4 4 A.A

20 i 0 4. If A 0 i, find A. Sol. A i 0 i 0 i 0 A, A 0 i 0 i 0 i i i 5. If A 0 i, B 1 0 and C i 0 then show that (i) A B C I, (ii) AB BA C (i 1 and I is the unit matrix of order ) Sol. i) A i 0 i 0 A.A 0 i 0 i i i B B.B I C C.C 0 i 0 i i 0 i 0 i I 0 i A B C 1 i ii) AB 0 i i 0 i C i 0 i i 0 0 i BA C i i 0 AB BA C.

21 If A 1 3 and B 1 0 4, find AB. Find BA if exists Sol. Given A 1 3, B AB Order of AB is 3 BA does not exist since number of columns in B No.of rows in A If A 1 k and A 0, then find the value of k. Sol. A k 1 k k 0 0 k 4 k k 0 4k 8 k II If A then find A Note : A is diagonal matrix. a 0 0 Sol. If A 0 b 0, then 0 0 c n a 0 0 n n A 0 b 0,n N n 0 0 c A

22 If A 5 6 then find A Sol. A A.A A A A If A 0 1 1, then find A 3 3A A 3I Sol Given A A A.A

23 A 3 A A Now A 3 3A A 3I O A 3 3A A 3I If I 0 1 and E 0 0, show that (ai + be) 3 a 3 I + 3a be a b Sol. ai + be a b a (ai + be) a b a b a ab 0 a 0 a 0 a 3 (ai + be) 3 a ab a b a 3a b 0 a 3 0 a 0 a

24 3 a 0 0 3a b a a 3a b ai+ 3abE III. 1. If A a a 0, then for any integer n 1 show that A n 0 0 a3 a1 0 0 Sol. Given A 0 a a3 We shall prove the result by Mathematical induction. n a1 0 0 A n n 0 a 0 n 0 0 a3 When n 1 a1 0 0 A 1 0 a a3 he result is true for n 1. Suppose the result is true for n k k a1 0 0 k k i.e. A 0 a 0 k 0 0 a3 k 1 k Now A + A A k a1 0 0 a1 0 0 k 0 a 0 0 a 0 k 0 0 a 0 0 a 3 3 n a1 0 0 n 0 a 0. n 0 0 a3

25 k a1 a k a a k a3 a3 k+ 1 a1 0 0 k+ 1 0 a 0 k a3 he given result is true for n k + 1 By Mathematical induction, the given result is true for all positive integral values of n. n a1 0 0 n n i.e. A 0 a 0, for any integer n 1. n 0 0 a3. If θ φ π, show that cos θ cosθsin θ cos φ cos φsin φ 0 cos θsin θ sin θ cosφsin φ sin φ π π Sol. Given θφ θ +φ π cos θ cos +φ sinφ π sin θ sin +φ cos φ cos θ cos θsin θ cos θsin θ sin θ sin φ sin φcos φ sin φcos φ cos φ cos θ cos θsin θ cos θsin θ sin θ cos φ cos φsin φ cos φsin φ sin φ

26 sin φ sin φcos φ cos φ cos φsin φ sin φcosφ cos φ cosφsin φ sin φ 3 3 sin φcos φ sin φcos φ sin φcos φ sin φcos φ 3 3 sin φcos φ+ sin φcos φ sin φcos φ+ sin φcos φ If A 1 1 then show that A n 1+ n 4n n 1 n, n is a positive integer. Sol. We shall prove the result by Mathematical Induction. n 1+ n 4n A n 1 n n 1 A he result is true for n 1 Suppose the result is true for n k k 1+ k 4k A k 1 k k+ 1 k 1+ k 4k 3 4 A A A k 1 k k4k 4 8k+ 4k 3k 1 k 4k 1 k + + k + 3 4k 4 k 1 k (k+ 1) 4(k+ 1) k+ 1 1 (k+ 1) he given result is true for n k + 1 By Mathematical Induction, given result is true for all positive integral values of n. 4. Give examples of two square matrices A and B of the same order for which AB 0 and BA 0. a Sol. A a 0, B a a a hen AB 0 a 0 a a a BA a a a 0 a + a 0+ 0

27 0 0 0 a 0 AB 0 and BA 0 EXERCISE 3(C) If A and B 0 1 then find (AB ). 1 0 Sol. B AB (AB ) If A and B 4 0 find A + B and 3B A Sol. A 5 0 A B B

28 4 4 A + B B B A If A 5 3 then find A + A and A.A. 4 Sol. A A A+ A

29 If A 5 6 is a symmetric matrix, then find x. 3 x 7 Sol. A is a symmetric matrix A A x 7 3 x 7 Equating nd row, 3 rd column elements we get x If A 0 is a skew symmetric matrix, find x. 1 x 0 Hint : A is a skew symmetric matrix A A Sol. A is a skew symmetric matrix A A x x 0 1 x 0 Equating second row third column elements we get x Is symmetric or skew symmetric Sol. Let A A A A is a skew symmetric matrix.

30 II. cos α sin α 1. If A sin α cos α, show that A A A A I. cos α sin α cos α sin α Sol. A A sin α cos α sin α cos α cos α+ sin α sin αcos α+ sin αcos α sin αcosα+ cos αsin α sin α+ cos α 1 0 I...(1) 0 1 cos α sin α cos α sin α A A sin α cos α sin α cos α cos α+ sin α cos αsin αsinαcos α sin αcosαcos αsin α sin α+ cos α 1 0 I...() 0 1 From (1), () we get A A A A I.. If Sol A 4 0 and B B A 4B B 0 5 then find 3A 4B. 1 0

31 A 1 and Sol. B B 4 then find AB and BA B AB A A

32 BA For any square matrix A, show that AA is symmetric. Sol. A is a square matrix (AA ) (A ) A A A (AA ) AA AA is a symmetric matrix.

### MATHEMATICS. 1. If A and B are square matrices of order 3 such that A = -1, B =3, then 3AB = 1) -9 2) -27 3) -81 4) 81

1. If A and B are square matrices of order 3 such that A = -1, B =3, then 3AB = 1) -9 2) -27 3) -81 4) 81 We know that KA = A If A is n th Order 3AB =3 3 A. B = 27 1 3 = 81 3 2. If A= 2 1 0 0 2 1 then

Διαβάστε περισσότερα

### EE512: Error Control Coding

EE512: Error Control Coding Solution for Assignment on Finite Fields February 16, 2007 1. (a) Addition and Multiplication tables for GF (5) and GF (7) are shown in Tables 1 and 2. + 0 1 2 3 4 0 0 1 2 3

Διαβάστε περισσότερα

### CHAPTER 25 SOLVING EQUATIONS BY ITERATIVE METHODS

CHAPTER 5 SOLVING EQUATIONS BY ITERATIVE METHODS EXERCISE 104 Page 8 1. Find the positive root of the equation x + 3x 5 = 0, correct to 3 significant figures, using the method of bisection. Let f(x) =

Διαβάστε περισσότερα

### 2 Composition. Invertible Mappings

Arkansas Tech University MATH 4033: Elementary Modern Algebra Dr. Marcel B. Finan Composition. Invertible Mappings In this section we discuss two procedures for creating new mappings from old ones, namely,

Διαβάστε περισσότερα

### ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 19/5/2007

Οδηγίες: Να απαντηθούν όλες οι ερωτήσεις. Αν κάπου κάνετε κάποιες υποθέσεις να αναφερθούν στη σχετική ερώτηση. Όλα τα αρχεία που αναφέρονται στα προβλήματα βρίσκονται στον ίδιο φάκελο με το εκτελέσιμο

Διαβάστε περισσότερα

### Inverse trigonometric functions & General Solution of Trigonometric Equations. ------------------ ----------------------------- -----------------

Inverse trigonometric functions & General Solution of Trigonometric Equations. 1. Sin ( ) = a) b) c) d) Ans b. Solution : Method 1. Ans a: 17 > 1 a) is rejected. w.k.t Sin ( sin ) = d is rejected. If sin

Διαβάστε περισσότερα

### Homework 3 Solutions

Homework 3 Solutions Igor Yanovsky (Math 151A TA) Problem 1: Compute the absolute error and relative error in approximations of p by p. (Use calculator!) a) p π, p 22/7; b) p π, p 3.141. Solution: For

Διαβάστε περισσότερα

### Exercises 10. Find a fundamental matrix of the given system of equations. Also find the fundamental matrix Φ(t) satisfying Φ(0) = I. 1.

Exercises 0 More exercises are available in Elementary Differential Equations. If you have a problem to solve any of them, feel free to come to office hour. Problem Find a fundamental matrix of the given

Διαβάστε περισσότερα

### Second Order Partial Differential Equations

Chapter 7 Second Order Partial Differential Equations 7.1 Introduction A second order linear PDE in two independent variables (x, y Ω can be written as A(x, y u x + B(x, y u xy + C(x, y u u u + D(x, y

Διαβάστε περισσότερα

### Απόκριση σε Μοναδιαία Ωστική Δύναμη (Unit Impulse) Απόκριση σε Δυνάμεις Αυθαίρετα Μεταβαλλόμενες με το Χρόνο. Απόστολος Σ.

Απόκριση σε Δυνάμεις Αυθαίρετα Μεταβαλλόμενες με το Χρόνο The time integral of a force is referred to as impulse, is determined by and is obtained from: Newton s 2 nd Law of motion states that the action

Διαβάστε περισσότερα

### ( ) 2 and compare to M.

Problems and Solutions for Section 4.2 4.9 through 4.33) 4.9 Calculate the square root of the matrix 3!0 M!0 8 Hint: Let M / 2 a!b ; calculate M / 2!b c ) 2 and compare to M. Solution: Given: 3!0 M!0 8

Διαβάστε περισσότερα

### Trigonometric Formula Sheet

Trigonometric Formula Sheet Definition of the Trig Functions Right Triangle Definition Assume that: 0 < θ < or 0 < θ < 90 Unit Circle Definition Assume θ can be any angle. y x, y hypotenuse opposite θ

Διαβάστε περισσότερα

### ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 24/3/2007

Οδηγίες: Να απαντηθούν όλες οι ερωτήσεις. Όλοι οι αριθμοί που αναφέρονται σε όλα τα ερωτήματα μικρότεροι του 10000 εκτός αν ορίζεται διαφορετικά στη διατύπωση του προβλήματος. Αν κάπου κάνετε κάποιες υποθέσεις

Διαβάστε περισσότερα

### If we restrict the domain of y = sin x to [ π, π ], the restrict function. y = sin x, π 2 x π 2

Chapter 3. Analytic Trigonometry 3.1 The inverse sine, cosine, and tangent functions 1. Review: Inverse function (1) f 1 (f(x)) = x for every x in the domain of f and f(f 1 (x)) = x for every x in the

Διαβάστε περισσότερα

### If we restrict the domain of y = sin x to [ π 2, π 2

Chapter 3. Analytic Trigonometry 3.1 The inverse sine, cosine, and tangent functions 1. Review: Inverse function (1) f 1 (f(x)) = x for every x in the domain of f and f(f 1 (x)) = x for every x in the

Διαβάστε περισσότερα

### TMA4115 Matematikk 3

TMA4115 Matematikk 3 Andrew Stacey Norges Teknisk-Naturvitenskapelige Universitet Trondheim Spring 2010 Lecture 12: Mathematics Marvellous Matrices Andrew Stacey Norges Teknisk-Naturvitenskapelige Universitet

Διαβάστε περισσότερα

### ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 6/5/2006

Οδηγίες: Να απαντηθούν όλες οι ερωτήσεις. Ολοι οι αριθμοί που αναφέρονται σε όλα τα ερωτήματα είναι μικρότεροι το 1000 εκτός αν ορίζεται διαφορετικά στη διατύπωση του προβλήματος. Διάρκεια: 3,5 ώρες Καλή

Διαβάστε περισσότερα

### ω ω ω ω ω ω+2 ω ω+2 + ω ω ω ω+2 + ω ω+1 ω ω+2 2 ω ω ω ω ω ω ω ω+1 ω ω2 ω ω2 + ω ω ω2 + ω ω ω ω2 + ω ω+1 ω ω2 + ω ω+1 + ω ω ω ω2 + ω

0 1 2 3 4 5 6 ω ω + 1 ω + 2 ω + 3 ω + 4 ω2 ω2 + 1 ω2 + 2 ω2 + 3 ω3 ω3 + 1 ω3 + 2 ω4 ω4 + 1 ω5 ω 2 ω 2 + 1 ω 2 + 2 ω 2 + ω ω 2 + ω + 1 ω 2 + ω2 ω 2 2 ω 2 2 + 1 ω 2 2 + ω ω 2 3 ω 3 ω 3 + 1 ω 3 + ω ω 3 +

Διαβάστε περισσότερα

### Math 6 SL Probability Distributions Practice Test Mark Scheme

Math 6 SL Probability Distributions Practice Test Mark Scheme. (a) Note: Award A for vertical line to right of mean, A for shading to right of their vertical line. AA N (b) evidence of recognizing symmetry

Διαβάστε περισσότερα

### 4.6 Autoregressive Moving Average Model ARMA(1,1)

84 CHAPTER 4. STATIONARY TS MODELS 4.6 Autoregressive Moving Average Model ARMA(,) This section is an introduction to a wide class of models ARMA(p,q) which we will consider in more detail later in this

Διαβάστε περισσότερα

### Πρόβλημα 1: Αναζήτηση Ελάχιστης/Μέγιστης Τιμής

Πρόβλημα 1: Αναζήτηση Ελάχιστης/Μέγιστης Τιμής Να γραφεί πρόγραμμα το οποίο δέχεται ως είσοδο μια ακολουθία S από n (n 40) ακέραιους αριθμούς και επιστρέφει ως έξοδο δύο ακολουθίες από θετικούς ακέραιους

Διαβάστε περισσότερα

### UNIT-1 SQUARE ROOT EXERCISE 1.1.1

UNIT-1 SQUARE ROOT EXERCISE 1.1.1 1. Find the square root of the following numbers by the factorization method (i) 82944 2 10 x 3 4 = (2 5 ) 2 x (3 2 ) 2 2 82944 2 41472 2 20736 2 10368 2 5184 2 2592 2

Διαβάστε περισσότερα

### On a four-dimensional hyperbolic manifold with finite volume

BULETINUL ACADEMIEI DE ŞTIINŢE A REPUBLICII MOLDOVA. MATEMATICA Numbers 2(72) 3(73), 2013, Pages 80 89 ISSN 1024 7696 On a four-dimensional hyperbolic manifold with finite volume I.S.Gutsul Abstract. In

Διαβάστε περισσότερα

### ΚΥΠΡΙΑΚΟΣ ΣΥΝΔΕΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY 21 ος ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ Δεύτερος Γύρος - 30 Μαρτίου 2011

Διάρκεια Διαγωνισμού: 3 ώρες Απαντήστε όλες τις ερωτήσεις Μέγιστο Βάρος (20 Μονάδες) Δίνεται ένα σύνολο από N σφαιρίδια τα οποία δεν έχουν όλα το ίδιο βάρος μεταξύ τους και ένα κουτί που αντέχει μέχρι

Διαβάστε περισσότερα

### Jordan Form of a Square Matrix

Jordan Form of a Square Matrix Josh Engwer Texas Tech University josh.engwer@ttu.edu June 3 KEY CONCEPTS & DEFINITIONS: R Set of all real numbers C Set of all complex numbers = {a + bi : a b R and i =

Διαβάστε περισσότερα

### Areas and Lengths in Polar Coordinates

Kiryl Tsishchanka Areas and Lengths in Polar Coordinates In this section we develop the formula for the area of a region whose boundary is given by a polar equation. We need to use the formula for the

Διαβάστε περισσότερα

### DIRECT PRODUCT AND WREATH PRODUCT OF TRANSFORMATION SEMIGROUPS

GANIT J. Bangladesh Math. oc. IN 606-694) 0) -7 DIRECT PRODUCT AND WREATH PRODUCT OF TRANFORMATION EMIGROUP ubrata Majumdar, * Kalyan Kumar Dey and Mohd. Altab Hossain Department of Mathematics University

Διαβάστε περισσότερα

### The Jordan Form of Complex Tridiagonal Matrices

The Jordan Form of Complex Tridiagonal Matrices Ilse Ipsen North Carolina State University ILAS p.1 Goal Complex tridiagonal matrix α 1 β 1. γ T = 1 α 2........ β n 1 γ n 1 α n Jordan decomposition T =

Διαβάστε περισσότερα

### 2. Let H 1 and H 2 be Hilbert spaces and let T : H 1 H 2 be a bounded linear operator. Prove that [T (H 1 )] = N (T ). (6p)

Uppsala Universitet Matematiska Institutionen Andreas Strömbergsson Prov i matematik Funktionalanalys Kurs: F3B, F4Sy, NVP 2005-03-08 Skrivtid: 9 14 Tillåtna hjälpmedel: Manuella skrivdon, Kreyszigs bok

Διαβάστε περισσότερα

### Risk! " #\$%&'() *!'+,'''## -. / # \$

Risk! " #\$%&'(!'+,'''## -. / 0! " # \$ +/ #%&''&(+(( &'',\$ #-&''&\$ #(./0&'',\$( ( (! #( &''/\$ #\$ 3 #4&'',\$ #- &'',\$ #5&''6(&''&7&'',\$ / ( /8 9 :&' " 4; < # \$ 3 " ( #\$ = = #\$ #\$ ( 3 - > # \$ 3 = = " 3 3, 6?3

Διαβάστε περισσότερα

### ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 2008

Πρόβλημα 1: Ανάστροφος Αραιού Πίνακα (20 Μονάδες) Πίνακας m επί n διαστάσεων είναι μια ορθογώνια διάταξη με m γραμμές και n στήλες. Για παράδειγμα, ο πίνακας είναι διαστάσεων 4 επί 3 και αποτελείται από

Διαβάστε περισσότερα

### SOLUTIONS TO PROBLEMS ELEMENTARY LINEAR ALGEBRA

SOLUTIONS TO PROBLEMS ELEMENTARY LINEAR ALGEBRA K R MATTHEWS DEPARTMENT OF MATHEMATICS UNIVERSITY OF QUEENSLAND First Printing, 99 CONTENTS PROBLEMS 6 PROBLEMS 4 PROBLEMS 7 8 PROBLEMS 36 3 PROBLEMS 4 45

Διαβάστε περισσότερα

### 1. Πόσοι αριθμοί μικρότεροι του διαιρούνται με όλους τους μονοψήφιους αριθμούς;

ΚΥΠΡΙΚΗ ΜΘΗΜΤΙΚΗ ΤΙΡΙ ΠΡΧΙΚΟΣ ΙΩΝΙΣΜΟΣ 7//2009 ΩΡ 0:00-2:00 ΟΗΙΣ. Να λύσετε όλα τα θέματα. Κάθε θέμα βαθμολογείται με 0 μονάδες. 2. Να γράφετε με μπλε ή μαύρο μελάνι (επιτρέπεται η χρήση μολυβιού για τα

Διαβάστε περισσότερα

### department listing department name αχχουντσ ϕανε βαλικτ δδσϕηασδδη σδηφγ ασκϕηλκ τεχηνιχαλ αλαν ϕουν διξ τεχηνιχαλ ϕοην µαριανι

She selects the option. Jenny starts with the al listing. This has employees listed within She drills down through the employee. The inferred ER sttricture relates this to the redcords in the databasee

Διαβάστε περισσότερα

### 14 Lesson 2: The Omega Verb - Present Tense

Lesson 2: The Omega Verb - Present Tense Day one I. Word Study and Grammar 1. Most Greek verbs end in in the first person singular. 2. The present tense is formed by adding endings to the present stem.

Διαβάστε περισσότερα

### Συστήματα Διαχείρισης Βάσεων Δεδομένων

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Συστήματα Διαχείρισης Βάσεων Δεδομένων Φροντιστήριο 9: Transactions - part 1 Δημήτρης Πλεξουσάκης Τμήμα Επιστήμης Υπολογιστών Tutorial on Undo, Redo and Undo/Redo

Διαβάστε περισσότερα

### Testing for Indeterminacy: An Application to U.S. Monetary Policy. Technical Appendix

Testing for Indeterminacy: An Application to U.S. Monetary Policy Technical Appendix Thomas A. Lubik Department of Economics Johns Hopkins University Frank Schorfheide Department of Economics University

Διαβάστε περισσότερα

### Matrices Review. Here is an example of matrices multiplication for a 3x3 matrix

Matrices Review Matri Multiplication : When the number of columns of the first matri is the same as the number of rows in the second matri then matri multiplication can be performed. Here is an eample

Διαβάστε περισσότερα

### Derivation of Optical-Bloch Equations

Appendix C Derivation of Optical-Bloch Equations In this appendix the optical-bloch equations that give the populations and coherences for an idealized three-level Λ system, Fig. 3. on page 47, will be

Διαβάστε περισσότερα

### Lecture 6 Mohr s Circle for Plane Stress

P4 Stress and Strain Dr. A.B. Zavatsk HT08 Lecture 6 Mohr s Circle for Plane Stress Transformation equations for plane stress. Procedure for constructing Mohr s circle. Stresses on an inclined element.

Διαβάστε περισσότερα

### Solutions to Selected Homework Problems 1.26 Claim: α : S S which is 1-1 but not onto β : S S which is onto but not 1-1. y z = z y y, z S.

Solutions to Selected Homework Problems 1.26 Claim: α : S S which is 1-1 but not onto β : S S which is onto but not 1-1. Proof. ( ) Since α is 1-1, β : S S such that β α = id S. Since β α = id S is onto,

Διαβάστε περισσότερα

### Strukturalna poprawność argumentu.

Strukturalna poprawność argumentu. Marcin Selinger Uniwersytet Wrocławski Katedra Logiki i Metodologii Nauk marcisel@uni.wroc.pl Table of contents: 1. Definition of argument and further notions. 2. Operations

Διαβάστε περισσότερα

### SOLVING CUBICS AND QUARTICS BY RADICALS

SOLVING CUBICS AND QUARTICS BY RADICALS The purpose of this handout is to record the classical formulas expressing the roots of degree three and degree four polynomials in terms of radicals. We begin with

Διαβάστε περισσότερα

### Section 8.2 Graphs of Polar Equations

Section 8. Graphs of Polar Equations Graphing Polar Equations The graph of a polar equation r = f(θ), or more generally F(r,θ) = 0, consists of all points P that have at least one polar representation

Διαβάστε περισσότερα

### Derivations of Useful Trigonometric Identities

Derivations of Useful Trigonometric Identities Pythagorean Identity This is a basic and very useful relationship which comes directly from the definition of the trigonometric ratios of sine and cosine

Διαβάστε περισσότερα

### Problem Set 3: Solutions

CMPSCI 69GG Applied Information Theory Fall 006 Problem Set 3: Solutions. [Cover and Thomas 7.] a Define the following notation, C I p xx; Y max X; Y C I p xx; Ỹ max I X; Ỹ We would like to show that C

Διαβάστε περισσότερα

### Μορφοποίηση υπό όρους : Μορφή > Μορφοποίηση υπό όρους/γραμμές δεδομένων/μορφοποίηση μόο των κελιών που περιέχουν/

Μορφοποίηση υπό όρους : Μορφή > Μορφοποίηση υπό όρους/γραμμές δεδομένων/μορφοποίηση μόο των κελιών που περιέχουν/ Συνάρτηση round() Περιγραφή Η συνάρτηση ROUND στρογγυλοποιεί έναν αριθμό στον δεδομένο

Διαβάστε περισσότερα

### ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ. ΕΠΛ342: Βάσεις Δεδομένων. Χειμερινό Εξάμηνο Φροντιστήριο 10 ΛΥΣΕΙΣ. Επερωτήσεις SQL

ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΕΠΛ342: Βάσεις Δεδομένων Χειμερινό Εξάμηνο 2013 Φροντιστήριο 10 ΛΥΣΕΙΣ Επερωτήσεις SQL Άσκηση 1 Για το ακόλουθο σχήμα Suppliers(sid, sname, address) Parts(pid, pname,

Διαβάστε περισσότερα

### ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 11/3/2006

ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 11/3/26 Οδηγίες: Να απαντηθούν όλες οι ερωτήσεις. Ολοι οι αριθμοί που αναφέρονται σε όλα τα ερωτήματα μικρότεροι το 1 εκτός αν ορίζεται διαφορετικά στη διατύπωση

Διαβάστε περισσότερα

### Αλγόριθμοι και πολυπλοκότητα NP-Completeness (2)

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Αλγόριθμοι και πολυπλοκότητα NP-Completeness (2) Ιωάννης Τόλλης Τμήμα Επιστήμης Υπολογιστών NP-Completeness (2) x 1 x 1 x 2 x 2 x 3 x 3 x 4 x 4 12 22 32 11 13 21

Διαβάστε περισσότερα

### 1. Matrix Algebra and Linear Economic Models

Matrix Algebra ad Liear Ecoomic Models Refereces Ch 3 (Turkigto); Ch 4 5 (Klei) [] Motivatio Oe market equilibrium Model Assume perfectly competitive market: Both buyers ad sellers are price-takers Demad:

Διαβάστε περισσότερα

### Εγχειρίδια Μαθηµατικών και Χταποδάκι στα Κάρβουνα

[ 1 ] Πανεπιστήµιο Κύπρου Εγχειρίδια Μαθηµατικών και Χταποδάκι στα Κάρβουνα Νίκος Στυλιανόπουλος, Πανεπιστήµιο Κύπρου Λευκωσία, εκέµβριος 2009 [ 2 ] Πανεπιστήµιο Κύπρου Πόσο σηµαντική είναι η απόδειξη

Διαβάστε περισσότερα

### ΚΥΠΡΙΑΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ IΔ ΚΥΠΡΙΑΚΗ ΜΑΘΗΜΑΤΙΚΗ ΟΛΥΜΠΙΑΔΑ 2013 21 ΑΠΡΙΛΙΟΥ 2013 Β & Γ ΛΥΚΕΙΟΥ. www.cms.org.cy

ΚΥΠΡΙΑΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ IΔ ΚΥΠΡΙΑΚΗ ΜΑΘΗΜΑΤΙΚΗ ΟΛΥΜΠΙΑΔΑ 2013 21 ΑΠΡΙΛΙΟΥ 2013 Β & Γ ΛΥΚΕΙΟΥ www.cms.org.cy ΘΕΜΑΤΑ ΣΤΑ ΕΛΛΗΝΙΚΑ ΚΑΙ ΑΓΓΛΙΚΑ PAPERS IN BOTH GREEK AND ENGLISH ΚΥΠΡΙΑΚΗ ΜΑΘΗΜΑΤΙΚΗ ΟΛΥΜΠΙΑΔΑ

Διαβάστε περισσότερα

### A Bonus-Malus System as a Markov Set-Chain. Małgorzata Niemiec Warsaw School of Economics Institute of Econometrics

A Bonus-Malus System as a Markov Set-Chain Małgorzata Niemiec Warsaw School of Economics Institute of Econometrics Contents 1. Markov set-chain 2. Model of bonus-malus system 3. Example 4. Conclusions

Διαβάστε περισσότερα

### Space Physics (I) [AP-3044] Lecture 1 by Ling-Hsiao Lyu Oct Lecture 1. Dipole Magnetic Field and Equations of Magnetic Field Lines

Space Physics (I) [AP-344] Lectue by Ling-Hsiao Lyu Oct. 2 Lectue. Dipole Magnetic Field and Equations of Magnetic Field Lines.. Dipole Magnetic Field Since = we can define = A (.) whee A is called the

Διαβάστε περισσότερα

### Ιστορία νεότερων Μαθηματικών

Ιστορία νεότερων Μαθηματικών Ενότητα 3: Παπασταυρίδης Σταύρος Σχολή Θετικών Επιστημών Τμήμα Μαθηματικών Περιγραφή Ενότητας Ιταλοί Αβακιστές. Αλγεβρικός Συμβολισμός. Άλγεβρα στην Γαλλία, Γερμανία, Αγγλία.

Διαβάστε περισσότερα

### Exercises to Statistics of Material Fatigue No. 5

Prof. Dr. Christine Müller Dipl.-Math. Christoph Kustosz Eercises to Statistics of Material Fatigue No. 5 E. 9 (5 a Show, that a Fisher information matri for a two dimensional parameter θ (θ,θ 2 R 2, can

Διαβάστε περισσότερα

### SPECIAL FUNCTIONS and POLYNOMIALS

SPECIAL FUNCTIONS and POLYNOMIALS Gerard t Hooft Stefan Nobbenhuis Institute for Theoretical Physics Utrecht University, Leuvenlaan 4 3584 CC Utrecht, the Netherlands and Spinoza Institute Postbox 8.195

Διαβάστε περισσότερα

### 1. If log x 2 y 2 = a, then dy / dx = x 2 + y 2 1] xy 2] y / x. 3] x / y 4] none of these

1. If log x 2 y 2 = a, then dy / dx = x 2 + y 2 1] xy 2] y / x 3] x / y 4] none of these 1. If log x 2 y 2 = a, then x 2 + y 2 Solution : Take y /x = k y = k x dy/dx = k dy/dx = y / x Answer : 2] y / x

Διαβάστε περισσότερα

### Correction Table for an Alcoholometer Calibrated at 20 o C

An alcoholometer is a device that measures the concentration of ethanol in a water-ethanol mixture (often in units of %abv percent alcohol by volume). The depth to which an alcoholometer sinks in a water-ethanol

Διαβάστε περισσότερα

### Μηχανική Μάθηση Hypothesis Testing

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Μηχανική Μάθηση Hypothesis Testing Γιώργος Μπορμπουδάκης Τμήμα Επιστήμης Υπολογιστών Procedure 1. Form the null (H 0 ) and alternative (H 1 ) hypothesis 2. Consider

Διαβάστε περισσότερα

### 1. Αφετηρία από στάση χωρίς κριτή (self start όπου πινακίδα εκκίνησης) 5 λεπτά µετά την αφετηρία σας από το TC1B KALO LIVADI OUT

Date: 21 October 2016 Time: 14:00 hrs Subject: BULLETIN No 3 Document No: 1.3 --------------------------------------------------------------------------------------------------------------------------------------

Διαβάστε περισσότερα

### Bessel functions. ν + 1 ; 1 = 0 for k = 0, 1, 2,..., n 1. Γ( n + k + 1) = ( 1) n J n (z). Γ(n + k + 1) k!

Bessel functions The Bessel function J ν (z of the first kind of order ν is defined by J ν (z ( (z/ν ν Γ(ν + F ν + ; z 4 ( k k ( Γ(ν + k + k! For ν this is a solution of the Bessel differential equation

Διαβάστε περισσότερα

### EE101: Resonance in RLC circuits

EE11: Resonance in RLC circuits M. B. Patil mbatil@ee.iitb.ac.in www.ee.iitb.ac.in/~sequel Deartment of Electrical Engineering Indian Institute of Technology Bombay I V R V L V C I = I m = R + jωl + 1/jωC

Διαβάστε περισσότερα

### Calculating the propagation delay of coaxial cable

Your source for quality GNSS Networking Solutions and Design Services! Page 1 of 5 Calculating the propagation delay of coaxial cable The delay of a cable or velocity factor is determined by the dielectric

Διαβάστε περισσότερα

### Example of the Baum-Welch Algorithm

Example of the Baum-Welch Algorithm Larry Moss Q520, Spring 2008 1 Our corpus c We start with a very simple corpus. We take the set Y of unanalyzed words to be {ABBA, BAB}, and c to be given by c(abba)

Διαβάστε περισσότερα

### Homomorphism and Cartesian Product on Fuzzy Translation and Fuzzy Multiplication of PS-algebras

Annals of Pure and Applied athematics Vol. 8, No. 1, 2014, 93-104 ISSN: 2279-087X (P), 2279-0888(online) Published on 11 November 2014 www.researchmathsci.org Annals of Homomorphism and Cartesian Product

Διαβάστε περισσότερα

### ΗΜΥ 210 ΣΧΕΔΙΑΣΜΟΣ ΨΗΦΙΑΚΩΝ ΣΥΣΤΗΜΑΤΩΝ. Χειµερινό Εξάµηνο ΔΙΑΛΕΞΗ 3: Αλγοριθµική Ελαχιστοποίηση (Quine-McCluskey, tabular method)

ΗΜΥ 210 ΣΧΕΔΙΑΣΜΟΣ ΨΗΦΙΑΚΩΝ ΣΥΣΤΗΜΑΤΩΝ Χειµερινό Εξάµηνο 2016 ΔΙΑΛΕΞΗ 3: Αλγοριθµική Ελαχιστοποίηση (Quine-McCluskey, tabular method) ΧΑΡΗΣ ΘΕΟΧΑΡΙΔΗΣ Επίκουρος Καθηγητής, ΗΜΜΥ (ttheocharides@ucy.ac.cy)

Διαβάστε περισσότερα

### ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΤΜΗΜΑ ΟΔΟΝΤΙΑΤΡΙΚΗΣ ΕΡΓΑΣΤΗΡΙΟ ΟΔΟΝΤΙΚΗΣ ΚΑΙ ΑΝΩΤΕΡΑΣ ΠΡΟΣΘΕΤΙΚΗΣ

ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΤΜΗΜΑ ΟΔΟΝΤΙΑΤΡΙΚΗΣ ΕΡΓΑΣΤΗΡΙΟ ΟΔΟΝΤΙΚΗΣ ΚΑΙ ΑΝΩΤΕΡΑΣ ΠΡΟΣΘΕΤΙΚΗΣ ΣΥΓΚΡΙΤΙΚΗ ΜΕΛΕΤΗ ΤΗΣ ΣΥΓΚΡΑΤΗΤΙΚΗΣ ΙΚΑΝΟΤΗΤΑΣ ΟΡΙΣΜΕΝΩΝ ΠΡΟΚΑΤΑΣΚΕΥΑΣΜΕΝΩΝ ΣΥΝΔΕΣΜΩΝ ΑΚΡΙΒΕΙΑΣ

Διαβάστε περισσότερα

### A ΜΕΡΟΣ. 1 program Puppy_Dog; 2 3 begin 4 end. 5 6 { Result of execution 7 8 (There is no output from this program ) 9 10 }

A ΜΕΡΟΣ 1 program Puppy_Dog; begin 4 end. 5 6 { Result of execution 7 (There is no output from this program ) 10 } (* Κεφάλαιο - Πρόγραµµα EX0_.pas *) 1 program Kitty_Cat; begin 4 Writeln('This program');

Διαβάστε περισσότερα

### Potential Dividers. 46 minutes. 46 marks. Page 1 of 11

Potential Dividers 46 minutes 46 marks Page 1 of 11 Q1. In the circuit shown in the figure below, the battery, of negligible internal resistance, has an emf of 30 V. The pd across the lamp is 6.0 V and

Διαβάστε περισσότερα

### Advanced Subsidiary Unit 1: Understanding and Written Response

Write your name here Surname Other names Edexcel GE entre Number andidate Number Greek dvanced Subsidiary Unit 1: Understanding and Written Response Thursday 16 May 2013 Morning Time: 2 hours 45 minutes

Διαβάστε περισσότερα

### Οι αδελφοί Montgolfier: Ψηφιακή αφήγηση The Montgolfier Βrothers Digital Story (προτείνεται να διδαχθεί στο Unit 4, Lesson 3, Αγγλικά Στ Δημοτικού)

Οι αδελφοί Montgolfier: Ψηφιακή αφήγηση The Montgolfier Βrothers Digital Story (προτείνεται να διδαχθεί στο Unit 4, Lesson 3, Αγγλικά Στ Δημοτικού) Προσδοκώμενα αποτελέσματα Περιεχόμενο Ενδεικτικές δραστηριότητες

Διαβάστε περισσότερα

### HISTOGRAMS AND PERCENTILES What is the 25 th percentile of a histogram? What is the 50 th percentile for the cigarette histogram?

HISTOGRAMS AND PERCENTILES What is the 25 th percentile of a histogram? The point on the horizontal axis such that of the area under the histogram lies to the left of that point (and to the right) What

Διαβάστε περισσότερα

### ΑΛΓΟΡΙΘΜΟΙ Άνοιξη I. ΜΗΛΗΣ

ΑΛΓΟΡΙΘΜΟΙ http://eclass.aueb.gr/courses/inf161/ Άνοιξη 216 - I. ΜΗΛΗΣ ΔΥΝΑΜΙΚΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ ΑΛΓΟΡΙΘΜΟΙ - ΑΝΟΙΞΗ 216 - Ι. ΜΗΛΗΣ 9 DP II 1 Dynamic Programming ΓΕΝΙΚΗ ΙΔΕΑ 1. Ορισμός υπο-προβλήματος/ων

Διαβάστε περισσότερα

### Solution to Review Problems for Midterm III

Solution to Review Problems for Mierm III Mierm III: Friday, November 19 in class Topics:.8-.11, 4.1,4. 1. Find the derivative of the following functions and simplify your answers. (a) x(ln(4x)) +ln(5

Διαβάστε περισσότερα

### ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΕΙΡΑΙΑ ΤΜΗΜΑ ΝΑΥΤΙΛΙΑΚΩΝ ΣΠΟΥΔΩΝ ΠΡΟΓΡΑΜΜΑ ΜΕΤΑΠΤΥΧΙΑΚΩΝ ΣΠΟΥΔΩΝ ΣΤΗΝ ΝΑΥΤΙΛΙΑ

ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΕΙΡΑΙΑ ΤΜΗΜΑ ΝΑΥΤΙΛΙΑΚΩΝ ΣΠΟΥΔΩΝ ΠΡΟΓΡΑΜΜΑ ΜΕΤΑΠΤΥΧΙΑΚΩΝ ΣΠΟΥΔΩΝ ΣΤΗΝ ΝΑΥΤΙΛΙΑ ΝΟΜΙΚΟ ΚΑΙ ΘΕΣΜΙΚΟ ΦΟΡΟΛΟΓΙΚΟ ΠΛΑΙΣΙΟ ΚΤΗΣΗΣ ΚΑΙ ΕΚΜΕΤΑΛΛΕΥΣΗΣ ΠΛΟΙΟΥ ΔΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ που υποβλήθηκε στο

Διαβάστε περισσότερα

Connectionless transmission with datagrams. Connection-oriented transmission is like the telephone system You dial and are given a connection to the telephone of fthe person with whom you wish to communicate.

Διαβάστε περισσότερα

### Η ΨΥΧΙΑΤΡΙΚΗ - ΨΥΧΟΛΟΓΙΚΗ ΠΡΑΓΜΑΤΟΓΝΩΜΟΣΥΝΗ ΣΤΗΝ ΠΟΙΝΙΚΗ ΔΙΚΗ

ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΝΟΜΙΚΗ ΣΧΟΛΗ ΠΡΟΓΡΑΜΜΑ ΜΕΤΑΠΤΥΧΙΑΚΩΝ ΣΠΟΥΔΩΝ ΤΟΜΕΑΣ ΙΣΤΟΡΙΑΣ ΦΙΛΟΣΟΦΙΑΣ ΚΑΙ ΚΟΙΝΩΝΙΟΛΟΓΙΑΣ ΤΟΥ ΔΙΚΑΙΟΥ Διπλωματική εργασία στο μάθημα «ΚΟΙΝΩΝΙΟΛΟΓΙΑ ΤΟΥ ΔΙΚΑΙΟΥ»

Διαβάστε περισσότερα

### 14 ح ر وجع ومطابق لألصل اليدوى وي طبع على مسئولية اللجنة الفنية. a b x a x b c. a b c

ر وجع ومطابق لألصل اليدوى وي طبع على مسئولية اللجنة الفنية ا االسم التوقيع التاريخ االسم التوقيع التاريخ 4 ح ث.ع.ج / أول ARAB REPUBLIC OF EGYPT Ministry of Education General Secondary Education Certificate

Διαβάστε περισσότερα

### Πανεπιστήµιο Κρήτης - Τµήµα Επιστήµης Υπολογιστών. ΗΥ-570: Στατιστική Επεξεργασία Σήµατος. ιδάσκων : Α. Μουχτάρης. εύτερη Σειρά Ασκήσεων.

Πανεπιστήµιο Κρήτης - Τµήµα Επιστήµης Υπολογιστών ΗΥ-570: Στατιστική Επεξεργασία Σήµατος 2015 ιδάσκων : Α. Μουχτάρης εύτερη Σειρά Ασκήσεων Λύσεις Ασκηση 1. 1. Consder the gven expresson for R 1/2 : R 1/2

Διαβάστε περισσότερα

### 1. Introduction and Preliminaries.

Faculty of Sciences and Mathematics, University of Niš, Serbia Available at: http://www.pmf.ni.ac.yu/filomat Filomat 22:1 (2008), 97 106 ON δ SETS IN γ SPACES V. Renuka Devi and D. Sivaraj Abstract We

Διαβάστε περισσότερα

### Ανάκτηση Πληροφορίας

ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Ενότητα 8: Λανθάνουσα Σημασιολογική Ανάλυση (Latent Semantic Analysis) Απόστολος Παπαδόπουλος Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό

Διαβάστε περισσότερα

### Συντακτικές λειτουργίες

2 Συντακτικές λειτουργίες (Syntactic functions) A. Πτώσεις και συντακτικές λειτουργίες (Cases and syntactic functions) The subject can be identified by asking ποιος (who) or τι (what) the sentence is about.

Διαβάστε περισσότερα

### The Normal and Lognormal Distributions

The Normal and Lognormal Distributions John Norstad j-norstad@northwestern.edu http://www.norstad.org February, 999 Updated: November 3, Abstract The basic properties of the normal and lognormal distributions,

Διαβάστε περισσότερα

### ΤΕΧΝΟΛΟΓΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΤΜΗΜΑ ΝΟΣΗΛΕΥΤΙΚΗΣ

ΤΕΧΝΟΛΟΓΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΤΜΗΜΑ ΝΟΣΗΛΕΥΤΙΚΗΣ ΠΤΥΧΙΑΚΗ ΕΡΓΑΣΙΑ ΨΥΧΟΛΟΓΙΚΕΣ ΕΠΙΠΤΩΣΕΙΣ ΣΕ ΓΥΝΑΙΚΕΣ ΜΕΤΑ ΑΠΟ ΜΑΣΤΕΚΤΟΜΗ ΓΕΩΡΓΙΑ ΤΡΙΣΟΚΚΑ Λευκωσία 2012 ΤΕΧΝΟΛΟΓΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΣΧΟΛΗ ΕΠΙΣΤΗΜΩΝ

Διαβάστε περισσότερα

### Right Rear Door. Let's now finish the door hinge saga with the right rear door

Right Rear Door Let's now finish the door hinge saga with the right rear door You may have been already guessed my steps, so there is not much to describe in detail. Old upper one file:///c /Documents

Διαβάστε περισσότερα

### 1. For each of the following power series, find the interval of convergence and the radius of convergence:

Math 6 Practice Problems Solutios Power Series ad Taylor Series 1. For each of the followig power series, fid the iterval of covergece ad the radius of covergece: (a ( 1 x Notice that = ( 1 +1 ( x +1.

Διαβάστε περισσότερα

### 1. A fully continuous 20-payment years, 30-year term life insurance of 2000 is issued to (35). You are given n A 1

Chapter 7: Exercises 1. A fully continuous 20-payment years, 30-year term life insurance of 2000 is issued to (35). You are given n A 1 35+n:30 n a 35+n:20 n 0 0.068727 11.395336 10 0.097101 7.351745 25

Διαβάστε περισσότερα

### Capacitors - Capacitance, Charge and Potential Difference

Capacitors - Capacitance, Charge and Potential Difference Capacitors store electric charge. This ability to store electric charge is known as capacitance. A simple capacitor consists of 2 parallel metal

Διαβάστε περισσότερα

### Elements of Information Theory

Elements of Information Theory Model of Digital Communications System A Logarithmic Measure for Information Mutual Information Units of Information Self-Information News... Example Information Measure

Διαβάστε περισσότερα

### Στο εστιατόριο «ToDokimasesPrinToBgaleisStonKosmo?» έξω από τους δακτυλίους του Κρόνου, οι παραγγελίες γίνονται ηλεκτρονικά.

Διαστημικό εστιατόριο του (Μ)ΑστροΈκτορα Στο εστιατόριο «ToDokimasesPrinToBgaleisStonKosmo?» έξω από τους δακτυλίους του Κρόνου, οι παραγγελίες γίνονται ηλεκτρονικά. Μόλις μια παρέα πελατών κάτσει σε ένα

Διαβάστε περισσότερα

### Case 1: Original version of a bill available in only one language.

currentid originalid attributes currentid attribute is used to identify an element and must be unique inside the document. originalid is used to mark the identifier that the structure used to have in the

Διαβάστε περισσότερα

### Κάθε γνήσιο αντίγραφο φέρει υπογραφή του συγγραφέα. / Each genuine copy is signed by the author.

Κάθε γνήσιο αντίγραφο φέρει υπογραφή του συγγραφέα. / Each genuine copy is signed by the author. 2012, Γεράσιμος Χρ. Σιάσος / Gerasimos Siasos, All rights reserved. Στοιχεία επικοινωνίας συγγραφέα / Author

Διαβάστε περισσότερα

### ΕΡΙΤΟΡΕΣ ΚΑΙ ΑΝΘΩΡΟΙ ΚΛΕΙΔΙΑ ΑΝΑΘΕΣΘ ΑΓΩΝΑ ΓΑΦΕΙΟ ΑΓΩΝΩΝ ΟΓΑΝΩΤΙΚΘ ΕΡΙΤΟΡΘ. ζεκηλαρηο 1 ΡΑΓΚΟΣΜΙΑ ΟΜΟΣΡΟΝΔΙΑ (ISAF) ΕΛΛΘΝΙΚΘ ΟΜΟΣΡΟΝΔΙΑ (Ε.Ι.Ο.

ΑΝΑΘΕΣΘ ΑΓΩΝΑ ΕΡΙΤΟΡΕΣ ΚΑΙ ΑΝΘΩΡΟΙ ΚΛΕΙΔΙΑ ΡΑΓΚΟΣΜΙΑ ΟΜΟΣΡΟΝΔΙΑ (ISAF) ΕΛΛΘΝΙΚΘ ΟΜΟΣΡΟΝΔΙΑ (Ε.Ι.Ο.) ΚΛΑΣΘ 6/6/2009 1 ΟΡΓΑΝΩΣΙΚΗ ΕΠΙΣΡΟΠΗ ΓΡΑΦΕΙΟ ΑΓΩΝΩΝ ΕΠΙΣΡΟΠΗ ΑΓΩΝΩΝ ΕΠΙΣΡΟΠΗ ΕΝΣΑΕΩΝ ΕΠΙΣΡΟΠΗ ΚΑΣΑΜΕΣΡΗΕΩΝ

Διαβάστε περισσότερα

### Multilinear Algebra 1

Multilinear Algebra 1 Tin-Yau Tam Department of Mathematics and Statistics 221 Parker Hall Auburn University AL 36849, USA tamtiny@auburn.edu November 30, 2011 1 Some portions are from B.Y. Wang s Foundation

Διαβάστε περισσότερα

### Homework 3 Solutions

Homework 3 Solutions Differential Topology (math876 - Spring2006 Søren Kold Hansen Problem 1: Exercise 3.2 p. 246 in [MT]. Let {ɛ 1,..., ɛ n } be the basis of Alt 1 (R n dual to the standard basis {e 1,...,

Διαβάστε περισσότερα

### ΕΠΙΧΕΙΡΗΣΙΑΚΗ ΑΛΛΗΛΟΓΡΑΦΙΑ ΚΑΙ ΕΠΙΚΟΙΝΩΝΙΑ ΣΤΗΝ ΑΓΓΛΙΚΗ ΓΛΩΣΣΑ

Ανοικτά Ακαδημαϊκά Μαθήματα στο ΤΕΙ Ιονίων Νήσων ΕΠΙΧΕΙΡΗΣΙΑΚΗ ΑΛΛΗΛΟΓΡΑΦΙΑ ΚΑΙ ΕΠΙΚΟΙΝΩΝΙΑ ΣΤΗΝ ΑΓΓΛΙΚΗ ΓΛΩΣΣΑ Ενότητα 1: Elements of Syntactic Structure Το περιεχόμενο του μαθήματος διατίθεται με άδεια

Διαβάστε περισσότερα

### ΑΚΑ ΗΜΙΑ ΕΜΠΟΡΙΚΟΥ ΝΑΥΤΙΚΟΥ ΜΑΚΕ ΟΝΙΑΣ ΣΧΟΛΗ ΜΗΧΑΝΙΚΩΝ ΠΤΥΧΙΑΚΗ ΕΡΓΑΣΙΑ

ΑΚΑ ΗΜΙΑ ΕΜΠΟΡΙΚΟΥ ΝΑΥΤΙΚΟΥ ΜΑΚΕ ΟΝΙΑΣ ΣΧΟΛΗ ΜΗΧΑΝΙΚΩΝ ΠΤΥΧΙΑΚΗ ΕΡΓΑΣΙΑ ΘΕΜΑ :ΤΥΠΟΙ ΑΕΡΟΣΥΜΠΙΕΣΤΩΝ ΚΑΙ ΤΡΟΠΟΙ ΛΕΙΤΟΥΡΓΙΑΣ ΣΠΟΥ ΑΣΤΡΙΑ: ΕΥΘΥΜΙΑ ΟΥ ΣΩΣΑΝΝΑ ΕΠΙΒΛΕΠΩΝ ΚΑΘΗΓΗΤΗΣ : ΓΟΥΛΟΠΟΥΛΟΣ ΑΘΑΝΑΣΙΟΣ 1 ΑΚΑ

Διαβάστε περισσότερα