Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download ""

Transcript

1 6. Α ΙΕΞΟ Α Στέφανος Γκρίτζαλης Αναπληρωτής Καθηγητής Κωνσταντίνος Καραφασούλης ιδάσκων (Π 407) 6.1 ΠΟΡΟΙ (1/2) Υπάρχουν δύο τύποι πόρων σε υπολογιστικά συστήµατα: προεκχωρήσιµοι πόροι (preemptable resources): είναι οι πόροι που µπορούν να αποδεσµευτούν από τη διεργασία που τους κατέχει, χωρίς αρνητικές επιπτώσεις στο σύστηµα (π.χ. µνήµη) µη-προεκχωρήσιµοι πόροι (non-preemptable resources): είναι οι πόροι που δε µπορούν να αποδεσµευτούν από τη διεργασία που τους κατέχει, χωρίς αρνητικές επιπτώσεις στο σύστηµα (π.χ. εκτυπωτής). 2 1

2 6.1 ΠΟΡΟΙ (2/2) Αδιέξοδα (deadlocks) συµβαίνουν µεταξύ διεργασιών µε µη προεκχωρήσιµους πόρους, αφού σε αιτήσεις για προεκχωρήσιµους πόρους το πρόβληµα επιλύεται µε ανακατανοµή των πόρων µεταξύ των διεργασιών Α ΙΕΞΟ Α (1/6) Ένα σύνολο διεργασιών βρίσκεται σε αδιέξοδο (deadlock), αν κάθε διεργασία του συνόλου περιµένει ένα γεγονός που µόνο µια άλλη διεργασία του ίδιου συνόλου µπορεί να προκαλέσει. 4 2

3 6.2 Α ΙΕΞΟ Α (2/6) Συνθήκες Αδιεξόδου (1/2) Για να οδηγηθούµε σε αδιέξοδο πρέπει να ικανοποιούνται οπωσδήποτε και οι τέσσερις ακόλουθες συνθήκες: Συνθήκη αµοιβαίου αποκλεισµού: κάθε πόρος είτε είναι δεσµευµένος από µία διεργασία, είτε είναι διαθέσιµος. Συνθήκη δέσµευσης και αναµονής: διεργασίες που δεσµεύουν πόρους που τους εκχωρήθηκαν νωρίτερα, µπορούν να ζητούν και νέους Α ΙΕΞΟ Α (3/6) Συνθήκες Αδιεξόδου (2/2) Συνθήκη µη προεκχώρησης: πόροι που έχουν εκχωρηθεί σε µια διεργασία µπορούν να αποµακρυνθούν από τον έλεγχό της, µόνον αν τους αποδεσµεύσει αυτή. Συνθήκη κυκλικής αναµονής: πρέπει να υπάρχει µια κυκλική αλυσίδα δύο ή περισσότερων διεργασιών, καθεµία από τις οποίες περιµένει έναν πόρο που είναι δεσµευµένος από το επόµενο µέλος της αλυσίδας. 6 3

4 6.2 Α ΙΕΞΟ Α (4/6) Μοντελοποίηση Αδιεξόδου Οι αναγκαίες συνθήκες για την επίτευξη αδιεξόδου µπορούν να µοντελοποιηθούν µε χρήση κατευθυνόµενων γράφων. O πόρος R έχει αποδοθεί στην διαδικασία Α ιαδικασία B περιµένει για τον πόρο S Οι διαδικασίες C και D βρίσκονται σε αδιέξοδο Α ΙΕΞΟ Α (5/6) Οι γράφοι πόρων αποτελούν εργαλείο που µας επιτρέπει να εξετάσουµε αν µια συγκεκριµένη σειρά απαιτήσεων και αποδεσµεύσεων οδηγεί σε αδιέξοδο. 8 4

5 6.2 Α ΙΕΞΟ Α (5/6) Α ΙΕΞΟ Α (5/6) 10 5

6 6.2 Α ΙΕΞΟ Α (6/6) Για την αντιµετώπιση του προβλήµατος του αδιεξόδου χρησιµοποιούνται οι ακόλουθες στρατηγικές: Απλή αγνόηση του προβλήµατος (ignore the problem) Ανίχνευση και επανόρθωση (detection and recovery) υναµική αποφυγή µε προσεκτική κατανοµή πόρων (dynamic avoidance) Πρόληψη, µε συστηµατική αναίρεση µιας από τις τέσσερις αναγκαίες συνθήκες (prevention) ΑΛΓΟΡΙΘΜΟΣ ΑΓΝΟΗΣΗΣ ΤΟΥ ΠΡΟΒΛΗΜΑΤΟΣ Ηαπλούστερη προσέγγιση είναι η αγνόηση του προβλήµατος, γνωστή ως αλγόριθµος της στρουθοκαµήλου (the ostrich algorithm). Για παράδειγµα, στο σύστηµα UNIX, αν µια κλήση FORK αποτύχει επειδή ο πίνακας διεργασιών είναι πλήρης, το πρόγραµµα που καλεί τη FORK περιµένει για τυχαίο χρονικό διάστηµα και ξαναπροσπαθεί. Εκτιµάται ότι η αγνόηση του προβλήµατος και η αποδοχή περιστασιακού αδιεξόδου είναι προτιµότερη από την ύπαρξη κανόνα περιορισµού. 12 6

7 6.4 ΑΝΙΧΝΕΥΣΗ ΚΑΙ ΕΠΑΝΟΡΘΩΣΗ Α ΙΕΞΟ ΟΥ (1/15) Στα πλαίσια της στρατηγικής αυτής, το σύστηµα δε δρα προληπτικά, αλλά χρησιµοποιεί µηχανισµούς ανίχνευσης (detection) και ακολούθως επανόρθωσης (recovery) του προβλήµατος ΑΝΙΧΝΕΥΣΗ ΚΑΙ ΕΠΑΝΟΡΘΩΣΗ Α ΙΕΞΟ ΟΥ (2/15) Ανίχνευση αδιεξόδου µε έναν πόρο από κάθε είδος Θεωρούµε συστήµατα µε έναν πόρο από κάθε είδος. Παράδειγµα αντίστοιχου πολύπλοκου συστήµατος περιγράφεται στο επόµενο σχήµα µε επτά διεργασίες και έξι πόρους. 14 7

8 6.4 ΑΝΙΧΝΕΥΣΗ ΚΑΙ ΕΠΑΝΟΡΘΩΣΗ Α ΙΕΞΟ ΟΥ (2/15) Τ ΑΝΙΧΝΕΥΣΗ ΚΑΙ ΕΠΑΝΟΡΘΩΣΗ Α ΙΕΞΟ ΟΥ (3/15) Ογράφοςτων πόρων και διεργασιών περιέχει έναν κύκλο, στον οποίο οπτικά φαίνεται ότι υπάρχει αδιέξοδο. Απαιτείται όµως τυπικός αλγόριθµος που θα ελέγχει την ύπαρξη κύκλων σε κατευθυνόµενους γράφους. 16 8

9 6.4 ΑΝΙΧΝΕΥΣΗ ΚΑΙ ΕΠΑΝΟΡΘΩΣΗ Α ΙΕΞΟ ΟΥ (4/15) Ακολούθως περιγράφεται ένας απλός αλγόριθµος που εξετάζει γράφους και τερµατίζεται: είτε όταν εντοπίσει έναν κύκλο, είτε όταν αποδείξει ότι δεν υπάρχει κανένας κύκλος. [1] Για κάθε κόµβο Κ του γράφου εκτέλεσε τα 5 ακόλουθα βήµατα µε τον Κ ως αρχικό κόµβο. [2] Αρχικοποίησε τη Λ ως κενή λίστα και όλα τα τόξα ως ασηµάδευτα ΑΝΙΧΝΕΥΣΗ ΚΑΙ ΕΠΑΝΟΡΘΩΣΗ Α ΙΕΞΟ ΟΥ (5/15) [3] Πρόσθεσε τον τρέχοντα κόµβο στο τέλος της Λ. Αν ο κόµβος εµφανίζεται τώρα στη λίστα δύο φορές, τότε ο γράφος περιέχει έναν κύκλο που περιέχεται στη Λ και ο αλγόριθµος τερµατίζεται. [4] Από τον τρέχοντα κόµβο, έλεγξε αν υπάρχουν ασηµάδευτα τόξα. Αν υπάρχουν πήγαινε στο βήµα 5. Αν δεν υπάρχουν, πήγαινε στο βήµα 6. [5] ιάλεξε τυχαία ένα ασηµάδευτο εξερχόµενο τόξο και σηµάδεψέ το. Ακολούθησέ το στο νέο τρέχοντα κόµβο και πήγαινε στο βήµα 3. [6] Τώρα έχουµε φτάσει σε έναν κόµβο χωρίς ασηµάδευτα εξερχόµενα τόξα. Πήγαινε πίσω στον προηγούµενο κόµβο, δηλαδή σε αυτόν που ήταν τρέχων προηγουµένως, κάνε τον τρέχοντα και πήγαινε στο βήµα 3. Αν ο κόµβος αυτός είναι ο αρχικός, τότε ο γράφος δεν περιέχει κύκλους και ο αλγόριθµος τερµατίζεται. 18 9

10 6.4 ΑΝΙΧΝΕΥΣΗ ΚΑΙ ΕΠΑΝΟΡΘΩΣΗ Α ΙΕΞΟ ΟΥ (6/15) Ανίχνευση αδιεξόδου µε πολλούς πόρους από κάθε είδος Υποθέτουµε ότι έχουµε: ν διεργασίες, 1 έως ν µ κατηγορίες πόρων, µε E 1 πόρους κατηγορίας 1, E 2 πόρους κατηγορίας 2 και γενικά E i πόρους κατηγορίας i (1<= i <= µ). Το E καλείται διάνυσµα υπαρχόντων πόρων (existing resource vector) και εκφράζει το συνολικό αριθµό στιγµιότυπων κάθε πόρου. π.χ. αν η κατηγορία 1 είναι οι µονάδες ταινίας, τότε αν το σύστηµα έχει δύο µονάδες ταινίας γράφουµε E 1 = ΑΝΙΧΝΕΥΣΗ ΚΑΙ ΕΠΑΝΟΡΘΩΣΗ Α ΙΕΞΟ ΟΥ (7/15) A i είναι ο αριθµός των στιγµιότυπων του πόρου i- που είναι διαθέσιµα την τρέχουσα χρονική στιγµή. Με A συµβολίζουµε το διάνυσµα διαθέσιµων πόρων (available resource vector). π.χ. αν και οι δύο µονάδες ταινίας έχουν εκχωρηθεί, τότε A 1 =0. Cονοµάζεται πίνακας τρέχουσας κατανοµής (current allocation matrix) και η i-γραµµή του δείχνει πόσα στιγµιότυπα κάθε κατηγορίας πόρων είναι δεσµευµένα από τη διεργασία i τη στιγµή αυτή. π.χ. C iκ είναι ο αριθµός των στιγµιότυπων του κ-πόρου που είναι δεσµευµένα από τη διεργασία i την τρέχουσα χρονική στιγµή

11 6.4 ΑΝΙΧΝΕΥΣΗ ΚΑΙ ΕΠΑΝΟΡΘΩΣΗ Α ΙΕΞΟ ΟΥ (8/15) R ονοµάζεται πίνακας αιτήσεων (request matrix) και η i-γραµµή του δείχνει πόσα στιγµιότυπα κάθε κατηγορίας πόρων αιτείται η διεργασία i τη στιγµή αυτή. π.χ. R iκ είναι ο αριθµός των στιγµιότυπων του κ- πόρου που αιτείται η i την τρέχουσα χρονική στιγµή ΑΝΙΧΝΕΥΣΗ ΚΑΙ ΕΠΑΝΟΡΘΩΣΗ Α ΙΕΞΟ ΟΥ (8/15) 22 11

12 6.4 ΑΝΙΧΝΕΥΣΗ ΚΑΙ ΕΠΑΝΟΡΘΩΣΗ Α ΙΕΞΟ ΟΥ (10/15) ΑΝΙΧΝΕΥΣΗ ΚΑΙ ΕΠΑΝΟΡΘΩΣΗ Α ΙΕΞΟ ΟΥ (10/15) 0 0 Μετά το τέλος της διεργασίας 3: A = ( )

13 6.4 ΑΝΙΧΝΕΥΣΗ ΚΑΙ ΕΠΑΝΟΡΘΩΣΗ Α ΙΕΞΟ ΟΥ (9/15) Προφανώς, τα στιγµιότυπα του κ-πόρου που έχουν εκχωρηθεί, αν προστεθούν στα στιγµιότυπα που είναι διαθέσιµα, το αποτέλεσµα δίνει τον αριθµό των υπαρχόντων στιγµιότυπων αυτής της κατηγορίας πόρων. Άρα: ν Σ ( C iκ + A κ ) = E κ i= ΑΝΙΧΝΕΥΣΗ ΚΑΙ ΕΠΑΝΟΡΘΩΣΗ Α ΙΕΞΟ ΟΥ (10/15) Όλες οι διεργασίες θεωρούνται αρχικά ασηµάδευτες. Καθώς ο αλγόριθµος εξελίσσεται σηµαδεύονται διαδοχικά όλες οι διεργασίες που µπορούν να συνεχίσουν την εκτέλεσή τους, δηλαδή αυτές που δε βρίσκονται σε αδιέξοδο

14 6.4 ΑΝΙΧΝΕΥΣΗ ΚΑΙ ΕΠΑΝΟΡΘΩΣΗ Α ΙΕΞΟ ΟΥ (11/15) Οαλγόριθµος ανίχνευσης αδιεξόδου διατυπώνεται ως εξής: [1] Ψάξε για µία ασηµάδευτη διεργασία i για την οποία η i- στή γραµµή του πίνακα Α είναι µικρότερη από την i-στή γραµµή του πίνακα Θ. [2] Αν βρεθεί τέτοια διεργασία, πρόσθεσε την i-στή γραµµή του Τ στην i-στή γραµµή του Θ, σηµάδεψε τη διεργασία και πήγαινε πάλι στο πρώτο βήµα 1. [3] Αν δεν υπάρχει τέτοια διεργασία, ο αλγόριθµος τερµατίζεται. Η ολοκλήρωση του αλγορίθµου αφήνει ασηµάδευτες όλες τις διεργασίες που βρίσκονται σε αδιέξοδο ΑΝΙΧΝΕΥΣΗ ΚΑΙ ΕΠΑΝΟΡΘΩΣΗ Α ΙΕΞΟ ΟΥ (12/15) Το ερώτηµα που παραµένει είναι πότε πρέπει να γίνεται η ανίχνευση του πιθανού αδιεξόδου. Η ανίχνευση θα µπορούσε να γίνεται: κάθε φορά που γίνεται αίτηση χρήσης πόρου σε τακτά χρονικά διαστήµατα όταν η αξιοποίηση της CPU ελαττωθεί κάτω από κάποια τιµή κατωφλίου

15 6.4 ΑΝΙΧΝΕΥΣΗ ΚΑΙ ΕΠΑΝΟΡΘΩΣΗ Α ΙΕΞΟ ΟΥ (13/15) Επανόρθωση από αδιέξοδο Επανόρθωση µέσω προεκχώρησης Σε µερικές περιπτώσεις είναι δυνατό να αποµακρυνθεί ένας πόρος, προσωρινά, από την κατέχουσα διεργασία και να εκχωρηθεί σε άλλη. Η επανόρθωση µε αυτόν τον τρόπο είναι συχνά ανέφικτη και απαιτεί εξωτερική ανθρώπινη δραστηριότητα ΑΝΙΧΝΕΥΣΗ ΚΑΙ ΕΠΑΝΟΡΘΩΣΗ Α ΙΕΞΟ ΟΥ (14/15) Επανόρθωση µέσω οπισθοδρόµησης Αν οι σχεδιαστές γνωρίζουν ότι συµβαίνουν συχνά αδιέξοδα, τότε αξιοποιούνται περιοδικά σηµεία ελέγχου (checkpoints)

16 6.4 ΑΝΙΧΝΕΥΣΗ ΚΑΙ ΕΠΑΝΟΡΘΩΣΗ Α ΙΕΞΟ ΟΥ (15/15) Επανόρθωση µέσω εξάλειψης διεργασιών Ο κλασικότερος τρόπος είναι η εξάλειψη µιας ή περισσότερων διεργασιών. Η διεργασία αυτή µπορεί να είναι είτε εκτός κύκλου, είτε διεργασία του κύκλου. Σε κάθε περίπτωση προτιµούνται διεργασίες που µπορούν να επανεκτελεστούν χωρίς παρενέργειες ΑΠΟΦΥΓΗ Α ΙΕΞΟ ΟΥ (1/10) Τροχιές πόρων 32 16

17 6.5 ΑΠΟΦΥΓΗ Α ΙΕΞΟ ΟΥ (2/10) Ασφαλείς και ανασφαλείς καταστάσεις Μια κατάσταση καλείται ασφαλής, αν το σύστηµα δε βρίσκεται σε αδιέξοδο και υπάρχει τρόπος να ικανοποιηθούν όλες οι εκκρεµείς αιτήσεις µε την εκτέλεση όλων των διεργασιών µε κάποια διαδοχή ΑΠΟΦΥΓΗ Α ΙΕΞΟ ΟΥ (3/10) Μια ανασφαλής κατάσταση δεν είναι κατάσταση αδιεξόδου. Η διαφορά µεταξύ ασφαλούς και ανασφαλούς κατάστασης είναι ότι από την ασφαλή κατάσταση το σύστηµα µπορεί εγγυηµένα να εκτελέσει όλες τις διεργασίες µέχρι το τέλος τους, ενώ από την ανασφαλή κατάσταση δεν µπορεί να υπάρξει τέτοια διασφάλιση

18 6.5 ΑΠΟΦΥΓΗ Α ΙΕΞΟ ΟΥ (4/10) Ο Αλγόριθµος του Τραπεζίτη για πόρους ενός είδους Ο αλγόριθµος χρονοδροµολόγησηςγια την αποφυγή αδιεξόδων, είναι γνωστός ως αλγόριθµος του Dijkstra ή αλγόριθµος του τραπεζίτη ΑΠΟΦΥΓΗ Α ΙΕΞΟ ΟΥ (5/10) Οαλγόριθµος του τραπεζίτη εξετάζει κάθε αίτηση όταν εµφανίζεται και ελέγχει αν η ικανοποίησή της οδηγεί σε ασφαλή κατάσταση. Αν ναι, τότε ικανοποιείται. Αν όχι αναβάλλεται γι' αργότερα

19 6.5 ΑΠΟΦΥΓΗ Α ΙΕΞΟ ΟΥ (6/10) Για να αποφασίσει αν µια κατάσταση είναι ασφαλής, ο τραπεζίτης ελέγχει αν υπάρχουν αρκετοί πόροι για την ικανοποίηση κάποιου πελάτη. Αν συµβαίνει αυτό συνεχίζει για τον έλεγχο όλων των υπόλοιπων πελατών. Αν όλα τα δάνεια µπορούν να επιστραφούν, τότε η κατάσταση είναι ασφαλής και η αρχική αίτηση ικανοποιείται ΑΠΟΦΥΓΗ Α ΙΕΞΟ ΟΥ (7/10) Ο Αλγόριθµος του Τραπεζίτη για πόρους πολλών ειδών 38 19

20 6.5 ΑΠΟΦΥΓΗ Α ΙΕΞΟ ΟΥ (8/10) Οαλγόριθµος που ελέγχει αν µια κατάσταση είναι ασφαλής είναι ο ακόλουθος: [1] Ψάξε για µια γραµµή, Α, της οποίας οι επιπλέον απαιτήσεις σε πόρους είναι µικρότερες ή ίσες από Θ. Αν δεν υπάρχει τέτοια γραµµή, τότε το σύστηµα θα οδηγηθεί σε αδιέξοδο αφού δεν υπάρχει διεργασία που να µπορεί να εκτελεστεί µέχρι το τέλος της ΑΠΟΦΥΓΗ Α ΙΕΞΟ ΟΥ (9/10) [2] Θεώρησε ότι η διεργασία της γραµµής που βρέθηκε, ζητά όλους τους πόρους που χρειάζεται και εκτελείται µέχρι το τέλος της. Σηµάδεψε αυτή τη διεργασία ως τερµατισµένη και πρόσθεσε όλους τους πόρους της στο διάνυσµα Θ. [3] Επανάλαβε τα βήµατα 1 και 2 µέχρι να σηµαδευτούν όλες οι διεργασίες ως τερµατισµένες, περίπτωση κατά την οποία η αρχική κατάσταση θεωρείται ασφαλής, ή µέχρι να εµφανιστεί αδιέξοδο, οπότε η αρχική κατάσταση θεωρείται ανασφαλής

21 6.5 ΑΠΟΦΥΓΗ Α ΙΕΞΟ ΟΥ (10/10) Οαλγόριθµος του τραπεζίτη είναι επαρκέστατος θεωρητικά για την αποφυγή αδιεξόδου. Στην πραγµατικότητα δε χρησιµοποιείται, αφού: οι διεργασίες σπανίως γνωρίζουν από πριν τις ανάγκες τους σε πόρους ο αριθµός των διεργασιών είναι µεταβαλλόµενος πόροι που θεωρούνται διαθέσιµοι µπορεί ξαφνικά να εξαλειφθούν ΠΡΟΛΗΨΗ Α ΙΕΞΟ ΟΥ (1/6) Αναίρεση της συνθήκης αµοιβαίου αποκλεισµού Προφανώς δε θα έχουµε ποτέ αδιέξοδο, αν κανένας πόρος δεν εκχωρηθεί αποκλειστικά σε µία µόνο διεργασία. Το παράδειγµα όµως, του ετεροχρονιστή εκτύπωσης, µε τη µόνη διεργασία που ζητά το φυσικό εκτυπωτή να είναι ο δαίµονας του εκτυπωτή (printer daemon), δεν είναι εύκολο να ακολουθηθεί και αλλού

22 6.6 ΠΡΟΛΗΨΗ Α ΙΕΞΟ ΟΥ (2/6) Αναίρεση της συνθήκης δέσµευσης και αναµονής Για να αποτρέψουµε τις διεργασίες από τη δέσµευση των πόρων που κατέχουν όσο περιµένουν άλλους, θα µπορούσαµε να υποχρεώνουµε τις διεργασίες να ζητούν προκαταβολικά όλους τους πόρους που θα θελήσουν ΠΡΟΛΗΨΗ Α ΙΕΞΟ ΟΥ (3/6) Οι διεργασίες όµως δε γνωρίζουν πόσους πόρους θα χρειασθούν πριν την έναρξη της εκτέλεσής τους. Θα µπορούσαµε, βεβαίως, να υποχρεώνουµε τη διεργασία που ζητά έναν πόρο να απελευθερώνει προσωρινά όλους τους πόρους που κατέχει και να προσπαθεί να τους ξαναπάρει όλους µαζί πίσω

23 6.6 ΠΡΟΛΗΨΗ Α ΙΕΞΟ ΟΥ (4/6) Αναίρεση της συνθήκης µη προεκχώρησης Είναι περίπτωση συνήθως αδύνατη να υλοποιηθεί. Θεωρείστε µια διεργασία που έχει δεσµεύσει τον εκτυπωτή Είναι στο ενδιάµεσο της εκτύπωσης Τι θα προκαλέσει η αποδέσµευση του εκτυπωτή; ΠΡΟΛΗΨΗ Α ΙΕΞΟ ΟΥ (5/6) Αναίρεση της συνθήκης κυκλικής αναµονής Θα µπορούσαµε να πετύχουµε αναίρεση της κυκλικής αναµονής µε τους εξής τρόπους: Με την ύπαρξη κανόνα που να υποχρεώνει τις διεργασίες στη δέσµευση ενός µόνον πόρου κάθε χρονική στιγµή, οπότε αν χρειασθεί και δεύτερο θα πρέπει να αποδεσµεύει τον πρώτο. Με τη γενική απαρίθµηση όλων των πόρων. Στην περίπτωση αυτή ο κανόνας είναι: οι διεργασίες µπορούν να ζητούν πόρους όποτε επιθυµούν, αλλά όλες οι αιτήσεις πρέπει να γίνονται µε συγκεκριµένη αριθµητική σειρά

24 6.6 ΠΡΟΛΗΨΗ Α ΙΕΞΟ ΟΥ (6/6) Συνοπτικά, οι προσεγγίσεις πρόληψης αδιεξόδων περιγράφεται στο ακόλουθο σχήµα Συνθήκη Αµοιβαίος Αποκλεισµός έσµευση & Αναµονή Μη προεκχώρηση Κυκλική Αναµονή Προσέγγιση Ετεροχρονισµός Αρχική ζήτηση όλων των πόρων Αποµάκρυνση των πόρων Απαρίθµηση των πόρων ΑΛΛΑ ΘΕΜΑΤΑ (1/4) Κλείδωµα σε δύο φάσεις Για την αποφυγή αδιεξόδων σε περιβάλλοντα που εκτελούνται πολλές διεργασίες (π.χ. κλείδωµα πολλών εγγραφών και ενηµέρωσή τους), ακολουθείται µερικές φορές το κλείδωµα σε δύο φάσεις: Στην πρώτη φάση η διεργασία προσπαθεί να κλειδώσει όλες τις εγγραφές, µία κάθε φορά

25 6.7 ΑΛΛΑ ΘΕΜΑΤΑ (2/4) Ακολούθως:» Αν επιτύχει, ακολουθεί η δεύτερη φάση, όπου ενηµερώνονται και ακολούθως αποδεσµεύονται οι κλειδωµένες εγγραφές» Αν κατά τη διάρκεια της πρώτης φάσης κάποιες εγγραφές βρεθούν κλειδωµένες, τότε η διεργασία αποδεσµεύει όσες κλείδωσε και ξεκινά από την αρχή ΑΛΛΑ ΘΕΜΑΤΑ (3/4) Αδιέξοδα που δεν προκαλούνται από πόρους Υπάρχει περίπτωση να συµβαίνει αδιέξοδο όταν δύο διεργασίες περιµένουν η µία την άλλη να επιτελέσει κάποιο έργο, όπως συµβαίνει µε τους σηµαφόρους

26 6.7 ΑΛΛΑ ΘΕΜΑΤΑ (4/4) Παρατεταµένη στέρηση πόρων Υπάρχει περίπτωση ο αλγόριθµος κατανοµής πόρων να οδηγήσει στο πρόβληµα της παρατεταµένης στέρησης πόρων (starvation) για κάποιες διεργασίες. Πολλές φορές το πρόβληµα αντιµετωπίζεται µε τον αλγόριθµο κατανοµής Πρώτη-Εισερχόµενη- Πρώτη-Εξυπηρετούµενη για τις υπάρχουσες διεργασίες

09/04/2014 ΛΕΙΤΟΥΡΓΙΚΑ ΣΥΣΤΗΜΑΤΑ Ι. Μάθηµα: Α ΙΕΞΟ Α. ιδάσκων: Λειτουργικά Συστήµατα Ι Αν. Καθ. Κ. Λαµπρινουδάκης Α ΙΕΞΟ Α

09/04/2014 ΛΕΙΤΟΥΡΓΙΚΑ ΣΥΣΤΗΜΑΤΑ Ι. Μάθηµα: Α ΙΕΞΟ Α. ιδάσκων: Λειτουργικά Συστήµατα Ι Αν. Καθ. Κ. Λαµπρινουδάκης Α ΙΕΞΟ Α ΛΕΙΤΟΥΡΓΙΚΑ ΣΥΣΤΗΜΑΤΑ Ι Μάθηµα: Λειτουργικά Συστήµατα Ι Α ΙΕΞΟ Α ιδάσκων: Αν. Καθ. Κ. Λαµπρινουδάκης clam@unipi.gr 1 Α ΙΕΞΟ Α 2 1 ΠΟΡΟΙ Υπάρχουν δύο τύποι πόρων σε υπολογιστικά συστήµατα: Προεκτοπίσιµοι

Διαβάστε περισσότερα

Αδιέξοδα (Deadlocks)

Αδιέξοδα (Deadlocks) Αδιέξοδα (Deadlocks) Περίληψη Αδιέξοδα (deadlocks) Τύποι πόρων (preemptable non preemptable) Μοντελοποίηση αδιεξόδων Στρατηγικές Στρουθοκαµηλισµός (ostrich algorithm) Ανίχνευση και αποκατάσταση (detection

Διαβάστε περισσότερα

Λειτουργικά Συστήματα. Ενότητα # 6: Αδιέξοδα Διδάσκων: Γεώργιος Ξυλωμένος Τμήμα: Πληροφορικής

Λειτουργικά Συστήματα. Ενότητα # 6: Αδιέξοδα Διδάσκων: Γεώργιος Ξυλωμένος Τμήμα: Πληροφορικής Λειτουργικά Συστήματα Ενότητα # 6: Αδιέξοδα Διδάσκων: Γεώργιος Ξυλωμένος Τμήμα: Πληροφορικής Χρηματοδότηση Το παρόν εκπαιδευτικό υλικό έχει αναπτυχθεί στα πλαίσια του εκπαιδευτικού έργου του διδάσκοντα.

Διαβάστε περισσότερα

Λειτουργικά Συστήματα

Λειτουργικά Συστήματα 1 Ελληνική Δημοκρατία Τεχνολογικό Εκπαιδευτικό Ίδρυμα Ηπείρου Λειτουργικά Συστήματα Ενότητα 6 : Αδιέξοδο 1/2 Δημήτριος Λιαροκάπης 2 Ανοιχτά Ακαδημαϊκά Μαθήματα στο ΤΕΙ Ηπείρου Τμήμα Μηχανικών Πληροφορικής

Διαβάστε περισσότερα

Λειτουργικά Συστήματα

Λειτουργικά Συστήματα 1 Ελληνική Δημοκρατία Τεχνολογικό Εκπαιδευτικό Ίδρυμα Ηπείρου Λειτουργικά Συστήματα Ενότητα 7 : Αδιέξοδο 2/2 Δημήτριος Λιαροκάπης 2 Ανοιχτά Ακαδημαϊκά Μαθήματα στο ΤΕΙ Ηπείρου Τμήμα Μηχανικών Πληροφορικής

Διαβάστε περισσότερα

ΛΕΙΤΟΥΡΓΙΚΑ ΣΥΣΤΗΜΑΤΑ. Αδιέξοδα

ΛΕΙΤΟΥΡΓΙΚΑ ΣΥΣΤΗΜΑΤΑ. Αδιέξοδα ΛΕΙΤΟΥΡΓΙΚΑ ΣΥΣΤΗΜΑΤΑ Αδιέξοδα Υλικό από: Tanenbaum, Modern Operating Systems,Structured Computer Organization Stallings, Operating Systems: Internals and Design Principles. Silberschatz, Galvin and Gange,

Διαβάστε περισσότερα

Συγχρονισµός: Αδιέξοδο & Παρατεταµένη Στέρηση

Συγχρονισµός: Αδιέξοδο & Παρατεταµένη Στέρηση Συγχρονισµός: Αδιέξοδο & Παρατεταµένη Στέρηση Κεφάλαιο 6 Αδιέξοδο Μόνιµη αναµονή ενός συνόλου διεργασιών οι οποίες ανταγωνίζονται για πόρους του συστήµατος ή για να επικοινωνήσουν µεταξύ τους εν υπάρχει

Διαβάστε περισσότερα

ΛΕΙΤΟΥΡΓΙΚΑ ΣΥΣΤΗΜΑΤΑ. Αδιέξοδα

ΛΕΙΤΟΥΡΓΙΚΑ ΣΥΣΤΗΜΑΤΑ. Αδιέξοδα ΛΕΙΤΟΥΡΓΙΚΑ ΣΥΣΤΗΜΑΤΑ Αδιέξοδα Υλικό από: Tanenbaum, Modern Operating Systems,Structured Computer Organization Stallings, Operating Systems: Internals and Design Principles. Silberschatz, Galvin and Gange,

Διαβάστε περισσότερα

Λειτουργικά Συστήματα

Λειτουργικά Συστήματα ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΧΤΑ ΑΚΑΔΗΜΑΙΚΑ ΜΑΘΗΜΑΤΑ Λειτουργικά Συστήματα Ενότητα 4β: Αθηνά Βακάλη Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons.

Διαβάστε περισσότερα

ΛΕΙΤΟΥΡΓΙΚΑ ΣΥΣΤΗΜΑΤΑ Ι. Κεφάλαιο 6ο: Αδιέξοδα

ΛΕΙΤΟΥΡΓΙΚΑ ΣΥΣΤΗΜΑΤΑ Ι. Κεφάλαιο 6ο: Αδιέξοδα ΛΕΙΤΟΥΡΓΙΚΑ ΣΥΣΤΗΜΑΤΑ Ι Κεφάλαιο 6ο: Αδιέξοδα 1 3.1 Εισαγωγή Αδιέξοδο = ένα σύνολο από διεργασίες που δημιουργούν μια κυκλική αλυσίδα όπου κάθε process στην αλυσίδα δεν μπορεί να προχωρήσει και περιμένει

Διαβάστε περισσότερα

Λειτουργικά Συστήματα

Λειτουργικά Συστήματα Τμήμα Μηχανικών Πληροφορικής & Τηλεπικοινωνιών Λειτουργικά Συστήματα Ενότητα 6: Πόροι. Αδιέξοδα & Αποφυγή αδιεξόδων. Δρ. Μηνάς Δασυγένης mdasyg@ieee.org Εργαστήριο Ψηφιακών Συστημάτων και Αρχιτεκτονικής

Διαβάστε περισσότερα

Αµοιβαίοςαποκλεισµός. Κατανεµηµένα Συστήµατα 03-1

Αµοιβαίοςαποκλεισµός. Κατανεµηµένα Συστήµατα 03-1 Αµοιβαίοςαποκλεισµός Εισαγωγή Συγκεντρωτική προσέγγιση Κατανεµηµένη προσέγγιση Αλγόριθµος Lamport Αλγόριθµος Ricart-Agrawala Προσέγγιση µεταβίβασης σκυτάλης Αλγόριθµος LeLann Αλγόριθµος Raymond Αλγόριθµος

Διαβάστε περισσότερα

Dr. Garmpis Aristogiannis - EPDO TEI Messolonghi

Dr. Garmpis Aristogiannis - EPDO TEI Messolonghi Προϋποθέσεις για Αµοιβαίο Αποκλεισµό Μόνο µία διεργασία σε κρίσιµο τµήµασεκοινό πόρο Μία διεργασία που σταµατά σε µη κρίσιµο σηµείο δεν πρέπει να επιρεάζει τις υπόλοιπες διεργασίες εν πρέπει να υπάρχει

Διαβάστε περισσότερα

Περιεχόμενα. Αδιέξοδο

Περιεχόμενα. Αδιέξοδο ΕΠΛ222: Λειτουργικά Συστήματα (μετάφραση στα ελληνικά των διαφανειών του βιβλίου Operating Systems: Internals and Design Principles, 8/E, William Stallings) Ενότητα 5 (Κεφάλαιο 6) Αδιέξοδο και Παρατεταμένη

Διαβάστε περισσότερα

Λειτουργικά. Τεχνολογικό Εκπαιδευτικό Ίδρυμα Δυτικής Μακεδονίας Σιώζιος Κων/νος - Πληροφορική Ι

Λειτουργικά. Τεχνολογικό Εκπαιδευτικό Ίδρυμα Δυτικής Μακεδονίας Σιώζιος Κων/νος - Πληροφορική Ι Λειτουργικά Συστήματα 1 Λογισμικό του Υπολογιστή Για να λειτουργήσει ένας Η/Υ εκτός από το υλικό του, είναι απαραίτητο και το λογισμικό Το σύνολο των προγραμμάτων που συντονίζουν τις λειτουργίες του υλικού

Διαβάστε περισσότερα

Απαντήσεις. Απάντηση. Απάντηση

Απαντήσεις. Απάντηση. Απάντηση 6 η σειρά ασκήσεων Άλκης Γεωργόπουλος Α.Μ. 39 Αναστάσιος Κοντογιώργης Α.Μ. 43 Άσκηση 1. Απαντήσεις Η αλλαγή ενός ρολογιού προς τα πίσω µπορεί να προκαλέσει ανεπιθύµητη συµπεριφορά σε κάποια προγράµµατα.

Διαβάστε περισσότερα

Άρα, Τ ser = (A 0 +B 0 +B 0 +A 0 ) επίπεδο 0 + (A 1 +B 1 +A 1 ) επίπεδο 1 + +(B 5 ) επίπεδο 5 = 25[χρονικές µονάδες]

Άρα, Τ ser = (A 0 +B 0 +B 0 +A 0 ) επίπεδο 0 + (A 1 +B 1 +A 1 ) επίπεδο 1 + +(B 5 ) επίπεδο 5 = 25[χρονικές µονάδες] Α. Στο παρακάτω διάγραµµα εµφανίζεται η εκτέλεση ενός παράλληλου αλγόριθµου που λύνει το ίδιο πρόβληµα µε έναν ακολουθιακό αλγόριθµο χωρίς πλεονασµό. Τα Α i και B i αντιστοιχούν σε ακολουθιακά υποέργα

Διαβάστε περισσότερα

Αλγόριθµοι Οπισθοδρόµησης

Αλγόριθµοι Οπισθοδρόµησης Αλγόριθµοι Οπισθοδρόµησης Στην ενότητα αυτή θα µελετηθούν τα εξής επιµέρους θέµατα: Η οπισθοδρόµηση στο σχεδιασµό αλγορίθµων Το πρόβληµα των σταθερών γάµων και ο αλγόριθµος των Gale-Shapley Το πρόβληµα

Διαβάστε περισσότερα

Τμήμα Οικιακής Οικονομίας και Οικολογίας. Οργάνωση Υπολογιστών

Τμήμα Οικιακής Οικονομίας και Οικολογίας. Οργάνωση Υπολογιστών Οργάνωση Υπολογιστών Υπολογιστικό Σύστημα Λειτουργικό Σύστημα Αποτελεί τη διασύνδεση μεταξύ του υλικού ενός υπολογιστή και του χρήστη (προγραμμάτων ή ανθρώπων). Είναι ένα πρόγραμμα (ή ένα σύνολο προγραμμάτων)

Διαβάστε περισσότερα

Επιλογή και επανάληψη. Λογική έκφραση ή συνθήκη

Επιλογή και επανάληψη. Λογική έκφραση ή συνθήκη Επιλογή και επανάληψη Η ύλη που αναπτύσσεται σε αυτό το κεφάλαιο είναι συναφής µε την ύλη που αναπτύσσεται στο 2 ο κεφάλαιο. Όπου υπάρχουν διαφορές αναφέρονται ρητά. Προσέξτε ιδιαίτερα, πάντως, ότι στο

Διαβάστε περισσότερα

ΓΕΝΙΚ Ι Ο Κ Ο Ε ΠΙ Π Τ Ι Ε Τ Λ Ε ΕΙΟ Ι Ο Ε Θ Ε Ν Θ ΙΚ Ι Η Κ Σ Η Α Μ

ΓΕΝΙΚ Ι Ο Κ Ο Ε ΠΙ Π Τ Ι Ε Τ Λ Ε ΕΙΟ Ι Ο Ε Θ Ε Ν Θ ΙΚ Ι Η Κ Σ Η Α Μ ΓΕΝΙΚΟ ΕΠΙΤΕΛΕΙΟ ΕΘΝΙΚΗΣ ΑΜΥΝΑΣ ΚΛΑΔΟΣ ΣΤΡΑΤΗΓΙΚΗΣ & ΠΟΛΙΤΙΚΗΣ ΔΙΕΥΘΥΝΣΗ ΑΜΥΝΤΙΚΟΥ ΣΧΕΔΙΑΣΜΟΥ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΥ Σεμινάριο ΔΙΑΚΛΑΔΙΚΟ ΣΧΟΛΕΙΟ ΔΙΑΛΕΙΤΟΥΡΓΙΚΟΤΗΤΑΣ -ΠΟΙΟΤΗΤΑΣ - ΣΤΟΧΟΘΕΣΙΑΣ Θέμα: «Τεχνικές Διαχείρισης

Διαβάστε περισσότερα

Ποιότητα και Πρότυπα στη Διοίκηση Επιχειρήσεων Συστήµατα Διασφάλισης Ποιότητας ISO Διεργασιακή Προσέγγιση Διάλεξη 4

Ποιότητα και Πρότυπα στη Διοίκηση Επιχειρήσεων Συστήµατα Διασφάλισης Ποιότητας ISO Διεργασιακή Προσέγγιση Διάλεξη 4 Ποιότητα και Πρότυπα στη Διοίκηση Επιχειρήσεων Συστήµατα Διασφάλισης Ποιότητας ISO 9001- Διεργασιακή Προσέγγιση Διάλεξη 4 Τµήµα Διοίκησης Επιχειρήσεων Τει Δυτικής Ελλάδας Μεσολόγγι Δρ. Α. Στεφανή Βασικές

Διαβάστε περισσότερα

Μάθημα 7 ο. Αλγόριθμοι Χρονοδρομολόγησης

Μάθημα 7 ο. Αλγόριθμοι Χρονοδρομολόγησης Μάθημα 7 ο Αλγόριθμοι Χρονοδρομολόγησης Σκοπός του μαθήματος Στην ενότητα αυτή θα εξηγήσουμε το ρόλο και την αξιολόγηση των αλγορίθμων χρονοδρομολόγησης, και θα παρουσιάσουμε τους κυριότερους. Θα μάθουμε:

Διαβάστε περισσότερα

Θέτοντας και επιστρέφοντας την τιµή της προτεραιότητας διεργασίας

Θέτοντας και επιστρέφοντας την τιµή της προτεραιότητας διεργασίας Θέτοντας και επιστρέφοντας την τιµή της προτεραιότητας διεργασίας Το επίπεδο προτεραιότητας µιας διεργασίας µπορεί να αλλάξει µε χρήση της συνάρτησης nice. Κάθε διεργασία διαθέτει µια τιµή που καλείται

Διαβάστε περισσότερα

Παράδειγµα: Προσοµοίωση µιας ουράς FIFO Οι λειτουργίες που υποστηρίζονται από µια ουρά FIFO είναι: [enq(q,x), ack(q)] [deq(q), return(q,x)] όπου x είν

Παράδειγµα: Προσοµοίωση µιας ουράς FIFO Οι λειτουργίες που υποστηρίζονται από µια ουρά FIFO είναι: [enq(q,x), ack(q)] [deq(q), return(q,x)] όπου x είν Wait-free προσοµοιώσεις αυθαίρετων αντικειµένων Έχουµε δει ότι το πρόβληµα της οµοφωνίας δεν µπορεί να επιλυθεί µε χρήση µόνο read/write καταχωρητών. Πολλοί µοντέρνοι επεξεργαστές παρέχουν επιπρόσθετα

Διαβάστε περισσότερα

Νήµατα. Πολύ σηµαντικό

Νήµατα. Πολύ σηµαντικό Νήµατα Πολύ σηµαντικό 1 Νήµατα (συν.) Σηµαντικό 2 Νήµατα vs ιεργασίες Νήµατα ιεργασίες Χώρος εδοµένων Περιγραφητές Αρχείων fork exit exec Σήµατα Κοινός. Ότι αλλάζει το 1 νήµα το βλέπουν/ αλλάζουν και τα

Διαβάστε περισσότερα

3. Προσομοίωση ενός Συστήματος Αναμονής.

3. Προσομοίωση ενός Συστήματος Αναμονής. 3. Προσομοίωση ενός Συστήματος Αναμονής. 3.1. Διατύπωση του Προβλήματος. Τα συστήματα αναμονής (queueing systems), βρίσκονται πίσω από τα περισσότερα μοντέλα μελέτης της απόδοσης υπολογιστικών συστημάτων,

Διαβάστε περισσότερα

Έλεγχος συγχρονικότητας Μέρος 1 Βάσεις Δεδομένων Διδάσκων: Μαρία Χαλκίδη

Έλεγχος συγχρονικότητας Μέρος 1 Βάσεις Δεδομένων Διδάσκων: Μαρία Χαλκίδη Έλεγχος συγχρονικότητας Μέρος 1 Βάσεις Δεδομένων Διδάσκων: Μαρία Χαλκίδη με βάση slides από A. Silberschatz, H. Korth, S. Sudarshan, Database System Concepts, 5 th edition Έλεγχος συγχρονικότητας Διάφορες

Διαβάστε περισσότερα

Θοδωρής Ανδρόνικος Τμήμα Πληροφορικής, Ιόνιο Πανεπιστήμιο

Θοδωρής Ανδρόνικος Τμήμα Πληροφορικής, Ιόνιο Πανεπιστήμιο Θοδωρής Ανδρόνικος Τμήμα Πληροφορικής, Ιόνιο Πανεπιστήμιο Για το μάθημα «Διαχείριση Λειτουργικών Συστημάτων» του ακαδημαϊκού έτους 2015 2016, το προτεινόμενο σύγγραμμα είναι το: Operating Systems: Internals

Διαβάστε περισσότερα

Κατανεμημένα Συστήματα με Java. Ενότητα # 4: Αμοιβαίος αποκλεισμός Διδάσκων: Γεώργιος Ξυλωμένος Τμήμα: Πληροφορικής

Κατανεμημένα Συστήματα με Java. Ενότητα # 4: Αμοιβαίος αποκλεισμός Διδάσκων: Γεώργιος Ξυλωμένος Τμήμα: Πληροφορικής Κατανεμημένα Συστήματα με Java Ενότητα # 4: Αμοιβαίος αποκλεισμός Διδάσκων: Γεώργιος Ξυλωμένος Τμήμα: Πληροφορικής Χρηματοδότηση Το παρόν εκπαιδευτικό υλικό έχει αναπτυχθεί στα πλαίσια του εκπαιδευτικού

Διαβάστε περισσότερα

Λειτουργικά Συστήματα

Λειτουργικά Συστήματα 1 Ελληνική Δημοκρατία Τεχνολογικό Εκπαιδευτικό Ίδρυμα Ηπείρου Λειτουργικά Συστήματα Ενότητα 5 : Αμοιβαίος Αποκλεισμός Δημήτριος Λιαροκάπης 2 Ανοιχτά Ακαδημαϊκά Μαθήματα στο ΤΕΙ Ηπείρου Τμήμα Μηχανικών

Διαβάστε περισσότερα

Μάθημα 7: Αλγόριθμοι Χρονοδρομολόγησης

Μάθημα 7: Αλγόριθμοι Χρονοδρομολόγησης Μάθημα 7: Αλγόριθμοι Χρονοδρομολόγησης 7.1 Ορισμός Στόχοι Αλγόριθμο χρονοδρομολόγησης (scheduling algorithm) ονομάζουμε την μεθοδολογία την οποία χρησιμοποιεί ο κάθε χρονοδρομολογητής (βραχυχρόνιος, μεσοχρόνιος

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 2ο ΠΡΟΣΟΜΟΙΩΣΗ ΔΙΑΚΡΙΤΩΝ ΓΕΓΟΝΟΤΩΝ

ΚΕΦΑΛΑΙΟ 2ο ΠΡΟΣΟΜΟΙΩΣΗ ΔΙΑΚΡΙΤΩΝ ΓΕΓΟΝΟΤΩΝ ΚΕΦΑΛΑΙΟ 2ο ΠΡΟΣΟΜΟΙΩΣΗ ΔΙΑΚΡΙΤΩΝ ΓΕΓΟΝΟΤΩΝ 2.1 Εισαγωγή Η μέθοδος που θα χρησιμοποιηθεί για να προσομοιωθεί ένα σύστημα έχει άμεση σχέση με το μοντέλο που δημιουργήθηκε για το σύστημα. Αυτό ισχύει και

Διαβάστε περισσότερα

ΔΟΜΗΜΕΝΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ

ΔΟΜΗΜΕΝΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ ΕΡΩΤΗΣΕΙΣ 1. Τι καλείται ψευδοκώδικας; 2. Τι καλείται λογικό διάγραμμα; 3. Για ποιο λόγο είναι απαραίτητη η τυποποίηση του αλγόριθμου; 4. Ποιες είναι οι βασικές αλγοριθμικές δομές; 5. Να περιγράψετε τις

Διαβάστε περισσότερα

Κεφάλαιο 4: Λογισμικό Συστήματος

Κεφάλαιο 4: Λογισμικό Συστήματος Κεφάλαιο 4: Λογισμικό Συστήματος Ερωτήσεις 1. Να αναφέρετε συνοπτικά τις κατηγορίες στις οποίες διακρίνεται το λογισμικό συστήματος. Σε ποια ευρύτερη κατηγορία εντάσσεται αυτό; Το λογισμικό συστήματος

Διαβάστε περισσότερα

Κεφάλαιο 5: Στρατηγική χωροταξικής διάταξης

Κεφάλαιο 5: Στρατηγική χωροταξικής διάταξης K.5.1 Γραμμή Παραγωγής Μια γραμμή παραγωγής θεωρείται μια διάταξη με επίκεντρο το προϊόν, όπου μια σειρά από σταθμούς εργασίας μπαίνουν σε σειρά με στόχο ο κάθε ένας από αυτούς να κάνει μια ή περισσότερες

Διαβάστε περισσότερα

Λύσεις 4ης Σειράς Ασκήσεων

Λύσεις 4ης Σειράς Ασκήσεων Λύσεις 4ης Σειράς Ασκήσεων Άσκηση 1 Αναγάγουμε τν Κ 0 που γνωρίζουμε ότι είναι μη-αναδρομική (μη-επιλύσιμη) στην γλώσσα: L = {p() η μηχανή Turing Μ τερματίζει με είσοδο κενή ταινία;} Δοσμένης της περιγραφής

Διαβάστε περισσότερα

Εντολές της LOGO (MicroWorlds Pro)

Εντολές της LOGO (MicroWorlds Pro) Εντολές της LOGO (MicroWorlds Pro) Εντολές εμφάνισης (εξόδου) και αριθμητικές πράξεις δείξε Εμφανίζει στην οθόνη έναν αριθμό, το αποτέλεσμα πράξεων, μια λέξη ή μια λίστα (ομάδα) λέξεων. δείξε 200 200 δείξε

Διαβάστε περισσότερα

Το Πρόβληµα Οµοφωνίας Σύγχρονα Συστήµατα Μεταβίβασης Μηνύµατος Μοντέλο Κατάρρευσης (crash model) Οι διεργασίες µπορούν να σταµατούν να εκτελούνται σε

Το Πρόβληµα Οµοφωνίας Σύγχρονα Συστήµατα Μεταβίβασης Μηνύµατος Μοντέλο Κατάρρευσης (crash model) Οι διεργασίες µπορούν να σταµατούν να εκτελούνται σε Οµοφωνία σε σύστηµα µε αϖοτυχίες διεργασιών Παναγιώτα Φατούρου Κατανεµηµένα Συστήµατα 1 Το Πρόβληµα Οµοφωνίας Σύγχρονα Συστήµατα Μεταβίβασης Μηνύµατος Μοντέλο Κατάρρευσης (crash model) Οι διεργασίες µπορούν

Διαβάστε περισσότερα

επιµέλεια Θοδωρής Πιερράτος

επιµέλεια Θοδωρής Πιερράτος Βασικές έννοιες προγραµµατισµού Η ύλη που αναπτύσσεται σε αυτό το κεφάλαιο είναι συναφής µε την ύλη που αναπτύσσεται στο 2 ο κεφάλαιο. Όπου υπάρχουν διαφορές αναφέρονται ρητά. Προσέξτε ιδιαίτερα, πάντως,

Διαβάστε περισσότερα

Εφαρμόζονται σε προβλήματα στα οποία δεν υπάρχει πληροφορία που να επιτρέπει την αξιολόγηση των καταστάσεων του χώρου αναζήτησης.

Εφαρμόζονται σε προβλήματα στα οποία δεν υπάρχει πληροφορία που να επιτρέπει την αξιολόγηση των καταστάσεων του χώρου αναζήτησης. Ανάλογα με το αν ένας αλγόριθμος αναζήτησης χρησιμοποιεί πληροφορία σχετική με το πρόβλημα για να επιλέξει την επόμενη κατάσταση στην οποία θα μεταβεί, οι αλγόριθμοι αναζήτησης χωρίζονται σε μεγάλες κατηγορίες,

Διαβάστε περισσότερα

Λειτουργικά Συστήματα. Τ.Ε.Ι. Ιονίων Νήσων Σχολή Διοίκησης και Οικονομίας - Λευκάδα

Λειτουργικά Συστήματα. Τ.Ε.Ι. Ιονίων Νήσων Σχολή Διοίκησης και Οικονομίας - Λευκάδα Λειτουργικά Συστήματα Τ.Ε.Ι. Ιονίων Νήσων Σχολή Διοίκησης και Οικονομίας - Λευκάδα Στέργιος Παλαμάς, Υλικό Μαθήματος «Λειτουργικά Συστήματα», 2015-2016 Κεφάλαιο 4: Διεργασίες Πρόγραμμα Πρόγραμμα 1 Πρόγραμμα

Διαβάστε περισσότερα

1. Πότε χρησιμοποιούμε την δομή επανάληψης; Ποιες είναι οι διάφορες εντολές (μορφές) της;

1. Πότε χρησιμοποιούμε την δομή επανάληψης; Ποιες είναι οι διάφορες εντολές (μορφές) της; 1. Πότε χρησιμοποιούμε την δομή επανάληψης; Ποιες είναι οι διάφορες (μορφές) της; Η δομή επανάληψης χρησιμοποιείται όταν μια σειρά εντολών πρέπει να εκτελεστεί σε ένα σύνολο περιπτώσεων, που έχουν κάτι

Διαβάστε περισσότερα

Ενότητα 6 (Κεφάλαιο 9) Χρονοδρομολόγηση

Ενότητα 6 (Κεφάλαιο 9) Χρονοδρομολόγηση ΕΠΛ222: Λειτουργικά Συστήματα (μετάφραση στα ελληνικά των διαφανειών του βιβλίου Operating Systems: Internals and Design Principles, 8/E, William Stallings) Ενότητα 6 (Κεφάλαιο 9) Χρονοδρομολόγηση Οι διαφάνειες

Διαβάστε περισσότερα

ΑΣΦΑΛΕΙΑ ΔΕΔΟΜΕΝΩΝ ΣΤΗΝ ΚΟΙΝΩΝΙΑ ΤΗΣ ΠΛΗΡΟΦΟΡΙΑΣ (Μηχανισμοί Ελέγχου Προσπέλασης)

ΑΣΦΑΛΕΙΑ ΔΕΔΟΜΕΝΩΝ ΣΤΗΝ ΚΟΙΝΩΝΙΑ ΤΗΣ ΠΛΗΡΟΦΟΡΙΑΣ (Μηχανισμοί Ελέγχου Προσπέλασης) ΑΣΦΑΛΕΙΑ ΔΕΔΟΜΕΝΩΝ ΣΤΗΝ ΚΟΙΝΩΝΙΑ ΤΗΣ ΠΛΗΡΟΦΟΡΙΑΣ (Μηχανισμοί Ελέγχου Προσπέλασης) Καλλονιάτης Χρήστος Επίκουρος Καθηγητής Τμήμα Πολιτισμικής Τεχνολογίας και Επικοινωνίας, Πανεπιστήμιο Αιγαίου http://www.ct.aegean.gr/people/kalloniatis

Διαβάστε περισσότερα

Θεωρία Υπολογισμού και Πολυπλοκότητα Αναγωγές

Θεωρία Υπολογισμού και Πολυπλοκότητα Αναγωγές Θεωρία Υπολογισμού και Πολυπλοκότητα Αναγωγές Στην ενότητα αυτή θα μελετηθούν τα εξής επιμέρους θέματα: Ανεπίλυτα Προβλήματα από τη Θεωρία Γλωσσών (5.1) To Πρόβλημα της Περάτωσης Το Πρόβλημα της Κενότητα

Διαβάστε περισσότερα

Στην ενότητα αυτή θα µελετηθούν τα εξής θέµατα:

Στην ενότητα αυτή θα µελετηθούν τα εξής θέµατα: υναµικός Προγραµµατισµός Στην ενότητα αυτή θα µελετηθούν τα εξής θέµατα: Σχεδιασµός αλγορίθµων µε υναµικό Προγραµµατισµό Το πρόβληµα του πολλαπλασιασµού πινάκων ΕΠΛ 3 Αλγόριθµοι και Πολυπλοκότητα 3- υναµικός

Διαβάστε περισσότερα

Σκοπός. Εργαστήριο 6 Εντολές Επανάληψης

Σκοπός. Εργαστήριο 6 Εντολές Επανάληψης Εργαστήριο 6 Εντολές Επανάληψης Η δομή Επιλογής στη PASCAL H δομή Επανάληψης στη PASCAL. Ρεύμα Εισόδου / Εξόδου.. Ρεύμα Εισόδου / Εξόδου. To πρόγραμμα γραφικών gnuplot. Γραφικά στη PASCAL. Σκοπός 6.1 ΕΠΙΔΙΩΞΗ

Διαβάστε περισσότερα

Ασκήσεις μελέτης της 4 ης διάλεξης. ), για οποιοδήποτε μονοπάτι n 1

Ασκήσεις μελέτης της 4 ης διάλεξης. ), για οποιοδήποτε μονοπάτι n 1 Οικονομικό Πανεπιστήμιο Αθηνών, Τμήμα Πληροφορικής Μάθημα: Τεχνητή Νοημοσύνη, 2016 17 Διδάσκων: Ι. Ανδρουτσόπουλος Ασκήσεις μελέτης της 4 ης διάλεξης 4.1. (α) Αποδείξτε ότι αν η h είναι συνεπής, τότε h(n

Διαβάστε περισσότερα

Αλγόριθμοι και Πολυπλοκότητα

Αλγόριθμοι και Πολυπλοκότητα Αλγόριθμοι και Πολυπλοκότητα Ροή Δικτύου Δημήτρης Μιχαήλ Τμήμα Πληροφορικής και Τηλεματικής Χαροκόπειο Πανεπιστήμιο Μοντελοποίηση Δικτύων Μεταφοράς Τα γραφήματα χρησιμοποιούνται συχνά για την μοντελοποίηση

Διαβάστε περισσότερα

Περι-γράφοντας... βρόχους

Περι-γράφοντας... βρόχους Όνομα(τα): Όνομα Η/Υ: Σ Τμήμα: Ημερομηνία: Περι-γράφοντας... βρόχους Ξεκινήστε το Χώρο Δραστηριοτήτων, επιλέξτε τη θεματική ενότητα: ΘΕ05: Επανάληψη και επιλέξτε την πρώτη δραστηριότητα (Περι-γράφοντας...

Διαβάστε περισσότερα

ιεργασίες και Επεξεργαστές στα Κατανεµηµένων Συστηµάτων

ιεργασίες και Επεξεργαστές στα Κατανεµηµένων Συστηµάτων ιεργασίες και Επεξεργαστές στα Κατανεµηµένων Συστηµάτων Μαρία Ι. Ανδρέου ΗΜΥ417, ΗΜΥ 663 Κατανεµηµένα Συστήµατα Χειµερινό Εξάµηνο 2006-2007 Τµήµα Ηλεκτρολόγων Μηχανικών & Μηχανικών Υπολογιστών Πανεπιστήµιο

Διαβάστε περισσότερα

Αιτιώδεις Σχέσεις και Χρονισµός Παναγιώτα Φατούρου Κατανεµηµένα Συστήµατα 1 Η Σχέση Happens-Before (Συµβαίνει-ϖριν) Οι εκτελέσεις, ως ακολουθίες γεγονότων, καθορίζουν µια καθολική διάταξη σε αυτά. Ωστόσο

Διαβάστε περισσότερα

Ένα αφαιρετικό πραγματικού χρόνου μοντέλο λειτουργικού συστήματος για MPSoC

Ένα αφαιρετικό πραγματικού χρόνου μοντέλο λειτουργικού συστήματος για MPSoC Ένα αφαιρετικό πραγματικού χρόνου μοντέλο λειτουργικού συστήματος για MPSoC Αρχιτεκτονική Πλατφόρμας Μπορεί να μοντελοποιηθεί σαν ένα σύνολο από διασυνδεδεμένα κομμάτια: 1. Στοιχεία επεξεργασίας (processing

Διαβάστε περισσότερα

Σηµειώσεις στις σειρές

Σηµειώσεις στις σειρές . ΟΡΙΣΜΟΙ - ΓΕΝΙΚΕΣ ΕΝΝΟΙΕΣ Σηµειώσεις στις σειρές Στην Ενότητα αυτή παρουσιάζουµε τις βασικές-απαραίτητες έννοιες για την µελέτη των σειρών πραγµατικών αριθµών και των εφαρµογών τους. Έτσι, δίνονται συστηµατικά

Διαβάστε περισσότερα

Ανάλυση Επιδόσεων Συστημάτων Πραγματικού Χρόνου

Ανάλυση Επιδόσεων Συστημάτων Πραγματικού Χρόνου ΣΥΣΤΗΜΑΤΑ ΠΡΑΓΜΑΤΙΚΟΥ ΧΡΟΝΟΥ Μάθημα Επιλογής Ανάλυση Επιδόσεων Συστημάτων Πραγματικού Χρόνου Δρ. Γεώργιος Κεραμίδας e-mail: gkeramidas@teimes.gr 1 Διεργασίες: Κατάσταση Εκτέλεσης (3-σταδίων) Κατάσταση

Διαβάστε περισσότερα

(GNU-Linux, FreeBSD, MacOsX, QNX

(GNU-Linux, FreeBSD, MacOsX, QNX 1.7 διαταξεις (σελ. 17) Παράδειγµα 1 Θα πρέπει να κάνουµε σαφές ότι η επιλογή των λέξεων «προηγείται» και «έπεται» δεν έγινε απλώς για λόγους αφαίρεσης. Μπορούµε δηλαδή να ϐρούµε διάφορα παραδείγµατα στα

Διαβάστε περισσότερα

Εργαστηριακή Άσκηση. Τμήμα Μηχανικών Πληροφορικής ΤΕ

Εργαστηριακή Άσκηση. Τμήμα Μηχανικών Πληροφορικής ΤΕ Εργαστηριακή Άσκηση Εργαστήριο Λειτουργικών Συστημάτων Οι First Come First Serve (FCFS), Shortest Job First (SJF), Round Robin (RR), Priority Weighted (PRI) Β. Τσακανίκας Β. Ταμπακάς Τμήμα Μηχανικών Πληροφορικής

Διαβάστε περισσότερα

2 ΟΥ και 8 ΟΥ ΚΕΦΑΛΑΙΟΥ

2 ΟΥ και 8 ΟΥ ΚΕΦΑΛΑΙΟΥ ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ ΕΠΙΜΕΛΕΙΑ: ΜΑΡΙΑ Σ. ΖΙΩΓΑ ΚΑΘΗΓΗΤΡΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΘΕΩΡΙΑ 2 ΟΥ και 8 ΟΥ ΚΕΦΑΛΑΙΟΥ ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ ΔΟΜΗ ΕΠΑΝΑΛΗΨΗΣ 1) Πότε χρησιμοποιείται η δομή επανάληψης

Διαβάστε περισσότερα

Ενότητα 2. Ζωγραφίζοντας με το ΒΥΟΒ

Ενότητα 2. Ζωγραφίζοντας με το ΒΥΟΒ Ενότητα 2 : Ζωγραφίζοντας με το ΒΥΟΒ -1- Ενότητα 2. Ζωγραφίζοντας με το ΒΥΟΒ Κεφάλαιο 1: Κίνηση και γεωμετρικά σχήματα α. Θέση και προσανατολισμός της μορφής Η θέση της κάθε μορφής στο σκηνικό προσδιορίζεται

Διαβάστε περισσότερα

Έλεγχος Ταυτοχρονισμού

Έλεγχος Ταυτοχρονισμού Έλεγχος Ταυτοχρονισμού Κεφάλαιο 17 Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke Ελληνική Μετάφραση: Γεώργιος Ευαγγελίδης 1 Συγκρουσιακώς Σειριοποιήσιμα Χρονοπρογράμματα Δυο χρονοπρογράμματα

Διαβάστε περισσότερα

Ερωτήσεις πολλαπλής επιλογής - Κεφάλαιο 2. Α1. Ο αλγόριθμος είναι απαραίτητος μόνο για την επίλυση προβλημάτων πληροφορικής

Ερωτήσεις πολλαπλής επιλογής - Κεφάλαιο 2. Α1. Ο αλγόριθμος είναι απαραίτητος μόνο για την επίλυση προβλημάτων πληροφορικής Ερωτήσεις πολλαπλής επιλογής - Κεφάλαιο 2 Α1. Ο αλγόριθμος είναι απαραίτητος μόνο για την επίλυση προβλημάτων πληροφορικής Α2. Ο αλγόριθμος αποτελείται από ένα πεπερασμένο σύνολο εντολών Α3. Ο αλγόριθμος

Διαβάστε περισσότερα

ΤΕΧΝΗΤΗ ΝΟΗΜΟΣΥΝΗ ΜΑΘΗΜΑ 2 ΑΝΑΠΑΡΑΣΤΑΣΗ - ΤΕΧΝΙΚΕΣ ΤΝ (1)

ΤΕΧΝΗΤΗ ΝΟΗΜΟΣΥΝΗ ΜΑΘΗΜΑ 2 ΑΝΑΠΑΡΑΣΤΑΣΗ - ΤΕΧΝΙΚΕΣ ΤΝ (1) ΤΕΧΝΗΤΗ ΝΟΗΜΟΣΥΝΗ ΜΑΘΗΜΑ 2 ΑΝΑΠΑΡΑΣΤΑΣΗ - ΤΕΧΝΙΚΕΣ ΤΝ (1) 2. ΑΝΑΠΑΡΑΣΤΑΣΗ ΠΡΟΒΛΗΜΑΤΟΣ H υλοποίηση ενός προβλήµατος σε σύστηµα Η/Υ που επιδεικνύει ΤΝ 1 απαιτεί: Την κατάλληλη περιγραφή του προβλήµατος

Διαβάστε περισσότερα

ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ Γ ΛΥΚΕΙΟΥ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ (ΚΥΚΛΟΥ ΠΛΗΡΟΦΟΡΙΚΗΣ & ΥΠΗΡΕΣΙΩΝ) 2007 ΕΚΦΩΝΗΣΕΙΣ

ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ Γ ΛΥΚΕΙΟΥ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ (ΚΥΚΛΟΥ ΠΛΗΡΟΦΟΡΙΚΗΣ & ΥΠΗΡΕΣΙΩΝ) 2007 ΕΚΦΩΝΗΣΕΙΣ ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ Γ ΛΥΚΕΙΟΥ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ (ΚΥΚΛΟΥ ΠΛΗΡΟΦΟΡΙΚΗΣ & ΥΠΗΡΕΣΙΩΝ) 2007 ΘΕΜΑ 1ο ΕΚΦΩΝΗΣΕΙΣ Α. Να γράψετε στο τετράδιό σας τον αριθµό καθεµιάς από τις

Διαβάστε περισσότερα

Βάσεις Δεδομένων 2. Φροντιστήριο Δοσοληψίες Τεχνικές ελέγχου συνδρομικότητας. Ημερ: 05/5/2009 Ακ.Έτος 2008-09

Βάσεις Δεδομένων 2. Φροντιστήριο Δοσοληψίες Τεχνικές ελέγχου συνδρομικότητας. Ημερ: 05/5/2009 Ακ.Έτος 2008-09 Βάσεις Δεδομένων 2 Φροντιστήριο Δοσοληψίες Τεχνικές ελέγχου συνδρομικότητας Ημερ: 05/5/2009 Ακ.Έτος 2008-09 Θεωρία-Επανάληψη Δοσοληψία-ορισμός Το πρόβλημα της απώλειας των ενημερώσεων Το πρόβλημα της προσωρινής

Διαβάστε περισσότερα

Επαναληπτικό ιαγώνισµα Πληροφορικής Γ Γυµνασίου Γιώργος Λιακέας Σχολικός Σύµβουλος Πληροφορικής Ερωτήσεις

Επαναληπτικό ιαγώνισµα Πληροφορικής Γ Γυµνασίου Γιώργος Λιακέας Σχολικός Σύµβουλος Πληροφορικής Ερωτήσεις Επαναληπτικό ιαγώνισµα Πληροφορικής Γ Γυµνασίου (νέο βιβλίο Πληροφορικής Γυµνασίου Αράπογλου, Μαβόγλου, Οικονοµάκου, Φύτρου) Γιώργος Λιακέας Σχολικός Σύµβουλος Πληροφορικής Ερωτήσεις 1. Τι είναι ο Αλγόριθµος;

Διαβάστε περισσότερα

ΤΕΙ ΛΑΜΙΑΣ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΑ ΥΠΟΛΟΓΙΣΤΩΝ

ΤΕΙ ΛΑΜΙΑΣ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΑ ΥΠΟΛΟΓΙΣΤΩΝ ÌïëëÜ Ì. Á μýô Á.Ì. : 5 moll@moll.r ΤΕΙ ΛΑΜΙΑΣ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΑ ΥΠΟΛΟΓΙΣΤΩΝ ΜΑΘΗΜΑ : ΕΙΣΑΓΩΓΗ ΣΤΟ ΔΙΑΔΙΚΤΥΟ (ΕΡΓΑΣΤΗΡΙΟ) Ε ΕΞΑΜΗΝΟ ΕΙΣΗΓΗΤΕΣ: Χαϊδόγιαννος Χαράλαμπος ΕΡΓΑΣΤΗΡΙΑΚΗ ΑΣΚΗΣΗ

Διαβάστε περισσότερα

Κεφάλαιο 6. Εισαγωγή στη µέθοδο πεπερασµένων όγκων επίλυση ελλειπτικών και παραβολικών διαφορικών εξισώσεων

Κεφάλαιο 6. Εισαγωγή στη µέθοδο πεπερασµένων όγκων επίλυση ελλειπτικών και παραβολικών διαφορικών εξισώσεων Κεφάλαιο 6 Εισαγωγή στη µέθοδο πεπερασµένων όγκων επίλυση ελλειπτικών παραβολικών διαφορικών εξισώσεων 6.1 Εισαγωγή Η µέθοδος των πεπερασµένων όγκων είναι µία ευρέως διαδεδοµένη υπολογιστική µέθοδος επίλυσης

Διαβάστε περισσότερα

4.4 Το πρόβλημα του ελάχιστου ζευγνύοντος δένδρου

4.4 Το πρόβλημα του ελάχιστου ζευγνύοντος δένδρου . Το πρόβλημα του ελάχιστου ζευγνύοντος δένδρου Σ αυτή την παράγραφο θα εξεταστεί μια παραλλαγή του προβλήματος της συντομότερης διαδρομής, το πρόβλημα του ελάχιστου ζευγνύοντος δένδρου. Σ αυτό το πρόβλημα

Διαβάστε περισσότερα

ΠροσδιορισµόςΒέλτιστης Λύσης στα Προβλήµατα Μεταφοράς Η µέθοδος Stepping Stone

ΠροσδιορισµόςΒέλτιστης Λύσης στα Προβλήµατα Μεταφοράς Η µέθοδος Stepping Stone ΠροσδιορισµόςΒέλτιστης Λύσης στα Προβλήµατα Μεταφοράς Η µέθοδος Stepping Stone Hµέθοδος Stepping Stoneείναι µία επαναληπτική διαδικασία για τον προσδιορισµό της βέλτιστης λύσης σε ένα πρόβληµα µεταφοράς.

Διαβάστε περισσότερα

Ασκήσεις Φροντιστηρίου «Υπολογιστική Νοηµοσύνη Ι» 7ο Φροντιστήριο 15/1/2008

Ασκήσεις Φροντιστηρίου «Υπολογιστική Νοηµοσύνη Ι» 7ο Φροντιστήριο 15/1/2008 Ασκήσεις Φροντιστηρίου «Υπολογιστική Νοηµοσύνη Ι» 7ο Φροντιστήριο 5//008 Πρόβληµα ο Στα παρακάτω ερωτήµατα επισηµαίνουµε ότι perceptron είναι ένας νευρώνας και υποθέτουµε, όπου χρειάζεται, τη χρήση δικτύων

Διαβάστε περισσότερα

Ως ανάπτυξη προϊόντος ορίζεται όλο το σύνολο των δραστηριοτήτων από την έρευνα αγοράς, µέχρι την παράδοσή του στον πελάτη.

Ως ανάπτυξη προϊόντος ορίζεται όλο το σύνολο των δραστηριοτήτων από την έρευνα αγοράς, µέχρι την παράδοσή του στον πελάτη. ΕΙΣΑΓΩΓΗ Ως ανάπτυξη προϊόντος ορίζεται όλο το σύνολο των δραστηριοτήτων από την έρευνα αγοράς, µέχρι την παράδοσή του στον πελάτη. Η µεθοδολογία είναι κοινή για όλα τα προϊόντα, αλλά η µεθοδολογία που

Διαβάστε περισσότερα

Τυπικές χρήσεις της Matlab

Τυπικές χρήσεις της Matlab Matlab Μάθημα 1 Τι είναι η Matlab Ολοκληρωμένο Περιβάλλον Περιβάλλον ανάπτυξης Διερμηνευμένη γλώσσα Υψηλή επίδοση Ευρύτητα εφαρμογών Ευκολία διατύπωσης Cross platform (Wintel, Unix, Mac) Τυπικές χρήσεις

Διαβάστε περισσότερα

Μετάβαση σε Ε.Λ.Π. Παραμετροποίηση

Μετάβαση σε Ε.Λ.Π. Παραμετροποίηση Μετάβαση σε Ε.Λ.Π. Εάν αποφασιστεί η μετάβαση στο προτεινόμενο από τα ΕΛΠ λογιστικό σχέδιο, το ATLANTIS E.R.P. παρέχει αυτόματες εργασίες μετάβασης. Η μετάβαση στο νέο λογιστικό σχέδιο πρέπει να γίνει

Διαβάστε περισσότερα

Μάθημα 3 ο ΔΙΕΡΓΑΣΙΕΣ (PROCESSES)

Μάθημα 3 ο ΔΙΕΡΓΑΣΙΕΣ (PROCESSES) Μάθημα 3 ο ΔΙΕΡΓΑΣΙΕΣ (PROCESSES) Εισαγωγή H κεντρική μονάδα επεξεργασίας (ΚΜΕ) και η κύρια μνήμη αποτελούν τα βασικά δομικά στοιχεία ενός υπολογιστικού συστήματος. Η πρώτη εκτελεί εντολές χειρισμού δεδομένων

Διαβάστε περισσότερα

Μέγιστη ροή. Κατευθυνόμενο γράφημα. Συνάρτηση χωρητικότητας. αφετηρίακός κόμβος. τερματικός κόμβος. Ροή δικτύου. με τις ακόλουθες ιδιότητες

Μέγιστη ροή. Κατευθυνόμενο γράφημα. Συνάρτηση χωρητικότητας. αφετηρίακός κόμβος. τερματικός κόμβος. Ροή δικτύου. με τις ακόλουθες ιδιότητες Κατευθυνόμενο γράφημα Συνάρτηση χωρητικότητας 2 6 20 Ροή δικτύου Συνάρτηση αφετηρίακός κόμβος 0 με τις ακόλουθες ιδιότητες 9 7 τερματικός κόμβος Περιορισμός χωρητικότητας: Αντισυμμετρία: Διατήρηση ροής:

Διαβάστε περισσότερα

Διαδικασιακός Προγραμματισμός

Διαδικασιακός Προγραμματισμός Τμήμα ΜΗΧΑΝΙΚΩΝ ΠΛΗΡΟΦΟΡΙΚΗΣ ΤΕ ΤΕΙ ΔΥΤΙΚΗΣ ΕΛΛΑΔΑΣ Διαδικασιακός Προγραμματισμός Διάλεξη 14 η Διαχείριση Μνήμης και Δομές Δεδομένων Οι διαλέξεις βασίζονται στο βιβλίο των Τσελίκη και Τσελίκα C: Από τη

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 3: Λειτουργικά Συστήµατα

ΚΕΦΑΛΑΙΟ 3: Λειτουργικά Συστήµατα ΚΕΦΑΛΑΙΟ 3: Λειτουργικά Συστήµατα 3.1 Η εξέλιξη των λειτουργικών συστηµάτων 3.2 Αρχιτεκτονική λειτουργικών συστηµάτων 3.3 Συντονισµός των δραστηριοτήτων του υπολογιστή 3.4 Χειρισµός ανταγωνισµού µεταξύ

Διαβάστε περισσότερα

Διάλεξη 13η: Δυναμική Διαχείρηση Μνήμης, μέρος 1

Διάλεξη 13η: Δυναμική Διαχείρηση Μνήμης, μέρος 1 Διάλεξη 13η: Δυναμική Διαχείρηση Μνήμης, μέρος 1 Τμήμα Επιστήμης Υπολογιστών, Πανεπιστήμιο Κρήτης Εισαγωγή στην Επιστήμη Υπολογιστών Βασίζεται σε διαφάνειες του Κ Παναγιωτάκη Πρατικάκης (CSD) Μνήμη I CS100,

Διαβάστε περισσότερα

Τεχνολογία Υπολογιστικών Συστηµάτων & Λειτουργικά Συστήµατα Κεφάλαιο 8

Τεχνολογία Υπολογιστικών Συστηµάτων & Λειτουργικά Συστήµατα Κεφάλαιο 8 Τεχνολογία Υπολογιστικών Συστηµάτων & Λειτουργικά Συστήµατα Κεφάλαιο 8 Κεφάλαιο 8 ιαχείριση ΚΜΕ στα Λειτουργικά Συστήµατα Σκοπός του κεφαλαίου αυτού είναι να σου γνωρίσει τον τρόπο µε τον οποίο ένα λειτουργικό

Διαβάστε περισσότερα

Consensus and related problems

Consensus and related problems Consensus and related s Τι θα δούµε ΟΜΑ Α: Ιωάννα Ζέλιου Α.Μ.: 55 Μελισσόβας Σπύρος Α.Μ.: 21 Παπαδόπουλος Φίλιππος Α.Μ.: 60 Consensus Byzantine generals Interactive consistency Agreement Problems Imposibility

Διαβάστε περισσότερα

Ο βασικός παράγοντας είναι ο χρόνος αξιοποίησης του επεξεργαστή Ελάχιστος αριθµός πράξεων και όχι µακρόχρονες αιτήσεις Ε/Ε

Ο βασικός παράγοντας είναι ο χρόνος αξιοποίησης του επεξεργαστή Ελάχιστος αριθµός πράξεων και όχι µακρόχρονες αιτήσεις Ε/Ε Εισαγωγή Ε-03: Λειτουργικά Συστήµατα ΙΙ Εαρινό Εξάµηνο 2005-06 «ροµολόγηση ιεργασιών (1/2)» ροµολόγηση σε συστήµατα µε έναν επεξεργαστή ροµολόγηση σε πολυεπεξεργαστικά συστήµατα ροµολόγηση σε κατανεµηµένα

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ. ΕΠΛ 035: οµές εδοµένων και Αλγόριθµοι για Ηλεκτρολόγους Μηχανικούς και Μηχανικούς Υπολογιστών

ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ. ΕΠΛ 035: οµές εδοµένων και Αλγόριθµοι για Ηλεκτρολόγους Μηχανικούς και Μηχανικούς Υπολογιστών ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΕΠΛ 035: οµές εδοµένων και Αλγόριθµοι για Ηλεκτρολόγους Μηχανικούς και Μηχανικούς Υπολογιστών Ακαδηµαϊκό έτος 2010 2011, Χειµερινό εξάµηνο Παρασκευή - 17/12/10 (08:30-11:30)

Διαβάστε περισσότερα

«Εισαγωγή στα Συστήµατα ιαχείρισης: Ποιότητα Περιβάλλον Ασφάλεια Τροφίµων»

«Εισαγωγή στα Συστήµατα ιαχείρισης: Ποιότητα Περιβάλλον Ασφάλεια Τροφίµων» «Εισαγωγή στα Συστήµατα ιαχείρισης: Ποιότητα Περιβάλλον Ασφάλεια Τροφίµων» ρ. Ευάγγελος Ευµορφόπουλος, Επιθεωρητής του ΕΦΕΤ, Επιστηµονικός Συνεργάτης του ΤΕΙ Αθηνών Σε ένα ανταγωνιστικό παγκόσµιο περιβάλλον,

Διαβάστε περισσότερα

Μηχανισµοί & Εισαγωγή στο Σχεδιασµό Μηχανών Ακαδηµαϊκό έτος: Ε.Μ.Π. Σχολή Μηχανολόγων Μηχανικών - Εργαστήριο υναµικής και Κατασκευών - 3.

Μηχανισµοί & Εισαγωγή στο Σχεδιασµό Μηχανών Ακαδηµαϊκό έτος: Ε.Μ.Π. Σχολή Μηχανολόγων Μηχανικών - Εργαστήριο υναµικής και Κατασκευών - 3. ΜΗΧΑΝΙΣΜΟΙ & ΕΙΣΑΓΩΓΗ ΣΤΟ ΣΧΕ ΙΑΣΜΟ ΜΗΧΑΝΩΝ - 3.1 - Cpright ΕΜΠ - Σχολή Μηχανολόγων Μηχανικών - Εργαστήριο υναµικής και Κατασκευών - 2012. Με επιφύλαξη παντός δικαιώµατος. All rights reserved. Απαγορεύεται

Διαβάστε περισσότερα

Διάλεξη 10: Αλγόριθμοι Αμοιβαίου Αποκλεισμού σε περιβάλλον ανταλλαγής μηνυμάτων. ΕΠΛ 432: Κατανεμημένοι Αλγόριθμοι

Διάλεξη 10: Αλγόριθμοι Αμοιβαίου Αποκλεισμού σε περιβάλλον ανταλλαγής μηνυμάτων. ΕΠΛ 432: Κατανεμημένοι Αλγόριθμοι Διάλεξη 10: Αλγόριθμοι Αμοιβαίου Αποκλεισμού σε περιβάλλον ανταλλαγής μηνυμάτων ΕΠΛ 432: Κατανεμημένοι Αλγόριθμοι Τι θα δούμε σήμερα Αλγόριθμος Χρήση Συντονιστή Αλγόριθμος του Lamport Αλγόριθμος LeLann:

Διαβάστε περισσότερα

ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ Κεφάλαιο 2 ο Να περιγραφεί η δομή επανάληψης Αρχή_επανάληψης Μέχρις_ότου

ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ Κεφάλαιο 2 ο Να περιγραφεί η δομή επανάληψης Αρχή_επανάληψης Μέχρις_ότου 2.87 Να περιγραφεί η δομή επανάληψης Μέχρις_ότου Ημορφή της δομής επανάληψης Μέχρις_ότου είναι: Μέχρις_ότου Συνθήκη Η ομάδα εντολών στο εσωτερικό της επανάληψης, εκτελείται μέχρις ότου ισχύει η συνθήκη

Διαβάστε περισσότερα

403 FAIL Λάθος στο πακετάρισµα του αρχείου.

403 FAIL Λάθος στο πακετάρισµα του αρχείου. ΑΕΜ ΒΑΘΜΟΣ 357 FAIL Λάθος στο πακετάρισµα του αρχείου. ΣΧΟΛΙΑ 400 FAIL 402 Έπρεπε να στείλετε ΜΟΝΟ το lab11.c Λάθος αλγόριθµος. Αµέσως µόλις συναντήστε κόµβο όπου το curr->number είναι διάφορο του number,

Διαβάστε περισσότερα

ΠΡΟΟΡΙΣΜΟΣ ΑΠΟΘΗΚΕΣ Ζ1 Ζ2 Ζ3 Δ1 1,800 2,100 1,600 Δ2 1,100 700 900 Δ3 1,400 800 2,200

ΠΡΟΟΡΙΣΜΟΣ ΑΠΟΘΗΚΕΣ Ζ1 Ζ2 Ζ3 Δ1 1,800 2,100 1,600 Δ2 1,100 700 900 Δ3 1,400 800 2,200 ΑΣΚΗΣΗ Η εταιρεία logistics Orient Express έχει αναλάβει τη διακίνηση των φορητών προσωπικών υπολογιστών γνωστής πολυεθνικής εταιρείας σε πελάτες που βρίσκονται στο Hong Kong, τη Σιγκαπούρη και την Ταϊβάν.

Διαβάστε περισσότερα

Κεφάλαιο 4ο: Δικτυωτή Ανάλυση

Κεφάλαιο 4ο: Δικτυωτή Ανάλυση Κεφάλαιο ο: Δικτυωτή Ανάλυση. Εισαγωγή Η δικτυωτή ανάλυση έχει παίξει σημαντικό ρόλο στην Ηλεκτρολογία. Όμως, ορισμένες έννοιες και τεχνικές της δικτυωτής ανάλυσης είναι πολύ χρήσιμες και σε άλλες επιστήμες.

Διαβάστε περισσότερα

ΑΕΠΠ Ερωτήσεις θεωρίας

ΑΕΠΠ Ερωτήσεις θεωρίας ΑΕΠΠ Ερωτήσεις θεωρίας Κεφάλαιο 1 1. Τα δεδομένα μπορούν να παρέχουν πληροφορίες όταν υποβάλλονται σε 2. Το πρόβλημα μεγιστοποίησης των κερδών μιας επιχείρησης είναι πρόβλημα 3. Για την επίλυση ενός προβλήματος

Διαβάστε περισσότερα

ΕΠΛ 232: Αλγόριθµοι και Πολυπλοκότητα. Κατ οίκον Εργασία 1 Σκελετοί Λύσεων

ΕΠΛ 232: Αλγόριθµοι και Πολυπλοκότητα. Κατ οίκον Εργασία 1 Σκελετοί Λύσεων ΕΠΛ 22: Αλγόριθµοι και Πολυπλοκότητα Κατ οίκον Εργασία Σκελετοί Λύσεων. (α) Έστω δροµολόγηση e, e 2,, e των εργασιών, 2,,. Τότε οι χρόνοι συµπλήρωσης των εργασιών είναι e d e e 2 d e + d e 2 e d e + d

Διαβάστε περισσότερα

ΘΕΩΡΙΑ ΑΡΙΘΜΩΝ Ασκησεις - Φυλλαδιο 8

ΘΕΩΡΙΑ ΑΡΙΘΜΩΝ Ασκησεις - Φυλλαδιο 8 ΘΕΩΡΙΑ ΑΡΙΘΜΩΝ Ασκησεις - Φυλλαδιο 8 ιδασκοντες: Ν. Μαρµαρίδης - Α. Μπεληγιάννης Ιστοσελιδα Μαθηµατος : http://users.uoi.gr/abeligia/numbertheory/nt2014/nt2014.html https://sites.google.com/site/maths4edu/home/14

Διαβάστε περισσότερα

ΗΥ360 Αρχεία και Βάσεις εδοµένων ιδάσκων:. Πλεξουσάκης

ΗΥ360 Αρχεία και Βάσεις εδοµένων ιδάσκων:. Πλεξουσάκης ΗΥ360 Αρχεία και Βάσεις εδοµένων ιδάσκων:. Πλεξουσάκης Συναλλαγές ιαχείριση Συναλλαγών Τζικούλης Βασίλειος Credits:Γιάννης Μακρυδάκης Συναλλαγές Η ταυτόχρονες συναλλαγές (δοσοληψίες, transactions) µε µια

Διαβάστε περισσότερα

Ποιότητα και Πρότυπα στη Διοίκηση Επιχειρήσεων Συστήµατα Διασφάλισης Ποιότητας Γενική επισκόποηση και Επεκτάσεις- Διάλεξη 8

Ποιότητα και Πρότυπα στη Διοίκηση Επιχειρήσεων Συστήµατα Διασφάλισης Ποιότητας Γενική επισκόποηση και Επεκτάσεις- Διάλεξη 8 Ποιότητα και Πρότυπα στη Διοίκηση Επιχειρήσεων Συστήµατα Διασφάλισης Ποιότητας Γενική επισκόποηση και Επεκτάσεις- Διάλεξη 8 Τµήµα Διοίκησης Επιχειρήσεων Τει Δυτικής Ελλάδας Μεσολόγγι Δρ. Α. Στεφανή Βασικές

Διαβάστε περισσότερα

11 Το ολοκλήρωµα Riemann

11 Το ολοκλήρωµα Riemann Το ολοκλήρωµα Riem Το πρόβληµα υπολογισµού του εµβαδού οποιασδήποτε επιφάνειας ( όπως κυκλικοί τοµείς, δακτύλιοι και δίσκοι, ελλειπτικοί δίσκοι, παραβολικά και υπερβολικά χωρία κτλ) είναι γνωστό από την

Διαβάστε περισσότερα

Ενότητα: Πράξεις επί Συνόλων και Σώµατα Αριθµών

Ενότητα: Πράξεις επί Συνόλων και Σώµατα Αριθµών Τίτλος Μαθήματος: Γραμμική Άλγεβρα Ι Ενότητα: Πράξεις επί Συνόλων και Σώµατα Αριθµών Διδάσκων: Καθηγητής Νικόλαος Μαρμαρίδης Τμήμα: Μαθηματικών Κεφάλαιο 1 Εισαγωγη : Πραξεις επι Συνολων και Σωµατα Αριθµων

Διαβάστε περισσότερα

ΓΕΝΙΚΟΣ ΚΑΝΟΝΙΣΜΟΣ ΠΙΣΤΟΠΟΙΗΣΗΣ ΠΡΟΣΩΠΩΝ Παράρτηµα 1 Όροι και ορισµοί

ΓΕΝΙΚΟΣ ΚΑΝΟΝΙΣΜΟΣ ΠΙΣΤΟΠΟΙΗΣΗΣ ΠΡΟΣΩΠΩΝ Παράρτηµα 1 Όροι και ορισµοί Στο παρόν παρουσιάζονται οι όροι και ορισµοί βάσει του ισχύοντος νοµοθετικού/ κανονιστικού πλαισίου και του προτύπου ΕΛΟΤ ΕΝ ISO/IEC 17024:2012. Αιτών Αµεροληψία Ανάκληση Ανασκόπηση Αντικειµενική απόδειξη

Διαβάστε περισσότερα

Φροντιστήριο #9 Λυμένες Ασκήσεις σε Γράφους

Φροντιστήριο #9 Λυμένες Ασκήσεις σε Γράφους Φροντιστήριο #9 Λυμένες Ασκήσεις σε Γράφους Άσκηση 10.1: Στο παρακάτω σχήμα φαίνονται δέκα λατινικοί χαρακτήρες (A, F, K, M, R, S, T, V, X και Z) με τη μορφή γράφων. Ποιοι από αυτούς είναι ισομορφικοί;

Διαβάστε περισσότερα

ιοίκηση Ποιότητας (quality management)

ιοίκηση Ποιότητας (quality management) ΕΛΛΗΝΙΚΗ ΗΜΟΚΡΑΤΙΑ ΠΕΡΙΦΕΡΕΙΑ ΚΕΝΤΡΙΚΗΣ ΜΑΚΕ ΟΝΙΑΣ ΕΥΡΩΠΑΪΚΗ ΕΠΙΤΡΟΠΗ ΓΕΝΙΚΗ ΓΡΑΜΜΑΤΕΙΑ ΕΡΕΥΝΑΣ & ΤΕΧΝΟΛΟΓΙΑΣ ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ιοίκηση Ποιότητας (quality management) ρ. Ευάγγελος

Διαβάστε περισσότερα