Formula Table. Digital Signal Processing

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "Formula Table. Digital Signal Processing"

Transcript

1 Department of Electrical and Information Technology Formula Table Digital Signal Processing Bengt Mandersson Lund 0 Department of Electrical and Information Technology, Lund University, Sweden

2 Innehåll Basic trigonometrical formula 3. Trigonometry Matrix theory Notation of some basic signals Often used relations Correlation Circuit model (single input, single output) Input output relations Analogous sinusoids through a linear, causal lter Time discrete sinusoids through a linear, causal lter Transforms 0. Laplace transform Laplace transform of causal signals One-side Laplace transform of non-causal signals Fourier transform of time continous signals Z-transform The z-transform of causal signals One-side Z-transform of non-causal signals Fourier transform of time discrete signals Fourier serial expansion Continuous in time Discrete time Discrete Fourier Transform (DFT) Denition Circular convolution Non-circular convolution using the DFT Relation to the Fourier transform X(f): Relation to Fourier series Parseval's theorem Some properties of the DFT Some window functions and their Fourier transform Sampling of analogous signals 3 3. Sampling and reconstruction Distortion measurements Aliasing distortion from sampling Signal-to-noise ratio during reconstruction Quantization noise Sampling rate conversion, decimation and interpolation Analogous lters 7 4. Filter approximations of ideal LP-lter The Butterworth lter The Chebyshev lters The Bessel lter Frequency transformation of analogous lters

3 5 Time discrete lter FIR lters and IIR lters FIR lters using the window method Ekviripple FIR lters FIR lters using Least Squares method IIR-lter The impulse invariance method Bilinear transformation Quantication of the lter coecients Lattice lter Spectral estimation 4

4 Basic trigonometrical formula. Trigonometry sin α = cos(α π/) sin(α β) = sin α cos β cos α sin β cos α = sin(α π/) cos(α β) = cos α cos β sin α sin β cos α sin α = sin α sin β = cos(α β) cos(α β) cos α sin α = cos α sin α cos β = sin(α β) sin(α β) sin α cos α = sin α cos α cos β = cos(α β) cos(α β) sin( α) = sin α sin α sin β = sin αβ cos α β cos( α) = cos α cos α cos β = cos αβ cos α β cos α = ( cos α) cos α = (ejα e jα ), sin α = j (ejα e jα ), e jα = cos α j sin α A cos α B sin α = A B cos(α β) with cos β = och β = A A, sin β = B B A B arctan B A if A 0 arctan B A π if A < 0 A cos α B sin α = A B sin(α β) with cos β = och β = B A, sin β = B A A B arctan A B if B 0 arctan A B π if B < 0 Degree Rad sin cos tan cot ± 30 π π 4 60 π π 0 ± 0 3

5 . Matrix theory Notation of matrix A and vector x A matrix A of order mxn and a vector x with dimension n are dened by A = a a... a n a. a.... a n. a m a m... a mn The matrix A is symmetrical if a ij = a ji ij. I denotes the unit matrix. Transpose of a matrix A x = x x. x n Determinant of a matrix A B = A T där b ij = a ji (AB) T = B T A T deta = A = a a... a n a. a.... a n. a m a m... a mn n = a ij ( ) ij detm ij i= there M ij is the resulting matrix if row i and column j in the matrix A are deleted. detab = deta detb Specially for a x matrix: deta = a a a a Inverse of the matrix A A A = AA = I (om deta#0) with C dened by Specially for a x matrix: A = deta CT c ij = ( ) ij detm ij (AB) = B A A = ( a a deta a a ) 4

6 Eigenvalues and eigenvectors Eigenvalues (λ i, i =,,..., n) and eigenvectors (q i, i =,,..., n) are the solution to the equation system Aq = λq eller (A λi)q = 0 The eigenvalues can be determined as the solution to t6he characteristic equation to A det(λi A) = λ n α n λ n α 0 = 0 det(λi A) is called the characteristic polynomial to A..3 Notation of some basic signals Unit step function u(t) = The impuls function δ(t) = { t 0 0 t < 0 { t = 0 0 t # 0 δ(t)dt = Rectangular function p(t) = x(t)δ(t)dt = x(0) t < 0 t > Sinc-function Periodical sinc-function Complex sinusoids Complex undamped sinusoids sinc x = sin πx πx diric(x, N) = sin ( ) Nx N sin ( ) x e st = e σt e jωt e jωt = cos Ωt j sin Ωt.4 Often used relations Sum of a geometrical series. N a n = n=0 Sum of a sinusoids over a full periods. N n=0 e jπ kn/n = N if a = a N a if a { N if k = 0, ±N,... 0 f.ö. 5

7 .5 Correlation Correlation, cross correlation, spectrum, cross spectrum and coherence between input and out signals. y(t) = h(t) x(t) y(n) = h(n) x(n) Y (F ) = H(F ) X(F ) Y (f) = H(f) X(f) r yy (τ) = r hh (τ) r xx (τ) r yy (n) = r hh (n) r xx (n) R yy (F ) = H(F ) R xx (F ) R yy (f) = H(f) R xx (f) r yx (τ) = h(τ) r xx (τ) r yx (n) = h(n) r xx (n) R yx (F ) = H(F ) R xx (F ) R yx (f) = H(f) R xx (f) r xx (τ) = t x(t)x(t τ)dt r xx(n) = l x(l)x(l n) r yx (τ) = t y(t)x(t τ)dt r yx(n) = l y(l)x(l n) γ xx (τ) = E{x(t)x(t τ)} γ xx (n) = E{x(l)x(l n)} γ yx (τ) = E{y(t)x(t τ)} γ yx (n) = E{y(l)x(l n)} Gaussian random variables. X i N(m i, σ i ) E{X X X 3 X 4 } = E{X X } E{X 3 X 4 } E{X X 3 } E{X X 4 } E{X X 4 } E{X X 3 } m m m 3 m 4.6 Circuit model (single input, single output) ) Canonical form (direct form II) x(n) b 0 y(n) -a z - v N (n) b -a z - v N- (n) b -a N- b N- -a N z - v (n) b N ) The dierence equation N M y(n) = a k y(n k) b k x(n k) k= k=0 6

8 3) Steady state notation { v(n ) = Fv(n) q x(n) y(n) = g T v(n) d x(n) with F = a k a k... a a 0 ; q = 0. 4) The system function g T = (b k,..., b, b ) b 0 (a k,..., a, a ) ; d = b 0.7 Input output relations ) Convolution ) Steady state a) Direct solution y(n) = h x = b) Impulse response H(z) = b 0 b z b M z M a z a N z N k= y(n) = g T F n v(0) h(k)x(n k) = n k=0 k= h(n k)x(k) g T F n k qx(k)u(n ) dx(n) h(n) = g T F n qu(n ) dδ(n) c) System function H(z) = g T [zi F] q d 7

9 .8 Analogous sinusoids through a linear, causal lter ) Complex, non-causal input signal x(t) = e jω 0t = (cos(ω 0 t) j sin(ω 0 t)) < t < y(t) = τ=0 h(τ)x(t τ)dτ = ) Complex, causal input signal τ=0 h(τ)e jω 0(t τ) dτ = H(s) s=jω0 e jω 0t }{{} stationary x(t) = e jω 0t u(t) = (cos(ω 0 t) j sin(ω 0 t)) u(t); X(s) = s jω 0 Y (s) = H(s)X(s) = T (s) N(s) 3) Real, non-causal input signal s jω 0 = T (s) N(s) }{{} transient y(t) = transient H(s) s=jω0 e jω 0t }{{} stationary H(s) s=jω0 s jω 0 }{{} stationary x(t) = Re{e jω 0t } = cos(ω 0 t) < t < y(t) = τ=0 h(τ)x(t τ)dτ = 4) Complex, causal input signal τ=0 h(τ) (ejω 0(t τ) e jω 0(t τ) )dτ = = H(s) s=jω0 cos(ω 0 t arg{h(s) s=jω0 }) }{{} stationary x(t) = Re{e jω 0t } u(t) = cos(ω 0 t) u(t); X(s) = s s Ω 0 Y (s) = H(s)X(s) = T (s) N(s) s s Ω 0 = T (s) C s C 0 N(s) s Ω 0 }{{}}{{} transient stationary H(s) s=jω0 = A e jθ ; C = A cos(θ); C 0 = AΩ 0 sin θ y(t) = transient C cos(ω 0 t) C 0 sin(ω 0 t) = Ω }{{ 0 } stationary = transient H(s) s=jω0 cos(ω 0 t arg{h(s) s=jω0 }) }{{} stationary 8

10 .9 Time discrete sinusoids through a linear, causal lter ) Complex, non-causal input signal x(n) = e jω 0n = (cos(ω 0 n) j sin(ω 0 n)) < n < y(n) = h(k)x(n k) = h(k)e jω0(n k) = H(z) z=e jω 0 e jω 0n k=0 k=0 ) Complex, causal input signal }{{} stationary x(n) = e jω 0n u(n) = (cos(ω 0 n) j sin(ω 0 n)) u(n); X(z) = Y (z) = H(z)X(z) = T (z) N(z) 3) Real, non-causal input signal e jω 0 z e = T (z) H(z) jω 0 z N(z) z=e jω 0 e jω 0 z }{{}}{{} transient stationary y(n) = transient H(z) z=e jω 0 }{{} stationary e jω 0n x(n) = Re{e jω 0n } = cos(ω 0 n) < n < y(n) = h(k)x(n k) = h(k) k=0 k=0 (ejω 0(n k) e jω0(n k) ) = 4) Real, causal input signal = H(z) z=e jω 0 cos(ω 0 n arg{h(z) z=e jω 0 }) }{{} stationary x(n) = Re{e jω 0n } u(n) = cos(ω 0 n) u(n); X(z) = cos ω 0 z cos ω 0 z z Y (z) = H(z)X(z) = T (z) N(z) cos ω 0 z cos ω 0 z z = T (z) N(z) }{{} transient C 0 C z cos ω 0 z z }{{ } stationary H(z) z=e jω 0 = A e jθ ; C 0 = A cos(θ); C = A(sin ω 0 sin θ cos ω 0 cos θ) y(n) = transient C 0 cos(ω 0 n) C C 0 cos(ω 0 ) sin(ω 0 n) = sin(ω 0 ) }{{} stationary = transient H(z) z=e jω 0 cos(ω 0 n arg{h(z) z=e jω 0 }) }{{} stationary 9

11 Transforms. Laplace transform.. Laplace transform of causal signals In the table below, f(t) = 0 for t < 0 (i.e. f(t) u(t) = f(t)).. f(t) = F(s) = σj σ j F(s)est ds 0 f(t)e st dt. πj ν a ν f ν (t) ν a ν F ν (s) Linearity 3. f(at) a F( s a ) Scaling 4. f( t ) F(as) a > 0 Scalning a a 5. f(t t 0 ); t t 0 F(s) e st 0 Time shift 6. f(t) e at F(s a) Frequency shift 7. d n f s n F(s) Derivate dt n 8. t 0 f(τ)dτ s F(s) Integrate 9. ( t) n f(t) dn F(s) Derivation in ds frequency n 0. f(t) t s F(z)dz Integration in frequency. lim t 0 f(t) = lim s s F(s) Initial valuetheorem. lim t f(t) = lim s 0 s F(s) 3. f (t) f (t) = F (s) F (s) t 0 f (τ)f (t τ)dτ = Convolution in time domain t 0 f (t τ)f (τ)dτ 4. f (t) f (t) F πj (s) F (s) = σj πj σ j F (z) F (s z) dz Convolution in frequency domain 5. 0 f (t) f (t)dt = σj πj σ j F (s) F ( s)ds Parseval's relation 0

12 6. δ(t) 7. δ n (t) s n 8. s 9. n! t n s n 0. e σ 0t s σ 0. (n )! tn e σ 0t (s σ 0 ) n. sin Ω 0 t Ω 0 s Ω 0 3. cos Ω 0 t s s Ω 0 4. t sin Ω 0 t Ω 0 s (s Ω 0) 5. t cos Ω 0 t s Ω 0 (s Ω 0) 6. e σ 0t sin Ω 0 t 7. e σ 0t cos Ω 0 t Ω 0 (s σ 0 ) Ω 0 s σ 0 (s σ 0 ) Ω 0 8. e σ 0t sin(ω 0 t φ) (s σ 0) sin φ Ω 0 cos φ (s σ 0 ) Ω 0.. One-side Laplace transform of non-causal signals Notations F (s) = 0 f(t)e st dt F(s) = F (s) Taking the derivative of f(t) yelds One-side Laplacetransform, f(t) not nessesary causal. For causal signals d dt f(t) s F (s) f(0 ) First deivative d n dt f(t) sn F (s) s n f(0 ) s n f () (0 )... f (n ) (0 ) The n : th derivative

13 . Fourier transform of time continous signals Ω = πf. w(t) = F {W (F )} = W (F ) = F{w(t)} = W (F )ejπf t df w(t)e jπf t dt. ν a ν w ν (t) ν a ν W ν (F ) 3. w ( t) W (F ) 4. W (t) w( F ) 5. w(at) W ( ) F a a 6. w(t t 0 ) W (F ) e jπf t 0 7. w(t) e jπf 0t W (F F 0 ) 8. w (t) W ( F ) 9. d n w(t) dt n (jπf ) n W (F ) 0. t w(τ)dτ jπf W (F ) om W (F ) = 0 för F = 0. jπt w(t) dw df. w (t) w (t) W (F ) W (F ) 3. w (t) w (t) W (F ) W (F ) w(t) dt = W (F ) df w (t) w (t)dt = W (F ) W (F )df Parseval's relation w (t), w (t) real 6. δ(t) 7. δ(f ) 8. u(t) jπf δ(f ) 9. e at u(t) ajω

14 0. e a t a a Ω. e jπf 0t δ(f F 0 ). sinπf 0 t j {δ(f F 0) δ(f F 0 )} 3. sinπf 0 t u(t) Ω 0 Ω 0 Ω j 4 {δ(f F 0) δ(f F 0 )} 4. cosπf 0 t {δ(f F 0) δ(f F 0 )} 5. cosπf 0 t u(t) jω Ω 0 Ω 4 {δ(f F 0) δ(f F 0 )} 6. πσ e t /σ e (Ωσ) / 7. e at sinπf 0 t u(t) 8. e a t sinπf 0 t 9. e at cosπf 0 t u(t) 30. e a t cosπf 0 t Ω 0 (jω a) (Ω 0 ) Ω 0 (Ω 0 a Ω ) (Ω a Ω 0) 4a Ω 0 jω a (jω a) (Ω 0 ) a(ω 0 a Ω ) (Ω a Ω 0) 4a Ω 0 3. rect(at) = { for t < a 0 elsewhere a sinc( F a ) a > 0 3. sinc(at) = sin(πat) πat a rect( F a ) a > rep T (w(t)) = m= w(t mt ) T comb /T (W (F )) 34. T comb T (w(t)) = rep /T (W (F )) T m= w(mt )δ(t mt ) 35. n= c n δ(t nt ) n= T c nδ(f n T ) = c n e jπnt F 3

15 .3 Z-transform.3. The z-transform of causal signals. X (z) = Z[x(n)] = n= x(n)z n Transform. x(n) = Z [X (z)] = πj Γ X (z)zn dz Inverse transform 3. ν a ν x ν (n) ν a ν X ν (z) Linearity 4. x(n n 0 ) z n 0 X (z) Skift (n 0 positive or negativte integer) 5. nx(n) z d dz X (z) Multiplication with n 6. a n x(n) X ( ) z a 7. x( n) X ( ) z Scaling Folding in time 8. [ nl= x(l) ] z z X (z) Sum 9. x y X (z) Y(z) Convolution 0. x(n) y(n) πj Γ Y(ξ)X ( ) z ξ ξ dξ Multiplication. x(0) = lim z X (z) (om gränsvärdet existerar) Initial value theorem. lim n x(n) = lim z (z )X (z) Final value theorem (if ROC includes th unit circle) l= x(l)y(l) = πj Γ x(z)y ( ) z z dz Parseval's theorem for real sequencies l= x (l) = πj Γ X (z)x (z )z dz -- 4

16 Time sequency Transform x(n) X (z) 5. δ(n) 6. u(n) z 7. nu(n) z ( z ) 8. α n u(n) αz 9. (n )α n u(n) ( αz ) 0. (n )(n )... (n r ) (r )! α n u(n) ( αz ) r. α n cos βn u(n). α n sin βn u(n) z α cos β z α cos β α z z α sin β z α cos β α z 3. F n u(n) (I z F).3. One-side Z-transform of non-causal signals Notations Shift of x(n) yields: i) shift one step X (z) = n=0 x(n)z n X (z) = X (z) ii) shift n 0 step (n 0 0) One-side Z-transform, x(n) not nessesary causal For causal signals x(n ) z X (z) x( ) x(n ) zx (z) x(0) z x(n n 0 ) z n 0 X (z) x( )z n 0 x( )z n 0... x( n 0 ) x(n n 0 ) z n 0 X (z) x(0)z n 0 x()z n 0... x(n 0 )z 5

17 .4 Fourier transform of time discrete signals. X(f) = F(x(n)) = Transform = l= x(l)e jπfl ω = πf. x(n) = / / X(f)ejπfn df = Inverse transform π π X(f)ejωn dω = π 3. aν x ν (n) ν a ν X ν (f) Linearity 4. x(n n 0 ) X(f) e jπfn 0 Shift 5. x(n)e jπf 0n X(f f 0 ) Frequency translation 6. x(n) cos πf 0 n [X(f f 0) X(f f 0 )] Modulation 7. x(n) sin πf 0 n j [X(f f 0) X(f f 0 )] Modulation 8. x y X(f) Y (f) Convoloution 9. x y / / X(λ) Y (f λ)dλ Multiplication 0. l= x(l)y(l) = Parseval's theorem = / / X(f)Y (f)df for real valued sequencies. X(f) = X (e jω ) If x(n) = 0 for n < n 0 and l= x(l) < (In eq.: 8,9,0, and in the Z-transform table for α < ). δ(n) 3. δ(n n 0 ) e jωn 0 4. n p= δ(f p) 5. u(n) p= δ(f p) j tan(πf) 6

18 6. f sinc(f n) = f sin(πf n) πf n ( ) rect f p f = Ideal LP-lter 7. 4f sinc(f n) cos(πf 0 n) ( ) rect f f0 p f f n < f < /, n integer 0 f.ö. ( ) rect f f0 p f Ideal BP-lter 8. πf n cos πf n sin πf n πn jπ(f n) f n < f < /, n integer (jπf) p = 0 f.ö. Derivation 9. cos(πf 0 n) p= [δ(f f 0 p) δ(f f 0 p)] 0. α n α α α cos πf. α n cos(πf 0 n) α [ ] α α cos π(f f 0 ) α α cos π(f f 0 ) n M. p r (n) = M udda 0 f.ö. P r (f) = sin(πfm) sin(πf) Rekctangular window 7

19 .5 Fourier serial expansion.5. Continuous in time A periodical function with the period T 0, i.e. f(t) = f(t T 0 ), can be expressed in a serial expansion with c k = T 0 If f(t) real, this can be written with f(t) = k= c k e jπkf 0t T 0 f(t)e jπkf 0t dt ; F 0 = T 0 f(t) = c 0 c k cos(πkf 0 t θ k ) = k= = a 0 a k cos πkf 0 t b k sin πkf 0 t k= a 0 = c 0 = T 0 T 0 f(t)dt a k = c k cos θ k = T 0 T 0 f(t) cos(πkf 0 t)dt b k = c k sin θ k = f(t) sin(πkf 0 t)dt T 0 T 0 The power is given by (Parseval's relation) For real signals also yields.5. Discrete time P = T 0 T 0 f(t) dt = k= c k P = c 0 c k = a 0 (a k b k= k) k= A periodical function with the period N, i.e. f(n) = f(n N), can be expressed in a serial expansion with c k = N N n=0 f(n) = N k=0 jπk n/n c k e f(n) e jπk n/n, k = 0,..., N The serial expansion is often denoted DTFS (Discrete-Time Fourier Series). If f(n) real, this can be written ( L f(n) = c 0 c k cos π kn ) k= N θ k = ( ( L = a 0 a k cos π kn ) ( b k sin k= N 8 π kn N ))

20 there The power is P = N and the energy over one period is E N = a 0 = c 0 a k = c k cos(θ k ) b k = c k sin(θ k ) L = N n=0 N n=0 N if N even N if N odd f(n) = f(n) = N N k=0 N k=0.6 Discrete Fourier Transform (DFT).6. Denition c k c k Note: X k = DF T (x n ) = x n = IDF T (X k ) = N N n=0 N n=0 N k=0 e jπ k k 0 N.6. Circular convolution x n e jπnk/n k = 0,,..., N Transform X k e jπnk/n n = 0,,..., N Inversion n = N δ(k k 0, (modulo N)) x n N y n = N l=0 x l y n l,modulon i.e. index is determined modulo N. Circular convolution is also denoted x(n) DFT X k Y k y(n). Circular convolution.6.3 Non-circular convolution using the DFT If x(n) = 0 for n [0, L ] and y(n) = 0 for n [0, M ] yields x y = 0 for n [0, N ] with N L M. The convolution can also be determined from with x y = x N y = IDFT(X k Y k ) n = 0,,..., N 0 f.ö. X k = DFT(x(n)) Y k = DFT(y(n)) 9

21 .6.4 Relation to the Fourier transform X(f): X(k/N) = X k = DF T (x(n)) if x(n) = 0 for n [0, N ] X(k/N) = X k = DF T (x p (n)) in general x(n) there x p (n) =.6.5 Relation to Fourier series X ( ) k = X k = DF T (x(n)) = N c k N l= x(n ln) if there and c k = N x(n) = x p (n), 0 n N x p (n) = N n=0 N k=0 nk jπ c k e N < n < nk jπ x p (n)e N k = 0,,..., N.6.6 Parseval's theorem N n=0 x(n)y (n) = N N k=0 X k Y (k) 0

22 .6.7 Some properties of the DFT Time Frequency x(n), y(n) X(k), Y (k) x(n) = x(n N) X(k) = X(k N) x(n ) X(N k) x((n )) N X(k)e jπk/n x(n)e jπn/n X((k )) N x (n) X (N k) x (n) N x (n) X (k)x (k) x(n) N y ( n) X(k)Y (k) x (n)x (n) N (k) N X (k) N n=0 x(n)y (n) N N k=0 X(k)Y (k).7 Some window functions and their Fourier transform i) Window functions symmetrically around origin (M odd) i.e. the functions are non-zero only for (M )/ n (M )/ Rectangular window: Hanning window: Hamming window: Blackman window: w rect (n) = W rect (f) = M sin(πfm) Msin(πf) ( ) πn w hanning (n) = cos M W hanning (f) = 0.5 W rect (f) 0.5 W rect ( f ) M ) 0.5 W rect ( f M ( ) πn w hamming (n) = cos M W hamming (n) = 0.54 W rect (f) 0.3 W rect ( f ) M ) 0.3 W rect ( f M w blackman (n) = cos πn 4πn 0.08cos M M

23 W blackman (f) = 0.4 W rect (f) 0.5 W rect ( f Bartlett window (triangular window): w triangel (n) = W triangel (f) = M 0.5 W rect ( f 0.04 W rect ( f ) M ) M ) M ) 0.04 W rect ( f M n (M )/ ( sin πfm ) M sin(πf) M W rect ( ) f for small f ii) Window functions dened for the interval 0 n M (M odd) Hanning window Hamming window Blackman window w hanning (n) = 0.5 cos π ( ) n M = M ( ( )) n = 0.5 cos π M w hamming (n) = cos π ( ) n M M πn = cos M w blackman (n) = cos π ( ) n M M 0.08 cos 4π ( ) n M = M Bartlett (triangular) window = cos w triangel (n) = πn 4πn 0.08 cos M ( ) n M M = M

24 3 Sampling of analogous signals 3. Sampling and reconstruction Fourier transforms Time continuous signals: X a (F ) = x a(t)e jπf t dt Time discrete signal: x a (t) = X a(f )e jπf t df X(f) = n= x(n)e jπfn The sampling theorem x(n) = / / X(f)ejπfn df For a bandlimited signal x a (t), that is X a (F ) = 0 for F /T yields x a (t) = Sampling frequency F s = /T. Sampling n= x(n) sin π (t nt ) T (t nt ) π T Reconstruction (ideal) x(n) = x a (nt ) ; T = F s ( ) F X(f) = X = F s X a (F kf s ) Fs k= ( ) F Γ(f) = Γ = F s Fs x a (t) = X a (F ) = F s X n= ( ) F Fs Γ a (F ) = ( ) F Γ F s Fs k= Γ a (F kf s ) x(n) sin π (t nt ) T (t nt ) π T F F s F F s Reconstruction using a sample-and-hold circuit X a (F ) = ( ) F X sin(πf T ) e jπf T HLP (F ) F s Fs πf T Γ a (F ) = ( ) F sin(πf T ) Γ H F s Fs πf T LP (F ) 3

25 Block diagram over D/A-conversion Ideal reconstruction x(n) T Lågpass y (t) a -Fs/ Fs/ x(n) Σ δ( t-n T) n x() T y (t) a X(f) n t t F X( ) T Fs Y (F) a f F F Fs/ Fs/ -Fs/ Fs/ y a (t) = Y a (F ) = F s X x(n) sin π (t nt ) T (t nt ) n= ( ) F Fs Reconstruction using a sample-and-hold curcuit π T F F s x(n) h SH (t) Lågpass y a (t) T -Fs/ Fs/ x(n) Σ δ( t-n T) n y a (t) n t t X(f) F X( ) H (F) Y (F) Fs SH a f F F Fs/ Fs/ -Fs/ Fs/ Y a (F ) = ( ) F X F s Fs sin(πf T ) πf T e jπf T HLP (F ) 4

26 3. Distortion measurements 3.. Aliasing distortion from sampling Spectrum after anti-aliasing lter: Γ in (F ) Aliasing distortion: Signal power: there 0 F p F s / D A = F s F p Γ in (F )df Fp D s = Γ in (F )df 0 Aliasing distortion ratio: A: SDR A = D S D A = Monotonic decreasing spectrum yields F p Γ 0 in (F )df Γ in(f )df Fs Fp B: SDR 0 A = min F Fp Γ in (F ) Γ in (F s F ) SDR 0 A = Γ in(f p ) Γ in (F s F p ) 3.. Signal-to-noise ratio during reconstruction Signal-to-quantization noise ratio: Signal power: D P = D S = Signal-to-quantization noise ratio: A useful measurement is F s/ Fs / A: SDR P = D S D P = B: SDR 0 P = min F <Fs / 0 Γ out (F )df Γ out (F )df F s/ Γ 0 out(f )df Γout(F )df Fs/ SDR 0 P = Γ out(f p ) Γ out (F s F p ) Γ out (F ) Γ out (F s F ) there F p is the highest frequency component in the digital signal. 5

27 3.3 Quantization noise D Q linear quantization, small Signal power SDR Q = D q Quantization noise for sinusoids, maximal amplitude, r bits SDR Q =.76 6 r[db] Quantization noise for sinusoids, amplitude expressed in peak- and RMS, r bits SDR Q = 6 r log there [ V, V ] is the maximal range of the signal. ( ) ( ) Apeak V A RMS 0 0 log A peak 3.4 Sampling rate conversion, decimation and interpolation Down-sampling a factor M M y(n) = {... u(0), u(m), u(m)...} Y (f) = M M i=0 U ( ) f i M Up-sampling a factor L L w(n) = {... x(0), 0, 0,..., x(), 0, 0,..., x()...} }{{}}{{} L- st L- st W (f) = X(fL) 6

28 4 Analogous lters 4. Filter approximations of ideal LP-lter General form of the approximated amplitude function H(Ω) = K g N ( ( ΩΩp ) ) Ω = πf there ( ) g N Ω Ω p Ω Ω p < Ω Ω p > and Ω p is the cuto frequency of the lter. Sometimes it is convenient to normalize the angular frequency with Ω p. This corresponds to setting Ω p = below. 4.. The Butterworth lter H(Ω) = K ( ) N Ω Ω p H( Ω) Kurvan går alltid genom dessa punkter 3dB K K Ω p Ω K = Maximum of the amplitude function. K = the value of the amplitude function for Ω = 0. The denominator to the system function are the Butterworth polynomial if Ω p =. These polynomials are showed in table.. Generally, Ω p yields H(s) = there a,..., a N are nd in table 4.. K ( ) N ( ) N ( ) s Ω p s an Ω p s a Ω p 7

29 Table 4. Coecients a ν in the Butterworth polynomial s N a N s N... a s N a a a 3 a 4 a 5 a 6 a Table 4. Factorized Butterworth polynomial for Ω p =. For Ω p let s s/ω p. N (s ) (s s ) 3 (s s )(s ) 4 (s s )(s.84776s ) 5 (s )(s 0.680s )(s.680s ) 6 (s 0.576s )(s s )(s.938s ) 7 (s )(s s )(s.465s )(s.80s ) 8 (s s )(s.0s )(s.6630s )(s.96s ) 4.. The Chebyshev lters H(Ω) = K ( ) ε TN Ω Ωp Ripple H( Ω) N udda K K ε N jämn Ω p Kurvan går alltid genom denna punkt Ω OBS! Ej nödvändigtvis 3dB-gräns Ripple = 0 log( ε ) db. K = Maximum of the amplitude function. K the value of the amplitude function for Ω = 0 for N is even. 8

30 T N ( Ω Ω p ) is the Chebyshev polynomial. (Denoted with C N ( Ω Ω p ) ). These are found in Table 4.3 for Ω p =. For Ω p let Ω Ω Ω p i Table 4.3. System function H(s) = K a 0 { N udda N jämn ε ( s Ω p ) N an ( s Ω p ) N a0 there ε, a 0,..., a N are found in table 4.4. The poles for H(s) is found in table 4.5 for Ω p =. For Ω p the poles are multiplied by Ω p. Table 4.3 Chebyshev polynomial. or cos(n arccosω) Ω T N (Ω) = cosh(n arccoshω) Ω T N (Ω) = Recursive determination ( Ω Ω ) N ( Ω Ω ) N T N (Ω) = ΩT N (Ω) T N (Ω) Ω = πf Ω N T N (Ω) 0 Ω Ω 3 4Ω 3 3Ω 4 8Ω 4 8Ω 5 6Ω 5 0Ω 3 5Ω 6 3Ω 6 48Ω 4 8Ω 7 64Ω 7 Ω 5 56Ω 3 7Ω 8 8Ω 8 56Ω 6 60Ω 4 3Ω 9 56Ω 9 576Ω 7 43Ω 5 0Ω 3 9Ω 0 5Ω 0 80Ω 8 0Ω 6 400Ω 4 50Ω 9

31 Table 4.4. Coecients a ν in the Chebyshev lter. 0.5dB ripple (ε = 0.349, ε = 0.). N a 7 a 6 a 5 a 4 a 3 a a a db ripple (ε = 0.509, ε = 0.59). N a 7 a 6 a 5 a 4 a 3 a a a db ripple (ε = 0.765, ε = 0.585). N a 7 a 6 a 5 a 4 a 3 a a a dB ) ripple (ε = 0.998, ε = 0.995). N a 7 a 6 a 5 a 4 a 3 a a a *) The table is determined for "exact"3db, not for 0 log 3.0dB. Means ε and a 0 for N =. 30

32 Table 4.5. Poles for Chebyshev lters. 0.5dB ripple (ε = 0.349, ε = 0.). N = ±j.004 ±j.06 ±j.008 ±j ±j.0 ±j0.4 ±j.0 ±j0.738 ±j.006 ±j ± ±j0.65 ±j0.70 ±j0.807 ±j ±j0.448 ±j0.00 -db ripple (ε = 0.509, ε = 0.59). N = ±j0.895 ±j0.983 ±j0.993 ±j ±j0.966 ±j0.407 ±j0.990 ±j0.77 ±j0.995 ±j ±j0.6 ±j0.66 ±j0.798 ±j ±j0.443 ±j0.98 -db ripple (ε = 0.765, ε = 0.585). N = ±j0.83 ±j0.958 ±j0.98 ±j ±j0.93 ±0.397 ±j0.973 ±0.79 ±j0.987 ±j ±j0.60 ±j0.63 ±j0.79 ±j ±j0.439 ±j dB ) ripple (ε = 0.998, ε = 0.995). N = ±j0.777 ±j0.946 ±j0.976 ± ±j0.904 ±j0.39 ±j0.966 ±0.75 ±j0.983 ±j ±j0.597 ±j0.6 ±j0.789 ±j0.559 *) See note for Table ±j0.437 ±j0.96 3

33 4..3 The Bessel lter The Bessel lter gives a maximum at group delay. Coecients to the Bessel polynomial. n a 0 a a a 3 a 4 a Rotes to the Bessel polynomial. n ±j ±j ±j ±j ±j ±j ±j ±j ±j4.497 Factorized Bessel polynomial n s s 3s (s s )(s.39) 5 4 (s 5.794s 9.403)(s s.4878) 05 5 (s s 4.75)(s s 8.563)(s ) (s s 8.803)(s 7.474s 0.858) (s s 6.540)

34 4. Frequency transformation of analogous lters. Start with the frequencies from the specication in the analogous high-pass, bandpass or band-stop lter4. In the nal lter, this are Ω Ω = Ω l Ω u.. Transform to the LP-lter frequencies Ω p =, Ω r. 3. Determine the LP-lter coecients. 4. Transform back to ( to HP, BP, BS) by replacing s in H(s) below. For BP, BS it is convenient to transform the poles directly if H(s) should be in a factorized form in :a-order polynomial. Determine a new value of Ω or Ω (if A B) if needed. Α(Ω) LP HP BP BS Α(Ω) Α(Ω) Α(Ω) Ω r Ω Ω r Ω u Ω Ω Ω l Ω uω Ω Ω l Ω Ω Ωu Ω S Ω u s (s Ω l Ω u ) s(ω u Ω l ) s(ω u Ω l ) (s Ω l Ω u ) Forward Backward LP-HP Ω r = Ω u /Ω r Ω r = Ω u /Ω r LP-BP Ω av = (Ω u Ω l )/ Ω r = min( A, B ) Ω = Ω rω av Ω l Ω u Ω av Ω r A = ( Ω Ω l Ω u )/[Ω (Ω u Ω l )] Ω = Ω rω av Ω l Ω u Ω av Ω r B = (Ω Ω l Ω u )/[Ω (Ω u Ω l )] s BP = S LP Ω av ± (S LP Ω av ) Ω u Ω l ) LP-BS Ω av = (Ω u Ω l )/ Ω r = min( A, B ) Ω = Ω av/ω r Ω l Ω u Ω av /Ω r A = Ω (Ω u Ω l )/( Ω Ω l Ω u ) Ω = Ω av/ω r Ω l Ω u Ω av /Ω r B = Ω (Ω u Ω l )/( Ω Ω l Ω u ) s BP = Ω av /S LP ± (Ω av /S LP ) Ω u Ω l ) 33

35 5 Time discrete lter 5. FIR lters and IIR lters FIR-lter IIR-lter H(z) = b 0 b z... b M z M { bn 0 n M h(n) = 0 otherwise H(z) = b 0 b z... b M z M a z... a N z N h(n) = Z {H(z)} 5. FIR lters using the window method Impulse response h(n) = h d (n) w(n) with desired impulse response h d (n) and spectrum H d (ω) (i 0 ω π) and time window w(n) Low pass: h d (n) = ω c π ( ) sin ω c n M ( ) ω c n M H d (ω) = { e jω (M )/ ω < ω c 0 otherwise Band pass: ( h d (n) = cos (ω 0 n M )) ωc π ( ) sin ω c n M ( ) ω c n M H d (ω) = { e jω (M )/ ω 0 ω c < ω < ω 0 ω c 0 otherwise High pass: ( h d (n) = δ n M ) ω c π ( ) sin ω c n M ( ) ω c n M H d (ω) = { e jω (M )/ ω > ω c 0 otherwise Filter spectrum H(ω) = H d (ω) W (ω) and at the cuto frequency ω c is the attenuation 6dB. For dimension of lters, the approximation below gives an approximation of the length M. 34

36 Table 5. Size of main lobe and side lobes for same useful window. Table 5. Approximative Highest Window size of the side lobe main lobe (db) Rectangular 4π/M -3 Bartlett 8π/M -7 Hanning 8π/M -3 Hamming 8π/M -43 Blackman π/m -58 Size of width between pass- and stop band main lobe and side lobes for some useful window lters. Window Width between Highest side lobe pass- and stop band (Hz) (db) Rektangular 0.6/M - Hamming.7/M -55 Blackman 3/M -75 A better approximation is to use (f small, M large) sin(πfm) M sin(πf) sin(πfm) πfm (f small, M large.) H(f) as a function of x = (f f c ) M with M = 99, f c = 0. for rectangular window, hamming window and blackman window are found in gure below. 35

37 Magnitude spectra for some lters using the window method 0 x = { (f fc ) M lågpasslter (f f c ) M högpasslter 3 H(f) /db x 0 Dämpning i db Rektangel Hamming Blackman x=(f fc)*m FIR lters using the window method M = 99 and f c = 0.. Scale on the x-axis x = (f f c )M. Higpasslter, use F x = (f f c )M. Window function used are Rectangular, Hamming and Blackmann. 36

38 5.3 Ekviripple FIR lters Dimensioning of ekviripple lter using the Remez algorithm. Approximatively from Kaiser. H(f) δp - δp δs f p fs f N = D (δ p, δ s ) f f = f s f p D (δ p, δ s ) = 0 log δ p δ s FIR lters using Least Squares method Minimizing gives and M n=0 E = n [x(n) h(n) d(n)] h(n)r xx (n l) = r dx (l) l = 0,..., M E min = r dd (0) M k=0 h(k)r dx (k) there r xx (l) is the correlation function for x(n) and r dx (l) is the cross correlation between d(n) and x(n). I matrix form this can be written R xx h = r dx h = R xx r dx E min = r dd (0) h T r dx 37

39 5.5 IIR-lter Design of IIR-lter from analogous lters The impulse invariance method.. h(n) = h a (nt ) h a (t) = e σ 0t H a (s) = s σ 0 H(z) = e σ 0T z h a (t) = e σ 0t cos Ω 0 t H a (s) = s σ 0 (s σ 0 ) Ω 0 3. H(z) = z e σ 0T cos Ω 0 T z e σ 0T cos Ω 0 T z e σ 0T h a (t) = e σ 0t sin Ω 0 t H a (s) = Ω 0 (s σ 0 ) Ω 0 H(z) = 5.5. Bilinear transformation Frequency transformation (prewarp) z e σ 0T sin Ω 0 T z e σ 0T cos Ω 0 T z e σ 0T F prewarp = T Analogous lter design in the variable Ω prewarp. tan(πf) π H(z) = H a (s) där s = T T is a normalizing factor (can often be chosen =). z z 38

40 5.5.3 Quantication of the lter coecients Pole movements when the coecients a,..., a k varies a,..., a k p i p i a a p i a k a k For the normal description (direct form II) yields 5.6 Lattice lter p i p k j i = a j (p i p )(p i p )... (p i p k ) }{{} k factors (p i p i ) not included f 0(n) f (n) f (n)... f M-(n) = y(n) x(n) K K K K K z - z - g 0(n) g (n) Lattice FIR... z - g (n) g (n) M- x(n) f N (n) - f N- (n) K N f (n)... f (n) f 0(n) = y(n) - - K K g (n) N K N z -... K z - g (n) Lattice all-pole IIR g (n) K z - g (n) 0 x(n) f N (n) f N- (n) f (n) f (n)... - K - - N K K f (n) 0 g (n) N v N K N z -... g (n) v K z - g (n) v K z - g (n) 0 v 0... y(n) Lattice-ladder 39

41 A 0 (z) = B 0 (z) = { Am (z) = A m (z) K m z B m (z) B m (z) = K m A m (z) z B m (z) there A m (z) = K m (A m (z) K m B m (z)) A m (z) = Z{α m (n)} med K m = α m (m) B m (z) = Z{β m (n)} Relations between A m (z) and B m (z) B m (z) = z m A m (z ) and β m (k) = α m (m k) Lattice-FIR Lattice-all pole IIR Lattice-ladder there and H(z) = A M (z) H(z) = A N (z) H(z) = C N(z) A N (z) = c 0 c z... c N z N A N (z) C m (z) = C m (z) v m B m (z) c m (m) = v m m = 0,,..., N 40

42 6 Spectral estimation Spectral estimation γ xx (m) = E{x(n)x(n m)} autocorrelation Γ xx (f) = m= γ xx e jπfm power spectrum The Periodogram r xx (m) = N P xx (f) = N m n=0 x(n)x(n m) 0 m N N r xx (m)e jπfm = N x(m)e jπfm m= N N m=0 power spectrum (estimate) autocorrelation (estimate) E{r xx (m)} = ( m ) N γ xx (m) γ xx (m) when N var(r xx (m)) N n= [γ xx(n) γ xx (n m)γ xx (n m)] 0 when N E{P xx (f)} = / / Γ xx (α)w B (f α)dα there W B (f) is the Fourier transform of the Bartlett window ( ) m N var(p xx (f)) = Γ xx(f) if x(n) Gaussian. The Periodogram using the DFT: ( ) sinπfn Γ Nsinπf xx(f) då N P xx ( k N ) = N N nk jπ x(n)e N n=0 k = 0,..., N 4

43 Mean of periodogram Quality factor Q = [E{P xx(f)}] var(p xx (f)) Relative variance Q Q time-bandwidth product. Periodogram f = 0.9 M Q = Bartlett (N = K M) f = 0.9 M Q B = N M Rectangular window No overlapping Welch (N = L M) f =.8 M Blackman/Tukey f = 0.6 M f = 0.9 M Q B = 6 9 N M Q B = N M Q B = 3 N M Triangular window 50% overlapping Rectangular window Triangular window Resolution f determined in the -3dB points (main lobe). 4

University of Illinois at Urbana-Champaign ECE 310: Digital Signal Processing

University of Illinois at Urbana-Champaign ECE 310: Digital Signal Processing University of Illinois at Urbana-Champaign ECE : Digital Signal Processing Chandra Radhakrishnan PROBLEM SET : SOLUTIONS Peter Kairouz Problem Solution:. ( 5 ) + (5 6 ) + ( ) cos(5 ) + 5cos( 6 ) + cos(

Διαβάστε περισσότερα

Probability and Random Processes (Part II)

Probability and Random Processes (Part II) Probability and Random Processes (Part II) 1. If the variance σ x of d(n) = x(n) x(n 1) is one-tenth the variance σ x of a stationary zero-mean discrete-time signal x(n), then the normalized autocorrelation

Διαβάστε περισσότερα

Ψηφιακή Επεξεργασία Φωνής

Ψηφιακή Επεξεργασία Φωνής ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Ψηφιακή Επεξεργασία Φωνής Ενότητα 1η: Ψηφιακή Επεξεργασία Σήματος Στυλιανού Ιωάννης Τμήμα Επιστήμης Υπολογιστών CS578- Speech Signal Processing Lecture 1: Discrete-Time

Διαβάστε περισσότερα

Fundamentals of Signals, Systems and Filtering

Fundamentals of Signals, Systems and Filtering Fundamentals of Signals, Systems and Filtering Brett Ninness c 2000-2005, Brett Ninness, School of Electrical Engineering and Computer Science The University of Newcastle, Australia. 2 c Brett Ninness

Διαβάστε περισσότερα

ECE 308 SIGNALS AND SYSTEMS FALL 2017 Answers to selected problems on prior years examinations

ECE 308 SIGNALS AND SYSTEMS FALL 2017 Answers to selected problems on prior years examinations ECE 308 SIGNALS AND SYSTEMS FALL 07 Answers to selected problems on prior years examinations Answers to problems on Midterm Examination #, Spring 009. x(t) = r(t + ) r(t ) u(t ) r(t ) + r(t 3) + u(t +

Διαβάστε περισσότερα

w o = R 1 p. (1) R = p =. = 1

w o = R 1 p. (1) R = p =. = 1 Πανεπιστήµιο Κρήτης - Τµήµα Επιστήµης Υπολογιστών ΗΥ-570: Στατιστική Επεξεργασία Σήµατος 205 ιδάσκων : Α. Μουχτάρης Τριτη Σειρά Ασκήσεων Λύσεις Ασκηση 3. 5.2 (a) From the Wiener-Hopf equation we have:

Διαβάστε περισσότερα

Second Order RLC Filters

Second Order RLC Filters ECEN 60 Circuits/Electronics Spring 007-0-07 P. Mathys Second Order RLC Filters RLC Lowpass Filter A passive RLC lowpass filter (LPF) circuit is shown in the following schematic. R L C v O (t) Using phasor

Διαβάστε περισσότερα

Spectrum Representation (5A) Young Won Lim 11/3/16

Spectrum Representation (5A) Young Won Lim 11/3/16 Spectrum (5A) Copyright (c) 2009-2016 Young W. Lim. Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1.2 or any later

Διαβάστε περισσότερα

DERIVATION OF MILES EQUATION FOR AN APPLIED FORCE Revision C

DERIVATION OF MILES EQUATION FOR AN APPLIED FORCE Revision C DERIVATION OF MILES EQUATION FOR AN APPLIED FORCE Revision C By Tom Irvine Email: tomirvine@aol.com August 6, 8 Introduction The obective is to derive a Miles equation which gives the overall response

Διαβάστε περισσότερα

Homework 8 Model Solution Section

Homework 8 Model Solution Section MATH 004 Homework Solution Homework 8 Model Solution Section 14.5 14.6. 14.5. Use the Chain Rule to find dz where z cosx + 4y), x 5t 4, y 1 t. dz dx + dy y sinx + 4y)0t + 4) sinx + 4y) 1t ) 0t + 4t ) sinx

Διαβάστε περισσότερα

Chapter 6: Systems of Linear Differential. be continuous functions on the interval

Chapter 6: Systems of Linear Differential. be continuous functions on the interval Chapter 6: Systems of Linear Differential Equations Let a (t), a 2 (t),..., a nn (t), b (t), b 2 (t),..., b n (t) be continuous functions on the interval I. The system of n first-order differential equations

Διαβάστε περισσότερα

Nachrichtentechnik I WS 2005/2006

Nachrichtentechnik I WS 2005/2006 Nachrichtentechnik I WS 2005/2006 1 Signals & Systems wt 10/2005 1 Overview (Signals & Systems) Signals: definition & classification properties basic signals Signal transformations Fourier transformation

Διαβάστε περισσότερα

LTI Systems (1A) Young Won Lim 3/21/15

LTI Systems (1A) Young Won Lim 3/21/15 LTI Systems (1A) Copyright (c) 214 Young W. Lim. Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1.2 or any later version

Διαβάστε περισσότερα

CHAPTER 25 SOLVING EQUATIONS BY ITERATIVE METHODS

CHAPTER 25 SOLVING EQUATIONS BY ITERATIVE METHODS CHAPTER 5 SOLVING EQUATIONS BY ITERATIVE METHODS EXERCISE 104 Page 8 1. Find the positive root of the equation x + 3x 5 = 0, correct to 3 significant figures, using the method of bisection. Let f(x) =

Διαβάστε περισσότερα

CT Correlation (2B) Young Won Lim 8/15/14

CT Correlation (2B) Young Won Lim 8/15/14 CT Correlation (2B) 8/5/4 Copyright (c) 2-24 Young W. Lim. Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version.2 or any

Διαβάστε περισσότερα

Main source: "Discrete-time systems and computer control" by Α. ΣΚΟΔΡΑΣ ΨΗΦΙΑΚΟΣ ΕΛΕΓΧΟΣ ΔΙΑΛΕΞΗ 4 ΔΙΑΦΑΝΕΙΑ 1

Main source: Discrete-time systems and computer control by Α. ΣΚΟΔΡΑΣ ΨΗΦΙΑΚΟΣ ΕΛΕΓΧΟΣ ΔΙΑΛΕΞΗ 4 ΔΙΑΦΑΝΕΙΑ 1 Main source: "Discrete-time systems and computer control" by Α. ΣΚΟΔΡΑΣ ΨΗΦΙΑΚΟΣ ΕΛΕΓΧΟΣ ΔΙΑΛΕΞΗ 4 ΔΙΑΦΑΝΕΙΑ 1 A Brief History of Sampling Research 1915 - Edmund Taylor Whittaker (1873-1956) devised a

Διαβάστε περισσότερα

3.4 SUM AND DIFFERENCE FORMULAS. NOTE: cos(α+β) cos α + cos β cos(α-β) cos α -cos β

3.4 SUM AND DIFFERENCE FORMULAS. NOTE: cos(α+β) cos α + cos β cos(α-β) cos α -cos β 3.4 SUM AND DIFFERENCE FORMULAS Page Theorem cos(αβ cos α cos β -sin α cos(α-β cos α cos β sin α NOTE: cos(αβ cos α cos β cos(α-β cos α -cos β Proof of cos(α-β cos α cos β sin α Let s use a unit circle

Διαβάστε περισσότερα

Chapter 6: Systems of Linear Differential. be continuous functions on the interval

Chapter 6: Systems of Linear Differential. be continuous functions on the interval Chapter 6: Systems of Linear Differential Equations Let a (t), a 2 (t),..., a nn (t), b (t), b 2 (t),..., b n (t) be continuous functions on the interval I. The system of n first-order differential equations

Διαβάστε περισσότερα

SPECIAL FUNCTIONS and POLYNOMIALS

SPECIAL FUNCTIONS and POLYNOMIALS SPECIAL FUNCTIONS and POLYNOMIALS Gerard t Hooft Stefan Nobbenhuis Institute for Theoretical Physics Utrecht University, Leuvenlaan 4 3584 CC Utrecht, the Netherlands and Spinoza Institute Postbox 8.195

Διαβάστε περισσότερα

ΣΤΟΧΑΣΤΙΚΑ ΣΥΣΤΗΜΑΤΑ & ΕΠΙΚΟΙΝΩΝΙΕΣ 1o Τμήμα (Α - Κ): Αμφιθέατρο 4, Νέα Κτίρια ΣΗΜΜΥ Ανάλυση Επικοινωνιακών Σημάτων κατά Fourier

ΣΤΟΧΑΣΤΙΚΑ ΣΥΣΤΗΜΑΤΑ & ΕΠΙΚΟΙΝΩΝΙΕΣ 1o Τμήμα (Α - Κ): Αμφιθέατρο 4, Νέα Κτίρια ΣΗΜΜΥ Ανάλυση Επικοινωνιακών Σημάτων κατά Fourier ΣΤΟΧΑΣΤΙΚΑ ΣΥΣΤΗΜΑΤΑ & ΕΠΙΚΟΙΝΩΝΙΕΣ 1o Τμήμα (Α - Κ): Αμφιθέατρο 4, Νέα Κτίρια ΣΗΜΜΥ Ανάλυση Επικοινωνιακών Σημάτων κατά Fourier 2.2: Μετασχηματισμός Fourier (Fourier Transform, FT) 2.3: Ιδιότητες του

Διαβάστε περισσότερα

Sampling Basics (1B) Young Won Lim 9/21/13

Sampling Basics (1B) Young Won Lim 9/21/13 Sampling Basics (1B) Copyright (c) 2009-2013 Young W. Lim. Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1.2 or any

Διαβάστε περισσότερα

10.7 Performance of Second-Order System (Unit Step Response)

10.7 Performance of Second-Order System (Unit Step Response) Lecture Notes on Control Systems/D. Ghose/0 57 0.7 Performance of Second-Order System (Unit Step Response) Consider the second order system a ÿ + a ẏ + a 0 y = b 0 r So, Y (s) R(s) = b 0 a s + a s + a

Διαβάστε περισσότερα

6.3 Forecasting ARMA processes

6.3 Forecasting ARMA processes 122 CHAPTER 6. ARMA MODELS 6.3 Forecasting ARMA processes The purpose of forecasting is to predict future values of a TS based on the data collected to the present. In this section we will discuss a linear

Διαβάστε περισσότερα

Tables in Signals and Systems

Tables in Signals and Systems ables in Signals and Systems Magnus Lundberg Revised October 999 Contents I Continuous-time Fourier series I-A Properties of Fourier series........................... I-B Fourier series table................................

Διαβάστε περισσότερα

Section 8.3 Trigonometric Equations

Section 8.3 Trigonometric Equations 99 Section 8. Trigonometric Equations Objective 1: Solve Equations Involving One Trigonometric Function. In this section and the next, we will exple how to solving equations involving trigonometric functions.

Διαβάστε περισσότερα

Math221: HW# 1 solutions

Math221: HW# 1 solutions Math: HW# solutions Andy Royston October, 5 7.5.7, 3 rd Ed. We have a n = b n = a = fxdx = xdx =, x cos nxdx = x sin nx n sin nxdx n = cos nx n = n n, x sin nxdx = x cos nx n + cos nxdx n cos n = + sin

Διαβάστε περισσότερα

Απόκριση σε Μοναδιαία Ωστική Δύναμη (Unit Impulse) Απόκριση σε Δυνάμεις Αυθαίρετα Μεταβαλλόμενες με το Χρόνο. Απόστολος Σ.

Απόκριση σε Μοναδιαία Ωστική Δύναμη (Unit Impulse) Απόκριση σε Δυνάμεις Αυθαίρετα Μεταβαλλόμενες με το Χρόνο. Απόστολος Σ. Απόκριση σε Δυνάμεις Αυθαίρετα Μεταβαλλόμενες με το Χρόνο The time integral of a force is referred to as impulse, is determined by and is obtained from: Newton s 2 nd Law of motion states that the action

Διαβάστε περισσότερα

SCHOOL OF MATHEMATICAL SCIENCES G11LMA Linear Mathematics Examination Solutions

SCHOOL OF MATHEMATICAL SCIENCES G11LMA Linear Mathematics Examination Solutions SCHOOL OF MATHEMATICAL SCIENCES GLMA Linear Mathematics 00- Examination Solutions. (a) i. ( + 5i)( i) = (6 + 5) + (5 )i = + i. Real part is, imaginary part is. (b) ii. + 5i i ( + 5i)( + i) = ( i)( + i)

Διαβάστε περισσότερα

ME 374, System Dynamics Analysis and Design Homework 9: Solution (June 9, 2008) by Jason Frye

ME 374, System Dynamics Analysis and Design Homework 9: Solution (June 9, 2008) by Jason Frye ME 374, System Dynamics Analysis and Design Homewk 9: Solution June 9, 8 by Jason Frye Problem a he frequency response function G and the impulse response function ht are Fourier transfm pairs herefe,

Διαβάστε περισσότερα

Assignment 1 Solutions Complex Sinusoids

Assignment 1 Solutions Complex Sinusoids Assignment Solutions Complex Sinusoids ECE 223 Signals and Systems II Version. Spring 26. Eigenfunctions of LTI systems. Which of the following signals are eigenfunctions of LTI systems? a. x[n] =cos(

Διαβάστε περισσότερα

The Spiral of Theodorus, Numerical Analysis, and Special Functions

The Spiral of Theodorus, Numerical Analysis, and Special Functions Theo p. / The Spiral of Theodorus, Numerical Analysis, and Special Functions Walter Gautschi wxg@cs.purdue.edu Purdue University Theo p. 2/ Theodorus of ca. 46 399 B.C. Theo p. 3/ spiral of Theodorus 6

Διαβάστε περισσότερα

ΣΤΟΧΑΣΤΙΚΑ ΣΥΣΤΗΜΑΤΑ & ΕΠΙΚΟΙΝΩΝΙΕΣ 1o Τμήμα (Α - Κ): Αμφιθέατρο 3, Νέα Κτίρια ΣΗΜΜΥ Ανάλυση Επικοινωνιακών Σημάτων κατά Fourier

ΣΤΟΧΑΣΤΙΚΑ ΣΥΣΤΗΜΑΤΑ & ΕΠΙΚΟΙΝΩΝΙΕΣ 1o Τμήμα (Α - Κ): Αμφιθέατρο 3, Νέα Κτίρια ΣΗΜΜΥ Ανάλυση Επικοινωνιακών Σημάτων κατά Fourier ΣΤΟΧΑΣΤΙΚΑ ΣΥΣΤΗΜΑΤΑ & ΕΠΙΚΟΙΝΩΝΙΕΣ 1o Τμήμα (Α - Κ): Αμφιθέατρο 3, Νέα Κτίρια ΣΗΜΜΥ Ανάλυση Επικοινωνιακών Σημάτων κατά Fourier 2.2: Μετασχηματισμός Fourier (Fourier Transform, FT) 2.3: Ιδιότητες του

Διαβάστε περισσότερα

CHAPTER 101 FOURIER SERIES FOR PERIODIC FUNCTIONS OF PERIOD

CHAPTER 101 FOURIER SERIES FOR PERIODIC FUNCTIONS OF PERIOD CHAPTER FOURIER SERIES FOR PERIODIC FUNCTIONS OF PERIOD EXERCISE 36 Page 66. Determine the Fourier series for the periodic function: f(x), when x +, when x which is periodic outside this rge of period.

Διαβάστε περισσότερα

Stationary Stochastic Processes Table of Formulas, 2017

Stationary Stochastic Processes Table of Formulas, 2017 Stationary Stochastic Processes, 07 Stationary Stochastic Processes Table of Formulas, 07 Basics of probability theory The following is valid for probabilities: P(Ω), where Ω is all possible outcomes 0

Διαβάστε περισσότερα

ME 365: SYSTEMS, MEASUREMENTS, AND CONTROL (SMAC) I

ME 365: SYSTEMS, MEASUREMENTS, AND CONTROL (SMAC) I ME 365: SYSTEMS, MEASUREMENTS, AND CONTROL SMAC) I Dynamicresponseof 2 nd ordersystem Prof.SongZhangMEG088) Solutions to ODEs Forann@thorderLTIsystem a n yn) + a n 1 y n 1) ++ a 1 "y + a 0 y = b m u m)

Διαβάστε περισσότερα

Outline Analog Communications. Lecture 05 Angle Modulation. Instantaneous Frequency and Frequency Deviation. Angle Modulation. Pierluigi SALVO ROSSI

Outline Analog Communications. Lecture 05 Angle Modulation. Instantaneous Frequency and Frequency Deviation. Angle Modulation. Pierluigi SALVO ROSSI Outline Analog Communications Lecture 05 Angle Modulation 1 PM and FM Pierluigi SALVO ROSSI Department of Industrial and Information Engineering Second University of Naples Via Roma 9, 81031 Aversa (CE),

Διαβάστε περισσότερα

Areas and Lengths in Polar Coordinates

Areas and Lengths in Polar Coordinates Kiryl Tsishchanka Areas and Lengths in Polar Coordinates In this section we develop the formula for the area of a region whose boundary is given by a polar equation. We need to use the formula for the

Διαβάστε περισσότερα

Διάλεξη 6. Fourier Ανάλυση Σημάτων. (Επανάληψη Κεφ. 10.0-10.2 Κεφ. 10.3, 10.5-7) Ανάλυση σημάτων. Τι πρέπει να προσέξουμε

Διάλεξη 6. Fourier Ανάλυση Σημάτων. (Επανάληψη Κεφ. 10.0-10.2 Κεφ. 10.3, 10.5-7) Ανάλυση σημάτων. Τι πρέπει να προσέξουμε University of Cyprus Biomedical Imaging & Applied Optics Διάλεξη (Επανάληψη Κεφ. 10.0-10. Κεφ. 10.3, 10.5-7) Ανάλυση σημάτων Τι πρέπει να προσέξουμε Επαρκής ψηφιοποίηση στο χρόνο (Nyquist) Αναδίπλωση (aliasing)

Διαβάστε περισσότερα

D Alembert s Solution to the Wave Equation

D Alembert s Solution to the Wave Equation D Alembert s Solution to the Wave Equation MATH 467 Partial Differential Equations J. Robert Buchanan Department of Mathematics Fall 2018 Objectives In this lesson we will learn: a change of variable technique

Διαβάστε περισσότερα

Partial Differential Equations in Biology The boundary element method. March 26, 2013

Partial Differential Equations in Biology The boundary element method. March 26, 2013 The boundary element method March 26, 203 Introduction and notation The problem: u = f in D R d u = ϕ in Γ D u n = g on Γ N, where D = Γ D Γ N, Γ D Γ N = (possibly, Γ D = [Neumann problem] or Γ N = [Dirichlet

Διαβάστε περισσότερα

Practice Exam 2. Conceptual Questions. 1. State a Basic identity and then verify it. (a) Identity: Solution: One identity is csc(θ) = 1

Practice Exam 2. Conceptual Questions. 1. State a Basic identity and then verify it. (a) Identity: Solution: One identity is csc(θ) = 1 Conceptual Questions. State a Basic identity and then verify it. a) Identity: Solution: One identity is cscθ) = sinθ) Practice Exam b) Verification: Solution: Given the point of intersection x, y) of the

Διαβάστε περισσότερα

Aquinas College. Edexcel Mathematical formulae and statistics tables DO NOT WRITE ON THIS BOOKLET

Aquinas College. Edexcel Mathematical formulae and statistics tables DO NOT WRITE ON THIS BOOKLET Aquinas College Edexcel Mathematical formulae and statistics tables DO NOT WRITE ON THIS BOOKLET Pearson Edexcel Level 3 Advanced Subsidiary and Advanced GCE in Mathematics and Further Mathematics Mathematical

Διαβάστε περισσότερα

Matrices and Determinants

Matrices and Determinants Matrices and Determinants SUBJECTIVE PROBLEMS: Q 1. For what value of k do the following system of equations possess a non-trivial (i.e., not all zero) solution over the set of rationals Q? x + ky + 3z

Διαβάστε περισσότερα

Problem Set 9 Solutions. θ + 1. θ 2 + cotθ ( ) sinθ e iφ is an eigenfunction of the ˆ L 2 operator. / θ 2. φ 2. sin 2 θ φ 2. ( ) = e iφ. = e iφ cosθ.

Problem Set 9 Solutions. θ + 1. θ 2 + cotθ ( ) sinθ e iφ is an eigenfunction of the ˆ L 2 operator. / θ 2. φ 2. sin 2 θ φ 2. ( ) = e iφ. = e iφ cosθ. Chemistry 362 Dr Jean M Standard Problem Set 9 Solutions The ˆ L 2 operator is defined as Verify that the angular wavefunction Y θ,φ) Also verify that the eigenvalue is given by 2! 2 & L ˆ 2! 2 2 θ 2 +

Διαβάστε περισσότερα

CRASH COURSE IN PRECALCULUS

CRASH COURSE IN PRECALCULUS CRASH COURSE IN PRECALCULUS Shiah-Sen Wang The graphs are prepared by Chien-Lun Lai Based on : Precalculus: Mathematics for Calculus by J. Stuwart, L. Redin & S. Watson, 6th edition, 01, Brooks/Cole Chapter

Διαβάστε περισσότερα

Linear System Response to Random Inputs. M. Sami Fadali Professor of Electrical Engineering University of Nevada

Linear System Response to Random Inputs. M. Sami Fadali Professor of Electrical Engineering University of Nevada Linear System Response to Random Inputs M. Sami Fadali Professor of Electrical Engineering University of Nevada 1 Outline Linear System Response to deterministic input. Response to stochastic input. Characterize

Διαβάστε περισσότερα

DiracDelta. Notations. Primary definition. Specific values. General characteristics. Traditional name. Traditional notation

DiracDelta. Notations. Primary definition. Specific values. General characteristics. Traditional name. Traditional notation DiracDelta Notations Traditional name Dirac delta function Traditional notation x Mathematica StandardForm notation DiracDeltax Primary definition 4.03.02.000.0 x Π lim ε ; x ε0 x 2 2 ε Specific values

Διαβάστε περισσότερα

Stationary Stochastic Processes Table of Formulas, 2016

Stationary Stochastic Processes Table of Formulas, 2016 Stationary Stochastic Processes, 06 Stationary Stochastic Processes Table of Formulas, 06 Basics of probability theory The following is valid for probabilities: P(Ω), where Ω is all possible outcomes 0

Διαβάστε περισσότερα

Trigonometric Formula Sheet

Trigonometric Formula Sheet Trigonometric Formula Sheet Definition of the Trig Functions Right Triangle Definition Assume that: 0 < θ < or 0 < θ < 90 Unit Circle Definition Assume θ can be any angle. y x, y hypotenuse opposite θ

Διαβάστε περισσότερα

X(f) E(ft) df x[i] = 1 F. x(t) E( ft) dt X(f) = x[i] = 1 F

X(f) E(ft) df x[i] = 1 F. x(t) E( ft) dt X(f) = x[i] = 1 F Πανεπιστήμιο Θεσσαλίας ΗΥ240: Θεωρία Σημάτων και Συστημάτων 4..2006 Φυλλάδιο Τυπολόγιο μετασχηματισμών ourier, Laplace και Z Σύμβολα Για έναν πραγματικό αριθμό x, συμβολίζουμε με x, x, [x], τον αμέσως

Διαβάστε περισσότερα

Monolithic Crystal Filters (M.C.F.)

Monolithic Crystal Filters (M.C.F.) Monolithic Crystal Filters (M.C.F.) MCF (MONOLITHIC CRYSTAL FILTER) features high quality quartz resonators such as sharp cutoff characteristics, low loss, good inter-modulation and high stability over

Διαβάστε περισσότερα

The ε-pseudospectrum of a Matrix

The ε-pseudospectrum of a Matrix The ε-pseudospectrum of a Matrix Feb 16, 2015 () The ε-pseudospectrum of a Matrix Feb 16, 2015 1 / 18 1 Preliminaries 2 Definitions 3 Basic Properties 4 Computation of Pseudospectrum of 2 2 5 Problems

Διαβάστε περισσότερα

Ψηφιακή Επεξεργασία Φωνής

Ψηφιακή Επεξεργασία Φωνής ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Ψηφιακή Επεξεργασία Φωνής Ενότητα 4η: Γραμμική Πρόβλεψη: Ανάλυση και Σύνθεση Στυλιανού Ιωάννης Τμήμα Επιστήμης Υπολογιστών CS578- Speech Signal Processing Lecture

Διαβάστε περισσότερα

l 0 l 2 l 1 l 1 l 1 l 2 l 2 l 1 l p λ λ µ R N l 2 R N l 2 2 = N x i l p p R N l p N p = ( x i p ) 1 p i=1 l 2 l p p = 2 l p l 1 R N l 1 i=1 x 2 i 1 = N x i i=1 l p p p R N l 0 0 = {i x i 0} R

Διαβάστε περισσότερα

Second Order Partial Differential Equations

Second Order Partial Differential Equations Chapter 7 Second Order Partial Differential Equations 7.1 Introduction A second order linear PDE in two independent variables (x, y Ω can be written as A(x, y u x + B(x, y u xy + C(x, y u u u + D(x, y

Διαβάστε περισσότερα

ΣΗΜΑΤΑ ΔΙΑΚΡΙΤΟΥ ΧΡΟΝΟΥ

ΣΗΜΑΤΑ ΔΙΑΚΡΙΤΟΥ ΧΡΟΝΟΥ ΣΗΜΑΤΑ ΔΙΑΚΡΙΤΟΥ ΧΡΟΝΟΥ y t x Α. ΣΚΟΔΡΑΣ ΣΗΜΑΤΑ ΚΑΙ ΣΥΣΤΗΜΑΤΑ ΙΙ (22Y603) ΕΝΟΤΗΤΑ 1 ΔΙΑΛΕΞΗ 2 ΔΙΑΦΑΝΕΙΑ 1 ΤΥΠΟΙ ΣΗΜΑΤΩΝ Analog: Continuous Time & Continuous Amplitude Sampled: Discrete Time & Continuous

Διαβάστε περισσότερα

6.003: Signals and Systems. Modulation

6.003: Signals and Systems. Modulation 6.003: Signals and Systems Modulation May 6, 200 Communications Systems Signals are not always well matched to the media through which we wish to transmit them. signal audio video internet applications

Διαβάστε περισσότερα

HMY 799 1: Αναγνώριση Συστημάτων

HMY 799 1: Αναγνώριση Συστημάτων HMY 799 : Αναγνώριση Συστημάτων Διάλεξη 5 Εκτίμηση φάσματος ισχύος Συνάφεια Παραδείγματα Στοχαστικά Διανύσματα Autoregressive model with exogenous inputs (ARX y( t + a y( t +... + a y( t n = bu( t +...

Διαβάστε περισσότερα

ΔΙΑΚΡΙΤΟΣ ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΣ FOURIER - Discrete Fourier Transform - DFT -

ΔΙΑΚΡΙΤΟΣ ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΣ FOURIER - Discrete Fourier Transform - DFT - ΔΙΑΚΡΙΤΟΣ ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΣ FOURIER - Discrete Fourier Transform - DFT - Α. ΣΚΟΔΡΑΣ ΣΗΜΑΤΑ ΚΑΙ ΣΥΣΤΗΜΑΤΑ ΙΙ (22Y603) ΕΝΟΤΗΤΑ 4 ΔΙΑΛΕΞΗ 1 ΔΙΑΦΑΝΕΙΑ 1 Διαφορετικοί Τύποι Μετασχηµατισµού Fourier Α. ΣΚΟΔΡΑΣ

Διαβάστε περισσότερα

{ } x[n]e jωn (1.3) x[n] x [ n ]... x[n] e jk 2π N n

{ } x[n]e jωn (1.3) x[n] x [ n ]... x[n] e jk 2π N n Πανεπιστημιο Κυπρου Τμημα Ηλεκτρολογων Μηχανικων και Μηχανικων Υπολογιστων ΗΜΥ : Σηματα και Συστηματα για Μηχανικους Υπολογιστων Κεφάλαιο 5: Μετασχηματισμοί Fourier σε διακριτά σήματα!"#!"#! "#$% Σημειώσεις

Διαβάστε περισσότερα

Lecture 2: Dirac notation and a review of linear algebra Read Sakurai chapter 1, Baym chatper 3

Lecture 2: Dirac notation and a review of linear algebra Read Sakurai chapter 1, Baym chatper 3 Lecture 2: Dirac notation and a review of linear algebra Read Sakurai chapter 1, Baym chatper 3 1 State vector space and the dual space Space of wavefunctions The space of wavefunctions is the set of all

Διαβάστε περισσότερα

Fourier Series. MATH 211, Calculus II. J. Robert Buchanan. Spring Department of Mathematics

Fourier Series. MATH 211, Calculus II. J. Robert Buchanan. Spring Department of Mathematics Fourier Series MATH 211, Calculus II J. Robert Buchanan Department of Mathematics Spring 2018 Introduction Not all functions can be represented by Taylor series. f (k) (c) A Taylor series f (x) = (x c)

Διαβάστε περισσότερα

ITU-R BT ITU-R BT ( ) ITU-T J.61 (

ITU-R BT ITU-R BT ( ) ITU-T J.61 ( ITU-R BT.439- ITU-R BT.439- (26-2). ( ( ( ITU-T J.6 ( ITU-T J.6 ( ( 2 2 2 3 ITU-R BT.439-2 4 3 4 K : 5. ITU-R BT.24 :. ITU-T J.6. : T u ( ) () (S + L = M) :A :B :C : D :E :F :G :H :J :K :L :M :S :Tsy :Tlb

Διαβάστε περισσότερα

SOLUTIONS TO MATH38181 EXTREME VALUES AND FINANCIAL RISK EXAM

SOLUTIONS TO MATH38181 EXTREME VALUES AND FINANCIAL RISK EXAM SOLUTIONS TO MATH38181 EXTREME VALUES AND FINANCIAL RISK EXAM Solutions to Question 1 a) The cumulative distribution function of T conditional on N n is Pr T t N n) Pr max X 1,..., X N ) t N n) Pr max

Διαβάστε περισσότερα

Rectangular Polar Parametric

Rectangular Polar Parametric Harold s Precalculus Rectangular Polar Parametric Cheat Sheet 15 October 2017 Point Line Rectangular Polar Parametric f(x) = y (x, y) (a, b) Slope-Intercept Form: y = mx + b Point-Slope Form: y y 0 = m

Διαβάστε περισσότερα

Differential equations

Differential equations Differential equations Differential equations: An equation inoling one dependent ariable and its deriaties w. r. t one or more independent ariables is called a differential equation. Order of differential

Διαβάστε περισσότερα

Phys460.nb Solution for the t-dependent Schrodinger s equation How did we find the solution? (not required)

Phys460.nb Solution for the t-dependent Schrodinger s equation How did we find the solution? (not required) Phys460.nb 81 ψ n (t) is still the (same) eigenstate of H But for tdependent H. The answer is NO. 5.5.5. Solution for the tdependent Schrodinger s equation If we assume that at time t 0, the electron starts

Διαβάστε περισσότερα

Areas and Lengths in Polar Coordinates

Areas and Lengths in Polar Coordinates Kiryl Tsishchanka Areas and Lengths in Polar Coordinates In this section we develop the formula for the area of a region whose boundary is given by a polar equation. We need to use the formula for the

Διαβάστε περισσότερα

Contents Introduction to Filter Concepts All-Pole Approximations

Contents Introduction to Filter Concepts All-Pole Approximations Contents 1 Introduction to Filter Concepts... 1 1.1 Gain and Attenuation Functions..... 1 1.2 Ideal Transmission... 4 1.2.1 Ideal Filters... 5 1.3 Real Electronic Filters... 6 1.3.1 Realizable Lowpass

Διαβάστε περισσότερα

Numerical Analysis FMN011

Numerical Analysis FMN011 Numerical Analysis FMN011 Carmen Arévalo Lund University carmen@maths.lth.se Lecture 12 Periodic data A function g has period P if g(x + P ) = g(x) Model: Trigonometric polynomial of order M T M (x) =

Διαβάστε περισσότερα

EE512: Error Control Coding

EE512: Error Control Coding EE512: Error Control Coding Solution for Assignment on Finite Fields February 16, 2007 1. (a) Addition and Multiplication tables for GF (5) and GF (7) are shown in Tables 1 and 2. + 0 1 2 3 4 0 0 1 2 3

Διαβάστε περισσότερα

CHAPTER 48 APPLICATIONS OF MATRICES AND DETERMINANTS

CHAPTER 48 APPLICATIONS OF MATRICES AND DETERMINANTS CHAPTER 48 APPLICATIONS OF MATRICES AND DETERMINANTS EXERCISE 01 Page 545 1. Use matrices to solve: 3x + 4y x + 5y + 7 3x + 4y x + 5y 7 Hence, 3 4 x 0 5 y 7 The inverse of 3 4 5 is: 1 5 4 1 5 4 15 8 3

Διαβάστε περισσότερα

Example Sheet 3 Solutions

Example Sheet 3 Solutions Example Sheet 3 Solutions. i Regular Sturm-Liouville. ii Singular Sturm-Liouville mixed boundary conditions. iii Not Sturm-Liouville ODE is not in Sturm-Liouville form. iv Regular Sturm-Liouville note

Διαβάστε περισσότερα

Matrices and vectors. Matrix and vector. a 11 a 12 a 1n a 21 a 22 a 2n A = b 1 b 2. b m. R m n, b = = ( a ij. a m1 a m2 a mn. def

Matrices and vectors. Matrix and vector. a 11 a 12 a 1n a 21 a 22 a 2n A = b 1 b 2. b m. R m n, b = = ( a ij. a m1 a m2 a mn. def Matrices and vectors Matrix and vector a 11 a 12 a 1n a 21 a 22 a 2n A = a m1 a m2 a mn def = ( a ij ) R m n, b = b 1 b 2 b m Rm Matrix and vectors in linear equations: example E 1 : x 1 + x 2 + 3x 4 =

Διαβάστε περισσότερα

Arithmetical applications of lagrangian interpolation. Tanguy Rivoal. Institut Fourier CNRS and Université de Grenoble 1

Arithmetical applications of lagrangian interpolation. Tanguy Rivoal. Institut Fourier CNRS and Université de Grenoble 1 Arithmetical applications of lagrangian interpolation Tanguy Rivoal Institut Fourier CNRS and Université de Grenoble Conference Diophantine and Analytic Problems in Number Theory, The 00th anniversary

Διαβάστε περισσότερα

PARTIAL NOTES for 6.1 Trigonometric Identities

PARTIAL NOTES for 6.1 Trigonometric Identities PARTIAL NOTES for 6.1 Trigonometric Identities tanθ = sinθ cosθ cotθ = cosθ sinθ BASIC IDENTITIES cscθ = 1 sinθ secθ = 1 cosθ cotθ = 1 tanθ PYTHAGOREAN IDENTITIES sin θ + cos θ =1 tan θ +1= sec θ 1 + cot

Διαβάστε περισσότερα

Jesse Maassen and Mark Lundstrom Purdue University November 25, 2013

Jesse Maassen and Mark Lundstrom Purdue University November 25, 2013 Notes on Average Scattering imes and Hall Factors Jesse Maassen and Mar Lundstrom Purdue University November 5, 13 I. Introduction 1 II. Solution of the BE 1 III. Exercises: Woring out average scattering

Διαβάστε περισσότερα

Tables of Transform Pairs

Tables of Transform Pairs Tble of Trnform Pir 005 by Mrc Stoecklin mrc toecklin.net http://www.toecklin.net/ December, 005 verion.5 Student nd engineer in communiction nd mthemtic re confronted with trnformtion uch the -Trnform,

Διαβάστε περισσότερα

What happens when two or more waves overlap in a certain region of space at the same time?

What happens when two or more waves overlap in a certain region of space at the same time? Wave Superposition What happens when two or more waves overlap in a certain region of space at the same time? To find the resulting wave according to the principle of superposition we should sum the fields

Διαβάστε περισσότερα

Linear Time Invariant Systems. Ay 1 (t)+by 2 (t) s=a+jb complex exponentials

Linear Time Invariant Systems. Ay 1 (t)+by 2 (t) s=a+jb complex exponentials Linear Time Invariant Systems x(t) Linear Time Invariant System y(t) Linearity input output Ax (t)+bx (t) Ay (t)+by (t) scaling & superposition Time invariance x(t-τ) y(t-τ) Characteristic Functions e

Διαβάστε περισσότερα

2 Composition. Invertible Mappings

2 Composition. Invertible Mappings Arkansas Tech University MATH 4033: Elementary Modern Algebra Dr. Marcel B. Finan Composition. Invertible Mappings In this section we discuss two procedures for creating new mappings from old ones, namely,

Διαβάστε περισσότερα

k A = [k, k]( )[a 1, a 2 ] = [ka 1,ka 2 ] 4For the division of two intervals of confidence in R +

k A = [k, k]( )[a 1, a 2 ] = [ka 1,ka 2 ] 4For the division of two intervals of confidence in R + Chapter 3. Fuzzy Arithmetic 3- Fuzzy arithmetic: ~Addition(+) and subtraction (-): Let A = [a and B = [b, b in R If x [a and y [b, b than x+y [a +b +b Symbolically,we write A(+)B = [a (+)[b, b = [a +b

Διαβάστε περισσότερα

ΗΜΥ 220: ΣΗΜΑΤΑ ΚΑΙ ΣΥΣΤΗΜΑΤΑ Ι Ακαδημαϊκό έτος Εαρινό Εξάμηνο Κατ οίκον εργασία αρ. 2

ΗΜΥ 220: ΣΗΜΑΤΑ ΚΑΙ ΣΥΣΤΗΜΑΤΑ Ι Ακαδημαϊκό έτος Εαρινό Εξάμηνο Κατ οίκον εργασία αρ. 2 ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΚΑΙ ΜΗΧΑΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΗΜΥ 220: ΣΗΜΑΤΑ ΚΑΙ ΣΥΣΤΗΜΑΤΑ Ι Ακαδημαϊκό έτος 2007-08 -- Εαρινό Εξάμηνο Κατ οίκον εργασία αρ. 2 Ημερομηνία Παραδόσεως: Παρασκευή

Διαβάστε περισσότερα

Durbin-Levinson recursive method

Durbin-Levinson recursive method Durbin-Levinson recursive method A recursive method for computing ϕ n is useful because it avoids inverting large matrices; when new data are acquired, one can update predictions, instead of starting again

Διαβάστε περισσότερα

Pg The perimeter is P = 3x The area of a triangle is. where b is the base, h is the height. In our case b = x, then the area is

Pg The perimeter is P = 3x The area of a triangle is. where b is the base, h is the height. In our case b = x, then the area is Pg. 9. The perimeter is P = The area of a triangle is A = bh where b is the base, h is the height 0 h= btan 60 = b = b In our case b =, then the area is A = = 0. By Pythagorean theorem a + a = d a a =

Διαβάστε περισσότερα

Finite Field Problems: Solutions

Finite Field Problems: Solutions Finite Field Problems: Solutions 1. Let f = x 2 +1 Z 11 [x] and let F = Z 11 [x]/(f), a field. Let Solution: F =11 2 = 121, so F = 121 1 = 120. The possible orders are the divisors of 120. Solution: The

Διαβάστε περισσότερα

Jordan Form of a Square Matrix

Jordan Form of a Square Matrix Jordan Form of a Square Matrix Josh Engwer Texas Tech University josh.engwer@ttu.edu June 3 KEY CONCEPTS & DEFINITIONS: R Set of all real numbers C Set of all complex numbers = {a + bi : a b R and i =

Διαβάστε περισσότερα

ANSWERSHEET (TOPIC = DIFFERENTIAL CALCULUS) COLLECTION #2. h 0 h h 0 h h 0 ( ) g k = g 0 + g 1 + g g 2009 =?

ANSWERSHEET (TOPIC = DIFFERENTIAL CALCULUS) COLLECTION #2. h 0 h h 0 h h 0 ( ) g k = g 0 + g 1 + g g 2009 =? Teko Classes IITJEE/AIEEE Maths by SUHAAG SIR, Bhopal, Ph (0755) 3 00 000 www.tekoclasses.com ANSWERSHEET (TOPIC DIFFERENTIAL CALCULUS) COLLECTION # Question Type A.Single Correct Type Q. (A) Sol least

Διαβάστε περισσότερα

Solutions to Exercise Sheet 5

Solutions to Exercise Sheet 5 Solutions to Eercise Sheet 5 jacques@ucsd.edu. Let X and Y be random variables with joint pdf f(, y) = 3y( + y) where and y. Determine each of the following probabilities. Solutions. a. P (X ). b. P (X

Διαβάστε περισσότερα

Approximation of distance between locations on earth given by latitude and longitude

Approximation of distance between locations on earth given by latitude and longitude Approximation of distance between locations on earth given by latitude and longitude Jan Behrens 2012-12-31 In this paper we shall provide a method to approximate distances between two points on earth

Διαβάστε περισσότερα

Other Test Constructions: Likelihood Ratio & Bayes Tests

Other Test Constructions: Likelihood Ratio & Bayes Tests Other Test Constructions: Likelihood Ratio & Bayes Tests Side-Note: So far we have seen a few approaches for creating tests such as Neyman-Pearson Lemma ( most powerful tests of H 0 : θ = θ 0 vs H 1 :

Διαβάστε περισσότερα

Section 9.2 Polar Equations and Graphs

Section 9.2 Polar Equations and Graphs 180 Section 9. Polar Equations and Graphs In this section, we will be graphing polar equations on a polar grid. In the first few examples, we will write the polar equation in rectangular form to help identify

Διαβάστε περισσότερα

[1] P Q. Fig. 3.1

[1] P Q. Fig. 3.1 1 (a) Define resistance....... [1] (b) The smallest conductor within a computer processing chip can be represented as a rectangular block that is one atom high, four atoms wide and twenty atoms long. One

Διαβάστε περισσότερα

CBC MATHEMATICS DIVISION MATH 2412-PreCalculus Exam Formula Sheets

CBC MATHEMATICS DIVISION MATH 2412-PreCalculus Exam Formula Sheets System of Equations and Matrices 3 Matrix Row Operations: MATH 41-PreCalculus Switch any two rows. Multiply any row by a nonzero constant. Add any constant-multiple row to another Even and Odd functions

Διαβάστε περισσότερα

Ψηφιακές Επικοινωνίες

Ψηφιακές Επικοινωνίες Ψηφιακές Επικοινωνίες Βασικές Έννοιες Θεωρία Σηµάτων: ανάλυση στο χρονικό και φασµατικό πεδίο Continuous Fourier Transform Σειρές Fourier Σήµατα βασικής ζώνης (Baseband) και ιέλευσης ζώνης (Bandpass) Θεωρία

Διαβάστε περισσότερα

5.4 The Poisson Distribution.

5.4 The Poisson Distribution. The worst thing you can do about a situation is nothing. Sr. O Shea Jackson 5.4 The Poisson Distribution. Description of the Poisson Distribution Discrete probability distribution. The random variable

Διαβάστε περισσότερα

HW 3 Solutions 1. a) I use the auto.arima R function to search over models using AIC and decide on an ARMA(3,1)

HW 3 Solutions 1. a) I use the auto.arima R function to search over models using AIC and decide on an ARMA(3,1) HW 3 Solutions a) I use the autoarima R function to search over models using AIC and decide on an ARMA3,) b) I compare the ARMA3,) to ARMA,0) ARMA3,) does better in all three criteria c) The plot of the

Διαβάστε περισσότερα

DESIGN OF MACHINERY SOLUTION MANUAL h in h 4 0.

DESIGN OF MACHINERY SOLUTION MANUAL h in h 4 0. DESIGN OF MACHINERY SOLUTION MANUAL -7-1! PROBLEM -7 Statement: Design a double-dwell cam to move a follower from to 25 6, dwell for 12, fall 25 and dwell for the remader The total cycle must take 4 sec

Διαβάστε περισσότερα

ExpIntegralE. Notations. Primary definition. Specific values. Traditional name. Traditional notation. Mathematica StandardForm notation

ExpIntegralE. Notations. Primary definition. Specific values. Traditional name. Traditional notation. Mathematica StandardForm notation ExpIntegralE Notations Traditional name Exponential integral E Traditional notation E Mathematica StandardForm notation ExpIntegralE, Primary definition 06.34.0.000.0 E t t t ; Re 0 Specific values Specialied

Διαβάστε περισσότερα

DETERMINATION OF DYNAMIC CHARACTERISTICS OF A 2DOF SYSTEM. by Zoran VARGA, Ms.C.E.

DETERMINATION OF DYNAMIC CHARACTERISTICS OF A 2DOF SYSTEM. by Zoran VARGA, Ms.C.E. DETERMINATION OF DYNAMIC CHARACTERISTICS OF A 2DOF SYSTEM by Zoran VARGA, Ms.C.E. Euro-Apex B.V. 1990-2012 All Rights Reserved. The 2 DOF System Symbols m 1 =3m [kg] m 2 =8m m=10 [kg] l=2 [m] E=210000

Διαβάστε περισσότερα