# CBC MATHEMATICS DIVISION MATH 2412-PreCalculus Exam Formula Sheets

Save this PDF as:

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

## Transcript

1 System of Equations and Matrices 3 Matrix Row Operations: MATH 41-PreCalculus Switch any two rows. Multiply any row by a nonzero constant. Add any constant-multiple row to another Even and Odd functions Even function: f( x) = f(x) Odd function: f( x) = f(x) Graph Symmetry x-axis symmetry: if (x, y) is on the graph, then (x, y) is also on the graph y-axis symmetry: if (x, y) is on the graph, then ( x, y) is also on the graph origin symmetry: if (x, y)f is on the graph, then ( x, y) is also on the graph Function Transformations Stretch and Compress y = af(x), a > 0 vertical: stretch f(x) if a > 1 Reflections y = f(x) reflect f(x) about x-axis y = f( x) reflect f(x) about y-axis Stretch and Compress y = af(x), a > 0 vertical: stretch f(x) if a > 1 : compress f(x) if 0 < a < 1 y = f(ax), a > 0 horizontal: stretch f(x) if 0 < a < 1 : compress f(x) if a > 1 Shifts y = f(x) + k, k > 0 vertical: shift f(x) up y = f(x) k, k > 0 : shift f(x) down y = f(x + h) h > 0 horizontal: shift f(x) left y = f(x h), h > 0 : shift f(x) right Auth:C.Villarreal-Prof. CBC 015Spring

2 Formulas/Equations MATH 41-PreCalculus Slope Intercept: y = mx + b Point-Slope: y 1 y = m(x x 1 ) Slope: m = y y 1 x x 1 ; x x 1 0 Average Rate of Change: Δy = f(b) f(a), where a b Δx b a Circle: Circumference = πr = πd, Area = πr Triangle: Area = 1 bh Rectangle: Perimeter = l + w, Area = lw Rectangular Solid: Volume = lwh, Surface Area = lw + lh + wh Sphere: Volume = 4 3 πr3, Surface Area = 4πr Right Circular Cylinder: Volume = πr h, Surface Area = πr + πrh General Form of Quadratic Function: f(x) = ax + bx + c, (a 0) Quadratic Formula: x = b± b 4ac a Vertex (h, k): h = b k = a(h) + b(h) + c, a or ( b b b, f ( )), or (, 4ac b ) a a a 4a Axis of symmetry: x = h Vertex Form of Quadratic Function: f(x) = a(x h) + k Polynomial function: f(x) = a n x n + a n 1 x n a 1 x 1 + a 0 Polynomial graph has at most n 1 turning points. Remainder Theorem If polynomial f(x) (x c), remainder is f(c). Factor Theorem If f(c) = 0, then x c is a linear factor of f(x). If x c is a linear factor of f(x), then f(c) = 0. Rational Zeros Theorem vertex (h, k) Possible rational zeros: ± p q, where p is a factor of a 0 and q is a factor of a n. Auth:C.Villarreal-Prof. CBC 015Spring

3 MATH 41-PreCalculus Intermediate Value Theorem(for continuous function f(x)) If a < b and if f(a) and f(b) have opposite signs, then f(x) has at least one real zero between x = a and x = b. Conjugate Pairs Theorem For polynomial functions f(x) with real coefficients: If x = a + bi is a zero of f(x), then x = a bi is also. Rational function: f(x) = p(x), p(x) and q(x) polynomials, but q(x) 0. q(x) Vertical Asymptote: x = zero of denominator in reduced f(x) Horizontal Asymptote: y = 0 if degree of p(x) < degree of q(x) y = Oblique Asymptote: leading coefficient of p(x) leading coefficient of q(x) y = quotient of p(x) q(x) Composite Function (f g)(x) = f( g(x) ) Exponential Function: f(x) = a x If a u = a v, then u = v Logarithmic Function: f(x) = log a (x) if degree of p(x) = degree of q(x) if degree of p(x) > degree of q(x) log a (1) = 0, log a (a) = 1, a log a(m) = M, log a (a p ) = p log a ( M N ) = log a (M) + log a (N) log a ( M N ) = log a(m) log a (N) log a (M p ) = p log a (M) If log a (M) = log a (N), then M = N. If M = N, then log a (M) = log a (N). Change of Base formula log a (M) = log(m) log(a) or log a (M) = ln(m) ln(a) Auth:C.Villarreal-Prof. CBC 015Spring

4 Exponential Models Formulas Simple Interest: I = Prt MATH 41-PreCalculus Compound Interest: A = P (1 + r n )n t Continuous Compounding: A = Pe r t Effective Rate of Interest: Compounding n times per year r eff = (1 + r n )n 1 Compounding continuously per year r eff = e r 1 Growth & Decay: A(t) = A 0 e k t Newton s Law of Cooling: u(t) = T + (u 0 T)e k t Logistic Model: P(t) = Sequences and Series c 1+ae b t n! = n(n 1)(n ) (3)()(1) P(n, r) = n! C(n, r) = (n r)! Arithmetic Sequence: n th term n! r!(n r)! a n = a 1 + (n 1)d n Sum of first n terms S n = k=1 (a 1 + (k 1)d) = n (a 1 + a n ) or S n = n k=1 (a 1 + (k 1)d) = n (a 1 + (n 1)d). Geometric Sequence: n th term a n = a 1 (r) n 1 Sum of first n terms S n = n k=1 a 1 r k 1 = a 1 1 rn 1 r for r 0,1 Geometric Series: k=1 a 1 r k 1 = a 1 1 r Binomial Theorem: (x + a) n = n j=0 ( n j ) xn j a j if r < 1 = ( n 0 )xn + ( n 1 )xn 1 a + + ( n n 1 )xan 1 + ( n n )an Auth:C.Villarreal-Prof. CBC 015Spring

5 Trigonometry Circular Measure and Motion Formulas MATH 41-PreCalculus Arc Length s = rθ Area of Sector A = 1 r θ Linear Speed v = s t, v = rω Angular Speed ω = θ t Acute Angle sin(θ) = b = opposite c hypotenuse csc(θ) = c = hypotenuse b opposite General Angle cos(θ) = a c = adjacent hypotenuse sec(θ) = c a = hypotenuse adjacent sin(θ) = b r cos(θ) = a r tan(θ) = b a csc(θ) = r,b 0 b sec(θ) = r,a 0 a cot(θ) = a,b 0 b Cofunctions tan(θ) = b = opposite a adjacent cot(θ) = a = adjacent b opposite sin(θ) = cos ( π θ), cos(θ) = sin (π θ), tan(θ) = cot (π θ) csc(θ) = sec ( π θ), sec(θ) = csc (π θ), cot(θ) = tan (π θ) Fundamental Identities tan(θ) = sin(θ) cos(θ) csc(θ) = 1 sin(θ) cot(θ) = cos(θ) sin(θ) sec(θ) = 1 cos(θ) cot(θ) = 1 tan(θ) sin (θ) + cos (θ) = 1 tan (θ) + 1 = sec (θ) cot (θ) + 1 = csc (θ) Even-Odd Identities sin( θ) = sin(θ) cos( θ) = cos(θ) tan( θ) = tan(θ) csc( θ) = csc(θ) sec( θ) = sec(θ) cot( θ) = cot(θ) Inverse Functions y = sin 1 (x) means x = sin (y) where 1 x 1 and π y π y = cos 1 (x) means x = cos (y) where 1 x 1 and 0 y π y = tan 1 (x) means x = tan (y) where x and π < y < π y = csc 1 (x) means x = csc (y) where x 1 and π y π, y 0 y = sec 1 (x) means x = sec (y) where x 1 and 0 y π, y π y = cot 1 (x) means x = cot (y) where x and 0 < y < π Auth:C.Villarreal-Prof. CBC 015Spring

6 MATH 41-PreCalculus Sum and Difference Formulas sin(α + β) = sin(α) cos(β) + cos(α) sin(β) sin(α β) = sin(α) cos(β) cos(α) sin(β) cos(α + β) = cos(α) cos(β) sin(α) sin(β) cos(α β) = cos(α) cos(β) + sin(α) sin(β) tan(α + β) = tan(α)+tan(β) 1 tan(α) tan(β) Half-Angle Formulas sin ( α ) = ± 1 cos(α) tan(α β) = tan(α) tan(β) 1+tan(α) tan(β) cos ( α ) = ± 1+cos(α) tan ( α ) = ± 1 cos(α) = 1 cos(α) 1+cos(α) sin(α) = sin(α) 1+cos(α) Double-Angle Formulas sin(θ) = sin(θ) cos(θ) cos(θ) = cos (θ) sin (θ) = cos (θ) 1 = 1 sin (θ) tan(θ) = tan(θ) 1 tan (θ) sin (θ) = 1 cos(θ) Product to Sum Formulas, cos (θ) = 1+cos(θ) sin(α) sin(β) = 1 [cos(α β) cos(α + β)] cos(α) cos(β) = 1 [cos(α β) + cos(α + β)] sin(α) cos(β) = 1 [sin(α + β) + sin(α β)], tan (θ) = 1 cos(θ) 1 cos(θ) Sum to Product Formulas sin(α) + sin(β) = sin ( α+β ) cos (α β ) sin(α) sin(β) = sin ( α β ) cos (α+β ) cos(α) + cos(β) = cos ( α+β ) cos (α β ) cos(α) cos(β) = sin ( α+β ) sin (α β ) Auth:C.Villarreal-Prof. CBC 015Spring

7 Law of Sines sin(a) a = sin(b) b = sin(c) c Law of Cosines a = b + c bc cos(a) b = a + c ac cos(b) c = a + b ab cos(c) Area of SSS Triangles (Heron s Formula) MATH 41-PreCalculus K = s(s a)(s b)(s c), where s = 1 (a + b + c) Area of SAS Triangles K = 1 ab sin (C), K = 1 bc sin (A), K = 1 ac sin (B) For y = Asin (ωx φ) or y = Acos (ωx φ), with ω > 0 Amplitude = A, Period= T = π ω, Phase shift = φ ω Auth:C.Villarreal-Prof. CBC 015Spring

### Trigonometric Formula Sheet

Trigonometric Formula Sheet Definition of the Trig Functions Right Triangle Definition Assume that: 0 < θ < or 0 < θ < 90 Unit Circle Definition Assume θ can be any angle. y x, y hypotenuse opposite θ

Διαβάστε περισσότερα

### If we restrict the domain of y = sin x to [ π, π ], the restrict function. y = sin x, π 2 x π 2

Chapter 3. Analytic Trigonometry 3.1 The inverse sine, cosine, and tangent functions 1. Review: Inverse function (1) f 1 (f(x)) = x for every x in the domain of f and f(f 1 (x)) = x for every x in the

Διαβάστε περισσότερα

### If we restrict the domain of y = sin x to [ π 2, π 2

Chapter 3. Analytic Trigonometry 3.1 The inverse sine, cosine, and tangent functions 1. Review: Inverse function (1) f 1 (f(x)) = x for every x in the domain of f and f(f 1 (x)) = x for every x in the

Διαβάστε περισσότερα

### MATH 150 Pre-Calculus

MATH 150 Pre-Calculus Fall, 014, WEEK 11 JoungDong Kim Week 11: 8A, 8B, 8C, 8D Chapter 8. Trigonometry Chapter 8A. Angles and Circles The size of an angle may be measured in revolutions (rev), in degree

Διαβάστε περισσότερα

### 1. If log x 2 y 2 = a, then dy / dx = x 2 + y 2 1] xy 2] y / x. 3] x / y 4] none of these

1. If log x 2 y 2 = a, then dy / dx = x 2 + y 2 1] xy 2] y / x 3] x / y 4] none of these 1. If log x 2 y 2 = a, then x 2 + y 2 Solution : Take y /x = k y = k x dy/dx = k dy/dx = y / x Answer : 2] y / x

Διαβάστε περισσότερα

### Formula for Success a Mathematics Resource

A C A D E M I C S K I L L S C E N T R E ( A S C ) Formula for Success a Mathematics Resource P e t e r b o r o u g h O s h a w a Contents Section 1: Formulas and Quick Reference Guide 1. Formulas From

Διαβάστε περισσότερα

### MATHEMATICS. 1. If A and B are square matrices of order 3 such that A = -1, B =3, then 3AB = 1) -9 2) -27 3) -81 4) 81

1. If A and B are square matrices of order 3 such that A = -1, B =3, then 3AB = 1) -9 2) -27 3) -81 4) 81 We know that KA = A If A is n th Order 3AB =3 3 A. B = 27 1 3 = 81 3 2. If A= 2 1 0 0 2 1 then

Διαβάστε περισσότερα

### Inverse trigonometric functions & General Solution of Trigonometric Equations. ------------------ ----------------------------- -----------------

Inverse trigonometric functions & General Solution of Trigonometric Equations. 1. Sin ( ) = a) b) c) d) Ans b. Solution : Method 1. Ans a: 17 > 1 a) is rejected. w.k.t Sin ( sin ) = d is rejected. If sin

Διαβάστε περισσότερα

### Derivations of Useful Trigonometric Identities

Derivations of Useful Trigonometric Identities Pythagorean Identity This is a basic and very useful relationship which comes directly from the definition of the trigonometric ratios of sine and cosine

Διαβάστε περισσότερα

### Areas and Lengths in Polar Coordinates

Kiryl Tsishchanka Areas and Lengths in Polar Coordinates In this section we develop the formula for the area of a region whose boundary is given by a polar equation. We need to use the formula for the

Διαβάστε περισσότερα

### Second Order Partial Differential Equations

Chapter 7 Second Order Partial Differential Equations 7.1 Introduction A second order linear PDE in two independent variables (x, y Ω can be written as A(x, y u x + B(x, y u xy + C(x, y u u u + D(x, y

Διαβάστε περισσότερα

### Section 8.2 Graphs of Polar Equations

Section 8. Graphs of Polar Equations Graphing Polar Equations The graph of a polar equation r = f(θ), or more generally F(r,θ) = 0, consists of all points P that have at least one polar representation

Διαβάστε περισσότερα

### wave energy Superposition of linear plane progressive waves Marine Hydrodynamics Lecture Oblique Plane Waves:

3.0 Marine Hydrodynamics, Fall 004 Lecture 0 Copyriht c 004 MIT - Department of Ocean Enineerin, All rihts reserved. 3.0 - Marine Hydrodynamics Lecture 0 Free-surface waves: wave enery linear superposition,

Διαβάστε περισσότερα

### Exercises 10. Find a fundamental matrix of the given system of equations. Also find the fundamental matrix Φ(t) satisfying Φ(0) = I. 1.

Exercises 0 More exercises are available in Elementary Differential Equations. If you have a problem to solve any of them, feel free to come to office hour. Problem Find a fundamental matrix of the given

Διαβάστε περισσότερα

### CHAPTER 25 SOLVING EQUATIONS BY ITERATIVE METHODS

CHAPTER 5 SOLVING EQUATIONS BY ITERATIVE METHODS EXERCISE 104 Page 8 1. Find the positive root of the equation x + 3x 5 = 0, correct to 3 significant figures, using the method of bisection. Let f(x) =

Διαβάστε περισσότερα

### 2 Composition. Invertible Mappings

Arkansas Tech University MATH 4033: Elementary Modern Algebra Dr. Marcel B. Finan Composition. Invertible Mappings In this section we discuss two procedures for creating new mappings from old ones, namely,

Διαβάστε περισσότερα

### Homework 3 Solutions

Homework 3 Solutions Igor Yanovsky (Math 151A TA) Problem 1: Compute the absolute error and relative error in approximations of p by p. (Use calculator!) a) p π, p 22/7; b) p π, p 3.141. Solution: For

Διαβάστε περισσότερα

### Μονοβάθμια Συστήματα: Εξίσωση Κίνησης, Διατύπωση του Προβλήματος και Μέθοδοι Επίλυσης. Απόστολος Σ. Παπαγεωργίου

Μονοβάθμια Συστήματα: Εξίσωση Κίνησης, Διατύπωση του Προβλήματος και Μέθοδοι Επίλυσης VISCOUSLY DAMPED 1-DOF SYSTEM Μονοβάθμια Συστήματα με Ιξώδη Απόσβεση Equation of Motion (Εξίσωση Κίνησης): Complete

Διαβάστε περισσότερα

### Solution to Review Problems for Midterm III

Solution to Review Problems for Mierm III Mierm III: Friday, November 19 in class Topics:.8-.11, 4.1,4. 1. Find the derivative of the following functions and simplify your answers. (a) x(ln(4x)) +ln(5

Διαβάστε περισσότερα

### Math 6 SL Probability Distributions Practice Test Mark Scheme

Math 6 SL Probability Distributions Practice Test Mark Scheme. (a) Note: Award A for vertical line to right of mean, A for shading to right of their vertical line. AA N (b) evidence of recognizing symmetry

Διαβάστε περισσότερα

### The Spiral of Theodorus, Numerical Analysis, and Special Functions

Theo p. / The Spiral of Theodorus, Numerical Analysis, and Special Functions Walter Gautschi wxg@cs.purdue.edu Purdue University Theo p. 2/ Theodorus of ca. 46 399 B.C. Theo p. 3/ spiral of Theodorus 6

Διαβάστε περισσότερα

### Sum of Two Sinusoids by Richard (Rick) Lyons

Sum of Two Sinusoids by Richard (Rick) Lyons Several months ago I reviewed the manuscript of a book being considered by the IEEE Press for possible publication. In that manuscript the author presented

Διαβάστε περισσότερα

### SOLVING CUBICS AND QUARTICS BY RADICALS

SOLVING CUBICS AND QUARTICS BY RADICALS The purpose of this handout is to record the classical formulas expressing the roots of degree three and degree four polynomials in terms of radicals. We begin with

Διαβάστε περισσότερα

### EE512: Error Control Coding

EE512: Error Control Coding Solution for Assignment on Finite Fields February 16, 2007 1. (a) Addition and Multiplication tables for GF (5) and GF (7) are shown in Tables 1 and 2. + 0 1 2 3 4 0 0 1 2 3

Διαβάστε περισσότερα

### Απόκριση σε Μοναδιαία Ωστική Δύναμη (Unit Impulse) Απόκριση σε Δυνάμεις Αυθαίρετα Μεταβαλλόμενες με το Χρόνο. Απόστολος Σ.

Απόκριση σε Δυνάμεις Αυθαίρετα Μεταβαλλόμενες με το Χρόνο The time integral of a force is referred to as impulse, is determined by and is obtained from: Newton s 2 nd Law of motion states that the action

Διαβάστε περισσότερα

### ΚΥΠΡΙΑΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ IΔ ΚΥΠΡΙΑΚΗ ΜΑΘΗΜΑΤΙΚΗ ΟΛΥΜΠΙΑΔΑ 2013 21 ΑΠΡΙΛΙΟΥ 2013 Β & Γ ΛΥΚΕΙΟΥ. www.cms.org.cy

ΚΥΠΡΙΑΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ IΔ ΚΥΠΡΙΑΚΗ ΜΑΘΗΜΑΤΙΚΗ ΟΛΥΜΠΙΑΔΑ 2013 21 ΑΠΡΙΛΙΟΥ 2013 Β & Γ ΛΥΚΕΙΟΥ www.cms.org.cy ΘΕΜΑΤΑ ΣΤΑ ΕΛΛΗΝΙΚΑ ΚΑΙ ΑΓΓΛΙΚΑ PAPERS IN BOTH GREEK AND ENGLISH ΚΥΠΡΙΑΚΗ ΜΑΘΗΜΑΤΙΚΗ ΟΛΥΜΠΙΑΔΑ

Διαβάστε περισσότερα

### SPECIAL FUNCTIONS and POLYNOMIALS

SPECIAL FUNCTIONS and POLYNOMIALS Gerard t Hooft Stefan Nobbenhuis Institute for Theoretical Physics Utrecht University, Leuvenlaan 4 3584 CC Utrecht, the Netherlands and Spinoza Institute Postbox 8.195

Διαβάστε περισσότερα

### 4.6 Autoregressive Moving Average Model ARMA(1,1)

84 CHAPTER 4. STATIONARY TS MODELS 4.6 Autoregressive Moving Average Model ARMA(,) This section is an introduction to a wide class of models ARMA(p,q) which we will consider in more detail later in this

Διαβάστε περισσότερα

### MATRICES

MARICES 1. Matrix: he arrangement of numbers or letters in the horizontal and vertical lines so that each horizontal line contains same number of elements and each vertical row contains the same numbers

Διαβάστε περισσότερα

### 10.4 Trigonometric Identities

770 Foundations of Trigonometry 0. Trigonometric Identities In Section 0.3, we saw the utility of the Pythagorean Identities in Theorem 0.8 along with the Quotient and Reciprocal Identities in Theorem

Διαβάστε περισσότερα

### Introduction to Time Series Analysis. Lecture 16.

Introduction to Time Series Analysis. Lecture 16. 1. Review: Spectral density 2. Examples 3. Spectral distribution function. 4. Autocovariance generating function and spectral density. 1 Review: Spectral

Διαβάστε περισσότερα

### TMA4115 Matematikk 3

TMA4115 Matematikk 3 Andrew Stacey Norges Teknisk-Naturvitenskapelige Universitet Trondheim Spring 2010 Lecture 12: Mathematics Marvellous Matrices Andrew Stacey Norges Teknisk-Naturvitenskapelige Universitet

Διαβάστε περισσότερα

### 43603H. (NOV1243603H01) WMP/Nov12/43603H. General Certificate of Secondary Education Higher Tier November 2012. Unit 3 10 11 H

Centre Number Surname Candidate Number For Examiner s Use Other Names Candidate Signature Examiner s Initials General Certificate of Secondary Education Higher Tier November 2012 Pages 3 4 5 Mark Mathematics

Διαβάστε περισσότερα

### Elements of Information Theory

Elements of Information Theory Model of Digital Communications System A Logarithmic Measure for Information Mutual Information Units of Information Self-Information News... Example Information Measure

Διαβάστε περισσότερα

### Ψηφιακή Επεξεργασία Φωνής

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Ψηφιακή Επεξεργασία Φωνής Ενότητα 1η: Ψηφιακή Επεξεργασία Σήματος Στυλιανού Ιωάννης Τμήμα Επιστήμης Υπολογιστών CS578- Speech Signal Processing Lecture 1: Discrete-Time

Διαβάστε περισσότερα

### John Nash. Παύλος Στ. Εφραιµίδης. Τοµέας Λογισµικού και Ανάπτυξης Εφαρµογών Τµήµα Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών

Παύλος Στ. Εφραιµίδης Τοµέας Λογισµικού και Ανάπτυξης Εφαρµογών Τµήµα Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών ορισµένα αποτελέσµατα του τα σηµεία ισορροπίας Nash (NE Nash Equilibrium) ύπαρξη σηµείου

Διαβάστε περισσότερα

### ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 19/5/2007

Οδηγίες: Να απαντηθούν όλες οι ερωτήσεις. Αν κάπου κάνετε κάποιες υποθέσεις να αναφερθούν στη σχετική ερώτηση. Όλα τα αρχεία που αναφέρονται στα προβλήματα βρίσκονται στον ίδιο φάκελο με το εκτελέσιμο

Διαβάστε περισσότερα

### Problem 3.16 Given B = ˆx(z 3y) +ŷ(2x 3z) ẑ(x+y), find a unit vector parallel. Solution: At P = (1,0, 1), ˆb = B

Problem 3.6 Given B = ˆxz 3y) +ŷx 3z) ẑx+y), find a unit vector parallel to B at point P =,0, ). Solution: At P =,0, ), B = ˆx )+ŷ+3) ẑ) = ˆx+ŷ5 ẑ, ˆb = B B = ˆx+ŷ5 ẑ = ˆx+ŷ5 ẑ. +5+ 7 Problem 3.4 Convert

Διαβάστε περισσότερα

### 3.4. Click here for solutions. Click here for answers. CURVE SKETCHING. y cos x sin x. x 1 x 2. x 2 x 3 4 y 1 x 2. x 5 2

SECTION. CURVE SKETCHING. CURVE SKETCHING A Click here for answers. S Click here for solutions. 9. Use the guidelines of this section to sketch the curve. cos sin. 5. 6 8 7 0. cot, 0.. 9. cos sin. sin

Διαβάστε περισσότερα

### Κεφάλαιο 3. Αριθμητική Υπολογιστών Review. Hardware implementation of simple ALU Multiply/Divide Real Numbers

Κεφάλαιο 3 Αριθμητική Υπολογιστών Review signed numbers, 2 s complement, hex/dec/bin, add/subtract, logical Hardware implementation of simple ALU Multiply/Divide Real Numbers 1 Προσημασμένοι και Απρόσημοι

Διαβάστε περισσότερα

### The Jordan Form of Complex Tridiagonal Matrices

The Jordan Form of Complex Tridiagonal Matrices Ilse Ipsen North Carolina State University ILAS p.1 Goal Complex tridiagonal matrix α 1 β 1. γ T = 1 α 2........ β n 1 γ n 1 α n Jordan decomposition T =

Διαβάστε περισσότερα

### Correction Table for an Alcoholometer Calibrated at 20 o C

An alcoholometer is a device that measures the concentration of ethanol in a water-ethanol mixture (often in units of %abv percent alcohol by volume). The depth to which an alcoholometer sinks in a water-ethanol

Διαβάστε περισσότερα

### Derivation of Optical-Bloch Equations

Appendix C Derivation of Optical-Bloch Equations In this appendix the optical-bloch equations that give the populations and coherences for an idealized three-level Λ system, Fig. 3. on page 47, will be

Διαβάστε περισσότερα

### 1 Σύντομη επανάληψη βασικών εννοιών

Σύντομη επανάληψη βασικών εννοιών Μερικές χρήσιμες ταυτότητες + r + r 2 + + r n = rn r r + 2 + 3 + + n = 2 n(n + ) 2 + 2 2 + 3 2 + n 2 = n(n + )(2n + ) 6 Ανισότητα Cauchy Schwarz ( n ) 2 ( n x i y i i=

Διαβάστε περισσότερα

### Q1a. HeavisideTheta x. Plot f, x, Pi, Pi. Simplify, n Integers

2 M2 Fourier Series answers in Mathematica Note the function HeavisideTheta is for x>0 and 0 for x

Διαβάστε περισσότερα

### 1. For each of the following power series, find the interval of convergence and the radius of convergence:

Math 6 Practice Problems Solutios Power Series ad Taylor Series 1. For each of the followig power series, fid the iterval of covergece ad the radius of covergece: (a ( 1 x Notice that = ( 1 +1 ( x +1.

Διαβάστε περισσότερα

### 1. A fully continuous 20-payment years, 30-year term life insurance of 2000 is issued to (35). You are given n A 1

Chapter 7: Exercises 1. A fully continuous 20-payment years, 30-year term life insurance of 2000 is issued to (35). You are given n A 1 35+n:30 n a 35+n:20 n 0 0.068727 11.395336 10 0.097101 7.351745 25

Διαβάστε περισσότερα

### Volume of a Cuboid. Volume = length x breadth x height. V = l x b x h. The formula for the volume of a cuboid is

Volume of a Cuboid The formula for the volume of a cuboid is Volume = length x breadth x height V = l x b x h Example Work out the volume of this cuboid 10 cm 15 cm V = l x b x h V = 15 x 6 x 10 V = 900cm³

Διαβάστε περισσότερα

### Chapter 7 Analytic Trigonometry

Chapter 7 Analytic Trigonometry Section 7.. Domain: { is any real number} ; Range: { y y }. { } or { }. [, ). True. ;. ; 7. sin y 8. 0 9. 0. False. The domain of. True. True.. y sin is. sin 0 We are finding

Διαβάστε περισσότερα

### Review Problems for Basic Algebra I Students

Review Problems for Basic Algebra I Students Note: It is very important that you practice and master the following types of problems in order to be successful in this course. Problems similar to these

Διαβάστε περισσότερα

### Calculating the propagation delay of coaxial cable

Your source for quality GNSS Networking Solutions and Design Services! Page 1 of 5 Calculating the propagation delay of coaxial cable The delay of a cable or velocity factor is determined by the dielectric

Διαβάστε περισσότερα

### s(t) = + 1 γ 2 (2 µονάδες)

. ύο αυτοκίνητα Α και Β κινούνται σε ευθύ δρόµο µε την ίδια σταθερή ταχύτητα προς την ίδια κατεύθυνση. Την στιγµή t = (ο χρόνος µετρείται σε δευτερόλεπτα) το αυτοκίνητο Β προπορεύεται κατά s =3 (η απόσταση

Διαβάστε περισσότερα

### EE101: Resonance in RLC circuits

EE11: Resonance in RLC circuits M. B. Patil mbatil@ee.iitb.ac.in www.ee.iitb.ac.in/~sequel Deartment of Electrical Engineering Indian Institute of Technology Bombay I V R V L V C I = I m = R + jωl + 1/jωC

Διαβάστε περισσότερα

### UNIT-1 SQUARE ROOT EXERCISE 1.1.1

UNIT-1 SQUARE ROOT EXERCISE 1.1.1 1. Find the square root of the following numbers by the factorization method (i) 82944 2 10 x 3 4 = (2 5 ) 2 x (3 2 ) 2 2 82944 2 41472 2 20736 2 10368 2 5184 2 2592 2

Διαβάστε περισσότερα

### A Lambda Model Characterizing Computational Behaviours of Terms

A Lambda Model Characterizing Computational Behaviours of Terms joint paper with Silvia Ghilezan RPC 01, Sendai, October 26, 2001 1 Plan of the talk normalization properties inverse limit model Stone dualities

Διαβάστε περισσότερα

l 0 l 2 l 1 l 1 l 1 l 2 l 2 l 1 l p λ λ µ R N l 2 R N l 2 2 = N x i l p p R N l p N p = ( x i p ) 1 p i=1 l 2 l p p = 2 l p l 1 R N l 1 i=1 x 2 i 1 = N x i i=1 l p p p R N l 0 0 = {i x i 0} R

Διαβάστε περισσότερα

### A Bonus-Malus System as a Markov Set-Chain. Małgorzata Niemiec Warsaw School of Economics Institute of Econometrics

A Bonus-Malus System as a Markov Set-Chain Małgorzata Niemiec Warsaw School of Economics Institute of Econometrics Contents 1. Markov set-chain 2. Model of bonus-malus system 3. Example 4. Conclusions

Διαβάστε περισσότερα

### ΚΥΠΡΙΑΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ IΖ ΚΥΠΡΙΑΚΗ ΜΑΘΗΜΑΤΙΚΗ ΟΛΥΜΠΙΑΔΑ ΑΠΡΙΛΙΟΥ 2016 Β & Γ ΛΥΚΕΙΟΥ.

ΚΥΠΡΙΑΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ IΖ ΚΥΠΡΙΑΚΗ ΜΑΘΗΜΑΤΙΚΗ ΟΛΥΜΠΙΑΔΑ 2016 17 ΑΠΡΙΛΙΟΥ 2016 Β & Γ ΛΥΚΕΙΟΥ www.cms.org.cy ΘΕΜΑΤΑ ΣΤΑ ΕΛΛΗΝΙΚΑ ΚΑΙ ΑΓΓΛΙΚΑ PAPERS IN BOTH GREEK AND ENGLISH ΚΥΠΡΙΑΚΗ ΜΑΘΗΜΑΤΙΚΗ ΟΛΥΜΠΙΑΔΑ

Διαβάστε περισσότερα

### UDZ Swirl diffuser. Product facts. Quick-selection. Swirl diffuser UDZ. Product code example:

UDZ Swirl diffuser Swirl diffuser UDZ, which is intended for installation in a ventilation duct, can be used in premises with a large volume, for example factory premises, storage areas, superstores, halls,

Διαβάστε περισσότερα

### ΚΥΠΡΙΑΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ IΣΤ ΚΥΠΡΙΑΚΗ ΜΑΘΗΜΑΤΙΚΗ ΟΛΥΜΠΙΑΔΑ 2015 26 ΑΠΡΙΛΙΟΥ 2015 Β & Γ ΛΥΚΕΙΟΥ. www.cms.org.cy

ΚΥΠΡΙΑΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ IΣΤ ΚΥΠΡΙΑΚΗ ΜΑΘΗΜΑΤΙΚΗ ΟΛΥΜΠΙΑΔΑ 2015 26 ΑΠΡΙΛΙΟΥ 2015 Β & Γ ΛΥΚΕΙΟΥ www.cms.org.cy ΘΕΜΑΤΑ ΣΤΑ ΕΛΛΗΝΙΚΑ ΚΑΙ ΑΓΓΛΙΚΑ PAPERS IN BOTH GREEK AND ENGLISH ΚΥΠΡΙΑΚΗ ΜΑΘΗΜΑΤΙΚΗ ΟΛΥΜΠΙΑΔΑ

Διαβάστε περισσότερα

### Πρόβλημα 1: Αναζήτηση Ελάχιστης/Μέγιστης Τιμής

Πρόβλημα 1: Αναζήτηση Ελάχιστης/Μέγιστης Τιμής Να γραφεί πρόγραμμα το οποίο δέχεται ως είσοδο μια ακολουθία S από n (n 40) ακέραιους αριθμούς και επιστρέφει ως έξοδο δύο ακολουθίες από θετικούς ακέραιους

Διαβάστε περισσότερα

### Εγχειρίδια Μαθηµατικών και Χταποδάκι στα Κάρβουνα

[ 1 ] Πανεπιστήµιο Κύπρου Εγχειρίδια Μαθηµατικών και Χταποδάκι στα Κάρβουνα Νίκος Στυλιανόπουλος, Πανεπιστήµιο Κύπρου Λευκωσία, εκέµβριος 2009 [ 2 ] Πανεπιστήµιο Κύπρου Πόσο σηµαντική είναι η απόδειξη

Διαβάστε περισσότερα

### Προβολές και Μετασχηματισμοί Παρατήρησης

Γραφικά & Οπτικοποίηση Κεφάλαιο 4 Προβολές και Μετασχηματισμοί Παρατήρησης Εισαγωγή Στα γραφικά υπάρχουν: 3Δ μοντέλα 2Δ συσκευές επισκόπησης (οθόνες & εκτυπωτές) Προοπτική απεικόνιση (προβολή): Λαμβάνει

Διαβάστε περισσότερα

### DETERMINATION OF FRICTION COEFFICIENT

EXPERIMENT 5 DETERMINATION OF FRICTION COEFFICIENT Purpose: Determine μ k, the kinetic coefficient of friction and μ s, the static friction coefficient by sliding block down that acts as an inclined plane.

Διαβάστε περισσότερα

### 14 ح ر وجع ومطابق لألصل اليدوى وي طبع على مسئولية اللجنة الفنية. a b x a x b c. a b c

ر وجع ومطابق لألصل اليدوى وي طبع على مسئولية اللجنة الفنية ا االسم التوقيع التاريخ االسم التوقيع التاريخ 4 ح ث.ع.ج / أول ARAB REPUBLIC OF EGYPT Ministry of Education General Secondary Education Certificate

Διαβάστε περισσότερα

### Ηλεκτρονικοί Υπολογιστές IV

ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Ηλεκτρονικοί Υπολογιστές IV Η δυναμική ενός μοντέλου Keynsian Διδάσκων: Επίκουρος Καθηγητής Αθανάσιος Σταυρακούδης Άδειες Χρήσης Το παρόν εκπαιδευτικό

Διαβάστε περισσότερα

### CHAPTER 103 EVEN AND ODD FUNCTIONS AND HALF-RANGE FOURIER SERIES

CHAPTER 3 EVEN AND ODD FUNCTIONS AND HALF-RANGE FOURIER SERIES EXERCISE 364 Page 76. Determie the Fourier series for the fuctio defied by: f(x), x, x, x which is periodic outside of this rage of period.

Διαβάστε περισσότερα

### HISTOGRAMS AND PERCENTILES What is the 25 th percentile of a histogram? What is the 50 th percentile for the cigarette histogram?

HISTOGRAMS AND PERCENTILES What is the 25 th percentile of a histogram? The point on the horizontal axis such that of the area under the histogram lies to the left of that point (and to the right) What

Διαβάστε περισσότερα

### Αλγόριθμοι και πολυπλοκότητα NP-Completeness (2)

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Αλγόριθμοι και πολυπλοκότητα NP-Completeness (2) Ιωάννης Τόλλης Τμήμα Επιστήμης Υπολογιστών NP-Completeness (2) x 1 x 1 x 2 x 2 x 3 x 3 x 4 x 4 12 22 32 11 13 21

Διαβάστε περισσότερα

### 16. 17. r t te 2t i t 1. 18 19 Find the derivative of the vector function. 19. r t e t cos t i e t sin t j ln t k. 31 33 Evaluate the integral.

SECTION.7 VECTOR FUNCTIONS AND SPACE CURVES.7 VECTOR FUNCTIONS AND SPACE CURVES A Click here for answers. S Click here for soluions. Copyrigh Cengage Learning. All righs reserved.. Find he domain of he

Διαβάστε περισσότερα

### ΛΟΓΙΣΜΟΣ Συναρτήσεων µιας Μεταβλητής

Σηµειωσεις: ΛΟΓΙΣΜΟΣ Συναρτήσεων µιας Μεταβλητής Θ. Κεχαγιάς Σεπτέµβρης 9 v..85 Περιεχόµενα Προλογος Εισαγωγη Βασικες Συναρτησεις. Θεωρια..................................... Λυµενα Προβληµατα.............................

Διαβάστε περισσότερα

### DIFFERENTIATION OF TRIGONOMETRIC FUNCTIONS

Differentiation of Trigonometric Functions MODULE - V DIFFERENTIATION OF TRIGONOMETRIC FUNCTIONS Trigonometry is the branch of Mathematics that has mae itself inispensable for other branches of higher

Διαβάστε περισσότερα

### CHAPTER FIVE NUMBER THEORY AND THE REAL NUMBER SYSTEM

CHAPTER FIVE NUMBER THEORY AND THE REAL NUMBER SYSTEM Exercise Set.. Number theory is the study of numbers and their properties.. If a and b are factors of c, then c a is an integer and c b is an integer..

Διαβάστε περισσότερα

### An Introduction to Splines

An Introduction to Splines Trinity River Restoration Program Workshop on Outmigration: Population Estimation October 6 8, 2009 An Introduction to Splines 1 Linear Regression Simple Regression and the Least

Διαβάστε περισσότερα

### ω ω ω ω ω ω+2 ω ω+2 + ω ω ω ω+2 + ω ω+1 ω ω+2 2 ω ω ω ω ω ω ω ω+1 ω ω2 ω ω2 + ω ω ω2 + ω ω ω ω2 + ω ω+1 ω ω2 + ω ω+1 + ω ω ω ω2 + ω

0 1 2 3 4 5 6 ω ω + 1 ω + 2 ω + 3 ω + 4 ω2 ω2 + 1 ω2 + 2 ω2 + 3 ω3 ω3 + 1 ω3 + 2 ω4 ω4 + 1 ω5 ω 2 ω 2 + 1 ω 2 + 2 ω 2 + ω ω 2 + ω + 1 ω 2 + ω2 ω 2 2 ω 2 2 + 1 ω 2 2 + ω ω 2 3 ω 3 ω 3 + 1 ω 3 + ω ω 3 +

Διαβάστε περισσότερα

### n r f ( n-r ) () x g () r () x (1.1) = Σ g() x = Σ n f < -n+ r> g () r -n + r dx r dx n + ( -n,m) dx -n n+1 1 -n -1 + ( -n,n+1)

8 Higher Derivative of the Product of Two Fuctios 8. Leibiz Rule about the Higher Order Differetiatio Theorem 8.. (Leibiz) Whe fuctios f ad g f g are times differetiable, the followig epressio holds. r

Διαβάστε περισσότερα

### ΚΕΦΑΛΑΙΟ 2. Περιγραφή της Κίνησης. 2.1 Κίνηση στο Επίπεδο

ΚΕΦΑΛΑΙΟ 2 Περιγραφή της Κίνησης Στο κεφάλαιο αυτό θα δείξουμε πώς να προγραμματίσουμε απλές εξισώσεις τροχιάς ενός σωματιδίου και πώς να κάνουμε βασική ανάλυση των αριθμητικών αποτελεσμάτων. Χρησιμοποιούμε

Διαβάστε περισσότερα

### On a four-dimensional hyperbolic manifold with finite volume

BULETINUL ACADEMIEI DE ŞTIINŢE A REPUBLICII MOLDOVA. MATEMATICA Numbers 2(72) 3(73), 2013, Pages 80 89 ISSN 1024 7696 On a four-dimensional hyperbolic manifold with finite volume I.S.Gutsul Abstract. In

Διαβάστε περισσότερα

### MECHANICAL PROPERTIES OF MATERIALS

MECHANICAL PROPERTIES OF MATERIALS! Simple Tension Test! The Stress-Strain Diagram! Stress-Strain Behavior of Ductile and Brittle Materials! Hooke s Law! Strain Energy! Poisson s Ratio! The Shear Stress-Strain

Διαβάστε περισσότερα

### Surface Mount Aluminum Electrolytic Capacitors

FEATURES CYLINDRICAL V-CHIP CONSTRUCTION LOW COST, GENERAL PURPOSE, 2000 HOURS AT 85 O C NEW EXPANDED CV RANGE (up to 6800µF) ANTI-SOLVENT (2 MINUTES) DESIGNED FOR AUTOMATIC MOUNTING AND REFLOW SOLDERING

Διαβάστε περισσότερα

### Macromechanics of a Laminate. Textbook: Mechanics of Composite Materials Author: Autar Kaw

Macromechanics of a Laminate Tetboo: Mechanics of Composite Materials Author: Autar Kaw Figure 4.1 Fiber Direction θ z CHAPTER OJECTIVES Understand the code for laminate stacing sequence Develop relationships

Διαβάστε περισσότερα

### ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 24/3/2007

Οδηγίες: Να απαντηθούν όλες οι ερωτήσεις. Όλοι οι αριθμοί που αναφέρονται σε όλα τα ερωτήματα μικρότεροι του 10000 εκτός αν ορίζεται διαφορετικά στη διατύπωση του προβλήματος. Αν κάπου κάνετε κάποιες υποθέσεις

Διαβάστε περισσότερα

### SOLUTIONS TO PROBLEMS ELEMENTARY LINEAR ALGEBRA

SOLUTIONS TO PROBLEMS ELEMENTARY LINEAR ALGEBRA K R MATTHEWS DEPARTMENT OF MATHEMATICS UNIVERSITY OF QUEENSLAND First Printing, 99 CONTENTS PROBLEMS 6 PROBLEMS 4 PROBLEMS 7 8 PROBLEMS 36 3 PROBLEMS 4 45

Διαβάστε περισσότερα

### department listing department name αχχουντσ ϕανε βαλικτ δδσϕηασδδη σδηφγ ασκϕηλκ τεχηνιχαλ αλαν ϕουν διξ τεχηνιχαλ ϕοην µαριανι

She selects the option. Jenny starts with the al listing. This has employees listed within She drills down through the employee. The inferred ER sttricture relates this to the redcords in the databasee

Διαβάστε περισσότερα

### Ασκήσεις Γενικά Μαθηµατικά Ι Λύσεις ασκήσεων Οµάδας 1

Ασκήσεις Γενικά Μαθηµατικά Ι Λύσεις ασκήσεων Οµάδας Λουκάς Βλάχος και Χάρης Σκόκος ) Να ϐρεθεί το πεδίο ορισµού των συναρτήσεων :. f (x) = log x (5x + 3) + sin x. f (x) = (x + ) sin x 3. f 3 (x) = 3 sin

Διαβάστε περισσότερα

### 0 Τα ηλεκτρικά κυκλώματα ως συστήματα Παράδειγμα Ηλεκτρ. Συστήματος πρώτης τάξης: κύκλωμα «RC» με Εξοδο

L. DRITSAS 2008/2009 0 Τα ηλεκτρικά κυκλώματα ως συστήματα...2 1 Παράδειγμα Ηλεκτρ. Συστήματος πρώτης τάξης: κύκλωμα «RC» με Εξοδο στον πυκνωτή (=Low Pass Filter - LPF)...4... Καταστατικές Εξισώσεις «RC»...4...

Διαβάστε περισσότερα

### Α Λ Γ Ε Β Ρ Α ΕΛΛΗΝΟΑΓΓΛΙΚΑ ΑΓΓΛΟΕΛΛΗΝΙΚΑ

ΕΛΛΗΝΟΑΓΓΛΙΚΑ Α Λ Γ Ε Β Ρ Α ΑΓΓΛΟΕΛΛΗΝΙΚΑ αγκύλη bracket abscissa τετµηµένη άγνωστος uknown absolute value απόλυτη τιµή άθροισµα sum absurd άτοπο ακέραιος integer add προσθέτω ακολουθία sequence addend

Διαβάστε περισσότερα

### Υδραυλική Εργαστήριο 4. Χρίστος Α. Καραβίτης Διαχείριση Υδατικών Πόρων Τμήμα ΑΦΠ & ΓΜ, Γ.Π.Α.

Υδραυλική Εργαστήριο 4 Χρίστος Α. Καραβίτης Διαχείριση Υδατικών Πόρων Τμήμα ΑΦΠ & ΓΜ, Γ.Π.Α. Πρόγραμμα Άνοιξη 2014 ΗΜ/ΝΙΑ ΔΕΥΤΕΡΑ ΤΕΤΑΡΤΗ ΠΑΡΑΣΚΕΥΗ ΜΕΛΕΤΗ ΑΣΚΗΣΕΙΣ ΚΑΘΕ ΠΑΡΑΣΚΕΥΗ Part I: ΥΔΡΟΛΟΓΙΚΟΣ ΚΥΚΛΟΣ-ΥΔΡΟΛΟΓΙΚΕΣ

Διαβάστε περισσότερα

### Πανεπιστήμιο Κρήτης, Τμήμα Επιστήμης Υπολογιστών Άνοιξη 2009. HΥ463 - Συστήματα Ανάκτησης Πληροφοριών Information Retrieval (IR) Systems

Πανεπιστήμιο Κρήτης, Τμήμα Επιστήμης Υπολογιστών Άνοιξη 2009 HΥ463 - Συστήματα Ανάκτησης Πληροφοριών Information Retrieval (IR) Systems Στατιστικά Κειμένου Text Statistics Γιάννης Τζίτζικας άλ ιάλεξη :

Διαβάστε περισσότερα

### PhysicsAndMathsTutor.com

PhysicsAndMathsTutor.com June 2005 1. A car of mass 1200 kg moves along a straight horizontal road. The resistance to motion of the car from non-gravitational forces is of constant magnitude 600 N. The

Διαβάστε περισσότερα

### Study on Re-adhesion control by monitoring excessive angular momentum in electric railway traction

() () Study on e-adhesion control by monitoring excessive angular momentum in electric railway traction Takafumi Hara, Student Member, Takafumi Koseki, Member, Yutaka Tsukinokizawa, Non-member Abstract

Διαβάστε περισσότερα

### Η αλληλεπίδραση ανάμεσα στην καθημερινή γλώσσα και την επιστημονική ορολογία: παράδειγμα από το πεδίο της Κοσμολογίας

Η αλληλεπίδραση ανάμεσα στην καθημερινή γλώσσα και την επιστημονική ορολογία: παράδειγμα από το πεδίο της Κοσμολογίας ΠΕΡΙΛΗΨΗ Αριστείδης Κοσιονίδης Η κατανόηση των εννοιών ενός επιστημονικού πεδίου απαιτεί

Διαβάστε περισσότερα

### ARISTOTLE UNIVERSITY OF THESSALONIKI FACULTY OF FORESTRY AND NATURAL ENVIRONMENT Institute of Mountainous Water Management and Control

ARISTOTLE UNIVERSITY OF THESSALONIKI FACULTY OF FORESTRY AND NATURAL ENVIRONMENT Institute of Mountainous Water Management and Control Torrent Basin, Mountainous Watershed Management Dr. Panagiotis Stefanidis

Διαβάστε περισσότερα

### Εισαγωγή στη Γεώργιος Γεωργίου & Χρίστος Ξενοφώντος

Εισαγωγή στη Γεώργιος Γεωργίου & Χρίστος Ξενοφώντος Τμήμα Μαθηματικών και Στατιστικής Πανεπιστήμιο Κύπρου Μάϊος 7 . ΕΙΣΑΓΩΓΗ Το MATLAB είναι ένα σύγχρονο ολοκληρωμένο μαθηματικό λογισμικό πακέτο που χρησιμοποιείται

Διαβάστε περισσότερα

### Ηλεκτρονικοί Υπολογιστές IV

ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Ηλεκτρονικοί Υπολογιστές IV Το μοντέλο Cobweb για την δυναμική των τιμών Διδάσκων: Επίκουρος Καθηγητής Αθανάσιος Σταυρακούδης Άδειες Χρήσης Το παρόν εκπαιδευτικό

Διαβάστε περισσότερα

### SIEMENS Squirrel Cage Induction Standard Three-phase Motors

- SIEMENS Squirrel Cage Induction Standard Three-phase Motors 2 pole 3000 rpm 50Hz Rated current Power Efficiency Rated Ratio Noise Output Frame Speed Weight 3V 400V 415V factor Class 0%Load 75%Load torque

Διαβάστε περισσότερα

### MATHEMATIC KANGOUROU 2016 Student-Levels 11-12

MATHEMATIC KANGOUROU 2016 Student-Levels 11-12 3 point problems (προβλήματα 3 μονάδων) 1. The sum of the ages of Tom and John is 23, the sum of the ages of John and Alex is 24 and the sum of the ages of

Διαβάστε περισσότερα

### Εισαγωγή. Διάλεξη 1. Εισαγωγή Σήματα και Συστήματα Διακριτού Χρόνου. Τι είναι σήμα; Παραδείγματα

University of Cyprus Biomedical Imaging & Applied Optics Διάλεξη Εισαγωγή Σήματα και Συστήματα Διακριτού Χρόνου Εισαγωγή Τι είναι σήμα; Είναι μεταβολές ενός φυσικού μεγέθους που αναπαριστούν ή μεταφέρουν

Διαβάστε περισσότερα

### Τελική Εξέταση, Απαντήσεις/Λύσεις

ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ Τμήμα Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών (ΗΜΜΥ) HMΜY 212 Οργάνωση Η/Υ και Μικροεπεξεργαστές Εαρινό Εξάμηνο, 2007 Τελική Εξέταση, Απαντήσεις/Λύσεις Άσκηση 1: Assembly για

Διαβάστε περισσότερα

### Candidate Number. General Certificate of Secondary Education Higher Tier November 2013

Centre Number Surname Candidate Number For Examiner s Use Other Names Candidate Signature Examiner s Initials Pages Mark General Certificate of Secondary Education Higher Tier November 2013 3 4 5 Mathematics

Διαβάστε περισσότερα