HMY 799 1: Αναγνώριση Συστημάτων

Save this PDF as:
 WORD  PNG  TXT  JPG

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "HMY 799 1: Αναγνώριση Συστημάτων"

Transcript

1 HMY 799 : Αναγνώριση Συστημάτων Διάλεξη 5 Εκτίμηση φάσματος ισχύος Συνάφεια Παραδείγματα

2 Στοχαστικά Διανύσματα Autoregressive model with exogenous inputs (ARX y( t + a y( t a y( t n = bu( t b u( t m n ϕ ( t = [ y( t... y( t n u( t... u( t m] T N N Ν T V (, ( ( ˆ N θ Ζ = y t y( t θ = ( y( t ϕ ( t θ Ν t= Ν t= ˆ Ν θ = arg min V ( θ, Ζ Ν θ N N N ˆ T θν = ϕ( t ϕ ( t ϕ( t y( t t= t= Ντετερμινιστικά / Τυχαία Σήματα στο πεδίο της συχνότητας Σειρές/Μετασχηματισμός Fourier, Discrete Fourier Transform άσμα ισχύος / Διάφασμα Ισχύος jωτ ( ω = ϕ ( τ e dτ ( ( = m jωτ e d ω ϕ τ τ j ( ω = ϕ ( τ e ωτ ( ω = ϕ ( τ τ = j e ωτ τ =

3 Στοχαστικά Σήματα και Γραμμικά Συστήματα Χρόνος Συχνότητα μ = μ H (0 y x ϕ ( τ = h( τ* ϕ ( τ ( ω =Η( ω ( ω ϕ ( τ = h( τ* ϕ ( τ yy = * yy ( ω ( ω H ( ω ϕ ( τ = h ( τ * ϕ ( τ * h ( τ ( ω = Η ( ω ( ω yy yy h(t Εκτίμηση φάσματος ισχύος Περιοδόγραμμα ˆ ( ( ω = Χ Ν ω Ν lim ˆ N E{ ( ω } = ( ω Var ˆ ω ω { ( } N (

4 Power spectral density estimation Πως μπορούμε να βελτιώσουμε τη διακύμανση της εκτίμησης του φάσματος ισχύος? Μέθοδος Bartlett Διαχωρισμός του σήματος σε Μ τμήματα μήκους Κ, DFT σε κάθε τμήμα, μέση τιμή: M ( i ( i jωn M ( ω = ( M n= 0 U x n e = K ˆ ( i ( ω U M ( ω Αμερόληπτη εκτίμηση (γιατί? Μείωση διακύμανσης: ˆ Var K { ( ω } ( ω Μέθοδος Welch: Παρόμοια διαδικασία μετά από πολλαπλασιασμό με συνάρτηση παραθύρου, επικαλυπτόμενα τμήματα Βελτίωση στη διακύμανση, μειωμένη ανάλυση στο πεδίο της συχνότητας

5 Πολλαπλασιασμός με παράθυρο: Μείωση φασματικής διαρροής (spectral leakage x(t=u(tυ(t X(f=U(f*V(f sin( π ft U = T e π ft jπ ft

6 xt ( = cos(π00 t + ε(, t fs = KHz ε ( t N(0, Matlab: randn: normal random number generation periodogram pwelch: Welch, Bartlett methods Παράδειγμα

7 Power spectral density estimation Παραμετρική εκτίμηση φάσματος: Μοντελοποίηση του σήματος με μοντέλο αυτοπαλινδρόμησης (AR model y( t = ay( t... an y( t n +ε ( t Μετά τον υπολογισμό των συντελεστών a n το φάσμα ισχύος δίνεται από: ˆ ˆ σ ( ω = = Az ( ˆ σ e e p jω z= e + ˆ k k = ae jωk Βελτίωση ανάλυσης συχνότητας Πρόβλημα: επιλογή κατάλληλου μοντέλου

8 xt ( = cos(π00 t + ε(, t fs = KHz ε ( t N(0, Matlab: Matlab: pyulear(x,order Παράδειγμα

9 Για τη συνάρτηση ετεροσυσχέτισης ισχύει: ϕ ( τ ϕ (0 ϕyy (0 Για το διάφασμα ισχύος ισχύει: Συνάφεια Coherence yy Πιο ισχυρή σχέση (ισχύει για όλες τις συχνότητες Η συνάρτηση συνάφειας (coherence function/ coherency squared function ορίζεται ως: ( f γ = yy Λόγω της (, ισχύει πάντα: 0 γ C( τ Αναλογία με το συντελεστή ετεροσυσχέτισης r ( τ = C (0 Cyy (0 Για ένα γραμμικό σύστημα χωρίς θόρυβο γ H = = H Αν τα x,y είναι ασυσχέτιστα: γ = 0 Εάν η συνάρτηση συνάφειας είναι μεταξύ 0 και τότε: Υπάρχει θόρυβος στις μετρήσεις Ησχέσημεταξύx,y είναι μη γραμμική Η τιμή της εξόδου y καθορίζεται και από άλλες εισόδους Η συνάφεια αντιστοιχεί στο κλάσμα της μέσης τετραγωνικής τιμής της εξόδου το οποίο συνεισφέρει η είσοδος στη συχνότητα f Η(f

10 Παράδειγμα: Διαταραχές στον αέρα Συνάφεια Coherence

11 Συνάφεια Coherence Η συνάφεια είναι ένα μέτρο του πόσο γραμμικά συσχετισμένα είναι δύο σήματα x(t και y(t. Η συνάφεια δεν υπονοεί αναγκαία την ύπαρξη αιτιατής σχέσης Άρα έχουμε τα εξής μέτρα για τον υπολογισμό του (τετραγωνικού κέρδους ενός συστήματος: yy yy ( ω = Η( ω ( ω Η = ( ( ω =Η( ω ( ω Η = ( ( Η f ( γ = = yy Η ( Η πρώτη εκτίμηση είναι μεροληπτική (biased εκτός και αν η συνάφεια είναι. Η δεύτερη εκτίμηση είναι μεροληπτική όταν υπάρχει θόρυβος στην είσοδο, αλλά όχι όταν υπάρχει θόρυβος στην έξοδο. Η συνάφεια διατηρείται κάτω από γραμμικούς μετασχηματισμούς. Αν δεν μπορούμε να μετρήσουμε τα σήματα x,y αλλά μπορούμε να μετρήσουμε τα σήματα x,y τα οποία συσχετίζονται γραμμικά με τα x,y τότε μπορούμε να υπολογίσουμε τη συνάφεια μεταξύ x,y από τα σήματα x,y

12 Συστήματα με θόρυβο xt ( = mt ( + ut ( yt ( = zt ( + et ( u(t Στη γενική περίπτωση = uu mm um mu = yy zz ee ze ez = zu eu um em m(t x(t + H(f z(t + e(t y(t = Η ( ω zz =Η ( ω zu uu uu Στην περίπτωση που δεν έχουμε θόρυβο στην είσοδο και έχουμε ασυσχέτιστο θόρυβο στην έξοδο: xt ( = ut ( = yt ( = zt ( + et ( = 0 nz uu = + yy zz ee = = H zu zz = H =

13 Συστήματα με θόρυβο Άρα μπορούμε να υπολογίσουμε τα zz (f και ee (f χωρίς μετρήσεις των z(t και e(t! zz = ee =zz yy Συνάφεια zu γ = = ( + γιατί yy zz ee = + / ee zz u(t m(t + x(t H(f z(t + e(t y(t Άρα για ee (f>0 γ < zu γ zu = = uu zz Επίσης: = γ zz yy ee = [ γ ] yy Η συνάφεια «σπάει» το φάσμα που μετράμε μ στην έξοδο σε δύο ασυσχέτιστες συνιστώσες: Μια που εξαρτάται από το σήμα εισόδου και μια από το θόρυβο στην έξοδο

HMY 799 1: Αναγνώριση Συστημάτων

HMY 799 1: Αναγνώριση Συστημάτων HMY 799 : Αναγνώριση Συστημάτων Διαλέξεις 3 4 Στοχαστικά/τυχαία / χ διανύσματα Ντετερμινιστικά και στοχαστικά σήματα στο πεδίο της συχνότητας Στοχαστικά σήματα και γραμμικά συστήματα Deterministic and

Διαβάστε περισσότερα

HMY 799 1: Αναγνώριση. συστημάτων. Διαλέξεις 6 7. Συνάφεια (συνέχεια) Μη παραμετρική αναγνώριση γραμμικών

HMY 799 1: Αναγνώριση. συστημάτων. Διαλέξεις 6 7. Συνάφεια (συνέχεια) Μη παραμετρική αναγνώριση γραμμικών HMY 799 1: Αναγνώριση Συστημάτων Διαλέξεις 6 7 Συνάφεια (συνέχεια Συστήματα πολλαπλών εισόδων Μη παραμετρική αναγνώριση γραμμικών συστημάτων Εκτίμηση άσματος Ισχύος Περιοδόγραμμα, Bartlett/Welch, Παραμετρική

Διαβάστε περισσότερα

HMY 799 1: Αναγνώριση Συστημάτων

HMY 799 1: Αναγνώριση Συστημάτων HMY 799 1: Αναγνώριση Συστημάτων Διαλέξεις 8 9 Ομαλοποίηση (smoothing) Μη παραμετρική αναγνώριση γραμμικών συστημάτων: Παραδείγματα Συστήματα με θόρυβο Ασυσχέτιστος θόρυβος και στην είσοδο και στην έξοδο:

Διαβάστε περισσότερα

HMY 220: Σήματα και Συστήματα Ι

HMY 220: Σήματα και Συστήματα Ι HMY 22: Σήματα και Συστήματα Ι ΔΙΑΛΕΞΗ # Αναπαράσταση περιοδικών σημάτων με μιγαδικά εκθετικά σήματα: Οι σειρές Fourier Υπολογισμός συντελεστών Fourier Ανάλυση σημάτων σε μιγαδικά εκθετικά σήματα Είδαμε

Διαβάστε περισσότερα

Διάλεξη 6. Fourier Ανάλυση Σημάτων. (Επανάληψη Κεφ. 10.0-10.2 Κεφ. 10.3, 10.5-7) Ανάλυση σημάτων. Τι πρέπει να προσέξουμε

Διάλεξη 6. Fourier Ανάλυση Σημάτων. (Επανάληψη Κεφ. 10.0-10.2 Κεφ. 10.3, 10.5-7) Ανάλυση σημάτων. Τι πρέπει να προσέξουμε University of Cyprus Biomedical Imaging & Applied Optics Διάλεξη (Επανάληψη Κεφ. 10.0-10. Κεφ. 10.3, 10.5-7) Ανάλυση σημάτων Τι πρέπει να προσέξουμε Επαρκής ψηφιοποίηση στο χρόνο (Nyquist) Αναδίπλωση (aliasing)

Διαβάστε περισσότερα

HMY 799 1: Αναγνώριση Συστημάτων

HMY 799 1: Αναγνώριση Συστημάτων HMY 799 : Αναγνώριση Συστημάτων Διάλεξη Στοχαστικές Τυχαίες Μεταβλητές/ Στοχαστικά Σήματα Πειραματικά δεδομένα >Επιλογή τύπου μοντέλου >Επιλογή κριτηρίου >Υπολογισμός >Επικύρωση Προσαρμογή καμπύλης (Curve

Διαβάστε περισσότερα

HMY 220: Σήματα και Συστήματα Ι

HMY 220: Σήματα και Συστήματα Ι Σύγκλιση Σειρών Fourier Ιδιότητες Σειρών Fourier Παραδείγματα HMY 220: Σήματα και Συστήματα Ι ΔΙΑΛΕΞΗ #10 Τρεις ισοδύναμες μορφές: () = = = = Σειρές Fourier j( 2π ) t Τ.. x () t FS a jω0t xt () = ae =

Διαβάστε περισσότερα

HMY 220: Σήματα και Συστήματα Ι

HMY 220: Σήματα και Συστήματα Ι HMY 0: Σήματα και Συστήματα Ι ΔΙΑΛΕΞΗ # Μετασχηματισμός Laplace και ΓΧΑ Συστήματα Συνάρτηση μεταφοράς αιτιατών και ευσταθών συστημάτων Συστήματα που περιγράφονται από ΔΕ Διαγράμματα Μπλοκ Μετασχηματισμός

Διαβάστε περισσότερα

HMY 220: Σήματα και Συστήματα Ι

HMY 220: Σήματα και Συστήματα Ι Σύγκλιση Σειρών Fourier Ιδιότητες Σειρών Fourier Παραδείγματα HMY 0: Σήματα και Συστήματα Ι ΔΙΑΛΕΞΗ #10 Σειρές Fourier: Προσέγγιση Οι Σειρές Fourier μπορούν να αναπαραστήσουν μια πολύ μεγάλη κλάση περιοδικών

Διαβάστε περισσότερα

HMY 799 1: Αναγνώριση Συστημάτων

HMY 799 1: Αναγνώριση Συστημάτων HMY 799 : Αναγνώριση Συστημάτων Διάλεξη Γραμμική παλινδρόμηση (Linear regression) Εμπειρική συνάρτηση μεταφοράς Ομαλοποίηση (smoothing) Y ( ) ( ) ω G ω = U ( ω) ω +Δ ω γ ω Δω = ω +Δω W ( ξ ω ) U ( ξ) G(

Διαβάστε περισσότερα

Πιθανότητες & Τυχαία Σήματα. Διγαλάκης Βασίλης

Πιθανότητες & Τυχαία Σήματα. Διγαλάκης Βασίλης Πιθανότητες & Τυχαία Σήματα Διγαλάκης Βασίλης Γραμμικά Συστήματα Σύστημα: x(t) T y(t) Κατηγορίες: Συνεχή/Διακριτά Γραμμικά/Μη Γραμμικά Αν Τότε Γραμμικά Συστήματα Σύστημα: x(t) T y(t) Κατηγορίες: Χρονικά

Διαβάστε περισσότερα

Τεχνολογικό Εκπαιδευτικό Ίδρυμα Σερρών Τμήμα Πληροφορικής & Επικοινωνιών Σήματα και Συστήματα

Τεχνολογικό Εκπαιδευτικό Ίδρυμα Σερρών Τμήμα Πληροφορικής & Επικοινωνιών Σήματα και Συστήματα Τεχνολογικό Εκπαιδευτικό Ίδρυμα Σερρών Τμήμα Πληροφορικής & Επικοινωνιών Σήματα και Συστήματα Δρ. Δημήτριος Ευσταθίου Επίκουρος Καθηγητής Μετασχηματισμός Fourier Στο κεφάλαιο αυτό θα εισάγουμε και θα μελετήσουμε

Διαβάστε περισσότερα

HMY 429: Εισαγωγή στην Επεξεργασία Ψηφιακών. Χρόνου (Ι)

HMY 429: Εισαγωγή στην Επεξεργασία Ψηφιακών. Χρόνου (Ι) HMY 429: Εισαγωγή στην Επεξεργασία Ψηφιακών Σημάτων Διάλεξη 5: Στοχαστικά/Τυχαία Σήματα Διακριτού Διάλεξη 5: Στοχαστικά/Τυχαία Σήματα Διακριτού Χρόνου (Ι) Στοχαστικά σήματα Στα προηγούμενα: Ντετερμινιστικά

Διαβάστε περισσότερα

Πανεπιστήμιο Πατρών Τμήμα Ηλεκτρολόγων Μηχανικών και Τεχνολογίας Υπολογιστών. Διάλεξη 4

Πανεπιστήμιο Πατρών Τμήμα Ηλεκτρολόγων Μηχανικών και Τεχνολογίας Υπολογιστών. Διάλεξη 4 Πανεπιστήμιο Πατρών Τμήμα Ηλεκτρολόγων Μηχανικών και Τεχνολογίας Υπολογιστών Τομέας Συστημάτων και Αυτομάτου Ελέγχου ΠΡΟΣΑΡΜΟΣΤΙΚΟΣ ΕΛΕΓΧΟΣ Διάλεξη 4 Πάτρα 2008 Ντετερμινιστικά Moving Average Μοντέλα Ισχύει:

Διαβάστε περισσότερα

Εξεταστική Ιανουαρίου 2007 Μάθηµα: «Σήµατα και Συστήµατα»

Εξεταστική Ιανουαρίου 2007 Μάθηµα: «Σήµατα και Συστήµατα» Εξεταστική Ιανουαρίου 27 Μάθηµα: «Σήµατα και Συστήµατα» Θέµα 1 ο (3%) Έστω δύο διακριτά σήµατα: x(n) = {1,,, -1} και h(n) = {1,, 1} µε το πρώτο δείγµα να αντιστοιχεί σε n= και για τα δύο. Υπολογίστε τα

Διαβάστε περισσότερα

Σήματα και Συστήματα. Διάλεξη 10: Γραμμικά Φίλτρα. Δρ. Μιχάλης Παρασκευάς Επίκουρος Καθηγητής

Σήματα και Συστήματα. Διάλεξη 10: Γραμμικά Φίλτρα. Δρ. Μιχάλης Παρασκευάς Επίκουρος Καθηγητής Σήματα και Συστήματα Διάλεξη 10: Γραμμικά Φίλτρα Δρ. Μιχάλης Παρασκευάς Επίκουρος Καθηγητής 1 Γραμμικά Φίλτρα 1. Ιδανικά Γραμμικά Φίλτρα Ιδανικό Κατωδιαβατό Φίλτρο Ιδανικό Ανωδιαβατό Φίλτρο Ιδανικό Ζωνοδιαβατό

Διαβάστε περισσότερα

Τεχνολογικό Εκπαιδευτικό Ίδρυμα Σερρών Τμήμα Πληροφορικής & Επικοινωνιών Σήματα και Συστήματα

Τεχνολογικό Εκπαιδευτικό Ίδρυμα Σερρών Τμήμα Πληροφορικής & Επικοινωνιών Σήματα και Συστήματα Τεχνολογικό Εκπαιδευτικό Ίδρυμα Σερρών Τμήμα Πληροφορικής & Επικοινωνιών Σήματα και Συστήματα Δρ. Δημήτριος Ευσταθίου Επίκουρος Καθηγητής Φυσική Σημασία του Μετασχηματισμού Fourier Ο μετασχηματισμός Fourier

Διαβάστε περισσότερα

ΣΕΙΡΕΣ ΚΑΙ ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΙ FOURIER. e ω. Το βασικό πρόβλημα στις σειρές Fourier είναι ο υπολογισμός των συντελεστών c

ΣΕΙΡΕΣ ΚΑΙ ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΙ FOURIER. e ω. Το βασικό πρόβλημα στις σειρές Fourier είναι ο υπολογισμός των συντελεστών c ΣΕΙΡΕΣ ΚΑΙ ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΙ FOURIER x(t+kτ) = x(t) = π/ω f = / x(t) = = 8 c j t e ω c = (a-jb ) Το βασικό πρόβλημα στις σειρές Fourier είναι ο υπολογισμός των συντελεστών c. Αυτός γίνεται κατορθωτός αν

Διαβάστε περισσότερα

HMY 220: Σήματα και Συστήματα Ι

HMY 220: Σήματα και Συστήματα Ι HMY 220: Σήματα και Συστήματα Ι ΔΙΑΛΕΞΗ #2 Σειρές Fourier και ΓΧΑ Συστήματα Απόκριση Συχνοτήτων και Φιλτράρισμα Σειρές Fourier: Σειρές Fourier και ΓΧΑ Συστήματα jk( 2π ) Τ k k x () FS.. ak k= k= jkω0 x

Διαβάστε περισσότερα

HMY 429: Εισαγωγή στην Επεξεργασία Ψηφιακών Σημάτων. Διάλεξη 20: Διακριτός Μετασχηματισμός Fourier (Discrete Fourier Transform DFT)

HMY 429: Εισαγωγή στην Επεξεργασία Ψηφιακών Σημάτων. Διάλεξη 20: Διακριτός Μετασχηματισμός Fourier (Discrete Fourier Transform DFT) HMY 429: Εισαγωγή στην Επεξεργασία Ψηφιακών Σημάτων Διάλεξη 20: Διακριτός Μετασχηματισμός Fourier (Discrete Fourier Transform DFT) Εισαγωγή Μέχρι στιγμής έχουμε δει το Μετασχηματισμό Fourier Διακριτού

Διαβάστε περισσότερα

H ΨΗΦΙΑΚΗ ΕΠΕΞΕΡΓΑΣΙΑ ΣΗΜΑΤΟΣ. στις τηλεπικοινωνίες

H ΨΗΦΙΑΚΗ ΕΠΕΞΕΡΓΑΣΙΑ ΣΗΜΑΤΟΣ. στις τηλεπικοινωνίες H ΨΗΦΙΑΚΗ ΕΠΕΞΕΡΓΑΣΙΑ ΣΗΜΑΤΟΣ στις τηλεπικοινωνίες Διάταξη συστήματος ψηφιακής επικοινωνίας Γεννήτρια σήματος RF, (up-coverter Ενισχυτής Προενισχυτής- dow-coverter- Ψηφιοποιητής σήματος RF Μονάδα ψηφ.

Διαβάστε περισσότερα

ΣΤΟΧΑΣΤΙΚΑ ΣΥΣΤΗΜΑΤΑ & ΕΠΙΚΟΙΝΩΝΙΕΣ 1o Τμήμα (Α - Κ): Αμφιθέατρο 4, Νέα Κτίρια ΣΗΜΜΥ Θεωρία Πιθανοτήτων & Στοχαστικές Ανελίξεις - 4

ΣΤΟΧΑΣΤΙΚΑ ΣΥΣΤΗΜΑΤΑ & ΕΠΙΚΟΙΝΩΝΙΕΣ 1o Τμήμα (Α - Κ): Αμφιθέατρο 4, Νέα Κτίρια ΣΗΜΜΥ Θεωρία Πιθανοτήτων & Στοχαστικές Ανελίξεις - 4 ΣΤΟΧΑΣΤΙΚΑ ΣΥΣΤΗΜΑΤΑ & ΕΠΙΚΟΙΝΩΝΙΕΣ 1o Τμήμα (Α - Κ): Αμφιθέατρο 4, Νέα Κτίρια ΣΗΜΜΥ Θεωρία Πιθανοτήτων & Στοχαστικές Ανελίξεις - 4 5.9 Η Στοχαστική Ανέλιξη Gauss (οι διαφάνειες ακολουθούν διαφορετική

Διαβάστε περισσότερα

HMY 799 1: Αναγνώριση Συστημάτων

HMY 799 1: Αναγνώριση Συστημάτων HMY 799 : Αναγνώριση Συστημάτων Διαλέξεις 7 8 Μέθοδοι πρόβλεψης σφάλματος (prediction error methods) Συνέχεια Σήματα εισόδου Instrumental variable methods Η γραμμικής παλινδρόμηση μπορεί να εφαρμοστεί

Διαβάστε περισσότερα

HMY 220: Σήματα και Συστήματα Ι

HMY 220: Σήματα και Συστήματα Ι HMY 0: Σήματα και Συστήματα Ι ΔΙΑΛΕΞΗ #4 Η ιδιότητα της συνέλιξης Απόκριση Συχνότητας ΓΧΑ Συστημάτν Απόκριση συχνότητας ΓΧΑ Συστημάτν που περιγράφονται από Διαφορικές Εξισώσεις Η ιδιότητα πολλαπλασιασμού

Διαβάστε περισσότερα

Σήματα και Συστήματα. Διάλεξη 8: Ιδιότητες του Μετασχηματισμού Fourier. Δρ. Μιχάλης Παρασκευάς Επίκουρος Καθηγητής

Σήματα και Συστήματα. Διάλεξη 8: Ιδιότητες του Μετασχηματισμού Fourier. Δρ. Μιχάλης Παρασκευάς Επίκουρος Καθηγητής Σήματα και Συστήματα Διάλεξη 8: Ιδιότητες του Μετασχηματισμού ourier Δρ. Μιχάλης Παρασκευάς Επίκουρος Καθηγητής 1 Ιδιότητες του Μετασχηματισμού ourier 1. Ιδιότητες του Μετασχηματισμού ourier 2. Θεώρημα

Διαβάστε περισσότερα

HMY 220: Σήματα και Συστήματα Ι

HMY 220: Σήματα και Συστήματα Ι HMY 0: Σήματα και Συστήματα Ι ΔΙΑΛΕΞΗ #5 Ιδιότητες του Μετασχηματισμού Fourier (Συνέχεια) Παραδείγματα Ιδιότητες του Μετασχηματισμού Fourier Χρονική κλιμάκση j xt () X( j) xat ( ) X( ) a a xate ( ) τ=at

Διαβάστε περισσότερα

Στοχαστικά Σήματα και Τηλεπικοινωνιές

Στοχαστικά Σήματα και Τηλεπικοινωνιές Στοχαστικά Σήματα και Τηλεπικοινωνιές Ενότητα 4: Βέλτιστα Φίλτρα Wiener Καθηγητής Κώστας Μπερμπερίδης Πολυτεχνική Σχολή Τμήμα Μηχανικών Η/Υ και Πληροφορικής Σκοποί ενότητας Παρουσίαση βασικών εννοιών των

Διαβάστε περισσότερα

HMY 220: Σήματα και Συστήματα Ι

HMY 220: Σήματα και Συστήματα Ι HMY 220: Σήματα και Συστήματα Ι ΔΙΑΛΕΞΗ #9 Ιδιοτιμές και ιδιοσυναρτήσεις συστημάτων Απόκριση ΓΧΑ συστημάτων σε μιγαδικά εκθετικά σήματα Συνάρτηση μεταφοράς Ανάλυση Σημάτων/Συστημάτων με βασικά σήματα Συχνά

Διαβάστε περισσότερα

MAJ. MONTELOPOIHSH II

MAJ. MONTELOPOIHSH II MAJ MONTELOPOIHSH II ΤΜΗΜΑ ΕΦΑΡΜΟΣΜΕΝΩΝ ΜΑΘΗΜΑΤΙΚΩΝ ΕΑΡΙΝΟ ΕΞΑΜΗΝΟ 009 ΦΥΛΛΑΔΙΟ ΑΣΚΗΣΕΩΝ ΙV Οι ασκήσεις είναι από το βιβλίο του Simon Haykin Θα ακολουθήσει ακόμη ένα φυλλάδιο τις επόμενες μέρες Άσκηση

Διαβάστε περισσότερα

Εισαγωγή στις Τηλεπικοινωνίες. Δομή της παρουσίασης

Εισαγωγή στις Τηλεπικοινωνίες. Δομή της παρουσίασης ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΕΙΡΑΙΩΣ ΣΧΟΛΗ ΤΕΧΝΟΛΟΓΙΩΝ ΠΛΗΡΟΦΟΡΙΚΗΣ & ΕΠΙΚΟΙΝΩΝΙΩΝ ΤΜΗΜΑ ΨΗΦΙΑΚΩΝ ΣΥΣΤΗΜΑΤΩΝ ΕΡΓΑΣΤΗΡΙΟ ΤΗΛΕΠΙΚΟΙΝΩΝΙΑΚΩΝ ΣΥΣΤΗΜΑΤΩΝ Εισαγωγή στις Τηλεπικοινωνίες Διάλεξη 3 η Τα Συστήματα στις Τηλεπικοινωνίες

Διαβάστε περισσότερα

ΑΡΧΕΣ ΤΗΛΕΠΙΚΟΙΝΩΝΙΩΝ

ΑΡΧΕΣ ΤΗΛΕΠΙΚΟΙΝΩΝΙΩΝ ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα ΑΡΧΕΣ ΤΗΛΕΠΙΚΟΙΝΩΝΙΩΝ Ενότητα #3: Φίλτρα Χ. ΚΑΡΑΪΣΚΟΣ Τμήμα Μηχανικών Αυτοματισμού Τ.Ε. Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό

Διαβάστε περισσότερα

Στοχαστικές Μέθοδοι στους Υδατικούς Πόρους Φασματική ανάλυση χρονοσειρών

Στοχαστικές Μέθοδοι στους Υδατικούς Πόρους Φασματική ανάλυση χρονοσειρών Στοχαστικές Μέθοδοι στους Υδατικούς Πόρους Φασματική ανάλυση χρονοσειρών Δημήτρης Κουτσογιάννης Τομέας Υδατικών Πόρων και Περιβάλλοντος, Σχολή Πολιτικών Μηχανικών, Εθνικό Μετσόβιο Πολυτεχνείο Αθήνα Επανέκδοση

Διαβάστε περισσότερα

4. ΚΕΦΑΛΑΙΟ ΕΦΑΡΜΟΓΕΣ ΤΟΥ ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΥ FOURIER

4. ΚΕΦΑΛΑΙΟ ΕΦΑΡΜΟΓΕΣ ΤΟΥ ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΥ FOURIER 4. ΚΕΦΑΛΑΙΟ ΕΦΑΡΜΟΓΕΣ ΤΟΥ ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΥ FOURIER Υπολογίζουµε εύκολα τον αντίστροφο Μετασχηµατισµό Fourier µιας συνάρτησης χωρίς να καταφεύγουµε στην εξίσωση ανάλυσης. Υπολογίζουµε εύκολα την απόκριση

Διαβάστε περισσότερα

Τεχνολογικό Εκπαιδευτικό Ίδρυμα Σερρών Τμήμα Πληροφορικής & Επικοινωνιών Σήματα και Συστήματα

Τεχνολογικό Εκπαιδευτικό Ίδρυμα Σερρών Τμήμα Πληροφορικής & Επικοινωνιών Σήματα και Συστήματα Τεχνολογικό Εκπαιδευτικό Ίδρυμα Σερρών Τμήμα Πληροφορικής & Επικοινωνιών Σήματα και Συστήματα Δρ. Δημήτριος Ευσταθίου Επίκουρος Καθηγητής Ιδιότητες της Συνέλιξης Η συνέλιξη μετατοπισμένων σημάτων

Διαβάστε περισσότερα

ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΣ FOURIER ΔΙΑΚΡΙΤΟΥ ΧΡΟΝΟΥ

ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΣ FOURIER ΔΙΑΚΡΙΤΟΥ ΧΡΟΝΟΥ ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΣ FOURIER ΔΙΑΚΡΙΤΟΥ ΧΡΟΝΟΥ Α. ΣΚΟΔΡΑΣ ΣΗΜΑΤΑ ΚΑΙ ΣΥΣΤΗΜΑΤΑ ΙΙ (22Y603) ΕΝΟΤΗΤΑ 3 ΔΙΑΛΕΞΗ 1 ΔΙΑΦΑΝΕΙΑ 1 Διαφορετικοί Τύποι Μετασχηµατισµού Fourier Α. ΣΚΟΔΡΑΣ ΣΗΜΑΤΑ ΚΑΙ ΣΥΣΤΗΜΑΤΑ ΙΙ (22Y603)

Διαβάστε περισσότερα

Στοχαστικές Ανελίξεις

Στοχαστικές Ανελίξεις Ντετερμινιστικά Σήματα - Τυχαία Σήματα Ταξινόμηση των σημάτων ανάλογα με τη βεβαιότητα όσο αφορά την τιμή τους κάθε χρονική στιγμή. Τα ντετερμινιστικά σήματα μπορούν να αναπαρασταθούν σαν πλήρως καθορισμένες

Διαβάστε περισσότερα

HMY 799 1: Αναγνώριση Συστημάτων

HMY 799 1: Αναγνώριση Συστημάτων HMY 799 : Αναγνώριση Συστημάτων Διαλέξεις 9 Insrumenal variable mehods συνέχεια Παραδείγματα Μέοδοι PEM, IV ο u() είναι επίμονα διεγερτικό (persisenly exciing) τάξης n αν: ο όριο ϕ ( τ) = lim u ( + τ)

Διαβάστε περισσότερα

Δυναμική Μηχανών I. Απόκριση Γραμμικών Συστημάτων στο. Πεδίο της Συχνότητας

Δυναμική Μηχανών I. Απόκριση Γραμμικών Συστημάτων στο. Πεδίο της Συχνότητας Δυναμική Μηχανών I Απόκριση Γραμμικών Συστημάτων στο 7 4 Πεδίο της Συχνότητας 2015 Δημήτριος Τζεράνης, Ph.D Τμήμα Μηχανολόγων Μηχανικών Ε.Μ.Π. tzeranis@gmail.com Απαγορεύεται οποιαδήποτε αναπαραγωγή χωρίς

Διαβάστε περισσότερα

4. ΚΕΦΑΛΑΙΟ ΕΦΑΡΜΟΓΕΣ ΤΟΥ ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΥ FOURIER

4. ΚΕΦΑΛΑΙΟ ΕΦΑΡΜΟΓΕΣ ΤΟΥ ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΥ FOURIER 4. ΚΕΦΑΛΑΙΟ ΕΦΑΡΜΟΓΕΣ ΤΟΥ ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΥ FOURIER Σκοπός του κεφαλαίου είναι να παρουσιάσει μερικές εφαρμογές του Μετασχηματισμού Fourier (ΜF). Ειδικότερα στο κεφάλαιο αυτό θα περιγραφούν έμμεσοι τρόποι

Διαβάστε περισσότερα

x[n] = e u[n 1] 4 x[n] = u[n 1] 4 X(z) = z 1 H(z) = (1 0.5z 1 )(1 + 4z 2 ) z 2 (βʹ) H(z) = H min (z)h lin (z) 4 z 1 1 z 1 (z 1 4 )(z 1) (1)

x[n] = e u[n 1] 4 x[n] = u[n 1] 4 X(z) = z 1 H(z) = (1 0.5z 1 )(1 + 4z 2 ) z 2 (βʹ) H(z) = H min (z)h lin (z) 4 z 1 1 z 1 (z 1 4 )(z 1) (1) Ασκήσεις με Συστήματα στο Χώρο του Ζ Επιμέλεια: Γιώργος Π. Καφεντζης Δρ. Επιστήμης Η/Υ Πανεπιστημίου Κρήτης Δρ. Επεξεργασίας Σήματος Πανεπιστημίου Rennes 1 7 Νοεμβρίου 015 1. Υπολόγισε τον μετ. Ζ και την

Διαβάστε περισσότερα

ΣΤΟΧΑΣΤΙΚΑ ΣΥΣΤΗΜΑΤΑ & ΕΠΙΚΟΙΝΩΝΙΕΣ 1o Τμήμα (Α - Κ): Αμφιθέατρο 4, Νέα Κτίρια ΣΗΜΜΥ Θεωρία Πιθανοτήτων & Στοχαστικές Ανελίξεις - 3

ΣΤΟΧΑΣΤΙΚΑ ΣΥΣΤΗΜΑΤΑ & ΕΠΙΚΟΙΝΩΝΙΕΣ 1o Τμήμα (Α - Κ): Αμφιθέατρο 4, Νέα Κτίρια ΣΗΜΜΥ Θεωρία Πιθανοτήτων & Στοχαστικές Ανελίξεις - 3 ΣΤΟΧΑΣΤΙΚΑ ΣΥΣΤΗΜΑΤΑ & ΕΠΙΚΟΙΝΩΝΙΕΣ 1o Τμήμα (Α - Κ): Αμφιθέατρο 4, Νέα Κτίρια ΣΗΜΜΥ Θεωρία Πιθανοτήτων & Στοχαστικές Ανελίξεις - 3 5.6: Μέση Τιμή, Συναρτήσεις Συσχέτισης (Correlation) & Συνδιασποράς (Covariance)

Διαβάστε περισσότερα

Επεξεργασία Στοχαστικών Σημάτων

Επεξεργασία Στοχαστικών Σημάτων Επεξεργασία Στοχαστικών Σημάτων Βέλτιστα γραμμικά χρονικά αναλλοίωτα συστήματα Σεραφείμ Καραμπογιάς Σχολή Θετικών Επιστημών Τμήμα Πληροφορικής και Τηλεπικοινωνιών Βέλτιστα γραμμικά χρονικά αναλλοίωτα συστήματα

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα ΣΗΜΑΤΑ & ΣΥΣΤΗΜΑΤΑ. Ενότητα : ΔΙΑΚΡΙΤΟΣ ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΣ FOURIER

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα ΣΗΜΑΤΑ & ΣΥΣΤΗΜΑΤΑ. Ενότητα : ΔΙΑΚΡΙΤΟΣ ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΣ FOURIER ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα ΣΗΜΑΤΑ & ΣΥΣΤΗΜΑΤΑ Ενότητα : ΔΙΑΚΡΙΤΟΣ ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΣ FOURIER Aναστασία Βελώνη Τμήμα Η.Υ.Σ 1 Άδειες Χρήσης Το παρόν εκπαιδευτικό

Διαβάστε περισσότερα

HMY 429: Εισαγωγή στην Επεξεργασία Ψηφιακών

HMY 429: Εισαγωγή στην Επεξεργασία Ψηφιακών HMY 429: Εισαγωγή στην Επεξεργασία Ψηφιακών Σημάτων Διάλεξη 12: Δειγματοληψία και ανακατασκευή (IV) Παρεμβολή (Interpolation) Γενικά υπάρχουν πολλοί τρόποι παρεμβολής, π.χ. κυβική παρεμβολή (cubic spline

Διαβάστε περισσότερα

Εισαγωγή στις Τηλεπικοινωνίες. Δομή της παρουσίασης

Εισαγωγή στις Τηλεπικοινωνίες. Δομή της παρουσίασης ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΕΙΡΑΙΩΣ ΣΧΟΛΗ ΤΕΧΝΟΛΟΓΙΩΝ ΠΛΗΡΟΦΟΡΙΚΗΣ & ΕΠΙΚΟΙΝΩΝΙΩΝ ΤΜΗΜΑ ΨΗΦΙΑΚΩΝ ΣΥΣΤΗΜΑΤΩΝ ΕΡΓΑΣΤΗΡΙΟ ΤΗΛΕΠΙΚΟΙΝΩΝΙΑΚΩΝ ΣΥΣΤΗΜΑΤΩΝ Εισαγωγή στις Τηλεπικοινωνίες Μετασχηματισμός Furier Αθανάσιος Κανάτας

Διαβάστε περισσότερα

Τεχνολογικό Εκπαιδευτικό Ίδρυμα Σερρών Τμήμα Πληροφορικής & Επικοινωνιών Σήματα και Συστήματα

Τεχνολογικό Εκπαιδευτικό Ίδρυμα Σερρών Τμήμα Πληροφορικής & Επικοινωνιών Σήματα και Συστήματα Τεχνολογικό Εκπαιδευτικό Ίδρυμα Σερρών Τμήμα Πληροφορικής & Επικοινωνιών Σήματα και Συστήματα Δρ. Δημήτριος Ευσταθίου Επίκουρος Καθηγητής ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΣ LAPLACE Αντίστροφος Μετασχηματισμός Laplace Στην

Διαβάστε περισσότερα

Εξίσωση Τηλεπικοινωνιακών Διαύλων

Εξίσωση Τηλεπικοινωνιακών Διαύλων Εξίσωση Τηλεπικοινωνιακών Διαύλων ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΚΑΙ ΤΗΛΕΠΙΚΟΙΝΩΝΙΩΝ ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΕΛΟΠΟΝΝΗΣΟΥ ΜΔΕ ΠΡΟΗΓΜΈΝΑ ΤΗΛΕΠΙΚΟΙΝΩΝΙΑΚΑ ΣΥΣΤΉΜΑΤΑ ΚΑΙ ΔΙΚΤΥΑ Ενότητα 2 η Φίλτρα Μηδενισμού της ISI Νικόλαος Χ.

Διαβάστε περισσότερα

3. Δίνεται ψηφιακό σύστημα που περιγράφεται από τη σχέση. y[n] = x[n]-2x[n-1] y[n] = x[n]-2x[1-n]

3. Δίνεται ψηφιακό σύστημα που περιγράφεται από τη σχέση. y[n] = x[n]-2x[n-1] y[n] = x[n]-2x[1-n] 1. Δίνεται ψηφιακό σύστημα που περιγράφεται από τη σχέση y[] = x[]+x[-1]+2 για το σύστημα ισχύει η αρχή της: Α) Ομογένειας Β) Επαλληλίας Γ) Γραμμικότητας. Δ) Χρονικής αμεταβλητότητας. 2. Δίνεται ψηφιακό

Διαβάστε περισσότερα

ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΣ FOURIER ΑΝΑΛΥΣΗ FOURIER ΔΙΑΚΡΙΤΩΝ ΣΗΜΑΤΩΝ ΚΑΙ ΣΥΣΤΗΜΑΤΩΝ. Διακριτός Μετασχηματισμός Fourier DFT

ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΣ FOURIER ΑΝΑΛΥΣΗ FOURIER ΔΙΑΚΡΙΤΩΝ ΣΗΜΑΤΩΝ ΚΑΙ ΣΥΣΤΗΜΑΤΩΝ. Διακριτός Μετασχηματισμός Fourier DFT ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΣ FOURIER ΑΝΑΛΥΣΗ FOURIER ΔΙΑΚΡΙΤΩΝ ΣΗΜΑΤΩΝ ΚΑΙ ΣΥΣΤΗΜΑΤΩΝ Διακριτός Μετασχηματισμός Fourier DFT Διακριτός μετασχηματισμός συνημιτόνου DCT discrete cosine transform Η σχέση αποτελεί «πυρήνα»

Διαβάστε περισσότερα

Εισαγωγή στις Τηλεπικοινωνίες. Δομή της παρουσίασης

Εισαγωγή στις Τηλεπικοινωνίες. Δομή της παρουσίασης 1 Oct 16 ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΕΙΡΑΙΩΣ ΣΧΟΛΗ ΤΕΧΝΟΛΟΓΙΩΝ ΠΛΗΡΟΦΟΡΙΚΗΣ & ΕΠΙΚΟΙΝΩΝΙΩΝ ΤΜΗΜΑ ΨΗΦΙΑΚΩΝ ΣΥΣΤΗΜΑΤΩΝ ΕΡΓΑΣΤΗΡΙΟ ΤΗΛΕΠΙΚΟΙΝΩΝΙΑΚΩΝ ΣΥΣΤΗΜΑΤΩΝ Εισαγωγή στις Τηλεπικοινωνίες Διάλεξη 4 η Γεωμετρική Αναπαράσταση

Διαβάστε περισσότερα

Σήματα και Συστήματα. Διάλεξη 11: Μετασχηματισμός Laplace. Δρ. Μιχάλης Παρασκευάς Επίκουρος Καθηγητής

Σήματα και Συστήματα. Διάλεξη 11: Μετασχηματισμός Laplace. Δρ. Μιχάλης Παρασκευάς Επίκουρος Καθηγητής Σήματα και Συστήματα Διάλεξη : Μετασχηματισμός Laplace Δρ. Μιχάλης Παρασκευάς Επίκουρος Καθηγητής Μετασχηματισμός Laplace. Μαθηματικός ορισμός μετασχηματισμού Laplace 2. Η περιοχή σύγκλισης του μετασχηματισμού

Διαβάστε περισσότερα

ΗΜΥ Διακριτός Μετασχηματισμός Fourier

ΗΜΥ Διακριτός Μετασχηματισμός Fourier 1 ΗΜΥ 480 5. Διακριτός Μετασχηματισμός Fourier ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΣ FOURIER Μετασχηματισμός Fourier MF: μιγαδικός αριθμός που δείχνει πώς: 1 συγκεκριμένες συχνότητες συμβάλλουν στο σήμα πραγματικό μέρος πώς

Διαβάστε περισσότερα

Εισαγωγή στις Τηλεπικοινωνίες. Δομή της παρουσίασης

Εισαγωγή στις Τηλεπικοινωνίες. Δομή της παρουσίασης ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΕΙΡΑΙΩΣ ΣΧΟΛΗ ΤΕΧΝΟΛΟΓΙΩΝ ΠΛΗΡΟΦΟΡΙΚΗΣ & ΕΠΙΚΟΙΝΩΝΙΩΝ ΤΜΗΜΑ ΨΗΦΙΑΚΩΝ ΣΥΣΤΗΜΑΤΩΝ ΕΡΓΑΣΤΗΡΙΟ ΤΗΛΕΠΙΚΟΙΝΩΝΙΑΚΩΝ ΣΥΣΤΗΜΑΤΩΝ Εισαγωγή στις Τηλεπικοινωνίες Εφαρμογές της Ανάλυσης Fourier Αθανάσιος

Διαβάστε περισσότερα

HMY 429: Εισαγωγή στην Επεξεργασία Ψηφιακών Σημάτων. Διάλεξη 22: Γρήγορος Μετασχηματισμός Fourier Ανάλυση σημάτων/συστημάτων με το ΔΜΦ

HMY 429: Εισαγωγή στην Επεξεργασία Ψηφιακών Σημάτων. Διάλεξη 22: Γρήγορος Μετασχηματισμός Fourier Ανάλυση σημάτων/συστημάτων με το ΔΜΦ HMY 429: Εισαγωγή στην Επεξεργασία Ψηφιακών Σημάτων Διάλεξη 22: Γρήγορος Μετασχηματισμός Fourier Ανάλυση σημάτων/συστημάτων με το ΔΜΦ Γρήγορος Μετασχηματισμός Fourier Το ζεύγος εξισώσεων που ορίζουν το

Διαβάστε περισσότερα

Ο μετασχηματισμός Fourier

Ο μετασχηματισμός Fourier Ο μετασχηματισμός Fourier είναι από τα διαδεδομένα εργαλεία μετατροπής δεδομένων και συναρτήσεων (μιας ή περισσοτέρων διαστάσεων) από αυτό που ονομάζεται περιοχή χρόνου (time domain) στην περιοχή συχνότητας

Διαβάστε περισσότερα

t 1 f[n] t 2 t 3 t 4 f [n] f [-n] -k n

t 1 f[n] t 2 t 3 t 4 f [n] f [-n] -k n Πανεπιστημιο Κυπρου Τμημα Ηλεκτρολογων Μηχανικων και Μηχανικων Υπολογιστων ΗΜΥ 221: Σηματα και Συστηματα για Μηχανικους Υπολογιστων Κεφάλαιο 2: Σήματα διακριτού χρόνου!"#!"#! "#$% Σημειώσεις διαλέξεων

Διαβάστε περισσότερα

Στοχαστικά Σήµατα και Εφαρµογές

Στοχαστικά Σήµατα και Εφαρµογές Στοχαστικά Σήµατα & Εφαρµογές Εκτίµηση Φάσµατος ιδάσκων: Ν. Παπανδρέου (Π.. 47/8) Πανεπιστήµιο Πατρών ΤµήµαΜηχανικώνΗ/Υ και Πληροφορικής CEID 7-8 Μη παραµετρικές µέθοδοι: Περιοδόγραµµα Φάσµα ισχύοςµιας

Διαβάστε περισσότερα

Μάθημα: Θεωρία Δικτύων

Μάθημα: Θεωρία Δικτύων Σχολή Ηλεκτρολόγων Μηχ/κών και Μηχ/κών Υπολογιστών, Ε.Μ.Π., Ακαδημαϊκό Έτος 7-8, 5ο Εξάμηνο Μάθημα: Θεωρία Δικτύων Ανάλυση Ευσταθείας Κων/νος Τζαφέστας Τομέας Σημάτων, Ελέγχου & Ρομποτικής Σχολή Ηλεκτρ.

Διαβάστε περισσότερα

Στοιχεία επεξεργασίας σημάτων

Στοιχεία επεξεργασίας σημάτων Στοιχεία επεξεργασίας σημάτων ΕΜΠ - ΣΧΟΛΗ ΑΤΜ Ακ. Έτος 2004-2005 Β.Βεσκούκης, Δ.Παραδείσης, Δ.Αργιαλάς, Δ.Δεληκαράογλου, Β.Καραθανάση, Β.Μασσίνας Γενικά στοιχεία για το μάθημα Εισάγεται στα πλαίσια της

Διαβάστε περισσότερα

Τεχνολογικό Εκπαιδευτικό Ίδρυμα Σερρών Τμήμα Πληροφορικής & Επικοινωνιών Σήματα και Συστήματα

Τεχνολογικό Εκπαιδευτικό Ίδρυμα Σερρών Τμήμα Πληροφορικής & Επικοινωνιών Σήματα και Συστήματα Τεχνολογικό Εκπαιδευτικό Ίδρυμα Σερρών Τμήμα Πληροφορικής & Επικοινωνιών Σήματα και Συστήματα Δρ. Δημήτριος Ευσταθίου Επίκουρος Καθηγητής ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΣ LAPLACE Αντίστροφος Μετασχηματισμός Laplace Στην

Διαβάστε περισσότερα

X(t) = A cos(2πf c t + Θ) (1) 0, αλλού. 2 cos(2πf cτ) (9)

X(t) = A cos(2πf c t + Θ) (1) 0, αλλού. 2 cos(2πf cτ) (9) ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Τµήµα Επιστήµης Υπολογιστών HY-5: Εφαρµοσµένα Μαθηµατικά για Μηχανικούς Εαρινό Εξάµηνο 05-6 ιδάσκοντες : Γ. Στυλιανού, Γ. Καφεντζής Λυµένες Ασκήσεις - Τυχαίες ιαδικασίες Ασκηση. Εστω

Διαβάστε περισσότερα

HMY 429: Εισαγωγή στην Επεξεργασία Ψηφιακών. στο χώρο της συχνότητας

HMY 429: Εισαγωγή στην Επεξεργασία Ψηφιακών. στο χώρο της συχνότητας HMY 49: Εισαγωγή στην Επεξεργασία Ψηφιακών Σημάτων Διάλεξη 3: Σήματα και Συστήματα διακριτού χρόνου Διάλεξη 3: Σήματα και Συστήματα διακριτού χρόνου στο χώρο της συχνότητας Μιγαδικά εκθετικά σήματα και

Διαβάστε περισσότερα

Ακαδηµαϊκό Έτος , Εαρινό Εξάµηνο ιδάσκων Καθ.: Νίκος Τσαπατσούλης

Ακαδηµαϊκό Έτος , Εαρινό Εξάµηνο ιδάσκων Καθ.: Νίκος Τσαπατσούλης ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΕΛΟΠΟΝΝΗΣΟΥ, ΤΜΗΜΑ ΤΕΧΝΟΛΟΓΙΑΣ ΤΗΛΕΠΙΚΟΙΝΩΝΙΩΝ ΒΕΣ 6: ΠΡΟΣΑΡΜΟΣΤΙΚΑ ΣΥΣΤΗΜΑΤΑ ΣΤΙΣ ΤΗΛΕΠΙΚΟΙΝΩΝΙΕΣ Ακαδηµαϊκό Έτος 26 27, Εαρινό Εξάµηνο Καθ.: Νίκος Τσαπατσούλης ΕΡΩΤΗΣΕΙΣ ΓΙΑ ΕΠΑΝΑΛΗΨΗ Το

Διαβάστε περισσότερα

HMY 220: Σήματα και Συστήματα Ι

HMY 220: Σήματα και Συστήματα Ι HMY 220: Σήματα και Συστήματα Ι Βασικές Έννοιες Σήματα Κατηγορίες Σημάτων Συνεχούς/ Διακριτού Χρόνου, Αναλογικά/ Ψηφιακά Μετασχηματισμοί Σημάτων Χρόνου: Αντιστροφή, Κλιμάκωση, Μετατόπιση Πλάτους Βασικά

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 8 ΠΡΟΒΛΗΜΑΤΑ ΜΕ ΤΙΣ ΕΠΕΞΗΓΗΜΑΤΙΚΕΣ ΜΕΤΑΒΛΗΤΕΣ

ΚΕΦΑΛΑΙΟ 8 ΠΡΟΒΛΗΜΑΤΑ ΜΕ ΤΙΣ ΕΠΕΞΗΓΗΜΑΤΙΚΕΣ ΜΕΤΑΒΛΗΤΕΣ ΚΕΦΑΛΑΙΟ 8 ΠΡΟΒΛΗΜΑΤΑ ΜΕ ΤΙΣ ΕΠΕΞΗΓΗΜΑΤΙΚΕΣ ΜΕΤΑΒΛΗΤΕΣ 8. ΕΙΣΑΓΩΓΗ Μέχρι τώρα τα προβλήματα που δημιουργούνται από την παραβίαση των υποθέσεων που πρέπει να ισχύουν ώστε οι OLS εκτιμητές να είναι BLUE

Διαβάστε περισσότερα

Συνθετικές εδαφικές κινήσεις Κεφ.22. Ε.Σώκος Εργαστήριο Σεισμολογίας Παν.Πατρών

Συνθετικές εδαφικές κινήσεις Κεφ.22. Ε.Σώκος Εργαστήριο Σεισμολογίας Παν.Πατρών Συνθετικές εδαφικές κινήσεις Κεφ.22 Ε.Σώκος Εργαστήριο Σεισμολογίας Παν.Πατρών Συνθετικές εδαφικές κινήσεις Τι υπολογίζουμε από μια μελέτη σεισμικής επικινδυνότητας..? Μια πιθανολογική εκτίμηση των μέγιστων

Διαβάστε περισσότερα

HMY 795: Αναγνώριση Προτύπων

HMY 795: Αναγνώριση Προτύπων HMY 795: Αναγνώριση Προτύπων Διαλέξεις 9 10 Γραμμική παλινδρόμηση (Linear regression) Μπεϋζιανή εκτίμηση για την κανονική κατανομή Γνωστή μέση τιμή μ, άγνωστη διασπορά σ 2. Ακρίβεια λ=1/σ 2 : conjugate

Διαβάστε περισσότερα

Ανάλυση Κυκλωμάτων. Φώτης Πλέσσας Τμήμα Ηλεκτρολόγων Μηχανικών & Μηχανικών Υπολογιστών

Ανάλυση Κυκλωμάτων. Φώτης Πλέσσας Τμήμα Ηλεκτρολόγων Μηχανικών & Μηχανικών Υπολογιστών Ανάλυση Κυκλωμάτων Σήματα Φώτης Πλέσσας fplessas@inf.uth.gr Τμήμα Ηλεκτρολόγων Μηχανικών & Μηχανικών Υπολογιστών Εισαγωγή Για την ανάλυση των ηλεκτρικών κυκλωμάτων μαζί με την μαθηματική περιγραφή των

Διαβάστε περισσότερα

Ο αντίστροφος μετασχηματισμός Laplace ορίζεται από το μιγαδικό ολοκλήρωμα : + +

Ο αντίστροφος μετασχηματισμός Laplace ορίζεται από το μιγαδικό ολοκλήρωμα : + + Μετασχηματισμός aplace ορίζεται ως εξής : t X() [x( t)] xte () dt = = Ο αντίστροφος μετασχηματισμός aplace ορίζεται από το μιγαδικό ολοκλήρωμα : t x(t) = [ X()] = X() e dt π j c C είναι μία καμπύλη που

Διαβάστε περισσότερα

Kεφάλαιο 5 DFT- FFT ΔΙΑΚΡΙΤΟΣ ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΣ FOURIER DISCRETE FOURIER TRANSFORM 1/ 80. ΨΗΦΙΑΚΗ ΕΠΕΞΕΡΓΑΣΙΑ ΣΗΜΑΤΟΣ DFT-FFT Σ.

Kεφάλαιο 5 DFT- FFT ΔΙΑΚΡΙΤΟΣ ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΣ FOURIER DISCRETE FOURIER TRANSFORM 1/ 80. ΨΗΦΙΑΚΗ ΕΠΕΞΕΡΓΑΣΙΑ ΣΗΜΑΤΟΣ DFT-FFT Σ. Kεφάλαιο 5 DFT- FFT ΔΙΑΚΡΙΤΟΣ ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΣ FOURIER DISCRETE FOURIER TRASFORM / x X x X x X x 3 x DFT X 3 X x 5 X 5 x 6 X 6 x 7 X 7 / DFT - Ορισμοί αναφέρεται σε μία πεπερασμένου μήκους ακολουθία σημείων

Διαβάστε περισσότερα

Ο μετασχηματισμός Fourier

Ο μετασχηματισμός Fourier Ο μετασχηματισμός Fourier είναι από τα διαδεδομένα εργαλεία μετατροπής δεδομένων και συναρτήσεων (μιας ή περισσοτέρων διαστάσεων) από αυτό που ονομάζεται περιοχή χρόνου (time domain) στην περιοχή συχνότητας

Διαβάστε περισσότερα

ΣΤΟΧΑΣΤΙΚΑ ΣΥΣΤΗΜΑΤΑ & ΕΠΙΚΟΙΝΩΝΙΕΣ 1o Τμήμα (Α - Κ): Αμφιθέατρο 4, Νέα Κτίρια ΣΗΜΜΥ Θεωρία Πιθανοτήτων & Στοχαστικές Ανελίξεις

ΣΤΟΧΑΣΤΙΚΑ ΣΥΣΤΗΜΑΤΑ & ΕΠΙΚΟΙΝΩΝΙΕΣ 1o Τμήμα (Α - Κ): Αμφιθέατρο 4, Νέα Κτίρια ΣΗΜΜΥ Θεωρία Πιθανοτήτων & Στοχαστικές Ανελίξεις ΣΤΟΧΑΣΤΙΚΑ ΣΥΣΤΗΜΑΤΑ & ΕΠΙΚΟΙΝΩΝΙΕΣ 1o Τμήμα (Α - Κ): Αμφιθέατρο 4, Νέα Κτίρια ΣΗΜΜΥ Θεωρία Πιθανοτήτων & Στοχαστικές Ανελίξεις Άσκηση σε Στοχαστική Ανέλιξη Poisso Ασκήσεις 5.9, 5.1, 5.19 Άσκηση σε Στοχαστική

Διαβάστε περισσότερα

Α. Αιτιολογήστε αν είναι γραμμικά ή όχι και χρονικά αμετάβλητα ή όχι.

Α. Αιτιολογήστε αν είναι γραμμικά ή όχι και χρονικά αμετάβλητα ή όχι. ΨΗΦΙΑΚΗ ΕΠΕΞΕΡΓΑΣΙΑ ΣΗΜΑΤΟΣ ΕΞ. ΠΕΡΙΟΔΟΣ Β ΧΕΙΜ. 00 - ΩΡΕΣ ΘΕΜΑ Για τα παρακάτω συστήματα εισόδου εξόδου α. y ( 3x( x( n ) β. y ( x( n ) / γ. y ( x( x( n ) δ. y( x( n ) Α. Αιτιολογήστε αν είναι γραμμικά

Διαβάστε περισσότερα

x(t) = 4 cos(2π400t π/3) + 2 cos(2π900t + π/8) + cos(2π1200t) h(t) = 2000sinc(2000t) = h(t) = 2000sinc(2000t) H(f) = rect

x(t) = 4 cos(2π400t π/3) + 2 cos(2π900t + π/8) + cos(2π1200t) h(t) = 2000sinc(2000t) = h(t) = 2000sinc(2000t) H(f) = rect ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Τµήµα Επιστήµης Υπολογιστών HY-215: Εφαρµοσµένα Μαθηµατικά για Μηχανικούς Εαρινό Εξάµηνο 215-16 ιδάσκοντες : Γ. Στυλιανού, Γ. Καφεντζής ΤΕΛΙΚΗ ΕΞΕΤΑΣΗ ιάρκεια : 3 ώρες - Ηµεροµηνία

Διαβάστε περισσότερα

Συστήματα Αυτομάτου Ελέγχου 1 Ενότητα # 9: Σύστημα 2 ης τάξης: Χρονική απόκριση και χαρακτηριστικά μεγέθη (φυσικοί συντελεστές)

Συστήματα Αυτομάτου Ελέγχου 1 Ενότητα # 9: Σύστημα 2 ης τάξης: Χρονική απόκριση και χαρακτηριστικά μεγέθη (φυσικοί συντελεστές) ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Τεχνολογικό Εκπαιδευτικό Ίδρυμα Πειραιά Συστήματα Αυτομάτου Ελέγχου 1 Ενότητα # 9: Σύστημα 2 ης τάξης: Χρονική απόκριση και χαρακτηριστικά μεγέθη (φυσικοί συντελεστές) Δ. Δημογιαννόπουλος,

Διαβάστε περισσότερα

Διαμόρφωση FM στενής ζώνης. Διαμορφωτής PM

Διαμόρφωση FM στενής ζώνης. Διαμορφωτής PM Παραγωγή σημάτων FM Διαμόρφωση FM στενής ζώνης [ π φ π ] st () A cos(2 ft) ()sin(2 t ft) c c c Διαμορφωτής PM m (t) + s(t) A c sin(2 π ft) c +90 0 ~ A c cos(2 π ft) c Διαμόρφωση PM στενής ζώνης 2f c Άμεση

Διαβάστε περισσότερα

Εισαγωγή στην Ανάλυση και Προσοµοίωση Δυναµικών Συστηµάτων

Εισαγωγή στην Ανάλυση και Προσοµοίωση Δυναµικών Συστηµάτων Εισαγωγή στην Ανάλυση και Προσοµοίωση Δυναµικών Συστηµάτων Control Systems Laboratory Περιγραφή Δυναµικών Συστηµάτων Εξίσωση µεταβολής όγκου Η µεταβολή όγκου ισούται µε τη παροχή υγρού Q που σχετίζεται

Διαβάστε περισσότερα

A 1 y 1 (t) + A 2 y 2 (t)

A 1 y 1 (t) + A 2 y 2 (t) 5. ΔΙΕΛΕΥΣΗ ΣΗΜΑΤΟΣ ΑΠΟ ΓΡΑΜΜΙΚΟ ΚΑΙ XΡONIKA AMETABΛHTO ΣΥΣΤΗΜΑ 5.. Γενικά περί γραμμικών και χρονικά αμετάβλητων συστημάτων 5... Ορισμός Γραμμικό είναι ένα σύστημα το οποίο, όταν στην είσοδό του εμφανιστεί

Διαβάστε περισσότερα

x(t) ax 1 (t) y(t) = 1 ax 1 (t) = (1/a)y 1(t) x(t t 0 ) y(t t 0 ) =

x(t) ax 1 (t) y(t) = 1 ax 1 (t) = (1/a)y 1(t) x(t t 0 ) y(t t 0 ) = ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Τµήµα Επιστήµης Υπολογιστών HY-25: Εφαρµοσµένα Μαθηµατικά για Μηχανικούς Εαρινό Εξάµηνο 26-7 ιδάσκοντες : Γ. Στυλιανού, Γ. Καφεντζής Λύσεις Τρίτης Σειράς Ασκήσεων Ηµεροµηνία Ανάθεσης

Διαβάστε περισσότερα

Επικοινωνίες στη Ναυτιλία

Επικοινωνίες στη Ναυτιλία Επικοινωνίες στη Ναυτιλία Εισαγωγή Α. Παπαδάκης, Αναπλ. Καθ. ΑΣΠΑΙΤΕ Δρ. ΗΜΜΥ Μηχ. ΕΜΠ Βασικά Αντικείμενα Μαθήματος Σήματα Κατηγοριοποίηση, ψηφιοποίηση, δειγματοληψία, κβαντισμός Βασικά σήματα ήχος, εικόνα,

Διαβάστε περισσότερα

27-Ιαν-2009 ΗΜΥ 429. 2. (ι) Βασική στατιστική (ιι) Μετατροπές: αναλογικό-σεψηφιακό και ψηφιακό-σε-αναλογικό

27-Ιαν-2009 ΗΜΥ 429. 2. (ι) Βασική στατιστική (ιι) Μετατροπές: αναλογικό-σεψηφιακό και ψηφιακό-σε-αναλογικό ΗΜΥ 429 2. (ι) Βασική στατιστική (ιι) Μετατροπές: αναλογικό-σεψηφιακό και ψηφιακό-σε-αναλογικό 1 (i) Βασική στατιστική 2 Στατιστική Vs Πιθανότητες Στατιστική: επιτρέπει μέτρηση και αναγνώριση θορύβου και

Διαβάστε περισσότερα

Πανεπιστήμιο Πατρών Τμήμα Ηλεκτρολόγων Μηχανικών και Τεχνολογίας Υπολογιστών. Διάλεξη 9

Πανεπιστήμιο Πατρών Τμήμα Ηλεκτρολόγων Μηχανικών και Τεχνολογίας Υπολογιστών. Διάλεξη 9 Πανεπιστήμιο Πατρών Τμήμα Ηλεκτρολόγων Μηχανικών και Τεχνολογίας Υπολογιστών Τομέας Συστημάτων και Αυτομάτου Ελέγχου ΠΡΟΣΑΡΜΟΣΤΙΚΟΣ ΕΛΕΓΧΟΣ Διάλεξη 9 Πάτρα 2008 Ρύθμιση ελαχίστης διασποράς Η στρατηγική

Διαβάστε περισσότερα

Στοχαστικά Σήµατα και Εφαρµογές. ιδάσκων: Ν. Παπανδρέου (Π.. 407/80) Πανεπιστήµιο Πατρών ΤµήµαΜηχανικώνΗ/Υ και Πληροφορικής

Στοχαστικά Σήµατα και Εφαρµογές. ιδάσκων: Ν. Παπανδρέου (Π.. 407/80) Πανεπιστήµιο Πατρών ΤµήµαΜηχανικώνΗ/Υ και Πληροφορικής Στοχαστικά Σήµατα & Εφαρµογές Βέλτιστα Φίλτρα Wiener ιδάσκων: Ν. Παπανδρέου (Π.. 7/8) Πανεπιστήµιο Πατρών ΤµήµαΜηχανικώνΗ/Υ και Πληροφορικής CEID 7-8 Εισαγωγή ιατύπωση του προβλήµατος: οθέντος των από

Διαβάστε περισσότερα

Ψηφιακή Επεξεργασία Σημάτων

Ψηφιακή Επεξεργασία Σημάτων Ψηφιακή Επεξεργασία Σημάτων Ενότητα 7: Μετατροπή Σήματος από Αναλογική Μορφή σε Ψηφιακή Δρ. Μιχάλης Παρασκευάς Επίκουρος Καθηγητής 1 Μετατροπή Αναλογικού Σήματος σε Ψηφιακό Είδη Δειγματοληψίας: Ιδανική

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 3 ο. Μετασχηματισμός FOURIER Διακριτού Χρόνου DTFT. (Discrete Time Fourier Transform) ΨΗΦΙΑΚΗ ΕΠΕΞΕΡΓΑΣΙΑ ΣΗΜΑΤΟΣ Σ. ΦΩΤΟΠΟΥΛΟΣ ΔΠΜΣ 1/ 45

ΚΕΦΑΛΑΙΟ 3 ο. Μετασχηματισμός FOURIER Διακριτού Χρόνου DTFT. (Discrete Time Fourier Transform) ΨΗΦΙΑΚΗ ΕΠΕΞΕΡΓΑΣΙΑ ΣΗΜΑΤΟΣ Σ. ΦΩΤΟΠΟΥΛΟΣ ΔΠΜΣ 1/ 45 ΚΕΦΑΛΑΙΟ 3 ο Μετασχηματισμός FOURIER Διακριτού Χρόνου DTFT (Discrt Tim Fourir Transform / 45 Γενικά Μορφές Μετασχηματισμού Fourir Σήματα που αντιστοιχούν στους τέσσερους τύπους μετασχηματισμών α Μετασχηματισμός

Διαβάστε περισσότερα

Εφαρμοσμένη Στατιστική: Συντελεστής συσχέτισης. Παλινδρόμηση απλή γραμμική, πολλαπλή γραμμική

Εφαρμοσμένη Στατιστική: Συντελεστής συσχέτισης. Παλινδρόμηση απλή γραμμική, πολλαπλή γραμμική ΕΦΑΡΜΟΣΜΕΝΗ ΣΤΑΤΙΣΤΙΚΗ ΑΝΑΛΥΣΗ ΜΕΡΟΣ B Δημήτρης Κουγιουμτζής e-mal: dkugu@auth.gr Ιστοσελίδα αυτού του τμήματος του μαθήματος: http://uer.auth.gr/~dkugu/teach/cvltraport/dex.html Εφαρμοσμένη Στατιστική:

Διαβάστε περισσότερα

Τεχνολογικό Εκπαιδευτικό Ίδρυμα Σερρών Τμήμα Πληροφορικής & Επικοινωνιών. Σήματα. και. Συστήματα

Τεχνολογικό Εκπαιδευτικό Ίδρυμα Σερρών Τμήμα Πληροφορικής & Επικοινωνιών. Σήματα. και. Συστήματα Τεχνολογικό Εκπαιδευτικό Ίδρυμα Σερρών Τμήμα Πληροφορικής & Επικοινωνιών Σήματα και Συστήματα Άσκηση η Να υπολογιστεί η έξοδος του συστήματος με κρουστική απόκριση h()=u()-u(-4) και είσοδο x()=u(-) u(-3)

Διαβάστε περισσότερα

ΑΝΑΠΤΥΓΜA - ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΣ FOURIER ΑΝΑΛΟΓΙΚΩΝ ΣΗΜΑΤΩΝ. Περιγράψουµε τον τρόπο ανάπτυξης σε σειρά Fourier ενός περιοδικού αναλογικού σήµατος.

ΑΝΑΠΤΥΓΜA - ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΣ FOURIER ΑΝΑΛΟΓΙΚΩΝ ΣΗΜΑΤΩΝ. Περιγράψουµε τον τρόπο ανάπτυξης σε σειρά Fourier ενός περιοδικού αναλογικού σήµατος. 3. ΚΕΦΑΛΑΙΟ ΑΝΑΠΤΥΓΜA - ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΣ FOURIER ΑΝΑΛΟΓΙΚΩΝ ΣΗΜΑΤΩΝ Περιγράψουµε τον τρόπο ανάπτυξης σε σειρά Fourier ενός περιοδικού αναλογικού σήµατος. Ορίσουµε το µετασχηµατισµό Fourier ενός µη περιοδικού

Διαβάστε περισσότερα

Επομένως το εύρος ζώνης του διαμορφωμένου σήματος είναι 2.

Επομένως το εύρος ζώνης του διαμορφωμένου σήματος είναι 2. ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΠΛΗ ΓΙΑ ΤΙΣ ΕΞΕΤΑΣΕΙΣ ΘΕΜΑ Το φέρον σε ένα σύστημα DSB διαμόρφωσης είναι c t A t μηνύματος είναι το m( t) sin c( t) sin c ( t) ( ) cos 4 c και το σήμα. Το διαμορφωμένο σήμα διέρχεται

Διαβάστε περισσότερα

ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΣ FOURIER ΑΝΑΛΥΣΗ FOURIER ΔΙΑΚΡΙΤΩΝ ΣΗΜΑΤΩΝ ΚΑΙ ΣΥΣΤΗΜΑΤΩΝ. DTFT και Περιοδική/Κυκλική Συνέλιξη

ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΣ FOURIER ΑΝΑΛΥΣΗ FOURIER ΔΙΑΚΡΙΤΩΝ ΣΗΜΑΤΩΝ ΚΑΙ ΣΥΣΤΗΜΑΤΩΝ. DTFT και Περιοδική/Κυκλική Συνέλιξη ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΣ FOURIER ΑΝΑΛΥΣΗ FOURIER ΔΙΑΚΡΙΤΩΝ ΣΗΜΑΤΩΝ ΚΑΙ ΣΥΣΤΗΜΑΤΩΝ DTFT και Περιοδική/Κυκλική Συνέλιξη Διακριτός μετασχηματισμός συνημιτόνου DCT discrete cosine transform Η σχέση αποτελεί «πυρήνα»

Διαβάστε περισσότερα

HMY 220: Σήματα και Συστήματα Ι

HMY 220: Σήματα και Συστήματα Ι HMY 220: Σήματα και Συστήματα Ι ΔΙΑΛΕΞΗ #20 Πόλοι και μηδενικά Διάγραμμα πόλων και μηδενικών Ιδιότητες της περιοχής σύγκλισης Ο αντίστροφος Μετασχηματισμός Laplace Μετασχηματισμός Laplace Αμφίπλευρος μετασχηματισμός

Διαβάστε περισσότερα

y[n] ay[n 1] = x[n] + βx[n 1] (6)

y[n] ay[n 1] = x[n] + βx[n 1] (6) Ασκήσεις με το Μετασχηματισμό Fourier Διακριτού Χρόνου Επιμέλεια: Γιώργος Π. Καφεντζης Δρ. Επιστήμης Η/Υ Πανεπιστημίου Κρήτης Δρ. Επεξεργασίας Σήματος Πανεπιστημίου Rennes 1 8 Οκτωβρίου 015 1. Εστω το

Διαβάστε περισσότερα

Σήματα και Συστήματα

Σήματα και Συστήματα Σήματα και Συστήματα Διάλεξη 12: Ιδιότητες του Μετασχηματισμού aplace Ο αντίστροφος Μετασχηματισμός aplace Δρ. Μιχάλης Παρασκευάς Επίκουρος Καθηγητής 1 Ιδιότητες του Μετασχηματισμού aplace 1. Ιδιότητες

Διαβάστε περισσότερα

HMY 799 1: Αναγνώριση Συστημάτων

HMY 799 1: Αναγνώριση Συστημάτων HMY 799 : Αναγνώριση Συστημάτων Διαλέξεις Γραμμική παλινδρόμηση (Linear regression) Συνέχεια Γραμμική παλινδρόμηση (Linear regression) g = θϕ + θϕ + + θ ϕ = φ θ ( φ)... d d ϕ ϕ φ=, θ= [ θ θ... θd ]...

Διαβάστε περισσότερα

HMY 220: Σήματα και Συστήματα Ι

HMY 220: Σήματα και Συστήματα Ι HMY : Σήματα και Συστήματα Ι ΔΙΑΛΕΞΗ # Μετασχηματισμοί Σημάτων Ενέργεια και Ισχύς Σήματος Βασικές κατηγορίες σημάτων Περιοδικά σήματα Άρτια και περιττά σήματα Εκθετικά σήματα Μετασχηματισμοί σημάτων (signal

Διαβάστε περισσότερα

ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΘΕΣΣΑΛΟΝΙΚΗΣ ΣΧΟΛΗ ΤΕΧΝΟΛΟΓΙΚΩΝ ΕΦΑΡΜΟΓΩΝ ΤΜΗΜΑ ΗΛΕΚΤΡΟΝΙΚΗΣ

ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΘΕΣΣΑΛΟΝΙΚΗΣ ΣΧΟΛΗ ΤΕΧΝΟΛΟΓΙΚΩΝ ΕΦΑΡΜΟΓΩΝ ΤΜΗΜΑ ΗΛΕΚΤΡΟΝΙΚΗΣ ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΘΕΣΣΑΛΟΝΙΚΗΣ ΣΧΟΛΗ ΤΕΧΝΟΛΟΓΙΚΩΝ ΕΦΑΡΜΟΓΩΝ ΤΜΗΜΑ ΗΛΕΚΤΡΟΝΙΚΗΣ ΦΑΣΜΑΤΙΚΗ ΑΝΑΛΥΣΗ ΗΧΗΤΙΚΩΝ ΣΗΜΑΤΩΝ ΜΕ ΤΟ ΜΑTLAΒ ΠΤΥΧΙΑΚΗ ΕΡΓΑΣΙΑ Σπουδαστές: Θεοδωρίδης Σταύρος, Τσιόρλας Νικόλαος.

Διαβάστε περισσότερα

(ii) x[y (x)] 4 + 2y(x) = 2x. (vi) y (x) = x 2 sin x

(ii) x[y (x)] 4 + 2y(x) = 2x. (vi) y (x) = x 2 sin x ΕΥΓΕΝΙΑ Ν. ΠΕΤΡΟΠΟΥΛΟΥ ΕΠΙΚ. ΚΑΘΗΓΗΤΡΙΑ ΤΜΗΜΑ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΑΤΡΩΝ ΑΣΚΗΣΕΙΣ ΓΙΑ ΤΟ ΜΑΘΗΜΑ «ΕΦΑΡΜΟΣΜΕΝΑ ΜΑΘΗΜΑΤΙΚΑ ΙΙΙ» ΠΑΤΡΑ 2015 1 Ασκήσεις 1η ομάδα ασκήσεων 1. Να χαρακτηρισθούν πλήρως

Διαβάστε περισσότερα

E(X(t)) = 1 k + k sin(2π) + k cos(2π) = 1 k + k 0 + k 1 = 1

E(X(t)) = 1 k + k sin(2π) + k cos(2π) = 1 k + k 0 + k 1 = 1 ΠΟΛΥΤΕΧΝΕΙΟ ΚΡΗΤΗΣ Τμήμα Ηλεκτρονικών Μηχανικών και Μηχανικών Υπολογιστών Τομέας Τηλεπικοινωνιών ΤΗΛ 2: ΠΙΘΑΝΟΤΗΤΕΣ ΚΑΙ ΤΥΧΑΙΑ ΣΗΜΑΤΑ 4ο Εξάμηνο 2009-200 4η ΕΡΓΑΣΙΑ ΑΣΚΗΣΗ Εστω τυχαία διαδικασία X(t) =

Διαβάστε περισσότερα

Συστήματα Αυτομάτου Ελέγχου 1 Ενότητα # 6: Έννοια της συνάρτησης μεταφοράς Παραδείγματα εφαρμογής σε φυσικά συστήματα

Συστήματα Αυτομάτου Ελέγχου 1 Ενότητα # 6: Έννοια της συνάρτησης μεταφοράς Παραδείγματα εφαρμογής σε φυσικά συστήματα ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Τεχνολογικό Εκπαιδευτικό Ίδρυμα Πειραιά Συστήματα Αυτομάτου Ελέγχου 1 Ενότητα # 6: Έννοια της συνάρτησης μεταφοράς Παραδείγματα εφαρμογής σε φυσικά συστήματα Δ. Δημογιαννόπουλος, dimogian@teipir.gr

Διαβάστε περισσότερα

Στοχαστικό Σήμα. Σημειώσεις από τις παραδόσεις. Για τον κώδικα σε L A TEX, ενημερώσεις και προτάσεις: https://github.com/kongr45gpen/ece-notes

Στοχαστικό Σήμα. Σημειώσεις από τις παραδόσεις. Για τον κώδικα σε L A TEX, ενημερώσεις και προτάσεις: https://github.com/kongr45gpen/ece-notes Στοχαστικό Σήμα Σημειώσεις από τις παραδόσεις Για τον κώδικα σε L A TEX, ενημερώσεις και προτάσεις: https://github.com/kongr45gpen/ece-notes 217 Τελευταία ενημέρωση: 2 Ιουνίου 217 Περιεχόμενα Εισαγωγή

Διαβάστε περισσότερα