Diode semiconductoare şi redresoare monofazate

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "Diode semiconductoare şi redresoare monofazate"

Transcript

1 Laborator 1 Diode semiconductoare şi redresoare monofazate Se vor studia dioda redresoare şi redresorul monofazat cu şi fără filtru C. Pentru diodă se va determina experimental dependenţa curent-tensiune pentru polarizare directă. Pentru cazul polarizării inverse se va face o evaluare pentru un singur punct. Se va trasa caracteristica grafică şi se vor calcula rezistenţele dinamice. Pentru redresorul monofazat monoalternanţă fără filtru se va determina experimental caracteristica de ieşire tensiune-curent. Pentru o valoare a rezistenţei de sarcină de la mijlocul caracteristicii se va calcula rezistenţa de ieşire a redresorului. La aceeaşi valoare a rezistenţei de sarcină se va vizualiza tensiunea de ieşire determind amplitudinea şi frecvenţa acesteia. Pentru acelaşi caz particular se va realiza şi un redresor dublă alternanţă. Se va vizualiza forma tensiunii şi se vor determina şi în acest caz amplitudinea şi frecvenţa. În final se studiază redresorul cu filtru C urmând aceeaşi paşi ca şi pentru cazul redresorului fără filtru. 1. Introducere teoretică 1.1. Diode semiconductoare Structura, simbol, caracteristică grafică Diodele semiconductoare sunt jonctiuni p-n cu doua terminale (borne, pini) conectate la cele doua zone. Terminalul conectat la zona p se numeste anod (A) iar cel conectat la zona n se numeste catod (K). Fig. 1. Structura şi simbolul diodei semiconductoare Proprietatea principala a unei diode este aceea ca permite circulatia curentului intr-un singur sens, fiind un dispozitiv unidirectional. Structura şi simbolul diodei sunt prezentate în figura 1. Sensul sagetii este şi sensul posibil al curentului prin dioda. Curentul prin dioda depinde de tensiunea la borne dupa relatia exponentiala: k i I ( u S e 1) (1) I S ( curentul de saturatie al diodei) şi k sunt doua mărimi care depind, printre altele, de temperatura. Constanta e este baza logaritmilor naturali. a) b) c) Fig. 2. Caracteristica grafica a diodei pentru diferite scari ale curentului şi tensiunii.

2 Prin reprezentarea grafica a relatiei 1 se obtine caracteristica grafica curent-tensiune a diodei. Desenata pentru scari diferite ale curentului şi tensiunii, poate fi urmarita în figura 2. In cazul polarizarii directe a diodei ( tensiune pozitiva anod-catod, u>0) curentul creste exponential cu tensiunea. Forma exponenţială este evidentă la curenţi mici (figura 1a). Curentul devine insa semnificativ doar daca tensiunea depaseste un prag U D numit tensiune de deschidere a diodei, situat în jurul valorii de 0,7 volti pentru diodele pe siliciu (figura 1b). În continuare curentul creste foarte mult iar tensiunea foarte putin. Intr-o primă aproximare se considera ca tensiunea unei diode polarizate direct este constanta, egala cu 0,7 V. În numeroase situatii şi aceasta valoare de 0,7 V este neglijabila (cum se poate deduce din figura 1c), iar tensiunea pe o dioda deschisa poate fi considerata zero. In cazul polarizarii inverse a diodei ( tensiune negativa anod-catod, u<0) curentul invers este foarte mic şi tinde spre valoarea I S numită curent de saturaţie al diodei. În multe cazuri acest curent este neglijat, fiind considerat zero Rezistenţa dinamică a diodei O rezistenţă este un element liniar deoarece există o dependenţă liniara între curent si tensiune (legea lui Ohm) şi corespunzător graficul este o linie dreaptă. Rezistenţa este constantă, nu depinde de valoarea curentului Dioda redresoare (utilizată la frecvenţa retelei) este un element rezistiv neliniar. Rezistenţa nu mai este constantă, ea depinde de curent sau, echivalent, de poziţia unui punct pe curba curent-tensiune. Pentru cazul elementelor neliniare se definesc două tipuri de rezistenţe, dependente de punctul de pe curbă în care se află la un moment dat elementul, punct notat de obicei M şi numit şi punct de funcţionare: -rezistenţa statică egală cu raportul tensiune-curent Fig 3. Calcul grafic al R d din punctul de funcţionare -rezistenţa dinamică egală cu limita raportului du/di în jurul punctul de funcţionare Dacă este ridicată caracteristica grafica se poate face un calcul grafic al R d prin aproximarea du/di cu diferenţe finite Δu/Δi ca în figura 3. Modele pentru diode Pentru calculul circuitelor cu diode se poate utiliza relatia analitica (1) sau se poate utiliza metoda grafica, folosind caracteristica grafica curent-tensiune a diodei. Metodele de mai sus sunt rar utilizate, fiind complicate sau chiar inoperante în cazul circuitelor cu mai multe elemente. Din acest motiv cea mai utilizata metoda este liniarizarea diodei, adica a) b) c) Fig. 4. Modele liniare pentru diode inlocuirea acesteia cu o schema echivalenta formata cu elemente liniare. În functie de precizia

3 dorita a calculelor, dioda poate fi echivalata cu o schema mai simpla sau mai complicata. Dupa inlocuirea diodei cu schema echivalenta, calculul urmeaza cursul obisnuit pentru circuitele liniare. Sunt utilizate trei nivele de aproximare liniara a diodelor. În figura 4 sunt prezentate atat modelele cat şi caracteristica grafica a acestora. Cel mai simlpu şi mai folosit model este un comutator, K (4a). Acesta este deschis (rezistenta infinita), cand tensiunea anod-catod este mai mica decât zero (u AC < 0) şi este inchis (rezistenta zero), cand tensiunea anod-catod este mai mare sau egală zero (u AC 0). Un al doilea model tine cont de tensiunea de deschidere U D 0,7V (4b). In sfarsit, modelul cel mai precis (4c) tine cont şi de rezistenta diodei în zona de conductie, R d, considerând panta caracteristicii grafice mai mica de 90 O. Modelele prezentate pana acum sunt utilizate atunci cand diodele sunt în regim de curent continuu sau în regim de curent alternativ de frecventa mica, de exemplu la 50 Hz, frecventa retelei. Cand diodele sunt utilizate în regim de curent alternativ cu amplitudine mica şi frecventa mai mare, se foloseste un model denumit model dinamic de semnal mic, care tine cont şi de capacitatea electrica a jonctiunii p-n Redresoare monofazate Redresor monoalternanta Redresorul mono-alternanta contine un singur element redresor, o dioda. Schema, forma tensiunilor si schemele echivalente in semiperioadele distincte de functionare sunt prezentate in figura 5. Desi aici este prezent si transformatorul, acesta poate lipsi. Se consideră cea mai simpla schema echivalenta pentru dioda, contact facut pentru polarizare directa, desfacut pentru polarizare inversa. In prima semiperioada dioda este polarizata direct (schema echivalenta 5c) şi tensiunea redresata este egala cu tensiunea din secundar, tensiunea pe dioda fiind zero. In a doua semiperioada dioda este polarizata invers (schema echivalenta 5d) şi tensiunea redresata este egala cu zero, tensiunea pe dioda fiind tensiunea din secundar. Valoarea medie U 0 a tensiunii redresate se calculeaza cu formula valorii medii a unei marimi periodice, este pozitiva si are valoarea: 1 U 0 u d( t) 2U 2 sin t d( t) 2 S 2 2U Fig. 5. Redresor monofazat monoalternanta: schema (a); forma tensiunilor (b); schema echivalenta in semiperioada pozitiva a tensiunii de intrare (c); schema echivalenta in semiperioada negativa a tensiunii de intrare (d). (2)

4 Randamentul scazut este unul dintre dezavantajele acestui redresor, un al doilea fiind incarcarea nesimetrica a retelei, puterea fiind absorbita doar in timpul unei singure semialternante. Acest redresor este destul de folosit la puteri mici deoarece este cel mai simplu si cel mai ieftin. Redresor dubla alternanta cu punct median Redresorul dubla alternanta cu punct median are schema, forma tensiunilor si schemele echivalente in semiperioadele distincte de functionare prezentate in figura 6. In cazul acestui tip de redresor transformatorul este necesar si trebuie sa aiba un secundar cu doua infasurari inseriate, care au acelasi numar de spire, cu un punct median intre ele, ca sa furnizeze blocului redresor compus din doua diode doua tensiuni identice, u 2. Ansamblul poate fi privit si ca doua redresoare monoalternanta legate la aceeasi sarcina, in cazul acesta rezistenta R S. Fig. 6. Redresor dubla alternanta cu punct median: schema (a); schema echivalenta in semiperioada pozitiva a tensiunii de intrare (b); schema echivalenta in semiperioada negativa a tensiunii de intrare (c); forma tensiunilor (d) Filtrul C Este cel mai simplu tip de filtru şi cel mai utilizat în circuitele de curenţi mici deoarece efectul de filtrare este mai accentuat la rezistenţe de sarcină mari. Pentru înţelegerea funcţionării se reaminteşte: Regimul tranzitoriu al descărcării unui condensator pe o rezistenţă. Se dă schema din figura 7a, o sursă de tensiune continuă cu rezistenţă internă, un un grup paralel RC şi un comutator care permite încărcarea condensatorului. Presupunem comutatorul închis şi condensatorul încărcat la o tensiune egală cu tensiunea sursei, U. La momentul zero se deschide comutatorul şi circuitul paralel RC evoluează liber, condensatorul descărcându-se pe rezistenţă. Tensiunea u este dată de relaţia: t u( t) U e unde: τ = RC (4) şi se numeşte constanta de timp a circuitului RC. a) b) Fig. 7. Regim tranzitoriu de descărcare a circuitului paralel RC (3)

5 Graficul variaţiei în timp a tensiunii u(t), o cădere exponenţială, este prezentat în figura 7b pentru două valori ale constantei de timp, τ şi τ 1, unde τ 1 >> τ. Constanta de timp τ are o semnificaţie fizică fiind timpul corespunzător intersecţiei tangentei la curba tensiunii în momentul iniţial cu axa timpului şi momentul în care tensiunea pe condensator este aproximativ o treime din tensiunea iniţială. După trei constante de timp se consideră condensatorul practic descărcat (sub 5% din valoarea iniţială) Funcţionarea filtrului C Revenind la filtrul C, ca exemplu s-a ales redresorul monofazat monoalternanţă cu filtru C. În figura 8 sunt prezentate schema şi formele de undă corespunzătoare regimului permanent de funcţionare (la pornire acestea fiind puţin diferite). Se vor considera transformatorul şi dioda ideale. Până la momentul t 1 tensiunea de intrare, u sec, este mai mică decât tensiunea de ieşire u, aceeaşi cu tensiunea pe condensator şi dioda este polarizată invers, blocată. Condensatorul se descarcă pe sarcina R, i C fiind egal şi de semn contrar cu i R. În momentul t 1 tensiunea de intrare u sec devine mai mare decât tensiunea pe condensator, u (tensiunea de ieşire), dioda se polarizeză direct şi se deschide, iar tensiunea u va urmări variaţia tensiunii de intrare. Condensatorul se încarcă (panta tensiunii pe condensator se modifică brusc, de la valori negative la valori pozitive şi conform relatiei principale între curentul şi tensiunea pe un condensator i C = C du/dt, curentul, proporţional cu derivata tensiunii funcţie de timp, adică panta funcţiei u(t), se modifica prin salt, de la valori negative la valori pozitive). În continuare curentul Fig. 8. Filtrul C şi formele de undă prin condensator rămâne pozitiv dar se micşorează ca şi panta tensiunii până în momentul t 2 de maxim al tensiunii de intrare când panta devine zero şi curentul trece prin zero. În acelaşi subinterval de timp avem deasemenea un curent i R prin R, proportional cu u. Suma celor doi este curentul prin diodă, i D. Încărcarea condensatorului încetază în momentul t 2, când tensiunea de intrare atinge maximul. Curentul prin condensator îşi schimbă semnul. După un interval foarte scurt de timp, în momentul t 3, curentul prin dioda D devine zero şi dioda se blochează. De aici suntem intr-un caz identic cu cel prezentat mai înainte. Condensatorul se va descărca liber pe rezistenţa de sarcină şi în intervalul t 3 -t 4 tensiunea de ieşire variază conform ecuaţiei (3). Cel mai important pentru a evalua eficacitatea filtrării este să se determine variaţia tensiunii pe sarcină după filtrare. O formulă aproximativă, simplă şi uşor de utilizat pentru calculul condensatorului C T U U (5) M RC În cazul redresoarelor dublă alternanţă funcţionarea este similară deosebirea fiind că perioada de variaţie a tensiunii de ieşire este de două ori mai mică, T/2.

6 2. Mersul lucrării 1. Se va identifica dioda redresoare (1N4007) şi terminalele, catodul fiind marcat printr-o bandă de culoare deschisă. Cu un ohmetru se va măsura în două sensuri rezistenţa diodei, a doua oara inversând firele aparatului de măsură la terminalele diodei. 2. Se va realiza circuitul din figura 9. Fig. 9. Circuit pentru determinarea caracteristicii grafice a diodei. 3. Se va regla tensiunea furnizată de sursă şi se va completa tabelul 1 (din Referat): 4. Se va inversa polaritatea sursei dupa ultima măsuratoare. Se măsoară curentul invers prin diodă, I S1. Se mută firul voltmetrului comun cu ampermetrul la borna a doua a acestuia (desenul cu linie intrerupta). Se măsoară din nou curentul invers prin diodă, I S2. 5. Se identifică înfăşurările primare şi secundare ale transformatorului(schema acestuia este in partea stanga a figurii 10) si se vor măsura rezistenţele acestora. 6. Se va realiza circuitul din figura 10 (pentru inceput doar schema desenata cu linie continua, conexiunile cu linie intrerupta se fac ulterior). Initial se vor aşeza toate rezistenţele (în ordine descrescătoare) şi condensatorul pe placa de încercări, asemănător figurii 11. Punctul median al transformatorului va fi punct de masă şi se va conecta la linia laterală la care sunt conectate punctele comune ale elementelor de circuit. Osciloscopul se va conecta doar când se ajunge la punctul 8 Atenţie: Nu se va conecta condensatorul decat incepand cu punctul 10. Se va respecta polaritatea terminalelor condensatorului! Fig. 10. Redresor monofazat monoalternanţă.

7 Fig. 11. Aşezarea elementelor de circuit pe placa de încercări. 7. Se conectează pe rând rezistenţele si se completează tabelul 2 (rezistenta infinita se obtine cand nu este conectata nicio rezistenta). 8. Se revine la R=560Ω, se conecteaza osciloscopul şi se va desena forma de undă. Se masoară amplitudinea si perioada tensiunii. 9. Pentru R=560Ω se va realiza si circuitul redresorului monofazat dublă alternanţă, prezentat în figura 12, pastrand conectat osciloscopul. Se va desena forma de undă, se masoară amplitudinea si perioada tensiunii. Fig. 12. Redresor monofazat dublă alternanţă. 10. Se revine la redresorul monoalternanţa (osciloscopul se pastreaza) se conecteaza si condensatorul C = 100μF si apoi pe rand rezistentele si se completeaza tabelul 3. Valorile maxime, U M, si minime, U m, ale tensiunilor se masoara cu osciloscopul. 11. Se revine la R=560Ω şi se va desena forma de undă. Se masoară amplitudinea, perioada tensiunii si variatia U. Se vor desena formele de undă pentru R=560Ω. 12. Pentru R=560Ω se va realiza si circuitul redresorului monofazat dublă alternanţă, prezentat în figura 12. Se va desena forma de undă, se masoară amplitudinea si perioada tensiunii.

8 3. Referat 1 CEL Dioda semiconductoare si redresoare monofazate Nume Grupa Data R d1 = R d2 = Tabel 1 Dioda redresoare, caracteristica directă I D ma 0 0, U D V 0 R d Ω I S1 = I S2 = R prim = R sec1 = R sec2 = Tabel 2 Caracteristica redresor monoalternanta fara filtru R (kω) 12 2,7 0,560 0,150 0,047 I (ma) U (V) Monoalternanţă: U M = T = f = Dublă alternanţă: U M = T = f = Tabel 3 Caracteristica redresor monoalternanta cu filtru R (kω) 12 2,7 0,560 0,150 0,047 I (ma) U (V) U M (V) U m (V) Monoalternanţă: U M = T = f = U masurat= U calculat= Calcul U : Dublă alternanţă: U M = T = f = U masurat= U calculat= Calcul U : Observaţii:

9 4. Conţinutul referatului Referatul va fi întocmit conform formularului atasat. El va conţine: 1. Nume, prenume, data, grupa, titlul laboratorului; 2. Valorile masurate ale rezistenţelor diodei; 3. Tabelul 1, completat cu rezistentele dinamice calculate conform figurii 3; 4. Graficul caracteristicii directe curent-tensiune pe o pagina separată; 5. Valorile curentilor inverşi pentru cele doua cazuri. Puteti explica diferenţa? 6. Valorile masurate ale rezistenţelor transformatorului; 7. Tabelul 2 completat; 8. Pentru monoalternanta: amplitudinea, perioada masurate; se va calcula frecvenţa; 9. Pentru dubla alternanţa: amplitudinea, perioada masurate; frecvenţa calculată; 10. Tabelul 3 completat; 11. Pentru monoalternanta cu filtru: amplitudinea, perioada masurate; frecvenţa calculată; 12. Valoarea U masurat pentru R=560Ω 13. Calculul U (se va utiliza formula simplificata (5)). 14. Pentru dubla alternanţa cu filtru: amplitudinea, perioada masurate; frecvenţa calculată; 15. Valoarea U masurat pentru R=560Ω 16. Calculul U (se va utiliza formula simplificata (5)). 17. Se vor desena pe un acelasi grafic caracteristicile tensiune-curent conform tabelelor 2 şi 3, pe o pagina separată; 18. Desenele formelor de undă observate la punctele 8,9,11,12, pe o pagina separată.

Redresoare monofazate cu filtru C

Redresoare monofazate cu filtru C LABORAOR 2 Redresoare monofazate cu filtru C Se vor studia redresoarele monofazate mono şi dublă alternanţă cu filtru C. Pentru redresorul monofazat monoalternanţă cu filtru C se va determina experimental

Διαβάστε περισσότερα

Curs 2 DIODE. CIRCUITE DR

Curs 2 DIODE. CIRCUITE DR Curs 2 OE. CRCUTE R E CUPRN tructură. imbol Relația curent-tensiune Regimuri de funcționare Punct static de funcționare Parametrii diodei Modelul cu cădere de tensiune constantă Analiza circuitelor cu

Διαβάστε περισσότερα

3. REDRESOARE Probleme generale

3. REDRESOARE Probleme generale 3. EDESOAE 3.1. Probleme generale edresoarele sunt circuite care transforma energia unei surse de curent alternativ in energie de curent continuu. Pe scurt un redresor face transformarea alternativ continuu.

Διαβάστε περισσότερα

Stabilizator cu diodă Zener

Stabilizator cu diodă Zener LABAT 3 Stabilizator cu diodă Zener Se studiază stabilizatorul parametric cu diodă Zener si apoi cel cu diodă Zener şi tranzistor. Se determină întâi tensiunea Zener a diodei şi se calculează apoi un stabilizator

Διαβάστε περισσότερα

10. STABILIZATOAE DE TENSIUNE 10.1 STABILIZATOAE DE TENSIUNE CU TANZISTOAE BIPOLAE Stabilizatorul de tensiune cu tranzistor compară în permanenţă valoare tensiunii de ieşire (stabilizate) cu tensiunea

Διαβάστε περισσότερα

Dioda Zener şi stabilizatoare de tensiune continuă

Dioda Zener şi stabilizatoare de tensiune continuă Laborator 2 Dioda Zener şi stabilizatoare de tensiune continuă Se vor studia dioda Zener şi stabilizatoarele de tensiune continua cu diodă Zener şi cu diodă Zener si tranzistor serie. Pentru diodă se va

Διαβάστε περισσότερα

Componente şi Circuite Electronice Pasive. Laborator 3. Divizorul de tensiune. Divizorul de curent

Componente şi Circuite Electronice Pasive. Laborator 3. Divizorul de tensiune. Divizorul de curent Laborator 3 Divizorul de tensiune. Divizorul de curent Obiective: o Conexiuni serie şi paralel, o Legea lui Ohm, o Divizorul de tensiune, o Divizorul de curent, o Implementarea experimentală a divizorului

Διαβάστε περισσότερα

5.5. REZOLVAREA CIRCUITELOR CU TRANZISTOARE BIPOLARE

5.5. REZOLVAREA CIRCUITELOR CU TRANZISTOARE BIPOLARE 5.5. A CIRCUITELOR CU TRANZISTOARE BIPOLARE PROBLEMA 1. În circuitul din figura 5.54 se cunosc valorile: μa a. Valoarea intensității curentului de colector I C. b. Valoarea tensiunii bază-emitor U BE.

Διαβάστε περισσότερα

Lucrarea Nr. 5 Circuite simple cu diode (Aplicaţii)

Lucrarea Nr. 5 Circuite simple cu diode (Aplicaţii) ucrarea Nr. 5 Circuite simple cu diode (Aplicaţii) A.Scopul lucrării - Verificarea experimentală a rezultatelor obţinute prin analiza circuitelor cu diode modelate liniar pe porţiuni ;.Scurt breviar teoretic

Διαβάστε περισσότερα

4. CIRCUITE LOGICE ELEMENTRE 4.. CIRCUITE LOGICE CU COMPONENTE DISCRETE 4.. PORŢI LOGICE ELEMENTRE CU COMPONENTE PSIVE Componente electronice pasive sunt componente care nu au capacitatea de a amplifica

Διαβάστε περισσότερα

11.2 CIRCUITE PENTRU FORMAREA IMPULSURILOR Metoda formării impulsurilor se bazează pe obţinerea unei succesiuni periodice de impulsuri, plecând de la semnale periodice de altă formă, de obicei sinusoidale.

Διαβάστε περισσότερα

1.7. AMPLIFICATOARE DE PUTERE ÎN CLASA A ŞI AB

1.7. AMPLIFICATOARE DE PUTERE ÎN CLASA A ŞI AB 1.7. AMLFCATOARE DE UTERE ÎN CLASA A Ş AB 1.7.1 Amplificatoare în clasa A La amplificatoarele din clasa A, forma de undă a tensiunii de ieşire este aceeaşi ca a tensiunii de intrare, deci întreg semnalul

Διαβάστε περισσότερα

REDRESOARE MONOFAZATE CU FILTRU CAPACITIV

REDRESOARE MONOFAZATE CU FILTRU CAPACITIV REDRESOARE MONOFAZATE CU FILTRU CAPACITIV I. OBIECTIVE a) Stabilirea dependenţei dintre tipul redresorului (monoalternanţă, bialternanţă) şi forma tensiunii redresate. b) Determinarea efectelor modificării

Διαβάστε περισσότερα

Problema a II - a (10 puncte) Diferite circuite electrice

Problema a II - a (10 puncte) Diferite circuite electrice Olimpiada de Fizică - Etapa pe judeţ 15 ianuarie 211 XI Problema a II - a (1 puncte) Diferite circuite electrice A. Un elev utilizează o sursă de tensiune (1), o cutie cu rezistenţe (2), un întrerupător

Διαβάστε περισσότερα

Electronică STUDIUL FENOMENULUI DE REDRESARE FILTRE ELECTRICE DE NETEZIRE

Electronică STUDIUL FENOMENULUI DE REDRESARE FILTRE ELECTRICE DE NETEZIRE STDIL FENOMENLI DE REDRESARE FILTRE ELECTRICE DE NETEZIRE Energia electrică este transportată şi distribuită la consumatori sub formă de tensiune alternativă. În multe aplicaţii este însă necesară utilizarea

Διαβάστε περισσότερα

Analiza în curent continuu a schemelor electronice Eugenie Posdărăscu - DCE SEM 1 electronica.geniu.ro

Analiza în curent continuu a schemelor electronice Eugenie Posdărăscu - DCE SEM 1 electronica.geniu.ro Analiza în curent continuu a schemelor electronice Eugenie Posdărăscu - DCE SEM Seminar S ANALA ÎN CUENT CONTNUU A SCHEMELO ELECTONCE S. ntroducere Pentru a analiza în curent continuu o schemă electronică,

Διαβάστε περισσότερα

Circuite elementare de formare a impulsurilor

Circuite elementare de formare a impulsurilor LABORATOR 1 Electronica digitala Circuite elementare de formare a impulsurilor Se vor studia câteva circuite simple de formare a impulsurilor şi anume circuitul de integrare a impulsurilor, cel de derivare

Διαβάστε περισσότερα

4. Măsurarea tensiunilor şi a curenţilor electrici. Voltmetre electronice analogice

4. Măsurarea tensiunilor şi a curenţilor electrici. Voltmetre electronice analogice 4. Măsurarea tensiunilor şi a curenţilor electrici oltmetre electronice analogice oltmetre de curent continuu Ampl.c.c. x FTJ Protectie Atenuator calibrat Atenuatorul calibrat divizor rezistiv R in const.

Διαβάστε περισσότερα

Fig Impedanţa condensatoarelor electrolitice SMD cu Al cu electrolit semiuscat în funcţie de frecvenţă [36].

Fig Impedanţa condensatoarelor electrolitice SMD cu Al cu electrolit semiuscat în funcţie de frecvenţă [36]. Componente şi circuite pasive Fig.3.85. Impedanţa condensatoarelor electrolitice SMD cu Al cu electrolit semiuscat în funcţie de frecvenţă [36]. Fig.3.86. Rezistenţa serie echivalentă pierderilor în funcţie

Διαβάστε περισσότερα

Ovidiu Gabriel Avădănei, Florin Mihai Tufescu,

Ovidiu Gabriel Avădănei, Florin Mihai Tufescu, vidiu Gabriel Avădănei, Florin Mihai Tufescu, Capitolul 6 Amplificatoare operaţionale 58. Să se calculeze coeficientul de amplificare în tensiune pentru amplficatorul inversor din fig.58, pentru care se

Διαβάστε περισσότερα

Figura 1. Caracteristica de funcţionare a modelului liniar pe porţiuni al diodei semiconductoare..

Figura 1. Caracteristica de funcţionare a modelului liniar pe porţiuni al diodei semiconductoare.. I. Modelarea funcţionării diodei semiconductoare prin modele liniare pe porţiuni În modelul liniar al diodei semiconductoare, se ţine cont de comportamentul acesteia atât în regiunea de conducţie inversă,

Διαβάστε περισσότερα

Aplicaţii ale principiului I al termodinamicii la gazul ideal

Aplicaţii ale principiului I al termodinamicii la gazul ideal Aplicaţii ale principiului I al termodinamicii la gazul ideal Principiul I al termodinamicii exprimă legea conservării şi energiei dintr-o formă în alta şi se exprimă prin relaţia: ΔUQ-L, unde: ΔU-variaţia

Διαβάστε περισσότερα

V O. = v I v stabilizator

V O. = v I v stabilizator Stabilizatoare de tensiune continuă Un stabilizator de tensiune este un circuit electronic care păstrează (aproape) constantă tensiunea de ieșire la variaţia între anumite limite a tensiunii de intrare,

Διαβάστε περισσότερα

L7. REDRESOARE MONOFAZATE

L7. REDRESOARE MONOFAZATE L7. REDRESOARE MONOFAZATE În lucrare se studiază redresorul monofazat in punte, cu doua variante: fără filtru si cu filtru cu condensator. Se fac comparaţii intre rezultatele experimentale si cele teoretice.

Διαβάστε περισσότερα

L1. DIODE SEMICONDUCTOARE

L1. DIODE SEMICONDUCTOARE L1. DIODE SEMICONDUCTOARE L1. DIODE SEMICONDUCTOARE În lucrare sunt măsurate caracteristicile statice ale unor diode semiconductoare. Rezultatele fiind comparate cu relaţiile analitice teoretice. Este

Διαβάστε περισσότερα

Exemple de probleme rezolvate pentru cursurile DEEA Tranzistoare bipolare cu joncţiuni

Exemple de probleme rezolvate pentru cursurile DEEA Tranzistoare bipolare cu joncţiuni Problema 1. Se dă circuitul de mai jos pentru care se cunosc: VCC10[V], 470[kΩ], RC2,7[kΩ]. Tranzistorul bipolar cu joncţiuni (TBJ) este de tipul BC170 şi are parametrii β100 şi VBE0,6[V]. 1. să se determine

Διαβάστε περισσότερα

Electronică anul II PROBLEME

Electronică anul II PROBLEME Electronică anul II PROBLEME 1. Găsiți expresiile analitice ale funcției de transfer şi defazajului dintre tensiunea de ieşire şi tensiunea de intrare pentru cuadrupolii din figurile de mai jos și reprezentați-le

Διαβάστε περισσότερα

FENOMENE TRANZITORII Circuite RC şi RLC în regim nestaţionar

FENOMENE TRANZITORII Circuite RC şi RLC în regim nestaţionar Pagina 1 FNOMN TANZITOII ircuite şi L în regim nestaţionar 1. Baze teoretice A) ircuit : Descărcarea condensatorului ând comutatorul este pe poziţia 1 (FIG. 1b), energia potenţială a câmpului electric

Διαβάστε περισσότερα

(a) se numeşte derivata parţială a funcţiei f în raport cu variabila x i în punctul a.

(a) se numeşte derivata parţială a funcţiei f în raport cu variabila x i în punctul a. Definiţie Spunem că: i) funcţia f are derivată parţială în punctul a în raport cu variabila i dacă funcţia de o variabilă ( ) are derivată în punctul a în sens obişnuit (ca funcţie reală de o variabilă

Διαβάστε περισσότερα

Tranzistoare bipolare cu joncţiuni

Tranzistoare bipolare cu joncţiuni Tranzistoare bipolare cu joncţiuni 1. Noţiuni introductive Tranzistorul bipolar cu joncţiuni, pe scurt, tranzistorul bipolar, este un dispozitiv semiconductor cu trei terminale, furnizat de către producători

Διαβάστε περισσότερα

CIRCUITE DE REDRESARE ŞI FILTRARE

CIRCUITE DE REDRESARE ŞI FILTRARE LCAEA N.4 CICITE DE EDEAE ŞI FILTAE 1.Introducere edresarea este procesul de transformare a curentului alternativ în curent continuu. edresarea este necesară pentru mulţi consumatori electrici la care

Διαβάστε περισσότερα

Circuite cu diode în conducţie permanentă

Circuite cu diode în conducţie permanentă Circuite cu diode în conducţie permanentă Curentul prin diodă şi tensiunea pe diodă sunt legate prin ecuaţia de funcţionare a diodei o cădere de tensiune pe diodă determină valoarea curentului prin ea

Διαβάστε περισσότερα

Metode iterative pentru probleme neliniare - contractii

Metode iterative pentru probleme neliniare - contractii Metode iterative pentru probleme neliniare - contractii Problemele neliniare sunt in general rezolvate prin metode iterative si analiza convergentei acestor metode este o problema importanta. 1 Contractii

Διαβάστε περισσότερα

Electronică Analogică. Redresoare

Electronică Analogică. Redresoare Electronică Analogică Redresoare Cuprins 1. Redresoare 2. Invertoare 3. Circuite de alimentare în comutaţie 4. Stabilizatoare electronice de tensiune 5. Amplificatoare 6. Oscilatoare electronice Introducere

Διαβάστε περισσότερα

Cap.4. REDRESOARE MONOFAZATE

Cap.4. REDRESOARE MONOFAZATE INRODUCERE IN ELECRONICA APLICAA - S.l. ing. ILIEV MIRCEA Pag. 4.1 Cap.4. REDRESOARE MONOFAZAE Redresoarele transforma energia electrica de curent alternativ in energie electrica de curent continuu. Funcţie

Διαβάστε περισσότερα

Curs 10 Funcţii reale de mai multe variabile reale. Limite şi continuitate.

Curs 10 Funcţii reale de mai multe variabile reale. Limite şi continuitate. Curs 10 Funcţii reale de mai multe variabile reale. Limite şi continuitate. Facultatea de Hidrotehnică Universitatea Tehnică "Gh. Asachi" Iaşi 2014 Fie p, q N. Fie funcţia f : D R p R q. Avem următoarele

Διαβάστε περισσότερα

L2. REGIMUL DINAMIC AL TRANZISTORULUI BIPOLAR

L2. REGIMUL DINAMIC AL TRANZISTORULUI BIPOLAR L2. REGMUL DNAMC AL TRANZSTRULU BPLAR Se studiază regimul dinamic, la semnale mici, al tranzistorului bipolar la o frecvenţă joasă, fixă. Se determină principalii parametrii ai circuitului echivalent natural

Διαβάστε περισσότερα

Dispozitive electronice de putere

Dispozitive electronice de putere Lucrarea 1 Electronica de Putere Dispozitive electronice de putere Se compară calităţile de comutator ale principalelor ventile utilizate în EP şi anume tranzistorul bipolar, tranzistorul Darlington si

Διαβάστε περισσότερα

LUCRAREA 2 REDRESOARE ŞI MULTIPLICATOARE DE TENSIUNE

LUCRAREA 2 REDRESOARE ŞI MULTIPLICATOARE DE TENSIUNE CRAREA REDRESOARE ŞI MTIPICATOARE DE TENSINE 1 Prezentare teoretică 1.1 Redresoare Prin redresare înţelegem transformarea curentului alternativ în curent continuu. Prin alimentarea circuitelor electronice

Διαβάστε περισσότερα

Aparate de măsurat. Măsurări electronice Rezumatul cursului 2. MEE - prof. dr. ing. Ioan D. Oltean 1

Aparate de măsurat. Măsurări electronice Rezumatul cursului 2. MEE - prof. dr. ing. Ioan D. Oltean 1 Aparate de măsurat Măsurări electronice Rezumatul cursului 2 MEE - prof. dr. ing. Ioan D. Oltean 1 1. Aparate cu instrument magnetoelectric 2. Ampermetre şi voltmetre 3. Ohmetre cu instrument magnetoelectric

Διαβάστε περισσότερα

REDRESOARE CU DIODE SEMICONDUCTOARE

REDRESOARE CU DIODE SEMICONDUCTOARE Lucrarea nr. 4 REDRESOARE CU DIODE SEMICONDUCTOARE 1. Scopurile lucrării - vizualizarea şi măsurarea cu ajutorul osciloscopului a formelor de undă pe sarcina redresorului; - determinarea prin măsurări

Διαβάστε περισσότερα

i R i Z D 1 Fig. 1 T 1 Fig. 2

i R i Z D 1 Fig. 1 T 1 Fig. 2 TABILIZATOAE DE TENINE ELECTONICĂ Lucrarea nr. 5 TABILIZATOAE DE TENINE 1. copurile lucrării: - studiul dependenţei dintre tensiunea stabilizată şi cea de intrare sau curentul de sarcină pentru stabilizatoare

Διαβάστε περισσότερα

Lucrarea nr. 5 STABILIZATOARE DE TENSIUNE. 1. Scopurile lucrării: 2. Consideraţii teoretice. 2.1 Stabilizatorul derivaţie

Lucrarea nr. 5 STABILIZATOARE DE TENSIUNE. 1. Scopurile lucrării: 2. Consideraţii teoretice. 2.1 Stabilizatorul derivaţie Lucrarea nr. 5 STABILIZATOARE DE TENSIUNE 1. Scopurile lucrării: - studiul dependenţei dintre tensiunea stabilizată şi cea de intrare sau curentul de sarcină pentru stabilizatoare serie şi derivaţie; -

Διαβάστε περισσότερα

Erori si incertitudini de măsurare. Modele matematice Instrument: proiectare, fabricaţie, Interacţiune măsurand instrument:

Erori si incertitudini de măsurare. Modele matematice Instrument: proiectare, fabricaţie, Interacţiune măsurand instrument: Erori i incertitudini de măurare Sure: Modele matematice Intrument: proiectare, fabricaţie, Interacţiune măurandintrument: (tranfer informaţie tranfer energie) Influente externe: temperatura, preiune,

Διαβάστε περισσότερα

CIRCUITE LOGICE CU TB

CIRCUITE LOGICE CU TB CIRCUITE LOGICE CU T I. OIECTIVE a) Determinarea experimentală a unor funcţii logice pentru circuite din familiile RTL, DTL. b) Determinarea dependenţei caracteristicilor statice de transfer în tensiune

Διαβάστε περισσότερα

MARCAREA REZISTOARELOR

MARCAREA REZISTOARELOR 1.2. MARCAREA REZISTOARELOR 1.2.1 MARCARE DIRECTĂ PRIN COD ALFANUMERIC. Acest cod este format din una sau mai multe cifre şi o literă. Litera poate fi plasată după grupul de cifre (situaţie în care valoarea

Διαβάστε περισσότερα

M. Stef Probleme 3 11 decembrie Curentul alternativ. Figura pentru problema 1.

M. Stef Probleme 3 11 decembrie Curentul alternativ. Figura pentru problema 1. Curentul alternativ 1. Voltmetrele din montajul din figura 1 indică tensiunile efective U = 193 V, U 1 = 60 V și U 2 = 180 V, frecvența tensiunii aplicate fiind ν = 50 Hz. Cunoscând că R 1 = 20 Ω, să se

Διαβάστε περισσότερα

DISTANŢA DINTRE DOUĂ DREPTE NECOPLANARE

DISTANŢA DINTRE DOUĂ DREPTE NECOPLANARE DISTANŢA DINTRE DOUĂ DREPTE NECOPLANARE ABSTRACT. Materialul prezintă o modalitate de a afla distanţa dintre două drepte necoplanare folosind volumul tetraedrului. Lecţia se adresează clasei a VIII-a Data:

Διαβάστε περισσότερα

5. FUNCŢII IMPLICITE. EXTREME CONDIŢIONATE.

5. FUNCŢII IMPLICITE. EXTREME CONDIŢIONATE. 5 Eerciţii reolvate 5 UNCŢII IMPLICITE EXTREME CONDIŢIONATE Eerciţiul 5 Să se determine şi dacă () este o funcţie definită implicit de ecuaţia ( + ) ( + ) + Soluţie ie ( ) ( + ) ( + ) + ( )R Evident este

Διαβάστε περισσότερα

CIRCUITE CU DZ ȘI LED-URI

CIRCUITE CU DZ ȘI LED-URI CICUITE CU DZ ȘI LED-UI I. OBIECTIVE a) Determinarea caracteristicii curent-tensiune pentru diode Zener. b) Determinarea funcționării diodelor Zener în circuite de limitare. c) Determinarea modului de

Διαβάστε περισσότερα

a. Caracteristicile mecanice a motorului de c.c. cu excitaţie independentă (sau derivaţie)

a. Caracteristicile mecanice a motorului de c.c. cu excitaţie independentă (sau derivaţie) Caracteristica mecanică defineşte dependenţa n=f(m) în condiţiile I e =ct., U=ct. Pentru determinarea ei vom defini, mai întâi caracteristicile: 1. de sarcină, numită şi caracteristica externă a motorului

Διαβάστε περισσότερα

RĂSPUNS Modulul de rezistenţă este o caracteristică geometrică a secţiunii transversale, scrisă faţă de una dintre axele de inerţie principale:,

RĂSPUNS Modulul de rezistenţă este o caracteristică geometrică a secţiunii transversale, scrisă faţă de una dintre axele de inerţie principale:, REZISTENTA MATERIALELOR 1. Ce este modulul de rezistenţă? Exemplificaţi pentru o secţiune dreptunghiulară, respectiv dublu T. RĂSPUNS Modulul de rezistenţă este o caracteristică geometrică a secţiunii

Διαβάστε περισσότερα

3. REDRESOARE CU MULTIPLICAREA TENSIUNII

3. REDRESOARE CU MULTIPLICAREA TENSIUNII 3. REDRESOARE C MLTIPLICAREA TENSINII Principiul de funcţionare al redresoarelor cu multiplicarea tensiunii se reduce la faptul că pe sarcină se descarcă câteva condensatoare cuplate serie. Fiecare din

Διαβάστε περισσότερα

Capitolul 4 Amplificatoare elementare

Capitolul 4 Amplificatoare elementare Capitolul 4 mplificatoare elementare 4.. Etaje de amplificare cu un tranzistor 4... Etajul emitor comun V CC C B B C C L L o ( // ) V gm C i rπ // B // o L // C // L B ro i B E C E 4... Etajul colector

Διαβάστε περισσότερα

Electronică Analogică. Redresoare -2-

Electronică Analogică. Redresoare -2- Electronică Analogică Redresoare -2- 1.2.4. Redresor monoalternanţă comandat. În loc de diodă, se foloseşte un tiristor sau un triac pentru a conduce, tirisorul are nevoie de tensiune anodică pozitivă

Διαβάστε περισσότερα

(N) joncţiunea BC. polarizată invers I E = I C + I B. Figura 5.13 Prezentarea funcţionării tranzistorului NPN

(N) joncţiunea BC. polarizată invers I E = I C + I B. Figura 5.13 Prezentarea funcţionării tranzistorului NPN 5.1.3 FUNŢONAREA TRANZSTORULU POLAR Un tranzistor bipolar funcţionează corect, dacă joncţiunea bază-emitor este polarizată direct cu o tensiune mai mare decât tensiunea de prag, iar joncţiunea bază-colector

Διαβάστε περισσότερα

Integrala nedefinită (primitive)

Integrala nedefinită (primitive) nedefinita nedefinită (primitive) nedefinita 2 nedefinita februarie 20 nedefinita.tabelul primitivelor Definiţia Fie f : J R, J R un interval. Funcţia F : J R se numeşte primitivă sau antiderivată a funcţiei

Διαβάστε περισσότερα

VII.2. PROBLEME REZOLVATE

VII.2. PROBLEME REZOLVATE Teoria Circuitelor Electrice Aplicaţii V PROBEME REOVATE R7 În circuitul din fiura 7R se cunosc: R e t 0 sint [V] C C t 0 sint [A] Se cer: a rezolvarea circuitului cu metoda teoremelor Kirchhoff; rezolvarea

Διαβάστε περισσότερα

SEMINAR 14. Funcţii de mai multe variabile (continuare) ( = 1 z(x,y) x = 0. x = f. x + f. y = f. = x. = 1 y. y = x ( y = = 0

SEMINAR 14. Funcţii de mai multe variabile (continuare) ( = 1 z(x,y) x = 0. x = f. x + f. y = f. = x. = 1 y. y = x ( y = = 0 Facultatea de Hidrotehnică, Geodezie şi Ingineria Mediului Matematici Superioare, Semestrul I, Lector dr. Lucian MATICIUC SEMINAR 4 Funcţii de mai multe variabile continuare). Să se arate că funcţia z,

Διαβάστε περισσότερα

Componente şi Circuite Electronice Pasive. Laborator 4. Măsurarea parametrilor mărimilor electrice

Componente şi Circuite Electronice Pasive. Laborator 4. Măsurarea parametrilor mărimilor electrice Laborator 4 Măsurarea parametrilor mărimilor electrice Obiective: o Semnalul sinusoidal, o Semnalul dreptunghiular, o Semnalul triunghiular, o Generarea diferitelor semnale folosind placa multifuncţională

Διαβάστε περισσότερα

Măsurări în Electronică şi Telecomunicaţii 4. Măsurarea impedanţelor

Măsurări în Electronică şi Telecomunicaţii 4. Măsurarea impedanţelor 4. Măsurarea impedanţelor 4.2. Măsurarea rezistenţelor în curent continuu Metoda comparaţiei ceastă metodă: se utilizează pentru măsurarea rezistenţelor ~ 0 montaj serie sau paralel. Montajul serie (metoda

Διαβάστε περισσότερα

Proiectarea filtrelor prin metoda pierderilor de inserţie

Proiectarea filtrelor prin metoda pierderilor de inserţie FITRE DE MIROUNDE Proiectarea filtrelor prin metoda pierderilor de inserţie P R Puterea disponibila de la sursa Puterea livrata sarcinii P inc P Γ ( ) Γ I lo P R ( ) ( ) M ( ) ( ) M N P R M N ( ) ( ) Tipuri

Διαβάστε περισσότερα

5.4. MULTIPLEXOARE A 0 A 1 A 2

5.4. MULTIPLEXOARE A 0 A 1 A 2 5.4. MULTIPLEXOARE Multiplexoarele (MUX) sunt circuite logice combinaţionale cu m intrări şi o singură ieşire, care permit transferul datelor de la una din intrări spre ieşirea unică. Selecţia intrării

Διαβάστε περισσότερα

Ovidiu Gabriel Avădănei, Florin Mihai Tufescu,

Ovidiu Gabriel Avădănei, Florin Mihai Tufescu, Ovidiu Gabriel Avădănei, Florin Mihai Tufescu, Electronică - Probleme Capitolul Diode semiconductoare 3. În fig. 3 este preentat un filtru utiliat după un redresor bialternanţă. La bornele condensatorului

Διαβάστε περισσότερα

11.3 CIRCUITE PENTRU GENERAREA IMPULSURILOR CIRCUITE BASCULANTE Circuitele basculante sunt circuite electronice prevăzute cu o buclă de reacţie pozitivă, folosite la generarea impulsurilor. Aceste circuite

Διαβάστε περισσότερα

Curs 4 Serii de numere reale

Curs 4 Serii de numere reale Curs 4 Serii de numere reale Facultatea de Hidrotehnică Universitatea Tehnică "Gh. Asachi" Iaşi 2014 Criteriul rădăcinii sau Criteriul lui Cauchy Teoremă (Criteriul rădăcinii) Fie x n o serie cu termeni

Διαβάστε περισσότερα

a n (ζ z 0 ) n. n=1 se numeste partea principala iar seria a n (z z 0 ) n se numeste partea

a n (ζ z 0 ) n. n=1 se numeste partea principala iar seria a n (z z 0 ) n se numeste partea Serii Laurent Definitie. Se numeste serie Laurent o serie de forma Seria n= (z z 0 ) n regulata (tayloriana) = (z z n= 0 ) + n se numeste partea principala iar seria se numeste partea Sa presupunem ca,

Διαβάστε περισσότερα

Functii definitie, proprietati, grafic, functii elementare A. Definitii, proprietatile functiilor X) functia f 1

Functii definitie, proprietati, grafic, functii elementare A. Definitii, proprietatile functiilor X) functia f 1 Functii definitie proprietati grafic functii elementare A. Definitii proprietatile functiilor. Fiind date doua multimi X si Y spunem ca am definit o functie (aplicatie) pe X cu valori in Y daca fiecarui

Διαβάστε περισσότερα

Functii definitie, proprietati, grafic, functii elementare A. Definitii, proprietatile functiilor

Functii definitie, proprietati, grafic, functii elementare A. Definitii, proprietatile functiilor Functii definitie, proprietati, grafic, functii elementare A. Definitii, proprietatile functiilor. Fiind date doua multimi si spunem ca am definit o functie (aplicatie) pe cu valori in daca fiecarui element

Διαβάστε περισσότερα

III. Serii absolut convergente. Serii semiconvergente. ii) semiconvergentă dacă este convergentă iar seria modulelor divergentă.

III. Serii absolut convergente. Serii semiconvergente. ii) semiconvergentă dacă este convergentă iar seria modulelor divergentă. III. Serii absolut convergente. Serii semiconvergente. Definiţie. O serie a n se numeşte: i) absolut convergentă dacă seria modulelor a n este convergentă; ii) semiconvergentă dacă este convergentă iar

Διαβάστε περισσότερα

Lucrarea Nr. 4. Caracteristica statică i D =f(v D ) a diodei Polarizare directă - Polarizare inversă

Lucrarea Nr. 4. Caracteristica statică i D =f(v D ) a diodei Polarizare directă - Polarizare inversă Lucrarea Nr. 4 Caracteristica statică i =f(v ) a diodei Polarizare directă - Polarizare inversă A.copul lucrării - familiarizarea studentilor în privinţa comportării diodei în circuit atunci când la bornele

Διαβάστε περισσότερα

Circuite electrice in regim permanent

Circuite electrice in regim permanent Ovidiu Gabriel Avădănei, Florin Mihai Tufescu, Electronică - Probleme apitolul. ircuite electrice in regim permanent. În fig. este prezentată diagrama fazorială a unui circuit serie. a) e fenomen este

Διαβάστε περισσότερα

Fig. 1 A L. (1) U unde: - I S este curentul invers de saturaţie al joncţiunii 'p-n';

Fig. 1 A L. (1) U unde: - I S este curentul invers de saturaţie al joncţiunii 'p-n'; ELECTRONIC Lucrarea nr.3 DISPOZITIVE OPTOELECTRONICE 1. Scopurile lucrării: - ridicarea caracteristicilor statice ale unor dispozitive optoelectronice uzuale (dioda electroluminiscentă, fotodiodă, fototranzistorul);

Διαβάστε περισσότερα

SURSE DE ALIMENTARE ŞI FILTRE

SURSE DE ALIMENTARE ŞI FILTRE LUCRAREA NR. 4 SURSE DE ALIMENTARE ŞI FILTRE OBIECTIVE:. Să ilustreze câteva tipuri comune de surse de alimentare şi de conectare a filtrelor;. Să determine efectul mărimii condensatorului asupra filtrării

Διαβάστε περισσότερα

COMPARATOARE DE TENSIUNE CU AO FĂRĂ REACŢIE

COMPARATOARE DE TENSIUNE CU AO FĂRĂ REACŢIE COMPARATOARE DE TENSIUNE CU AO FĂRĂ REACŢIE I. OBIECTIVE a) Determinarea caracteristicilor statice de transfer în tensiune pentru comparatoare cu AO fără reacţie. b) Determinarea tensiunilor de ieşire

Διαβάστε περισσότερα

Curs 14 Funcţii implicite. Facultatea de Hidrotehnică Universitatea Tehnică "Gh. Asachi"

Curs 14 Funcţii implicite. Facultatea de Hidrotehnică Universitatea Tehnică Gh. Asachi Curs 14 Funcţii implicite Facultatea de Hidrotehnică Universitatea Tehnică "Gh. Asachi" Iaşi 2014 Fie F : D R 2 R o funcţie de două variabile şi fie ecuaţia F (x, y) = 0. (1) Problemă În ce condiţii ecuaţia

Διαβάστε περισσότερα

DIODA STABILIZATOARE CU STRĂPUNGERE

DIODA STABILIZATOARE CU STRĂPUNGERE LUCRAREA NR. 2 DIODA STABILIZATOARE CU STRĂPUNGERE OBIECTIE:. Să se studieze efectul Zener sau străpungerea inversă; 2. Să se observe diferenţa între ramurile de străpungere ale caracteristicilor diodelor

Διαβάστε περισσότερα

2.3. Tranzistorul bipolar

2.3. Tranzistorul bipolar 2.3. Tranzistorul bipolar 2.3.1. Structură şi simboluri Tranzistorul bipolar este un dispozitiv format din 3 straturi de material semiconductor şi are trei electrozi conectati la acestea. Construcţia şi

Διαβάστε περισσότερα

Analiza funcționării și proiectarea unui stabilizator de tensiune continuă realizat cu o diodă Zener

Analiza funcționării și proiectarea unui stabilizator de tensiune continuă realizat cu o diodă Zener Analiza funcționării și proiectarea unui stabilizator de tensiune continuă realizat cu o diodă Zener 1 Caracteristica statică a unei diode Zener În cadranul, dioda Zener (DZ) se comportă ca o diodă redresoare

Διαβάστε περισσότερα

Planul determinat de normală şi un punct Ecuaţia generală Plane paralele Unghi diedru Planul determinat de 3 puncte necoliniare

Planul determinat de normală şi un punct Ecuaţia generală Plane paralele Unghi diedru Planul determinat de 3 puncte necoliniare 1 Planul în spaţiu Ecuaţia generală Plane paralele Unghi diedru 2 Ecuaţia generală Plane paralele Unghi diedru Fie reperul R(O, i, j, k ) în spaţiu. Numim normala a unui plan, un vector perpendicular pe

Διαβάστε περισσότερα

Metode de interpolare bazate pe diferenţe divizate

Metode de interpolare bazate pe diferenţe divizate Metode de interpolare bazate pe diferenţe divizate Radu Trîmbiţaş 4 octombrie 2005 1 Forma Newton a polinomului de interpolare Lagrange Algoritmul nostru se bazează pe forma Newton a polinomului de interpolare

Διαβάστε περισσότερα

Lucrarea 5. Sursa de tensiune continuă cu diode

Lucrarea 5. Sursa de tensiune continuă cu diode Cuprins I. Noţiuni teoretice: sursa de tensiune continuă, redresoare de tensiune, stabilizatoare de tensiune II. Modul de lucru: Realizarea practică a unui redresor de tensiune monoalternanţă. Realizarea

Διαβάστε περισσότερα

R R, f ( x) = x 7x+ 6. Determinați distanța dintre punctele de. B=, unde x și y sunt numere reale.

R R, f ( x) = x 7x+ 6. Determinați distanța dintre punctele de. B=, unde x și y sunt numere reale. 5p Determinați primul termen al progresiei geometrice ( b n ) n, știind că b 5 = 48 și b 8 = 84 5p Se consideră funcția f : intersecție a graficului funcției f cu aa O R R, f ( ) = 7+ 6 Determinați distanța

Διαβάστε περισσότερα

Laborator 11. Mulţimi Julia. Temă

Laborator 11. Mulţimi Julia. Temă Laborator 11 Mulţimi Julia. Temă 1. Clasa JuliaGreen. Să considerăm clasa JuliaGreen dată de exemplu la curs pentru metoda locului final şi să schimbăm numărul de iteraţii nriter = 100 în nriter = 101.

Διαβάστε περισσότερα

Tranzistoare bipolare şi cu efect de câmp

Tranzistoare bipolare şi cu efect de câmp apitolul 3 apitolul 3 26. Pentru circuitul de polarizare din fig. 26 se cunosc: = 5, = 5, = 2KΩ, = 5KΩ, iar pentru tranzistor se cunosc următorii parametrii: β = 200, 0 = 0, μa, = 0,6. a) ă se determine

Διαβάστε περισσότερα

7. RETELE ELECTRICE TRIFAZATE 7.1. RETELE ELECTRICE TRIFAZATE IN REGIM PERMANENT SINUSOIDAL

7. RETELE ELECTRICE TRIFAZATE 7.1. RETELE ELECTRICE TRIFAZATE IN REGIM PERMANENT SINUSOIDAL 7. RETEE EECTRICE TRIFAZATE 7.. RETEE EECTRICE TRIFAZATE IN REGIM PERMANENT SINSOIDA 7... Retea trifazata. Sistem trifazat de tensiuni si curenti Ansamblul format din m circuite electrice monofazate in

Διαβάστε περισσότερα

IV. CUADRIPOLI SI FILTRE ELECTRICE CAP. 13. CUADRIPOLI ELECTRICI

IV. CUADRIPOLI SI FILTRE ELECTRICE CAP. 13. CUADRIPOLI ELECTRICI V. POL S FLTE ELETE P. 3. POL ELET reviar a) Forma fundamentala a ecuatiilor cuadripolilor si parametrii fundamentali: Prima forma fundamentala: doua forma fundamentala: b) Parametrii fundamentali au urmatoarele

Διαβάστε περισσότερα

2.1 Amplificatorul de semnal mic cu cuplaj RC

2.1 Amplificatorul de semnal mic cu cuplaj RC Lucrarea nr.6 AMPLIFICATOAE DE SEMNAL MIC 1. Scopurile lucrării - ridicarea experimentală a caracteristicilor amplitudine-frecvenţă pentru amplificatorul cu cuplaj C şi amplificatorul selectiv; - determinarea

Διαβάστε περισσότερα

AMPLIFICATOR CU TRANZISTOR BIPOLAR ÎN CONEXIUNE CU EMITORUL COMUN

AMPLIFICATOR CU TRANZISTOR BIPOLAR ÎN CONEXIUNE CU EMITORUL COMUN AMPLIFICATOR CU TRANZISTOR BIPOLAR ÎN CONEXIUNE CU EMITORUL COMUN Montajul Experimental În laborator este realizat un amplificator cu tranzistor bipolar în conexiune cu emitorul comun (E.C.) cu o singură

Διαβάστε περισσότερα

Polarizarea tranzistoarelor bipolare

Polarizarea tranzistoarelor bipolare Polarizarea tranzistoarelor bipolare 1. ntroducere Tranzistorul bipolar poate funcţiona în 4 regiuni diferite şi anume regiunea activă normala RAN, regiunea activă inversă, regiunea de blocare şi regiunea

Διαβάστε περισσότερα

LUCRAREA NR. 1 STUDIUL SURSELOR DE CURENT

LUCRAREA NR. 1 STUDIUL SURSELOR DE CURENT LUCAEA N STUDUL SUSELO DE CUENT Scopul lucrării În această lucrare se studiază prin simulare o serie de surse de curent utilizate în cadrul circuitelor integrate analogice: sursa de curent standard, sursa

Διαβάστε περισσότερα

Seminariile Capitolul X. Integrale Curbilinii: Serii Laurent şi Teorema Reziduurilor

Seminariile Capitolul X. Integrale Curbilinii: Serii Laurent şi Teorema Reziduurilor Facultatea de Matematică Calcul Integral şi Elemente de Analiă Complexă, Semestrul I Lector dr. Lucian MATICIUC Seminariile 9 20 Capitolul X. Integrale Curbilinii: Serii Laurent şi Teorema Reiduurilor.

Διαβάστε περισσότερα

Lucrarea Nr. 5 Tranzistorul bipolar Caracteristici statice

Lucrarea Nr. 5 Tranzistorul bipolar Caracteristici statice Lucrarea Nr. 5 Tranzistorul bipolar Caracteristici statice A.Scopul lucrării - Determinarea experimentală a plajei mărimilor eletrice de la terminale în care T real este activ (amplifică)precum şi a unor

Διαβάστε περισσότερα

Fig Dependenţa curentului de fugă de temperatură. I 0 este curentul de fugă la θ = 25 C [30].

Fig Dependenţa curentului de fugă de temperatură. I 0 este curentul de fugă la θ = 25 C [30]. Fig.3.43. Dependenţa curentului de fugă de temperatură. I 0 este curentul de fugă la θ = 25 C [30]. Fig.3.44. Dependenţa curentului de fugă de raportul U/U R. I 0 este curentul de fugă la tensiunea nominală

Διαβάστε περισσότερα

CIRCUITE CU PORŢI DE TRANSFER CMOS

CIRCUITE CU PORŢI DE TRANSFER CMOS CIRCUITE CU PORŢI DE TRANSFER CMOS I. OBIECTIVE a) Înţelegerea funcţionării porţii de transfer. b) Determinarea rezistenţelor porţii în starea de blocare, respectiv de conducţie. c) Înţelegerea modului

Διαβάστε περισσότερα

Lucrarea 7. Polarizarea tranzistorului bipolar

Lucrarea 7. Polarizarea tranzistorului bipolar Scopul lucrării a. Introducerea unor noţiuni elementare despre funcţionarea tranzistoarelor bipolare b. Identificarea prin măsurători a regiunilor de funcţioare ale tranzistorului bipolar. c. Prezentarea

Διαβάστε περισσότερα

CAP. 2 DIODE SEMICONDUCTOARE ŞI APLICAłII

CAP. 2 DIODE SEMICONDUCTOARE ŞI APLICAłII CAP. 2 DIODE SEMICONDUCTOAE ŞI APLICAłII 2.1 NOłIUNI FUNDAMENTALE DESPE DIODE Dioda semiconductoare (sau mai simplu, dioda) are la bază o joncńiune pn, joncńiune care se formează la contactul unei regiuni

Διαβάστε περισσότερα

Elemente de circuit rezistive. Uniporţi şi diporţi rezistivi. Caracteristici de intrare şi de transfer.

Elemente de circuit rezistive. Uniporţi şi diporţi rezistivi. Caracteristici de intrare şi de transfer. Elemente de circuit rezistive. Uniporţi şi diporţi rezistivi. Caracteristici de intrare şi de transfer. Scopul lucrării: Învăţarea folosirii osciloscopului în mod de lucru X-Y. Vizualizarea caracteristicilor

Διαβάστε περισσότερα

Lucrarea Nr. 11 Amplificatoare de nivel mare

Lucrarea Nr. 11 Amplificatoare de nivel mare Lucrarea Nr. 11 Amplificatoare de nivel mare Scopul lucrării - asimilarea conceptului de nivel mare; - studiul etajului de putere clasa B; 1. Generalităţi Caracteristic etajelor de nivel mare este faptul

Διαβάστε περισσότερα

2.2.1 Măsurători asupra semnalelor digitale

2.2.1 Măsurători asupra semnalelor digitale Lucrarea 2 Măsurători asupra semnalelor digitale 2.1 Obiective Lucrarea are ca obiectiv fixarea cunoştinţelor dobândite în lucrarea anterioară: Familiarizarea cu aparatele de laborator (generatorul de

Διαβάστε περισσότερα