ΘΕΜΕΛΙΩΔΕΙΣ ΜΑΘΗΜΑΤΙΚΕΣ ΕΝΝΟΙΕΣ ΣΤΟ ΝΗΠΙΑΓΩΓΕΙΟ ΑΡΙΘΜΟΙ ΑΡΙΘΜΗΤΙΚΑ ΣΥΣΤΗΜΑΤΑ

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "ΘΕΜΕΛΙΩΔΕΙΣ ΜΑΘΗΜΑΤΙΚΕΣ ΕΝΝΟΙΕΣ ΣΤΟ ΝΗΠΙΑΓΩΓΕΙΟ ΑΡΙΘΜΟΙ ΑΡΙΘΜΗΤΙΚΑ ΣΥΣΤΗΜΑΤΑ"

Transcript

1 ΘΕΜΕΛΙΩΔΕΙΣ ΜΑΘΗΜΑΤΙΚΕΣ ΕΝΝΟΙΕΣ ΣΤΟ ΝΗΠΙΑΓΩΓΕΙΟ ΑΡΙΘΜΟΙ ΑΡΙΘΜΗΤΙΚΑ ΣΥΣΤΗΜΑΤΑ

2 Αριθμητικά συστήματα 123, 231, 312 Τι σημαίνουν; Τι δίνει αξία σε κάθε ίδιο ψηφίο; Ποια είναι η αξία του κάθε ψηφίου;

3 Αριθμητικά συστήματα 123 = 1 (10 2 ) + 2 (10 1 ) + 3 (10 0 ) 231 = 2 (10 2 ) + 3 (10 1 ) + 1 (10 0 ) 312= 3 (10 2 ) + 1 (10 1 ) + 2 (10 0 )

4 Αριθμητικά Συστήματα Βάση Οργάνωση: Επαναληπτικό Θέσης Μικτό Ψηφία Μηδέν Υπάρχει Λείπει 10, 5, 12, 60 Σύγχρονο: 10, θέσης, ψηφία, 0 Αιγυπτιακό: 10, επαναληπτικό, ιερογλυφικά, χωρίς 0 Βαβυλωνιακό: 60, μικτό, εικόνες, χωρίς 0 Κινεζικό: 10, μικτό, σχήματα, με θέση για το 0

5 Αιγυπτιακό σύστημα

6 Βαβυλωνιακό σύστημα

7 Ελληνικό σύστημα α 1 ι 10 ρ 100 β 2 κ 20 σ 200 γ 3 λ 30 τ 300 δ 4 μ 40 υ 400 ε 5 ν 50 φ 500 ϛ (στ) 6 ξ 60 χ 600 ζ 7 ο 70 ψ 700 η 8 π 80 ω 800 θ 9 ϟ (κόπα) 90 ϡ, (σαμπί) 900

8 Κινεζικό σύστημα

9 Oksampin-Παπούα, Νέα Γουινέα

10 Αριθμητικά συστήματα Οι ώρες σε τι σύστημα εκφράζονται; Τα λεπτά της ώρας σε τι σύστημα εκφράζονται; Οι μοίρες (μονάδα γωνίας) σε τι σύστημα εκφράζονται;

11 Αριθμητικά συστήματα

12 Αριθμητικά συστήματα

13 ΕΚΠΑΙΔΕΥΤΙΚΟ ΥΛΙΚΟ Αριθμητικά μπλοκ του Dienes

14 ΕΚΠΑΙΔΕΥΤΙΚΟ ΥΛΙΚΟ Τι τύπο αριθμητικού συστήματος δημιουργεί το εκπαιδευτικό υλικό των αριθμητικών μπλοκ;

15 Αιγυπτιακό σύστημα Καταγραφή λαφύρων στην πέτρινη κεφαλή του βασιλιά Μήνη: 400.οοο βόδια οοο κατσίκια 120.οοο αιχμάλωτοι Πηγή: J.E. Quibell Hierakonolopis,Λονδίνο 1900 σχεδίασμα της πλάκας 26Β

16 ΑΡΙΘΜΗΤΙΚΗ ΣΕ ΕΠΑΝΑΛΗΠΤΙΚΑ ΣΥΣΤΗΜΑΤΑ

17 Αιγυπτιακό σύστημα Επαναληπτικό Βάση 10

18 Αιγυπτιακό σύστημα

19 Πράξεις στο αιγυπτιακό σύστημα Πρόσθεση Παράθεση αριθμών Αντικατάσταση κάθε δεκάδας ίδιων στοιχείων με μία ανώτερης τάξης Ποιο χαρακτηριστικό είναι κοινό στην πρόσθεση στο αιγυπτιακό σύστημα και στο δικό μας σύστημα; Τι είναι διαφορετικό;

20 Πράξεις στο αιγυπτιακό σύστημα Αφαίρεση Παράθεση αριθμών Διαγραφή από τον μεγαλύτερο τόσων στοιχείων όσων και τα στοιχεία του μικρότερου Ανάλυση ενός στοιχείου μιας τάξης σε 10 της αμέσως μικρότερης Ποιο χαρακτηριστικό είναι κοινό στην πρόσθεση στο αιγυπτιακό σύστημα και στο δικό μας σύστημα; Τι είναι διαφορετικό;

21 Πρόσθεση

22 Αφαίρεση

23 Πράξεις στο αιγυπτιακό σύστημα Πολλαπλασιασμός Διπλασιασμός των ενός όρου και της μονάδας Επανάληψη μέχρι ο διπλασιασμός της αρχικής μονάδας να μην ξεπερνάει τον πολλαπλασιαστή Πρόσθεση των όρων εκείνων που στη στήλη των μονάδων δίνει τον πολλαπλασιαστή και το αποτέλεσμα στη στήλη του πολλαπλασιαστέου δίνει το γινόμενο

24 Πράξεις στο αιγυπτιακό σύστημα

25 Αιγυπτιακά Μαθηματικά Ερώτημα 1 Μπορούμε πάντα να κάνουμε με αυτόν τον τρόπο ένα πολλαπλασιασμό; Γιατί; Ερώτημα 2 Ερώτημα 3 Το ήξεραν οι Αιγύπτιοι; Πώς;

26 Αιγυπτιακά Μαθηματικά 1: Ναι Απαντήσεις 2:Γιατί κάθε αριθμός γράφεται ως συνδυασμός δυνάμεων του 2 3:Όχι (αποδείχθηκε τον 19 ο αιώνα), αλλά και 4: Ναι, γιατί ποτέ δεν βρήκαν περίπτωση όπου ο πολλαπλασιασμός να είναι αδύνατος (επαγωγική σκέψη)

27 Το παιχνίδι με το διπλασιασμό και τον υποδιπλασιασμό δίνει και κάποια πολύ ενδιαφέροντα «κόλπα» (τα οποία σήμερα διδάσκονται ως στρατηγικές νοερού υπολογισμού) Αντί του 5x78, υπολογίζω το 10x78 και μετά βρίσκω το μισό Αντί του 80:5, υπολογίζω το 80:10 και μετά βρίσκω το διπλάσιο Γενικεύονται και για το 50, 500, κ.λπ.

28 Αιγυπτιακό σύστημα Διαίρεση Ως αντίστροφος πολλαπλασιασμός

29 Ερωτήματα Τι χρειάζεται να ξέρει κάποιος σε ένα επαναληπτικό σύστημα για να κάνει τις 4 βασικές πράξεις; Τι χρειάζεται να ξέρει κάποιος σε ένα σύστημα θέσης για να κάνει τις 4 βασικές πράξεις; Πώς έκαναν πράξεις οι αρχαίοι έλληνες;

30 Αιγυπτιακά Μαθηματικά Πέρα από τους «φυσικούς», τι;

31 Τα Αιγυπτιακά κλάσματα Οι Αιγύπτιοι είχαν σύμβολα για πολύ συγκεκριμένα κλάσματα Τα εναδικά (ή μοναδιαία ή κλασματικές μονάδες) Π.χ. 1/3, 1/35, 1/1.234 Τα κλάσματα 3/4 και 2/3

32 Τα Αιγυπτιακά κλάσματα Ιδιαίτερα σύμβολα είχαν για το 1/2 και το 1/4 (το «μισό» και το «μισό του μισού» Γιατί ήταν, πιστεύετε, ιδιαίτερα αυτά τα δύο συγκεκριμένα κλάσματα για τους Αιγυπτίους;

33 Τα Αιγυπτιακά κλάσματα Τι γινόταν με τα υπόλοιπα κλάσματα; Οι Αιγύπτιοι αναπαριστούσαν τα μη εναδικά κλάσματα ως πεπερασμένο άθροισμα διαφορετικών εναδικών κλασμάτων Παραδείγματα 3/4 = 1/2 + 1/4 13/20 = 1/2 + 1/7 + 1/140

34 1 ο ερώτημα Σε τι τους εξυπηρετούσε η αναπαράσταση των κλασμάτων σε άθροισμα εναδικών κλασμάτων;

35 Πρόβλημα 3, Πάπυρος του Rhid/Ahmes «Να μοιράσεις 6 φραντζόλες σε 10 άντρες» Απάντηση: 1/2 + 1/10 Ποια είναι η φυσική ερμηνεία αυτής της λύσης; Πώς θα το λύνατε εσείς; Ποια σας φαίνεται «καλύτερη» λύση, από πρακτική άποψη;

36 2 ο ερώτημα Πώς μετατρέπεται ένα κλάσμα σε άθροισμα εναδικών; Και, μετατρέπεται πάντα;;

37 Μοίρασε 5 φραντζόλες ψωμί σε 8 άντρες Μπορεί κάθε άντρας να πάρει από μία φραντζόλα ψωμί; Όχι Κοιτάω ποιο είναι το μεγαλύτερο κομμάτι που μπορεί να πάρει ο καθένας: Μπορεί κάθε άντρας να πάρει από ½ της φραντζόλας; Ναι Τι περισσεύει;

38 5:8 = 1/2 + 1/8

39 Δοκιμάστε να αναλύσετε το 3/4 Το 13/20 σε εναδικά κλάσματα

26.02.14 ΑΠΘ. Χαρά Χαραλάμπους Τμήμα Μαθηματικών ΑΠΘ. Ιστορία των Μαθηματικών Εαρινό Εξάμηνο 2014

26.02.14 ΑΠΘ. Χαρά Χαραλάμπους Τμήμα Μαθηματικών ΑΠΘ. Ιστορία των Μαθηματικών Εαρινό Εξάμηνο 2014 Εαρινό εξάμηνο 2014 26.02.14 Χ. Χαραλάμπους 14 ο πρόβλημα (βρίσκεται στο Μουσείο Καλών Τεχνών της Μόσχας από το 1893 μ.χ.) «μετάφραση των συμβόλων: Εάν σου πουν: μία κομμένη πυραμίδα με ύψος 6, με βάση

Διαβάστε περισσότερα

Φεβρουάριος 2013. Επιμόρφωση Εκπαιδευτικών Β Τάξης Δημοτικού 21/2/2013 Β ΤΑΞΗ ΑΝΑΛΥΤΙΚΗ ΠΑΡΟΥΣΙΑΣΗ ΠΕΡΙΕΧΟΜΕΝΟΥ ΑΝΑ ΕΝΟΤΗΤΑ

Φεβρουάριος 2013. Επιμόρφωση Εκπαιδευτικών Β Τάξης Δημοτικού 21/2/2013 Β ΤΑΞΗ ΑΝΑΛΥΤΙΚΗ ΠΑΡΟΥΣΙΑΣΗ ΠΕΡΙΕΧΟΜΕΝΟΥ ΑΝΑ ΕΝΟΤΗΤΑ Επιμόρφωση Εκπαιδευτικών Β Τάξης Δημοτικού Φεβρουάριος 2013 2 Β ΤΑΞΗ ΑΝΑΛΥΤΙΚΗ ΠΑΡΟΥΣΙΑΣΗ ΠΕΡΙΕΧΟΜΕΝΟΥ ΑΝΑ ΕΝΟΤΗΤΑ ΕΝΟΤΗΤΑ 7 ΠΡΟΣΘΕΣΗ ΚΑΙ ΑΦΑΙΡΕΣΗ ΜΕΧΡΙ ΤΟ 100 ΕΝΝΟΙΕΣ ΣΤΑΤΙΣΤΙΚΗΣ 3 ΠΕΡΙΕΧΟΜΕΝΟ ΕΝΟΤΗΤΑΣ

Διαβάστε περισσότερα

Εαρινό Εξάμηνο 2011. 21.02.11 Χ. Χαραλάμπους ΑΠΘ. Χαρά Χαραλάμπους Τμήμα Μαθηματικών. Ιστορία των Μαθηματικών ΑΠΘ

Εαρινό Εξάμηνο 2011. 21.02.11 Χ. Χαραλάμπους ΑΠΘ. Χαρά Χαραλάμπους Τμήμα Μαθηματικών. Ιστορία των Μαθηματικών ΑΠΘ Εαρινό εξάμηνο 2011 21.02.11 Χ. Χαραλάμπους Μεσοποταμία Αίγυπτος 3000 1000 π.χ. Αίγυπτος: ο πάπυρος του Rhind ~1650 π.χ. Αγοράσθηκε από τον Σκωτσέζο Rhind το 1858 Αίγυπτος: ο πάπυρος της Μόσχας ~ 1600

Διαβάστε περισσότερα

ΣΤΟΥΣ ΑΡΧΑΙΟΥΣ ΠΟΛΙΤΙΣΜΟΥΣ

ΣΤΟΥΣ ΑΡΧΑΙΟΥΣ ΠΟΛΙΤΙΣΜΟΥΣ ΤΑ ΜΑΘΗΜΑΤΙΚΑ ΣΤΟΥΣ ΑΡΧΑΙΟΥΣ ΠΟΛΙΤΙΣΜΟΥΣ ΤΑ ΜΑΘΗΜΑΤΙΚΑ ΤΩΝ ΒΑΒΥΛΩΝΙΩΝ Οι Βαβυλώνιοι ζούσαν στη Μεσοποταµία,περιοχή µεταξύ των ποταµών Τίγρη και Ευφράτη.Η Μεσοποταµία ήταν κέντρο πολιτισµού των Σουµέριων,Ακκάδιων,Ασσύριων,Αραµαίων

Διαβάστε περισσότερα

ΑΤΥΠΑ ΤΕΣΤ ΜΑΘΗΜΑΤΙΚΩΝ

ΑΤΥΠΑ ΤΕΣΤ ΜΑΘΗΜΑΤΙΚΩΝ ΑΤΥΠΑ ΤΕΣΤ ΜΑΘΗΜΑΤΙΚΩΝ 1. Ταξινόμηση αντικειμένων ως προς τα χαρακτηριστικά τους Βάλε μαζί σε έναν κύκλο τα λουλούδια με το ίδιο χρώμα και το ίδιο όνομα. Κοίταξε προσεκτικά την εικόνα και απάντησε: Πόσα

Διαβάστε περισσότερα

Μ Α Θ Η Μ Α Τ Ι Κ Α Α Γ Υ Μ Ν Α Σ Ι Ο Υ

Μ Α Θ Η Μ Α Τ Ι Κ Α Α Γ Υ Μ Ν Α Σ Ι Ο Υ Μ Α Θ Η Μ Α Τ Ι Κ Α Α Γ Υ Μ Ν Α Σ Ι Ο Υ 1 Συνοπτική θεωρία Ερωτήσεις αντικειμενικού τύπου Ασκήσεις Διαγωνίσματα 2 ΣΥΝΟΠΤΙΚΗ ΘΕΩΡΙΑ ΕΡΩΤΗΣΕΙΣ-ΑΠΑΝΤΗΣΕΙΣ 1. Πότε ένας φυσικός αριθμός λέγεται άρτιος; Άρτιος

Διαβάστε περισσότερα

Βρέντζου Τίνα Φυσικός Μεταπτυχιακός τίτλος: «Σπουδές στην εκπαίδευση» ΜEd Email : stvrentzou@gmail.com

Βρέντζου Τίνα Φυσικός Μεταπτυχιακός τίτλος: «Σπουδές στην εκπαίδευση» ΜEd Email : stvrentzou@gmail.com Βρέντζου Τίνα Φυσικός Μεταπτυχιακός τίτλος: «Σπουδές στην εκπαίδευση» ΜEd Email : stvrentzou@gmail.com 1 1.Σύνολα Σύνολο είναι μια ολότητα από σαφώς καθορισμένα και διακεκριμένα αντικείμενα. Τα φωνήεντα

Διαβάστε περισσότερα

ΣΤ ΤΑΞΗΣ ΔΗΜΟΤΙΚΟΥ ΘΕΜΑΤΑ ΔΙΑΓΩΝΙΣΜΟΥ ΓΙΑ ΜΑΘΗΤΕΣ. Σάββατο, 8 Ιουνίου 2013

ΣΤ ΤΑΞΗΣ ΔΗΜΟΤΙΚΟΥ ΘΕΜΑΤΑ ΔΙΑΓΩΝΙΣΜΟΥ ΓΙΑ ΜΑΘΗΤΕΣ. Σάββατο, 8 Ιουνίου 2013 ΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ ΠΑΡΑΡΤΗΜΑ ΚΕΝΤΡΙΚΗΣ ΜΑΚΕΔΟΝΙΑΣ Διεύθυνση: Προξένου Κορομηλά 51 Τ.Κ. 54622, Θεσσαλονίκη Τηλέφωνο και Fax 2310 285377 e-mail: emethes@otenet.gr http://www.emethes.gr ΘΕΜΑΤΑ ΔΙΑΓΩΝΙΣΜΟΥ

Διαβάστε περισσότερα

Παράδειγμα 1 Γράψε ένα δεκαδικό αριθμό μεταξύ του 2 και του 3 που δεν περιέχει το 5 που περιέχει το 7 και που βρίσκεται όσο πιο κοντά γίνεται με το

Παράδειγμα 1 Γράψε ένα δεκαδικό αριθμό μεταξύ του 2 και του 3 που δεν περιέχει το 5 που περιέχει το 7 και που βρίσκεται όσο πιο κοντά γίνεται με το Παράδειγμα 1 Γράψε ένα δεκαδικό αριθμό μεταξύ του 2 και του 3 που δεν περιέχει το 5 που περιέχει το 7 και που βρίσκεται όσο πιο κοντά γίνεται με το 5/2 1 Παράδειγμα 2: Γράψε ένα κλάσμα που χρησιμοποιεί

Διαβάστε περισσότερα

Πρόσθεση, αφαίρεση και πολλαπλασιασμός φυσικών αριθμών

Πρόσθεση, αφαίρεση και πολλαπλασιασμός φυσικών αριθμών Πρόσθεση, αφαίρεση και πολλαπλασιασμός φυσικών αριθμών TINΑ ΒΡΕΝΤΖΟΥ www.ma8eno.gr www.ma8eno.gr Σελίδα 1 Πρόσθεση, αφαίρεση και πολλαπλασιασμός φυσικών αριθμών Στους πραγματικούς αριθμούς ορίστηκαν οι

Διαβάστε περισσότερα

Γεωμετρία, Αριθμοί και Μέτρηση

Γεωμετρία, Αριθμοί και Μέτρηση 1. Εισαγωγή Γεωμετρία, Αριθμοί και Μέτρηση Μαθαίνω Γεωμετρία και Μετρώ Παίζω με τους αριθμούς Βρίσκω τα πολλαπλάσια Το εκπαιδευτικό λογισμικό «Γεωμετρία, Αριθμοί και Μέτρηση» δίνει τη δυνατότητα στα παιδιά

Διαβάστε περισσότερα

ΕΝΟΤΗΤΑ 3 ΠΟΛΛΑΠΛΑΣΙΑΣΜΟΣ ΚΑΙ ΔΙΑΙΡΕΣΗ ΜΕΧΡΙ ΤΟ 20

ΕΝΟΤΗΤΑ 3 ΠΟΛΛΑΠΛΑΣΙΑΣΜΟΣ ΚΑΙ ΔΙΑΙΡΕΣΗ ΜΕΧΡΙ ΤΟ 20 ΠΟΛΛΑΠΛΑΣΙΑΣΜΟΣ ΚΑΙ ΔΙΑΙΡΕΣΗ ΜΕΧΡΙ ΤΟ 20 ΔΕΙΚΤΕΣ ΕΠΙΤΥΧΙΑΣ ΑΡΙΘΜΟΙ Διερεύνηση αριθμών Αρ2.9 Αναγνωρίζουν και ονομάζουν τους όρους: άθροισμα, διαφορά, γινόμενο, πηλίκο, μειωτέος, αφαιρετέος, προσθετέος,

Διαβάστε περισσότερα

Πρόσθεση και αφαίρεση κλασμάτων

Πρόσθεση και αφαίρεση κλασμάτων Πρόσθεση και αφαίρεση κλασμάτων TINΑ ΒΡΕΝΤΖΟΥ www.ma8eno.gr www.ma8eno.gr Σελίδα 1 Γνωρίζω μέχρι τώρα Στην πρόσθεση, οι προσθετέοι και το άθροισμα είναι ομοειδείς αριθμοί. Π.χ 8 κεράσια + 6 κεράσια = κεράσια

Διαβάστε περισσότερα

ΕΝΟΤΗΤΑ 6. Μονοψήφια διαίρεση Προβλήματα αναλογίας

ΕΝΟΤΗΤΑ 6. Μονοψήφια διαίρεση Προβλήματα αναλογίας Μονοψήφια διαίρεση Προβλήματα αναλογίας ΔΕΙΚΤΕΣ ΕΠΙΤΥΧΙΑΣ ΑΡΙΘΜΟΙ Υπολογισμοί και εκτίμηση Αρ2.13 Αναπτύσσουν και εφαρμόζουν αλγόριθμους της πρόσθεσης, της αφαίρεσης, του πολλαπλασιασμού με τριψήφιους

Διαβάστε περισσότερα

ΕΝΔΕΙΚΤΙΚΕΣ ΔΟΚΙΜΑΣΙΕΣ ΜΑΘΗΜΑΤΙΚΩΝ ΓΙΑ ΤΗΝ ΕΙΣΑΓΩΓΗ ΜΑΘΗΤΩΝ ΣΤΑ ΠΡΟΤΥΠΑ-ΠΕΙΡΑΜΑΤΙΚΑ ΓΥΜΝΑΣΙΑ

ΕΝΔΕΙΚΤΙΚΕΣ ΔΟΚΙΜΑΣΙΕΣ ΜΑΘΗΜΑΤΙΚΩΝ ΓΙΑ ΤΗΝ ΕΙΣΑΓΩΓΗ ΜΑΘΗΤΩΝ ΣΤΑ ΠΡΟΤΥΠΑ-ΠΕΙΡΑΜΑΤΙΚΑ ΓΥΜΝΑΣΙΑ ΕΝΔΕΙΚΤΙΚΕΣ ΔΟΚΙΜΑΣΙΕΣ ΜΑΘΗΜΑΤΙΚΩΝ ΓΙΑ ΤΗΝ ΕΙΣΑΓΩΓΗ ΜΑΘΗΤΩΝ ΣΤΑ ΠΡΟΤΥΠΑ-ΠΕΙΡΑΜΑΤΙΚΑ ΓΥΜΝΑΣΙΑ ΔΟΚΙΜΑΣΙΑ 6 1) Να εκφράσετε τον αριθμό 48 σε γινόμενο πρώτων παραγόντων με δενδροδιάγραμμα. 2) Να συγκρίνετε

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ Α ΓΥΜΝΑΣΙΟΥ

ΜΑΘΗΜΑΤΙΚΑ Α ΓΥΜΝΑΣΙΟΥ ΜΑΘΗΜΑΤΙΚΑ Α ΓΥΜΝΑΣΙΟΥ Πίνακας περιεχομένων Κεφάλαιο 1 - ΟΙ ΦΥΣΙΚΟΙ ΑΡΙΘΜΟΙ... 2 Κεφάλαιο 2 ο - ΤΑ ΚΛΑΣΜΑΤΑ... 6 Κεφάλαιο 3 ο - ΔΕΚΑΔΙΚΟΙ ΑΡΙΘΜΟΙ... 10 ΣΩΤΗΡΟΠΟΥΛΟΣ ΝΙΚΟΣ 1 Κεφάλαιο 1 - ΟΙ ΦΥΣΙΚΟΙ ΑΡΙΘΜΟΙ

Διαβάστε περισσότερα

ΕΝΟΤΗΤΑ 12 ΠΡΑΞΕΙΣ ΜΕΧΡΙ ΤΟ 20

ΕΝΟΤΗΤΑ 12 ΠΡΑΞΕΙΣ ΜΕΧΡΙ ΤΟ 20 ΠΡΑΞΕΙΣ ΜΕΧΡΙ ΤΟ 20 ΔΕΙΚΤΕΣ ΕΠΙΤΥΧΙΑΣ ΑΡΙΘΜΟΙ Διερεύνηση αριθμών Αρ 1.6 Συνθέτουν και αναλύουν αριθμούς μέχρι το 100 με βάση την αξία θέσης ψηφίου, χρησιμοποιώντας αντικείμενα, εικόνες, και σύμβολα. Αρ

Διαβάστε περισσότερα

Συνοπτική Θεωρία Μαθηματικών Α Γυμνασίου

Συνοπτική Θεωρία Μαθηματικών Α Γυμνασίου Web page: www.ma8eno.gr e-mail: vrentzou@ma8eno.gr Η αποτελεσματική μάθηση δεν θέλει κόπο αλλά τρόπο, δηλαδή ma8eno.gr Συνοπτική Θεωρία Μαθηματικών Α Γυμνασίου Αριθμητική - Άλγεβρα Γεωμετρία Άρτιος λέγεται

Διαβάστε περισσότερα

ΓΙΑΝΝΗΣ ΖΑΧΑΡΟΠΟΥΛΟΣ. Γρήγορα τεστ. Μαθηματικά ΣT Δημοτικού ΕΚΔΟΣΕΙΣ ΠΑΠΑΔΟΠΟΥΛΟΣ

ΓΙΑΝΝΗΣ ΖΑΧΑΡΟΠΟΥΛΟΣ. Γρήγορα τεστ. Μαθηματικά ΣT Δημοτικού ΕΚΔΟΣΕΙΣ ΠΑΠΑΔΟΠΟΥΛΟΣ ΓΙΑΝΝΗΣ ΖΑΧΑΡΟΠΟΥΛΟΣ Γρήγορα τεστ Μαθηματικά ΣT Δημοτικού 1 ΕΚΔΟΣΕΙΣ ΠΑΠΑΔΟΠΟΥΛΟΣ ΓΡΗΓΟΡΑ ΤΕΣΤ ΜΑΘΗΜΑΤΙΚΩΝ - ΣΤ Δημοτικού No 1 Γιάννης Ζαχαρόπουλος Διόρθωση: Αντωνία Κιλεσσοπούλου 201, Εκδόσεις Κυριάκος

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ Γ Γυμνασίου

ΜΑΘΗΜΑΤΙΚΑ Γ Γυμνασίου ΜΑΘΗΜΑΤΙΚΑ Γ Γυμνασίου Κεφάλαιο ο Αλγεβρικές Παραστάσεις ΛΕΜΟΝΙΑ ΜΠΟΥΤΣΚΟΥ Γυμνάσιο Αμυνταίου ΜΑΘΗΜΑ Α. Πράξεις με πραγματικούς αριθμούς ΑΣΚΗΣΕΙΣ ) ) Να συμπληρώσετε τα κενά ώστε στην κατακόρυφη στήλη

Διαβάστε περισσότερα

αριθμούς Βασικές ασκήσεις Βασική θεωρία iii) φυσικοί; ii) ακέραιοι; iii) ρητοί;

αριθμούς Βασικές ασκήσεις Βασική θεωρία iii) φυσικοί; ii) ακέραιοι; iii) ρητοί; Πράξεις με πραγματικούς αριθμούς Βασικές ασκήσεις Βασική θεωρία Ρητοί και άρρητοι αριθμοί. α) Ποιοι αριθμοί ονομάζονται: iii) φυσικοί; ii) ακέραιοι; iii) ρητοί; iv) άρρητοι; v) πραγματικοί; β) Να βρείτε

Διαβάστε περισσότερα

Επιμέλεια: Σπυρίδων Τζινιέρης-ΘΕΩΡΙΑ ΚΛΑΣΜΑΤΩΝ ΓΙΑ ΤΗΝ Α ΓΥΜΝΑΣΙΟΥ ΘΕΩΡΙΑ ΚΛΑΣΜΑΤΩΝ Α ΓΥΜΝΑΣΙΟΥ

Επιμέλεια: Σπυρίδων Τζινιέρης-ΘΕΩΡΙΑ ΚΛΑΣΜΑΤΩΝ ΓΙΑ ΤΗΝ Α ΓΥΜΝΑΣΙΟΥ ΘΕΩΡΙΑ ΚΛΑΣΜΑΤΩΝ Α ΓΥΜΝΑΣΙΟΥ Τι είναι κλάσμα; Κλάσμα είναι ένα μέρος μιας ποσότητας. ΘΕΩΡΙΑ ΚΛΑΣΜΑΤΩΝ Α ΓΥΜΝΑΣΙΟΥ Κλάσμα είναι ένας λόγος δύο αριθμών(fraction is a ratio of two whole numbers) Πως εκφράζετε συμβολικά ένα κλάσμα; Εκφράζετε

Διαβάστε περισσότερα

Δυνάμεις Φυσικών Αριθμών

Δυνάμεις Φυσικών Αριθμών Δυνάμεις Φυσικών Αριθμών TINΑ ΒΡΕΝΤΖΟΥ www.ma8eno.gr www.ma8eno.gr Σελίδα 1 Δυνάμεις φυσικών αριθμών Δύναμη ονομάζουμε το γινόμενο πολλών ίσων παραγόντων Πχ: 8 8= 64, 4 4 4= 64, 3 3 3 3= 81. Έτσι, το γινόμενο

Διαβάστε περισσότερα

Α ΓΥΜΝΑΣΙΟΥ ΘΕΜΑΤΑ ΕΞΕΤΑΣΕΩΝ

Α ΓΥΜΝΑΣΙΟΥ ΘΕΜΑΤΑ ΕΞΕΤΑΣΕΩΝ Α ΓΥΜΝΑΣΙΟΥ ΘΕΜΑΤΑ ΕΞΕΤΑΣΕΩΝ ΘΕΩΡΙΑ. Να γραφεί ο τύπος της Ευκλείδειας διαίρεσης. Πότε ένας αριθμός διαιρείται με το, πότε με το, το, και πότε με το 9. ( Δώστε παράδειγμα) Ποιοι αριθμοί καλούνται πρώτοι

Διαβάστε περισσότερα

Διαχειρίζομαι αριθμούς έως το 10.000

Διαχειρίζομαι αριθμούς έως το 10.000 Α Περίοδος Διαχειρίζομαι αριθμούς έως το 10.000 Στο μάθημα αυτό θα ασχοληθούμε με την εκτίμηση υπολογισμών, δηλαδή με την εύρεση ενός αποτελέσματος στο «περίπου» ή «κατ εκτίμηση» ή «πάνω-κάτω» ή «χοντρά-χοντρά»,

Διαβάστε περισσότερα

Επιμόρφωση Εκπαιδευτικών Α Τάξης Δημοτικού. Νοέμβρης 2012 1/11/2012. Φιλοσοφία διδασκαλίας. What you learn reflects how you learned it.

Επιμόρφωση Εκπαιδευτικών Α Τάξης Δημοτικού. Νοέμβρης 2012 1/11/2012. Φιλοσοφία διδασκαλίας. What you learn reflects how you learned it. Επιμόρφωση Εκπαιδευτικών Α Τάξης Δημοτικού Νοέμβρης 2012 Χρύσω Αθανασίου (Σύμβουλος Μαθηματικών ) Ελένη Δεληγιάννη (Συγγραφική Ομάδα) Άντρη Μάρκου (Σύμβουλος Μαθηματικών) Ελένη Μιχαηλίδου (Σύμβουλος Μαθηματικών)

Διαβάστε περισσότερα

Μαθηματικά Γ Γυμνασίου

Μαθηματικά Γ Γυμνασίου Α λ γ ε β ρ ι κ έ ς π α ρ α σ τ ά σ ε ι ς 1.1 Πράξεις με πραγματικούς αριθμούς (επαναλήψεις συμπληρώσεις) A. Οι πραγματικοί αριθμοί και οι πράξεις τους Διδακτικοί στόχοι Θυμάμαι ποιοι αριθμοί λέγονται

Διαβάστε περισσότερα

Συστήματα αρίθμησης. = α n-1 *b n-1 + a n-2 *b n-2 + +a 1 b 1 + a 0 όπου τα 0 a i b-1

Συστήματα αρίθμησης. = α n-1 *b n-1 + a n-2 *b n-2 + +a 1 b 1 + a 0 όπου τα 0 a i b-1 Συστήματα αρίθμησης Δεκαδικό σύστημα αρίθμησης 1402 = 1000 + 400 +2 =1*10 3 + 4*10 2 + 0*10 1 + 2*10 0 Γενικά σε ένα σύστημα αρίθμησης με βάση το b N, ένας ακέραιος αριθμός με n ψηφία παριστάνεται ως:

Διαβάστε περισσότερα

Εαρινό εξάμηνο 2012 1.03.12 Χ. Χαραλάμπους ΑΠΘ

Εαρινό εξάμηνο 2012 1.03.12 Χ. Χαραλάμπους ΑΠΘ Εαρινό εξάμηνο 2012 1.03.12 Χ. Χαραλάμπους Ποια είναι τα χαρακτηριστικά των μαθηματικών των αρχαίων Αιγυπτίων? Υπάρχει διαχωρισμός ανάμεσα στις ακριβείς τιμές ποσοτήτων και στις προσεγγίσεις? Όλοι αυτοί

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΔΥΤΙΚΗΣ ΜΑΚΕΔΟΝΙΑΣ ΠΑΙΔΑΓΩΓΙΚΟ ΤΜΗΜΑ ΔΗΜΟΤΙΚΗΣ ΕΚΠΑΙΔΕΥΣΗΣ

ΠΑΝΕΠΙΣΤΗΜΙΟ ΔΥΤΙΚΗΣ ΜΑΚΕΔΟΝΙΑΣ ΠΑΙΔΑΓΩΓΙΚΟ ΤΜΗΜΑ ΔΗΜΟΤΙΚΗΣ ΕΚΠΑΙΔΕΥΣΗΣ ΠΑΝΕΠΙΣΤΗΜΙΟ ΔΥΤΙΚΗΣ ΜΑΚΕΔΟΝΙΑΣ ΠΑΙΔΑΓΩΓΙΚΟ ΤΜΗΜΑ ΔΗΜΟΤΙΚΗΣ ΕΚΠΑΙΔΕΥΣΗΣ ΠΡΑΚΤΙΚΗ ΑΣΚΗΣΗ ΜΑΘΗΜΑΤΙΚΩΝ-Β ΦΑΣΗ ΘΕΜΑ ΔΙΔΑΣΚΑΛΙΑΣ: ΣΤΡΑΤΗΓΙΚΕΣ ΔΙΑΧΕΙΡΙΣΗΣ ΑΡΙΘΜΩΝ-19 ο ΚΕΦΑΛΑΙΟ ΣΧΟΛΕΙΟ: 2 ο ΠΕΙΡΑΜΑΤΙΚΟ ΦΛΩΡΙΝΑΣ

Διαβάστε περισσότερα

Α.2.1 Η ΕΝΝΟΙΑ ΤΟΥ ΚΛΑΣΜΑΤΟΣ

Α.2.1 Η ΕΝΝΟΙΑ ΤΟΥ ΚΛΑΣΜΑΤΟΣ ΚΕΦΑΛΑΙΟ Ο ΚΛΑΣΜΑΤΑ Α.. Η ΕΝΝΟΙΑ ΤΟΥ ΚΛΑΣΜΑΤΟΣ ΜΕΘΟΔΟΛΟΓΙΑ ΣΥΓΚΡΙΣΗ ΚΛΑΣΜΑΤΟΣ ΜΕ ΤΟ Αν ο αριθμητής ενός κλάσματος είναι μεγαλύτερος από τον παρανομαστή, τότε το κλάσμα είναι μεγαλύτερο από το. Αν ο αριθμητής

Διαβάστε περισσότερα

Α ΜΕΡΟΣ - ΑΛΓΕΒΡΑ. Α. Οι πραγματικοί αριθμοί και οι πράξεις τους

Α ΜΕΡΟΣ - ΑΛΓΕΒΡΑ. Α. Οι πραγματικοί αριθμοί και οι πράξεις τους Α ΜΕΡΟΣ - ΑΛΓΕΒΡΑ Κεφάλαιο 1 ο ΑΛΓΕΒΡΙΚΕΣ ΠΑΡΑΣΤΑΣΕΙΣ 1.1 Πράξεις με πραγματικούς αριθμούς Α. Οι πραγματικοί αριθμοί και οι πράξεις τους 1. Ποιοι αριθμοί ονομάζονται: α) ρητοί β) άρρητοι γ) πραγματικοί;

Διαβάστε περισσότερα

ΣΧΕΔΙΑΣΜΟΣ ΙΣΟΔΥΝΑΜΑ ΚΛΑΣΜΑΤΑ

ΣΧΕΔΙΑΣΜΟΣ ΙΣΟΔΥΝΑΜΑ ΚΛΑΣΜΑΤΑ ΣΧΕΔΙΑΣΜΟΣ ΙΣΟΔΥΝΑΜΑ ΚΛΑΣΜΑΤΑ ΒΙΩΝΟΝΤΑΣ ΤΟ ΓΝΩΣΤΟ ΔΡΑΣΤΗΡΙΟΤΗΤΑ 1 Δέκα μαθητές (εθελοντές) θα μοιραστούν 6 σοκολάτες που βρίσκονται πάνω σε 3 καρέκλες, όπως δείχνει η εικόνα. Κάθε ένας πρέπει να κατευθυνθεί

Διαβάστε περισσότερα

Μιχάλης Λάμπρου Νίκος Κ. Σπανουδάκης. τόμος 1. Καγκουρό Ελλάς

Μιχάλης Λάμπρου Νίκος Κ. Σπανουδάκης. τόμος 1. Καγκουρό Ελλάς Μιχάλης Λάμπρου Νίκος Κ. Σπανουδάκης τόμος Καγκουρό Ελλάς 0 007 (ο πρώτος αριθµός σε µια γραµµή αναφέρεται στη σελίδα που αρχίζει το άρθρο και ο δεύτερος στη σελίδα που περιέχει τις απαντήσεις) Πρόλογος

Διαβάστε περισσότερα

Ο ΦΙΜΠΟΝΑΤΣΙ ΚΑΙ Η ΔΙΑΙΡΕΣΗ. Διαβάζουµε από το βιβλίο «Liber Abaci» κεφάλαιο 5ο «Για την διαίρεση των ακεραίων», ανάµεσα σε άλλα, και τα παρακάτω:

Ο ΦΙΜΠΟΝΑΤΣΙ ΚΑΙ Η ΔΙΑΙΡΕΣΗ. Διαβάζουµε από το βιβλίο «Liber Abaci» κεφάλαιο 5ο «Για την διαίρεση των ακεραίων», ανάµεσα σε άλλα, και τα παρακάτω: Ο ΦΙΜΠΟΝΑΤΣΙ ΚΑΙ Η ΔΙΑΙΡΕΣΗ Διαβάζουµε από το βιβλίο «Liber Abaci» κεφάλαιο 5ο «Για την διαίρεση των ακεραίων», ανάµεσα σε άλλα, και τα παρακάτω: - «Όταν κανείς επιθυµεί να ξέρει να διαιρεί οποιονδήποτε

Διαβάστε περισσότερα

Διορθώσεις - Βελτιώσεις. στα βιβλία μαθητή των Μαθηματικών του Γυμνασίου

Διορθώσεις - Βελτιώσεις. στα βιβλία μαθητή των Μαθηματικών του Γυμνασίου Διορθώσεις - Βελτιώσεις στα βιβλία μαθητή των Μαθηματικών του Γυμνασίου 1 Μαθηματικά Α Γυμνασίου A/A Σελίδα Αντί Να γραφεί 1 11, 1 η Δραστηριότητα Βρες τους έξι διαφορετικούς τριψήφιους αριθμούς που. Βρες

Διαβάστε περισσότερα

3.2 3.3 3.4 ΠΡΑΞΕΙΣ ΜΕ ΕΚΑ ΙΚΟΥΣ

3.2 3.3 3.4 ΠΡΑΞΕΙΣ ΜΕ ΕΚΑ ΙΚΟΥΣ 1 3.2 3.3 3.4 ΠΡΑΞΕΙΣ ΜΕ ΕΚΑ ΙΚΟΥΣ ΥΠΟΛΟΓΙΣΜΟΙ ΜΕ ΚΟΜΠΙΟΥΤΕΡΑΚΙ ΤΥΠΟΠΟΙΗΜΕΝΗ ΜΟΡΦΗ ΑΡΙΘΜΩΝ ΘΕΩΡΙΑ 1. Πρόσθεση αφαίρεση δεκαδικών Γίνονται όπως και στους φυσικούς αριθµούς. Προσθέτουµε ή αφαιρούµε τα ψηφία

Διαβάστε περισσότερα

Η Έννοια του Κλάσµατος

Η Έννοια του Κλάσµατος Η Έννοια του Κλάσµατος Κεφάλαιο ο. Κλασµατική µονάδα λέγεται το ένα από τα ίσα µέρη, στα οποία χωρίζουµε την ακέραια µονάδα. Έχει τη µορφή, όπου α µη µηδενικός φυσικός αριθµός (α 0, α διάφορο του µηδενός).

Διαβάστε περισσότερα

ΑΝΑΛΥΤΙΚΟ ΠΡΟΓΡΑΜΜΑ ΜΑΘΗΜΑΤΙΚΩΝ Α ΤΑΞΗ ΔΗΜΟΤΙΚΟΥ

ΑΝΑΛΥΤΙΚΟ ΠΡΟΓΡΑΜΜΑ ΜΑΘΗΜΑΤΙΚΩΝ Α ΤΑΞΗ ΔΗΜΟΤΙΚΟΥ ΑΝΑΛΥΤΙΚΟ ΠΡΟΓΡΑΜΜΑ ΜΑΘΗΜΑΤΙΚΩΝ Α ΤΑΞΗ ΔΗΜΟΤΙΚΟΥ ΑΝΑΛΥΤΙΚΟ ΠΡΟΓΡΑΜΜΑ A ΤΑΞΗ ΔΗΜΟΤΙΚΟΥ Δείκτες Επιτυχίας ΑΡΙΘΜΟΙ ΚΑΙ ΠΡΑΞΕΙΣ Δείκτες Επάρκειας ΑΡΙΘΜΟΙ & ΠΡΑΞΕΙΣ Επίπεδο Δραστηριοτήτων Μαθηματικές Πρακτικές

Διαβάστε περισσότερα

ΒΕΔΙΚΑ ΜΑΘΗΜΑΤΙΚΑ: ΜΙΑ ΑΝΑΤΟΛΙΚΗ ΠΡΟΣΕΓΓΙΣΗ

ΒΕΔΙΚΑ ΜΑΘΗΜΑΤΙΚΑ: ΜΙΑ ΑΝΑΤΟΛΙΚΗ ΠΡΟΣΕΓΓΙΣΗ ΒΕΔΙΚΑ ΜΑΘΗΜΑΤΙΚΑ: ΜΙΑ ΑΝΑΤΟΛΙΚΗ ΠΡΟΣΕΓΓΙΣΗ Συχνά τα Μαθηματικά χρησιμοποιούνται ως ένα «εργαλείο» προκειμένου να ανιχνευθεί η «εξυπνάδα» του κάθε ανθρώπου, να διαφοροποιηθούν οι μαθητές μεταξύ τους σε

Διαβάστε περισσότερα

ΕΝΟΤΗΤΑ 11 ΠΕΝΤΑΨΗΦΙΟΙ ΚΑΙ ΕΞΑΨΗΦΙΟΙ ΑΡΙΘΜΟΙ - ΠΡΑΞΕΙΣ ΑΚΕΡΑΙΩΝ ΑΡΙΘΜΩΝ ΔΕΚΑΔΙΚΟΙ ΑΡΙΘΜΟΙ ΜΕΤΡΗΣΗ ΜΗΚΟΥΣ ΔΕΙΚΤΕΣ ΕΠΙΤΥΧΙΑΣ

ΕΝΟΤΗΤΑ 11 ΠΕΝΤΑΨΗΦΙΟΙ ΚΑΙ ΕΞΑΨΗΦΙΟΙ ΑΡΙΘΜΟΙ - ΠΡΑΞΕΙΣ ΑΚΕΡΑΙΩΝ ΑΡΙΘΜΩΝ ΔΕΚΑΔΙΚΟΙ ΑΡΙΘΜΟΙ ΜΕΤΡΗΣΗ ΜΗΚΟΥΣ ΔΕΙΚΤΕΣ ΕΠΙΤΥΧΙΑΣ ΠΕΝΤΑΨΗΦΙΟΙ ΚΑΙ ΕΞΑΨΗΦΙΟΙ ΑΡΙΘΜΟΙ - ΠΡΑΞΕΙΣ ΑΚΕΡΑΙΩΝ ΑΡΙΘΜΩΝ ΔΕΚΑΔΙΚΟΙ ΑΡΙΘΜΟΙ ΜΕΤΡΗΣΗ ΜΗΚΟΥΣ ΔΕΙΚΤΕΣ ΕΠΙΤΥΧΙΑΣ ΑΡΙΘΜΟΙ Διερεύνηση αριθμών ΑΡ2.5 Αναπαριστούν, συγκρίνουν και σειροθετούν ομώνυμα κλάσματα

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ Β ΓΥΜΝΑΣΙΟΥ

ΜΑΘΗΜΑΤΙΚΑ Β ΓΥΜΝΑΣΙΟΥ ΜΑΘΗΜΑΤΙΚΑ Β ΓΥΜΝΑΣΙΟΥ Βρέντζου Τίνα Φυσικός Μεταπτυχιακός τίτλος ΜEd: «Σπουδές στην εκπαίδευση» ΚΕΦΑΛΑΙΟ 1 Ο : Εξισώσεις - Ανισώσεις 1 1.1 Η ΕΝΝΟΙΑ ΤΗΣ ΜΕΤΑΒΛΗΤΗΣ ΑΛΓΕΒΡΙΚΕΣ ΠΑΡΑΣΤΑΣΕΙΣ ΟΡΙΣΜΟΙ Μεταβλητή

Διαβάστε περισσότερα

THE G C SCHOOL OF CAREERS ΜΑΘΗΜΑΤΙΚΟ ΣΧΟΛΕΙΟ

THE G C SCHOOL OF CAREERS ΜΑΘΗΜΑΤΙΚΟ ΣΧΟΛΕΙΟ THE G C SCHOOL OF CAREERS ΜΑΘΗΜΑΤΙΚΟ ΣΧΟΛΕΙΟ ΔΟΚΙΜΙΟ ΜΑΘΗΜΑΤΙΚΩΝ ΙΚΑΝΟΤΗΤΩΝ ΧΡΟΝΟΣ: 1 ΩΡΑ 3 ΛΕΠΤΑ Το δοκίμιο αυτό αποτελείται από δύο μέρη. Το πρώτο μέρος αποτελείται από 15 ερωτήσεις πολλαπλής επιλογής.

Διαβάστε περισσότερα

Δυαδικη παρασταση αριθμων και συμβολων

Δυαδικη παρασταση αριθμων και συμβολων Δυαδικη παρασταση αριθμων και συμβολων Ενα αριθμητικο συστημα χαρακτηριζεται απο την βαση r και τα συμβολα a i που παιρνουν τις τιμες 0,1,...,r-1. (a n,,a 1,a 0. a -1,a -2,,a -m ) r = =a n r n + +a 1 r+a

Διαβάστε περισσότερα

Εισαγωγή στην Πληροφορική & τον Προγραμματισμό

Εισαγωγή στην Πληροφορική & τον Προγραμματισμό ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα Εισαγωγή στην Πληροφορική & τον Προγραμματισμό Ενότητα 3 η : Κωδικοποίηση & Παράσταση Δεδομένων Ι. Ψαρομήλιγκος Χ. Κυτάγιας Τμήμα

Διαβάστε περισσότερα

ΑΡΧΙΤΕΚΤΟΝΙΚΗ ΥΠΟΛΟΓΙΣΤΩΝ. Κεφάλαιο 3

ΑΡΧΙΤΕΚΤΟΝΙΚΗ ΥΠΟΛΟΓΙΣΤΩΝ. Κεφάλαιο 3 ΑΡΧΙΤΕΚΤΟΝΙΚΗ ΥΠΟΛΟΓΙΣΤΩΝ Κεφάλαιο 3 Κεντρική Μονάδα Επεξεργασίας Κεντρική Μονάδα Επεξεργασίας Μονάδα επεξεργασίας δεδομένων Μονάδα ελέγχου Μονάδα επεξεργασίας δεδομένων Δομή Αριθμητικής Λογικής Μονάδας

Διαβάστε περισσότερα

Λογισμικό: Μαθηματικά Α ΣΤ Δημοτικού Κατηγορία αναπηρίας: Κώφωση Βαρηκοΐα Μάθημα: Μαθηματικά Τάξη/εις: Α Στ Δημοτικού

Λογισμικό: Μαθηματικά Α ΣΤ Δημοτικού Κατηγορία αναπηρίας: Κώφωση Βαρηκοΐα Μάθημα: Μαθηματικά Τάξη/εις: Α Στ Δημοτικού Λογισμικό: Μαθηματικά Α ΣΤ Δημοτικού Κατηγορία αναπηρίας: Κώφωση Βαρηκοΐα Μάθημα: Μαθηματικά Τάξη/εις: Α Στ Δημοτικού Παρουσίαση Λογισμικού: Κατερίνα Αραμπατζή Προμηθευτής: Postscriptum Advanced Communication

Διαβάστε περισσότερα

ΕΞΕΤΑΣΤΕΑ ΥΛΗ Key CERT: ΥΠΟΛΟΓΙΣΤΙΚΑ ΦΥΛΛΑ

ΕΞΕΤΑΣΤΕΑ ΥΛΗ Key CERT: ΥΠΟΛΟΓΙΣΤΙΚΑ ΦΥΛΛΑ ΕΞΕΤΑΣΤΕΑ ΥΛΗ Key CERT: ΥΠΟΛΟΓΙΣΤΙΚΑ ΦΥΛΛΑ Έκδοση 1.0 Σελίδα 1 από 6 ΓΝΩΣΤΙΚΟ ΑΝΤΙΚΕΙΜΕΝΟ: ΥΠΟΛΟΓΙΣΤΙΚΑ ΦΥΛΛΑ Τα ακόλουθα αποτελούν την εξεταστέα ύλη για την ενότητα Υπολογιστικά Φύλλα και θεωρούνται η

Διαβάστε περισσότερα

Σχολείο Δεύτερης Ευκαιρίας. Ιωαννίνων. Αριθμητικός Γραμματισμός. Εισηγήτρια : Σεντελέ Καίτη

Σχολείο Δεύτερης Ευκαιρίας. Ιωαννίνων. Αριθμητικός Γραμματισμός. Εισηγήτρια : Σεντελέ Καίτη Σχολείο Δεύτερης Ευκαιρίας Ιωαννίνων Αριθμητικός Γραμματισμός Εισηγήτρια : Σεντελέ Καίτη ΘΕΜΑ ΕΙΣΗΓΗΣΗΣ «Προγραμματισμός-Οργάνωση και υλοποίηση μιας διδακτικής ενότητας στον Αριθμητικό Γραμματισμό» ΠΡΟΣΘΕΣΗ

Διαβάστε περισσότερα

Μαθηματικά: Αριθμητική και Άλγεβρα. Μάθημα 3 ο, Τμήμα Α. Τρόποι απόδειξης

Μαθηματικά: Αριθμητική και Άλγεβρα. Μάθημα 3 ο, Τμήμα Α. Τρόποι απόδειξης Μαθηματικά: Αριθμητική και Άλγεβρα Μάθημα 3 ο, Τμήμα Α Ο πυρήνας των μαθηματικών είναι οι τρόποι με τους οποίους μπορούμε να συλλογιζόμαστε στα μαθηματικά. Τρόποι απόδειξης Επαγωγικός συλλογισμός (inductive)

Διαβάστε περισσότερα

ΑΝΑΛΥΤΙΚΟ ΠΡΟΓΡΑΜΜΑ ΜΑΘΗΜΑΤΙΚΩΝ B ΤΑΞΗ ΔΗΜΟΤΙΚΟΥ

ΑΝΑΛΥΤΙΚΟ ΠΡΟΓΡΑΜΜΑ ΜΑΘΗΜΑΤΙΚΩΝ B ΤΑΞΗ ΔΗΜΟΤΙΚΟΥ ΑΝΑΛΥΤΙΚΟ ΠΡΟΓΡΑΜΜΑ ΜΑΘΗΜΑΤΙΚΩΝ B ΤΑΞΗ ΔΗΜΟΤΙΚΟΥ ΑΡΙΘΜΟΙ ΚΑΙ ΠΡΑΞΕΙΣ ΑΡΙΘΜΟΙ & ΠΡΑΞΕΙΣ Δείκτες Επιτυχίας Επίπεδο Δραστηριοτήτων Δείκτες Επάρκειας Μαθηματικές Πρακτικές Αρ1.1 Απαγγέλλουν, διαβάζουν, γράφουν

Διαβάστε περισσότερα

Υπενθύμιση Δ τάξης. Παιχνίδια στην κατασκήνωση

Υπενθύμιση Δ τάξης. Παιχνίδια στην κατασκήνωση ΚΕΦΑΛΑΙΟ 1ο Υπενθύμιση Δ τάξης Παιχνίδια στην κατασκήνωση Συγκρίνω δυο αριθμούς για να βρω αν είναι ίσοι ή άνισοι. Στην περίπτωση που είναι άνισοι μπορώ να βρω ποιος είναι μεγαλύτερος (ή μικρότερος). Ανάμεσα

Διαβάστε περισσότερα

B Γυμνασίου. Ενότητα 9

B Γυμνασίου. Ενότητα 9 B Γυμνασίου Ενότητα 9 Γραμμικές εξισώσεις με μία μεταβλητή Διερεύνηση (1) Να λύσετε τις πιο κάτω εξισώσεις και ακολούθως να σχολιάσετε το πλήθος των λύσεων που βρήκατε σε καθεμιά. α) ( ) ( ) ( ) Διερεύνηση

Διαβάστε περισσότερα

Αίσθηση του αριθμού. Κολέζα Ευγενία

Αίσθηση του αριθμού. Κολέζα Ευγενία Αίσθηση του αριθμού Κολέζα Ευγενία Οι μαθητές μιας τάξης συζητάνε για το αποτέλεσμα της διαίρεσης 1:0 Νικόλας: «1:0=1. Για παράδειγμα, εάν έχουμε ένα κέικ και καλούμε φίλους να τους το προσφέρουμε, και

Διαβάστε περισσότερα

Επαναληπτικές Ασκήσεις Μαθηματικών Γ τάξη - 3 η Ενότητα Κεφ. 14 20

Επαναληπτικές Ασκήσεις Μαθηματικών Γ τάξη - 3 η Ενότητα Κεφ. 14 20 Οδύσσεια Τα απίθανα... τριτάκια! Tετάρτη τάξη Επαναληπτικές Ασκήσεις Μαθηματικών Γ τάξη - 3 η Ενότητα Κεφ. 14 20 Πηγή: e-selides 1. Μετρώ από το 1.000 μέχρι το 2.000 ανά 100: 1.000, 1.100. 2. Γράφω με

Διαβάστε περισσότερα

Mαρία Πριοβόλου. Οδηγός προετοιμασίας. για τα Πρότυπα Πειραματικά Γυμνάσια. Μαθηματικά

Mαρία Πριοβόλου. Οδηγός προετοιμασίας. για τα Πρότυπα Πειραματικά Γυμνάσια. Μαθηματικά Mαρία Πριοβόλου Οδηγός προετοιμασίας για τα Πρότυπα Πειραματικά Γυμνάσια Μαθηματικά Θέση υπογραφής δικαιούχου δικαιωμάτων πνευματικής ιδιοκτησίας, εφόσον η υπογραφή προβλέπεται από τη σύμβαση. Το παρόν

Διαβάστε περισσότερα

Βρέντζου Τίνα Φυσικός Μεταπτυχιακός τίτλος: «Σπουδές στην εκπαίδευση» ΜEd

Βρέντζου Τίνα Φυσικός Μεταπτυχιακός τίτλος: «Σπουδές στην εκπαίδευση» ΜEd 1 1) Δίνεται η εξίσωση x 2-2(λ + 2) χ + 2λ 2-17 = 0. Να βρείτε το λ ώστε η εξίσωση να έχει μία ρίζα διπλή. Υπολογίστε τη ρίζα. Aσκήσεις στις εξισώσεις Β βαθμού Για να έχει η εξίσωση μία ρίζα διπλή πρέπει:

Διαβάστε περισσότερα

Πρόγραμμα Επικαιροποίησης Γνώσεων Αποφοίτων ΑΡΙΘΜΗΤΙΚΑ ΣΥΣΤΗΜΑΤΑ

Πρόγραμμα Επικαιροποίησης Γνώσεων Αποφοίτων ΑΡΙΘΜΗΤΙΚΑ ΣΥΣΤΗΜΑΤΑ Πρόγραμμα Επικαιροποίησης Γνώσεων Αποφοίτων ΕΝΟΤΗΤΑ Μ1 ΨΗΦΙΑΚΑ ΗΛΕΚΤΡΟΝΙΚΑ Εκπαιδευτής: Γ. Π. ΠΑΤΣΗΣ, Επικ. Καθηγητής, Τμήμα Ηλεκτρονικών Μηχανικών, ΤΕΙ Αθήνας ΑΡΙΘΜΗΤΙΚΑ ΣΥΣΤΗΜΑΤΑ 1. Ποια είναι η βάση

Διαβάστε περισσότερα

Δυαδικό Σύστημα Αρίθμησης

Δυαδικό Σύστημα Αρίθμησης Δυαδικό Σύστημα Αρίθμησης Το δυαδικό σύστημα αρίθμησης χρησιμοποιεί δύο ψηφία. Το 0 και το 1. Τα ψηφία ενός αριθμού στο δυαδικό σύστημα αρίθμησης αντιστοιχίζονται σε δυνάμεις του 2. Μονάδες, δυάδες, τετράδες,

Διαβάστε περισσότερα

ΕΠΑΝΑΛΗΠΤΙΚΗ ΕΞΕΤΑΣΗ (14/9/2012)

ΕΠΑΝΑΛΗΠΤΙΚΗ ΕΞΕΤΑΣΗ (14/9/2012) Φτιάξε ένα πρόγραµµα FORTRAN που θα βρίσκει αν ο ακέραιος N που θα εισάγει ο χρήστης είναι άρτιος ή περιττός. Φτιάξε ένα πρόγραµµα FORTRAN που να προσδιορίζει και να τυπώνει την θέση των στοιχείων ενός

Διαβάστε περισσότερα

ΑΝΑΛΥΤΙΚΟ ΠΡΟΓΡΑΜΜΑ ΜΑΘΗΜΑΤΙΚΩΝ Α ΤΑΞΗ ΔΗΜΟΤΙΚΟΥ

ΑΝΑΛΥΤΙΚΟ ΠΡΟΓΡΑΜΜΑ ΜΑΘΗΜΑΤΙΚΩΝ Α ΤΑΞΗ ΔΗΜΟΤΙΚΟΥ ΑΝΑΛΥΤΙΚΟ ΠΡΟΓΡΑΜΜΑ ΜΑΘΗΜΑΤΙΚΩΝ Α ΤΑΞΗ ΔΗΜΟΤΙΚΟΥ Δείκτες Επιτυχίας ΑΡΙΘΜΟΙ ΚΑΙ ΠΡΑΞΕΙΣ Δείκτες Επάρκειας ΑΡΙΘΜΟΙ & ΠΡΑΞΕΙΣ Επίπεδο Δραστηριοτήτων Μαθηματικές Πρακτικές Αρ1.1 Απαγγέλλουν, διαβάζουν, γράφουν

Διαβάστε περισσότερα

1. ΕΙΣΑΓΩΓΗ ΣΤΟ MATLAB... 13

1. ΕΙΣΑΓΩΓΗ ΣΤΟ MATLAB... 13 ΠΙΝΑΚΑΣ ΠΕΡΙΕΧΟΜΕΝΩΝ 1. ΕΙΣΑΓΩΓΗ ΣΤΟ MATLAB... 13 1.1. Τι είναι το Matlab... 13 1.2. Περιβάλλον εργασίας... 14 1.3. Δουλεύοντας με το Matlab... 16 1.3.1. Απλές αριθμητικές πράξεις... 16 1.3.2. Σχόλια...

Διαβάστε περισσότερα

Ο ΕΚΣΥΓΧΡΟΝΙΣΜΟΣ ΤΩΝ ΜΑΘΗΜΑΤΙΚΩΝ ΠΕΡΙΕΧΟΜΕΝΩΝ ΣΤΑ ΝΕΑ ΒΙΒΛΙΑ ΤΗΣ Α ΚΑΙ Γ ΤΑΞΗΣ ΤΟΥ ΔΗΜΟΤΙΚΟΥ ΣΧΟΛΕΙΟΥ

Ο ΕΚΣΥΓΧΡΟΝΙΣΜΟΣ ΤΩΝ ΜΑΘΗΜΑΤΙΚΩΝ ΠΕΡΙΕΧΟΜΕΝΩΝ ΣΤΑ ΝΕΑ ΒΙΒΛΙΑ ΤΗΣ Α ΚΑΙ Γ ΤΑΞΗΣ ΤΟΥ ΔΗΜΟΤΙΚΟΥ ΣΧΟΛΕΙΟΥ Λεμονίδης Χ. (2007). Ο εκσυγχρονισμός των μαθηματικών περιεχομένων στα νέα βιβλία της Α και Γ τάξης του Δημοτικού Σχολείου. Γέφυρες, 31:24-31. Ο ΕΚΣΥΓΧΡΟΝΙΣΜΟΣ ΤΩΝ ΜΑΘΗΜΑΤΙΚΩΝ ΠΕΡΙΕΧΟΜΕΝΩΝ ΣΤΑ ΝΕΑ ΒΙΒΛΙΑ

Διαβάστε περισσότερα

CX-185 II. Αριθμομηχανή με εκτυπωτή. Εγχειρίδιο Οδηγιών

CX-185 II. Αριθμομηχανή με εκτυπωτή. Εγχειρίδιο Οδηγιών CX-185 II Αριθμομηχανή με εκτυπωτή Εγχειρίδιο Οδηγιών 1 ΠΕΡΙΓΡΑΦΗ ΠΛΗΚΤΡΩΝ ΚΑΙ ΔΙΑΚΟΠΤΩΝ έως Αριθμητικό Πλήκτρο Χρησιμοποιείται για την εισαγωγή αριθμού στην αριθμομηχανή. Πλήκτρο Υποδιαστολής Χρησιμοποιείται

Διαβάστε περισσότερα

Τα συμπτώματα που προειδοποιούν για τυχόν μαθησιακές δυσκολίες στην αριθμητική είναι τα εξής:

Τα συμπτώματα που προειδοποιούν για τυχόν μαθησιακές δυσκολίες στην αριθμητική είναι τα εξής: ...δεν σημαίνει χαμηλή νοημοσύνη Ονομάζεται δυσαριθμησία και είναι η μαθησιακή δυσκολία στα μαθηματικά. Τα παιδιά που παρουσιάζουν δυσκολίες στα μαθηματικά, δε σημαίνει πως έχουν χαμηλή νοημοσύνη. Της

Διαβάστε περισσότερα

Στάμη Τσικοπούλου. ΕΥΚΛΕΙΔΗΣ Β 85τ.1/1

Στάμη Τσικοπούλου. ΕΥΚΛΕΙΔΗΣ Β 85τ.1/1 Πίνακες πολλαπλασιασμού Το Βεδικό τετράγωνο Στάμη Τσικοπούλου Σ τα μαθηματικά και ιδιαίτερα στην αριθμητική ένας πίνακας πολλαπλασιασμού (ή αλλιώς ένας πυθαγόρειος πίνακας) είναι ένας πίνακας που χρησιμοποιείται

Διαβάστε περισσότερα

ΛΧ1004 Μαθηματικά για Οικονομολόγους

ΛΧ1004 Μαθηματικά για Οικονομολόγους ΛΧ1004 Μαθηματικά για Οικονομολόγους Μάθημα 1 ου Εξαμήνου 2Θ+2Φ(ΑΠ) Ι. Δημοτίκαλης, Επίκουρος Καθηγητής 1 ΤΕΙ ΚΡΗΤΗΣ-ΤΜΗΜΑ Λ&Χ: jdim@staff.teicrete.gr ΠΡΟΤΕΙΝΟΜΕΝΟ ΒΙΒΛΙΟ ΕΦΑΡΜΟΓΕΣ ΜΑΘΗΜΑΤΙΚΟΥ ΛΟΓΙΣΜΟΥ

Διαβάστε περισσότερα

Επιμόρφωση Εκπαιδευτικών Αναλυτικό Πρόγραμμα Μαθηματικών Δ Τάξης

Επιμόρφωση Εκπαιδευτικών Αναλυτικό Πρόγραμμα Μαθηματικών Δ Τάξης Επιμόρφωση Εκπαιδευτικών Αναλυτικό Πρόγραμμα Μαθηματικών Δ Τάξης Κωνσταντίνος Χρίστου Ρίτα Παναούρα Δήμητρα Πίττα-Πανταζή Μάριος Πιττάλης Οκτώβριος 2014 Συγγραφική ομάδα: Συντονιστές: Επιστημονικός Συνεργάτης:

Διαβάστε περισσότερα

1. Βάσεις αριθμητικών συστημάτων 2. Μετατροπές μεταξύ ξύβάσεων 3. Αρνητικοί δυαδικοί αριθμοί 4. Αριθμητικές πράξεις δυαδικών αριθμών

1. Βάσεις αριθμητικών συστημάτων 2. Μετατροπές μεταξύ ξύβάσεων 3. Αρνητικοί δυαδικοί αριθμοί 4. Αριθμητικές πράξεις δυαδικών αριθμών ΑΡΧΙΤΕΚΤΟΝΙΚΗ ΥΠΟΛΟΓΙΣΤΩΝ MHXANIKOI Η/Υ ΚΑΙ ΠΛΗΡΟΦΟΡΙΚΗΣ ΥΑ ΙΚΟΙ ΑΡΙΘΜΟΙ (ΑΚΕΡΑΙΟΙ ΑΡΙΘΜΟΙ) Γ. Τσιατούχας Παράρτηµα A ιάρθρωση 1. Βάσεις αριθμητικών συστημάτων 2. Μετατροπές μεταξύ ξύβάσεων 3. Αρνητικοί

Διαβάστε περισσότερα

Ο ΦΙΜΠΟΝΑΤΣΙ (ΚΑΙ Ο ΣΥΛΒΕΣΤΕΡ) ΚΑΙ ΤΑ ΜΟΝΑΔΙΑΙΑ ΚΛΑΣΜΑΤΑ

Ο ΦΙΜΠΟΝΑΤΣΙ (ΚΑΙ Ο ΣΥΛΒΕΣΤΕΡ) ΚΑΙ ΤΑ ΜΟΝΑΔΙΑΙΑ ΚΛΑΣΜΑΤΑ Ο ΦΙΜΠΟΝΑΤΣΙ (ΚΑΙ Ο ΣΥΛΒΕΣΤΕΡ) ΚΑΙ ΤΑ ΜΟΝΑΔΙΑΙΑ ΚΛΑΣΜΑΤΑ [ Στην ιστοσελίδα http://www.goldenmuseum.com/1207fibdivis_engl.html διάβασα για την (τελικά υποτιθέµενη) «διαίρεση του Φιµπονάτσι». Για να επιβεβαιώσω

Διαβάστε περισσότερα

1. ΕΠΑΝΑΛΗΠΤΙΚΕΣ ΑΣΚΗΣΕΙΣ

1. ΕΠΑΝΑΛΗΠΤΙΚΕΣ ΑΣΚΗΣΕΙΣ ΑΔΑΜΑΝΤΙΟΣ ΣΧΟΛΗ ΤΑΞΗ Δ ΟΝΟΜΑ α. Αντιμεταθετική ιδιότητα 1. ΕΠΑΝΑΛΗΠΤΙΚΕΣ ΑΣΚΗΣΕΙΣ Π Ρ Ο Σ Θ Ε Σ Η Α. ΙΔΙΟΤΗΤΕΣ ΤΗΣ ΠΡΟΣΘΕΣΗΣ 8 + 7 = 15 ή 7 + 8 = 15 346 ή 517 ή 82 + 517 + 82 + 346 82 346 517 945 945

Διαβάστε περισσότερα

ΕΝΟΤΗΤΑ 14 ΑΡΙΘΜΟΙ ΜΕΧΡΙ ΤΟ 100 ΠΡΑΞΕΙΣ ΜΕ ΠΟΛΛΑΠΛΑΣΙΑ ΤΟΥ 10 ΚΑΙ ΕΝΤΟΣ ΤΗΣ ΔΕΚΑΔΑΣ

ΕΝΟΤΗΤΑ 14 ΑΡΙΘΜΟΙ ΜΕΧΡΙ ΤΟ 100 ΠΡΑΞΕΙΣ ΜΕ ΠΟΛΛΑΠΛΑΣΙΑ ΤΟΥ 10 ΚΑΙ ΕΝΤΟΣ ΤΗΣ ΔΕΚΑΔΑΣ ΕΝΟΤΗΤΑ 14 ΑΡΙΘΜΟΙ ΜΕΧΡΙ ΤΟ 100 ΠΡΑΞΕΙΣ ΜΕ ΠΟΛΛΑΠΛΑΣΙΑ ΤΟΥ 10 ΚΑΙ ΕΝΤΟΣ ΤΗΣ ΔΕΚΑΔΑΣ ΔΕΙΚΤΕΣ ΕΠΙΤΥΧΙΑΣ ΑΡΙΘΜΟΙ Διερεύνηση αριθμών Αρ1.1 Απαγγέλλουν, διαβάζουν, γράφουν και αναγνωρίζουν ποσότητες αριθμών

Διαβάστε περισσότερα

Επαναληπτικές Ασκήσεις Μαθηματικών Γ τάξη 1 η Ενότητα

Επαναληπτικές Ασκήσεις Μαθηματικών Γ τάξη 1 η Ενότητα ilias ili Οδύσσεια Τα απίθανα... τριτάκια! Tετάρτη τάξη Επαναληπτικές Ασκήσεις Μαθηματικών Γ τάξη 1 η Ενότητα Αριθμοί μέχρι το 1000 - Οι τέσσερις πράξεις Γεωμετρικά σχήματα Πηγή: e-selides 1) Γράφω τους

Διαβάστε περισσότερα

ΑΝΑΛΥΤΙΚΟ ΠΡΟΓΡΑΜΜΑ Α ΤΑΞΗΣ

ΑΝΑΛΥΤΙΚΟ ΠΡΟΓΡΑΜΜΑ Α ΤΑΞΗΣ ΑΝΑΛΥΤΙΚΟ ΠΡΟΓΡΑΜΜΑ Α ΤΑΞΗΣ Το αναλυτικό πρόγραμμα που παρουσιάζουμε εδώ είναι μια πρόταση από περιεχόμενα που θα μπορούσαν να διδαχτούν στο σχολείο δεύτερης ευκαιρίας. Αυτό δεν σημαίνει ότι το πρόγραμμα

Διαβάστε περισσότερα

Μαθηματικα A Γυμνασιου

Μαθηματικα A Γυμνασιου Μαθηματικα A Γυμνασιου Θεωρια & παραδειγματα livemath.eu σελ. απο 45 ΠΕΡΙΕΧΟΜΕΝΑ ΦΥΣΙΚΟΙ ΑΡΙΘΜΟΙ 4 ΠΡΟΣΘΕΣΗ ΦΥΣΙΚΩΝ ΑΡΙΘΜΩΝ 4 ΟΡΙΣΜΟΣ ΦΥΣΙΚΩΝ ΑΡΙΘΜΩΝ 4 ΣΤΡΟΓΓΥΛΟΠΟΙΗΣΗ ΦΥΣΙΚΩΝ ΑΡΙΘΜΩΝ 4 ΑΦΑΙΡΕΣΗ ΦΥΣΙΚΩΝ

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ Γ ΓΥΜΝΑΣΙΟΥ

ΜΑΘΗΜΑΤΙΚΑ Γ ΓΥΜΝΑΣΙΟΥ ΜΑΘΗΜΑΤΙΚΑ Γ ΓΥΜΝΑΣΙΟΥ Οι πραγματικοί αριθμοί αποτελούνται από τους ρητούς και τους άρρητους αριθμούς, τους φυσικούς και τους ακέραιους αριθμούς. Δηλαδή είναι το μεγαλύτερο σύνολο αριθμών που μπορούμε

Διαβάστε περισσότερα

ΑΣΚΗΣΕΙΣ Ακολουθίας. Πίνακας τιµών µεταβλητών Χ Α Β α 5 20 8 10 23 15 15 23 8 β 3 18 4 8 17 13 13 17 4 γ

ΑΣΚΗΣΕΙΣ Ακολουθίας. Πίνακας τιµών µεταβλητών Χ Α Β α 5 20 8 10 23 15 15 23 8 β 3 18 4 8 17 13 13 17 4 γ ΑΣΚΗΣΕΙΣ Ακολουθίας Η δοµή Ακολουθίας είναι η πιο απλή δοµή του δοµηµένου προγραµµατισµού. Η κάθε εντολή ακολουθεί κάποια άλλη. Οι εντολές εκτελούνται ακριβώς µε τη σειρά όπως θα δοθούν στον αλγόριθµο

Διαβάστε περισσότερα

ΘΕΩΡΙΑ Α ΓΥΜΝΑΣΙΟΥ. Η διαίρεση καλείται Ευκλείδεια και είναι τέλεια όταν το υπόλοιπο είναι μηδέν.

ΘΕΩΡΙΑ Α ΓΥΜΝΑΣΙΟΥ. Η διαίρεση καλείται Ευκλείδεια και είναι τέλεια όταν το υπόλοιπο είναι μηδέν. ΑΛΓΕΒΡΑ 1 ο ΚΕΦΑΛΑΙΟ ΘΕΩΡΙΑ Α ΓΥΜΝΑΣΙΟΥ 1. Τι είναι αριθμητική παράσταση; Με ποια σειρά εκτελούμε τις πράξεις σε μια αριθμητική παράσταση ώστε να βρούμε την τιμή της; Αριθμητική παράσταση λέγεται κάθε

Διαβάστε περισσότερα

Περιεχόμενα. Κεφάλαιο 3 Οι ιδιότητες των αριθμών... 37 3.1 Αριθμητικά σύνολα... 37 3.2 Ιδιότητες... 37 3.3 Περισσότερες ιδιότητες...

Περιεχόμενα. Κεφάλαιο 3 Οι ιδιότητες των αριθμών... 37 3.1 Αριθμητικά σύνολα... 37 3.2 Ιδιότητες... 37 3.3 Περισσότερες ιδιότητες... Περιεχόμενα Πρόλογος... 5 Κεφάλαιο Βασικές αριθμητικές πράξεις... 5. Τέσσερις πράξεις... 5. Σύστημα πραγματικών αριθμών... 5. Γραφική αναπαράσταση πραγματικών αριθμών... 6.4 Οι ιδιότητες της πρόσθεσης

Διαβάστε περισσότερα

Σημείωση:Αν οι συντελεστές είναι 0,9 και 0,4 αντικαθιστουν τους 1,4 και 0,7.

Σημείωση:Αν οι συντελεστές είναι 0,9 και 0,4 αντικαθιστουν τους 1,4 και 0,7. Ο τρόπος υπολογισμού των μορίων 1. Ο υπολογισμός του συνολικού αριθμού μορίων κάθε υποψηφίου για εισαγωγή στις Σχολές, τα Τμήματα και τις Εισαγωγικές Κατευθύνσεις Τμημάτων που είναι ενταγμένα σε Επιστημονικά

Διαβάστε περισσότερα

Μαθηματικά Γ Δημοτικού. Πέτρος Κλιάπης

Μαθηματικά Γ Δημοτικού. Πέτρος Κλιάπης Μαθηματικά Γ Δημοτικού Πέτρος Κλιάπης Το σύγχρονο μαθησιακό περιβάλλον των Μαθηματικών Ενεργή συμμετοχή των παιδιών Μάθηση μέσα από δραστηριότητες Κατανόηση ΌΧΙ απομνημόνευση Αξιοποίηση της προϋπάρχουσας

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΔΥΤΙΚΗΣ ΜΑΚΕΔΟΝΙΑΣ ΠΑΙΔΑΓΩΓΙΚΟ ΤΜΗΜΑ ΔΗΜΟΤΙΚΗΣ ΕΚΠΑΙΔΕΥΣΗΣ ΠΡΑΚΤΙΚΗ ΑΣΚΗΣΗ ΜΑΘΗΜΑΤΙΚΩΝ Β ΦΑΣΗΣ

ΠΑΝΕΠΙΣΤΗΜΙΟ ΔΥΤΙΚΗΣ ΜΑΚΕΔΟΝΙΑΣ ΠΑΙΔΑΓΩΓΙΚΟ ΤΜΗΜΑ ΔΗΜΟΤΙΚΗΣ ΕΚΠΑΙΔΕΥΣΗΣ ΠΡΑΚΤΙΚΗ ΑΣΚΗΣΗ ΜΑΘΗΜΑΤΙΚΩΝ Β ΦΑΣΗΣ ΠΑΝΕΠΙΣΤΗΜΙΟ ΔΥΤΙΚΗΣ ΜΑΚΕΔΟΝΙΑΣ ΠΑΙΔΑΓΩΓΙΚΟ ΤΜΗΜΑ ΔΗΜΟΤΙΚΗΣ ΕΚΠΑΙΔΕΥΣΗΣ ΠΡΑΚΤΙΚΗ ΑΣΚΗΣΗ ΜΑΘΗΜΑΤΙΚΩΝ Β ΦΑΣΗΣ Θέμα Διδασκαλίας Προβλήματα με πρόσθεση και αφαίρεση κλασμάτων (Κεφάλαιο 23 ο ) Σχολείο: 2 ο

Διαβάστε περισσότερα

Υπολογιστικά & Διακριτά Μαθηματικά

Υπολογιστικά & Διακριτά Μαθηματικά Υπολογιστικά & Διακριτά Μαθηματικά Ενότητα 1: Εισαγωγή- Χαρακτηριστικά Παραδείγματα Αλγορίθμων Στεφανίδης Γεώργιος Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons.

Διαβάστε περισσότερα

Η Στήλη των Μαθηματικών Από τον Κώστα Δόρτσιο, Σχ. Σύμβουλο Μαθηματικών

Η Στήλη των Μαθηματικών Από τον Κώστα Δόρτσιο, Σχ. Σύμβουλο Μαθηματικών Η Στήλη των Μαθηματικών. Τετάρτη 15 Μαρτίου 2006 1/5 Η Στήλη των Μαθηματικών Από τον Κώστα Δόρτσιο, Σχ. Σύμβουλο Μαθηματικών Ν:6 ο Οι απαρχές των Μαθηματικών Τα μαθηματικά είναι η επιστήμη εκείνη η οποία

Διαβάστε περισσότερα

Αριθμητικά Συστήματα Κώδικες

Αριθμητικά Συστήματα Κώδικες Αριθμητικά Συστήματα Κώδικες 1.1 Εισαγωγή Κεφάλαιο 1 Ένα αριθμητικό σύστημα ορίζει ένα σύνολο τιμών που χρησιμοποιούνται για την αναπαράσταση μίας ποσότητας. Ποσοτικοποιώντας τιμές και αντικείμενα και

Διαβάστε περισσότερα

ΟΙ ΣΤΡΑΤΗΓΙΚΕΣ ΠΡΟΣΘΕΣΗΣ ΚΑΙ ΑΦΑΙΡΕΣΗΣ ΜΕ ΑΡΙΘΜΟΥΣ ΜΕΧΡΙ ΤΟ 20

ΟΙ ΣΤΡΑΤΗΓΙΚΕΣ ΠΡΟΣΘΕΣΗΣ ΚΑΙ ΑΦΑΙΡΕΣΗΣ ΜΕ ΑΡΙΘΜΟΥΣ ΜΕΧΡΙ ΤΟ 20 ΠΑΝΕΠΙΣΤΗΜΙΟ ΔΥΤΙΚΗΣ ΜΑΚΕΔΟΝΙΑΣ ΤΜΗΜΑ ΔΗΜΟΤΙΚΗΣ ΕΚΠΑΙΔΕΥΣΗΣ ΚΑΘΗΓΗΤΗΣ Χ. ΛΕΜΟΝΙΔΗΣ ΟΙ ΣΤΡΑΤΗΓΙΚΕΣ ΠΡΟΣΘΕΣΗΣ ΚΑΙ ΑΦΑΙΡΕΣΗΣ ΜΕ ΑΡΙΘΜΟΥΣ ΜΕΧΡΙ ΤΟ 20 Στη διδασκαλία συνήθως τα παιδιά αρχικά διδάσκονται τις

Διαβάστε περισσότερα

Όλες οι απαντήσεις. Μαθηματικά Στ Δημοτικού

Όλες οι απαντήσεις. Μαθηματικά Στ Δημοτικού Όλες οι απαντήσεις Μαθηματικά Στ Δημοτικού ΓΙΑΝΝΗΣ ΖΑΧΑΡΟΠΟΥΛΟΣ Όλες οι απαντήσεις Μαθηματικά Στ Δημοτικού Σειρά: Τα εκπαιδευτικά μου βιβλία / Δημοτικό / Μαθηματικά Γιάννης Ζαχαρόπουλος, Όλες οι απαντήσεις:

Διαβάστε περισσότερα

ΛΟΓΙΚΟ-ΜΑΘΗΜΑΤΙΚΕΣ ΣΧΕΣΕΙΣ & ΑΡΙΘΜΗΤΙΚΕΣ ΕΝΝΟΙΕΣ ΣΤΗΝ ΠΡΟΣΧΟΛΙΚΗ ΕΚΠΑΙΔΕΥΣΗ

ΛΟΓΙΚΟ-ΜΑΘΗΜΑΤΙΚΕΣ ΣΧΕΣΕΙΣ & ΑΡΙΘΜΗΤΙΚΕΣ ΕΝΝΟΙΕΣ ΣΤΗΝ ΠΡΟΣΧΟΛΙΚΗ ΕΚΠΑΙΔΕΥΣΗ ΛΟΓΙΚΟ-ΜΑΘΗΜΑΤΙΚΕΣ ΣΧΕΣΕΙΣ & ΑΡΙΘΜΗΤΙΚΕΣ ΕΝΝΟΙΕΣ ΣΤΗΝ ΠΡΟΣΧΟΛΙΚΗ ΕΚΠΑΙΔΕΥΣΗ Ενότητα 4: Οι αριθμητικοί πράξεις: Πολλαπλασιασμός - Διαίρεση Δημήτρης Χασάπης Τμήμα Εκπαίδευσης και Αγωγής στην Προσχολική Ηλικία

Διαβάστε περισσότερα

ΣΥΝΑΡΤΗΣΕΙΣ. Η σύνταξη μιας συνάρτησης σ ένα κελί έχει την γενική μορφή: =όνομα_συνάρτησης(όρισμα1; όρισμα2;.)

ΣΥΝΑΡΤΗΣΕΙΣ. Η σύνταξη μιας συνάρτησης σ ένα κελί έχει την γενική μορφή: =όνομα_συνάρτησης(όρισμα1; όρισμα2;.) ΣΥΝΑΡΤΗΣΕΙΣ Συνάρτηση είναι ένας έτοιμος τύπος ο οποίος δέχεται σαν είσοδο τιμές ή συνθήκες και επιστρέφει ένα αποτέλεσμα, το οποίο μπορεί να είναι μια τιμή αριθμητική, αλφαριθμητική, λογική, ημερομηνίας

Διαβάστε περισσότερα

ΕΡΩΤΗΣΕΙΣ ΘΕΜΑΤΑ ΘΕΩΡΙΑΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΤΗΣ Α ΓΥΜΝΑΣΙΟΥ ΑΛΓΕΒΡΑ

ΕΡΩΤΗΣΕΙΣ ΘΕΜΑΤΑ ΘΕΩΡΙΑΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΤΗΣ Α ΓΥΜΝΑΣΙΟΥ ΑΛΓΕΒΡΑ 1 ο ΚΕΦΑΛΑΙΟ ΕΡΩΤΗΣΕΙΣ ΘΕΜΑΤΑ ΘΕΩΡΙΑΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΤΗΣ Α ΓΥΜΝΑΣΙΟΥ ΑΛΓΕΒΡΑ 1. α. Τι γνωρίζετε για την Ευκλείδεια διαίρεση; Πότε λέγεται τέλεια; β. Αν σε μια διαίρεση είναι Δ=δ, πόσο είναι το πηλίκο και

Διαβάστε περισσότερα

Επιστημονικός Υπολογισμός (set3) Δρ. Γιώργος Τσιρογιάννης

Επιστημονικός Υπολογισμός (set3) Δρ. Γιώργος Τσιρογιάννης Επιστημονικός Υπολογισμός (set3) Δρ. Γιώργος Τσιρογιάννης Μοντέλο Αριθμητικής και Σφάλματα υπολογισμού Απώλεια πληροφορίας λόγω: Μαθηματικής μοντελοποίησης και αποστεύσεων Διακριτοποίηση Σφάλματα στρογγύλευσης

Διαβάστε περισσότερα

Κεφάλαιο 5. Θεμελιώδη προβλήματα της Τοπογραφίας

Κεφάλαιο 5. Θεμελιώδη προβλήματα της Τοπογραφίας Κεφάλαιο 5 Θεμελιώδη προβλήματα της Τοπογραφίας ΚΕΦΑΛΑΙΟ 5. 5 Θεμελιώδη προβλήματα της Τοπογραφίας. Στο Κεφάλαιο αυτό περιέχονται: 5.1 Γωνία διεύθυνσης. 5. Πρώτο θεμελιώδες πρόβλημα. 5.3 εύτερο θεμελιώδες

Διαβάστε περισσότερα

Γ ε ν ι κ ό Λ ύ κ ε ι ο Ε λ ε υ θ ε ρ ο ύ π ο λ η ς. Α λ γ ό ρ ι θ μ ο ι

Γ ε ν ι κ ό Λ ύ κ ε ι ο Ε λ ε υ θ ε ρ ο ύ π ο λ η ς. Α λ γ ό ρ ι θ μ ο ι Α λ γ ό ρ ι θ μ ο ι Αριθμητικοί τελεστές Οι αριθμητικοί τελεστές είναι: πρόσθεση, αφαίρεση, πολλαπλασιασμός και διαίρεση +,-,*,/ ύψωση σε δύναμη ^ πηλίκο ακέραιης διαίρεσης δύο ακεραίων αριθμών div υπόλοιπο

Διαβάστε περισσότερα

Πιο συγκεκριμένα, η χρήση του MATLAB προσφέρει τα ακόλουθα πλεονεκτήματα.

Πιο συγκεκριμένα, η χρήση του MATLAB προσφέρει τα ακόλουθα πλεονεκτήματα. i Π Ρ Ο Λ Ο Γ Ο Σ Το βιβλίο αυτό αποτελεί μια εισαγωγή στα βασικά προβλήματα των αριθμητικών μεθόδων της υπολογιστικής γραμμικής άλγεβρας (computational linear algebra) και της αριθμητικής ανάλυσης (numerical

Διαβάστε περισσότερα

ΓΙΑΝΝΗΣ ΚΑΡΑΓΙΑΝΝΑΚΗΣ. Οι αριθμοί πέρα απ τους κανόνες

ΓΙΑΝΝΗΣ ΚΑΡΑΓΙΑΝΝΑΚΗΣ. Οι αριθμοί πέρα απ τους κανόνες ΓΙΑΝΝΗΣ ΚΑΡΑΓΙΑΝΝΑΚΗΣ Οι αριθμοί πέρα απ τους κανόνες Οι αριθμοί πέρα απ τους κανόνες Γιάννης Καραγιαννάκης Copyright Γιάννης Καραγιαννάκης Eκδότης: Διερευνητική Μάθηση, Αθήνα 2012 Επιμέλεια: Γιάννης Καραγιαννάκης

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 2 ΔΙΑΤΑΞΕΙΣ, ΜΕΤΑΘΕΣΕΙΣ, ΣΥΝΔΥΑΣΜΟΙ

ΚΕΦΑΛΑΙΟ 2 ΔΙΑΤΑΞΕΙΣ, ΜΕΤΑΘΕΣΕΙΣ, ΣΥΝΔΥΑΣΜΟΙ ΚΕΦΑΛΑΙΟ ΔΙΑΤΑΞΕΙΣ ΜΕΤΑΘΕΣΕΙΣ ΣΥΝΔΥΑΣΜΟΙ Εισαγωγή. Οι σχηματισμοί που προκύπτουν με την επιλογή ενός συγκεκριμένου αριθμού στοιχείων από το ίδιο σύνολο καλούνται διατάξεις αν μας ενδιαφέρει η σειρά καταγραφή

Διαβάστε περισσότερα

Öýëëá åñãáóßáò ãéá ôá ÌáèçìáôéêÜ

Öýëëá åñãáóßáò ãéá ôá ÌáèçìáôéêÜ ÅÕÁÃÃÅËIÁ ÄÅÓYÐÑÇ Öýëëá åñãáóßáò ãéá ôá ÌáèçìáôéêÜ Â Äçìïôéêïý ÅÊÄÏÓÅÉÓ ÐÁÐÁÄÏÐÏÕËÏÓ Σειρά: Τα εκπαιδευτικά μου βιβλία / Δημοτικό Ευαγγελία Δεσύπρη, Φύλλα εργασίας για τα Μαθηματικά Β Δημοτικού Υπεύθυνη

Διαβάστε περισσότερα

Δάσκαλοι και μαθητές Παίζουμε και μαθαίνουμε!

Δάσκαλοι και μαθητές Παίζουμε και μαθαίνουμε! Δάσκαλοι και μαθητές Παίζουμε και μαθαίνουμε! Συντελεστές: Γιάννης Π. Κρόκος - Μαθηματικός Βασίλης Τσιλιβής Μαθηματικός Φιλίππια Γαλιατσάτου - Δασκάλα Πολιτικός Μηχανικός «Η επίλυση των προβλημάτων & των

Διαβάστε περισσότερα

1. Να χαρακτηρίσετε τις προτάσεις που ακολουθούν γράφοντας την ένδειξη Σωστό ή Λάθος και να δικαιολογήσετε την απάντησή σας.

1. Να χαρακτηρίσετε τις προτάσεις που ακολουθούν γράφοντας την ένδειξη Σωστό ή Λάθος και να δικαιολογήσετε την απάντησή σας. Κεφάλαιο Πραγματικοί αριθμοί. Οι πράξεις και οι ιδιότητές τους Κατανόηση εννοιών - Θεωρία. Να χαρακτηρίσετε τις προτάσεις που ακολουθούν γράφοντας την ένδειξη Σωστό ή Λάθος και να δικαιολογήσετε την απάντησή

Διαβάστε περισσότερα