ΣΤ ΤΑΞΗΣ ΔΗΜΟΤΙΚΟΥ ΘΕΜΑΤΑ ΔΙΑΓΩΝΙΣΜΟΥ ΓΙΑ ΜΑΘΗΤΕΣ. Σάββατο, 8 Ιουνίου 2013

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "ΣΤ ΤΑΞΗΣ ΔΗΜΟΤΙΚΟΥ ΘΕΜΑΤΑ ΔΙΑΓΩΝΙΣΜΟΥ ΓΙΑ ΜΑΘΗΤΕΣ. Σάββατο, 8 Ιουνίου 2013"

Transcript

1 ΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ ΠΑΡΑΡΤΗΜΑ ΚΕΝΤΡΙΚΗΣ ΜΑΚΕΔΟΝΙΑΣ Διεύθυνση: Προξένου Κορομηλά 51 Τ.Κ , Θεσσαλονίκη Τηλέφωνο και Fax ΘΕΜΑΤΑ ΔΙΑΓΩΝΙΣΜΟΥ ΓΙΑ ΜΑΘΗΤΕΣ ΣΤ ΤΑΞΗΣ ΔΗΜΟΤΙΚΟΥ Σάββατο, 8 Ιουνίου 2013 Αγαπητοί μαθητές και αγαπητές μαθήτριες, Το Διοικητικό Συμβούλιο του Παραρτήματος της Ελληνικής Μαθηματικής Εταιρείας Κεντρικής Μακεδονίας σας συγχαίρει για τη διάκρισή σας στην πρώτη φάση του Πανελλήνιου διαγωνισμού «Παιχνίδι και Μαθηματικά» που διοργάνωσε κεντρικά η Ε.Μ.Ε. Η δεύτερη φάση είναι δυσκολότερη. Ως θεσμός πραγματοποιείται στη Θεσσαλονίκη για τους μαθητές των Δημοτικών Σχολείων από το Πρέπει να λύσετε τα έξι προβλήματα σε χρόνο 2 ωρών. Να εξηγήσετε την απάντηση που θα δώσετε σε κάθε πρόβλημα. Στη βαθμολογία σας μετράει κυρίως ο τρόπος που σκεφτήκατε και λιγότερο τα αριθμητικά λάθη. ΠΡΟΒΛΗΜΑ 1 ο 1. Να γράψετε τον αριθμό 40 ως γινόμενο τριών ακεραίων αριθμών (όχι απαραίτητα διαφορετικών) με όσους τρόπους μπορείτε. 2. Να γράψετε τον αριθμό 5 ως άθροισμα ακεραίων αριθμών χωρίς τα ψηφία 0 και 5 με έξι διαφορετικούς τρόπους. 3. Να εξηγήσετε γιατί ο αριθμός 10 γράφεται ως άθροισμα ακεραίων αριθμών, χωρίς τα ψηφία 0 και 7, με περισσότερους από 30 διαφορετικούς τρόπους. ΠΡΟΒΛΗΜΑ 2 ο Στο επάνω μέρος του μηχανήματος ρίχνουμε έναν ακέραιο αριθμό και από το κάτω μέρος βγαίνει ο αριθμός που ισούται με το άθροισμα των ψηφίων του αριθμού που ρίξαμε στο μηχάνημα. 1. Αν εμφανιστεί στο κάτω μέρος ο αριθμός 10, τότε ποιος μπορεί να είναι ο αριθμός που ρίξαμε στο μηχάνημα, αν γνωρίζουμε ότι πρόκειται για αριθμό περιττό (μονό) από το 1 έως το 100; 2. Γράψτε τον μικρότερο αριθμό με 15 ψηφία, που αν τον ρίξουμε στο μηχάνημα, θα μας δώσει τον αριθμό Υπάρχει αριθμός με 20 ψηφία, που να είναι πολλαπλάσιο του 3 και όταν τον ρίξουμε στο μηχάνημα να μας δώσει τον αριθμό 20;

2 ΠΡΟΒΛΗΜΑ 3 ο Μέσα στο παρακάτω σχήμα όλα σχήματα είναι τετράγωνα. Η πλευρά του μικρού μαύρου τετραγώνου είναι 3 μ. Να βρεθεί το εμβαδόν του μεγάλου σχήματος με τα 9 τετράγωνα. ΠΡΟΒΛΗΜΑ 4 ο Το τρίγωνο ΑΒΓ είναι ισοσκελές με ΑΒ = ΑΓ και γωνία ΒΑΓ = 120 ο. Στην πλευρά ΒΓ παίρνουμε σημείο Ε προς το μέρος του Β, ώστε γωνία ΕΑΓ = 90 ο. Να εξηγήσετε γιατί το τρίγωνο ΒΕΑ είναι ισοσκελές. Αν προεκτείνουμε την πλευρά ΑΓ προς το μέρος του σημείο Α και από το σημείο Β φέρουμε ευθεία κάθετη στην προέκταση της πλευράς ΑΓ και ονομάζουμε Ζ το σημείο που συναντώνται οι δύο ευθείες. Να εξηγήσετε γιατί η ΒΑ είναι διχοτόμος της γωνίας ΖΒΕ. Να σχεδιάσετε τα σχήματα στο φύλλο απαντήσεων. ΠΡΟΒΛΗΜΑ 5 ο Να εξηγήσετε γιατί υπάρχουν μόνο δύο κλάσματα (και να βρείτε ποια είναι) με τις εξής ιδιότητες: Έχουν αριθμητή τον αριθμό 3. Είναι ανάγωγα (δηλαδή δεν απλοποιούνται). Έχουν παρονομαστή τριψήφιο αριθμό με τα ψηφία του όλα διαφορετικά. Το ψηφίο των δεκάδων είναι το 5. Τα ψηφία των μονάδων και των εκατοντάδων είναι άρτιοι αριθμοί. Το ψηφίο των μονάδων είναι μεγαλύτερο κατά 4 από αυτό των εκατοντάδων. ΠΡΟΒΛΗΜΑ 6 ο Ένας κύβος έχει πλευρά 6 μ. Τον χωρίζουμε σε 27 μικρότερους ίσους κύβους, τους οποίους απλώνουμε σε ένα τραπέζι. Για να βάψουμε τον αρχικό κύβο σε όλες τις έδρες του χρειαζόμαστε γραμμάρια χρώματος. Πόσα γραμμάρια χρώματος χρειαζόμαστε για να βάψουμε τους 27 μικρότερους κύβους σε όλες τις έδρες τους.

3 ΑΠΑΝΤΗΣΕΙΣ ΣΤΑ ΘΕΜΑΤΑ ΔΙΑΓΩΝΙΣΜΟΥ ΠΑΡΑΡΤΗΜΑΤΟΣ ΚΕΝΤΡΙΚΗΣ ΜΑΚΕΔΟΝΙΑΣ ΤΗΣ Ε.Μ.Ε. ΓΙΑ ΜΑΘΗΤΕΣ ΣΤ ΤΑΞΗΣ ΔΗΜΟΤΙΚΟΥ, Σάββατο, 8 Ιουνίου 2013 ΠΡΟΒΛΗΜΑ 1 ο 1 ο ερώτημα: Υπάρχουν 6 διαφορετικοί τρόποι. Αυτοί είναι οι: , , , 1 5 8, , ο ερώτημα: Οι 6 διαφορετικοί τρόποι αθροίσματος είναι οι: , , 1+2+2, 1+1+3, 1+4, ο ερώτημα: Επειδή 10 = και ο 5 γράφεται ως άθροισμα με περισσότερους από 6 διαφορετικούς τρόπους, σημαίνει ότι ο 10 γράφεται ως άθροισμα ακεραίων με τουλάχιστον 12 διαφορετικούς τρόπους. Επίσης, 10 = Επειδή ο 6 γράφεται ως άθροισμα με περισσότερους τρόπους από τον 5, σημαίνει ότι έχουμε και άλλους 6 τουλάχιστον τρόπους. Επίσης, 10 = Όμως, ο 8 γράφεται ως άθροισμα με περισσότερους από 6 τρόπους. Το ίδιο συμβαίνει και με τον 9. Τελικά, έχουμε πολύ περισσότερους από 5x6 = 30 τρόπους γραφής του αριθμού 10 ως άθροισμα ακεραίων. ΠΡΟΒΛΗΜΑ 2 ο 1 ο ερώτημα: Αριθμοί από το 1 έως το 100 με άθροισμα ψηφίων 10 είναι οι 19, 28, 37, 46, 55, 64, 73, 82, 91. Επειδή, γνωρίζουμε ότι στη μηχανή ρίξαμε αριθμό περιττό, τότε η απάντηση είναι ένας από τους αριθμούς 19, 37, 55, 73, ο ερώτημα: Ο μικρότερος τέτοιος αριθμός θα έχει στο ψηφίο των μονάδων το 9 και 13 μηδενικά, δηλαδή είναι ο ο ερώτημα: Γνωρίζουμε ότι κάθε αριθμός που διαιρείται με το 3 έχει άθροισμα ψηφίων αριθμό που διαιρείται με το 3. Όμως, ο αριθμός 20 δεν διαιρείται με το 3. Άρα, δεν υπάρχει τέτοιος αριθμός που ζητάει το πρόβλημα. ΠΡΟΒΛΗΜΑ 3 ο Επειδή το μικρό μαύρο τετράγωνο έχει πλευρά 3 μ., την ίδια πλευρά έχουν και τα υπόλοιπα τρία τετράγωνα δεξιά και κάτω από αυτό. Άρα, το δεξί γωνιακό τετράγωνο του σχήματος έχει πλευρά 6 μ. Τα δύο τετράγωνα που βρίσκονται κάτω από το τετράγωνο αυτό είναι ίσα και έχουν κι αυτά πλευρά 6 μ. Άρα, το μεγάλο τετράγωνο που αποτελείται από τα 9 μικρότερα τετράγωνα θα έχει μήκος πλευράς 3x6 = 18 μ. Το εμβαδόν του τετραγώνου αυτού είναι 18x18 = 324 τ.μ.

4 ΠΡΟΒΛΗΜΑ 4 ο Επειδή γωνία ΒΑΓ = 120 ο και το τρίγωνο είναι ισοσκελές, σημαίνει ότι οι άλλες δύο γωνίες του έχουν άνοιγμα 30 ο. Επειδή η γωνία ΕΑΓ = 90 ο, σημαίνει ότι γωνία ΕΑΒ = 120 ο 90 ο = 30 ο. Το τρίγωνο ΒΑΕ έχει δύο γωνίες ίσες με 30 ο, άρα είναι ισοσκελές. Επειδή γωνία ΒΑΓ = 120 ο, σημαίνει ότι γωνία ΒΑΖ = 180 ο -120 ο = 60 ο. Όμως, γωνία ΒΖΑ = 90 ο. Άρα, γωνία ΖΒΑ = 30 ο, επειδή το άθροισμα των γωνιών σε κάθε τρίγωνο, άρα και στο ΒΖΑ ισούται με 180 ο. Αφού, λοιπόν, γωνία ΖΒΑ = 30 ο = γωνία ΑΒΕ, σημαίνει ότι η ΒΑ είναι διχοτόμος της γωνίας ΖΒΓ. ΠΡΟΒΛΗΜΑ 5 ο Πρέπει να προσέξουμε τους περιορισμούς που έχει το πρόβλημα. Αφού το κλάσμα είναι ανάγωγο σημαίνει ότι ο παρονομαστής δεν πρέπει να διαιρείται με το 3 που είναι ο αριθμητής του. Επίσης, ο παρονομαστής είναι αριθμός άρτιος που σημαίνει ότι τελειώνει σε 0, 2, 4, 6, 8. Όμως, επειδή το ψηφίο των μονάδων είναι μεγαλύτερο από αυτό των εκατοντάδων που κι αυτό πρέπει να είναι άρτιος αριθμός, πρέπει να αποκλείσουμε από το ψηφίο των μονάδων τους αριθμούς 0 και 2. Μένουν τα ψηφία 4, 6, 8. Μόνο οι αριθμοί 256 και 458 ταιριάζουν με τα ζητούμενα. Άρα, πράγματι, υπάρχουν μόνο δύο τέτοια κλάσματα. ΠΡΟΒΛΗΜΑ 6 ο Ο χωρισμός του αρχικού κύβου σε 27 ίσους μικρότερους κύβους μπορεί να γίνει αν τον κόψουμε σε 3 στρώματα ίσου πάχους και κάθε στρώμα το κόψουμε πάλι σε 9 μικρότερους κύβους. Άρα, ο κάθε μικρός κύβος θα έχει πλευρά 6:3 = 2 μ. Ένας τέτοιος μικρός κύβος αποτελείται από 6 τετραγωνικές έδρες που η κάθε μία έχει εμβαδόν 2x2 = 4 τ.μ. Συνολικά, κάθε μικρός κύβος έχει εμβαδόν 6x4 = 24 τ.μ. Όλοι οι μικροί κύβοι έχουν εμβαδόν 24x27 = 648 τ.μ. Ο αρχικός κύβος, επειδή είχε πλευρά 6 μ. θα έχει εμβαδόν σε κάθε τετραγωνική του έδρα 6x6 = 36 τ.μ. και συνολικό εμβαδόν 36x6 =216 τ.μ. Επειδή για να βαφεί χρειάζονται γραμμάρια χρώματος, σημαίνει ότι για κάθε τ.μ. απαιτούνται 100 γραμμάρια χρώματος. Δηλαδή για τους 27 μικρούς κύβους απαιτούνται 648x100 = γραμμάρια χρώματος.

5 ΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ ΠΑΡΑΡΤΗΜΑ ΚΕΝΤΡΙΚΗΣ ΜΑΚΕΔΟΝΙΑΣ Διεύθυνση: Προξένου Κορομηλά 51 Τ.Κ , Θεσσαλονίκη Τηλέφωνο και Fax ΘΕΜΑΤΑ ΔΙΑΓΩΝΙΣΜΟΥ ΓΙΑ ΜΑΘΗΤΕΣ Ε ΤΑΞΗΣ ΔΗΜΟΤΙΚΟΥ Σάββατο, 8 Ιουνίου 2013 Αγαπητοί μαθητές και αγαπητές μαθήτριες, Το Διοικητικό Συμβούλιο του Παραρτήματος της Ελληνικής Μαθηματικής Εταιρείας Κεντρικής Μακεδονίας σας συγχαίρει για τη διάκρισή σας στην πρώτη φάση του Πανελλήνιου διαγωνισμού «Παιχνίδι και Μαθηματικά» που διοργάνωσε κεντρικά η Ε.Μ.Ε. Η δεύτερη φάση είναι δυσκολότερη. Ως θεσμός πραγματοποιείται στη Θεσσαλονίκη για τους μαθητές των Δημοτικών Σχολείων από το Πρέπει να λύσετε τα έξι προβλήματα σε χρόνο 2 ωρών. Να εξηγήσετε την απάντηση που θα δώσετε σε κάθε πρόβλημα. Στη βαθμολογία σας μετράει κυρίως ο τρόπος που σκεφτήκατε και λιγότερο τα αριθμητικά λάθη. ΠΡΟΒΛΗΜΑ 1 ο 13 Το κλάσμα δεν είναι ακέραιος αριθμός Να βρείτε τον μικρότερο μονοψήφιο αριθμό που πρέπει να προσθέσουμε στον αριθμητή του 13/5, ώστε το κλάσμα να γίνει αριθμός ακέραιος. 2. Να βρείτε τον μικρότερο διψήφιο αριθμό που πρέπει να προσθέσουμε στον αριθμητή του 13/5, ώστε το κλάσμα να γίνει αριθμός ακέραιος. 3. Να βρείτε τον μικρότερο μονοψήφιο αριθμό που πρέπει να προσθέσουμε στον παρονομαστή του 13/5, ώστε το κλάσμα να γίνει αριθμός ακέραιος. 4. Να βρείτε τον μικρότερο μονοψήφιο αριθμό που πρέπει να αφαιρέσουμε από τον παρονομαστή του 13/5, ώστε το κλάσμα να γίνει αριθμός ακέραιος. ΠΡΟΒΛΗΜΑ 2 ο Μέσα στο παρακάτω σχήμα όλα τα σχήματα είναι τετράγωνα. Η πλευρά του μικρού μαύρου τετραγώνου είναι 3 μ. Να βρεθεί το εμβαδόν του μεγάλου σχήματος που αποτελείται από τα 9 τετράγωνα.

6 ΠΡΟΒΛΗΜΑ 3 ο Ο Ηρακλής όταν έκοβε ένα κεφάλι από την Λερναία Ύδρα, στη θέση του φύτρωναν δύο κεφάλια. Ο Ηρακλής είχε κόψει 15 κεφάλια της Λερναίας Ύδρας. Μέτρησε τα κεφάλια που είχε τώρα η Ύδρα και ήταν 50. Πόσα κεφάλια είχε αρχικά η Ύδρα; ΠΡΟΒΛΗΜΑ 4 ο Τρία ξύλινα κυβάκια έχουν το ίδιο βάρος με 5 ξύλινες πυραμίδες. Στον αριστερό δίσκο μιας ζυγαριάς έχουμε 7 ξύλινα κυβάκια και 2 ξύλινες πυραμίδες. Στον δεξί δίσκο της ζυγαριάς έχουμε 5 ξύλινες πυραμίδες και έναν ξύλινο κύβο. Να απαντήσετε στα επόμενα τρία ερωτήματα, ξεκινώντας κάθε φορά από την αρχική κατάσταση της ζυγαριάς. 1. Να βρείτε τον μικρότερο αριθμό πυραμίδων που πρέπει να προσθέσουμε στη ζυγαριά, ώστε αυτή να ισορροπήσει. 2. Να βρείτε τον μικρότερο αριθμό κύβων και πυραμίδων που πρέπει να προσθέσουμε στη ζυγαριά, ώστε αυτή να ισορροπήσει. 3. Αν στον δεξί δίσκο προσθέσουμε άλλες 3 πυραμίδες, ποιος είναι ο μικρότερος αριθμός αντικειμένων (κύβοι ή πυραμίδες) που πρέπει να προσθέσουμε ή να αφαιρέσουμε από τους δύο δίσκους, ώστε η ζυγαριά να ισορροπήσει; Υπάρχει και άλλη λύση; ΠΡΟΒΛΗΜΑ 5 ο Να βρείτε τους 5 ακέραιους αριθμούς, που αν πολλαπλασιαστούν όλοι μαζί, έχουν γινόμενο τον αριθμό 210. Από αυτούς τους αριθμούς παίρνουμε έναν, τον διαγράφουμε και πολλαπλασιάζουμε τους υπόλοιπους. Από τους υπόλοιπους τέσσερις παίρνουμε άλλον έναν αριθμό, τον διαγράφουμε και αυτόν και πολλαπλασιάζουμε τους τρεις αριθμούς που έμειναν. Προσθέτουμε τα δύο γινόμενα και έχουμε τον αριθμό 48. Ποιους αριθμούς διαγράψαμε από την πεντάδα των αρχικών αριθμών και με ποια σειρά; ΠΡΟΒΛΗΜΑ 6 ο 1. Να κάνετε ένα σχήμα για να δείξετε ότι μπορείτε με 27 ίσα ξυλαράκια να τα τοποθετήσετε σε ένα τραπέζι και να σχηματιστούν 10 ίσα τετράγωνα. 2. Ποιος είναι ο μικρότερος αριθμός που πρέπει να αφαιρέσετε από τα ξυλαράκια αυτά, ώστε τα τετράγωνα που θα μείνουν να είναι 6; Δεν έχει σημασία το μέγεθος των τετραγώνων που θα μείνουν στο τραπέζι. Δεν θέλουμε όμως, να υπάρχουν ξυλάκια που δεν σχηματίζουν τετράγωνο.

7 ΑΠΑΝΤΗΣΕΙΣ ΣΤΑ ΘΕΜΑΤΑ ΔΙΑΓΩΝΙΣΜΟΥ ΠΑΡΑΡΤΗΜΑΤΟΣ ΚΕΝΤΡΙΚΗΣ ΜΑΚΕΔΟΝΙΑΣ ΤΗΣ Ε.Μ.Ε. ΓΙΑ ΜΑΘΗΤΕΣ Ε ΤΑΞΗΣ ΔΗΜΟΤΙΚΟΥ, Σάββατο, 8 Ιουνίου 2013 ΠΡΟΒΛΗΜΑ 1 ο 1 ο ερώτημα: Πρέπει ο αριθμητής του κλάσματος να γίνει πολλαπλάσιο του 5, ώστε το κλάσμα να γίνει ακέραιος. Άρα, ο μικρότερος μονοψήφιος αριθμός που πρέπει να προσθέσουμε στον αριθμητή είναι ο 2. 2 ο ερώτημα: Πρέπει, πάλι ο αριθμητής του κλάσματος να γίνει πολλαπλάσιο του 5, αλλά «αρκετά» μεγαλύτερος. Αν γίνει 30, τότε το κλάσμα θα είναι ακέραιος. Μικρότερος αριθμητής είναι ο 25 και ο 20. Ο κατάλληλος αριθμητής είναι ο 25, διότι πρέπει ο 13 να γίνει 25 με πρόσθεση διψήφιου αριθμού. Άρα, πρέπει να προσθέσουμε τον αριθμό ο ερώτημα: Αν το κλάσμα γίνει 13/13 θα είναι ακέραιος αριθμός. Άρα, πρέπει να προσθέσουμε στον παρονομαστή, τον αριθμό 8. 4 ο ερώτημα: Από τον παρονομαστή του κλάσματος πρέπει να αφαιρέσουμε τον αριθμό 4 ώστε να γίνει 13/1 = 13. ΠΡΟΒΛΗΜΑ 2 ο Επειδή το μικρό μαύρο τετράγωνο έχει πλευρά 3 μ., την ίδια πλευρά έχουν και τα υπόλοιπα τρία τετράγωνα δεξιά και κάτω από αυτό. Άρα, το δεξί γωνιακό τετράγωνο του σχήματος έχει πλευρά 6 μ. Τα δύο τετράγωνα που βρίσκονται κάτω από το τετράγωνο αυτό είναι ίσα και έχουν κι αυτά πλευρά 6 μ. Άρα, το μεγάλο τετράγωνο που αποτελείται από τα 9 μικρότερα τετράγωνα θα έχει μήκος πλευράς 3x6 = 18 μ. Το εμβαδόν του τετραγώνου αυτού είναι 18x18 = 324 τ.μ. ΠΡΟΒΛΗΜΑ 3 ο Αφού ο Ηρακλής έκοψε 15 κεφάλια από την Ύδρα, φύτρωσαν 15x2 = 30 κεφάλια. Δηλαδή, τα κεφάλια της αυξήθηκαν κατά = 15. Άρα, για να έχει τώρα η Ύδρα 50 κεφάλια, σημαίνει ότι πριν τη μάχη με τον Ηρακλή είχε = 35 κεφάλια. ΠΡΟΒΛΗΜΑ 4 ο Επειδή 3 κύβοι έχουν το ίδιο βάρος με 5 πυραμίδες, σημαίνει ότι 6 κύβοι έχουν το ίδιο βάρος με 10 πυραμίδες. Στον αριστερό δίσκο έχουμε 7 κύβους και 2 πυραμίδες = 1 κύβος και άλλοι 6 κύβοι και 2 πυραμίδες = 1 κύβος και 10 πυραμίδες και 2 πυραμίδες = 1 κύβος και 12 πυραμίδες. Στον δεξί δίσκο έχουμε 1 κύβο και 5 πυραμίδες. 1 ο ερώτημα: Για να έχουμε ισορροπία στη ζυγαριά πρέπει να προσθέσουμε στον δεξί δίσκο 7 πυραμίδες. 2 ο ερώτημα: Ο αριστερό δίσκος είναι βαρύτερος από τον δεξί κατά 7 πυραμίδες. Αν βάλουμε λοιπόν στον δεξί δίσκο 3 κύβους (που έχουν βάρος όσο 5 πυραμίδες) και άλλες 2 πυραμίδες, θα έχουμε ισορροπία με τον μικρότερο αριθμό αντικειμένων.

8 3 ο ερώτημα: Τώρα ο δεξιός δίσκος θα έχει 1 κύβο και 8 πυραμίδες. Αν προσθέσουμε άλλες 4 πυραμίδες, θα έχει 1 κύβο και 12 πυραμίδες, δηλαδή το ίδιο βάρος με τον αριστερό δίσκο. Μία άλλη λύση είναι να βάλουμε 3 κύβους στον δεξί δίσκο που έχουν βάρος όσο 5 πυραμίδες και να αφαιρέσουμε μία πυραμίδα από τον αριστερό δίσκο. Και στις δύο αυτές λύσεις έχουμε μετακινήσει από 4 αντικείμενα. ΠΡΟΒΛΗΜΑ 5 ο Ο αριθμός 210 διαιρείται με το 10, το 3 και το 7. Άρα, γράφεται 210 = Οι πέντε αριθμοί λοιπόν είναι οι 1, 2, 3, 5 και 7. Θα απαντήσουμε στο δεύτερο ερώτημα με δοκιμές. Πάντως, δεν πρέπει να διώξουμε από την αρχή τον αριθμό 7, επειδή τα γινόμενα θα είναι μικρά και δεν μπορούν να έχουν άθροισμα 48. Τότε πρέπει στην αρχή να φύγει ο 5, επειδή αν μείνει και ο 5 τα γινόμενα ή ξεπερνούν το 48. Άρα, βήμα πρώτο φεύγει ο αριθμός 5. Έχουμε = 42. Στο δεύτερο βήμα αφαιρούμε τον αριθμό 7 και έχουμε = 6, επειδή = 48, οι αριθμοί που πρέπει να διώξουμε είναι πρώτα ο αριθμός 5 και μετά ο αριθμός 7. ΠΡΟΒΛΗΜΑ 6 ο Αν τοποθετήσουμε τα 10 ίσα τετράγωνα στη σειρά θα χρειαστούμε περισσότερα από 27 ίσα ξυλάκια. Αν τα τοποθετήσουμε με έναν από τους παρακάτω τρόπους ή και με άλλους παρόμοιους, τότε θα χρειαστούμε ακριβώς 27 ξυλάκια. Για να μείνουν μόνο έξι τετράγωνα αφαιρώντας τον μικρότερο αριθμό από ξυλάκια, θα πρέπει αφαιρέσουμε «εσωτερικά» ξυλάκια, χωρίς να μας ενδιαφέρει αν τα τετράγωνα που μείνουν θα είναι όλα ίσα μεταξύ τους, αφού το πρόβλημα δεν ζητά να είναι απαραίτητα ίσα τα νέα τετράγωνα. Έτσι, αν αφαιρέσουμε 6 ξυλάκια, θα έχουμε μία λύση όπως το επόμενο σχήμα. Δεν μπορούμε να αφαιρέσουμε λιγότερα ξυλάκια για να πετύχουμε το στόχο μας.

Να απαντήσετε τα θέματα 1 και 2 αιτιολογώντας πλήρως τις απαντήσεις σας. Το κάθε θέμα είναι 10 μονάδες.

Να απαντήσετε τα θέματα 1 και 2 αιτιολογώντας πλήρως τις απαντήσεις σας. Το κάθε θέμα είναι 10 μονάδες. ΚΥΠΡΙΑΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ Β ΔΙΑΓΩΝΙΣΜΟΣ ΕΠΙΛΟΓΗΣ IMC STAGE II ΑΠΡΙΛΗΣ 08 Χρόνος Εξέτασης: ώρες Ημερομηνία: 5/04/08 Ώρα εξέτασης: 5:45-7:45 Να απαντήσετε τα θέματα και αιτιολογώντας πλήρως τις απαντήσεις

Διαβάστε περισσότερα

ΕΠΑΝΑΛΗΨΗ Α ΓΥΜΝΑΣΙΟΥ

ΕΠΑΝΑΛΗΨΗ Α ΓΥΜΝΑΣΙΟΥ ΕΠΑΝΑΛΗΨΗ Α ΓΥΜΝΑΣΙΟΥ ΘΕΩΡΙΑ ΑΛΓΕΒΡΑ ΚΕΦΑΛΑΙΟ Α.1. 1) Ποιοι φυσικοί αριθμοί λέγονται άρτιοι και ποιοι περιττοί; ( σ. 11 ) 2) Από τι καθορίζεται η αξία ενός ψηφίου σ έναν φυσικό αριθμό; ( σ. 11 ) 3) Τι

Διαβάστε περισσότερα

Μαθηματικά Α Γυμνασίου

Μαθηματικά Α Γυμνασίου Μαθηματικά Α Γυμνασίου Επαναληπτικές ασκήσεις Στέλιος Μιχαήλογλου Ασκήσεις. Δίνεται η παράσταση 7 : α) Να αποδείξετε ότι Α=8. β) Ο αριθμός Α είναι πρώτος ή σύνθετος; γ) Να αναλύσετε τον αριθμό Α σε γινόμενο

Διαβάστε περισσότερα

ΤΑΞΗ Α - ΜΑΘΗΜΑΤΙΚΑ ΘΕΜΑΤΑ ΘΕΩΡΙΑΣ (ΓΙΑ ΤΗΝ ΤΕΛΙΚΗ ΕΠΑΝΑΛΗΨΗ)

ΤΑΞΗ Α - ΜΑΘΗΜΑΤΙΚΑ ΘΕΜΑΤΑ ΘΕΩΡΙΑΣ (ΓΙΑ ΤΗΝ ΤΕΛΙΚΗ ΕΠΑΝΑΛΗΨΗ) ΤΑΞΗ Α - ΜΑΘΗΜΑΤΙΚΑ ΘΕΜΑΤΑ ΘΕΩΡΙΑΣ (ΓΙΑ ΤΗΝ ΤΕΛΙΚΗ ΕΠΑΝΑΛΗΨΗ) Α ΜΕΡΟΣ- ΑΛΓΕΒΡΑ ΕΡΩΤΗΣΗ 1 Ποιοι αριθμοί ονομάζονται πρώτοι και ποιοι σύνθετοι; Να δώσετε παραδείγματα. ΑΠΑΝΤΗΣΗ 1 Όταν ένας αριθμός διαιρείται

Διαβάστε περισσότερα

Μαθηματικά Α' Γυμ. - Ερωτήσεις Θεωρίας 1 ΕΡΩΤΗΣΕΙΣ. (1) Ποιοι είναι οι φυσικοί αριθμοί; Γράψε τέσσερα παραδείγματα.

Μαθηματικά Α' Γυμ. - Ερωτήσεις Θεωρίας 1 ΕΡΩΤΗΣΕΙΣ. (1) Ποιοι είναι οι φυσικοί αριθμοί; Γράψε τέσσερα παραδείγματα. Μαθηματικά Α' Γυμ. - Ερωτήσεις Θεωρίας 1 ΕΡΩΤΗΣΕΙΣ (1) Ποιοι είναι οι φυσικοί αριθμοί; Γράψε τέσσερα παραδείγματα. (2) Ποιοι είναι οι άρτιοι και ποιοι οι περιττοί αριθμοί; Γράψε από τρία παραδείγματα.

Διαβάστε περισσότερα

ΚΥΠΡΙΑΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ. Ημερομηνία: 29/04/2017 Ώρα εξέτασης: 10:00-14:30

ΚΥΠΡΙΑΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ. Ημερομηνία: 29/04/2017 Ώρα εξέτασης: 10:00-14:30 ΟΔΗΓΙΕΣ: ΚΥΠΡΙΑΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ Γ ΔΙΑΓΩΝΙΣΜΟΣ ΕΠΙΛΟΓΗΣ ΚΑΤΩ ΤΩΝ 15 1/2 ΕΤΩΝ «Ευκλείδης» Ημερομηνία: 29/04/2017 Ώρα εξέτασης: 10:00-14:30 1. Να λύσετε όλα τα θέματα αιτιολογώντας πλήρως τις απαντήσεις

Διαβάστε περισσότερα

Μ Α Θ Η Μ Α Τ Ι Κ Α Α Γ Υ Μ Ν Α Σ Ι Ο Υ

Μ Α Θ Η Μ Α Τ Ι Κ Α Α Γ Υ Μ Ν Α Σ Ι Ο Υ Μ Α Θ Η Μ Α Τ Ι Κ Α Α Γ Υ Μ Ν Α Σ Ι Ο Υ 1 Συνοπτική θεωρία Ερωτήσεις αντικειμενικού τύπου Ασκήσεις Διαγωνίσματα 2 ΣΥΝΟΠΤΙΚΗ ΘΕΩΡΙΑ ΕΡΩΤΗΣΕΙΣ-ΑΠΑΝΤΗΣΕΙΣ 1. Πότε ένας φυσικός αριθμός λέγεται άρτιος; Άρτιος

Διαβάστε περισσότερα

Όλοι οι ακέραιοι αριθμοί από το 0 και μετά λέγονται φυσικοί αριθμοί π.χ.

Όλοι οι ακέραιοι αριθμοί από το 0 και μετά λέγονται φυσικοί αριθμοί π.χ. 1. Οι φυσικοί αριθμοί. Όλοι οι ακέραιοι αριθμοί από το 0 και μετά λέγονται φυσικοί αριθμοί π.χ. 0, 1,2,3,4,5,6,7,8,9, 10,..., 100,..., 1.000,..., 10.0000,10.001,..., 100.000, 100.001, 100.002,..., 200.000,...,

Διαβάστε περισσότερα

Συνοπτική Θεωρία Μαθηματικών Α Γυμνασίου

Συνοπτική Θεωρία Μαθηματικών Α Γυμνασίου Web page: www.ma8eno.gr e-mail: vrentzou@ma8eno.gr Η αποτελεσματική μάθηση δεν θέλει κόπο αλλά τρόπο, δηλαδή ma8eno.gr Συνοπτική Θεωρία Μαθηματικών Α Γυμνασίου Αριθμητική - Άλγεβρα Γεωμετρία Άρτιος λέγεται

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ Α ΓΥΜΝΑΣΙΟΥ

ΜΑΘΗΜΑΤΙΚΑ Α ΓΥΜΝΑΣΙΟΥ Διαιρετότητα Μαθαίνω Πολλαπλάσια ενός φυσικού αριθμού α είναι όλοι οι αριθμοί που προκύπτουν από τον πολλαπλασιασμό του με όλους τους φυσικούς αριθμούς, δηλαδή οι αριθμοί: 0, α, 2 α, 3 α, 4 α,... Το μηδέν

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ Α ΓΥΜΝΑΣΙΟΥ

ΜΑΘΗΜΑΤΙΚΑ Α ΓΥΜΝΑΣΙΟΥ ΜΑΘΗΜΑΤΙΚΑ Α ΓΥΜΝΑΣΙΟΥ Πίνακας περιεχομένων Κεφάλαιο 1 - ΟΙ ΦΥΣΙΚΟΙ ΑΡΙΘΜΟΙ... 2 Κεφάλαιο 2 ο - ΤΑ ΚΛΑΣΜΑΤΑ... 6 Κεφάλαιο 3 ο - ΔΕΚΑΔΙΚΟΙ ΑΡΙΘΜΟΙ... 10 ΣΩΤΗΡΟΠΟΥΛΟΣ ΝΙΚΟΣ 1 Κεφάλαιο 1 - ΟΙ ΦΥΣΙΚΟΙ ΑΡΙΘΜΟΙ

Διαβάστε περισσότερα

ΜΕΡΟΣ A ΕΡΩΤΗΣΕΙΣ ΠΟΛΛΑΠΛΗΣ ΕΠΙΛΟΓΗΣ

ΜΕΡΟΣ A ΕΡΩΤΗΣΕΙΣ ΠΟΛΛΑΠΛΗΣ ΕΠΙΛΟΓΗΣ Sample 2 ΜΕΡΟΣ A ΕΡΩΤΗΣΕΙΣ ΠΟΛΛΑΠΛΗΣ ΕΠΙΛΟΓΗΣ Σε αυτό το μέρος υπάρχουν 15 ερωτήσεις. Να απαντήσετε ΟΛΕΣ τις ερωτήσεις. Σε κάθε ερώτηση η σωστή απάντηση είναι ΜΟΝΟ ΜΙΑ. Να βάλετε σε ΚΥΚΛΟ τη σωστή απάντηση.

Διαβάστε περισσότερα

Είδη τριγώνων ως προς τις πλευρές

Είδη τριγώνων ως προς τις πλευρές ΜΑΘΗΜΑΤΙΚΑ Ε ΔΗΜΟΤΙΚΟΥ ΤΕΤΡΑΔΙΟ ΕΡΓΑΣΙΩΝ 41 Είδη τριγώνων ως προς τις πλευρές Ενότητα 5 β τεύχος Είδη τριγώνων ως προς τις πλευρές 41 1η Άσκηση Να αντιστοιχίσεις: Το σκαληνό τρίγωνο έχει Το ισοσκελές τρίγωνο

Διαβάστε περισσότερα

Α. 27 Β. 29 Γ. 45 Δ. 105 Ε. 127

Α. 27 Β. 29 Γ. 45 Δ. 105 Ε. 127 Α - Β Γυμνασίου η Κυπριακή Μαθηματική Ολυμπιάδα Απρίλιος 0. Αν = M = 60, η τιμή του M + N είναι: 5 45 N Α. Β. 9 Γ. 45 Δ. 05 Ε.. Ένα τετράγωνο και ένα τρίγωνο έχουν ίσες περιμέτρους. Το μήκος των τριών

Διαβάστε περισσότερα

Άσκηση 4η Να βρεθεί ο τριψήφιος αριθμός που τα ψηφία του είναι ανάλογα των αριθμών 1, 2, 3 κατά σειρά και διαιρείται από το 9. Άσκηση 7η.

Άσκηση 4η Να βρεθεί ο τριψήφιος αριθμός που τα ψηφία του είναι ανάλογα των αριθμών 1, 2, 3 κατά σειρά και διαιρείται από το 9. Άσκηση 7η. Άσκηση 1η Αν η εξίσωση είναι αόριστη, τότε: α) Να δειχθεί ότι η εξίσωση είναι αδύνατη β) Να λυθεί η ανίσωση γ) Αν ισχύει ότι να βρεθεί ο αριθμός Α Άσκηση 2η Αν η εξίσωση έχει λύση μεγαλύτερη του και η

Διαβάστε περισσότερα

ΓΙΑΝΝΗΣ ΖΑΧΑΡΟΠΟΥΛΟΣ. Γρήγορα τεστ. Μαθηματικά ΣT Δημοτικού ΕΚΔΟΣΕΙΣ ΠΑΠΑΔΟΠΟΥΛΟΣ

ΓΙΑΝΝΗΣ ΖΑΧΑΡΟΠΟΥΛΟΣ. Γρήγορα τεστ. Μαθηματικά ΣT Δημοτικού ΕΚΔΟΣΕΙΣ ΠΑΠΑΔΟΠΟΥΛΟΣ ΓΙΑΝΝΗΣ ΖΑΧΑΡΟΠΟΥΛΟΣ Γρήγορα τεστ Μαθηματικά ΣT Δημοτικού 1 ΕΚΔΟΣΕΙΣ ΠΑΠΑΔΟΠΟΥΛΟΣ ΓΡΗΓΟΡΑ ΤΕΣΤ ΜΑΘΗΜΑΤΙΚΩΝ - ΣΤ Δημοτικού No 1 Γιάννης Ζαχαρόπουλος Διόρθωση: Αντωνία Κιλεσσοπούλου 201, Εκδόσεις Κυριάκος

Διαβάστε περισσότερα

Μαθηματικά Α Γυμνασίου. Επαναληπτικές ερωτήσεις θεωρίας

Μαθηματικά Α Γυμνασίου. Επαναληπτικές ερωτήσεις θεωρίας Μαθηματικά Α Γυμνασίου Επαναληπτικές ερωτήσεις θεωρίας Επαναληπτικές Ερωτήσεις Θεωρίας 1. Τι ονομάζεται Ελάχιστο Κοινό Πολλαπλάσιο (ΕΚΠ) δύο ή περισσότερων αριθμών; Ελάχιστο Κοινό Πολλαπλάσιο (ΕΚΠ) δύο

Διαβάστε περισσότερα

B τάξη Γυμνασίου ( 2 2) ΕΠΙΤΡΟΠΗ ΔΙΑΓΩΝΙΣΜΩΝ 69 ος ΠΑΝΕΛΛΗΝΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ Ο ΕΥΚΛΕΙΔΗΣ ΣΑΒΒΑΤΟ, 17 ΙΑΝΟΥΑΡΙΟΥ 2009

B τάξη Γυμνασίου ( 2 2) ΕΠΙΤΡΟΠΗ ΔΙΑΓΩΝΙΣΜΩΝ 69 ος ΠΑΝΕΛΛΗΝΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ Ο ΕΥΚΛΕΙΔΗΣ ΣΑΒΒΑΤΟ, 17 ΙΑΝΟΥΑΡΙΟΥ 2009 ΕΠΙΤΡΟΠΗ ΔΙΑΓΩΝΙΣΜΩΝ 69 ος ΠΑΝΕΛΛΗΝΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ Ο ΕΥΚΛΕΙΔΗΣ ΣΑΒΒΑΤΟ, 7 ΙΑΝΟΥΑΡΙΟΥ 009 B τάξη Γυμνασίου Πρόβλημα. Αν ισχύει ότι 4x 5y = 0, να βρείτε την τιμή της παράστασης Η

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ MATHEMATICS

ΜΑΘΗΜΑΤΙΚΑ MATHEMATICS ΜΑΘΗΜΑΤΙΚΑ MATHEMATICS LEVEL: 11 12 (B - Γ Λυκείου) 10:00 11:00, 20 March 2010 THALES FOUNDATION 1 3 βαθμοί 1. Από την εικόνα μπορούμε να δούμε ότι: 1 + 3 + 5 + 7 = 4 4. Ποια είναι η τιμή του: 1 + 3 +

Διαβάστε περισσότερα

Όταν οι αριθμοί είναι ομόσημοι Βάζουμε το κοινό πρόσημο και προσθέτουμε

Όταν οι αριθμοί είναι ομόσημοι Βάζουμε το κοινό πρόσημο και προσθέτουμε Κανόνες των προσήμων Στην πρόσθεση Όταν οι αριθμοί είναι ομόσημοι Βάζουμε το κοινό πρόσημο και προσθέτουμε (+) και (+) κάνει (+) + + 3 = +5 (-) και (-) κάνει (-) - - 3 = -5 Όταν οι αριθμοί είναι ετερόσημοι

Διαβάστε περισσότερα

3, ( 4), ( 3),( 2), 2017

3, ( 4), ( 3),( 2), 2017 ΕΡΩΤΗΣΕΙΣ ΘΕΜΑΤΑ ΘΕΩΡΙΑΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΤΗΣ Α ΓΥΜΝΑΣΙΟΥ ΑΛΓΕΒΡΑ 1 ο ΚΕΦΑΛΑΙΟ 1. α. Τι γνωρίζετε για την Ευκλείδεια διαίρεση; Πότε λέγεται τέλεια; β. Αν σε μια διαίρεση είναι Δ=δ, πόσο είναι το πηλίκο και

Διαβάστε περισσότερα

Ιωάννης Σ. Μιχέλης Μαθηματικός

Ιωάννης Σ. Μιχέλης Μαθηματικός 1 Άλγεβρα 1 ο Κεφάλαιο Ερώτηση 1 : Ποιες είναι οι ιδιότητες της πρόσθεσης των φυσικών; Το άθροισμα ενός φυσικού αριθμού με το 0 ισούται με τον ίδιο αριθμό. α+0=α Αντιμεταθετική ιδιότητα. Με βάση την οποία

Διαβάστε περισσότερα

Κανόνας, για να λύσεις αυτό το μαθηματικό σταυρόλεξο. Μια πρακτική συμβουλή για τη λύση του σταυρόλεξου:

Κανόνας, για να λύσεις αυτό το μαθηματικό σταυρόλεξο. Μια πρακτική συμβουλή για τη λύση του σταυρόλεξου: ΟΝΟΜΑΤΕΠΩΝΥΜΟ: Κανόνας, για να λύσεις αυτό το μαθηματικό σταυρόλεξο. Όλα τα κενά τετράγωνα με ροζ χρώμα πρέπει συμπληρωθούν είτε με μονοψήφιους αριθμούς είτε με ένα από τα μαθηματικά σύμβολα: +, -, >,

Διαβάστε περισσότερα

ΚΥΠΡΙΑΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ ΠΑΓΚΥΠΡΙΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΔΕΚΕΜΒΡΙΟΣ 2018

ΚΥΠΡΙΑΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ ΠΑΓΚΥΠΡΙΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΔΕΚΕΜΒΡΙΟΣ 2018 ΚΥΠΡΙΑΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ ΠΑΓΚΥΠΡΙΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΔΕΚΕΜΒΡΙΟΣ 2018 Α ΓΥΜΝΑΣΙΟΥ Ημερομηνία: 08/12/2018 Ώρα Εξέτασης: 09:30-12:30 ΟΔΗΓΙΕΣ: 1. Να λύσετε όλα τα θέματα, αιτιολογώντας πλήρως τις απαντήσεις

Διαβάστε περισσότερα

2. Να προσδιορίσετε τους επταψήφιους αριθμούς, οι οποίοι είναι τέλεια τετράγωνα και τα τρία πρώτα ψηφία τους, στη σειρά, είναι τα 4, 0 και 0.

2. Να προσδιορίσετε τους επταψήφιους αριθμούς, οι οποίοι είναι τέλεια τετράγωνα και τα τρία πρώτα ψηφία τους, στη σειρά, είναι τα 4, 0 και 0. Ευκλείδης Γ' Γυμνασίου 1995-1996 1. Να γίνει γινόμενο η παράσταση Α= ν 2 3ν 1 2 1. 2. Να προσδιορίσετε τους επταψήφιους αριθμούς, οι οποίοι είναι τέλεια τετράγωνα και τα τρία πρώτα ψηφία τους, στη σειρά,

Διαβάστε περισσότερα

Ε - ΣΤ Δημοτικού 13 η Κυπριακή Μαθηματική Ολυμπιάδα Απρίλιος 2012

Ε - ΣΤ Δημοτικού 13 η Κυπριακή Μαθηματική Ολυμπιάδα Απρίλιος 2012 1. Πόσες ώρες έχουν περάσει από τις 6:45 πμ μέχρι τις 11:45 μμ της ίδιας μέρας; Α. 5 Β. 17 Γ. 24 Δ. 29 Ε. 41 1 1 2. Αν το χ είναι μεταξύ 1 και 1 +, τότε το χ μπορεί να είναι ίσο με τον κάθε 5 5 αριθμό

Διαβάστε περισσότερα

ΚΥΠΡΙΑΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ ΠΑΓΚΥΠΡΙΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΔΕΚΕΜΒΡΙΟΣ 2017

ΚΥΠΡΙΑΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ ΠΑΓΚΥΠΡΙΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΔΕΚΕΜΒΡΙΟΣ 2017 ΚΥΠΡΙΑΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ ΠΑΓΚΥΠΡΙΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΔΕΚΕΜΒΡΙΟΣ 2017 Α ΓΥΜΝΑΣΙΟΥ Ημερομηνία: 02/12/2017 Ώρα Εξέτασης: 09:30-12:30 ΟΔΗΓΙΕΣ: 1. Να λύσετε όλα τα θέματα, αιτιολογώντας πλήρως τις απαντήσεις

Διαβάστε περισσότερα

ΠΕΡΙΕΧΟΜΕΝΑ 1 ΠΡΑΓΜΑΤΙΚΟΙ ΑΡΙΘΜΟΙ ΑΚΟΛΟΥΘΙΕΣ ΑΡΙΘΜΩΝ EΞΙΣΩΣΕΙΣ...47 ΠΡΟΛΟΓΟΣ... 9

ΠΕΡΙΕΧΟΜΕΝΑ 1 ΠΡΑΓΜΑΤΙΚΟΙ ΑΡΙΘΜΟΙ ΑΚΟΛΟΥΘΙΕΣ ΑΡΙΘΜΩΝ EΞΙΣΩΣΕΙΣ...47 ΠΡΟΛΟΓΟΣ... 9 ΠΕΡΙΕΧΟΜΕΝΑ ΠΡΟΛΟΓΟΣ... 9 1 ΠΡΑΓΜΑΤΙΚΟΙ ΑΡΙΘΜΟΙ...11 1.1 Βασικές θεωρητικές γνώσεις... 11 1.. Λυμένα προβλήματα... 19 1. Προβλήματα προς λύση... 4 1.4 Απαντήσεις προβλημάτων Πραγματικοί αριθμοί... 0 ΑΚΟΛΟΥΘΙΕΣ

Διαβάστε περισσότερα

ΓΥΜΝΑΣΙΟ ΑΓΛΑΝΤΖΙΑΣ ΣΧΟΛΙΚΗ ΧΡΟΝΙΑ ΓΡΑΠΤΕΣ ΑΠΟΛΥΤΗΡΙΕΣ ΕΞΕΤΑΣΕΙΣ ΜΑΪΟΥ - ΙΟΥΝΙΟΥ 2018 ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ

ΓΥΜΝΑΣΙΟ ΑΓΛΑΝΤΖΙΑΣ ΣΧΟΛΙΚΗ ΧΡΟΝΙΑ ΓΡΑΠΤΕΣ ΑΠΟΛΥΤΗΡΙΕΣ ΕΞΕΤΑΣΕΙΣ ΜΑΪΟΥ - ΙΟΥΝΙΟΥ 2018 ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ ΓΥΜΝΑΣΙΟ ΑΓΛΑΝΤΖΙΑΣ ΣΧΟΛΙΚΗ ΧΡΟΝΙΑ 017-018 ΓΡΑΠΤΕΣ ΑΠΟΛΥΤΗΡΙΕΣ ΕΞΕΤΑΣΕΙΣ ΜΑΪΟΥ - ΙΟΥΝΙΟΥ 018 ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ ΤΑΞΗ: Γ Γυμνασίου ΗΜΕΡΟΜΗΝΙΑ: Δευτέρα, 4 Ιουνίου 018 ΧΡΟΝΟΣ: ώρες ΒΑΘΜΟΣ:. ΥΠΟΓΡΑΦΗ ΚΑΘΗΓΗΤΗ/ΤΡΙΑΣ

Διαβάστε περισσότερα

Α Γυμνασίου, Μέρο Α : Αριθμητική Άλγεβρα, Κεφάλαιο 1 - Οι φυσικοί αριθμοί

Α Γυμνασίου, Μέρο Α : Αριθμητική Άλγεβρα, Κεφάλαιο 1 - Οι φυσικοί αριθμοί Α Γυμνασίου, Μέρο Α : Αριθμητική Άλγεβρα, Κεφάλαιο 1 - Οι φυσικοί αριθμοί Μαθηματικά Α Γυμνασίου Μέρο Α - Κεφάλαιο 1 Α. 1.2. Οι αριθμοί 0, 1, 2, 3, 4, 5, 6... 98, 99, 100... 1999, 2000, 2001,... ονομάζονται

Διαβάστε περισσότερα

11. Ποιες είναι οι άμεσες συνέπειες της διαίρεσης;

11. Ποιες είναι οι άμεσες συνέπειες της διαίρεσης; 10. Τι ονομάζουμε Ευκλείδεια διαίρεση και τέλεια διαίρεση; Όταν δοθούν δύο φυσικοί αριθμοί Δ και δ, τότε υπάρχουν δύο άλλοι φυσικοί αριθμοί π και υ, έτσι ώστε να ισχύει: Δ = δ π + υ. Ο αριθμός Δ λέγεται

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ Γ Γυμνασίου

ΜΑΘΗΜΑΤΙΚΑ Γ Γυμνασίου ΜΑΘΗΜΑΤΙΚΑ Γ Γυμνασίου Κεφάλαιο ο Αλγεβρικές Παραστάσεις ΛΕΜΟΝΙΑ ΜΠΟΥΤΣΚΟΥ Γυμνάσιο Αμυνταίου ΜΑΘΗΜΑ Α. Πράξεις με πραγματικούς αριθμούς ΑΣΚΗΣΕΙΣ ) ) Να συμπληρώσετε τα κενά ώστε στην κατακόρυφη στήλη

Διαβάστε περισσότερα

Γ - Δ Δημοτικού 13 η Κυπριακή Μαθηματική Ολυμπιάδα Απρίλιος 2012

Γ - Δ Δημοτικού 13 η Κυπριακή Μαθηματική Ολυμπιάδα Απρίλιος 2012 1. Ποια από τις πιο κάτω προτάσεις είναι ΛΑΝΘΑΣΜΕΝΗ; Α. 8 7 > 7 6 Β. 8 5 < 6 7 Γ. 7 0 < 8 8 Δ. 1 7 > 1 8 Ε. 60 7 > 60 8 2. Ο αδύναμος κρίκος μιας αλυσίδας είναι ο 7 ος από την αρχή της και ο 11 ος από

Διαβάστε περισσότερα

2. Να γράψετε έναν αριθμό που είναι μεγαλύτερος από το 3,456 και μικρότερος από το 3,457.

2. Να γράψετε έναν αριθμό που είναι μεγαλύτερος από το 3,456 και μικρότερος από το 3,457. 1. Ένα κεφάλαιο ενός βιβλίου ξεκινάει από τη σελίδα 32 και τελειώνει στη σελίδα 75. Από πόσες σελίδες αποτελείται το κεφάλαιο; Αν το κεφάλαιο ξεκινάει από τη σελίδα κ και τελειώνει στη σελίδα λ, από πόσες

Διαβάστε περισσότερα

ΓΙΑΝΝΗΣ ΖΑΧΑΡΟΠΟΥΛΟΣ. Γρήγορα τεστ. Μαθηματικά ΣT Δημοτικού ΕΚΔΟΣΕΙΣ ΠΑΠΑΔΟΠΟΥΛΟΣ

ΓΙΑΝΝΗΣ ΖΑΧΑΡΟΠΟΥΛΟΣ. Γρήγορα τεστ. Μαθηματικά ΣT Δημοτικού ΕΚΔΟΣΕΙΣ ΠΑΠΑΔΟΠΟΥΛΟΣ ΓΙΑΝΝΗΣ ΖΑΧΑΡΟΠΟΥΛΟΣ Γρήγορα τεστ Μαθηματικά ΣT Δημοτικού 1 ΕΚΔΟΣΕΙΣ ΠΑΠΑΔΟΠΟΥΛΟΣ ΓΡΗΓΟΡΑ ΤΕΣΤ ΜΑΘΗΜΑΤΙΚΩΝ - ΣΤ Δημοτικού No 1 Γιάννης Ζαχαρόπουλος Διόρθωση: Αντωνία Κιλεσσοπούλου 201, Εκδόσεις Κυριάκος

Διαβάστε περισσότερα

ΕΠΙΤΡΟΠΗ ΔΙΑΓΩΝΙΣΜΩΝ 70 ος ΠΑΝΕΛΛΗΝΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ Ο ΘΑΛΗΣ ΣΑΒΒΑΤΟ, 21 ΝΟΕΜΒΡΙΟΥ 2009 B ΓΥΜΝΑΣΙΟΥ

ΕΠΙΤΡΟΠΗ ΔΙΑΓΩΝΙΣΜΩΝ 70 ος ΠΑΝΕΛΛΗΝΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ Ο ΘΑΛΗΣ ΣΑΒΒΑΤΟ, 21 ΝΟΕΜΒΡΙΟΥ 2009 B ΓΥΜΝΑΣΙΟΥ Τηλ. 0 36653-0367784 - Fax: 0 36405 Tel. 0 36653-0367784 - Fax: 0 36405 ΣΑΒΒΑΤΟ, ΝΟΕΜΒΡΙΟΥ 009 B ΓΥΜΝΑΣΙΟΥ 3 5 Αν a = 4 και b = 5 +, να υπολογίσετε την τιμή παράστασης: 5 A = a: b b. 5a ΘΕΜΑ ο Έστω α θετικός

Διαβάστε περισσότερα

Οι Φυσικοί Αριθμοί. Παρατήρηση: Δεν στρογγυλοποιούνται αριθμοί τηλεφώνων, Α.Φ.Μ., κωδικοί αριθμοί κλπ. Πρόσθεση Φυσικών αριθμών

Οι Φυσικοί Αριθμοί. Παρατήρηση: Δεν στρογγυλοποιούνται αριθμοί τηλεφώνων, Α.Φ.Μ., κωδικοί αριθμοί κλπ. Πρόσθεση Φυσικών αριθμών Οι Φυσικοί Αριθμοί Γνωρίζουμε ότι οι αριθμοί είναι ποσοτικές έννοιες και για να τους γράψουμε χρησιμοποιούμε τα αριθμητικά σύμβολα. Οι αριθμοί μετρούν συγκεκριμένα πράγματα και φανερώνουν το πλήθος της

Διαβάστε περισσότερα

Μαθηματικά Γ Γυμνασίου

Μαθηματικά Γ Γυμνασίου Α λ γ ε β ρ ι κ έ ς π α ρ α σ τ ά σ ε ι ς 1.1 Πράξεις με πραγματικούς αριθμούς (επαναλήψεις συμπληρώσεις) A. Οι πραγματικοί αριθμοί και οι πράξεις τους Διδακτικοί στόχοι Θυμάμαι ποιοι αριθμοί λέγονται

Διαβάστε περισσότερα

Άλγεβρα 1 ο Κεφάλαιο ... ν παράγοντες

Άλγεβρα 1 ο Κεφάλαιο ... ν παράγοντες 1 Άλγεβρα 1 ο Κεφάλαιο Ερώτηση 1 : Τι ονομάζεται δύναμη α ν με βάση τον πραγματικό αριθμό α και εκθέτη το φυσικό αριθμό >1; H δύναμη με βάση έναν πραγματικό αριθμό α και εκθέτη ένα φυσικό αριθμό ν, συμβολίζεται

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ Γ ΓΥΜΝΑΣΙΟΥ

ΜΑΘΗΜΑΤΙΚΑ Γ ΓΥΜΝΑΣΙΟΥ ΜΑΘΗΜΑΤΙΚΑ Γ ΓΥΜΝΑΣΙΟΥ Οι πραγματικοί αριθμοί αποτελούνται από τους ρητούς και τους άρρητους αριθμούς, τους φυσικούς και τους ακέραιους αριθμούς. Δηλαδή είναι το μεγαλύτερο σύνολο αριθμών που μπορούμε

Διαβάστε περισσότερα

ΤΑ ΔΕΚΑΔΙΚΑ ΚΛΑΣΜΑΤΑ ΚΑΙ ΟΙ ΔΕΚΑΔΙΚΟΙ ΑΡΙΘΜΟΙ

ΤΑ ΔΕΚΑΔΙΚΑ ΚΛΑΣΜΑΤΑ ΚΑΙ ΟΙ ΔΕΚΑΔΙΚΟΙ ΑΡΙΘΜΟΙ ΜΑΘΗΜΑΤΙΚΑ (Γ ΤΑΞΗ) ΟΝΟΜΑ:. (ΕΙΣΑΓΩΓΗ ΣΤΑ ΔΕΚΑΔΙΚΑ ΚΛΑΣΜΑΤΑ ΚΑΙ ΣΤΟΥΣ ΔΕΚΑΔΙΚΟΥΣ ΑΡΙΘΜΟΥΣ) ΤΑ ΔΕΚΑΔΙΚΑ ΚΛΑΣΜΑΤΑ ΚΑΙ ΟΙ ΔΕΚΑΔΙΚΟΙ ΑΡΙΘΜΟΙ ΕΛΑΤΕ ΝΑ ΣΚΕΦΤΟΥΜΕ ΜΑΖΙ: Υπάρχουν άραγε αριθμοί ανάμεσα στο 0 και

Διαβάστε περισσότερα

Πρόσθεση αφαίρεση και πολλαπλασιασμός φυσικών αριθμών

Πρόσθεση αφαίρεση και πολλαπλασιασμός φυσικών αριθμών 2 Πρόσθεση αφαίρεση και πολλαπλασιασμός φυσικών αριθμών Προσθετέοι 18+17=35 α Προσθετέοι + β = γ Άθοι ρ σμα Άθοι ρ σμα 13 + 17 = 17 + 13 Πρόσθεση φυσικών αριθμών Πρόσθεση είναι η πράξη με την οποία από

Διαβάστε περισσότερα

Από τι αποτελούνται; 4 όροι. Θεωρία. Κλάσμα ονομάζω τον αριθμό που φανερώνει. Κλάσματα ομώνυμα και ετερώνυμα. Μαθηματικά. Όνομα:

Από τι αποτελούνται; 4 όροι. Θεωρία. Κλάσμα ονομάζω τον αριθμό που φανερώνει. Κλάσματα ομώνυμα και ετερώνυμα. Μαθηματικά. Όνομα: Μαθηματικά Κεφάλαιο Όνομα: Ημερομηνία: / / Θεωρία Κλάσμα ονομάζω τον αριθμό που φανερώνει ένα μέρος ενός συνόλου. Παράδειγμα Τα κλάσματα τα χρησιμοποιούμε για να δηλώσουμε το μέρος ενός πράγματος, δηλαδή

Διαβάστε περισσότερα

Φυσικοί αριθμοί - Διάταξη φυσικών αριθμών - Στρογγυλοποίηση

Φυσικοί αριθμοί - Διάταξη φυσικών αριθμών - Στρογγυλοποίηση Φυσικοί αριθμοί - Διάταξη φυσικών αριθμών - Στρογγυλοποίηση TINΑ ΒΡΕΝΤΖΟΥ www.ma8eno.gr Βρέντζου Τίνα Φυσικός Μεταπτυχιακός τίτλος: «Σπουδές στην εκπαίδευση» ΜEd Email : stvrentzou@gmail.com 2 Φυσικοί

Διαβάστε περισσότερα

ΘΕΜΑΤΑ ΓΡΑΠΤΩΝ ΠΡΟΑΓΩΓΙΚΩΝ ΕΞΕΤΑΣΕΩΝ ΜΑΪΟΥ ΙΟΥΝΙΟΥ 2008 ΜΑΘΗΜΑ : ΜΑΘΗΜΑΤΙΚΑ

ΘΕΜΑΤΑ ΓΡΑΠΤΩΝ ΠΡΟΑΓΩΓΙΚΩΝ ΕΞΕΤΑΣΕΩΝ ΜΑΪΟΥ ΙΟΥΝΙΟΥ 2008 ΜΑΘΗΜΑ : ΜΑΘΗΜΑΤΙΚΑ Πειραματικό υμνάσιο Αγίων Αναργύρων Τάξη Μάιος 8 ΘΕΜΑΤΑ ΡΑΠΤΩΝ ΠΡΟΑΩΙΚΩΝ ΕΞΕΤΑΣΕΩΝ ΜΑΪΟΥ ΙΟΥΝΙΟΥ 8 ΜΑΘΗΜΑ : ΜΑΘΗΜΑΤΙΚΑ ΤΑΞΗ : ΘΕΩΡΙΑ Έστω η εξίσωση δευτέρου βαθμού : a με a β γ (). α) Ποια παράσταση λέγεται

Διαβάστε περισσότερα

Μαθηματικά: Αριθμητική και Άλγεβρα. Μάθημα 10 ο, Τμήμα Α

Μαθηματικά: Αριθμητική και Άλγεβρα. Μάθημα 10 ο, Τμήμα Α Μαθηματικά: Αριθμητική και Άλγεβρα Μάθημα 10 ο, Τμήμα Α Ορθογώνιο παραλληλόγραμμο 3 cm 5 cm Ο τύπος όπως είναι γραμμένος δείχνει ότι μπορούμε να πολλαπλασιάσουμε δύο μήκη. Ε=3cm x 5cm=15cm 2. Πώς καταλαβαίνετε

Διαβάστε περισσότερα

ΜΕΡΟΣ Α. 1 ο ΚΕΦΑΛΑΙΟ

ΜΕΡΟΣ Α. 1 ο ΚΕΦΑΛΑΙΟ ΜΕΡΟΣ Α ο ΚΕΦΑΛΑΙΟ. Τι ονομάζεται Αριθμητική και τι Αλγεβρική παράσταση; Ονομάζεται Αριθμητική παράσταση μια παράσταση που περιέχει πράξεις μεταξύ αριθμών. Ονομάζεται αλγεβρική παράσταση μια παράσταση

Διαβάστε περισσότερα

Τετραγωνική ρίζα πραγματικού αριθμού

Τετραγωνική ρίζα πραγματικού αριθμού Τετραγωνική ρίζα του θετικού αριθμού α, ονομάζεται ο θετικός αριθμός χ, όταν χ = α. Ορίζουμε επίσης ότι: 0 0. Δηλαδή αν α, x > 0 και x, τότε x. Συνέπειες του ορισμού Για κάθε πραγματικό αριθμό x ισχύει:

Διαβάστε περισσότερα

ΘΕΩΡΙΑ Β ΓΥΜΝΑΣΙΟΥ. Μια παράσταση που περιέχει πράξεις με μεταβλητές (γράμματα) και αριθμούς καλείται αλγεβρική, όπως για παράδειγμα η : 2x+3y-8

ΘΕΩΡΙΑ Β ΓΥΜΝΑΣΙΟΥ. Μια παράσταση που περιέχει πράξεις με μεταβλητές (γράμματα) και αριθμούς καλείται αλγεβρική, όπως για παράδειγμα η : 2x+3y-8 ΘΕΩΡΙΑ Β ΓΥΜΝΑΣΙΟΥ Άλγεβρα 1 ο Κεφάλαιο 1. Τι ονομάζουμε αριθμητική και τι αλγεβρική παράσταση; Να δώσετε από ένα παράδειγμα. Μια παράσταση που περιέχει πράξεις με αριθμούς, καλείται αριθμητική παράσταση,

Διαβάστε περισσότερα

Α Γυμνασίου, Μέρο Α : Αριθμητική Άλγεβρα, Κεφάλαιο 2 - Κλάσματα

Α Γυμνασίου, Μέρο Α : Αριθμητική Άλγεβρα, Κεφάλαιο 2 - Κλάσματα Α Γυμνασίου, Μέρο Α : Αριθμητική Άλγεβρα, Κεφάλαιο 2 - Κλάσματα Μαθηματικά Α Γυμνασίου Μέρο Α - Κεφάλαιο 2 Α. 2.1. Όταν ένα μέγεθο ή ένα σύνολο ομοειδών αντικειμένων χωρισθεί σε ν ίσα μέρη, το κάθε ένα

Διαβάστε περισσότερα

ΚΥΠΡΙΑΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ ΠΑΓΚΥΠΡΙΟΣ ΔΙΑΓΩΝΙΣΜΟΣ

ΚΥΠΡΙΑΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ ΠΑΓΚΥΠΡΙΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΚΥΠΡΙΑΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ ΠΑΓΚΥΠΡΙΟΣ ΔΙΑΓΩΝΙΣΜΟΣ Α ΓΥΜΝΑΣΙΟΥ Ημερομηνία: 20/12/08 Ώρα εξέτασης: 09:30-12:30 ΟΔΗΓΙΕΣ: 1. Να λύσετε όλα τα θέματα.κάθε θέμα βαθμολογείται με 10 μονάδες. 2. Να γράφετε με

Διαβάστε περισσότερα

3. Παρατηρώ παρακάτω πώς σχηματίζονται οι αριθμοί από το 1 έως το 10: 5 + 1 4 + 1. Κάνω τις ασκήσεις

3. Παρατηρώ παρακάτω πώς σχηματίζονται οι αριθμοί από το 1 έως το 10: 5 + 1 4 + 1. Κάνω τις ασκήσεις 3. Παρατηρώ παρακάτω πώς σχηματίζονται οι αριθμοί από το 1 έως το 10: 9 + 1 7 + 1 8 + 1 + 1 3 + 1 4 + 1 5 + 1 6 + 1 1 + 1 0 + 1 0 1 3 4 5 6 7 8 9 10 Κάνω τις ασκήσεις 1. Γράφω με τη σειρά μέσα στα κυκλάκια

Διαβάστε περισσότερα

ΑΣΚΗΣΕΙΣ ΕΠΑΝΑΛΗΨΗΣ 2 η ΕΚΑ Α

ΑΣΚΗΣΕΙΣ ΕΠΑΝΑΛΗΨΗΣ 2 η ΕΚΑ Α 1 ΑΣΚΗΣΕΙΣ ΕΠΑΝΑΛΗΨΗΣ 2 η ΕΚΑ Α 11. Έστω η παράσταση Α = [(30 : 6) 2] 2 [(15 5) : 3 + 2 2 6] 3 (2 5 3 3 + 2 1 ) Να υπολογίσετε την τιµή της παράστασης Α Αν Α = 30, i) να αναλύσετε τον αριθµό Α σε γινόµενο

Διαβάστε περισσότερα

ΘΕΜΑΤΑ ΕΞΕΤΑΣΕΩΝ. και 25x i). Να κάνετε τις πράξεις στο πολυώνυμο.

ΘΕΜΑΤΑ ΕΞΕΤΑΣΕΩΝ. και 25x i). Να κάνετε τις πράξεις στο πολυώνυμο. ΣΥΛΛΟΓΟΣ «Η ΕΛΛΗΝΙΚΗ ΠΑΙΔΕΙΑ» ΓΥΜΝΑΣΙΟ ΑΜΑΡΟΥΣΙΟΥ ΜΑΘΗΜΑΤΙΚΑ ΘΕΜΑΤΑ ΕΞΕΤΑΣΕΩΝ ΘΕΜΑ 1 Δίνονται τα πολυώνυμα (3x ) (5 x)(3x ) και 5x 9 i). Να κάνετε τις πράξεις στο πολυώνυμο. ii). Να βρείτε την τιμή του

Διαβάστε περισσότερα

ΘΕΩΡΙΑ Α ΓΥΜΝΑΣΙΟΥ. 1. Να γράψετε τον τύπο της Ευκλείδειας διαίρεσης. Πώς ονομάζεται κάθε σύμβολο του τύπου;

ΘΕΩΡΙΑ Α ΓΥΜΝΑΣΙΟΥ. 1. Να γράψετε τον τύπο της Ευκλείδειας διαίρεσης. Πώς ονομάζεται κάθε σύμβολο του τύπου; ΘΕΩΡΙΑ Α ΓΥΜΝΑΣΙΟΥ 1. Να γράψετε τον τύπο της Ευκλείδειας διαίρεσης. Πώς ονομάζεται κάθε σύμβολο του τύπου; 2. Τι ξέρετε για το υπόλοιπο που προκύπτει από μια Ευκλείδεια διαίρεση; 3. Τι ονομάζουμε τέλεια

Διαβάστε περισσότερα

ΘΕΩΡΙΑ Α ΓΥΜΝΑΣΙΟΥ. Η διαίρεση καλείται Ευκλείδεια και είναι τέλεια όταν το υπόλοιπο είναι μηδέν.

ΘΕΩΡΙΑ Α ΓΥΜΝΑΣΙΟΥ. Η διαίρεση καλείται Ευκλείδεια και είναι τέλεια όταν το υπόλοιπο είναι μηδέν. ΑΛΓΕΒΡΑ 1 ο ΚΕΦΑΛΑΙΟ ΘΕΩΡΙΑ Α ΓΥΜΝΑΣΙΟΥ 1. Τι είναι αριθμητική παράσταση; Με ποια σειρά εκτελούμε τις πράξεις σε μια αριθμητική παράσταση ώστε να βρούμε την τιμή της; Αριθμητική παράσταση λέγεται κάθε

Διαβάστε περισσότερα

ΠΡΟΤΕΙΝΟΜΕΝΟΣ ΣΧΕΔΙΑΣΜΟΣ ΕΠΑΝΑΛΗΨΗΣ ΜΑΘΗΜΑΤΙΚΩΝ Γ ΓΥΜΝΑΣΙΟΥ

ΠΡΟΤΕΙΝΟΜΕΝΟΣ ΣΧΕΔΙΑΣΜΟΣ ΕΠΑΝΑΛΗΨΗΣ ΜΑΘΗΜΑΤΙΚΩΝ Γ ΓΥΜΝΑΣΙΟΥ ΕΚΠΑΙΔΕΥΤΗΡΙΑ ΓΥΜΝΑΣΙΟ ΑΜΑΡΟΥΣΙΟΥ ΠΡΟΤΕΙΝΟΜΕΝΟΣ ΣΧΕΔΙΑΣΜΟΣ ΕΠΑΝΑΛΗΨΗΣ ΜΑΘΗΜΑΤΙΚΩΝ Γ ΓΥΜΝΑΣΙΟΥ ΑΛΓΕΒΡΑ Επαναληπτικές Ασκήσεις (από σχολικό βιβλίο) (από βοήθημα Γ Γυμνασίου Πετσιά-Κάτσιου) Κεφάλαιο 1ο 17,

Διαβάστε περισσότερα

ΛΥΣΕΙΣ ΤΩΝ ΑΣΚΗΣΕΩΝ ΕΠΑΝΑΛΗΨΗΣ ΓΙΑ ΤΙΣ ΓΙΟΡΤΕΣ (ΑΡΙΘΜΗΤΙΚΗ)

ΛΥΣΕΙΣ ΤΩΝ ΑΣΚΗΣΕΩΝ ΕΠΑΝΑΛΗΨΗΣ ΓΙΑ ΤΙΣ ΓΙΟΡΤΕΣ (ΑΡΙΘΜΗΤΙΚΗ) ΛΥΣΕΙΣ ΤΩΝ ΑΣΚΗΣΕΩΝ ΕΠΑΝΑΛΗΨΗΣ ΓΙΑ ΤΙΣ ΓΙΟΡΤΕΣ (ΑΡΙΘΜΗΤΙΚΗ) 1. Ένα κεφάλαιο ενός βιβλίου ξεκινάει από τη σελίδα 32 και τελειώνει στη σελίδα 75. Από πόσες σελίδες αποτελείται το κεφάλαιο; Αν το κεφάλαιο

Διαβάστε περισσότερα

ΠΑΡΑΓΡΑΦΟΣ 1. 2 ΠΡΟΣΘΕΣΗ ΑΦΑΙΡΕΣΗ ΚΑΙ ΠΟΛΛΑΠΛΑΣΙΑΣΜΟΣ ΦΥΣΙΚΩΝ ΑΡΙΘΜΩΝ

ΠΑΡΑΓΡΑΦΟΣ 1. 2 ΠΡΟΣΘΕΣΗ ΑΦΑΙΡΕΣΗ ΚΑΙ ΠΟΛΛΑΠΛΑΣΙΑΣΜΟΣ ΦΥΣΙΚΩΝ ΑΡΙΘΜΩΝ ΠΑΡΑΓΡΑΦΟΣ 1. 2 ΠΡΟΣΘΕΣΗ ΑΦΑΙΡΕΣΗ ΚΑΙ ΠΟΛΛΑΠΛΑΣΙΑΣΜΟΣ ΦΥΣΙΚΩΝ ΑΡΙΘΜΩΝ ΑΣΚΗΣΕΙΣ ΜΕ ΑΘΡΟΙΣΜΑΤΑ ΚΑΙ ΑΦΑΙΡΕΣΕΙΣ ( 1 ) Να υπολογίσετε τις παραστάσεις Α = 3 + 23 + 19 Β = 8 +13 +45-7 Γ = 3 + 0 Α = 3+23 +19 =

Διαβάστε περισσότερα

Επιμέλεια: Σπυρίδων Τζινιέρης-ΘΕΩΡΙΑ ΚΛΑΣΜΑΤΩΝ ΓΙΑ ΤΗΝ Α ΓΥΜΝΑΣΙΟΥ ΘΕΩΡΙΑ ΚΛΑΣΜΑΤΩΝ Α ΓΥΜΝΑΣΙΟΥ

Επιμέλεια: Σπυρίδων Τζινιέρης-ΘΕΩΡΙΑ ΚΛΑΣΜΑΤΩΝ ΓΙΑ ΤΗΝ Α ΓΥΜΝΑΣΙΟΥ ΘΕΩΡΙΑ ΚΛΑΣΜΑΤΩΝ Α ΓΥΜΝΑΣΙΟΥ Τι είναι κλάσμα; Κλάσμα είναι ένα μέρος μιας ποσότητας. ΘΕΩΡΙΑ ΚΛΑΣΜΑΤΩΝ Α ΓΥΜΝΑΣΙΟΥ Κλάσμα είναι ένας λόγος δύο αριθμών(fraction is a ratio of two whole numbers) Πως εκφράζετε συμβολικά ένα κλάσμα; Εκφράζετε

Διαβάστε περισσότερα

Α) 4 Β) 5 Γ) 7 Δ) 6 Ε) Κανένα από τα πιο πάνω.

Α) 4 Β) 5 Γ) 7 Δ) 6 Ε) Κανένα από τα πιο πάνω. η Κυπριακή Μαθηματική Ολυμπιάδα Απρίλιος 200 Χρόνος: 60 λεπτά ΣΤ ΔΗΜΟΤΙΚΟΥ ΑΣΚΗΣΗ Ο πενταψήφιος αριθμός 45Β7Α, στον οποίο τα ψηφία των μονάδων και των εκατοντάδων είναι σημειωμένα με Α και Β, διαιρείται

Διαβάστε περισσότερα

Υπενθύμιση Δ τάξης. Παιχνίδια στην κατασκήνωση

Υπενθύμιση Δ τάξης. Παιχνίδια στην κατασκήνωση ΚΕΦΑΛΑΙΟ 1ο Υπενθύμιση Δ τάξης Παιχνίδια στην κατασκήνωση Συγκρίνω δυο αριθμούς για να βρω αν είναι ίσοι ή άνισοι. Στην περίπτωση που είναι άνισοι μπορώ να βρω ποιος είναι μεγαλύτερος (ή μικρότερος). Ανάμεσα

Διαβάστε περισσότερα

ΓΡΑΠΤΕΣ ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Α ΤΑΞΗΣ ΓΥΜΝΑΣΙΟΥ ΣΧΟΛΙΚΟ ΕΤΟΣ: ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ ΗΜΕΡΟΜΗΝΙΑ: ΧΧ ΙΟΥΝΙΟΥ 2017 ΘΕΜΑΤΑ ΘΕΩΡΙΑΣ

ΓΡΑΠΤΕΣ ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Α ΤΑΞΗΣ ΓΥΜΝΑΣΙΟΥ ΣΧΟΛΙΚΟ ΕΤΟΣ: ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ ΗΜΕΡΟΜΗΝΙΑ: ΧΧ ΙΟΥΝΙΟΥ 2017 ΘΕΜΑΤΑ ΘΕΩΡΙΑΣ Δ/ΝΣΗ Δ/ΘΜΙΑΣ ΕΚΠ/ΣΗΣ ΧΧΧΧΧΧΧΧΧΧ ΓΥΜΝΑΣΙΟ ΧΧΧΧΧΧΧΧΧΧ Α ΤΑΞΗ ΓΡΑΠΤΕΣ ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Α ΤΑΞΗΣ ΓΥΜΝΑΣΙΟΥ ΣΧΟΛΙΚΟ ΕΤΟΣ: 2016-2017 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ ΗΜΕΡΟΜΗΝΙΑ: ΧΧ ΙΟΥΝΙΟΥ 2017 ΘΕΜΑΤΑ ΘΕΩΡΙΑΣ

Διαβάστε περισσότερα

Οδύσσεια Τα απίθανα... τριτάκια! Tετάρτη τάξη ΜΑΘΗΜΑΤΙΚΑ Δ ΤΑΞΗ Συμπεράσματα Ενοτήτων

Οδύσσεια Τα απίθανα... τριτάκια! Tετάρτη τάξη ΜΑΘΗΜΑΤΙΚΑ Δ ΤΑΞΗ Συμπεράσματα Ενοτήτων Οδύσσεια Τα απίθανα... τριτάκια! Tετάρτη τάξη ΜΑΘΗΜΑΤΙΚΑ Δ ΤΑΞΗ Συμπεράσματα Ενοτήτων Πηγή πληροφόρησης: e-selides ΜΑΘΗΜΑΤΙΚΑ Δ ΤΑΞΗΣ 1η ΕΝΟΤΗΤΑ (ΣΥΜΠΕΡΑΣΜΑΤΑ) Δεν μπορώ να βρω το ζητούμενο ενός προβλήματος

Διαβάστε περισσότερα

ΕΠΙΤΡΟΠΗ ΔΙΑΓΩΝΙΣΜΩΝ 70 ος ΠΑΝΕΛΛΗΝΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ Ο ΘΑΛΗΣ ΣΑΒΒΑΤΟ, 21 ΝΟΕΜΒΡΙΟΥ 2009 B ΓΥΜΝΑΣΙΟΥ

ΕΠΙΤΡΟΠΗ ΔΙΑΓΩΝΙΣΜΩΝ 70 ος ΠΑΝΕΛΛΗΝΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ Ο ΘΑΛΗΣ ΣΑΒΒΑΤΟ, 21 ΝΟΕΜΒΡΙΟΥ 2009 B ΓΥΜΝΑΣΙΟΥ ΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ Πανεπιστημίου (Ελευθερίου Βενιζέλου) 34 06 79 ΑΘΗΝΑ Τηλ. 0 3663-0367784 - Fax: 0 3640 GREEK MATHEMATICAL SOCIETY 34, Panepistimiou (Εleftheriou Venizelou) Street GR. 06 79

Διαβάστε περισσότερα

Υπενθύμιση Δ τάξης. Παιχνίδια στην κατασκήνωση

Υπενθύμιση Δ τάξης. Παιχνίδια στην κατασκήνωση ΚΕΦΑΛΑΙΟ 1ο Υπενθύμιση Δ τάξης Παιχνίδια στην κατασκήνωση Συγκρίνω δυο αριθμούς για να βρω αν είναι ίσοι ή άνισοι. Στην περίπτωση που είναι άνισοι μπορώ να βρω ποιος είναι μεγαλύτερος (ή μικρότερος). Ανάμεσα

Διαβάστε περισσότερα

( ) ( ) ( ) ( ) ( ) Να απαντήσετε τα θέματα 1 και 2 αιτιολογώντας πλήρως τις απαντήσεις σας. Το κάθε θέμα είναι 10 μονάδες.

( ) ( ) ( ) ( ) ( ) Να απαντήσετε τα θέματα 1 και 2 αιτιολογώντας πλήρως τις απαντήσεις σας. Το κάθε θέμα είναι 10 μονάδες. ΚΥΠΡΙΑΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ B ΔΙΑΓΩΝΙΣΜΟΣ ΕΠΙΛΟΓΗΣ IMC STAGE III ΑΠΡΙΛΗΣ 2019 Χρόνος Εξέτασης: 2ώρες Ημερομηνία: 17/04/2019 Ώρα εξέτασης: 1:4-17:4 Να απαντήσετε τα θέματα 1 και 2 αιτιολογώντας πλήρως

Διαβάστε περισσότερα

Αρβανιτίδης Θεόδωρος, - Μαθηματικά Ε

Αρβανιτίδης Θεόδωρος,  - Μαθηματικά Ε Δεκαδικά κλάσματα Δεκαδικοί αριθμοί Μάθημα 7 ο Σε κάθε κλάσμα έχουμε : όροι του κλάσματος : αριθμητής παρονομαστής πόσα ίσα μέρη της ακέραιης μονάδας πήρα πόσα ίσα μέρη χώρισα την ακέραιη μονάδα Η κλασματική

Διαβάστε περισσότερα

Μαθηματικά: Αριθμητική και Άλγεβρα. Μάθημα 4 ο, Τμήμα Α

Μαθηματικά: Αριθμητική και Άλγεβρα. Μάθημα 4 ο, Τμήμα Α Μαθηματικά: Αριθμητική και Άλγεβρα Μάθημα 4 ο, Τμήμα Α Τι συμβαίνει όταν η περίοδος δεν ξεκινάει αμέσως μετά το κόμμα όπως συμβαίνει με τον αριθμό 3,4555 και θέλουμε να γραφεί σαν κλάσμα; 345 Υπήρχαν πολλές

Διαβάστε περισσότερα

Μαθηματικά: Αριθμητική και Άλγεβρα. Μάθημα 11 ο, Τμήμα Α. Γεωμετρία

Μαθηματικά: Αριθμητική και Άλγεβρα. Μάθημα 11 ο, Τμήμα Α. Γεωμετρία Μαθηματικά: ριθμητική και Άλγεβρα Μάθημα 11 ο, Τμήμα Γεωμετρία Η γεωμετρία σε σχέση με την άλγεβρα ή την αριθμητική έχει την εξής ιδιαιτερότητα: πρέπει να είμαστε πολύ ακριβείς στην περιγραφή μας (σκέψη

Διαβάστε περισσότερα

Κεφάλαιο 7 ο : Θετικοί και Αρνητικοί αριθμοί

Κεφάλαιο 7 ο : Θετικοί και Αρνητικοί αριθμοί ΕΡΩΤΗΣΕΙΙΣ ΘΕΩΡΙΙΑΣ ΕΠΑΝΑΛΗΨΗ ΒΑΣΙΙΚΩΝ ΕΝΝΟΙΙΩΝ ΑΠΟ ΤΗΝ ΥΛΗ ΤΗΣ Α ΤΑΞΗΣ Κεφάλαιο 7 ο : Θετικοί και Αρνητικοί αριθμοί Α. 7. 1 1. Τι είναι τα πρόσημα και πως χαρακτηρίζονται οι αριθμοί από αυτά; Τα σύμβολα

Διαβάστε περισσότερα

2.1 ΠΡΑΞΕΙΣ ΚΑΙ ΟΙ ΙΔΙΟΤΗΤΕΣ ΤΟΥΣ

2.1 ΠΡΑΞΕΙΣ ΚΑΙ ΟΙ ΙΔΙΟΤΗΤΕΣ ΤΟΥΣ ΚΕΦΑΛΑΙΟ : ΟΙ ΠΡΑΓΜΑΤΙΚΟΙ ΑΡΙΘΜΟΙ. ΠΡΑΞΕΙΣ ΚΑΙ ΟΙ ΙΔΙΟΤΗΤΕΣ ΤΟΥΣ Ρητός ονομάζεται κάθε αριθμός που έχει ή μπορεί να πάρει τη μορφή κλάσματος, όπου, είναι ακέραιοι με 0. Ρητοί αριθμοί : Q /, 0. Έτσι π.χ.

Διαβάστε περισσότερα

Πρόγραμμα Σπουδών Εκπαίδευσης Παιδιών-Προφύγων Τάξεις Ε+ΣΤ Δημοτικού

Πρόγραμμα Σπουδών Εκπαίδευσης Παιδιών-Προφύγων Τάξεις Ε+ΣΤ Δημοτικού Πρόγραμμα Σπουδών Εκπαίδευσης Παιδιών-Προφύγων 2016-2017 Τάξεις Ε+ΣΤ Δημοτικού Περιεχόμενα Στόχοι Πηγή Υλικού 3.1 Αριθμοί Οι μαθητές πρέπει: Σχολικά βιβλία Ε και ΣΤ Φυσικοί, Δεκαδικοί, μετρήσεις Να μπορούν

Διαβάστε περισσότερα

ΕΡΩΤΗΣΕΙΣ ΘΕΜΑΤΑ ΘΕΩΡΙΑΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΤΗΣ Α ΓΥΜΝΑΣΙΟΥ ΑΛΓΕΒΡΑ

ΕΡΩΤΗΣΕΙΣ ΘΕΜΑΤΑ ΘΕΩΡΙΑΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΤΗΣ Α ΓΥΜΝΑΣΙΟΥ ΑΛΓΕΒΡΑ 1 ο ΚΕΦΑΛΑΙΟ ΕΡΩΤΗΣΕΙΣ ΘΕΜΑΤΑ ΘΕΩΡΙΑΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΤΗΣ Α ΓΥΜΝΑΣΙΟΥ ΑΛΓΕΒΡΑ 1. α. Τι γνωρίζετε για την Ευκλείδεια διαίρεση; Πότε λέγεται τέλεια; β. Αν σε μια διαίρεση είναι Δ=δ, πόσο είναι το πηλίκο και

Διαβάστε περισσότερα

( ) ( ) ( ) ( ) ΕΠΙΤΡΟΠΗ ΔΙΑΓΩΝΙΣΜΩΝ 30 η Ελληνική Μαθηματική Ολυμπιάδα "Ο Αρχιμήδης" 23 Φεβρουαρίου 2013 ΕΝΔΕΙΚΤΙΚΕΣ ΛΥΣΕΙΣ Λύση (α) Έχουμε

( ) ( ) ( ) ( ) ΕΠΙΤΡΟΠΗ ΔΙΑΓΩΝΙΣΜΩΝ 30 η Ελληνική Μαθηματική Ολυμπιάδα Ο Αρχιμήδης 23 Φεβρουαρίου 2013 ΕΝΔΕΙΚΤΙΚΕΣ ΛΥΣΕΙΣ Λύση (α) Έχουμε ΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ Πανεπιστημίου (Ελευθερίου Βενιζέλου) 3 06 79 ΑΘΗΝΑ Τηλ. 36653-36778 - Fax: 3605 e-mail : info@hms.gr, www.hms.gr GREEK MATHEMATICAL SOCIETY 3, Panepistimiou (Εleftheriou Venizelou)

Διαβάστε περισσότερα

ΕΡΩΤΗΣΕΙΣ ΘΕΩΡΙΑΣ Α ΓΥΜΝΑΣΙΟΥΣΤΗΝ ΑΛΓΕΒΡΑ. Άρτιοι αριθμοί ονομάζονται οι αριθμοί που διαιρούνται με το 2 και περιττοί εκείνοι

ΕΡΩΤΗΣΕΙΣ ΘΕΩΡΙΑΣ Α ΓΥΜΝΑΣΙΟΥΣΤΗΝ ΑΛΓΕΒΡΑ. Άρτιοι αριθμοί ονομάζονται οι αριθμοί που διαιρούνται με το 2 και περιττοί εκείνοι ΕΡΩΤΗΣΕΙΣ ΘΕΩΡΙΑΣ Α ΓΥΜΝΑΣΙΟΥΣΤΗΝ ΑΛΓΕΒΡΑ 1)Ποιοι αριθμοί ονομάζονται άρτιοι και ποιοι περιττοί ; Άρτιοι αριθμοί ονομάζονται οι αριθμοί που διαιρούνται με το 2 και περιττοί εκείνοι που δεν διαιρούνται

Διαβάστε περισσότερα

3 + 5 = 23 :13 + 18 = 23

3 + 5 = 23 :13 + 18 = 23 ΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ Πανεπιστημίου (Ελευθερίου Βενιζέλου) 34 106 79 ΑΘΗΝΑ Τηλ. 3616532-3617784 - Fax: 3641025 GREEK MATHEMATICAL SOCIETY 34, Panepistimiou (Εleftheriou Venizelou) Street GR. 106

Διαβάστε περισσότερα

ΕΠΙΤΡΟΠΗ ΔΙΑΓΩΝΙΣΜΩΝ 76 ος ΠΑΝΕΛΛΗΝΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ Ο ΘΑΛΗΣ 14 Νοεμβρίου 2015. Ενδεικτικές λύσεις Β ΓΥΜΝΑΣΙΟΥ

ΕΠΙΤΡΟΠΗ ΔΙΑΓΩΝΙΣΜΩΝ 76 ος ΠΑΝΕΛΛΗΝΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ Ο ΘΑΛΗΣ 14 Νοεμβρίου 2015. Ενδεικτικές λύσεις Β ΓΥΜΝΑΣΙΟΥ ΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ Πανεπιστημίου (Ελευθερίου Βενιζέλου) 34 06 79 ΑΘΗΝΑ Τηλ. 36653-367784 - Fax: 36405 e-mail : info@hms.gr www.hms.gr GREEK MATHEMATICAL SOCIETY 34, Panepistimiou (Εleftheriou

Διαβάστε περισσότερα

σ αυτή την περίπτωση; = 610 και το άθροισμα των 12 πρώτων όρων της S 12 = 222. Να βρείτε τη διαφορά και τον 1 ο όρο της.

σ αυτή την περίπτωση; = 610 και το άθροισμα των 12 πρώτων όρων της S 12 = 222. Να βρείτε τη διαφορά και τον 1 ο όρο της. ΚΕΦΑΛΑΙΟ 5ο ΑΡΙΜΗΤΙΚΗ ΚΑΙ ΓΕΩΜΕΤΡΙΚΗ ΠΡΟΟΔΟΣ ΑΡΙΘΜΗΤΙΚΗ ΠΡΟΟΔΟΣ. Σε μια αριθμητική πρόοδο είναι 6 και 9. Να βρείτε α) τη διαφορά και β) τον 0 ο όρο της προόδου.. Σε μια αριθμητική πρόοδο είναι 3 και 7.

Διαβάστε περισσότερα

ΑΓΓΛΙΚΗ ΣΧΟΛΗ ΕΙΣΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Χρόνος: 1 ώρα και 30 λεπτά

ΑΓΓΛΙΚΗ ΣΧΟΛΗ ΕΙΣΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Χρόνος: 1 ώρα και 30 λεπτά ΑΓΓΛΙΚΗ ΣΧΟΛΗ ΕΙΣΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ 2016 ΜΑΘΗΜΑΤΙΚΑ ΠΡΩΤΗ ΤΑΞΗ Χρόνος: 1 ώρα και 30 λεπτά Να απαντήσετε σε ΟΛΕΣ τις ερωτήσεις. Όπου χρειάζεται να γίνουν πράξεις για να βρεθεί η απάντηση, να τις κάνετε

Διαβάστε περισσότερα

6. Πόσα πολλαπλάσια του αριθμού 9 υπάρχουν μεταξύ των αριθμών και 22550;

6. Πόσα πολλαπλάσια του αριθμού 9 υπάρχουν μεταξύ των αριθμών και 22550; 100 ΜΑΘΗΜΑΤΙΚΑ ΚΟΥΙΖ ΑΣΚΗΣΕΙΣ ΠΡΟΒΛΗΜΑΤΑ ΓΙΑ ΜΙΚΡΟΥΣ ΚΑΙ ΜΕΓΑΛΟΥΣ ΑΠΑΡΑΙΤΗΤΕΣ ΓΝΩΣΕΙΣ ΤΑΞΕΩΝ ΓΥΜΝΑΣΙΟΥ ΚΑΙ ΦΑΝΤΑΣΙΑ (ΕΧΟΥΝ ΗΔΗ ΑΝΑΡΤΗΘΕΙ ΑΛΛΕΣ 2 ΦΟΡΕΣ ΠΑΡΟΜΟΙΟΙ ΓΡΙΦΟΙ ΣΤΗΝ ΙΣΤΟΣΕΛΙΔΑ ΤΟΥ ΣΧΟΛΕΙΟΥ ΜΑΣ)

Διαβάστε περισσότερα

ΓΙΑΝΝΗΣ ΖΑΧΑΡΟΠΟΥΛΟΣ. Γρήγορα τεστ. Μαθηματικά Ε Δημοτικού E 1 ΕΚΔΟΣΕΙΣ ΠΑΠΑΔΟΠΟΥΛΟΣ

ΓΙΑΝΝΗΣ ΖΑΧΑΡΟΠΟΥΛΟΣ. Γρήγορα τεστ. Μαθηματικά Ε Δημοτικού E 1 ΕΚΔΟΣΕΙΣ ΠΑΠΑΔΟΠΟΥΛΟΣ ΓΙΑΝΝΗΣ ΖΑΧΑΡΟΠΟΥΛΟΣ Γρήγορα τεστ E 1 ΕΚΔΟΣΕΙΣ ΠΑΠΑΔΟΠΟΥΛΟΣ ΓΡΗΓΟΡΑ ΤΕΣΤ ΜΑΘΗΜΑΤΙΚΩΝ - Ε Δημοτικού No 1 Γιάννης Ζαχαρόπουλος Διόρθωση: Αντωνία Κιλεσσοπούλου 2013, Εκδόσεις Κυριάκος Παπαδόπουλος Α.Ε., Γιάννης

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ Α ΓΥΜΝΑΣΙΟΥ ΑΝΔΡΕΣΑΚΗΣ ΔΗΜΗΤΡΗΣ ΦΥΛΛΑ ΕΡΓΑΣΙΑΣ ΦΥΛΛΟ ΕΡΓΑΣΙΑΣ ΕΝΟΤΗΤΑ Α.1.2. ΠΡΑΞΕΙΣ ΦΥΣΙΚΩΝ ΑΡΙΘΜΩΝ ΚΑΙ ΙΔΙΟΤΗΤΕΣ ΟΝΟΜΑΤΕΠΩΝΥΜΟ

ΜΑΘΗΜΑΤΙΚΑ Α ΓΥΜΝΑΣΙΟΥ ΑΝΔΡΕΣΑΚΗΣ ΔΗΜΗΤΡΗΣ ΦΥΛΛΑ ΕΡΓΑΣΙΑΣ ΦΥΛΛΟ ΕΡΓΑΣΙΑΣ ΕΝΟΤΗΤΑ Α.1.2. ΠΡΑΞΕΙΣ ΦΥΣΙΚΩΝ ΑΡΙΘΜΩΝ ΚΑΙ ΙΔΙΟΤΗΤΕΣ ΟΝΟΜΑΤΕΠΩΝΥΜΟ ΦΥΛΛΟ ΕΡΓΑΣΙΑΣ ΕΝΟΤΗΤΑ Α.1.2. ΠΡΑΞΕΙΣ ΦΥΣΙΚΩΝ ΑΡΙΘΜΩΝ ΚΑΙ ΙΔΙΟΤΗΤΕΣ ΟΝΟΜΑΤΕΠΩΝΥΜΟ ΗΜΕΡΟΜΗΝΙΑ / / ΠΡΟΣΘΕΣΗ ΦΥΣΙΚΩΝ ΑΡΙΘΜΩΝ 12+ 7 = 19 Οι αριθμοί 12 και 7 ονομάζονται ενώ το 19 ονομάζεται.. 3+5 =, 5+3 =...

Διαβάστε περισσότερα

Λέγονται οι αριθμοί που βρίσκονται καθημερινά στη φύση, γύρω μας. π.χ. 1 μήλο, 2 παιδιά, 5 αυτοκίνητα, 100 πρόβατα, δέντρα κ.λ.π.

Λέγονται οι αριθμοί που βρίσκονται καθημερινά στη φύση, γύρω μας. π.χ. 1 μήλο, 2 παιδιά, 5 αυτοκίνητα, 100 πρόβατα, δέντρα κ.λ.π. Λέγονται οι αριθμοί που βρίσκονται καθημερινά στη φύση, γύρω μας. π.χ. 1 μήλο, 2 παιδιά, 5 αυτοκίνητα, 100 πρόβατα, 1.000 δέντρα κ.λ.π. Εκτός από πλήθος οι αριθμοί αυτοί μπορούν να δηλώσουν και τη θέση

Διαβάστε περισσότερα

5 ος Πανελλήνιος Μαθητικός Διαγωνισμός «Παιχνίδι και Μαθηματικά»

5 ος Πανελλήνιος Μαθητικός Διαγωνισμός «Παιχνίδι και Μαθηματικά» ΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ Πανεπιστημίου (Ελευθερίου Βενιζέλου) 4 106 79 ΑΘΗΝΑ Τηλ. 61652-617784 - Fax: 641025 e-mail : info@hms.gr www.hms.gr GREEK MATHEMATICAL SOCIETY 4, Panepistimiou (Εleftheriou

Διαβάστε περισσότερα

ΓΥΜΝΑΣΙΟ ΑΚΡΟΠΟΛΕΩΣ ΣΧΟΛΙΚΟ ΕΤΟΣ 2014 2015 ΓΡΑΠΤΕΣ ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΙΟΥΝΙΟΥ 2015. ΧΡΟΝΟΣ: 2 ώρες ΥΠ. ΚΑΘΗΓΗΤΗ:...

ΓΥΜΝΑΣΙΟ ΑΚΡΟΠΟΛΕΩΣ ΣΧΟΛΙΚΟ ΕΤΟΣ 2014 2015 ΓΡΑΠΤΕΣ ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΙΟΥΝΙΟΥ 2015. ΧΡΟΝΟΣ: 2 ώρες ΥΠ. ΚΑΘΗΓΗΤΗ:... ΓΥΜΝΑΣΙΟ ΑΚΡΟΠΟΛΕΩΣ ΣΧΟΛΙΚΟ ΕΤΟΣ 2014 2015 ΓΡΑΠΤΕΣ ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΙΟΥΝΙΟΥ 2015 ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ ΒΑΘΜΟΣ ΗΜΕΡΟΜΗΝΙΑ: 5/06/2015 ΤΑΞΗ: A Αριθμητικά... ΧΡΟΝΟΣ: 2 ώρες ΥΠ. ΚΑΘΗΓΗΤΗ:... Ολογράφως:...

Διαβάστε περισσότερα

Κάθε φυσικός αριθμός έχει έναν επόμενο αριθμό. Κάθε φυσικός αριθμός (εκτός από το 0) έχει έναν προηγούμενο φυσικό αριθμό.

Κάθε φυσικός αριθμός έχει έναν επόμενο αριθμό. Κάθε φυσικός αριθμός (εκτός από το 0) έχει έναν προηγούμενο φυσικό αριθμό. A.1.1 Φυσικοί αριθμοί Διάταξη φυσικών Στρογγυλοποίηση Φυσικοί αριθμοί OÚÈÛÌfi 1. Φυσικοί αριθμοί λέγονται οι αριθμοί 0, 1, 2, 3,... και συμβολίζονται με το γράμμα Ν (το οποίο είναι το αρχικό γράμμα της

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ Α' ΓΥΜΝΑΣΙΟΥ ΕΡΩΤΗΣΕΙΣ ΘΕΩΡΙΑΣ σε word! ΕΠΙΜΕΛΕΙΑ: ΚΩΝΣΤΑΝΤΙΝΟΣ ΤΣΟΛΚΑΣ

ΜΑΘΗΜΑΤΙΚΑ Α' ΓΥΜΝΑΣΙΟΥ ΕΡΩΤΗΣΕΙΣ ΘΕΩΡΙΑΣ σε word! ΕΠΙΜΕΛΕΙΑ: ΚΩΝΣΤΑΝΤΙΝΟΣ ΤΣΟΛΚΑΣ ΜΑΘΗΜΑΤΙΚΑ Α' ΓΥΜΝΑΣΙΟΥ ΕΡΩΤΗΣΕΙΣ ΘΕΩΡΙΑΣ σε word! ΕΠΙΜΕΛΕΙΑ: ΚΩΝΣΤΑΝΤΙΝΟΣ ΤΣΟΛΚΑΣ Ένα «ανοικτό» αρχείο, δηλαδή επεξεργάσιμο που όλοι μπορούν να συμμετέχουν είτε προσθέτοντας είτε διορθώνοντας υλικό. Μετά

Διαβάστε περισσότερα

Μαθηματικά της Φύσης και της Ζωής

Μαθηματικά της Φύσης και της Ζωής Μαθηματικά της Φύσης και της Ζωής Τάξη:Ε Ονοματεπώνυμο:.. Σχολείο: Το ημερολόγιο Ο Πέτρος ζήτησε από το φίλο του Χρήστο να διαλέξει 4 αριθμούς από το διπλανό ημερολόγιο που να σχηματίζουν τετράγωνο (για

Διαβάστε περισσότερα

ΟΔΗΓΙΕΣ ΠΡΟΣ ΤΟΥΣ ΠΡΟΕΔΡΟΥΣ ΤΩΝ ΤΟΠΙΚΩΝ ΝΟΜΑΡΧΙΑΚΩΝ ΕΠΙΤΡΟΠΩΝ, ΠΡΟΕΔΡΟΥΣ ΕΞΕΤΑΣΤΙΚΩΝ ΚΕΝΤΡΩΝ ΚΑΙ ΕΠΙΤΗΡΗΤΕΣ

ΟΔΗΓΙΕΣ ΠΡΟΣ ΤΟΥΣ ΠΡΟΕΔΡΟΥΣ ΤΩΝ ΤΟΠΙΚΩΝ ΝΟΜΑΡΧΙΑΚΩΝ ΕΠΙΤΡΟΠΩΝ, ΠΡΟΕΔΡΟΥΣ ΕΞΕΤΑΣΤΙΚΩΝ ΚΕΝΤΡΩΝ ΚΑΙ ΕΠΙΤΗΡΗΤΕΣ Τηλ 361653-3617784 - Fax: 364105 Tel 361653-3617784 - Fax: 364105 ΕΠΙΤΡΟΠΗ ΔΙΑΓΩΝΙΣΜΩΝ 68 ος ΠΑΝΕΛΛΗΝΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΣΑΒΒΑΤΟ, 4 ΝΟΕΜΒΡΙΟΥ 007 ΟΔΗΓΙΕΣ ΠΡΟΣ ΤΟΥΣ ΠΡΟΕΔΡΟΥΣ ΤΩΝ ΤΟΠΙΚΩΝ ΝΟΜΑΡΧΙΑΚΩΝ

Διαβάστε περισσότερα

ΓΥΜΝΑΣΙΟ ΚΑΣΤΕΛΛΑΝΩΝ ΜΕΣΗΣ ΑΛΓΕΒΡΑ

ΓΥΜΝΑΣΙΟ ΚΑΣΤΕΛΛΑΝΩΝ ΜΕΣΗΣ ΑΛΓΕΒΡΑ ΑΛΓΕΒΡΑ ΠΡΟΑΠΑΙΤΟΥΜΕΝΑ ΑΠΟ Α ΓΥΜΝΑΣΙΟΥ Ομόσημοι Ετερόσημοι αριθμοί Αντίθετοι Αντίστροφοι αριθμοί Πρόσθεση ομόσημων και ετερόσημων ρητών αριθμών Απαλοιφή παρενθέσεων Πολλαπλασιασμός και Διαίρεση ρητών αριθμών

Διαβάστε περισσότερα

2. Οι ζητούμενοι αριθμοί είναι οι : 1.541, 7.686, 3.352, (8)

2. Οι ζητούμενοι αριθμοί είναι οι : 1.541, 7.686, 3.352, (8) ΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ Πανεπιστημίου (Ελευθερίου Βενιζέλου) 34 106 79 ΑΘΗΝΑ Τηλ. 3616532-3617784 - Fax: 3641025 Επιτροπή Διαγωνισμού του περιοδικού «Ο μικρός Ευκλείδης» 2 ος Μαθητικός Διαγωνισμός

Διαβάστε περισσότερα

Μαθηματικά Γ Γυμνασίου, Κεφάλαιο 1ο

Μαθηματικά Γ Γυμνασίου, Κεφάλαιο 1ο 1 Ερωτήσεις θεωρίας Ερωτήσεις αντικειμενικού τύπου Ασκήσεις Διαγωνίσματα ΘΕΩΡΙΑ ΕΡΩΤΗΣΕΙΣ 1. Τι ονομάζουμε μονώνυμο;. Τι ονομάζουμε ρητή αλγεβρική παράσταση; 3. Ποιες τιμές δεν μπορούν να πάρουν οι μεταβλητές

Διαβάστε περισσότερα

ΓΥΜΝΑΣΙΟ ΑΠΟΣΤΟΛΟΥ ΑΝΔΡΕΑ ΕΜΠΑΣ ΣΧΟΛΙΚΗ ΧΡΟΝΙΑ ΕΞΕΤΑΣΤΙΚΟ ΔΟΚΙΜΙΟ ΑΠΟΛΥΤΗΡΙΩΝ ΕΞΕΤΑΣΕΩΝ ΙΟΥΝΙΟΥ ΧΡΟΝΟΣ : 2 Ώρες Υπογραφή :

ΓΥΜΝΑΣΙΟ ΑΠΟΣΤΟΛΟΥ ΑΝΔΡΕΑ ΕΜΠΑΣ ΣΧΟΛΙΚΗ ΧΡΟΝΙΑ ΕΞΕΤΑΣΤΙΚΟ ΔΟΚΙΜΙΟ ΑΠΟΛΥΤΗΡΙΩΝ ΕΞΕΤΑΣΕΩΝ ΙΟΥΝΙΟΥ ΧΡΟΝΟΣ : 2 Ώρες Υπογραφή : ΓΥΜΝΑΣΙΟ ΑΠΟΣΤΟΛΟΥ ΑΝΔΡΕΑ ΕΜΠΑΣ ΣΧΟΛΙΚΗ ΧΡΟΝΙΑ 2018 2019 ΕΞΕΤΑΣΤΙΚΟ ΔΟΚΙΜΙΟ ΑΠΟΛΥΤΗΡΙΩΝ ΕΞΕΤΑΣΕΩΝ ΙΟΥΝΙΟΥ 2019 ΜΑΘΗΜΑ : Μαθηματικά ΤΑΞΗ : Γ ΗΜΕΡΟΜΗΝΙΑ : 5 / 6 / 2019 ΧΡΟΝΟΣ : 2 Ώρες Βαθμός : Ολογράφως

Διαβάστε περισσότερα

ΓΡΑΠΤΕΣ ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΙΟΥΝΙΟΥ 2015

ΓΡΑΠΤΕΣ ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΙΟΥΝΙΟΥ 2015 ΓΥΜΝΑΣΙΟ ΑΡΧ. ΜΑΚΑΡΙΟΥ Γ - ΠΛΑΤΥ ΣΧΟΛΙΚΟ ΕΤΟΣ 2014-2015 ΓΡΑΠΤΕΣ ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΙΟΥΝΙΟΥ 2015 ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ ΒΑΘΜΟΣ ΗΜΕΡΟΜΗΝΙΑ: 8 / 6 / 2015 Αριθμητικά :.... ΒΑΘΜΟΣ:... ΤΑΞΗ: Β Ολογράφως:......

Διαβάστε περισσότερα

Μη γράφετε στο πίσω μέρος της σελίδας

Μη γράφετε στο πίσω μέρος της σελίδας Διακριτά Μαθηματικά Ενδιάμεση εξέταση 1 Φεβρουάριος 2014 Σελ. 1 από 7 Στη σελίδα αυτή γράψτε μόνο τα στοιχεία σας. Γράψτε τις απαντήσεις σας στις επόμενες σελίδες, κάτω από τις αντίστοιχες ερωτήσεις. Στις

Διαβάστε περισσότερα

ΕΠΙΤΡΟΠΗ ΔΙΑΓΩΝΙΣΜΩΝ 33 η Ελληνική Μαθηματική Ολυμπιάδα "Ο Αρχιμήδης" 27 Φεβρουαρίου 2016

ΕΠΙΤΡΟΠΗ ΔΙΑΓΩΝΙΣΜΩΝ 33 η Ελληνική Μαθηματική Ολυμπιάδα Ο Αρχιμήδης 27 Φεβρουαρίου 2016 ΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ Πανεπιστημίου (Ελευθερίου Βενιζέλου) 4 6 79 ΑΘΗΝΑ Τηλ 665-67784 - Fax: 645 e-mail : ifo@hmsgr wwwhmsgr GREEK MATHEMATICAL SOCIETY 4 Paepistimiou (Εleftheriou Veielou) Street

Διαβάστε περισσότερα

Οι φυσικοί αριθμοί. Παράδειγμα

Οι φυσικοί αριθμοί. Παράδειγμα Οι φυσικοί αριθμοί Φυσικοί Αριθμοί Είναι οι αριθμοί με τους οποίους δηλώνουμε πλήθος ή σειρά. Για παράδειγμα, φυσικοί αριθμοί είναι οι: 0, 1,, 3,..., 99, 100,...,999, 1000, 0... Χωρίζουμε τους Φυσικούς

Διαβάστε περισσότερα

ΓΡΑΠΣΕ ΑΝΑΚΕΥΑΛΑΙΩΣΙΚΕ ΕΞΕΣΑΕΙ ΠΕΡΙΟΔΟΤ ΜΑΪΟΤ ΙΟΤΝΙΟΤ ΘΕΩΡΙΑ. Β. Να συμπληρώσετε στο γραπτό σας τις παρακάτω σχέσεις ώστε να προκύψουν ταυτότητες:

ΓΡΑΠΣΕ ΑΝΑΚΕΥΑΛΑΙΩΣΙΚΕ ΕΞΕΣΑΕΙ ΠΕΡΙΟΔΟΤ ΜΑΪΟΤ ΙΟΤΝΙΟΤ ΘΕΩΡΙΑ. Β. Να συμπληρώσετε στο γραπτό σας τις παρακάτω σχέσεις ώστε να προκύψουν ταυτότητες: ΓΡΑΠΣΕ ΑΝΑΚΕΥΑΛΑΙΩΣΙΚΕ ΕΞΕΣΑΕΙ ΠΕΡΙΟΔΟΤ ΜΑΪΟΤ ΙΟΤΝΙΟΤ ΣΑΞΗ: Γ ΘΕΩΡΙΑ ΘΕΜΑ 1 ο Α. Τι λέγεται ταυτότητα; Β. Να συμπληρώσετε στο γραπτό σας τις παρακάτω σχέσεις ώστε να προκύψουν ταυτότητες: Γ. Να αποδείξετε

Διαβάστε περισσότερα