7. GASNO ZAVARIVANJE 7.1. GASNI PLAMEN I GORIVI GASOVI OSOBINE I PRIMENA

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "7. GASNO ZAVARIVANJE 7.1. GASNI PLAMEN I GORIVI GASOVI OSOBINE I PRIMENA"

Transcript

1 izvor: Sedmak, A., Šijački-Žeravčić, V., Milosavljević, A., Đorđević, V., Vukićević, M.: Mašinski materijali II deo, izdanje Mašinskog fakulteta Univerziteta u Beogradu, 2000 (uskoro ponovo u štampi) 7. GASNO ZAVARIVANJE Gasno zavarivanje je postupak spajanja metala topljenjem i očvršćavanjem osnovnog i (po potrebi) dodatnog metala pomoću plamena dobijenog sagorevanjem gorivog gasa. Količina toplote oslobođena sagorevanjem, kao i najviša temperatura plamena, zavise od vrste gorivog gasa. Podrazumeva se da gorivi gasovi sagorevaju u struji kiseonika, ako nije naglašeno drugačije (npr. sagorevanje u vazduhu). Da bi se ostvarilo sagorevanje u struji kiseonika, gorivi gas i kiseonik se iz specijalnih posuda pod pritiskom boca (ili na drugi način) dovode u gorionik, odakle izlaze pomešani u odgovarajućoj srazmeri. Na taj način je omogućeno sagorevanje gorivog gasa na vrhu plamenika, koji zajedno sa gorionikom, bocama za skladištenje i crevima za dovod gasova, kao i pomoćnim i dodatnim uređajima (npr. redukcionim ventilima), čini opremu za gasno zavarivanje. U novije vreme je razvijen i postupak koji elektrolizom vode obezbeđuje sav potreban vodonik i kiseonik, koji ima čitav niz prednosti, ali i skupu opremu. Osnovna prednost gasnog zavarivanja je mogućnost kontrole koju zavarivač ima nad brzinom unošenja toplote, temperaturom u zoni zavarivanja i oksidacijom u atmosferi metala šava. Osim toga, oblik i veličina šava mogu bolje da se kontrolišu, jer se dodatni metal uvodi nezavisno od izvora toplote. U prednosti postupka se ubrajaju i niska cena opreme, njena pokretljivost i relativno jednostavno rukovanje. S druge strane, količina i koncentracija toplote je manja nego kod ostalih postupaka zavarivanja, pa je za gasno zavarivanje karakteristično duže vreme zagrevanja i hlađenja, usled čega su strukturne promene u ZUT izraženije i nepovoljnije. Shodno tome, ovaj postupak je pogodan jedino za zavarivanje tankih limova i cevi, posebno manjeg prečnika, kao i za njihovo reparaturno zavarivanje. Plamen gasa se takođe koristi za rezanje, lemljenje, navarivanje, predgrevanje, termičku obradu i jednostavnije operacije oblikovanja, kao što su savijanje i ispravljanje GASNI PLAMEN I GORIVI GASOVI OSOBINE I PRIMENA Osnovni zahtevi koje treba da ispuni gorivi gas da bi se koristio za zavarivanje su da temperatura plamena bude znatno viša od temperature topljenja osnovnog i dodatnog metala, da brzina sagorevanja bude što veća, da se razvija dovoljna količina toplote za topljenje osnovnog i dodatnog metala, kao i za nadoknadu gubitaka toplote, i da hemijska reakcija plamena sa osnovnim i dodatnim materijalom bude što manja. Najčešće se koriste gorivi gasovi na bazi ugljovodonika: metan (CH 4 ), metilacetilenpropadijen (C 3 H 4 trgovački naziv MAPP), acetilen (C 2 H 2 ), propan (C 3 H 8 ), propilen (C 3 H 6 ), butan (C 4 H 10 ) i vodonik (H 2 ). Za detaljniju analizu karakteristika gasova treba imati u vidu da ugljovodonici sagorevaju u dve faze, primarnoj i sekundarnoj, osim H 2 koji sagoreva u jednoj fazi. Pod primarnim sagorevanjem se podrazumeva reakcija sa kiseonikom iz boce, a pod sekundarnim reakcija sa kiseonikom iz vazduha. 1

2 Primarni plamen je neutralan kada je reakcija primarnog sagorevanja ravnotežna, a proizvodi sagorevanja ugljen-monoksid i vodonik. U tom slučaju atmosfera primarnog plamena je redukujuća. Kako sekundarno sagorevanje zavisi od produkata primarnog sagorevanja, to pojam neutralan treba shvatiti kao pogodan način za definisanje količine kiseonika potrebnog za potpuno sagorevanje i za poređenje različitih karakteristika gorivih gasova. Brzina sagorevanja (brzina širenja plamena) je brzina kojom se front plamena kreće upravno na njegovu površinu kroz okolni nesagoreli gas. Brzina sagorevanja bitno utiče na veličinu i temperaturu primarnog plamena. U tab. 7.1 su dati osnovni podaci o gorivim gasovima, kao što su maksimalna temperatura neutralnog plamena, t max, količina oslobođene toplote kod primarnog i sekundarnog sagorevanja (osim za H 2 koji sagoreva u jednoj fazi), Q prim i Q sek, ukupna količina toplote po jedinici zapremine i po jedinici mase, Q vol i Q mas, količina kiseonika potrebna za potpuno sagorevanje jedinične količine gasa (stehiometrijska smeša) oznaka O 2 (ukupno) i količina kiseonika koja se u tu svrhu dobija iz boce (ostatak se dobija iz vazduha) oznaka O 2 (boca), odnos gustine gasa prema gustini vazduha (na temperaturi od 15 C, atmosferskom pritisku i gustini vazduha ρ vaz = 1,21 kg/m 3 ), molarna masa, M, specifična zapremina, υ, i brzina sagorevanja neutralnog plamena, v sag. Tabela 7.1. Osnovne osobine najčešće korišćenih gasova acetilen propan butan metan propilen MAPP vodonik tmax ( C) Qprim (MJ/m 3 ) 18,9 9,5 0,4 16,3 19,3 Qsek (MJ/m 3 ) 35,9 83, ,9 70,4 Qvol (MJ/m 3 ) 54,8 93, ,3 89,6 12 Qmas (MJ/kg) O 2 (ukupno) (mol) 2, ,5 4 0,5 O 2 (boca) (mol) 1 1,3 3,5 1,5 2,6 2,5 0,3 0,4 ρ/ρ vaz ( ) 0,91 1,52 2,10 0,62 1,48 1,48 0,074 M (g/mol) 26,0 44,0 58,1 υ=v/m (m 3 /kg) 0,91 0,54 0,39 1,44 0,55 0,55 11,77 v sag (m/s) 5,7 3,9 5,5 11 Iako je sekundarna količina toplote veća, za zavarivanje je bitnija primarna količina toplote jer je koncentrisana na mestu zavarivanja. Osim nje, kao što je već pomenuto, od najvećeg značaja za primenu u zavarivanju je brzina sagorevanja, koja je za neke gorive gasove (acetilen, propan, metan, vodonik) data na sl. 7.1, u zavisnosti od udela gorivog gasa u smeši. Kombinacijom ove dve veličine, tj. proizvodom primarne količine toplote i brzine sagorevanja, definiše se intenzitet primarnog sagorevanja, koji se, osim t max, koristi kao osnovni kriterijum primenljivosti gorivog gasa. Intenzitet primarnog sagorevanja je najveći za acetilen, sl Analogno se definiše intenzitet sekundarnog sagorevanja, kao proizvod sekundarne količine toplote i brzine sagorevanja. Intenzitet sekundarnog sagorevanja utiče na temperaturski gradijent u okolini spoja, tako što smanjuje brzinu hlađenja. Kao i u slučaju primarnog sagorevanja, najveći intenzitet sekundarnog sagorevanja ima acetilen, sl Intenzitet ukupnog sagorevanja je dat na sl

3 Slika 7.1. Brzina sagorevanja nekih gorivih gasova Slika 7.2. Intenzitet primarnog sagorevanja nekih gorivih gasova 3

4 Slika 7.3. Intenzitet sekundarnog sagorevanja nekih gorivih gasova Slika 7.4. Intenzitet ukupnog sagorevanja nekih gorivih gasova Gustina gasa ukazuje na njegovo ponašanje u slučaju procurivanja. Gasovi sa gustinom manjom od vazduha odlaze uvis i nestaju, dok gasovi veće gustine od vazduha padaju na dno i sakupljaju se na mirnim mestima. U prvu grupu spadaju acetilen, metan i vodonik, a u drugu butan, propan i MAPP, tab Osim najviše t max i najvećeg intenziteta sagorevanja, acetilenski plamen je povoljan i zbog male potrošnje kiseonika (najmanja posle vodonika, tab. 7.1), jednostavne regulacije i stabilnog sagorevanja, pa je praktično nezamenljiv kada je zavarivanje u pitanju. Ostali gorivi gasovi se koriste za rezanje, tvrdo i meko lemljenje, površinsko kaljenje i metalizaciju, gde dolaze do izražaja neke specifične prednosti. Tako npr. MAPP i propilen, osim relativno visoke t max, imaju veliku Q sek, pa su pogodni i za zagrevanje velikih komada. Metan, butan i propan mogu u nekim slučajevima da budu ekonomična zamena jer su znatno jeftiniji, a primena vodonika je sve veće u novije vreme zbog mogućnosti dobijanja oba gasa potrebna za sagorevanja (vodonik i kiseonik) elektrolizom iz vode. Ova varijanta nije tehnički nova, ali je cena uređaja i elektrolize tek poslednjih godina postala konkurentna, posebno kada se imaju u vidu neke njene prednosti, kao što proizvodnja onoliko gasa koliko je potrebno (nema skladištenja) i sagorevanje vodonika bez CO i drugih štetnih produkata. Najveća primena ove varijante zasad je rezanje čelika, uključujući velike debljine, jer se dobijaju vrlo kvalitetne rezne površine. 4

5 7.2. PLAMEN ACETILEN KISEONIK Sagorevanje acetilena se odvija prema jednačinama: primarno: C 2 H 2 + O 2 2C + H 2 + O 2 + 0,225 MJ 2CO + H 2 + 0,47 MJ/mol (7.1a) sekundarno: 2CO + H 2 + 1,5O 2 2CO 2 + H 2 O + 0,81 MJ/mol (7.1b) ukupno: C 2 H 2 + 2,5O 2 2CO 2 + H 2 O + 1,28 MJ/mol (7.1c) Imajući u vidu jednačine sagorevanja, može da se zaključi da je udeo acetilena u stehiometrijskoj smeši 0,28 (ukupno sagorevanje, odnos C 2 H 2 :O 2 = 1:2,5), a u neutralnoj smeši 0,5 (primarno sagorevanje, odnos C 2 H 2 :O 2 = 1:1). Sekundarno sagorevanje može da se razdvoji na sagorevanje ugljen-monoksida, sa 0,57 MJ/mol oslobođene toplote, i sagorevanje vodonika, sa 0,24 MJ/mol oslobođene toplote. Ukupna količina toplote (1,28 MJ/mol) može da se izrazi u odnosu na jedinicu zapremine (jedinična zapremina se određuje na osnovu podataka iz tab. 7.1, prema izrazu v = M υ = 26 0, = 0,0237 m 3 /mol), što daje količinu toplote Q vol = 54,1 MJ/m 3, što se neznatno razlikuje od podatka u tab Ukupna toplotna moć acetilenskog plamena može sada da se odredi ako se u izraz (2.2) uvrsti podatak o količini toplote Q vol (npr. 54,1 MJ/m 3 ), a V izrazi u (l/h): P u 15 V (W) (7.2) Efektivna toplotna moć (snaga) plamena je manja od ukupne zbog značajnih gubitaka toplote, prvenstveno na zagrevanje okoline i osnovnog metala, kao što se vidi iz tab. 7.2, gde dati podaci za koeficijent iskorišćenja toplote u zavisnosti od veličine plamenika. Raspodela toplote pri zavarivanju plamenikom br. 8 je data na sl Tabela 7.2. Koeficijent iskorišćenja toplote plamenik broj η 0,72 0,68 0,51 0,44 0,36 0,29 0,25 0,22 1 gubici u okolinu (33%) 2 zagrevanje dodatnog metala (12%) 3 gubici usled razbrizgavanja (2%) 4 topljenje dodatnog metala (10%) 5 topljenje osnovnog metala (12%) 6 topljenje osnovnog i dodat. metala (22%) 7 gubici u osnovni metal (43%) 8 zagrevanje osnovnog metala (55%) 9 ukupna toplotna moć (100%) Slika 7.5. Raspodela toplote pri zavarivanju plamenikom br. 8 Kako se za primarno sagorevanje acetilena koristi kiseonik iz boce, a za sekundarno sagorevanje kiseonik iz okolnog vazduha, jasno je iz jednačina sagorevanja da se za potpuno sagorevanje acetilena troši 40% kiseonika iz boce i 60% kiseonika iz vazduha. Zavisno od odnosa acetilena i kiseonika, razlikuju se redukujući (manjak kiseonika), neutralni (potpuno sagorevanje) i oksidišući plamen (višak kiseonika). Iako je teorijski smeša kiseonika i acetilena kod neutralnog plamena 1:1, u praksi se pod neutralnim plamenom podrazumeva smeša O 2 :C 2 H 2 = (1,1 1,2):1. Višak kiseonika se troši na sagorevanje okolnih gasova. Kod neutralnog plamena uočljive su tri različite zone, sl. 7.6: Jezgro oblika konusa ili cilindra (zavisno od načina isticanja gasova), u kojem se odvija deo primarnog sagorevanja. Pri tome sagoreva manji deo smeše gasova, dok se veći 5

6 deo razlaže na ugljenik i vodonik. Oslobođena količina toplote zagreva slobodni ugljenik stvarajući svetli omotač jezgra, šta daje utisak jarko bele boje. Srednja zona, oblika klina, gde se odvija ostatak primarnog sagorevanja, a počinje i sekundarno sagorevanje, odnosno oksidacija 2CO i H 2 kiseonikom iz vazduha. U ovoj zoni se postiže najviša temperatura plamena (do 3100 C, sl. 7.6a), na 4 6 mm od vrha jezgra, pa se ona koristi za zavarivanje. Stoga se srednja zona zove i zona zavarivanja. Omotač plamena, u kojem se odvija sekundarno sagorevanje na račun kiseonika iz vazduha. Temperatura u zoni sekundarnog sagorevanja je znatno niža od maksimalne, sl Boja u ovoj zoni prelazi od plavo-ljubičaste boje u sredini do žuto-narandžaste na krajevima. a) oksidišući b) neutralni c) redukujući Slika 7.6. Šematski izgled plamena (a oksidišući, b neutralni, c redukujući) U odnosu na neutralni plamen, specifičnosti oksidišućeg plamena su manje jezgro koničnog oblika i manji omotač, sl. 7.6a. Kod redukujućeg plamena jezgro i omotač su veći, a oko jezgra postoji zona oblika pera, sl. 7.6c, koja je bele boje slično jezgru, pa ih je ponekad teško razlikovati. Količnik dužine ove zone i jezgra odgovara količniku sadržaja acetilena i kiseonika. Smanjenjem sadržaja acetilena ili povećanjem sadržaja kiseonika u plamenu, ova zona se gubi, što se koristi pri vizuelnom podešavanju plamena. Gasovi koji se javljaju u omotaču plamena i zoni redukcije sprečavaju kiseonik i azot iz vazduha da dopru do rastopljenog metala, što obezbeđuje njegovu dobru zaštitu. Osim toga u okviru primarnog sagorevanja ugljenik nepotpuno sagoreva u ugljen-monoksid, a vodonik ostaje slobodan. Nepotpuno sagoreli ugljen-monoksid ima veliki afinitet prema kiseoniku, pa mu ne dozvoljava pristup u rastop, a ako se stvore oksidi, ugljen-monoksid ih redukuje. Stoga je veoma važno održavanje propisanog rastojanja između jezgra i površine radnog komada (3 5 mm), jer inače nastaju sledeće greške: ako je jezgro suviše blizu rastopljenog metala dobija se oksidirani tvrdi sloj; ako je jezgro suviše udaljeno, provarivanje je otežano, a pojava gasnih mehurova česta. Neutralan plamen se koristi za zavarivanje čelika, bakra, nikla i njegovih legura, bronze i olova. Redukujući plamen se primenjuje kada se traži porast ugljenika u zavaru kao npr. kod zavarivanja sivog liva, kao i za zavarivanje aluminijuma i njegovih legura, legura magnezijuma i navarivanja tvrdim legurama. Oksidišući plamen se izbegava, jer reakcija kiseonika ima veoma štetno delovanje na svojstva legura, sem kod zavarivanja mesinga gde se višak kiseonika koristi da bi se sprečilo isparavanje cinka. Temperatura plamena sa viškom kiseonika je viša od ostalih vrsta plamena zbog reakcije sagorevanja metala ili prisutnih elemenata, pa se 6

7 oksidišući plamen ponekad koristi da bi se povećala produktivnost zavarivanja čelika, zbog čega u metalu šava po pravilu nastaju greške tipa oksida. Prema brzini isticanja razlikuju se meki plamen (50 80 m/s) i tvrdi plamen ( m/s), što zavisi od pritiska i protoka gasova. Meki plamen je nestabilan i osetljiv na pojavu povratnog plamena, a koristi se za zavarivanje visokolegiranih čelika, lakotopljivih metala (Pb, Zn) i za lemljenje. Tvrdi plamen je teško kontrolisati, a česta je pojava izduvavanja rastopljenog metala iz metalne kupke. Stoga se u praksi najčešće koristi srednji plamen sa brzinama isticanja m/s Kiseonik Kiseonik omogućava sagorevanje gorivih gasova, a nalazi se u vazduhu (21% zapreminskog udela). Na 15 C i atmosferskom pritisku gustina kiseonika iznosi 1,43 kg/m 3, molarna masa 32 g/mol, a u tečno stanje prelazi na 183 C. U gasovitom stanju kiseonik nema boju i miris, nije zapaljiv i eksplozivan. Međutim, pošto u njegovom prisustvu neke materije postaju zapaljive, rukovanje kiseonikom mora da bude oprezno. Kiseonik se najčešće proizvodi frakcionom destilacijom tečnog vazduha. Tehnički kiseonik je čistoće 99,2 do 99,8%, a nečistoće su azot, argon i voda. Čistoća kiseonika je vrlo bitna za njegovo korišćenje. Kiseonik se transportuje i čuva u čeličnim bocama pod pritiskom bar Acetilen Acetilen je gorivi gas bez boje, karakterističnog mirisa, neotrovan i rastvorljiv u vodi u odnosu 1:1 i u acetonu u odnosu 1:25, na sobnoj temperaturi i atmosferskom pritisku. Rastvorljivost acetilena u acetonu raste sa porastom pritiska, a opada sa porastom temperature. Acetilen je vrlo eksplozivan u prisustvu kiseonika ili vazduha. Acetilen se transportuje i čuva u čeličnim bocama pod pritiskom 15 bar, a u slučaju velike potrošnje racionalnije je koristiti razvijače acetilena. Za dobijanje acetilena se koriste još i postupci pirolize ugljovodonika i delimičnog sagorevanja metana u kiseoniku APARATURA ZA ZAVARIVANJE Aparaturu za gasno zavarivanje čine boce za kiseonik i acetilen, redukcioni ventili, dovodna creva, gorionik sa promenljivom mlaznicom i pomoćni alat. Boce za tehničke gasove spadaju u posude pod pritiskom i podležu odgovarajućem JUS. Ove boce se izrađuju dubokim izvlačenjem od konstrukcionog ugljeničnog ili niskolegiranog čelika. Boce za kiseonik su zapremine 40 l, u koje je moguće uskladištiti 6 Nm 3 na pritisku od 150 bara i temperaturi 20 C. Ako se pretpostavi da se kiseonik u ovim uslovima ponaša kao idealni gas, moguće je na osnovu pritiska u boci izračunati količinu preostalog gasa u boci (npr. ako je pritisak u boci 120 bara, količina preostalog kiseonika je = 4800 l). Kiseonička boca je obojena plavo ili ima plavu traka na 2/3 visine. Boca za acetilen je obojena belo, ili ima belu traku na 2/3 visine. Acetilen u boci se rastvara u acetonu, jer je sam acetilen kao nezasićeni ugljovodonik vrlo eksplozivan na povišenom pritisku. Osim toga, boca se prethodno puni poroznom masom (najčešće drveni ćumur ili mešavina uglja i infuzorijske zemlje) u koju se uliva aceton, a zatim rastvara acetilen. Tako dobijena smeša može da se podvrgne pritisku od 15 bara, što znači da na sobnoj temperaturi i normalnom atmosferskom pritisku u bocu može da se smesti 4800 l acetilena ( ,35, gde je pritisak 15 bar, zapremina boce 40 l, 0,35 koeficijent popunjenosti boce acetonom, a 23 rastvorljivost acetilena u acetonu). Kako je radni pritisak znatno niži od pritiska u boci, boce je neophodno snabdeti redukcionim ventilima za kiseonik i za acetilen, sl Oba redukciona ventila imaju po dva manometra, jedan za pritisak u boci, drugi za radni pritisak. Princip rada redukcionih ventila je 7

8 isti, a jedina konstruktivna razlika je u načinu vezivanja za bocu kod kiseonika vezivanje je preko navrtke, a kod acetilena preko uzengije što isključuje mogućnost pogrešnog vezivanja. Osim toga, razlika je i u opsegu merenja kod kiseonika manometri su do 300 bara (pritisak u boci), odnosno 16 bara (radni pritisak), a kod acetilena do 40 bara (pritisak u boci), tj. 2,5 bara (radni pritisak). Posebnu pažnju treba obratiti na rukovanje redukcionim ventilom za kiseonik. Kako dodir kiseonika sa mašću, uljem ili nekom sličnom materijom može da izazove eksplozivno paljenje, zabranjeno je rukovanje redukcionim ventilom za kiseonik masnim ili prljavim rukavicama. Osim toga za ovaj ventil je karakteristična pojava zaleđivanja usled razlike pritisaka na ulasku i izlasku i odgovarajućeg pada temperature. Da bi se ovo sprečilo treba koristiti što čistiji kiseonik, ugraditi grejač pre ventila ili koristiti ventil sa dvostepenom redukcijom pritiska. a) za kiseonik b) za acetilen Slika 7.7. Redukcioni ventili Osim redukcionih ventila koriste se i tzv. suvi ventili, koji se postavljaju između redukcionih ventila i gorionika, sl Princip rada suvog ventila je sledeći: kroz gumeno crevo dotiče gas u cevni nastavak (2) ventila i otvara nepovratni ventil (4), protiče kroz ventil u unutrašnjost poroznog uloška (5), zatim kroz njegov porozni zid u sredinu uloška, a otuda u nastavak (3) i u gorionik. U slučaju eksplozije povratni udar plamena stiže do komore između zida cevi ventila (1) i uloška (5) i tu se gasi, jer se pri prolasku kroz porozni uložak ohladi ispod temperature paljenja mešavine gasova. Povećani pritisak od eksplozije gotovo trenutno zatvara nepovratni ventil. Slika 7.8. Šematski prikaz suvog ventila Gorionici za zavarivanje omogućavaju ostvarivanje potrebne smeše kiseonika i acetilena (ili drugog gorivog gasa), pri čemu se zahteva stabilan plamen određenog oblika i toplotne moći. Osnovni delovi gorionika prikazani su na sl Koristi se više tipova gorionika koji se dele prema pritisku napajanja (gorionik niskog i visokog pritiska) i prema regulaciji protoka (gorionik stalnog i višestrukog protoka). 8

9 Slika 7.9. Gorionik šematski prikaz 7.4. DODATNI MATERIJALI I TOPITELJI Dodatni materijali se isporučuju u obliku žica i šipki. U slučaju zavarivanja niskougljeničnih i niskolegiranih čelika dodatni materijal je u obliku šipki dužine 1000 mm ili koturova žice mase 40 kg, standardnih prečnika: 2; 2,5; 3,25; 4; 5; 6,3 mm (JUS C.H3. 051/81). Oznaka dodatnog materijala se sastoji iz dva dela: opšteg (slovo P) i dopunskog (slovo O, Z, Y ili cifre od 1 do 6) sa značenjem datim u tab Žice su prevučene tankim slojem bakra radi zaštite od korozije. Najčešće korišćene žice za zavarivanje čelika, njihove oznake, sastav, mehanička svojstva i primena su prikazane u tab Tabela 7.3. Označavanje žica za gasno zavarivanje čelika simbol Z Y R m [MPa] < A 5,65 [%] < KV [J] A 5,65 Tabela 7.4. Žice za gasno zavarivanje čelika oznaka oznaka R m KV hemijski sastav (%) primena JUS PIVA [MPa] [%] [J] C Si Mn Ni Mo P Y11 37G ,09 0,1 0,55 ugljenični čelik sa R m <450 MPa P G ,1 0,2 0,8 0,6 0,2 parni kotlovi, posude pod 0,15 0,3 0,9 0,8 0,25 pritiskom, cevovodi i brodski limovi Za zavarivanje Al i njegovih legura se koriste iste žice i šipke kao za TIG postupak (JUS C.H3.061, tab. 5.12). Za zavarivanje bakra i legura koriste se žice i šipke prema JUS C. H3.071 (S.CuSn1 i S.CuAg1), a za zavarivanje bronzi šipke prema JUS C.H3.072 (S.CuSn10Zn4 i S.CuSn4Zn7) i JUS C.H3.073 (S.CuSn4 12). Topitelji, oblika praha ili pasta, se primenjuju pri zavarivanju livenog gvožđa, obojenih metala i legura, nerđajućeg čelika i drugih legura. Osnovni razlog primene topitelja su teškotopljivi oksidi koji se obrazuju pri zavarivanju navedenih materijala i svojim prisustvom sprečavaju uspešno zavarivanje. Nanošenjem topitelja na dodatni ili osnovni materijal postiže se dvojaki efekt sprečava se donekle oksidacija tečnog metala, s jedne strane, i snižava temperatura topljenja oksida, s druge strane, čime se obezbeđuje njihovo uklanjanje u obliku troske. Topitelji se dele prema hemijskom sastavu na kisele i bazične. Najčešće se koriste kiseli topitelji na bazi bora, kao što su borna kiselina, H 3 BO 3, (prvenstveno za bakar i njegove legure), ili boraks (natrijumtetraborat Na 2 B 4 O 7 10H 2 O), koji lako razgrađuje okside mnogih metala (npr. Cu, Zn, Mn), i bazni topitelji, kao što su natrijum karbonat, Na 2 CO 3, i potaša, 9

10 K 2 CO 3, (prvenstveno za sivi liv). Delovanjem Na 2 CO 3 na teškotopljivi oksid SiO 2 stvara se tečno hemijsko jedinjenje Na 2 O SiO 2 koje prelazi u trosku i gas, CO 2, koji odlazi u okolinu TEHNOLOGIJA GASNOG ZAVARIVANJA Propisivanje tehnologije gasnog zavarivanja uključuje izbor i nagib gorionika, izbor žice za zavarivanje, kao i izbor tehnike i parametara zavarivanja (veličina mlaznice, prečnik žice, brzina zavarivanja, potrošnja acetilena, kiseonika i žice za zavarivanje). Veličina i jačina gorionika se bira na osnovu vrste i debljine osnovnog materijala. Jačina gorionika meri se protokom acetilena (l/h). Položaj gorionika značajno utiče na stepen iskorišćenja toplote plamena, kao i na zaštitu rastopa. Iskorišćenje toplote je najveće kod držanja gorionika upravno u odnosu na mesto zavarivanja, sl Ovakav položaj gorionika daje dublje uvarivanje i uži zavar, što je kod debljih materijala povoljnije, kao i bolju zaštitu rastopa. Odstupanje položaja gorionika od upravnog daje znatno pliće uvarivanje i širi zavar, što je povoljnije kod zavarivanja tankih materijala. Kod gasnog zavarivanja najčešće se koriste nagibi gorionika 60 80, sem kod vrlo tankih limova, gde se koriste manji nagibi, 45 60, sl Vrsta i prečnik žice se bira u zavisnosti od osnovnog materijala i njegove debljine. Pri tome treba imati u vidu zahtev da se žica topi optimalnom brzinom, ni prebrzo ni presporo u odnosu na topljenje osnovnog materijala. Kod zavarivanja bakra, aluminijuma i njihovih legura, žica se brže topi nego kod zavarivanja čelika, pa se biraju gorionici veće jačine. Iz ovog proizlazi da prečnik žice u odnosu na debljinu osnovnog materijala treba da bude veći nego kod zavarivanja čelika Tehnike zavarivanja unapred i unazad Slika Uticaj nagiba gorionika na oblik zavara U zavisnosti od kretanja gorionika i žice postoje dve tehnike gasnog zavarivanja: unapred i unazad (u smislu međusobnog položaja žice i gorionika), sl Ove dve tehnike se zovu još i ulevo i udesno, što je odgovarajući naziv samo ako se gorionik drži u desnoj ruci. Tehnika zavarivanja unapred se sastoji u sledećem, sl. 7.11a: Plamen je usmeren prema ivicama osnovnog metala (žleba). Žica se drži ispred plamena, njen vrh je blizu mesta zavarivanja, povremeno se uranja u metalnu kupku i treba da bude u zaštiti plamena. Način vođenje i nagibi žice i gorionika zavise od položaja zavarivanja i debljine osnovnog metala. U slučaju sučeonog I spoja na tankom limu (do 3 mm), žica se vodi bez popreč- 10

11 nih oscilacija, a gorionik od jednog do drugog kraja žleba, poprečnim ( cik cak ) ili kružnim kretanjem, dok su im nagibi oko 45. Tehnika zavarivanja unazad se sastoji u sledećem, sl. 7.11b: Plamen je usmeren prema metalnoj kupki i ravnomerno zagreva i topi osnovni i dodatni materijal. Žica se drži iza plamena, i nalazi se između osnovnog materijala i gorionika. Vrh žice je neprestano uronjen u rastop, pomera se u krug, i stalno meša rastop. Način vođenje i nagibi žice i gorionika takođe zavise od položaja zavarivanja i debljine osnovnog metala. U slučaju sučeonog V spoja na limu debljine preko 3 mm, žica je nagnuta pod 45 i pomera se ukrug od ivice do ivice žleba, a gorionik je nagnut 45 70, zavisno od debljine, i kreće se pravolinijski. a) b) Slika Tehnika zavarivanja a) unapred i b) unazad Zavarivanje unapred je jednostavnije za rad, regulacija metalne kupke je lakša i dobijaju se lepi i glatki zavari, dok je kod zavarivanja unazad bolje iskorišćenje toplote i bolja zaštita metalne kupke. Zavarivanje unapred je sporije, a utrošak acetilena sa povećanjem debljine znatno brže raste nego kod zavarivanja unazad. Ako se materijali veće debljine zavaruju tehnikom unapred teško se postiže jednoličan koren zavara (obično se javljaju prokapljine), a takođe je povećana mogućnost pojave uključaka oksida. Stoga je primena tehnike zavarivanja unapred ograničena na debljine do 5 mm, a za veće debljine se koristi tehnike zavarivanja unazad, jer njene prednosti tada dolaze do izražaja. S druge strane ako se ima u vidu činjenica da se gasni postupak praktično ne koristi za komade veće debljine, jasno je da se tehnika zavarivanja unazad primenjuje veoma retko, npr. u nekim varijantama zavarivanja cevi. Definicije: Gasno zavarivanje postupak spajanja metala topljenjem i očvršćavanjem osnovnog i (po potrebi) dodatnog metala pomoću plamena dobijenog sagorevanjem gorivog gasa Primarno sagorevanje hemijska reakcija gorivog gasa u struji kiseonika iz boce Sekundarno sagorevanje hemijska reakcija gorivog gasa u struji kiseonika iz vazduha Brzina sagorevanja (brzina širenja plamena) brzina kojom se front plamena kreće upravno na njegovu površinu kroz okolni nesagoreli gas 11

12 Intenzitet primarnog sagorevanja proizvod toplote dobijene primarnim sagorevanjem i brzine sagorevanja Intenzitet sekundarnog sagorevanja proizvod toplote dobijene sekundarnim sagorevanjem i brzine sagorevanja Stehiometrijska smeša Odnos zapremina kiseonika i gorivog gasa, teorijski potreban za kompletno sagorevanje Neutralni plamen plamen koji obezbeđuje potpuno sagorevanje Redukujući plamen plamen sa manjkom kiseonika u odnosu na neutralni plamen Oksidišući plamen plamen sa viškom kiseonika u odnosu na neutralni plamen Jezgro plamena deo plamena, oblika konusa ili cilindra u kojem se odvija deo primarnog sagorevanja Srednja zona plamena deo plamena, oblika tamnog klina, gde se odvija ostatak primarnog sagorevanja, a počinje i sekundarno sagorevanje Omotač plamena deo plamena u kojem se odvija sekundarno sagorevanje Topitelji materije čijim se nanošenjem na dodatni ili osnovni materijal sprečava oksidacija tečnog metala i snižava temperatura topljenja oksida Tehnika gasnog zavarivanja unapred tehnika zavarivanja kod koje je plamen usmeren prema ivicama osnovnog metala Tehnika gasnog zavarivanja unazad tehnika zavarivanja kod koje je plamen usmeren prema metalu šava 12

UNIVERZITET U NIŠU ELEKTRONSKI FAKULTET SIGNALI I SISTEMI. Zbirka zadataka

UNIVERZITET U NIŠU ELEKTRONSKI FAKULTET SIGNALI I SISTEMI. Zbirka zadataka UNIVERZITET U NIŠU ELEKTRONSKI FAKULTET Goran Stančić SIGNALI I SISTEMI Zbirka zadataka NIŠ, 014. Sadržaj 1 Konvolucija Literatura 11 Indeks pojmova 11 3 4 Sadržaj 1 Konvolucija Zadatak 1. Odrediti konvoluciju

Διαβάστε περισσότερα

numeričkih deskriptivnih mera.

numeričkih deskriptivnih mera. DESKRIPTIVNA STATISTIKA Numeričku seriju podataka opisujemo pomoću Numeričku seriju podataka opisujemo pomoću numeričkih deskriptivnih mera. Pokazatelji centralne tendencije Aritmetička sredina, Medijana,

Διαβάστε περισσότερα

3.1 Granična vrednost funkcije u tački

3.1 Granična vrednost funkcije u tački 3 Granična vrednost i neprekidnost funkcija 2 3 Granična vrednost i neprekidnost funkcija 3. Granična vrednost funkcije u tački Neka je funkcija f(x) definisana u tačkama x za koje je 0 < x x 0 < r, ili

Διαβάστε περισσότερα

Novi Sad god Broj 1 / 06 Veljko Milković Bulevar cara Lazara 56 Novi Sad. Izveštaj o merenju

Novi Sad god Broj 1 / 06 Veljko Milković Bulevar cara Lazara 56 Novi Sad. Izveštaj o merenju Broj 1 / 06 Dana 2.06.2014. godine izmereno je vreme zaustavljanja elektromotora koji je radio u praznom hodu. Iz gradske mreže 230 V, 50 Hz napajan je monofazni asinhroni motor sa dva brusna kamena. Kada

Διαβάστε περισσότερα

Idealno gasno stanje-čisti gasovi

Idealno gasno stanje-čisti gasovi Idealno gasno stanje-čisti gasovi Parametri P, V, T i n nisu nezavisni. Odnos između njih eksperimentalno je utvrđeni izražava se kroz gasne zakone. Gasni zakoni: 1. ojl-maritov: PVconst. pri konstantnim

Διαβάστε περισσότερα

IZRAČUNAVANJE POKAZATELJA NAČINA RADA NAČINA RADA (ISKORIŠĆENOSTI KAPACITETA, STEPENA OTVORENOSTI RADNIH MESTA I NIVOA ORGANIZOVANOSTI)

IZRAČUNAVANJE POKAZATELJA NAČINA RADA NAČINA RADA (ISKORIŠĆENOSTI KAPACITETA, STEPENA OTVORENOSTI RADNIH MESTA I NIVOA ORGANIZOVANOSTI) IZRAČUNAVANJE POKAZATELJA NAČINA RADA NAČINA RADA (ISKORIŠĆENOSTI KAPACITETA, STEPENA OTVORENOSTI RADNIH MESTA I NIVOA ORGANIZOVANOSTI) Izračunavanje pokazatelja načina rada OTVORENOG RM RASPOLOŽIVO RADNO

Διαβάστε περισσότερα

Osnovni primer. (Z, +,,, 0, 1) je komutativan prsten sa jedinicom: množenje je distributivno prema sabiranju

Osnovni primer. (Z, +,,, 0, 1) je komutativan prsten sa jedinicom: množenje je distributivno prema sabiranju RAČUN OSTATAKA 1 1 Prsten celih brojeva Z := N + {} N + = {, 3, 2, 1,, 1, 2, 3,...} Osnovni primer. (Z, +,,,, 1) je komutativan prsten sa jedinicom: sabiranje (S1) asocijativnost x + (y + z) = (x + y)

Διαβάστε περισσότερα

Konstruisanje. Dobro došli na... SREDNJA MAŠINSKA ŠKOLA NOVI SAD DEPARTMAN ZA PROJEKTOVANJE I KONSTRUISANJE

Konstruisanje. Dobro došli na... SREDNJA MAŠINSKA ŠKOLA NOVI SAD DEPARTMAN ZA PROJEKTOVANJE I KONSTRUISANJE Dobro došli na... Konstruisanje GRANIČNI I KRITIČNI NAPON slajd 2 Kritični naponi Izazivaju kritične promene oblika Delovi ne mogu ispravno da vrše funkciju Izazivaju plastične deformacije Može doći i

Διαβάστε περισσότερα

Osnovne veličine, jedinice i izračunavanja u hemiji

Osnovne veličine, jedinice i izračunavanja u hemiji Osnovne veličine, jedinice i izračunavanja u hemiji Pregled pojmova veličina i njihovih jedinica koje se koriste pri osnovnim izračunavanjima u hemiji dat je u Tabeli 1. Tabela 1. Veličine i njihove jedinice

Διαβάστε περισσότερα

Elektrotehnički fakultet univerziteta u Beogradu 17.maj Odsek za Softversko inžinjerstvo

Elektrotehnički fakultet univerziteta u Beogradu 17.maj Odsek za Softversko inžinjerstvo Elektrotehnički fakultet univerziteta u Beogradu 7.maj 009. Odsek za Softversko inžinjerstvo Performanse računarskih sistema Drugi kolokvijum Predmetni nastavnik: dr Jelica Protić (35) a) (0) Posmatra

Διαβάστε περισσότερα

FTN Novi Sad Katedra za motore i vozila. Teorija kretanja drumskih vozila Vučno-dinamičke performanse vozila: MAKSIMALNA BRZINA

FTN Novi Sad Katedra za motore i vozila. Teorija kretanja drumskih vozila Vučno-dinamičke performanse vozila: MAKSIMALNA BRZINA : MAKSIMALNA BRZINA Maksimalna brzina kretanja F O (N) F OI i m =i I i m =i II F Oid Princip određivanja v MAX : Drugi Njutnov zakon Dokle god je: F O > ΣF otp vozilo ubrzava Kada postane: F O = ΣF otp

Διαβάστε περισσότερα

DISKRETNA MATEMATIKA - PREDAVANJE 7 - Jovanka Pantović

DISKRETNA MATEMATIKA - PREDAVANJE 7 - Jovanka Pantović DISKRETNA MATEMATIKA - PREDAVANJE 7 - Jovanka Pantović Novi Sad April 17, 2018 1 / 22 Teorija grafova April 17, 2018 2 / 22 Definicija Graf je ure dena trojka G = (V, G, ψ), gde je (i) V konačan skup čvorova,

Διαβάστε περισσότερα

SEKUNDARNE VEZE međumolekulske veze

SEKUNDARNE VEZE međumolekulske veze PRIMARNE VEZE hemijske veze među atomima SEKUNDARNE VEZE međumolekulske veze - Slabije od primarnih - Elektrostatičkog karaktera - Imaju veliki uticaj na svojstva supstanci: - agregatno stanje - temperatura

Διαβάστε περισσότερα

Ispitivanje toka i skiciranje grafika funkcija

Ispitivanje toka i skiciranje grafika funkcija Ispitivanje toka i skiciranje grafika funkcija Za skiciranje grafika funkcije potrebno je ispitati svako od sledećih svojstava: Oblast definisanosti: D f = { R f R}. Parnost, neparnost, periodičnost. 3

Διαβάστε περισσότερα

Računarska grafika. Rasterizacija linije

Računarska grafika. Rasterizacija linije Računarska grafika Osnovni inkrementalni algoritam Drugi naziv u literaturi digitalni diferencijalni analizator (DDA) Pretpostavke (privremena ograničenja koja se mogu otkloniti jednostavnim uopštavanjem

Διαβάστε περισσότερα

MEHANIKA FLUIDA. Isticanje kroz otvore sa promenljivim nivoom tečnosti

MEHANIKA FLUIDA. Isticanje kroz otvore sa promenljivim nivoom tečnosti MEHANIKA FLUIDA Isticanje kroz otvore sa promenljivim nivoom tečnosti zadatak Prizmatična sud podeljen je vertikalnom pregradom, u kojoj je otvor prečnika d, na dve komore Leva komora je napunjena vodom

Διαβάστε περισσότερα

OBRTNA TELA. Vladimir Marinkov OBRTNA TELA VALJAK

OBRTNA TELA. Vladimir Marinkov OBRTNA TELA VALJAK OBRTNA TELA VALJAK P = 2B + M B = r 2 π M = 2rπH V = BH 1. Zapremina pravog valjka je 240π, a njegova visina 15. Izračunati površinu valjka. Rešenje: P = 152π 2. Površina valjka je 112π, a odnos poluprečnika

Διαβάστε περισσότερα

PRAVA. Prava je u prostoru određena jednom svojom tačkom i vektorom paralelnim sa tom pravom ( vektor paralelnosti).

PRAVA. Prava je u prostoru određena jednom svojom tačkom i vektorom paralelnim sa tom pravom ( vektor paralelnosti). PRAVA Prava je kao i ravan osnovni geometrijski ojam i ne definiše se. Prava je u rostoru određena jednom svojom tačkom i vektorom aralelnim sa tom ravom ( vektor aralelnosti). M ( x, y, z ) 3 Posmatrajmo

Διαβάστε περισσότερα

C 273,15, T 273,15, 1 1 C 1 50 C 273,15 K 50K 323,15K 50K 373,15K C 40 C 40 K

C 273,15, T 273,15, 1 1 C 1 50 C 273,15 K 50K 323,15K 50K 373,15K C 40 C 40 K 1 Zadatak temperatura K- C Telo A se nalazi na temperaturi 50 C i zagreje se za 50 K. Telo B se nalazi na temperaturi 313 K.i zagreje se za 40 C. Koje je telo toplije posle zagravanja i kolika je razlika

Διαβάστε περισσότερα

S t r a n a 1. 1.Povezati jonsku jačinu rastvora: a) MgCl 2 b) Al 2 (SO 4 ) 3 sa njihovim molalitetima, m. za so tipa: M p X q. pa je jonska jačina:

S t r a n a 1. 1.Povezati jonsku jačinu rastvora: a) MgCl 2 b) Al 2 (SO 4 ) 3 sa njihovim molalitetima, m. za so tipa: M p X q. pa je jonska jačina: S t r a n a 1 1.Povezati jonsku jačinu rastvora: a MgCl b Al (SO 4 3 sa njihovim molalitetima, m za so tipa: M p X q pa je jonska jačina:. Izračunati mase; akno 3 bba(no 3 koje bi trebalo dodati, 0,110

Διαβάστε περισσότερα

SISTEMI NELINEARNIH JEDNAČINA

SISTEMI NELINEARNIH JEDNAČINA SISTEMI NELINEARNIH JEDNAČINA April, 2013 Razni zapisi sistema Skalarni oblik: Vektorski oblik: F = f 1 f n f 1 (x 1,, x n ) = 0 f n (x 1,, x n ) = 0, x = (1) F(x) = 0, (2) x 1 0, 0 = x n 0 Definicije

Διαβάστε περισσότερα

Teorijske osnove informatike 1

Teorijske osnove informatike 1 Teorijske osnove informatike 1 9. oktobar 2014. () Teorijske osnove informatike 1 9. oktobar 2014. 1 / 17 Funkcije Veze me du skupovima uspostavljamo skupovima koje nazivamo funkcijama. Neformalno, funkcija

Διαβάστε περισσότερα

41. Jednačine koje se svode na kvadratne

41. Jednačine koje se svode na kvadratne . Jednačine koje se svode na kvadrane Simerične recipročne) jednačine Jednačine oblika a n b n c n... c b a nazivamo simerične jednačine, zbog simeričnosi koeficijenaa koeficijeni uz jednaki). k i n k

Διαβάστε περισσότερα

MATRICE I DETERMINANTE - formule i zadaci - (Matrice i determinante) 1 / 15

MATRICE I DETERMINANTE - formule i zadaci - (Matrice i determinante) 1 / 15 MATRICE I DETERMINANTE - formule i zadaci - (Matrice i determinante) 1 / 15 Matrice - osnovni pojmovi (Matrice i determinante) 2 / 15 (Matrice i determinante) 2 / 15 Matrice - osnovni pojmovi Matrica reda

Διαβάστε περισσότερα

Kaskadna kompenzacija SAU

Kaskadna kompenzacija SAU Kaskadna kompenzacija SAU U inženjerskoj praksi, naročito u sistemima regulacije elektromotornih pogona i tehnoloških procesa, veoma često se primenjuje metoda kaskadne kompenzacije, u čijoj osnovi su

Διαβάστε περισσότερα

SEMINAR IZ KOLEGIJA ANALITIČKA KEMIJA I. Studij Primijenjena kemija

SEMINAR IZ KOLEGIJA ANALITIČKA KEMIJA I. Studij Primijenjena kemija SEMINAR IZ OLEGIJA ANALITIČA EMIJA I Studij Primijenjena kemija 1. 0,1 mola NaOH je dodano 1 litri čiste vode. Izračunajte ph tako nastale otopine. NaOH 0,1 M NaOH Na OH Jak elektrolit!!! Disoira potpuno!!!

Διαβάστε περισσότερα

I.13. Koliki je napon između neke tačke A čiji je potencijal 5 V i referentne tačke u odnosu na koju se taj potencijal računa?

I.13. Koliki je napon između neke tačke A čiji je potencijal 5 V i referentne tačke u odnosu na koju se taj potencijal računa? TET I.1. Šta je Kulonova sila? elektrostatička sila magnetna sila c) gravitaciona sila I.. Šta je elektrostatička sila? sila kojom međusobno eluju naelektrisanja u mirovanju sila kojom eluju naelektrisanja

Διαβάστε περισσότερα

Elementi spektralne teorije matrica

Elementi spektralne teorije matrica Elementi spektralne teorije matrica Neka je X konačno dimenzionalan vektorski prostor nad poljem K i neka je A : X X linearni operator. Definicija. Skalar λ K i nenula vektor u X se nazivaju sopstvena

Διαβάστε περισσότερα

Betonske konstrukcije 1 - vežbe 3 - Veliki ekscentricitet -Dodatni primeri

Betonske konstrukcije 1 - vežbe 3 - Veliki ekscentricitet -Dodatni primeri Betonske konstrukcije 1 - vežbe 3 - Veliki ekscentricitet -Dodatni primeri 1 1 Zadatak 1b Čisto savijanje - vezano dimenzionisanje Odrediti potrebnu površinu armature za presek poznatih dimenzija, pravougaonog

Διαβάστε περισσότερα

PRELAZ TOPLOTE - KONVEKCIJA

PRELAZ TOPLOTE - KONVEKCIJA PRELAZ TOPLOTE - KONVEKCIJA Prostiranje toplote Konvekcija Pri konvekciji toplota se prostire kretanjem samog fluida (tečnosti ili gasa): kroz fluid ili sa fluida na čvrstu površinu ili sa čvrste površine

Διαβάστε περισσότερα

Pošto pretvaramo iz veće u manju mjernu jedinicu broj 2.5 množimo s 1000,

Pošto pretvaramo iz veće u manju mjernu jedinicu broj 2.5 množimo s 1000, PRERAČUNAVANJE MJERNIH JEDINICA PRIMJERI, OSNOVNE PRETVORBE, POTENCIJE I ZNANSTVENI ZAPIS, PREFIKSKI, ZADACI S RJEŠENJIMA Primjeri: 1. 2.5 m = mm Pretvaramo iz veće u manju mjernu jedinicu. 1 m ima dm,

Διαβάστε περισσότερα

Računarska grafika. Rasterizacija linije

Računarska grafika. Rasterizacija linije Računarska grafika Osnovni inkrementalni algoritam Drugi naziv u literaturi digitalni diferencijalni analizator (DDA) Pretpostavke (privremena ograničenja koja se mogu otkloniti jednostavnim uopštavanjem

Διαβάστε περισσότερα

Antene. Srednja snaga EM zračenja se dobija na osnovu intenziteta fluksa Pointingovog vektora kroz sferu. Gustina snage EM zračenja:

Antene. Srednja snaga EM zračenja se dobija na osnovu intenziteta fluksa Pointingovog vektora kroz sferu. Gustina snage EM zračenja: Anene Transformacija EM alasa u elekrični signal i obrnuo Osnovne karakerisike anena su: dijagram zračenja, dobiak (Gain), radna učesanos, ulazna impedansa,, polarizacija, efikasnos, masa i veličina, opornos

Διαβάστε περισσότερα

Eliminacijski zadatak iz Matematike 1 za kemičare

Eliminacijski zadatak iz Matematike 1 za kemičare Za mnoge reakcije vrijedi Arrheniusova jednadžba, koja opisuje vezu koeficijenta brzine reakcije i temperature: K = Ae Ea/(RT ). - T termodinamička temperatura (u K), - R = 8, 3145 J K 1 mol 1 opća plinska

Διαβάστε περισσότερα

PRILOG. Tab. 1.a. Dozvoljena trajna opterećenja bakarnih pravougaonih profila u(a) za θ at =35 C i θ=30 C, (θ tdt =65 C)

PRILOG. Tab. 1.a. Dozvoljena trajna opterećenja bakarnih pravougaonih profila u(a) za θ at =35 C i θ=30 C, (θ tdt =65 C) PRILOG Tab. 1.a. Dozvoljena trajna opterećenja bakarnih pravougaonih profila u(a) za θ at =35 C i θ=30 C, (θ tdt =65 C) Tab 3. Vrednosti sačinilaca α i β za tipične konstrukcije SN-sabirnica Tab 4. Minimalni

Διαβάστε περισσότερα

Zavrxni ispit iz Matematiqke analize 1

Zavrxni ispit iz Matematiqke analize 1 Građevinski fakultet Univerziteta u Beogradu 3.2.2016. Zavrxni ispit iz Matematiqke analize 1 Prezime i ime: Broj indeksa: 1. Definisati Koxijev niz. Dati primer niza koji nije Koxijev. 2. Dat je red n=1

Διαβάστε περισσότερα

Trigonometrija 2. Adicijske formule. Formule dvostrukog kuta Formule polovičnog kuta Pretvaranje sume(razlike u produkt i obrnuto

Trigonometrija 2. Adicijske formule. Formule dvostrukog kuta Formule polovičnog kuta Pretvaranje sume(razlike u produkt i obrnuto Trigonometrija Adicijske formule Formule dvostrukog kuta Formule polovičnog kuta Pretvaranje sume(razlike u produkt i obrnuto Razumijevanje postupka izrade složenijeg matematičkog problema iz osnova trigonometrije

Διαβάστε περισσότερα

Apsolutno neprekidne raspodele Raspodele apsolutno neprekidnih sluqajnih promenljivih nazivaju se apsolutno neprekidnim raspodelama.

Apsolutno neprekidne raspodele Raspodele apsolutno neprekidnih sluqajnih promenljivih nazivaju se apsolutno neprekidnim raspodelama. Apsolutno neprekidne raspodele Raspodele apsolutno neprekidnih sluqajnih promenljivih nazivaju se apsolutno neprekidnim raspodelama. a b Verovatno a da sluqajna promenljiva X uzima vrednost iz intervala

Διαβάστε περισσότερα

Iskazna logika 3. Matematička logika u računarstvu. novembar 2012

Iskazna logika 3. Matematička logika u računarstvu. novembar 2012 Iskazna logika 3 Matematička logika u računarstvu Department of Mathematics and Informatics, Faculty of Science,, Serbia novembar 2012 Deduktivni sistemi 1 Definicija Deduktivni sistem (ili formalna teorija)

Διαβάστε περισσότερα

Tip ureappleaja: ecovit Jedinice VKK 226 VKK 286 VKK 366 VKK 476 VKK 656

Tip ureappleaja: ecovit Jedinice VKK 226 VKK 286 VKK 366 VKK 476 VKK 656 TehniËki podaci Tip ureappeaja: ecovit Jedinice VKK 226 VKK 286 VKK 366 VKK 476 VKK 66 Nazivna topotna snaga (na /),122,,28, 7,436,,47,6 1,16,7 Nazivna topotna snaga (na 60/) 4,21,,621, 7,23,,246,4 14,663,2

Διαβάστε περισσότερα

II. ODREĐIVANJE POLOŽAJA TEŽIŠTA

II. ODREĐIVANJE POLOŽAJA TEŽIŠTA II. ODREĐIVANJE POLOŽAJA TEŽIŠTA Poožaj težišta vozia predstavja jednu od bitnih konstruktivnih karakteristika vozia s obzirom da ova konstruktivna karakteristika ima veiki uticaj na vučne karakteristike

Διαβάστε περισσότερα

ENERGETSKI KABLOVI (EK-i)

ENERGETSKI KABLOVI (EK-i) ENERGETSKI KABLOVI (EK-i) Tabela 13.1. Vrsta materijala upotrebljena za izolaciju i plašt Vrsta palšta Nemetalni plašt Metalni plašt Oznaka P E X G EV B EP Ab Si F Fe Ec Pa Ni Pt N Es Pu IP NP H h T A

Διαβάστε περισσότερα

1 UPUTSTVO ZA IZRADU GRAFIČKOG RADA IZ MEHANIKE II

1 UPUTSTVO ZA IZRADU GRAFIČKOG RADA IZ MEHANIKE II 1 UPUTSTVO ZA IZRADU GRAFIČKOG RADA IZ MEHANIKE II Zadatak: Klipni mehanizam se sastoji iz krivaje (ekscentarske poluge) OA dužine R, klipne poluge AB dužine =3R i klipa kompresora B (ukrsne glave). Krivaja

Διαβάστε περισσότερα

IZVODI ZADACI ( IV deo) Rešenje: Najpre ćemo logaritmovati ovu jednakost sa ln ( to beše prirodni logaritam za osnovu e) a zatim ćemo

IZVODI ZADACI ( IV deo) Rešenje: Najpre ćemo logaritmovati ovu jednakost sa ln ( to beše prirodni logaritam za osnovu e) a zatim ćemo IZVODI ZADACI ( IV deo) LOGARITAMSKI IZVOD Logariamskim izvodom funkcije f(), gde je >0 i, nazivamo izvod logarima e funkcije, o jes: (ln ) f ( ) f ( ) Primer. Nadji izvod funkcije Najpre ćemo logarimovai

Διαβάστε περισσότερα

Pismeni ispit iz matematike Riješiti sistem jednačina i diskutovati rješenja sistema u zavisnosti od parametra: ( ) + 1.

Pismeni ispit iz matematike Riješiti sistem jednačina i diskutovati rješenja sistema u zavisnosti od parametra: ( ) + 1. Pismeni ispit iz matematike 0 008 GRUPA A Riješiti sistem jednačina i diskutovati rješenja sistema u zavisnosti od parametra: λ + z = Ispitati funkciju i nacrtati njen grafik: + ( λ ) + z = e Izračunati

Διαβάστε περισσότερα

XI dvoqas veжbi dr Vladimir Balti. 4. Stabla

XI dvoqas veжbi dr Vladimir Balti. 4. Stabla XI dvoqas veжbi dr Vladimir Balti 4. Stabla Teorijski uvod Teorijski uvod Definicija 5.7.1. Stablo je povezan graf bez kontura. Definicija 5.7.1. Stablo je povezan graf bez kontura. Primer 5.7.1. Sva stabla

Διαβάστε περισσότερα

Kontrolni zadatak (Tačka, prava, ravan, diedar, poliedar, ortogonalna projekcija), grupa A

Kontrolni zadatak (Tačka, prava, ravan, diedar, poliedar, ortogonalna projekcija), grupa A Kontrolni zadatak (Tačka, prava, ravan, diedar, poliedar, ortogonalna projekcija), grupa A Ime i prezime: 1. Prikazane su tačke A, B i C i prave a,b i c. Upiši simbole Î, Ï, Ì ili Ë tako da dobijeni iskazi

Διαβάστε περισσότερα

INTELIGENTNO UPRAVLJANJE

INTELIGENTNO UPRAVLJANJE INTELIGENTNO UPRAVLJANJE Fuzzy sistemi zaključivanja Vanr.prof. Dr. Lejla Banjanović-Mehmedović Mehmedović 1 Osnovni elementi fuzzy sistema zaključivanja Fazifikacija Baza znanja Baze podataka Baze pravila

Διαβάστε περισσότερα

UZDUŽNA DINAMIKA VOZILA

UZDUŽNA DINAMIKA VOZILA UZDUŽNA DINAMIKA VOZILA MODEL VOZILA U UZDUŽNOJ DINAMICI Zanemaruju se sva pomeranja u pravcima normalnim na pravac kretanja (ΣZ i = 0, ΣY i = 0) Zanemaruju se svi vidovi pobuda na oscilovanje i vibracije,

Διαβάστε περισσότερα

KVADRATNA FUNKCIJA. Kvadratna funkcija je oblika: Kriva u ravni koja predstavlja grafik funkcije y = ax + bx + c. je parabola.

KVADRATNA FUNKCIJA. Kvadratna funkcija je oblika: Kriva u ravni koja predstavlja grafik funkcije y = ax + bx + c. je parabola. KVADRATNA FUNKCIJA Kvadratna funkcija je oblika: = a + b + c Gde je R, a 0 i a, b i c su realni brojevi. Kriva u ravni koja predstavlja grafik funkcije = a + b + c je parabola. Najpre ćemo naučiti kako

Διαβάστε περισσότερα

Obrada signala

Obrada signala Obrada signala 1 18.1.17. Greška kvantizacije Pretpostavka je da greška kvantizacije ima uniformnu raspodelu 7 6 5 4 -X m p x 1,, za x druge vrednosti x 3 x X m 1 X m = 3 x Greška kvantizacije x x x p

Διαβάστε περισσότερα

( ) π. I slučaj-štap sa zglobovima na krajevima F. Opšte rešenje diferencijalne jednačine (1): min

( ) π. I slučaj-štap sa zglobovima na krajevima F. Opšte rešenje diferencijalne jednačine (1): min Kritična sia izvijanja Kritična sia je ona najmanja vrednost sie pritisa pri ojoj nastupa gubita stabinosti, odnosno, pri ojoj štap iz stabine pravoinijse forme ravnoteže preazi u nestabinu rivoinijsu

Διαβάστε περισσότερα

PRETHODNI PRORACUN VRATILA (dimenzionisanje vratila)

PRETHODNI PRORACUN VRATILA (dimenzionisanje vratila) Predet: Mašinski eleenti Proračun vratila strana Dienzionisati vratilo elektrootora sledecih karakteristika: oinalna snaga P = 3kW roj obrtaja n = 400 in Shea opterecenja: Faktor neravnoernosti K =. F

Διαβάστε περισσότερα

18. listopada listopada / 13

18. listopada listopada / 13 18. listopada 2016. 18. listopada 2016. 1 / 13 Neprekidne funkcije Važnu klasu funkcija tvore neprekidne funkcije. To su funkcije f kod kojih mala promjena u nezavisnoj varijabli x uzrokuje malu promjenu

Διαβάστε περισσότερα

Mašinsko učenje. Regresija.

Mašinsko učenje. Regresija. Mašinsko učenje. Regresija. Danijela Petrović May 17, 2016 Uvod Problem predviđanja vrednosti neprekidnog atributa neke instance na osnovu vrednosti njenih drugih atributa. Uvod Problem predviđanja vrednosti

Διαβάστε περισσότερα

FTN Novi Sad Katedra za motore i vozila. Teorija kretanja drumskih vozila Vučno-dinamičke performanse vozila: MAKSIMALNA BRZINA

FTN Novi Sad Katedra za motore i vozila. Teorija kretanja drumskih vozila Vučno-dinamičke performanse vozila: MAKSIMALNA BRZINA : MAKSIMALNA BRZINA Maksimalna brzina kretanja F O (N) F OI i m =i I i m =i II F Oid Princip određivanja v MAX : Drugi Njutnov zakon Dokle god je: F O > ΣF otp vozilo ubrzava Kada postane: F O = ΣF otp

Διαβάστε περισσότερα

( ) ( ) 2 UNIVERZITET U ZENICI POLITEHNIČKI FAKULTET. Zadaci za pripremu polaganja kvalifikacionog ispita iz Matematike. 1. Riješiti jednačine: 4

( ) ( ) 2 UNIVERZITET U ZENICI POLITEHNIČKI FAKULTET. Zadaci za pripremu polaganja kvalifikacionog ispita iz Matematike. 1. Riješiti jednačine: 4 UNIVERZITET U ZENICI POLITEHNIČKI FAKULTET Riješiti jednačine: a) 5 = b) ( ) 3 = c) + 3+ = 7 log3 č) = 8 + 5 ć) sin cos = d) 5cos 6cos + 3 = dž) = đ) + = 3 e) 6 log + log + log = 7 f) ( ) ( ) g) ( ) log

Διαβάστε περισσότερα

( , 2. kolokvij)

( , 2. kolokvij) A MATEMATIKA (0..20., 2. kolokvij). Zadana je funkcija y = cos 3 () 2e 2. (a) Odredite dy. (b) Koliki je nagib grafa te funkcije za = 0. (a) zadanu implicitno s 3 + 2 y = sin y, (b) zadanu parametarski

Διαβάστε περισσότερα

II. ODREĐIVANJE POLOŽAJA TEŽIŠTA

II. ODREĐIVANJE POLOŽAJA TEŽIŠTA II. ODREĐIVANJE POLOŽAJA TEŽIŠTA Poožaj težišta vozia predstavja jednu od bitnih konstruktivnih karakteristika vozia s obzirom da ova konstruktivna karakteristika ima veiki uticaj na vučne karakteristike

Διαβάστε περισσότερα

Zadaci sa prethodnih prijemnih ispita iz matematike na Beogradskom univerzitetu

Zadaci sa prethodnih prijemnih ispita iz matematike na Beogradskom univerzitetu Zadaci sa prethodnih prijemnih ispita iz matematike na Beogradskom univerzitetu Trigonometrijske jednačine i nejednačine. Zadaci koji se rade bez upotrebe trigonometrijskih formula. 00. FF cos x sin x

Διαβάστε περισσότερα

LOGO ISPITIVANJE MATERIJALA ZATEZANJEM

LOGO ISPITIVANJE MATERIJALA ZATEZANJEM LOGO ISPITIVANJE MATERIJALA ZATEZANJEM Vrste opterećenja Ispitivanje zatezanjem Svojstva otpornosti materijala Zatezna čvrstoća Granica tečenja Granica proporcionalnosti Granica elastičnosti Modul

Διαβάστε περισσότερα

5.5. ELEKTROLUČNO ZAVARIVANJE TOPLJIVOM ELEKTRODNOM ŽICOM U ZAŠTITI GASA MAG/MIG POSTUPAK

5.5. ELEKTROLUČNO ZAVARIVANJE TOPLJIVOM ELEKTRODNOM ŽICOM U ZAŠTITI GASA MAG/MIG POSTUPAK izvor: Sedmak, A., Šijački-Žeravčić, V., Milosavljević, A., Đorđević, V., Vukićević, M.: Mašinski materijali II deo, izdanje Mašinskog fakulteta Univerziteta u Beogradu, 2000 (uskoro ponovo u štampi) 5.5.

Διαβάστε περισσότερα

Pismeni ispit iz matematike GRUPA A 1. Napisati u trigonometrijskom i eksponencijalnom obliku kompleksni broj, zatim naći 4 z.

Pismeni ispit iz matematike GRUPA A 1. Napisati u trigonometrijskom i eksponencijalnom obliku kompleksni broj, zatim naći 4 z. Pismeni ispit iz matematike 06 007 Napisati u trigonometrijskom i eksponencijalnom obliku kompleksni broj z = + i, zatim naći z Ispitati funkciju i nacrtati grafik : = ( ) y e + 6 Izračunati integral:

Διαβάστε περισσότερα

Reverzibilni procesi

Reverzibilni procesi Reverzbln proces Reverzbln proces: proces pr koja sste nkada nje vše od beskonačno ale vrednost udaljen od ravnoteže, beskonačno ala proena spoljašnjh uslova ože vratt sste u blo koju tačku, proena ože

Διαβάστε περισσότερα

RAČUNSKE VEŽBE IZ PREDMETA POLUPROVODNIČKE KOMPONENTE (IV semestar modul EKM) IV deo. Miloš Marjanović

RAČUNSKE VEŽBE IZ PREDMETA POLUPROVODNIČKE KOMPONENTE (IV semestar modul EKM) IV deo. Miloš Marjanović Univerzitet u Nišu Elektronski fakultet RAČUNSKE VEŽBE IZ PREDMETA (IV semestar modul EKM) IV deo Miloš Marjanović MOSFET TRANZISTORI ZADATAK 35. NMOS tranzistor ima napon praga V T =2V i kroz njega protiče

Διαβάστε περισσότερα

TEORIJA BETONSKIH KONSTRUKCIJA 79

TEORIJA BETONSKIH KONSTRUKCIJA 79 TEORIJA BETOSKIH KOSTRUKCIJA 79 Primer 1. Odrediti potrebn površin armatre za stb poznatih dimenzija, pravogaonog poprečnog preseka, opterećen momentima savijanja sled stalnog ( g ) i povremenog ( w )

Διαβάστε περισσότερα

DIMENZIONISANJE PRAVOUGAONIH POPREČNIH PRESEKA NAPREGNUTIH NA PRAVO SLOŽENO SAVIJANJE

DIMENZIONISANJE PRAVOUGAONIH POPREČNIH PRESEKA NAPREGNUTIH NA PRAVO SLOŽENO SAVIJANJE TEORIJA ETONSKIH KONSTRUKCIJA T- DIENZIONISANJE PRAVOUGAONIH POPREČNIH PRESEKA NAPREGNUTIH NA PRAVO SLOŽENO SAVIJANJE 3.5 f "2" η y 2 D G N z d y A "" 0 Z a a G - tačka presek koja određje položaj sistemne

Διαβάστε περισσότερα

5. Karakteristične funkcije

5. Karakteristične funkcije 5. Karakteristične funkcije Profesor Milan Merkle emerkle@etf.rs milanmerkle.etf.rs Verovatnoća i Statistika-proleće 2018 Milan Merkle Karakteristične funkcije ETF Beograd 1 / 10 Definicija Karakteristična

Διαβάστε περισσότερα

LANCI & ELEMENTI ZA KAČENJE

LANCI & ELEMENTI ZA KAČENJE LANCI & ELEMENTI ZA KAČENJE 0 4 0 1 Lanci za vešanje tereta prema standardu MSZ EN 818-2 Lanci su izuzetno pogodni za obavljanje zahtevnih operacija prenošenja tereta. Opseg radne temperature se kreće

Διαβάστε περισσότερα

2 tg x ctg x 1 = =, cos 2x Zbog četvrtog kvadranta rješenje je: 2 ctg x

2 tg x ctg x 1 = =, cos 2x Zbog četvrtog kvadranta rješenje je: 2 ctg x Zadatak (Darjan, medicinska škola) Izračunaj vrijednosti trigonometrijskih funkcija broja ako je 6 sin =,,. 6 Rješenje Ponovimo trigonometrijske funkcije dvostrukog kuta! Za argument vrijede sljedeće formule:

Διαβάστε περισσότερα

КОНТРОЛИСАНЕ АТМОСФЕРЕ - РАДНО -

КОНТРОЛИСАНЕ АТМОСФЕРЕ - РАДНО - ФАКУЛТЕТ ТЕХНИЧКИХ НАУКА ОДСЕК ЗА ПРОИЗВОДНО МАШИНСТВО ТЕРМИЧКА ОБРАДА САВРЕМЕНИХ АЛАТА КОНТРОЛИСАНЕ АТМОСФЕРЕ - РАДНО - ПРИРЕДИО: ДОЦ. ДР АЛЕКСАНДАР МИЛЕТИЋ SADRŽAJ 1 UVODNE NAPOMENE... 2 2 ATMOSFERE

Διαβάστε περισσότερα

konst. Električni otpor

konst. Električni otpor Sveučilište J. J. Strossmayera u sijeku Elektrotehnički fakultet sijek Stručni studij Električni otpor hmov zakon Pri protjecanju struje kroz vodič pojavljuje se otpor. Georg Simon hm je ustanovio ovisnost

Διαβάστε περισσότερα

3. OSNOVNI POKAZATELJI TLA

3. OSNOVNI POKAZATELJI TLA MEHANIKA TLA: Onovni paraetri tla 4. OSNONI POKAZATELJI TLA Tlo e atoji od tri faze: od čvrtih zrna, vode i vazduha i njihovo relativno učešće e opiuje odgovarajući pokazateljia.. Specifična težina (G)

Διαβάστε περισσότερα

Dvanaesti praktikum iz Analize 1

Dvanaesti praktikum iz Analize 1 Dvaaesti praktikum iz Aalize Zlatko Lazovi 20. decembar 206.. Dokazati da fukcija f = 5 l tg + 5 ima bar jedu realu ulu. Ree e. Oblast defiisaosti fukcije je D f = k Z da postoji ula fukcije a 0, π 2.

Διαβάστε περισσότερα

3525$&8158&1(',=$/,&(6$1$92-1,095(7(120

3525$&8158&1(',=$/,&(6$1$92-1,095(7(120 Srednja masinska skola OSOVE KOSTRUISAJA List1/8 355$&8158&1(',=$/,&(6$1$9-1,095(7(10 3ROD]QLSRGDFL maksimalno opterecenje Fa := 36000 visina dizanja h := 440 mm Rucna sila Fr := 350 1DYRMQRYUHWHQR optereceno

Διαβάστε περισσότερα

Ponašanje pneumatika pod dejstvom bočne sile

Ponašanje pneumatika pod dejstvom bočne sile Ponašanje pneumatika pod dejstvom bočne sile POVOĐENJE TOČKA Dejstvo bočne sile pravac kretanja pod uglom u odnosu na pravac uzdužne ravni pneumatika BOČNA SILA PAVAC KETANJA PAVAC UZDUŽNE AVNI PNEUMATIKA

Διαβάστε περισσότερα

Operacije s matricama

Operacije s matricama Linearna algebra I Operacije s matricama Korolar 3.1.5. Množenje matrica u vektorskom prostoru M n (F) ima sljedeća svojstva: (1) A(B + C) = AB + AC, A, B, C M n (F); (2) (A + B)C = AC + BC, A, B, C M

Διαβάστε περισσότερα

M086 LA 1 M106 GRP. Tema: Baza vektorskog prostora. Koordinatni sustav. Norma. CSB nejednakost

M086 LA 1 M106 GRP. Tema: Baza vektorskog prostora. Koordinatni sustav. Norma. CSB nejednakost M086 LA 1 M106 GRP Tema: CSB nejednakost. 19. 10. 2017. predavač: Rudolf Scitovski, Darija Marković asistent: Darija Brajković, Katarina Vincetić P 1 www.fizika.unios.hr/grpua/ 1 Baza vektorskog prostora.

Διαβάστε περισσότερα

35(7+2'1,3525$&8195$7,/$GLPHQ]LRQLVDQMHYUDWLOD

35(7+2'1,3525$&8195$7,/$GLPHQ]LRQLVDQMHYUDWLOD Predmet: Mašinski elementi Proraþun vratila strana 1 Dimenzionisati vratilo elektromotora sledecih karakteristika: ominalna snaga P 3kW Broj obrtaja n 14 min 1 Shema opterecenja: Faktor neravnomernosti

Διαβάστε περισσότερα

TOPLOTA. Primjeri. * TERMODINAMIKA Razmatra prenos energije i efekte tog prenosa na sistem.

TOPLOTA. Primjeri. * TERMODINAMIKA Razmatra prenos energije i efekte tog prenosa na sistem. 1.OSNOVNI POJMOVI TOPLOTA Primjeri * KALORIKA Nauka o toploti * TERMODINAMIKA Razmatra prenos energije i efekte tog prenosa na sistem. * TD SISTEM To je bilo koje makroskopsko tijelo ili grupa tijela,

Διαβάστε περισσότερα

Periodičke izmjenične veličine

Periodičke izmjenične veličine EHNČK FAKULE SVEUČLŠA U RJEC Zavod za elekroenergeiku Sudij: Preddiploski sručni sudij elekroehnike Kolegij: Osnove elekroehnike Nosielj kolegija: Branka Dobraš Periodičke izjenične veličine Osnove elekroehnike

Διαβάστε περισσότερα

VJEŽBE 3 BIPOLARNI TRANZISTORI. Slika 1. Postoje npn i pnp bipolarni tranziostori i njihovi simboli su dati na slici 2 i to npn lijevo i pnp desno.

VJEŽBE 3 BIPOLARNI TRANZISTORI. Slika 1. Postoje npn i pnp bipolarni tranziostori i njihovi simboli su dati na slici 2 i to npn lijevo i pnp desno. JŽ 3 POLAN TANZSTO ipolarni tranzistor se sastoji od dva pn spoja kod kojih je jedna oblast zajednička za oba i naziva se baza, slika 1 Slika 1 ipolarni tranzistor ima 3 izvoda: emitor (), kolektor (K)

Διαβάστε περισσότερα

IspitivaƬe funkcija: 1. Oblast definisanosti funkcije (ili domen funkcije) D f

IspitivaƬe funkcija: 1. Oblast definisanosti funkcije (ili domen funkcije) D f IspitivaƬe funkcija: 1. Oblast definisanosti funkcije (ili domen funkcije) D f IspitivaƬe funkcija: 1. Oblast definisanosti funkcije (ili domen funkcije) D f 2. Nule i znak funkcije; presek sa y-osom IspitivaƬe

Διαβάστε περισσότερα

Verovatnoća i Statistika I deo Teorija verovatnoće (zadaci) Beleške dr Bobana Marinkovića

Verovatnoća i Statistika I deo Teorija verovatnoće (zadaci) Beleške dr Bobana Marinkovića Verovatnoća i Statistika I deo Teorija verovatnoće zadaci Beleške dr Bobana Marinkovića Iz skupa, 2,, 00} bira se na slučajan način 5 brojeva Odrediti skup elementarnih dogadjaja ako se brojevi biraju

Διαβάστε περισσότερα

ELEKTROTEHNIČKI ODJEL

ELEKTROTEHNIČKI ODJEL MATEMATIKA. Neka je S skup svih živućih državljana Republike Hrvatske..04., a f preslikavanje koje svakom elementu skupa S pridružuje njegov horoskopski znak (bez podznaka). a) Pokažite da je f funkcija,

Διαβάστε περισσότερα

MEHANIKA FLUIDA. Prosti cevovodi

MEHANIKA FLUIDA. Prosti cevovodi MEHANIKA FLUIDA Prosti ceooi zaatak Naći brzin oe kroz naglaak izlaznog prečnika =5 mm, postaljenog na kraj gmenog crea prečnika D=0 mm i žine L=5 m na čijem je prenjem el građen entil koeficijenta otpora

Διαβάστε περισσότερα

OM2 V3 Ime i prezime: Index br: I SAVIJANJE SILAMA TANKOZIDNIH ŠTAPOVA

OM2 V3 Ime i prezime: Index br: I SAVIJANJE SILAMA TANKOZIDNIH ŠTAPOVA OM V me i preime: nde br: 1.0.01. 0.0.01. SAVJANJE SLAMA TANKOZDNH ŠTAPOVA A. TANKOZDN ŠTAPOV PROZVOLJNOG OTVORENOG POPREČNOG PRESEKA Preposavka: Smičući napon je konsanan po debljini ida (duž pravca upravnog

Διαβάστε περισσότερα

Ponašanje pneumatika pod dejstvom bočne sile

Ponašanje pneumatika pod dejstvom bočne sile Ponašanje pneumatika pod dejstvom bočne sile POVOĐENJE TOČKA Dejstvo bočne sile pravac kretanja pod uglom u odnosu na pravac uzdužne ravni pneumatika BOČNA SILA PAVAC KETANJA PAVAC UZDUŽNE AVNI PNEUMATIKA

Διαβάστε περισσότερα

Riješeni zadaci: Nizovi realnih brojeva

Riješeni zadaci: Nizovi realnih brojeva Riješei zadaci: Nizovi realih brojeva Nizovi, aritmetički iz, geometrijski iz Fukciju a : N R azivamo beskoači) iz realih brojeva i ozačavamo s a 1, a,..., a,... ili a ), pri čemu je a = a). Aritmetički

Διαβάστε περισσότερα

7 Algebarske jednadžbe

7 Algebarske jednadžbe 7 Algebarske jednadžbe 7.1 Nultočke polinoma Skup svih polinoma nad skupom kompleksnih brojeva označavamo sa C[x]. Definicija. Nultočka polinoma f C[x] je svaki kompleksni broj α takav da je f(α) = 0.

Διαβάστε περισσότερα

10. STABILNOST KOSINA

10. STABILNOST KOSINA MEHANIKA TLA: Stabilnot koina 101 10. STABILNOST KOSINA 10.1 Metode proračuna koina Problem analize tabilnoti zemljanih maa vodi e na određivanje odnoa između rapoložive mičuće čvrtoće i proečnog mičućeg

Διαβάστε περισσότερα

PT ISPITIVANJE PENETRANTIMA

PT ISPITIVANJE PENETRANTIMA FSB Sveučilišta u Zagrebu Zavod za kvalitetu Katedra za nerazorna ispitivanja PT ISPITIVANJE PENETRANTIMA Josip Stepanić SADRŽAJ kapilarni učinak metoda ispitivanja penetrantima uvjeti promatranja SADRŽAJ

Διαβάστε περισσότερα

Matematika 1 - vježbe. 11. prosinca 2015.

Matematika 1 - vježbe. 11. prosinca 2015. Matematika - vježbe. prosinca 5. Stupnjevi i radijani Ako je kut φ jednak i rad, tada je veza između i 6 = Zadatak.. Izrazite u stupnjevima: a) 5 b) 7 9 c). d) 7. a) 5 9 b) 7 6 6 = = 5 c). 6 8.5 d) 7.

Διαβάστε περισσότερα

Linearna algebra 2 prvi kolokvij,

Linearna algebra 2 prvi kolokvij, 1 2 3 4 5 Σ jmbag smjer studija Linearna algebra 2 prvi kolokvij, 7. 11. 2012. 1. (10 bodova) Neka je dano preslikavanje s : R 2 R 2 R, s (x, y) = (Ax y), pri čemu je A: R 2 R 2 linearan operator oblika

Διαβάστε περισσότερα

a M a A. Može se pokazati da je supremum (ako postoji) jedinstven pa uvodimo oznaku sup A.

a M a A. Može se pokazati da je supremum (ako postoji) jedinstven pa uvodimo oznaku sup A. 3 Infimum i supremum Definicija. Neka je A R. Kažemo da je M R supremum skupa A ako je (i) M gornja meda skupa A, tj. a M a A. (ii) M najmanja gornja meda skupa A, tj. ( ε > 0)( a A) takav da je a > M

Διαβάστε περισσότερα

Opšte KROVNI POKRIVAČI I

Opšte KROVNI POKRIVAČI I 1 KROVNI POKRIVAČI I FASADNE OBLOGE 2 Opšte Podela prema zaštitnim svojstvima: Hladne obloge - zaštita hale od atmosferskih padavina, Tople obloge - zaštita hale od atmosferskih padavina i prodora hladnoće

Διαβάστε περισσότερα

Program testirati pomoću podataka iz sledeće tabele:

Program testirati pomoću podataka iz sledeće tabele: Deo 2: Rešeni zadaci 135 Vrednost integrala je I = 2.40407 42. Napisati program za izračunavanje koeficijenta proste linearne korelacije (Pearsonovog koeficijenta) slučajnih veličina X = (x 1,..., x n

Διαβάστε περισσότερα

Otpornost R u kolu naizmjenične struje

Otpornost R u kolu naizmjenične struje Otpornost R u kolu naizmjenične struje Pretpostavimo da je otpornik R priključen na prostoperiodični napon: Po Omovom zakonu pad napona na otporniku je: ( ) = ( ω ) u t sin m t R ( ) = ( ) u t R i t Struja

Διαβάστε περισσότερα

6. ELEKTROOTPORNO ZAVARIVANJE

6. ELEKTROOTPORNO ZAVARIVANJE izvor: Sedmak, A., Šijački-Žeravčić, V., Milosavljević, A., Đorđević, V., Vukićević, M.: Mašinski materijali II deo, izdanje Mašinskog fakulteta Univerziteta u Beogradu, 2000 (uskoro ponovo u štampi) 6.

Διαβάστε περισσότερα

VISKOZNOST TEČNOSTI Viskoznost

VISKOZNOST TEČNOSTI Viskoznost VISKOZNOST VISKOZNOST TEČNOSTI Viskoznost predstavlja otpor kojim se pojedini slojevi tečnosti suprostavljaju kretanju jednog u odnosu na drugi, odnosno to je vrsta unutrašnjeg trenja koja dovodi do protoka

Διαβάστε περισσότερα