ΓΙΑΝΝΗΣ ΖΑΧΑΡΟΠΟΥΛΟΣ. Γρήγορα τεστ. Μαθηματικά Ε Δημοτικού E 1 ΕΚΔΟΣΕΙΣ ΠΑΠΑΔΟΠΟΥΛΟΣ

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "ΓΙΑΝΝΗΣ ΖΑΧΑΡΟΠΟΥΛΟΣ. Γρήγορα τεστ. Μαθηματικά Ε Δημοτικού E 1 ΕΚΔΟΣΕΙΣ ΠΑΠΑΔΟΠΟΥΛΟΣ"

Transcript

1 ΓΙΑΝΝΗΣ ΖΑΧΑΡΟΠΟΥΛΟΣ Γρήγορα τεστ E 1 ΕΚΔΟΣΕΙΣ ΠΑΠΑΔΟΠΟΥΛΟΣ

2 ΓΡΗΓΟΡΑ ΤΕΣΤ ΜΑΘΗΜΑΤΙΚΩΝ - Ε Δημοτικού No 1 Γιάννης Ζαχαρόπουλος Διόρθωση: Αντωνία Κιλεσσοπούλου 2013, Εκδόσεις Κυριάκος Παπαδόπουλος Α.Ε., Γιάννης Ζαχαρόποπυλος ΕΚΔΟΣΕΙΣ ΠΑΠΑΔΟΠΟΥΛΟΣ Καποδιστρίου 9, 1 2 Μεταμόρφωση, τηλ.: , fax: , ΒΙΒΛΙΟΠΩΛΕΙΟ: Μασσαλίας 1, Αθήνα, τηλ.: ISBN

3 Τεστ 1 ο 1. Υπενθύμιση Δ Τάξης 0-10 Οι αριθμοί 0, 1, 2, 3,,,, 7, 8, 9, λέγονται φυσικοί αριθμοί. Ένας φυσικός αριθμός, ανάλογα με το πλήθος των ψηφίων του, ονομάζεται μονοψήφιος (1 ψηφίο), διψήφιος (2 ψηφία), τριψήφιος (3 ψηφία) κ.ο.κ. Άρτιοι ή ζυγοί λέγονται οι φυσικοί αριθμοί που τελειώνουν σε 0, 2,,, 8. Περιττοί ή μονοί λέγονται οι φυσικοί αριθμοί που τελειώνουν σε 1, 3,, 7, 9. Για να βρούμε το εμβαδόν του ορθογωνίου παραλληλογράμμου πολλαπλασιάζουμε τις δύο διαστάσεις του (μήκος επί πλάτος) Επαρ.=β υ Η ακέραιη μονάδα χωρίζεται σε δέκατα, εκατοστά, χιλιοστά κ.ο.κ. α. Γράψε τον μεγαλύτερο και τον μικρότερο τετραψήφιο αριθμό που μπορείς να σχηματίσεις με τις παρακάτω κάρτες. (Πρέπει να χρησιμοποιείς όλες τις κάρτες από μία φορά την καθεμιά.) Ο μικρότερος:... Ο μεγαλύτερος: Ο μικρότερος:... Ο μεγαλύτερος:... β. Ο κ. Στάθης αγόρασε ένα οικόπεδο με μήκος 2μ. Για να βρεις το πλάτος του κάνε σωστά τις παρακάτω πράξεις. Έπειτα υπολόγισε το εμβαδόν του οικοπέδου του κ. Στάθη. 00 :8 =... + =... :3 = =... μ. πλάτος Το εμβαδόν του οικοπέδου είναι: 3

4 Τεστ 2 ο 2. Υπενθύμιση Οι αριθμοί μέχρι το Η θέση κάθε ψηφίου σε έναν φυσικό αριθμό δηλώνει την αξία του (μονάδες, δεκάδες, εκατοντάδες, χιλιάδες κ.ο.κ.). Για να διαβάσουμε έναν φυσικό αριθμό, τον χωρίζουμε σε τριψήφια τμήματα (κλάσεις) αρχίζοντας από τα δεξιά του. Κάθε κλάση έχει τρεις τάξεις (μονάδες, δεκάδες, χιλιάδες). Διαβάζουμε: εκατόν είκοσι τρεις χιλιάδες τετρακόσια πενήντα έξι εκατοντάδες χιλιάδες δεκάδες χιλιάδες μονάδες χιλιάδες εκατοντάδες δεκάδες μονάδες 123. α. Συμπλήρωσε τον ακριβώς προηγούμενο και επόμενο των παρακάτω αριθμών. προηγούμενος αρχικός αριθμός επόμενος β. Γράψε με ψηφία τους παρακάτω αριθμούς: α) Τριακόσιες χιλιάδες ενενήντα τρία β) Τριακόσιες δέκα χιλιάδες πεντακόσια δύο γ) Εννιακόσιες χιλιάδες εννιακόσια δ) Πεντακόσιες δώδεκα χιλιάδες δεκαεννιά

5 Οι αριθμοί μέχρι το Έναν αριθμό μπορούμε να τον γράψουμε με διαφορετικούς τρόπους: μονάδες δισεκατομμύρια εκατοντάδες εκατομμύρια δεκάδες εκατομμύρια μονάδες εκατομμύρια εκατοντάδες χιλιάδες δεκάδες χιλιάδες μονάδες χιλιάδες εκατοντάδες δεκάδες μονάδες α) με λέξεις π.χ. πεντακόσια εκατομμύρια τριάντα δύο χιλιάδες β) με ψηφία γ) με ψηφία και λέξεις (μεικτή γραφή) 00 εκατομμύρια 32 χιλιάδες Τεστ 3 ο α. Συμπλήρωσε τον ακριβώς προηγούμενο και επόμενο των παρακάτω αριθμών. προηγούμενος αρχικός αριθμός επόμενος β. Γράψε με ψηφία τους παρακάτω αριθμούς: α) Εννιακόσια εκατομμύρια σαράντα πέντε χιλιάδες β) Πεντακόσια εκατομμύρια επτακόσιες χιλιάδες τρία γ) Οκτακόσια εννιά εκατομμύρια εξακόσιες τρεις χιλιάδες δ) Τριακόσια πέντε εκατομμύρια ενενήντα χιλιάδες επτά

6 Τεστ ο. Αξία θέσης ψηφίου στους μεγάλους αριθμούς 0-10 Για να διατάξουμε δύο ή περισσότερους αριθμούς, τους βάζουμε στη σειρά από τον μικρότερο στον μεγαλύτερο ή αντίστροφα, χρησιμοποιώντας τα σύμβολα της ανισότητας (< ή >). Για να συγκρίνουμε ακέραιους αριθμούς, συγκρίνουμε από τα αριστερά προς τα δεξιά ένα ένα τα αντίστοιχα ψηφία τους (χιλιάδες με χιλιάδες, εκατοντάδες με εκατοντάδες κ.ο.κ.): 3.2<3.00< <1832 γιατί 1=1 7<8 α. Σύγκρινε τα παρακάτω ζεύγη αριθμών βάζοντας ανάμεσά τους τα σύμβολα της ανισότητας , , β. Τα κλειδιά μπερδεύτηκαν. Μπορείς να τα βάλεις στη σειρά ξεκινώντας από αυτό που έχει τον μικρότερο κωδικό; <...<...<...

7 0-10. Υπολογισμοί με μεγάλους αριθμούς x10 = 0 x = x1.000 = : = : = :.000 = Στρογγυλοποίηση: Έστω ότι θέλουμε να στρογγυλοποιήσουμε τους αριθμούς και 3.7 στο ψηφίο των δεκάδων: Τεστ ο α. Συμπλήρωσε τους παρακάτω πίνακες, όπως στο παράδειγμα. x : β. Βοήθησε τον κ. Μηνά να στρογγυλοποιήσει τις τιμές των παρακάτω προϊόντων στις δεκάδες. Προϊόν Αρχική τιμή ( ) ψυγείο κουζίνα τηλεόραση υπολογιστής Τιμή μετά τη στρογγυλοποίηση ( ) 0 7

8 Τεστ ο. Επίλυση προβλημάτων /λίτρο 0-10 H κ. Μαρία αγόρασε λίτρα ελαιόλαδο και 3 κιλά τυρί. Πλήρωσε με ένα χαρτονόμισμα των 0. Πόσα ρέστα πρέπει να πάρει; Λύση: α) =20 για ελαιόλαδο β) 3 9=27 για τυρί γ) 20+27=7 όλα μαζί δ) 0 7=3 ρέστα 9 /κιλό Απάντηση: Πρέπει να πάρει 3 ρέστα. α. Υπολόγισε το συνολικό βάρος και των τριών κιβωτίων αν γνωρίζεις ότι: Το α κιβώτιο ζυγίζει 98 κιλά, το β κιβώτιο είναι 2 κιλά ελαφρύτερο από το α και το γ κιβώτιο ζυγίζει όσο το α και το β μαζί. Λύση: γ β α Απάντηση: β. Υπολόγισε με τη βοήθεια του υπομνήματος τη συνολική αξία του παρακάτω μοτίβου. Υπόμνημα =... 8

9 0-10 Επαναληπτικό Οι αριθμοί 0, 1, 2, 3,,,, 7, 8, 9, λέγονται φυσικοί αριθμοί. Τεστ 7 ο Για να βρούμε το εμβαδόν του ορθογωνίου παραλληλογράμμου πολλαπλασιάζουμε τις δύο διαστάσεις του (μήκος επί πλάτος) Επαρ.=β υ 17<1832 γιατί 1=1 7<8 μονάδες δισεκατομμύρια εκατοντάδες εκατομμύρια δεκάδες εκατομμύρια μονάδες εκατομμύρια εκατοντάδες χιλιάδες δεκάδες χιλιάδες μονάδες χιλιάδες εκατοντάδες δεκάδες μονάδες α. Βάλε στη σειρά τους παρακάτω φακέλους ξεκινώντας από αυτόν που έχει τον μικρότερο αριθμό <...<...<... β. Βοήθησε τους πυροσβέστες να φτάσουν γρήγορα στη φωτιά κάνοντας σωστά όλες τις πράξεις x = =... : =... =... γ. Συμπλήρωσε το παρακάτω μοτίβο

10 Τεστ 8 ο 7. Δεκαδικά κλάσματα Δεκαδικοί αριθμοί 2μ. 10εκ. ή 210εκ. ή 210 μ. ή 2,10μ Η μονάδα μπορεί να παρασταθεί ως δεκαδικό κλάσμα 10,, (π.χ. ) αλλά και ως γινόμενο με δεκαδικό αριθμό (π.χ. 10 0,1 ή 0,01 κ.ο.κ.). Σε μετρήσεις που δεν μπορούν να γίνουν με ακρίβεια με τη χρήση μόνο φυσικών αριθμών χρησιμοποιούμε τους δεκαδικούς αριθμούς ή τα δεκαδικά κλάσματα. α. Συμπλήρωσε σωστά τον παρακάτω πίνακα. 10 Συμμιγής Ακέραιος Κλάσμα Δεκαδικός 1μ. 1εκ 309εκ. 0 μ. 9,30μ. 8μ. 9εκ. 10

11 Δεκαδικοί αριθμοί Δεκαδικά κλάσματα Τεστ Οι δεκαδικοί αριθμοί χωρίζονται (συμβολικά) σε δύο μέρη με ένα κόμμα 9 ο που ονομάζεται υποδιαστολή. Το μέρος αριστερά της υποδιαστολής ονομάζεται ακέραιο μέρος. Το μέρος δεξιά της υποδιαστολής ονομάζεται δεκαδικό μέρος. Κάθε φυσικός γίνεται δεκαδικός αν στο τέλος του προσθέσουμε υποδιαστολή και ένα ή περισσότερα μηδενικά. Στο τέλος ενός δεκαδικού αριθμού μπορούμε να προσθέσουμε μηδενικά ή από το τέλος του να παραλείψουμε μηδενικά χωρίς να αλλάξει η αξία του. Δεκαδικά κλάσματα είναι τα κλάσματα που έχουν παρονομαστή 10,, 0 κ.ο.κ. Κάθε δεκαδικός αριθμός μπορεί να γραφτεί με τη μορφή δεκαδικού κλάσματος και αντίστροφα. 23, 23 23,0 1,0=1,, 10 97, ,7= 7 α. Βοήθησε τη Μαργαρίτα να μετατρέψει τους παρακάτω δεκαδικούς αριθμούς σε δεκαδικά κλάσματα. 12 0,12 0,3,09 0,00 1,02 1,02 β. Βοήθησε τώρα τη Μαργαρίτα να κάνει το αντίστροφο, να μετατρέψει τα παρακάτω δεκαδικά κλάσματα σε δεκαδικούς αριθμούς. 81 0,

Φυσικοί αριθμοί - Διάταξη φυσικών αριθμών - Στρογγυλοποίηση

Φυσικοί αριθμοί - Διάταξη φυσικών αριθμών - Στρογγυλοποίηση Φυσικοί αριθμοί - Διάταξη φυσικών αριθμών - Στρογγυλοποίηση TINΑ ΒΡΕΝΤΖΟΥ www.ma8eno.gr Βρέντζου Τίνα Φυσικός Μεταπτυχιακός τίτλος: «Σπουδές στην εκπαίδευση» ΜEd Email : stvrentzou@gmail.com 2 Φυσικοί

Διαβάστε περισσότερα

1.1 ΦΥΣΙΚΟΙ ΑΡΙΘΜΟΙ ΙΑΤΑΞΗ

1.1 ΦΥΣΙΚΟΙ ΑΡΙΘΜΟΙ ΙΑΤΑΞΗ 1 1.1 ΦΥΣΙΚΟΙ ΑΡΙΘΜΟΙ ΙΑΤΑΞΗ ΣΤΡΟΓΓΥΛΟΠΟΙΗΣΗ ΘΕΩΡΙΑ 1. Φυσικοί αριθµοί : Είναι οι αριθµοί 0, 1, 2, 3,, 10000, 10001,.50000 2. Προηγούµενος επόµενος : Κάθε φυσικός αριθµός εκτός από το 0 έχει έναν προηγούµενο

Διαβάστε περισσότερα

ΓΙΑΝΝΗΣ ΖΑΧΑΡΟΠΟΥΛΟΣ. Όλες οι απαντήσεις. Μαθηματικά Δ Δημοτικού ΕΚΔΟΣΕΙΣ ΠΑΠΑΔΟΠΟΥΛΟΣ

ΓΙΑΝΝΗΣ ΖΑΧΑΡΟΠΟΥΛΟΣ. Όλες οι απαντήσεις. Μαθηματικά Δ Δημοτικού ΕΚΔΟΣΕΙΣ ΠΑΠΑΔΟΠΟΥΛΟΣ ΓΙΑΝΝΗΣ ΖΑΧΑΡΟΠΟΥΛΟΣ Όλες οι απαντήσεις Μαθηματικά Δ Δημοτικού ΕΚΔΟΣΕΙΣ ΠΑΠΑΔΟΠΟΥΛΟΣ Περιεχόμενα Κεφάλαιο : Θυμάμαι ό,τι έμαθα από την Γ Τάξη... 5 Κεφάλαιο : Διαχειρίζομαι αριθμούς ως το 0.000... 8 Κεφάλαιο

Διαβάστε περισσότερα

Υπενθύμιση Δ τάξης. Παιχνίδια στην κατασκήνωση

Υπενθύμιση Δ τάξης. Παιχνίδια στην κατασκήνωση ΚΕΦΑΛΑΙΟ 1ο Υπενθύμιση Δ τάξης Παιχνίδια στην κατασκήνωση Συγκρίνω δυο αριθμούς για να βρω αν είναι ίσοι ή άνισοι. Στην περίπτωση που είναι άνισοι μπορώ να βρω ποιος είναι μεγαλύτερος (ή μικρότερος). Ανάμεσα

Διαβάστε περισσότερα

Για να εξασκηθώ 2.600 2.000 + 600 + 2.000 + 600 4.000 + 1.200 = 5.200. ... +... =... β) 4.100... +... +... +...

Για να εξασκηθώ 2.600 2.000 + 600 + 2.000 + 600 4.000 + 1.200 = 5.200. ... +... =... β) 4.100... +... +... +... 2 Διαχειρίζομαι αριθμούς ως το 10. 00 Για να εξασκηθώ 1. Βρίσκω το διπλάσιο των αριθμών όπως στο παράδειγμα. 2.600 2.000 + 600 + 2.000 + 600 4.000 + 1.200 = 5.200 α) 3.400... +... +... +...... +... =...

Διαβάστε περισσότερα

Άρθρο 4 ΜΕΤΟΧΙΚΟ ΚΕΦΑΛΑΙΟ

Άρθρο 4 ΜΕΤΟΧΙΚΟ ΚΕΦΑΛΑΙΟ Σε συνέχεια προηγούμενων εισηγήσεών του, το Διοικητικό Συμβούλιο της Εταιρείας με την επωνυμία Ξενοδοχειακαί Τουριστικαί Οικοδομικαί και Λατομικαί Επιχειρήσεις Ο ΚΕΚΡΟΨ Α.Ε. προτείνει την τροποποίηση του

Διαβάστε περισσότερα

Πρόσθεση αφαίρεση και πολλαπλασιασμός φυσικών αριθμών

Πρόσθεση αφαίρεση και πολλαπλασιασμός φυσικών αριθμών 2 Πρόσθεση αφαίρεση και πολλαπλασιασμός φυσικών αριθμών Προσθετέοι 18+17=35 α Προσθετέοι + β = γ Άθοι ρ σμα Άθοι ρ σμα 13 + 17 = 17 + 13 Πρόσθεση φυσικών αριθμών Πρόσθεση είναι η πράξη με την οποία από

Διαβάστε περισσότερα

ÓfiÙËÙ 1 ã ÂÚ Ô Ô ã ÂÚ Ô Ô ã ÂÚ Ô Ô ã ÂÚ Ô Ô ã ÂÚ Ô Ô

ÓfiÙËÙ 1 ã ÂÚ Ô Ô ã ÂÚ Ô Ô ã ÂÚ Ô Ô ã ÂÚ Ô Ô ã ÂÚ Ô Ô ÓfiÙËÙ ã appleâú Ô Ô ã appleâú Ô Ô ã appleâú Ô Ô ã appleâú Ô Ô ã appleâú Ô Ô Ì Ì È: ÀappleÂÓı ÌÈÛË ã T ÍË È Ó ÂappleÈÏ ÛÔ ÌÂ Ó appleúfi ÏËÌ, ÙÔ È Ô ÌÂ appleúôûâîùèî ÒÛÙÂ Ó Î Ù ÓÔ ÛÔ - ÌÂ ÙÈ appleïëúôêôú

Διαβάστε περισσότερα

Η Γενική Συνέλευση αποφάσισε ομόφωνα / με πλειοψηφία.% :

Η Γενική Συνέλευση αποφάσισε ομόφωνα / με πλειοψηφία.% : ΘΕΜΑ : Αύξηση του μετοχικού κεφαλαίου της Εταιρείας έως του ποσού των τριάντα εκατομμυρίων, πεντακοσίων ογδόντα έξι χιλιάδων οκτακοσίων τριάντα επτά ευρώ και πενήντα λεπτών ( 30.586.837,50) με καταβολή

Διαβάστε περισσότερα

ΣΧΕ ΙΟ ΤΗΣ ΠΑΡ. 1 ΤΟΥ ΑΡΘΡΟΥ 5 ΤΟΥ ΚΑΤΑΣΤΑΤΙΚΟΥ ΤΗΣ ΕΤΑΙΡΙΑΣ «ALPHA TRUST-ΑΝ ΡΟΜΕ Α Α.Ε.Ε.Χ.» (όπως θα προταθεί προς έγκριση στην Τακτική Γενική Συνέλευση των µετόχων της Εταιρίας της 11 ης Απριλίου 2014)

Διαβάστε περισσότερα

3.2 3.3 3.4 ΠΡΑΞΕΙΣ ΜΕ ΕΚΑ ΙΚΟΥΣ

3.2 3.3 3.4 ΠΡΑΞΕΙΣ ΜΕ ΕΚΑ ΙΚΟΥΣ 1 3.2 3.3 3.4 ΠΡΑΞΕΙΣ ΜΕ ΕΚΑ ΙΚΟΥΣ ΥΠΟΛΟΓΙΣΜΟΙ ΜΕ ΚΟΜΠΙΟΥΤΕΡΑΚΙ ΤΥΠΟΠΟΙΗΜΕΝΗ ΜΟΡΦΗ ΑΡΙΘΜΩΝ ΘΕΩΡΙΑ 1. Πρόσθεση αφαίρεση δεκαδικών Γίνονται όπως και στους φυσικούς αριθµούς. Προσθέτουµε ή αφαιρούµε τα ψηφία

Διαβάστε περισσότερα

ΕΝΔΕΙΚΤΙΚΕΣ ΔΟΚΙΜΑΣΙΕΣ ΜΑΘΗΜΑΤΙΚΩΝ ΓΙΑ ΤΗΝ ΕΙΣΑΓΩΓΗ ΜΑΘΗΤΩΝ ΣΤΑ ΠΡΟΤΥΠΑ-ΠΕΙΡΑΜΑΤΙΚΑ ΓΥΜΝΑΣΙΑ

ΕΝΔΕΙΚΤΙΚΕΣ ΔΟΚΙΜΑΣΙΕΣ ΜΑΘΗΜΑΤΙΚΩΝ ΓΙΑ ΤΗΝ ΕΙΣΑΓΩΓΗ ΜΑΘΗΤΩΝ ΣΤΑ ΠΡΟΤΥΠΑ-ΠΕΙΡΑΜΑΤΙΚΑ ΓΥΜΝΑΣΙΑ ΕΝΔΕΙΚΤΙΚΕΣ ΔΟΚΙΜΑΣΙΕΣ ΜΑΘΗΜΑΤΙΚΩΝ ΓΙΑ ΤΗΝ ΕΙΣΑΓΩΓΗ ΜΑΘΗΤΩΝ ΣΤΑ ΠΡΟΤΥΠΑ-ΠΕΙΡΑΜΑΤΙΚΑ ΓΥΜΝΑΣΙΑ ΔΟΚΙΜΑΣΙΑ 6 1) Να εκφράσετε τον αριθμό 48 σε γινόμενο πρώτων παραγόντων με δενδροδιάγραμμα. 2) Να συγκρίνετε

Διαβάστε περισσότερα

ΕΝΟΤΗΤΑ 11 ΠΕΝΤΑΨΗΦΙΟΙ ΚΑΙ ΕΞΑΨΗΦΙΟΙ ΑΡΙΘΜΟΙ - ΠΡΑΞΕΙΣ ΑΚΕΡΑΙΩΝ ΑΡΙΘΜΩΝ ΔΕΚΑΔΙΚΟΙ ΑΡΙΘΜΟΙ ΜΕΤΡΗΣΗ ΜΗΚΟΥΣ ΔΕΙΚΤΕΣ ΕΠΙΤΥΧΙΑΣ

ΕΝΟΤΗΤΑ 11 ΠΕΝΤΑΨΗΦΙΟΙ ΚΑΙ ΕΞΑΨΗΦΙΟΙ ΑΡΙΘΜΟΙ - ΠΡΑΞΕΙΣ ΑΚΕΡΑΙΩΝ ΑΡΙΘΜΩΝ ΔΕΚΑΔΙΚΟΙ ΑΡΙΘΜΟΙ ΜΕΤΡΗΣΗ ΜΗΚΟΥΣ ΔΕΙΚΤΕΣ ΕΠΙΤΥΧΙΑΣ ΠΕΝΤΑΨΗΦΙΟΙ ΚΑΙ ΕΞΑΨΗΦΙΟΙ ΑΡΙΘΜΟΙ - ΠΡΑΞΕΙΣ ΑΚΕΡΑΙΩΝ ΑΡΙΘΜΩΝ ΔΕΚΑΔΙΚΟΙ ΑΡΙΘΜΟΙ ΜΕΤΡΗΣΗ ΜΗΚΟΥΣ ΔΕΙΚΤΕΣ ΕΠΙΤΥΧΙΑΣ ΑΡΙΘΜΟΙ Διερεύνηση αριθμών ΑΡ2.5 Αναπαριστούν, συγκρίνουν και σειροθετούν ομώνυμα κλάσματα

Διαβάστε περισσότερα

Παράδειγμα 1 Γράψε ένα δεκαδικό αριθμό μεταξύ του 2 και του 3 που δεν περιέχει το 5 που περιέχει το 7 και που βρίσκεται όσο πιο κοντά γίνεται με το

Παράδειγμα 1 Γράψε ένα δεκαδικό αριθμό μεταξύ του 2 και του 3 που δεν περιέχει το 5 που περιέχει το 7 και που βρίσκεται όσο πιο κοντά γίνεται με το Παράδειγμα 1 Γράψε ένα δεκαδικό αριθμό μεταξύ του 2 και του 3 που δεν περιέχει το 5 που περιέχει το 7 και που βρίσκεται όσο πιο κοντά γίνεται με το 5/2 1 Παράδειγμα 2: Γράψε ένα κλάσμα που χρησιμοποιεί

Διαβάστε περισσότερα

ΘΕΜΑ 3: Τροποποίηση του άρθρου 3 παρ. 1 του Καταστατικού της Εταιρίας και κωδικοποίηση αυτού σε ενιαίο κείμενο.

ΘΕΜΑ 3: Τροποποίηση του άρθρου 3 παρ. 1 του Καταστατικού της Εταιρίας και κωδικοποίηση αυτού σε ενιαίο κείμενο. ΕΝΗΜΕΡΩΤΙΚΟ ΣΗΜΕΙΩΜΑ ΕΠΙ ΤΩΝ ΘΕΜΑΤΩΝ ΤΗΣ ΗΜΕΡΗΣΙΑΣ ΙΑΤΑΞΗΣ ΤΗΣ ΕΚΤΑΚΤΗΣ ΓΕΝΙΚΗΣ ΣΥΝΕΛΕΥΣΗΣ ΤΩΝ ΜΕΤΟΧΩΝ ΣΤΙΣ 14/03/2014 ΤΗΣ ΑΝΩΝΥΜΗΣ ΕΤΑΙΡEΙΑΣ «ΑΕΡΟΠΟΡΙΑ ΑΙΓΑΙΟΥ ΑΝΩΝΥΜΗ ΑΕΡΟΠΟΡΙΚΗ ΕΤΑΙΡΕΙΑ» («AEGEAN AIRLINES

Διαβάστε περισσότερα

ΤΑΚΤΙΚΗ ΓΕΝΙΚΗ ΣΥΝΕΛΕΥΣΗ ΤΩΝ ΜΕΤΟΧΩΝ της 17ης Ιουνίου 2015, ημέρα Τετάρτη και ώρα 9 π.μ.

ΤΑΚΤΙΚΗ ΓΕΝΙΚΗ ΣΥΝΕΛΕΥΣΗ ΤΩΝ ΜΕΤΟΧΩΝ της 17ης Ιουνίου 2015, ημέρα Τετάρτη και ώρα 9 π.μ. ΧΑΪΔΕΜΕΝΟΣ ΠΡΟΤΥΠΟΣ ΒΙΟΜΗΧΑΝΙΑ ΓΡΑΦΙΚΩΝ ΤΕΧΝΩΝ Α.Ε.Β.Ε ΤΑΚΤΙΚΗ ΓΕΝΙΚΗ ΣΥΝΕΛΕΥΣΗ ΤΩΝ ΜΕΤΟΧΩΝ της 17ης Ιουνίου 2015, ημέρα Τετάρτη και ώρα 9 π.μ. ΣΧΕΔΙΑ ΑΠΟΦΑΣΕΩΝ / ΣΧΟΛΙΑ ΔΙΟΙΚΗΤΙΚΟΥ ΣΥΜΒΟΥΛΙΟΥ ΕΠΙ ΤΩΝ

Διαβάστε περισσότερα

Δύο κύριοι τρόποι παρουσίασης δεδομένων. Παράδειγμα

Δύο κύριοι τρόποι παρουσίασης δεδομένων. Παράδειγμα Δύο κύριοι τρόποι παρουσίασης δεδομένων Παράδειγμα Με πίνακες Με διαγράμματα Ονομαστικά δεδομένα Εδώ τα περιγραφικά μέτρα (μέσος, διάμεσος κλπ ) δεν έχουν νόημα Πήραμε ένα δείγμα από 25 άτομα και τα ρωτήσαμε

Διαβάστε περισσότερα

Κλάσματα. Στις προηγούμενες ερωτήσεις απαντήσαμε με την βοήθεια των κλασμάτων. πόσα μέρη πήραμε σε πόσαίσα μέρη χωρίσαμε : αριθμητής

Κλάσματα. Στις προηγούμενες ερωτήσεις απαντήσαμε με την βοήθεια των κλασμάτων. πόσα μέρη πήραμε σε πόσαίσα μέρη χωρίσαμε : αριθμητής Κλάσματα Ένα βράδυ τρεις φίλοι αγοράζουν πίτσα και την χωρίζουν σε οκτώ κομμάτια. Ο ένας έφαγε το ένα, ο δεύτερος τα τρία και ο τρίτος δύο κομμάτια. Μπορείς να βρεις το μέρος της πίτσας που έφαγε ο καθένας

Διαβάστε περισσότερα

2.1 Ποιον αριθμό δείχνει ο διπλανός άβακας;

2.1 Ποιον αριθμό δείχνει ο διπλανός άβακας; 2. ºÙÈ Óˆ ÚÈıÌÔ Ì ÚÈ ÙÔ 100 Î È ÙÔ Û ÁÎÚ Óˆ ΜΑΘΑΙΝΩ ΠΩΣ ΝΑ ΛΥΝΩ ΑΣΚΗΣΕΙΣ ΚΑΙ ΠΡΟΒΛΗΜΑΤΑ Ú Êˆ Ó Ó ÚÈıÌfi Ì ËÊ Î È ÌÂ Ï ÍÂÈ 2.1 Ποιον αριθμό δείχνει ο διπλανός άβακας; ΛΥΣΗ Στη ράβδο του άβακα που δείχνει

Διαβάστε περισσότερα

ΑΓΓΛΙΚΗ ΣΧΟΛΗ ΕΙΣΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ 2013. Χρόνος: 1 ώρα και 30 λεπτά

ΑΓΓΛΙΚΗ ΣΧΟΛΗ ΕΙΣΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ 2013. Χρόνος: 1 ώρα και 30 λεπτά ΑΓΓΛΙΚΗ ΣΧΟΛΗ ΕΙΣΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ 2013 ΜΑΘΗΜΑΤΙΚΑ ΠΡΩΤΗ ΤΑΞΗ Χρόνος: 1 ώρα και 30 λεπτά Να απαντήσετε σε ΟΛΕΣ τις ερωτήσεις. Όπου χρειάζεται να γίνουν πράξεις για να βρεθεί η απάντηση, να τις κάνετε

Διαβάστε περισσότερα

ΣΥΝΑΡΤΗΣΕΙΣ. Η σύνταξη μιας συνάρτησης σ ένα κελί έχει την γενική μορφή: =όνομα_συνάρτησης(όρισμα1; όρισμα2;.)

ΣΥΝΑΡΤΗΣΕΙΣ. Η σύνταξη μιας συνάρτησης σ ένα κελί έχει την γενική μορφή: =όνομα_συνάρτησης(όρισμα1; όρισμα2;.) ΣΥΝΑΡΤΗΣΕΙΣ Συνάρτηση είναι ένας έτοιμος τύπος ο οποίος δέχεται σαν είσοδο τιμές ή συνθήκες και επιστρέφει ένα αποτέλεσμα, το οποίο μπορεί να είναι μια τιμή αριθμητική, αλφαριθμητική, λογική, ημερομηνίας

Διαβάστε περισσότερα

Στη καθημερινή μας ζωή ακούμε συχνά εκφράσεις όπως: Ο πληθωρισμός αυξήθηκε τη περσινή χρονιά κατά 4%

Στη καθημερινή μας ζωή ακούμε συχνά εκφράσεις όπως: Ο πληθωρισμός αυξήθηκε τη περσινή χρονιά κατά 4% Ποσοστά: Τα Μαθηματικά της Αγοράς ===================================================================================== Κώστας Γ. Σάλαρης - Μάνια Κ. Σάλαρη Στη καθημερινή μας ζωή ακούμε συχνά εκφράσεις

Διαβάστε περισσότερα

Σειρά: ΕΚΠΑΙ ΕΥΤΙΚΑ ΒΙΒΛΙΑ Tίτλος: ΙΑΓΩΝΙΣΜΑΤΑ ΓΙΑ ΤΑ ΜΑΘΗΜΑΤΙΚΑ Α ΓΥΜΝΑΣΙΟΥ Συγγραφέας: ΦΩΤΗΣ ΚΟΥΝΑ ΗΣ

Σειρά: ΕΚΠΑΙ ΕΥΤΙΚΑ ΒΙΒΛΙΑ Tίτλος: ΙΑΓΩΝΙΣΜΑΤΑ ΓΙΑ ΤΑ ΜΑΘΗΜΑΤΙΚΑ Α ΓΥΜΝΑΣΙΟΥ Συγγραφέας: ΦΩΤΗΣ ΚΟΥΝΑ ΗΣ Ι Α Γ Ω Ν Ι Σ Μ Α Τ Α Γ Ι Α Τ Α Μ Α Θ Η Μ Α Τ Ι Κ Α Α Γ Υ Μ Ν Α Σ Ι Ο Υ Φώτης Κουνάδης Ι Α Γ Ω Ν Ι Σ Μ Α Τ Α Γ Ι Α Τ Α Μ Α Θ Η Μ Α Τ Ι Κ Α Α Γ Υ Μ Ν Α Σ Ι Ο Υ ΕΚ ΟΤΙΚΟΣ ΟΡΓΑΝΙΣΜΟΣ ΛΙΒΑΝΗ ΑΘΗΝΑ 2007 Σειρά:

Διαβάστε περισσότερα

ραστηριότητα - Ανακάλυψη...

ραστηριότητα - Ανακάλυψη... 1 Θυμάμαι ό, τι έμαθα από τη Γ τάξη ραστηριότητα - Ανακάλυψη... Η Φανή, με την έναρξη της σχολικής χρονιάς, πήρε 30 και πήγε στο βιβλιοπωλείο να αγοράσει σχολικά είδη. Κοίταξε τον τιμοκατάλογο και αγόρασε

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ Γ Γυμνασίου

ΜΑΘΗΜΑΤΙΚΑ Γ Γυμνασίου ΜΑΘΗΜΑΤΙΚΑ Γ Γυμνασίου Κεφάλαιο ο Αλγεβρικές Παραστάσεις ΛΕΜΟΝΙΑ ΜΠΟΥΤΣΚΟΥ Γυμνάσιο Αμυνταίου ΜΑΘΗΜΑ Α. Πράξεις με πραγματικούς αριθμούς ΑΣΚΗΣΕΙΣ ) ) Να συμπληρώσετε τα κενά ώστε στην κατακόρυφη στήλη

Διαβάστε περισσότερα

B Γυμνασίου. Ενότητα 9

B Γυμνασίου. Ενότητα 9 B Γυμνασίου Ενότητα 9 Γραμμικές εξισώσεις με μία μεταβλητή Διερεύνηση (1) Να λύσετε τις πιο κάτω εξισώσεις και ακολούθως να σχολιάσετε το πλήθος των λύσεων που βρήκατε σε καθεμιά. α) ( ) ( ) ( ) Διερεύνηση

Διαβάστε περισσότερα

6 η ενότητα. Εισαγωγή στους δεκαδικούς αριθμούς

6 η ενότητα. Εισαγωγή στους δεκαδικούς αριθμούς 0-0059MATHIMATIKAGDIMOTIKOU3_0 MAΘHTHΣ MAΘHM Γ 3/2/203 4:3 μμ Page 6 η ενότητα Εισαγωγή στους δεκαδικούς αριθμούς 33 34 35 36 37 38 Κεφάλαιο 33 : Πολλαπλασιασμός και διαίρεση με το 0, το 00 και το.000

Διαβάστε περισσότερα

1.5 Αξιοσημείωτες Ταυτότητες

1.5 Αξιοσημείωτες Ταυτότητες 1.5 Αξιοσημείωτες Ταυτότητες Ορισμός: Κάθε ισότητα που περιέχει μεταβλητές και αληθεύει για όλες τις τιμές των μεταβλητών της λέγεται ταυτότητα. Ταυτότητες που πρέπει να γνωρίζουμε: Τετράγωνο αθροίσματος

Διαβάστε περισσότερα

ΑΓΓΛΙΚΗ ΣΧΟΛΗ ΕΙΣΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ 2012. Χρόνος: 1 ώρα και 30 λεπτά

ΑΓΓΛΙΚΗ ΣΧΟΛΗ ΕΙΣΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ 2012. Χρόνος: 1 ώρα και 30 λεπτά ΑΓΓΛΙΚΗ ΣΧΟΛΗ ΕΙΣΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ 2012 ΜΑΘΗΜΑΤΙΚΑ ΠΡΩΤΗ ΤΑΞΗ Χρόνος: 1 ώρα και 30 λεπτά Να απαντήσετε σε ΟΛΕΣ τις ερωτήσεις. Όπου χρειάζεται να γίνουν πράξεις για να βρεθεί η απάντηση, να τις κάνετε

Διαβάστε περισσότερα

Κεφάλαιο 1 o Εξισώσεις - Ανισώσεις

Κεφάλαιο 1 o Εξισώσεις - Ανισώσεις 2 ΕΡΩΤΗΣΕΙΙΣ ΘΕΩΡΙΙΑΣ ΑΠΟ ΤΗΝ ΥΛΗ ΤΗΣ Β ΤΑΞΗΣ ΜΕΡΟΣ Α -- ΑΛΓΕΒΡΑ Κεφάλαιο 1 o Εξισώσεις - Ανισώσεις Α. 1 1 1. Τι ονομάζεται Αριθμητική και τι Αλγεβρική παράσταση; Ονομάζεται Αριθμητική παράσταση μια παράσταση

Διαβάστε περισσότερα

ΕΝΟΤΗΤΑ 12 ΠΡΑΞΕΙΣ ΜΕΧΡΙ ΤΟ 20

ΕΝΟΤΗΤΑ 12 ΠΡΑΞΕΙΣ ΜΕΧΡΙ ΤΟ 20 ΠΡΑΞΕΙΣ ΜΕΧΡΙ ΤΟ 20 ΔΕΙΚΤΕΣ ΕΠΙΤΥΧΙΑΣ ΑΡΙΘΜΟΙ Διερεύνηση αριθμών Αρ 1.6 Συνθέτουν και αναλύουν αριθμούς μέχρι το 100 με βάση την αξία θέσης ψηφίου, χρησιμοποιώντας αντικείμενα, εικόνες, και σύμβολα. Αρ

Διαβάστε περισσότερα

ΜΕΘΟΔΟΛΟΓΙΕΣ & ΑΣΚΗΣΕΙΣ ΓΙΑ ΤΗΝ ΑΛΓΕΒΡΑ ΤΗΣ Α ΛΥΚΕΙΟΥ

ΜΕΘΟΔΟΛΟΓΙΕΣ & ΑΣΚΗΣΕΙΣ ΓΙΑ ΤΗΝ ΑΛΓΕΒΡΑ ΤΗΣ Α ΛΥΚΕΙΟΥ ΜΕΘΟΔΟΛΟΓΙΕΣ & ΑΣΚΗΣΕΙΣ ΓΙΑ ΤΗΝ ΑΛΓΕΒΡΑ ΤΗΣ Α ΛΥΚΕΙΟΥ Επιμέλεια : Παλαιολόγου Παύλος Μαθηματικός Αγαπητοί μαθητές. αυτό το βιβλίο αποτελεί ένα βοήθημα στην ύλη της Άλγεβρας Α Λυκείου, που είναι ένα από

Διαβάστε περισσότερα

3 + 5 = 23 :13 + 18 = 23

3 + 5 = 23 :13 + 18 = 23 ΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ Πανεπιστημίου (Ελευθερίου Βενιζέλου) 34 106 79 ΑΘΗΝΑ Τηλ. 3616532-3617784 - Fax: 3641025 GREEK MATHEMATICAL SOCIETY 34, Panepistimiou (Εleftheriou Venizelou) Street GR. 106

Διαβάστε περισσότερα

====================================== ΘΕΜΑΤΑ ΗΜΕΡΗΣΙΑΣ ΔΙΑΤΑΞΗΣ

====================================== ΘΕΜΑΤΑ ΗΜΕΡΗΣΙΑΣ ΔΙΑΤΑΞΗΣ Σχόλια Διοικητικού Συμβουλίου / Σχέδιο αποφάσεως για κάθε θέμα της ημερήσιας διάταξης της Τακτικής Γενικής συνέλευσης των μετόχων της ανώνυμης εταιρείας με την επωνυμία «F.H.L. H. ΚΥΡΙΑΚΙΔΗΣ ΜΑΡΜΑΡΑ -

Διαβάστε περισσότερα

Ε - ΣΤ Δημοτικού 13 η Κυπριακή Μαθηματική Ολυμπιάδα Απρίλιος 2012

Ε - ΣΤ Δημοτικού 13 η Κυπριακή Μαθηματική Ολυμπιάδα Απρίλιος 2012 1. Πόσες ώρες έχουν περάσει από τις 6:45 πμ μέχρι τις 11:45 μμ της ίδιας μέρας; Α. 5 Β. 17 Γ. 24 Δ. 29 Ε. 41 1 1 2. Αν το χ είναι μεταξύ 1 και 1 +, τότε το χ μπορεί να είναι ίσο με τον κάθε 5 5 αριθμό

Διαβάστε περισσότερα

Δυαδικό Σύστημα Αρίθμησης

Δυαδικό Σύστημα Αρίθμησης Δυαδικό Σύστημα Αρίθμησης Το δυαδικό σύστημα αρίθμησης χρησιμοποιεί δύο ψηφία. Το 0 και το 1. Τα ψηφία ενός αριθμού στο δυαδικό σύστημα αρίθμησης αντιστοιχίζονται σε δυνάμεις του 2. Μονάδες, δυάδες, τετράδες,

Διαβάστε περισσότερα

ΒΟΗΘΗΜΑ ΣΤΟ ΜΑΘΗΜΑ ΕΓΚΑΤΑΣΤΑΣΕΙΣ. Στοιχεία Θεωρίας - Λυμένα Παραδείγματα. Ασκήσεις - Ερωτήσεις Θεωρίας. Νικόλαος Χονδράκης (Εκπαιδευτικός)

ΒΟΗΘΗΜΑ ΣΤΟ ΜΑΘΗΜΑ ΕΓΚΑΤΑΣΤΑΣΕΙΣ. Στοιχεία Θεωρίας - Λυμένα Παραδείγματα. Ασκήσεις - Ερωτήσεις Θεωρίας. Νικόλαος Χονδράκης (Εκπαιδευτικός) ΒΟΗΘΗΜΑ ΣΤΟ ΜΑΘΗΜΑ ΕΓΚΑΤΑΣΤΑΣΕΙΣ ΨΥΞΗΣ Στοιχεία Θεωρίας - Λυμένα Παραδείγματα Ασκήσεις - Ερωτήσεις Θεωρίας Νικόλαος Χονδράκης (Εκπαιδευτικός) ... Νικόλαος Γ. Χονδράκης Διπλωματούχος Μηχανολόγος Μηχανικός

Διαβάστε περισσότερα

ΘΕΩΡΙΑ Α ΓΥΜΝΑΣΙΟΥ. Η διαίρεση καλείται Ευκλείδεια και είναι τέλεια όταν το υπόλοιπο είναι μηδέν.

ΘΕΩΡΙΑ Α ΓΥΜΝΑΣΙΟΥ. Η διαίρεση καλείται Ευκλείδεια και είναι τέλεια όταν το υπόλοιπο είναι μηδέν. ΑΛΓΕΒΡΑ 1 ο ΚΕΦΑΛΑΙΟ ΘΕΩΡΙΑ Α ΓΥΜΝΑΣΙΟΥ 1. Τι είναι αριθμητική παράσταση; Με ποια σειρά εκτελούμε τις πράξεις σε μια αριθμητική παράσταση ώστε να βρούμε την τιμή της; Αριθμητική παράσταση λέγεται κάθε

Διαβάστε περισσότερα

Α Λυκείου Άλγεβρα Τράπεζα Θεμάτων Το Δεύτερο Θέμα

Α Λυκείου Άλγεβρα Τράπεζα Θεμάτων Το Δεύτερο Θέμα Α Λυκείου Άλγεβρα Τράπεζα Θεμάτων Το Δεύτερο Θέμα Θεωρούμε την ακολουθία (α ν ) των θετικών περιττών αριθμών: 1, 3, 5, 7, α) Να αιτιολογήσετε γιατί η (α ν ) είναι αριθμητική πρόοδος και να βρείτε τον εκατοστό

Διαβάστε περισσότερα

3 ο βήμα: Βγάζουμε παρενθέσεις 4 ο βήμα: Προσθέσεις και αφαιρέσεις

3 ο βήμα: Βγάζουμε παρενθέσεις 4 ο βήμα: Προσθέσεις και αφαιρέσεις 24 Κεφάλαιο ο. Να κάνετε τις πράξεις : α) 2 + 3 4-2 : (-4) + γ) -3 (-2) -5 +4: (-2) -6 β) 2 +3 (4-2): (-4 +) δ) -8 : (-3 +5) -4 (-2 + 6) Για να κάνουμε τις πράξεις ακολουθούμε τα εξής βήματα: ο βήμα: Πράξεις

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ Α ΓΥΜΝΑΣΙΟΥ

ΜΑΘΗΜΑΤΙΚΑ Α ΓΥΜΝΑΣΙΟΥ 2013 ΘΕΩΡΙΑ ΑΣΚΗΣΕΙΣ ΜΑΘΗΜΑΤΙΚΑ Α ΓΥΜΝΑΣΙΟΥ Η ΤΕΛΕΥΤΑΙΑ ΕΠΑΝΑΛΗΨΗ Βαγγέλης Α Νικολακάκης Μαθηματικός http://cutemaths.wordpress.com/ ΛΙΓΑ ΛΟΓΑ Η παρούσα εργασία μου δεν στοχεύει απλά στο κυνήγι του 20,

Διαβάστε περισσότερα

Γνωστό: P (M) = 2 M = τρόποι επιλογής υποσυνόλου του M. Π.χ. M = {A, B, C} π. 1. Π.χ.

Γνωστό: P (M) = 2 M = τρόποι επιλογής υποσυνόλου του M. Π.χ. M = {A, B, C} π. 1. Π.χ. Παραδείγματα Απαρίθμησης Γνωστό: P (M 2 M τρόποι επιλογής υποσυνόλου του M Τεχνικές Απαρίθμησης Πχ M {A, B, C} P (M 2 3 8 #(Υποσυνόλων με 2 στοιχεία ( 3 2 3 #(Διατεταγμένων υποσυνόλων με 2 στοιχεία 3 2

Διαβάστε περισσότερα

Mαθηματικά E Δημοτικού Tετράδιο εργασιών α~ τεύχος

Mαθηματικά E Δημοτικού Tετράδιο εργασιών α~ τεύχος Mαθηματικά E Δημοτικού Tετράδιο εργασιών α~ τεύχος 10-0124-02.indd 1 27/2/2013 9:26:16 πµ ΣYΓΓPAΦEIΣ Χριστόδουλος Κακαδιάρης, Εκπαιδευτικός Νατάσσα Μπελίτσου, Εκπαιδευτικός Γιάννης Στεφανίδης, Εκπαιδευτικός

Διαβάστε περισσότερα

ΜΕΘΟΔΟΛΟΓΙΑ & ΑΣΚΗΣΕΙΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΚΕΦΑΛΑΙΟ 2 Ο «ΣΤΑΤΙΣΤΙΚΗ»

ΜΕΘΟΔΟΛΟΓΙΑ & ΑΣΚΗΣΕΙΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΚΕΦΑΛΑΙΟ 2 Ο «ΣΤΑΤΙΣΤΙΚΗ» ΜΕΘΟΔΟΛΟΓΙΑ & ΑΣΚΗΣΕΙΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΚΕΦΑΛΑΙΟ Ο «ΣΤΑΤΙΣΤΙΚΗ» Επιμέλεια : Παλαιολόγου Παύλος Μαθηματικός ΚΕΦΑΛΑΙΟ. ΣΤΑΤΙΣΤΙΚΗ. ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ Στατιστική είναι ο κλάδος των εφαρμοσμένων

Διαβάστε περισσότερα

ΕΙΣΑΓΩΓΙΚΟ ΚΕΦΑΛΑΙΟ. a β a β.

ΕΙΣΑΓΩΓΙΚΟ ΚΕΦΑΛΑΙΟ. a β a β. ΕΙΣΑΓΩΓΙΚΟ ΚΕΦΑΛΑΙΟ Ε.1 ΤΟ ΛΕΞΙΛΟΓΙΟ ΤΗΣ ΛΟΓΙΚΗΣ Στη παράγραφο αυτή θα γνωρίσουμε μερικές βασικές έννοιες της Λογικής, τις οποίες θα χρησιμοποιήσουμε στη συνέχεια, όπου αυτό κρίνεται αναγκαίο, για τη σαφέστερη

Διαβάστε περισσότερα

Η ΚΑΘΗΜΕΡΙΝΗ ΑΕ ΕΚΤΑΚΤΗ ΓΕΝΙΚΗ ΣΥΝΕΛΕΥΣΗ ΤΗΣ 9 ης ΙΑΝΟΥΑΡΙΟΥ 2014

Η ΚΑΘΗΜΕΡΙΝΗ ΑΕ ΕΚΤΑΚΤΗ ΓΕΝΙΚΗ ΣΥΝΕΛΕΥΣΗ ΤΗΣ 9 ης ΙΑΝΟΥΑΡΙΟΥ 2014 Η ΚΑΘΗΜΕΡΙΝΗ ΑΕ ΕΚΤΑΚΤΗ ΓΕΝΙΚΗ ΣΥΝΕΛΕΥΣΗ ΤΗΣ 9 ης ΙΑΝΟΥΑΡΙΟΥ 2014 Σχέδια Αποφάσεων/Σχόλια ιοικητικού Συµβουλίου επί θεµάτων ηµερήσιας διάταξης της Έκτακτης Γενικής Συνέλευσης ΘΕΜΑ 1 ο : Aύξηση της ονοµαστικής

Διαβάστε περισσότερα

ΑΡΧΙΤΕΚΤΟΝΙΚΗ ΥΠΟΛΟΓΙΣΤΩΝ. Κεφάλαιο 3

ΑΡΧΙΤΕΚΤΟΝΙΚΗ ΥΠΟΛΟΓΙΣΤΩΝ. Κεφάλαιο 3 ΑΡΧΙΤΕΚΤΟΝΙΚΗ ΥΠΟΛΟΓΙΣΤΩΝ Κεφάλαιο 3 Κεντρική Μονάδα Επεξεργασίας Κεντρική Μονάδα Επεξεργασίας Μονάδα επεξεργασίας δεδομένων Μονάδα ελέγχου Μονάδα επεξεργασίας δεδομένων Δομή Αριθμητικής Λογικής Μονάδας

Διαβάστε περισσότερα

KAΤΑΣΤΑΤΙΚΟ ΤΗΣ ΑΝΩΝΥΜΗΣ ΝΑΥΤΙΛΙΑΚΗΣ ΕΤΑΙΡΕΙΑΣ ΚΡΗΤΗΣ Α.Ε.

KAΤΑΣΤΑΤΙΚΟ ΤΗΣ ΑΝΩΝΥΜΗΣ ΝΑΥΤΙΛΙΑΚΗΣ ΕΤΑΙΡΕΙΑΣ ΚΡΗΤΗΣ Α.Ε. KAΤΑΣΤΑΤΙΚΟ ΤΗΣ ΑΝΩΝΥΜΗΣ ΝΑΥΤΙΛΙΑΚΗΣ ΕΤΑΙΡΕΙΑΣ ΚΡΗΤΗΣ Α.Ε. Φ.Ε.Κ. - (ΔΑΕ και ΕΠΕ) υπ'αριθμ.201/10-4-1967 Αριθμ. 21234/929/771 Περί παροχής αδείας συστάσεως και εγκρίσεως του Καταστατικού της Ανώνυμης Εταιρείας

Διαβάστε περισσότερα

Γ - Δ Δημοτικού 13 η Κυπριακή Μαθηματική Ολυμπιάδα Απρίλιος 2012

Γ - Δ Δημοτικού 13 η Κυπριακή Μαθηματική Ολυμπιάδα Απρίλιος 2012 1. Ποια από τις πιο κάτω προτάσεις είναι ΛΑΝΘΑΣΜΕΝΗ; Α. 8 7 > 7 6 Β. 8 5 < 6 7 Γ. 7 0 < 8 8 Δ. 1 7 > 1 8 Ε. 60 7 > 60 8 2. Ο αδύναμος κρίκος μιας αλυσίδας είναι ο 7 ος από την αρχή της και ο 11 ος από

Διαβάστε περισσότερα

ΦΥΛΛΟ ΕΡΓΑΣΙΑΣ για το Δυαδικό Σύστημα Αρίθμησης

ΦΥΛΛΟ ΕΡΓΑΣΙΑΣ για το Δυαδικό Σύστημα Αρίθμησης Δραστηριότητα 8 ης εβδομάδας ΟΜΑΔΑΣ Α: Γ. Πολυμέρης, Χ. Ηλιούδη, Ν. Μαλλιαρός και Δ. Θεοτόκης ΦΥΛΛΟ ΕΡΓΑΣΙΑΣ για το Δυαδικό Σύστημα Αρίθμησης Περιγραφή Η συγκεκριμένη δραστηριότητα αποτελεί μια πρόταση

Διαβάστε περισσότερα

ΑΠΟΦΑΣΕΙΣ Της Έκτακτης Γενικής Συνέλευσης των μετόχων της Ανώνυμης Εταιρείας ΤΕΧΝΙΚΗ ΟΛΥΜΠΙΑΚΗ Α.Ε. της 24 ης Νοεμβρίου 2014

ΑΠΟΦΑΣΕΙΣ Της Έκτακτης Γενικής Συνέλευσης των μετόχων της Ανώνυμης Εταιρείας ΤΕΧΝΙΚΗ ΟΛΥΜΠΙΑΚΗ Α.Ε. της 24 ης Νοεμβρίου 2014 ΑΠΟΦΑΣΕΙΣ Της Έκτακτης Γενικής Συνέλευσης των μετόχων της Ανώνυμης Εταιρείας ΤΕΧΝΙΚΗ ΟΛΥΜΠΙΑΚΗ Α.Ε. της 24 ης Νοεμβρίου 2014 Θέματα Ημερήσιας Διατάξεως 1. Έγκριση: α) του Σχεδίου Σύμβασης Συγχώνευσης (Σ.Σ.Σ)

Διαβάστε περισσότερα

ΓΥΜΝΑΣΙΟ ΑΚΡΟΠΟΛΕΩΣ ΣΧΟΛΙΚΟ ΕΤΟΣ 2014 2015 ΓΡΑΠΤΕΣ ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΙΟΥΝΙΟΥ 2015. ΧΡΟΝΟΣ: 2 ώρες ΥΠ. ΚΑΘΗΓΗΤΗ:...

ΓΥΜΝΑΣΙΟ ΑΚΡΟΠΟΛΕΩΣ ΣΧΟΛΙΚΟ ΕΤΟΣ 2014 2015 ΓΡΑΠΤΕΣ ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΙΟΥΝΙΟΥ 2015. ΧΡΟΝΟΣ: 2 ώρες ΥΠ. ΚΑΘΗΓΗΤΗ:... ΓΥΜΝΑΣΙΟ ΑΚΡΟΠΟΛΕΩΣ ΣΧΟΛΙΚΟ ΕΤΟΣ 2014 2015 ΓΡΑΠΤΕΣ ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΙΟΥΝΙΟΥ 2015 ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ ΒΑΘΜΟΣ ΗΜΕΡΟΜΗΝΙΑ: 5/06/2015 ΤΑΞΗ: A Αριθμητικά... ΧΡΟΝΟΣ: 2 ώρες ΥΠ. ΚΑΘΗΓΗΤΗ:... Ολογράφως:...

Διαβάστε περισσότερα

εξισώσεις-ανισώσεις Μαθηματικά α λυκείου Φροντιστήρια Μ.Ε. ΠΑΙΔΕΙΑ σύνολο) στα Μαθηματικά, τη Φυσική αλλά και σε πολλές επιστήμες

εξισώσεις-ανισώσεις Μαθηματικά α λυκείου Φροντιστήρια Μ.Ε. ΠΑΙΔΕΙΑ σύνολο) στα Μαθηματικά, τη Φυσική αλλά και σε πολλές επιστήμες Με τον διεθνή όρο φράκταλ (fractal, ελλ. μορφόκλασμα ή μορφοκλασματικό σύνολο) στα Μαθηματικά, τη Φυσική αλλά και σε πολλές επιστήμες ονομάζεται ένα γεωμετρικό σχήμα που επαναλαμβάνεται αυτούσιο σε άπειρο

Διαβάστε περισσότερα

Α) 4 Β) 5 Γ) 7 Δ) 6 Ε) Κανένα από τα πιο πάνω.

Α) 4 Β) 5 Γ) 7 Δ) 6 Ε) Κανένα από τα πιο πάνω. η Κυπριακή Μαθηματική Ολυμπιάδα Απρίλιος 200 Χρόνος: 60 λεπτά ΣΤ ΔΗΜΟΤΙΚΟΥ ΑΣΚΗΣΗ Ο πενταψήφιος αριθμός 45Β7Α, στον οποίο τα ψηφία των μονάδων και των εκατοντάδων είναι σημειωμένα με Α και Β, διαιρείται

Διαβάστε περισσότερα

Μιχάλης Λάμπρου Νίκος Κ. Σπανουδάκης. τόμος 1. Καγκουρό Ελλάς

Μιχάλης Λάμπρου Νίκος Κ. Σπανουδάκης. τόμος 1. Καγκουρό Ελλάς Μιχάλης Λάμπρου Νίκος Κ. Σπανουδάκης τόμος Καγκουρό Ελλάς 0 007 (ο πρώτος αριθµός σε µια γραµµή αναφέρεται στη σελίδα που αρχίζει το άρθρο και ο δεύτερος στη σελίδα που περιέχει τις απαντήσεις) Πρόλογος

Διαβάστε περισσότερα

Δυνάμεις Φυσικών Αριθμών

Δυνάμεις Φυσικών Αριθμών Δυνάμεις Φυσικών Αριθμών TINΑ ΒΡΕΝΤΖΟΥ www.ma8eno.gr www.ma8eno.gr Σελίδα 1 Δυνάμεις φυσικών αριθμών Δύναμη ονομάζουμε το γινόμενο πολλών ίσων παραγόντων Πχ: 8 8= 64, 4 4 4= 64, 3 3 3 3= 81. Έτσι, το γινόμενο

Διαβάστε περισσότερα

THE G C SCHOOL OF CAREERS ΕΙΣΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΜΑΘΗΜΑΤΙΚΑ

THE G C SCHOOL OF CAREERS ΕΙΣΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΜΑΘΗΜΑΤΙΚΑ Αριθμός Επίθετο Όνομα Όνομα πατέρα THE G C SCHOOL OF CAREERS ΕΙΣΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΣΧΟΛΙΚΗ ΧΡΟΝΙΑ 2012-2013 ΜΑΘΗΜΑΤΙΚΑ (Αυτό το γραπτό αποτελείται από 21 σελίδες, συμπεριλαμβανομένης της σελίδας αυτής).

Διαβάστε περισσότερα

Περιληπτικά, τα βήματα που ακολουθούμε γενικά είναι τα εξής:

Περιληπτικά, τα βήματα που ακολουθούμε γενικά είναι τα εξής: Αυτό που πρέπει να θυμόμαστε, για να μη στεναχωριόμαστε, είναι πως τόσο στις εξισώσεις, όσο και στις ανισώσεις 1ου βαθμού, που θέλουμε να λύσουμε, ακολουθούμε ακριβώς τα ίδια βήματα! Εκεί που πρεπει να

Διαβάστε περισσότερα

Νικόλαος Ανδρεδάκης, Ομότιμος Καθηγητής Παν. Αθηνών. Παναγιώτης Μαμαλής, Θέμις Καψή, Ευάγγελος Τόλης, Στέλιος Μιχαήλογλου, Γιάννης Πρίντεζης

Νικόλαος Ανδρεδάκης, Ομότιμος Καθηγητής Παν. Αθηνών. Παναγιώτης Μαμαλής, Θέμις Καψή, Ευάγγελος Τόλης, Στέλιος Μιχαήλογλου, Γιάννης Πρίντεζης Επιστημονική Ευθύνη Νικόλαος Ανδρεδάκης, Ομότιμος Καθηγητής Παν. Αθηνών Συγγραφή Παναγιώτης Μαμαλής, Θέμις Καψή, Ευάγγελος Τόλης, Στέλιος Μιχαήλογλου, Γιάννης Πρίντεζης Το παρόν εκπαιδευτικό υλικό παράχθηκε

Διαβάστε περισσότερα

ΕΝΟΤΗΤΑ 13 ΜΕΤΡΗΣΗ ΜΗΚΟΥΣ ΜΕ ΣΥΜΒΑΤΙΚΕΣ ΜΟΝΑΔΕΣ ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΠΕΡΙΜΕΤΡΟ ΚΑΙ ΕΜΒΑΔΟΝ

ΕΝΟΤΗΤΑ 13 ΜΕΤΡΗΣΗ ΜΗΚΟΥΣ ΜΕ ΣΥΜΒΑΤΙΚΕΣ ΜΟΝΑΔΕΣ ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΠΕΡΙΜΕΤΡΟ ΚΑΙ ΕΜΒΑΔΟΝ ΕΝΟΤΗΤΑ 13 ΜΕΤΡΗΣΗ ΜΗΚΟΥΣ ΜΕ ΣΥΜΒΑΤΙΚΕΣ ΜΟΝΑΔΕΣ ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΠΕΡΙΜΕΤΡΟ ΚΑΙ ΕΜΒΑΔΟΝ ΔΕΙΚΤΕΣ ΕΠΙΤΥΧΙΑΣ ΜΕΤΡΗΣΗ Εκτίμηση και μέτρηση Μ1.1 Συγκρίνουν και σειροθετούν αντικείμενα με βάση το ύψος, το μήκος,

Διαβάστε περισσότερα

ΤΜΗΜΑ ΣΤΑΤΙΣΤΙΚΗΣ ΚΑΙ ΑΣΦΑΛΙΣΤΙΚΗΣ ΕΠΙΣΤΗΜΗΣ Σ

ΤΜΗΜΑ ΣΤΑΤΙΣΤΙΚΗΣ ΚΑΙ ΑΣΦΑΛΙΣΤΙΚΗΣ ΕΠΙΣΤΗΜΗΣ Σ ΤΜΗΜΑ ΣΤΑΤΙΣΤΙΚΗΣ ΚΑΙ ΑΣΦΑΛΙΣΤΙΚΗΣ ΕΠΙΣΤΗΜΗΣ Σ υ ν δ υ α σ τ ι κ ή Πειραιάς 2007 1 Μάθημα 5ο Σχηματισμοί όπου επιτρέπεται η επανάληψη στοιχείων 2 Παράδειγμα 2.4.1 Πόσα διαφορετικά αποτελέσματα μπορούμε

Διαβάστε περισσότερα

Δυνάμεις πραγματικών αριθμών

Δυνάμεις πραγματικών αριθμών Κεφάλαιο 1 ο 45 Β. Δυάμεις πραγματικώ αριθμώ Α έχουμε έα γιόμεο της μορφής (-) (-) (-) (-) όπου κάθε παράγοτας είαι (δηλαδή ο ίδιος ο αριθμός) μπορούμε α το συμβολίσουμε με μια πιο απλή μορφή : (-) 4.

Διαβάστε περισσότερα

ΕΚΘΕΣΗ του Διοικητικού Συμβουλίου της Ανώνυμης Εταιρείας με την επωνυμία «INTERFISH ΙΧΘΥΟΚΑΛΛΙΕΡΓΕΙΕΣ ΑΝΩΝΥΜΗ ΕΤΑΙΡΕΙΑ» και δ.τ.

ΕΚΘΕΣΗ του Διοικητικού Συμβουλίου της Ανώνυμης Εταιρείας με την επωνυμία «INTERFISH ΙΧΘΥΟΚΑΛΛΙΕΡΓΕΙΕΣ ΑΝΩΝΥΜΗ ΕΤΑΙΡΕΙΑ» και δ.τ. ΕΚΘΕΣΗ του Διοικητικού Συμβουλίου της Ανώνυμης Εταιρείας με την επωνυμία «INTERFISH ΙΧΘΥΟΚΑΛΛΙΕΡΓΕΙΕΣ ΑΝΩΝΥΜΗ ΕΤΑΙΡΕΙΑ» και δ.τ. «INTERFISH ΑΕ», Προς την Έκτακτη Γενική Συνέλευση των Μετόχων της 10ης Φεβρουαρίου

Διαβάστε περισσότερα

PROFILE ΑΝΩΝΥΜΟΣ ΕΜΠΟΡΙΚΗ ΚΑΙ ΒΙΟΜΗΧΑΝΙΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ

PROFILE ΑΝΩΝΥΜΟΣ ΕΜΠΟΡΙΚΗ ΚΑΙ ΒΙΟΜΗΧΑΝΙΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ PROFILE ΑΝΩΝΥΜΟΣ ΕΜΠΟΡΙΚΗ ΚΑΙ ΒΙΟΜΗΧΑΝΙΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ Σχέδιο προτεινομένων αποφάσεων επί των θεμάτων της ημερησίας διατάξεως της Έκτακτης Γενικής Συνέλευσης των μετόχων της 30 ης Δεκεμβρίου 2014,

Διαβάστε περισσότερα

EXTRA ΑΣΚΗΣΕΙΣ 2 1. Σε καθεµία από τις παρακάτω περιπτώσεις να βρείτε τα λάθη στην κωδικοποίηση. α. Αλγόριθµος Άσκηση β. Αλγόριθµος Άσκηση ιάβασε x ιάβασε x Αν x >= 52 τότε Αν x mod 2 = 0 τότε y x ^ 2

Διαβάστε περισσότερα

ΠΙΝΑΚΕΣ ΠΟΣΟΤΗΤΩΝ ΚΑΙ ΠΡΟΫΠΟΛΟΓΙΣΜΩΝ 414.548,13 300.000,00 95.000,00 116.862,30 156.456,00 73.493,73 299.904,10 122.943,93 161.406,75 42.

ΠΙΝΑΚΕΣ ΠΟΣΟΤΗΤΩΝ ΚΑΙ ΠΡΟΫΠΟΛΟΓΙΣΜΩΝ 414.548,13 300.000,00 95.000,00 116.862,30 156.456,00 73.493,73 299.904,10 122.943,93 161.406,75 42. ΠΙΝΑΚΕΣ ΠΟΣΟΤΗΤΩΝ ΠΡΟΫΠΟΛΟΓΙΣΜΩΝ ) ΠΙΝΑΚΑΣ προμήθειας οξυγόνου και προϋπολογισθείσας δαπάνης α/α Νοσοκομεία. Π. Γ. Ν. Θ. ΑΧΕΠΑ 2. Γ.Ν.Θ. "Ιπποκράτειο" Είδη προς προμήθεια Προϋπολογισθείσα Δαπάνη με 44.548,3

Διαβάστε περισσότερα

ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ Γ ΗΜΕΡΗΣΙΩΝ

ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ Γ ΗΜΕΡΗΣΙΩΝ ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ Γ ΗΜΕΡΗΣΙΩΝ ΕΠΑΝΑΛΗΠΤΙΚΕΣ ΠΑΝΕΛΛΗΝΙΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΤΡΙΤΗ 19 ΙΟΥΝΙΟΥ 2012 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ ΤΕΧΝΟΛΟΓΙΚΗΣ

Διαβάστε περισσότερα

Μετρήσεις Αβεβαιότητες Μετρήσεων

Μετρήσεις Αβεβαιότητες Μετρήσεων Μετρήσεις Αβεβαιότητες Μετρήσεων 1. Σκοπός Σκοπός του μαθήματος είναι να εξοικειωθούν οι σπουδαστές με τις βασικές έννοιες που σχετίζονται με τη θεωρία Σφαλμάτων, όπως το σφάλμα, την αβεβαιότητα της μέτρησης

Διαβάστε περισσότερα

ΕΡΩΤΗΣΕΙΣ ΘΕΜΑΤΑ ΘΕΩΡΙΑΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΤΗΣ Α ΓΥΜΝΑΣΙΟΥ ΑΛΓΕΒΡΑ

ΕΡΩΤΗΣΕΙΣ ΘΕΜΑΤΑ ΘΕΩΡΙΑΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΤΗΣ Α ΓΥΜΝΑΣΙΟΥ ΑΛΓΕΒΡΑ 1 ο ΚΕΦΑΛΑΙΟ ΕΡΩΤΗΣΕΙΣ ΘΕΜΑΤΑ ΘΕΩΡΙΑΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΤΗΣ Α ΓΥΜΝΑΣΙΟΥ ΑΛΓΕΒΡΑ 1. α. Τι γνωρίζετε για την Ευκλείδεια διαίρεση; Πότε λέγεται τέλεια; β. Αν σε μια διαίρεση είναι Δ=δ, πόσο είναι το πηλίκο και

Διαβάστε περισσότερα

ΓΙΩΡΓΟΣ Α. ΚΑΡΕΚΛΙΔΗΣ ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ ΘΕΩΡΙΑ ΑΣΚΗΣΕΙΣ ΜΕΘΟΔΟΛΟΓΙΑ

ΓΙΩΡΓΟΣ Α. ΚΑΡΕΚΛΙΔΗΣ ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ ΘΕΩΡΙΑ ΑΣΚΗΣΕΙΣ ΜΕΘΟΔΟΛΟΓΙΑ ΓΙΩΡΓΟΣ Α. ΚΑΡΕΚΛΙΔΗΣ ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ ΘΕΩΡΙΑ ΑΣΚΗΣΕΙΣ ΜΕΘΟΔΟΛΟΓΙΑ ΕΚΔΟΣΕΙΣ ΓΙΩΡΓΟΣ Α. ΚΑΡΕΚΛΙΔΗΣ ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ ΘΕΩΡΙΑ ΑΣΚΗΣΕΙΣ ΜΕΘΟΔΟΛΟΓΙΑ τη ΘΕΩΡΙΑ με τις απαραίτητες διευκρινήσεις ΛΥΜΕΝΕΣ ΑΣΚΗΣΕΙΣ

Διαβάστε περισσότερα

ΚΑΤΑΣΤΑΤΙΚΟ ΤΗΣ ΑΝΩΝΥΜΗΣ ΕΤΑΙΡΕΙΑΣ ΜΕ ΤΗΝ ΕΠΩΝΥΜΙΑ ΤΕΡΝΑ ΕΝΕΡΓΕΙΑΚΗ ΑΝΩΝΥΜΗ ΒΙΟΜΗΧΑΝΙΚΗ ΕΜΠΟΡΙΚΗ ΤΕΧΝΙΚΗ ΕΤΑΙΡΕΙΑ

ΚΑΤΑΣΤΑΤΙΚΟ ΤΗΣ ΑΝΩΝΥΜΗΣ ΕΤΑΙΡΕΙΑΣ ΜΕ ΤΗΝ ΕΠΩΝΥΜΙΑ ΤΕΡΝΑ ΕΝΕΡΓΕΙΑΚΗ ΑΝΩΝΥΜΗ ΒΙΟΜΗΧΑΝΙΚΗ ΕΜΠΟΡΙΚΗ ΤΕΧΝΙΚΗ ΕΤΑΙΡΕΙΑ ΚΑΤΑΣΤΑΤΙΚΟ ΤΗΣ ΑΝΩΝΥΜΗΣ ΕΤΑΙΡΕΙΑΣ ΜΕ ΤΗΝ ΕΠΩΝΥΜΙΑ ΤΕΡΝΑ ΕΝΕΡΓΕΙΑΚΗ ΑΝΩΝΥΜΗ ΒΙΟΜΗΧΑΝΙΚΗ ΕΜΠΟΡΙΚΗ ΤΕΧΝΙΚΗ ΕΤΑΙΡΕΙΑ και το ΔΙΑΚΡΙΤΙΚΟ ΤΙΤΛΟ «ΤΕΡΝΑ ΕΝΕΡΓΕΙΑΚΗ Α.Β.Ε.Τ.Ε.» ΚΕΦΑΛΑΙΟ Α ΣΥΣΤΑΣΗ ΕΠΩΝΥΜΙΑ ΕΔΡΑ

Διαβάστε περισσότερα

Τιμολόγιο Μελέτης. Έργο: ΑΝΑΒΑΘΜΙΣΗ ΠΟΛΙΤΙΣΤΙΚΟΥ ΚΕΝΤΡΟΥ ΚΕΡΑΣΙΑΣ ΥΠΟΕΡΓΟ 2: ΠΡΟΜΗΘΕΙΑ ΕΞΟΠΛΙΣΜΟΥ ΠΟΛΙΤΙΣΤΙΚΟΥ ΚΕΝΤΡΟΥ ΚΕΡΑΣΙΑΣ Θέση: Τ.Κ.

Τιμολόγιο Μελέτης. Έργο: ΑΝΑΒΑΘΜΙΣΗ ΠΟΛΙΤΙΣΤΙΚΟΥ ΚΕΝΤΡΟΥ ΚΕΡΑΣΙΑΣ ΥΠΟΕΡΓΟ 2: ΠΡΟΜΗΘΕΙΑ ΕΞΟΠΛΙΣΜΟΥ ΠΟΛΙΤΙΣΤΙΚΟΥ ΚΕΝΤΡΟΥ ΚΕΡΑΣΙΑΣ Θέση: Τ.Κ. ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΝΟΜΟΣ ΚΑΡΔΙΤΣΑΣ ΔΗΜΟΣ ΛΙΜΝΗΣ ΠΛΑΣΤΗΡΑ Έργο: ΑΝΑΒΑΘΜΙΣΗ ΠΟΛΙΤΙΣΤΙΚΟΥ ΚΕΝΤΡΟΥ ΚΕΡΑΣΙΑΣ ΥΠΟΕΡΓΟ 2: ΠΡΟΜΗΘΕΙΑ ΕΞΟΠΛΙΣΜΟΥ ΠΟΛΙΤΙΣΤΙΚΟΥ ΚΕΝΤΡΟΥ ΚΕΡΑΣΙΑΣ Θέση: Τ.Κ. ΚΕΡΑΣΙΑΣ Τιμολόγιο Μελέτης

Διαβάστε περισσότερα

ΣΧΕΔΙΟ ΚΩΔΙΚΟΠΟΙΗΜΕΝΟΥ ΚΑΤΑΣΤΑΤΙΚΟΥ ΤΗΣ ΑΝΩΝΥΜΗΣ ΕΤΑΙΡΕΙΑΣ ΜΕ ΤΗΝ ΕΠΩΝΥΜΙΑ «JUMBO ΑΝΩΝΥΜΗ ΕΜΠΟΡΙΚΗ ΕΤΑΙΡΕΙΑ»

ΣΧΕΔΙΟ ΚΩΔΙΚΟΠΟΙΗΜΕΝΟΥ ΚΑΤΑΣΤΑΤΙΚΟΥ ΤΗΣ ΑΝΩΝΥΜΗΣ ΕΤΑΙΡΕΙΑΣ ΜΕ ΤΗΝ ΕΠΩΝΥΜΙΑ «JUMBO ΑΝΩΝΥΜΗ ΕΜΠΟΡΙΚΗ ΕΤΑΙΡΕΙΑ» ΣΧΕΔΙΟ ΚΩΔΙΚΟΠΟΙΗΜΕΝΟΥ ΚΑΤΑΣΤΑΤΙΚΟΥ ΤΗΣ ΑΝΩΝΥΜΗΣ ΕΤΑΙΡΕΙΑΣ ΜΕ ΤΗΝ ΕΠΩΝΥΜΙΑ «JUMBO ΑΝΩΝΥΜΗ ΕΜΠΟΡΙΚΗ ΕΤΑΙΡΕΙΑ» ΠΡΟΣ ΕΝΑΡΜΟΝΙΣΗ ΠΡΟΣ ΤΙΣ ΔΙΑΤΑΞΕΙΣ ΤΟΥ Κ.Ν. 2190/1920, ΟΠΩΣ ΙΣΧΥΟΥΝ ΜΕΤΑ ΤΟ Ν. 3604/2007 (ΦΕΚ

Διαβάστε περισσότερα

ΣΧΕΔΙΟ ΣΥΜΒΑΣΗΣ ΣΥΓΧΩΝΕΥΣΗΣ ΜΕ ΑΠΟΡΡΟΦΗΣΗ

ΣΧΕΔΙΟ ΣΥΜΒΑΣΗΣ ΣΥΓΧΩΝΕΥΣΗΣ ΜΕ ΑΠΟΡΡΟΦΗΣΗ ΣΧΕΔΙΟ ΣΥΜΒΑΣΗΣ ΣΥΓΧΩΝΕΥΣΗΣ ΜΕ ΑΠΟΡΡΟΦΗΣΗ ΤΩΝ ΑΝΩΝΥΜΩΝ ΕΤΑΙΡΕΙΩΝ ΜΕ ΤΗΝ ΕΠΩΝΥΜΙΑ «ΙΧΘΥΟΤΡΟΦΕΙΑ ΣΕΛΟΝΤΑ ΑΝΩΝΥΜΟΣ ΕΤΑΙΡΕΙΑ ΓΕΩΡΓΙΚΩΝ ΕΚΜΕΤΑΛΛΕΥΣΕΩΝ» και δ.τ. «ΣΕΛΟΝΤΑ ΑΕ», με ΑΡ.Μ.Α.Ε. 23166/06/Β/90/01 (στο

Διαβάστε περισσότερα

Μαθηματικά Δημοτική Εκπαίδευση

Μαθηματικά Δημοτική Εκπαίδευση Επιμορφωτικό Υποστηρικτικό Υλικό για την ενσωμάτωση των ΤΠΕ στη μαθησιακή διαδικασία Θέμα Μαθηματικά Δημοτική Εκπαίδευση Εργαλείο Διαδίκτυο Παιδαγωγικό Ινστιτούτο Κύπρου Τομέας Εκπαιδευτικής Τεχνολογίας

Διαβάστε περισσότερα

Παίζοντας με τα νομίσματα (Ευρώ) 2. Παρουσίαση των εφαρμογών του λογισμικού

Παίζοντας με τα νομίσματα (Ευρώ) 2. Παρουσίαση των εφαρμογών του λογισμικού 1. Εισαγωγή Παίζοντας με τα νομίσματα (Ευρώ) Το εκπαιδευτικό λογισμικό «Παίζοντας με τα νομίσματα (Ευρώ)» είναι κυρίως κατάλληλο για τις μικρές τάξεις του δημοτικού σχολείου και ενισχύει τη διδασκαλία

Διαβάστε περισσότερα

1. Πότε χρησιμοποιούμε την δομή επανάληψης; Ποιες είναι οι διάφορες εντολές (μορφές) της;

1. Πότε χρησιμοποιούμε την δομή επανάληψης; Ποιες είναι οι διάφορες εντολές (μορφές) της; 1. Πότε χρησιμοποιούμε την δομή επανάληψης; Ποιες είναι οι διάφορες (μορφές) της; Η δομή επανάληψης χρησιμοποιείται όταν μια σειρά εντολών πρέπει να εκτελεστεί σε ένα σύνολο περιπτώσεων, που έχουν κάτι

Διαβάστε περισσότερα

7ο Μάθημα Η ΠΥΚΝΟΤΗΤΑ ΕΝΟΣ ΥΛΙΚΟΥ

7ο Μάθημα Η ΠΥΚΝΟΤΗΤΑ ΕΝΟΣ ΥΛΙΚΟΥ 7ο Μάθημα Η ΠΥΚΝΟΤΗΤΑ ΕΝΟΣ ΥΛΙΚΟΥ Συμβαίνει κι αυτό: ο όγκος ενός σώματος να 'ναι μεγάλος, αλλά η μάζα του να 'ναι μικρή Από την καθημερινή μας ζωή, ξέρουμε τι σημαίνει πυκνό και αραιό: πυκνό δάσος, αραιά

Διαβάστε περισσότερα

υαδικό Σύστημα 192.168.0.0-11000000.10101000.00000000.00000000

υαδικό Σύστημα 192.168.0.0-11000000.10101000.00000000.00000000 υαδικό Σύστημα Για να μπορέσουμε να καταλάβουμε πως γίνεται το Subnetting, πρέπει πρώτα να γνωρίζουμε καλά το δυαδικό σύστημα, τις Classes των δικτύων και τι ακριβώς γίνεται στην καθεμία. Όπως γνωρίζουμε

Διαβάστε περισσότερα

ΑΠΟΦΑΣΕΙΣ ΤΗΣ ΕΤΗΣΙΑΣ ΤΑΚΤΙΚΗΣ ΓΕΝΙΚΗΣ ΣΥΝΕΛΕΥΣΗΣ ΤΩΝ ΜΕΤΟΧΩΝ ΤΗΣ INTEΡΛΑΪΦ Α.Α.Ε.Γ.Α. ΤΗΣ 11 ΗΣ /06/2014 (άρθρο 32 παρ. 1 Κ.Ν.

ΑΠΟΦΑΣΕΙΣ ΤΗΣ ΕΤΗΣΙΑΣ ΤΑΚΤΙΚΗΣ ΓΕΝΙΚΗΣ ΣΥΝΕΛΕΥΣΗΣ ΤΩΝ ΜΕΤΟΧΩΝ ΤΗΣ INTEΡΛΑΪΦ Α.Α.Ε.Γ.Α. ΤΗΣ 11 ΗΣ /06/2014 (άρθρο 32 παρ. 1 Κ.Ν. ΑΠΟΦΑΣΕΙΣ ΤΗΣ ΕΤΗΣΙΑΣ ΤΑΚΤΙΚΗΣ ΓΕΝΙΚΗΣ ΣΥΝΕΛΕΥΣΗΣ ΤΩΝ ΜΕΤΟΧΩΝ ΤΗΣ INTEΡΛΑΪΦ Α.Α.Ε.Γ.Α. ΤΗΣ 11 ΗΣ /06/2014 (άρθρο 32 παρ. 1 Κ.Ν. 2190/1920) Την 11 η Ιουνίου 2014, ημέρα Τετάρτη και ώρα 10:00 π.μ. πραγματοποιήθηκε

Διαβάστε περισσότερα

1. Το σύστημα κινητής υποδιαστολής 2. Αναπαράσταση πραγματικών δυαδικών αριθμών 3. Το πρότυπο 754 της ΙΕΕΕ

1. Το σύστημα κινητής υποδιαστολής 2. Αναπαράσταση πραγματικών δυαδικών αριθμών 3. Το πρότυπο 754 της ΙΕΕΕ ΑΡΧΙΤΕΚΤΟΝΙΚΗ ΥΠΟΛΟΓΙΣΤΩΝ ΑΡΙΘΜΟΙ ΚΙΝΗΤΗΣ ΥΠΟ ΙΑΣΤΟΛΗΣ (ΠΡΑΓΜΑΤΙΚΟΙ ΑΡΙΘΜΟΙ) Γ Τσιατούχας Παράρτηµα Β ιάρθρωση 1 Το σύστημα κινητής υποδιαστολής 2 Αναπαράσταση πραγματικών δυαδικών αριθμών 3 Το πρότυπο

Διαβάστε περισσότερα

Αρχιτεκτονική Υπολογιστών Ασκήσεις Εργαστηρίου

Αρχιτεκτονική Υπολογιστών Ασκήσεις Εργαστηρίου Αρχιτεκτονική Υπολογιστών Ασκήσεις Εργαστηρίου Ενότητα: ΕΡΓΑΣΤΗΡΙΑΚΗ ΑΣΚΗΣΗ No 05 Δρ. Μηνάς Δασυγένης mdasyg@ieee.org Τμήμα Μηχανικών Πληροφορικής και Τηλεπικοινωνιών Εργαστήριο Ψηφιακών Συστημάτων και

Διαβάστε περισσότερα

Περί Γνώσεως Φροντιστήριο Μ.Ε. Φυσική Α Γυμνασίου. ΜΕΤΡΗΣΕΙΣ Μήκους - Μάζας Χρόνου.

Περί Γνώσεως Φροντιστήριο Μ.Ε. Φυσική Α Γυμνασίου. ΜΕΤΡΗΣΕΙΣ Μήκους - Μάζας Χρόνου. 10 ΕΝΔΕΙΚΤΙΚΑ ΘΕΜΑΤΑ ΓΙΑ ΔΙΑΓΩΝΙΣΜΑ ΣΤΗ ΦΥΣΙΚΗ ΤΗΣ Α' ΓΥΜΝΑΣΙΟΥ > ΜΕΤΡΗΣΕΙΣ Μήκους - Μάζας Χρόνου. Επιμέλεια ύλης και απαντήσεων: Γ.Φ.Σ ι ώ ρ η ς Φυσικός.- Email: georgesioris@yahoo.gr

Διαβάστε περισσότερα

Βρέντζου Τίνα Φυσικός Μεταπτυχιακός τίτλος: «Σπουδές στην εκπαίδευση» ΜEd

Βρέντζου Τίνα Φυσικός Μεταπτυχιακός τίτλος: «Σπουδές στην εκπαίδευση» ΜEd 1 1) Δίνεται η εξίσωση x 2-2(λ + 2) χ + 2λ 2-17 = 0. Να βρείτε το λ ώστε η εξίσωση να έχει μία ρίζα διπλή. Υπολογίστε τη ρίζα. Aσκήσεις στις εξισώσεις Β βαθμού Για να έχει η εξίσωση μία ρίζα διπλή πρέπει:

Διαβάστε περισσότερα

Ο κώδικας Nemeth για τα Μαθηματικά Λυκείου (σύμβολα και σύνταξη)

Ο κώδικας Nemeth για τα Μαθηματικά Λυκείου (σύμβολα και σύνταξη) Ο κώδικας Nemeth για τα Μαθηματικά Λυκείου (σύμβολα και σύνταξη) Δείτε αυτό http://access.uoa.gr/nemeth/nemethlyceummath.htm και αυτό http://www.gh-mathspeak.com/examples/nemethbook/ Βασικοί χαρακτήρες

Διαβάστε περισσότερα

Συνεχή Κλάσματα. Εμμανουήλ Καπνόπουλος Α.Μ 282

Συνεχή Κλάσματα. Εμμανουήλ Καπνόπουλος Α.Μ 282 Συνεχή Κλάσματα Εμμανουήλ Καπνόπουλος Α.Μ 282 5 Νοεμβρίου 204 Ορισμός και ιδιότητες: Ορισμός: Έστω a 0, a, a 2,...a n ανεξάρτητες μεταβλητές, n N σχηματίζουν την ακολουθία {[a 0, a,..., a n ] : n N} όπου

Διαβάστε περισσότερα

«PROFILE ΑΝΩΝΥΜΟΣ ΕΜΠΟΡΙΚΗ ΚΑΙ ΒΙΟΜΗΧΑΝΙΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ»

«PROFILE ΑΝΩΝΥΜΟΣ ΕΜΠΟΡΙΚΗ ΚΑΙ ΒΙΟΜΗΧΑΝΙΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ» Αποφάσεις Έκτακτης Γενικής Συνέλευσης των Μετόχων Η Ανώνυμη Εταιρεία με την επωνυμία «PROFILE ΑΝΩΝΥΜΟΣ ΕΜΠΟΡΙΚΗ ΚΑΙ ΒΙΟΜΗΧΑΝΙΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ» και τον διακριτικό τίτλο «PROFILE SYSTEMS & SOFTWARE»

Διαβάστε περισσότερα

Μαθηματικά της Φύσης και της Ζωής

Μαθηματικά της Φύσης και της Ζωής Μαθηματικά της Φύσης και της Ζωής Τάξη:Ε Ονοματεπώνυμο:.. Σχολείο: Το ημερολόγιο Ο Πέτρος ζήτησε από το φίλο του Χρήστο να διαλέξει 4 αριθμούς από το διπλανό ημερολόγιο που να σχηματίζουν τετράγωνο (για

Διαβάστε περισσότερα

Τετράδιο Πρώτης Αρίθµησης Α ηµοτικού

Τετράδιο Πρώτης Αρίθµησης Α ηµοτικού Çëßáò Ã. ÊáñêáíéÜò - Έφη Ι. Σουλιώτου Τετράδιο Πρώτης Αρίθµησης Α ηµοτικού Α Τεύχος 1 Απαγορεύεται η αναπαραγωγή µέρους ή του συνόλου του παρόντος έργου µε οποιοδήποτε τρόπο ή µορφή, στο πρωτότυπο ή σε

Διαβάστε περισσότερα

ΚΕΙΜΕΝΑ - ΛΕΞΙΛΟΓΙΟ - ΑΣΚΗΣΕΙΣ. Πόσο κάνει; Πόσο κοστίζει;

ΚΕΙΜΕΝΑ - ΛΕΞΙΛΟΓΙΟ - ΑΣΚΗΣΕΙΣ. Πόσο κάνει; Πόσο κοστίζει; ΕΝΟΤΗΤΑ 8 - Πόσο κάνει; A ΜΕΡΟΣ Α. ΔΙΑΛΟΓΟΣ Βασιλική: Πωλητής: Βασιλική: Πωλητής: Σοφία: Περιπτεράς: Σοφία: Περιπτεράς: Σοφία: Περιπτεράς: Πωλητής: Πωλητής: ΚΕΙΜΕΝΑ - ΛΕΞΙΛΟΓΙΟ - ΑΣΚΗΣΕΙΣ Πόσο κάνει; Πόσο

Διαβάστε περισσότερα

ΕΓΧΕΙΡΙΔΙΟ ΟΔΗΓΙΩΝ. Πρόγραμμα Διαχείρισης Α.Π.Δ.

ΕΓΧΕΙΡΙΔΙΟ ΟΔΗΓΙΩΝ. Πρόγραμμα Διαχείρισης Α.Π.Δ. ΕΓΧΕΙΡΙΔΙΟ ΟΔΗΓΙΩΝ Πρόγραμμα Διαχείρισης Α.Π.Δ. Περιεχόμενα ΚΕΦΑΛΑΙΟ 1 Εγκατάσταση του προγράμματος 1 ΚΕΦΑΛΑΙΟ 2 Οδηγίες χρήσης προγράμματος με παράδειγμα 2 ΚΕΦΑΛΑΙΟ 3 Αντιγραφή Α.Π.Δ. προηγούμενης περιόδου

Διαβάστε περισσότερα

ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ Κεφάλαιο 2 ο Αν χ και y μεταβλητές με τιμές 5 και 10 αντίστοιχα να εξηγηθούν οι ακόλουθες εντολές εξόδου.

ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ Κεφάλαιο 2 ο Αν χ και y μεταβλητές με τιμές 5 και 10 αντίστοιχα να εξηγηθούν οι ακόλουθες εντολές εξόδου. 2.1 Αν χ και y μεταβλητές με τιμές 5 και 10 αντίστοιχα να εξηγηθούν οι ακόλουθες εντολές εξόδου. 1) Η τιμή του χ είναι,χ Ητιμή του χ είναι 5 Ηεντολή εμφανίζει ότι υπάρχει στα διπλά εισαγωγικά ως έχει.

Διαβάστε περισσότερα

Θαλής Α' Λυκείου 1995-1996

Θαλής Α' Λυκείου 1995-1996 Θαλής Α' Λυκείου 1995-1996 1. Δυο μαθητές Α και Β παίζουν το ακόλουθο παιχνίδι: Τους δίνεται ένα κανονικό πολύγωνο με άρτιο πλήθος πλευρών, μεγαλύτερο από 6 (π.χ. ένα 100-γωνο). Κάθε παίκτης συνδέει δυο

Διαβάστε περισσότερα

ΘΕΜΑΤΑ ΗΜΕΡΗΣΙΑΣ ΔΙΑΤΑΞΗΣ

ΘΕΜΑΤΑ ΗΜΕΡΗΣΙΑΣ ΔΙΑΤΑΞΗΣ Σχόλια Διοικητικού Συμβουλίου / Σχέδιο αποφάσεως για κάθε θέμα της ημερήσιας διάταξης της Τακτικής Γενικής συνέλευσης των μετόχων της ανώνυμης εταιρείας με την επωνυμία «F.H.L. H. ΚΥΡΙΑΚΙΔΗΣ ΜΑΡΜΑΡΑ -

Διαβάστε περισσότερα

TA ΚΛΑΣΜΑΤΑ ME ΛΙΓΑ ΛΟΓΙΑ

TA ΚΛΑΣΜΑΤΑ ME ΛΙΓΑ ΛΟΓΙΑ TA ΚΛΑΣΜΑΤΑ ME ΛΙΓΑ ΛΟΓΙΑ Τα κλάσµατα ανέκαθεν ταν ένα δύσκολο κοµµάτι κάθε µαθητ. Μπως όµως απλά έχουµε παρεξηγσει κάποια πράγµατα; Ας περιπλανηθούµε µαζί στον «παράξενο» κόσµο των κλασµάτων, µε τη βοθεια

Διαβάστε περισσότερα

5 ος Πανελλήνιος Μαθητικός Διαγωνισμός «Παιχνίδι και Μαθηματικά»

5 ος Πανελλήνιος Μαθητικός Διαγωνισμός «Παιχνίδι και Μαθηματικά» ΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ Πανεπιστημίου (Ελευθερίου Βενιζέλου) 34 106 79 ΑΘΗΝΑ Τηλ. 361653-3617784 - Fax: 364105 GREEK MATHEMATICAL SOCIETY 34, Panepistimiou (Εleftheriou Venizelou) Street GR. 106 79

Διαβάστε περισσότερα

ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ ΕΣΠΕΡΙΝΩΝ

ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ ΕΣΠΕΡΙΝΩΝ ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ ΕΣΠΕΡΙΝΩΝ ΕΠΑΝΑΛΗΠΤΙΚΕΣ ΠΑΝΕΛΛΗΝΙΕΣ ΕΞΕΤΑΣΕΙΣ ΤΑΞΗΣ ΕΣΠΕΡΙΝΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΤΡΙΤΗ 19 ΙΟΥΝΙΟΥ 2012 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ

Διαβάστε περισσότερα

Αναδρομή. Τι γνωρίζετε για τη δυνατότητα «κλήσης» αλγορίθμων; Τι νόημα έχει;

Αναδρομή. Τι γνωρίζετε για τη δυνατότητα «κλήσης» αλγορίθμων; Τι νόημα έχει; ΜΑΘΗΜΑ 7 Κλήση αλγορίθμου από αλγόριθμο Αναδρομή Σ χ ο λ ι κ ο Β ι β λ ι ο ΥΠΟΚΕΦΑΛΑΙΟ 2.2.7: ΕΝΤΟΛΕΣ ΚΑΙ ΔΟΜΕΣ ΑΛΓΟΡΙΘΜΟΥ ΠΑΡΑΓΡΑΦΟI 2.2.7.5: Κλήση αλγορίθμου από αλγόριθμο 2.2.7.6: Αναδρομή εισαγωγη

Διαβάστε περισσότερα