ΙΑΦΑΝΕΙΕΣ ΜΑΘΗΜΑΤΟΣ ΘΕΩΡΙΑ ΠΛΗΡΟΦΟΡΙΑΣ-ΚΩ ΙΚΕΣ

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "ΙΑΦΑΝΕΙΕΣ ΜΑΘΗΜΑΤΟΣ ΘΕΩΡΙΑ ΠΛΗΡΟΦΟΡΙΑΣ-ΚΩ ΙΚΕΣ"

Transcript

1 ΙΑΦΑΝΕΙΕΣ ΜΑΘΗΜΑΤΟΣ ΘΕΩΡΙΑ ΠΛΗΡΟΦΟΡΙΑΣ-ΚΩ ΙΚΕΣ (ΘΕΩΡΙΑ) T.E.I. ΛΑΜΙΑΣ ΛΑΜΙΑ 27

2 P i : πιθανότητα εµφάνισης του i γεγονότος ποσότητα πληροφορίας που µεταφέρει το γεγονός I: I P I = log b P = log b P Μονάδες ποσότητας πληροφορίας I: b=2: µονάδα µέτρησης ποσότητας πληροφορίας το bit (binary unit) b=: µονάδα µέτρησης ποσότητας πληροφορίας το Hartley b=e: µονάδα µέτρησης ποσότητας πληροφορίας το nats. 2

3 Μέση πληροφορία ανά σύµβολο ενός αλφαβήτου (Εντροπία πηγής) (αλφάβητο µε q ισοπίθανα σύµβολα) ποσότητα πληροφορίας που παρουσιάζει µία φράση από n σύµβολα: I n = n log 2 P = n log 2 = n log 2 q ( q) (bits) Μέση πληροφορία ανά σύµβολο H (bits/σύµβολο): (στατική πηγή: πιθανότητες εµφάνισης όλων των συµβόλων ανεξάρτητες χρόνου) (bits/σύµβολο) 3

4 Μέγιστη τιµή τηςεντροπίαςη max : H max = I max = log 2 ( q ) Pi=/q, για i =, 2,..., q (ισοπίθανα σύµβολα πηγής) Ελάχιστη τιµή τηςεντροπίαςη min : H όταν Pn =, για κάποιο από τα i, 2,...q min = 4

5 Πλεονασµός π µιας πηγής πληροφορίας (ποσό της άχρηστης πληροφορίας ) π = Η max H max H = H H max (%) Εκποµπή συµβόλων µε ρυθµό r (r s ) (σύµβολα/sec), τότε ο ρυθµός παροχής πληροφορίας από την πηγή R: R = r H (bits/sec) Αν το i-οστό σύµβολο της πηγής έχει διάρκεια t i τότε η µέση διάρκεια των συµβόλων είναι: τ q = i = P i t i (sec/σύµβολο) 5

6 Χωρητικότητα καναλιού (Channel Capacity) Εντροπία εισόδου Χ στο κανάλι επικοινωνίας (µέση ανά σύµβολο, ποσότητα πληροφορίας στην είσοδο του καναλιού) M t t ( X ) P i log ( P ) H 2 = = i i (bits/σύµβολο) (M: πλήθος διακριτών συµβόλων από µία πηγή πληροφορίας) Αν ο ρυθµός εκποµπής συµβόλων στο κανάλι r s (σε σύµβολα/sec) τότε ο µέσος ρυθµός πληροφορίας D in στην είσοδο του καναλιού επικοινωνίας: D in = H ( X ) rs (bits/sec) 6

7 Εντροπία υπό συνθήκη (αµφιβολία αντιστοιχίας των συµβόλων από την έξοδο του καναλιού προς την είσοδο του καναλιού): H M M ( X Y ) P( X = i, Y = j) log P( X = i / Y = j) / 2 = i= j= Ο µέσος ρυθµός εκποµπής D t διαµέσου του καναλιού: D t [ H( X ) H( X Y )] rs = / (bits/sec) Χωρητικότητα του καναλιού C ορίζεται ως η µέγιστη δυνατή τιµή του D t για όλα τα σύνολα πιθανοτήτων εµφάνισης της εισόδου του καναλιού Χ: C max p ( x ) { D } = (bits/sec) t 7

8 Χωρητικότητα καναλιού συνεχών µηνυµάτων λευκού προσθετικού θορύβου κατανοµής Gauss (AWGN) Αν το κανάλι παρουσιάζει λευκό, προσθετικό θόρυβο κατανοµής Gauss (Additive White Gaussian Noise, AWGN) τότε αποδεικνύεται ότι η χωρητικότητα C του συγκεκριµένου καναλιού: (Θεωρητικό όριο) (Θεώρηµα Shannon-Hartley) Ο ρυθµός R της εκπεµπόµενης πληροφορίας στο κανάλι θα πρέπει να ικανοποιεί την επόµενη ανισότητα: S C = B log 2 + N R C = B log 2 + S N (bits/sec) (bits/sec) 8

9 B: εύρος ζώνης συχνοτήτων καναλιού επικοινωνίας (channel bandwidth) S/N ή SNR (Signal-to-Noise Ratio) Λόγος ισχύος σήµατος S προς ισχύ θορύβου N στην έξοδο του καναλιού: S/N=Ισχύς σήµατος (σε W)/ Ισχύς θορύβου καναλιού (σε W) C: χωρητικότητα καναλιού (channel capacity) (bits/sec) (µέγιστος δυνατός ρυθµός µετάδοσης πληροφορίας στο κανάλι ώστε ο ρυθµός λαθών,µε µία πολύπλοκη κωδικοποίηση, να τείνει σε µηδενική τιµή) Πρακτικά: R<C/5 ή R<C/4 9

10 S N S N S N ( db) = log ( καθαρός αριθµός ) SNR ( db ) ( ) καθαρός αριθµός = log x log2 = = 3.32 log log 2 x x

11 Συµπεράσµατα Αύξηση της χωρητικότητας C µπορεί να πραγµατοποιηθεί µε αύξηση του εύρους ζώνης συχνοτήτων του καναλιού Β ή/και Αύξηση της χωρητικότητας C µπορεί να πραγµατοποιηθεί µε αύξηση του λόγου SNR S Αποδεικνύεται: lim C =.44 B N N :φασµατική πυκνότητα θορύβου καναλιού (power noise spectral density)(σταθερή για AWGN κανάλι) (Watt/Hz) (δεδοµένη τιµή για ένα κανάλι) Προσοχή: η αύξηση στο άπειρο του εύρους ζώνης συχνοτήτων Β του καναλιού επικοινωνίας, δεν οδηγεί σε αντίστοιχη αύξηση προς το άπειρο της χωρητικότητας C του καναλιού επικοινωνίας

12 Εντροπία πηγής µε µνήµη Πηγή πληροφορίας µε µνήµη ης τάξης (πηγή στην οποία η εκποµπή ενός συµβόλου εξαρτάται από το προηγούµενο σύµβολο που εκπέµφθηκε): H πηγ ή µε µνήµη ης τάξης = Pi P ( j / i) log 2 P i i j ( ) j / ( j/ i) Pij P = : πιθανότητα να εκπεµφθεί το j σύµβολο της πηγής δεδοµένου ότι έχει σταλεί ήδη το i σύµβολο της πηγής (µνήµηενόςσυµβόλου, m=) ορυθµός εκποµπής πληροφορίας στο κανάλι για µία πηγή µε µνήµη: R = r H πηγήµε µνήµηης τάξης 2

13 Οι µεταπτώσεις της µπορούν να περιγραφούν µε τη µήτρα πιθανοτήτων µετάπτωσης δηλαδή τη µήτρα των: P ( j/ i) = Pij Μία πηγή µε µνήµη q συµβόλων µπορεί να περιγραφτεί µε µήτρα P τα στοιχεία της οποίας είναι τιµές πιθανοτήτων µετάπτωσης: P= P= p p p, 2, q, A B Γ p p 2, 2 p A, 2 q, 2 3/4 /4...p...p...p Β 2/3 /3 [π.χ. η πιθανότητα 3/4 της πρώτης γραµµής και πρώτης στήλης είναι η πιθανότητα να σταλεί το σύµβολο Α δεδοµένου ότι έχει ήδη σταλεί το σύµβολο Α, η πιθανότητα/3 της τρίτης γραµµής και δεύτερης στήλης ερµηνεύεται ως η πιθανότητα να σταλεί το σύµβολο Γ δεδοµένου ότι έχει σταλεί το σύµβολο Β],q 2,q q,q Γ /4 3/4 3

14 4 Ηπροηγούµενη µήτρα µεταπτώσεων ισοδυναµεί µετο επόµενο διάγραµµα καταστάσεων της πηγής: Γ Α Β 3/4 /4 /4 3/4 /3 2/3 Γ Γ Γ Γ Γ Γ Γ Γ Β Β Β Β Γ Γ + + = + + = + + = P P P P P P P P P P P P P P P P P P P P P B B A A B B A A A B B A A A A A / / / / / / / / / [σύστηµα 3 εξισώσεων µε 3 αγνώστους και µεαγνώστους τα P A, P Β, και P Γ ] [µπορεί να λυθεί είτε µετηµέθοδο της αντικατάστασης είτε µε τη µέθοδο των οριζουσών]

15 Είδη κωδικοποίησης δεδοµένων κωδικοποίηση πηγής (source coding) κωδικοποίηση καναλιού (channel coding) κωδικοποίηση πηγής: διαδικασία που ακολουθεί αµέσως µετά την έξοδο µιας πηγής πληροφορίας. Σκοπός ελαχιστοποίηση του απαιτούµενου µήκους της κωδικής λέξης που απαιτείται για να αναπαρασταθούν κατά µέσο όρο τα σύµβολα που παράγει η πηγή της πληροφορίας. (µείωση πλήθους ψηφίων του κώδικα που απαιτείται για να αναπαρασταθούν τα σύµβολα της πηγής) κωδικοποίηση καναλιού: σκοπός η όσο το δυνατό αξιόπιστη µετάδοση δεδοµένων σε ένα κανάλι µε θόρυβο (ενθόρυβο) (µείωση της επίδρασης του θορύβου του καναλιού στα εκπεµπόµενα δεδοµένα µε τηνανίχνευσηή/και τη διόρθωση των λαθών (µείωση πιθανότητας λάθους) 5

16 Κωδικοποίηση πηγής Huffman Βήµατα:. τοποθετούµε σε κατακόρυφη διάταξη τα εκπεµπόµενα σύµβολα της πηγής µε σειρά φθίνουσας πιθανότητας εµφάνισης των συµβόλων (το άθροισµα των πιθανοτήτων των εκπεµπόµενων συµβόλων θα πρέπει να είναι πάντα ίσο µε ) 2. ξεκινώντας από τη µικρότερη πιθανότητα συµβόλου και την αµέσως µικρότερη από αυτή, τις προσθέτουµε και η νέα τιµή πιθανότητας που προκύπτει την τοποθετούµε στη σωστή θέση στην κατακόρυφη διάταξη φθίνουσας πιθανότητας εµφάνισης συµβόλων παράγοντας έτσι δίπλα στη προηγούµενη µία νέα κατακόρυφη διάταξη 3. η διαδικασία αυτή συνεχίζεται έως να έχουµε µόνο δύο τιµές πιθανοτήτων στην κατακόρυφη διάταξη 4. ακολουθούµε αντίστροφη διαδικασία τοποθετώντας δίπλα από τις δύο τελευταίες τιµές πιθανότητας το και το 6

17 5. τα ψηφία ή (που έχουµε τοποθετήσει δίπλα στις δύο τελευταίες τιµές πιθανοτήτων) οδηγούνται µε αντίστροφη πορεία και σηµειώνονται δίπλα στις τιµές των πιθανοτήτων από τις οποίες οδηγηθήκαµε σεαυτά 6. δίπλα στα ψηφία ή που έχουµε µεταφέρει, τοποθετούµε το και το 7. ο συνδυασµός των και που έχει τώρα εµφανιστεί επαναλαµβάνεται µε την ίδια διαδικασία όπως και πριν έγινε για το και το 8. τα προηγούµενα βήµατα επαναλαµβάνονται µέχρι να καταλήξουµε στην αρχική διάταξη φθίνουσας πιθανότητας εµφάνισης των συµβόλων 9. οι κωδικές λέξεις που αντιστοιχούν στην κωδικοποίηση είναι αυτές που έχουν αποµείνει από τους προηγούµενους συνδυασµούς, χωρίς να έχουν µεταφερθεί προς τα πίσω (προς τα αριστερά), µε τη διαδικασία που περιγράφηκε στα προηγούµενα βήµατα. 7

18 Παράδειγµα πηγή 6 συµβόλων τα οποία παρουσιάζουν τις επόµενες πιθανότητες εµφάνισης: α :.4, α 2 :.3, α 3 :., α 4 :., α 5 :.6, α 6 :.4. σύµβολο P i (πιθανότητα εµφάνισης) α α α α 4... α 5.6. α 6.4 8

19 α α 2 α 3 α 4 α 5 α 6 οι συνδυασµοί που έχουν αποµείνει χωρίς να έχουν µεταφερθεί αριστερά (αυτοί οι οποίοι δεν προέρχονται από ένα άθροισµα πιθανοτήτων δηλαδή δεν καταλήγουµε σεαυτούςµε την πορεία ενός βέλους) και οι οποίοι τελικά είναι οι κωδικές λέξεις που αντιστοιχούν στα σύµβολα της πηγής 9

20 Βήµατα: Κωδικοποίηση πηγής Shannon-Fano. καταγράφουµε τα σύµβολα της πηγής κατά σειρά µειούµενης πιθανότητας 2. χωρίζουµε το σύνολο σε 2 οµάδες που να είναι όσο το δυνατό πλησιέστερα σε ίσες πιθανότητες (δηλαδή το άθροισµα σε κάθε µία οµάδα) και θέτουµε στην ανώτερη οµάδα και στην κατώτ6ερη οµάδα 3. συνεχίζουµε χωρίζοντας κάθε φορά τις οµάδες µε όσο το δυνατό ίσες πιθανότητες µέχρι να µην είναι δυνατός ο περαιτέρω διαχωρισµός τους. Μειονέκτηµα: αβεβαιότητα που υπάρχει στο µοίρασµα των 2 οµάδων.

21 Παράδειγµα πηγή 6 συµβόλων τα οποία παρουσιάζουν τις επόµενες πιθανότητες εµφάνισης: x :.3, x 2 :.25, x 3 :.2, x 4 :.2, x 5 :.8, x 6 :.5. (πιθανότητα εµφάνισης) σύµβολο P i Βήµα ο Βήµα 2 ο Βήµα 3 ο Βήµα 4 ο Βήµα 5 ο x.3 x 2.25 x 3.2 x 4.2 x 5.8 x 6.5 x x 2 x 3 x 4 x 5 x 6 2

22 Τετραδική Κωδικοποίηση πηγής Huffman κωδικοποίηση πηγής Huffman στο τετραδικό σύστηµα το οποίο έχει ως σύµβολα τα:,,2,3 (τέσσερα σύµβολα) διαδικασία που η ίδια όπως και στο δυαδικό σύστηµα αλλά οι πιθανότητες αθροίζονται στη κατακόρυφη διάταξη ανά τέσσερις σύµβολο P i (πιθανότητα εµφάνισης) a.5.5 a a a a a a a a 2 a 3 a 4 a 5 a 6 a

23 Μέσο µήκος κωδικής λέξης Σύµβολο πηγής κωδική λέξη (codeword) L q = = P i l i (bits/κωδική λέξη του κώδικα) i l i είναι το µήκος (σε bits) της i-οστής κωδικής λέξης του κώδικα P i : πιθανότητα εµφάνισης i-οστού συµβόλου (κωδικής λέξης) 23

24 Κωδικοποίηση (καναλιού) (channel coding) µετάδοση δεδοµένων µέσω ενός καναλιού επικοινωνίας µε θόρυβο έχει ως αποτέλεσµα την εµφάνιση λαθών (bit error) Λύση: κωδικοποίηση: πρόσθεση επιπλέον bits συνέπεια: µείωση του ρυθµού εκποµπής δεδοµένων κωδικοποίηση (καναλιού) (channel coding) µπλοκ κωδικοποίηση (linear block coding) συγκεραστική κωδικοποίηση (convolutional coding) 24

25 µήνυµα πληροφορίας µήκους k απεικονίζεται σε δυαδικές ακολουθίες (κωδικές λέξεις) µήκους n: k n (πρόσθεση επιπλέον bits: bits ελέγχου ισοτιµίας) ρυθµός ή απόδοση κώδικα: k n (ποσοστό χρήσιµης πληροφορίας που εκπέµπεται στα συνολικά n bits κώδικα) κώδικας (n,k): αποτελείται από 2 k κωδικές λέξεις µε µήκος n 25

26 Απλοί Κώδικες Επανάληψης (Simple Repetition Codes) αντί εκποµπή και, εκποµπή ακολουθίας από και στη θέση αντίστοιχα του και του (επανάληψη του ίδιου bit περιττές φορές) µήκος των ακολουθιών (πλήθος bits του κώδικα) επιλέγεται να είναι ένας περιττός αριθµός n n 6 n περιττός 7... περιττός

27 Πιθανότητα λάθους αποκωδικοποίησης γιααπλόκώδικαεπανάληψης(n,k) p e n k = ε ε k = ( n+ ) / 2 n k ( ) n k ε: πιθανότητα λάθους στο εκπεµπόµενο bit (σε απλά εκπεµπόµενο bit στο κανάλι επικοινωνίας) Παράδειγµα: απλός κώδικας επανάληψης µε n=5, k=3 και ε=.= -3, πιθανότητα λάθους αποκωδικοποίησης: p e 5 = k k. k k= (.999) = 9.99 n k ορ = k! ( n! n k )! n! = 2... n 27

28 Γραµµικοί κώδικες Μπλοκ γραµµικός: ένας οποιαδήποτε γραµµικός συνδυασµός δύο κωδικών λέξεων του κώδικα αποτελεί, κωδική λέξη του κώδικα πίνακας γεννήτορας G: k n κωδική λέξη c του κώδικα: δυαδικός πίνακας c = ug u: ακολουθία εισόδου µήκους k (µήνυµα) (είσοδος κωδικοποιητή) πράξη modulo-2: (πράξη XOR) (αποκλειστικό Η) 28

29 δυνατότητα διόρθωσης λαθών: ελάχιστη απόσταση (απόσταση Hamming) του κώδικα ελάχιστη απόσταση (απόσταση Hamming) του κώδικα: ελάχιστη απόσταση Hamming µεταξύ δύο οποιονδήποτε κωδικών λέξεων του κώδικα ελάχιστη απόσταση του κώδικα: i j H ( c c ) d = min d, min i j d min γραµµικοί κώδικες: d min βάρος w H µιας κωδικής λέξης: πλήθος των της κωδικής λέξης 29

30 ανίχνευση ή/και διόρθωση λαθών στη λαµβανόµενη κωδική λέξη: d min = e +, για ανίχνευση 2e +, για διόρθωση e σφαλµάτων e σφαλµάτων ανά ανά κωδική κωδική λέξη λέξη κανόνας αποκωδικοποίησης: απόφαση ποια είναι η σωστή εκπεµπόµενη κωδική λέξη: Επέλεξε ως σωστή εκείνη την κωδική λέξη που παρουσιάζει τη µικρότερη ελάχιστη απόσταση Hamming από την υπό κρίση κωδική λέξη που έχει ληφθεί ( αποκωδικοποίηση αυστηρής απόφασης ) (Hard-decision Decoding) (κριτήριο ελάχιστης απόφασης Hamming) 3

31 γραµµικός κώδικας µπλοκ σε συστηµατική µορφή: G= p p, 2, p k, p p 2, 22, p k, 2.. p... p... p.,n-k 2,n-k k,n-k G=[I k P] I k : (k k) µοναδιαίος πίνακας P: k (n-k) πίνακας συστηµατικό κώδικα: τα πρώτα k bits τηςκωδικήςλέξηςείναι τα bits της µηνύµατος και τα υπόλοιπα (n-k) bits είναι τα bits ελέγχου της ισοτιµίας 3

32 πίνακας ελέγχου της ισοτιµίας (parity check matrix) H: ch t = (εύρεση κωδικής λέξης c) H t : ανάστροφος πίνακας του πίνακα H (Transpose Matrix) (γραµµές του πίνακα Η τις κάνουµε στήλες και αντίστροφα) Ισχύει: GH t = Αν ο πίνακας γεννήτορας G είναι σε συστηµατική µορφή ισχύει: Η=[-P t I n-k ] 32

33 33 Κώδικες Hamming κώδικες Hamming: είναι γραµµικοί κώδικες µπλοκ, διαστάσεων (2 m -, 2 m -m-) που παρουσιάζουν ελάχιστη απόσταση ίση µε 3 πίνακας ελέγχου ισοτιµίας H: πίνακας m (2 m -) πίνακας, µε στήλες όλες τις δυαδικές ακολουθίες µε µήκος m, εκτός από την µηδενική ακολουθία Παράδειγµα: για m=3 έχουµε έναν (7,4) κώδικα του οποίου ο πίνακας ελέγχου της ισοτιµίας, σε συστηµατική µορφή, είναι: G= H= (σε συστηµατική µορφή) (δηλαδή G=[I 4 P])

34 κώδικας Hamming (n,k) Αν ο πίνακας ελέγχου της ισοτιµίας του κώδικα H είναι στην µορφή: Η=[-P t I k ] τότε ο πίνακας γεννήτορας G του κώδικα έχει αντίστοιχα τη µορφή: G=[I k P] 34

35 Σύνδροµο S Χρησιµότητα συνδρόµου: µεδεδοµένο το σύνδρoµο µπορούµε να ανιχνεύσουµε αν υπάρχει απλό λάθος στη λαµβανοµένη κωδική λέξη και να διορθώσουµε Το σύνδροµο που υπολογίζεται αποτελεί µία στήλη του πίνακα ελέγχου ισοτιµίας H Η συγκεκριµένη στήλη δείχνει τη θέση στη λαµβανόµενη λέξη που έχει συµβείτοαπλόλάθος R: λαµβανόµενη κωδική λέξη Εύρεση συνδρόµου: R H t =S σωστή κωδική λέξη (Corrected Codeword): Corrected Codeword= R :modulo-2 (αποκλειστικό ή) S 35

36 Κυκλικοί κώδικες κυκλικός (γραµµικός κώδικας) µία οποιαδήποτε κυκλική ολίσθηση µιας κωδικής του λέξης να αποτελεί και αυτή κωδική λέξη του κώδικα C [ c c c ] = : κωδική λέξη του κυκλικού κώδικα n n 2... c αντιστοιχούµε σε κάθε κωδική λέξη ένα πολυώνυµο βαθµού n C n n 2 ( p) = c p + c 2 p c p c n n + πολυώνυµο γεννήτορας βαθµού (n-k): g g ( p) n k n k ( p) = p + g p + + g p n k... + C( p) 36

37 k k 2 πολυώνυµο του µηνύµατος: X( p) = xk p + xk 2p... + x p+ x όπου το [ x ] k xk 2... xx αναπαρασταίνει τα k bits του µηνύµατος γινόµενο των πολυωνύµων : X ( p) g( p) αναπαρασταίνει µία κωδική λέξη του κυκλικού κώδικα 37

38 Παράδειγµα κώδικας µε µήκος n=7 (σύνολο των bits µετά την κωδικοποίηση) και k=4 (bits µηνύµατος) To πολυώνυµο + µπορεί να γραφτεί ως γινόµενο παραγόντων: p 7 p 7 ( ) ( 3 2 ) ( 3 = p+ p + p + p + + ) + p θεωρούµε ένα από τα επόµενα πολυώνυµα ως πολυώνυµο γεννήτορα: g 3 2 ( p) = ( p + p ) + g ή ( ) ( 3 p = p + p ) 2 + (οι κώδικες οι οποίοι µπορούν να παραχθούν από τα δύο προηγούµενα πολυώνυµα, είναι ισοδύναµοι) 38

39 Για παράδειγµα, τα µηνύµατα [] και [] κωδικοποιούνται 3 2 αντίστοιχα µέσω του πολυωνύµου g ( p) = p + p ως [] και [] ( ) + Η πρόσθεση + µεταξύ των διαφόρων παραγόντων των πολυωνύµων είναι πράξη modulo 2 (λογική πράξη αποκλειστικού Η, EXOR). Συνεπώς, όταν µετά το συνήθη πολλαπλασιασµό εµφανίζονται δύο ίδιοι παράγοντες τότε αυτοί απαλείφονται µεταξύ τους ανά δύο π.χ. p 3 +p 3 =. 39

40 κυκλικός κώδικας (n,k). Τότε ο πίνακας γεννήτορας G, δίνεται σε συστηµατική µορφή: G=[I k P] πίνακας ελέγχου ισοτιµίας H του κυκλικού κώδικα (n,k), δίνεται σε συστηµατική µορφή: Η=[I n-k P t ] 4

41 BCH Κώδικες BCH (Bose-Chaudhuri-Hocquenghem) κώδικες: κατηγορία κυκλικών κωδίκων που περιλαµβάνουν δυαδικά και µη δυαδικά αλφάβητα m n = 2 BCH κώδικες (n,k): όπου m ( m 3) και t είναι n k mt d min = 2 t + αυθαίρετοι θετικοί αριθµοί. m t < ( 2 ) / 2 δυνατότητα επιλογής από ένα µεγάλο σύνολο από µήκη κωδίκων και ρυθµών κωδίκων πολλές εφαρµογές στα τηλεπικοινωνιακά συστήµατα (κυψελωτά συστήµατα κινητής τηλεφωνίας) (σήµατα σηµατοδοσίας: την ισχύ που πρέπει να εκπέµψει ο κινητός σταθµός και σε ποια συχνότητα του συστήµατος) 4

42 Κώδικες Reed-Solomon µη δυαδικοί κώδικες (96) µεγάλη σηµασία για τηλεπικοινωνιακά συστήµατα (σφάλµατα λόγω θορύβου καναλιού επικοινωνίας κατά ριπές) και για συστήµατα ακουστικών CD µπλοκ κώδικες οι οποίοι χρησιµοποιούν αλφάβητα εισόδου και εξόδου µε πλήθος συµβόλων 2 m µήκος της κωδικής λέξης n: ακέραιες τιµές µεταξύ 3 και 2 m - διορθώνουν e λάθη σε ένα µπλοκ από n σύµβολα είναι δυνατό να διορθώσει µέχρι t= ( n k)/2 bits ελέγχου ισοτιµίας: (n-k)=n-2e = 2 m - λάθη ελάχιστη απόσταση: d min =(n-k+) 42

43 Ταξινόµηση κωδίκων x i x x 2 x 3 x 4 Κώδικας Κώδικας 2 Κώδικας 3 Κώδικας 4 Κώδικας 5 Κώδικας 6 Κώδικες σταθερού µήκους: είναι ο κώδικας που κάθε κωδική του λέξη έχει σταθερό µήκος. Οι κώδικες και 2 έχουν σταθερό µήκος 2 Κώδικες µεταβλητού µήκους:κώδικας µεταβλητού µήκους είναι ο κώδικας του οποίου το µήκος της κωδικής λέξης δεν είναι σταθερό. Όλοι οι κώδικες του πίνακα, εκτός από τους κώδικες και 2, είναι µεταβλητού µήκους Ευκρινείς κώδικες:ένας κώδικας ονοµάζεται ευκρινής αν κάθε κωδική λέξη του ξεχωρίζει από τις άλλες κωδικές λέξεις. Όλοι οι κώδικες του πίνακα εκτός από τον κώδικα είναι ευκρινείς 43

44 Κώδικες χωρίς πρόθεµα: κώδικας στον οποίο δεν σχηµατίζεται µία κωδική λέξη µε πρόσθεση κωδικών συµβόλων σε άλλη κωδική λέξη ονοµάζεται κώδικας χωρίς πρόθεµα. Οι κώδικες 2, 4 και 6 του πίνακα είναι κώδικες χωρίς πρόθεµα Μοναδικά αποκωδικοποιούµενοι κώδικες:ένας κώδικας είναι µοναδικά αποκωδικοποιούµενος αν η αρχική ακολουθία πηγής µπορεί να αναδοµηθεί τέλεια από την κωδικοποιηµένη δυαδική ακολουθία. Στον πίνακα, ο κώδικας 3 δεν είναι µοναδικά αποκωδικοποιούµενος κώδικας γιατί π.χ. η δυαδική ακολουθία µπορεί να αντιστοιχεί στις ακολουθίες πηγής x 2 x 3 x 2 ή x 2 x x x 2. Στον πίνακα ο κώδικας 5 είναι µοναδικά αποκωδικοποιούµενος επειδή το bit, δείχνει την αρχή κάθε κωδικής λέξης του κώδικα Στιγµιαίοι κώδικες:ένας µοναδικά αποκωδικοποιούµενος κώδικας ονοµάζεται στιγµιαίος κώδικας αν το τέλος οποιασδήποτε κωδικής λέξης αναγνωρίζεται χωρίς να εξεταστούν επόµενα κωδικά σύµβολα. Οι στιγµιαίοι κώδικες έχουν την ιδιότητα ότι καµία κωδική λέξη δεν είναι πρόθεµα κάποιας άλλης κωδικής λέξης Βέλτιστοι κώδικες: ένας κώδικας είναι βέλτιστος αν είναι στιγµιαίος και έχει ελάχιστο µέσο µήκος για δεδοµένη κατανοµή πιθανοτήτων για τα σύµβολα της πηγής πληροφορίας 44

45 Συγκεραστικοί κώδικες (Convolutional Codes) Στους συγκεραστικούς κώδικες, η κωδικοποίηση πραγµατοποιείται πάνω σε ένα ολόκληρο διάστηµα της ροής των συµβόλων του µηνύµατος που ονοµάζεται διάστηµα εξαναγκασµού. Ένας συγκεραστικός κώδικας µε διάστηµα εξαναγκασµού k δηµιουργείται µε το συνδυασµό των k εξόδων ενός ολισθητή k-βαθµίδων και µε τη βοήθεια υ αθροιστών modulo-2. Οι έξοδοι υ υ, υ 2,, υ υ των αθροιστών δειγµατοληπτούνται από έναν κατάλληλο διακόπτη. Έτσι παράγονται υ ψηφία εξόδου για κάθε ένα ψηφίο εισόδου. 45

46 διάταξη συγκεραστικού κωδικοποιητή µε k=4 και υ=3 δεδοµένα S S 2 S 3 S 4 U U 2 U 3 έξοδος : Πύλη αποκλειστικού Η (XOR) 46

47 εξισώσεις παραγωγής ψηφίων εξόδου (δοσµένες): Π.χ. αν έχουµε είσοδο το µήνυµα (), τότε για κάθε ένα από τα τέσσερα bits παράγονται 3 bits ψηφίων εξόδου Bit : U =, U 2 =, U 3 = (έξοδος ) Bit : U =, U 2 =, U 3 = (έξοδος ) Bit : U =, U 2 =, U 3 = (έξοδος ) Bit : U =, U 2 =, U 3 = (έξοδος ) 47

48 Κώδικες διόρθωσης καταιγισµού σφαλµάτων γραµµικοί κώδικες διόρθωση τυχαίων σφαλµάτων µπλοκ Σε κανάλια επικοινωνίας (π.χ. κανάλι µε διαλείψεις (fading channel) ή σε φθορά ενός CD τα σφάλµατα εµφανίζονται κατά ακολουθίες (ριπές) (καταιγιστική συµπεριφορά) µεθόδοι διόρθωσης καταιγιστικών σφαλµάτων σύµπλεξη των κωδικών λέξεων (interleaving) 48

49 διάταξη κωδικοποίησης, σύµπλεξης των κωδικών λέξεων, διαµόρφωσης, εκποµπής και αντίστροφα αποδιαµόρφωσης, αποσύµπλεξης και αποκωδικοποίησης Κωδικοποιητής Συµπλέκτης ιαµορφωτής Κανάλι επικοινωνίας Αποδιαµορφωτής Αποσυµπλέκτης Αποκωδικοποιητής 49

50 Εφαρµογές κωδίκων Κώδικες µπλοκ: σφάλµατα παρουσιάζονται οµοιόµορφα και τυχαία στα εισερχόµενα µπλοκ πληροφορίας ((κανάλι µε AWGN θόρυβο) (χερσαίες τηλεφωνικές ζεύξεις) Κώδικες διόρθωσης καταιγισµού σφαλµάτων: επικοινωνίες κινητών Κώδικες Reed-Solomon: κινητές επικοινωνίες, τµήµατα µηχανισµών διόρθωσης σφαλµάτων των CD (συνδυάζονται σε σειρά µε έναν δυαδικό κώδικα (π.χ. µε κώδικα µπλοκ ή συνελικτικό κώδικα) Κώδικες για µακρινές διαστηµικές επικοινωνίες: χαµηλή τιµή του SNR, µικρή τιµή εκποµπής, θόρυβος AWGN (κώδικες µπλοκ, συνελεκτικοί κώδικες) Κωδικοποίηση για κανάλια περιορισµένου εύρους ζώνης συχνοτήτων: η κωδικοποίηση οδηγεί σε αύξηση του εύρους ζώνης συχνοτήτων του εκπεµπόµενου σήµατος. Στην πράξη όµως έχουµε περιορισµούς στο διαθέσιµο εύρος ζώνης συχνοτήτων π.χ. στη σχεδίαση των modem των τηλεφωνικών καναλιών (συνδυασµός µιας µεθόδου κωδικοποίησης και διαµόρφωσης που ονοµάζεται trellis-κωδικοποιηµένη διαµόρφωση (trellis coded modulation)) 5

51 Κώδικες συστηµάτων διάχυτου φάσµατος ακολουθία κωδικοποίησης που χρησιµοποιείται για τη διάχυση του φάσµατος του σήµατος πληροφορίας πρέπει τυχαία, απείρου µήκους και υψηλού ρυθµού στη πράξη ψευδοτυχαίες ή ακολουθίες ψευδοθορύβου (Pseudo-random, Pseudo-noise sequences, PN) ιδιότητες: είναι εύκολο να παραχθούν έχουν τυχαίες ιδιότητες έχουν µεγάλες περιόδους επανάληψης είναι δύσκολο να αναπαραχθούν από ένα µικρό τµήµα τους. 5

52 Στη πράξη: γραµµικές ακολουθίες µεγίστου µήκους (Linear Μaximal Length Sequence, LMLS) ή ψευδοτυχαίες ακολουθίες µεγίστου µήκους (m-ακολουθίες) (Pseudo-noise maximal length sequence, m-sequences) Παραγωγή: απλή διάταξη γεννήτριας (Pseudo-random Generator, PRG) (καταχωρητής ολίσθησης µε γραµµική ανατροφοδότηση (linear feedback shift register)) 52

53 Αθροιστής modulo-2 C C 2 C m FF FF FF ρολόι έξοδος αριθµός των δυαδικών ψηφίων µετά από τον οποίο η ακολουθία επαναλαµβάνεται λέγεται περίοδος Ν: N= 2 m όπου m είναι ο αριθµός των χρησιµοποιούµενων FF 53

54 Ιδιότητες ακολουθιών µεγίστου µήκους ιδιότητα ισορροπίας (balance property): Ο αριθµός των λογικών είναι πάντα κατά ένα µεγαλύτερος του αριθµού των λογικών ιδιότητα εµφάνισης διαδοχικών και (run property): στη διάρκεια της περιόδου Ν κάθε ακολουθίας µεγίστου µήκους, το πλήθος εµφάνισης q διαδοχικών λογικών ή είναι m (q-2) 2 ιδιότητα αυτοσυσχέτισης (autocorrelation property): η συνάρτηση αυτοσυσχέτισης R x (τ) (autocorrelation function) µιας ακολουθίας µεγίστου µήκους παίρνει δύο τιµές: για µηδενική ολίσθηση παίρνει τη µέγιστη τιµή της, δηλαδή, N= 2 m ενώ για οποιαδήποτε άλλη ολίσθηση µεγαλύτερη του ενός bit παίρνει την τιµή 54

55 ΕΝ ΕΙΚΤΙΚΗ ΒΙΒΛΙΟΓΡΑΦΙΑ ΜΑΘΗΜΑΤΟΣ J.G.Proakis,M.Salehi, Mετάφραση: Κ.Καρούµπαλος, Ζέρβας Ε., Καραµπογιάς Σ.,Σαγκριώτης Ε., Συστήµατα Τηλεπικοινωνιών, Ε.Κ.Π.Α., Αθήνα 22 J.G.Proakis, Digital Communications, 3 rd Edit., McGraw-Hill, 995.Χ.Βούκαλης, Θεωρία Πληροφοριών και Κωδίκων, Εκδόσεις ΙΩΝ, Περιστέρι, 994 H.P.Hsu, Αναλογικές και Ψηφιακές Επικοινωνίες, Σειρά Schaum, Μετάφραση:Ι.Βαρδιάµπασης, Εκδόσεις Τζιόλας, 22 T.Cover and J.Thomas, Elements of Information Theory,New York: Wiley, 99 Ν.Σ.Τζάννες, Θεωρία Μετάδοσης Πληροφοριών, Τόµος II, Εισαγωγή στις Θεωρίες Shannon και Κωδίκων, Πάτρα, 98 55

ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙ ΕΥΤΙΚΟ Ι ΡΥΜΑ (Τ.Ε.Ι.) ΛΑΜΙΑΣ ΣΧΟΛΗ ΤΕΧΝΟΛΟΓΙΚΩΝ ΕΦΑΡΜΟΓΩΝ ΤΜΗΜΑ ΗΛΕΚΤΡΟΝΙΚΗΣ ΣΥΜΠΛΗΡΩΜΑΤΙΚΕΣ ΣΗΜΕΙΩΣΕΙΣ

ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙ ΕΥΤΙΚΟ Ι ΡΥΜΑ (Τ.Ε.Ι.) ΛΑΜΙΑΣ ΣΧΟΛΗ ΤΕΧΝΟΛΟΓΙΚΩΝ ΕΦΑΡΜΟΓΩΝ ΤΜΗΜΑ ΗΛΕΚΤΡΟΝΙΚΗΣ ΣΥΜΠΛΗΡΩΜΑΤΙΚΕΣ ΣΗΜΕΙΩΣΕΙΣ ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙ ΕΥΤΙΚΟ Ι ΡΥΜΑ (Τ.Ε.Ι.) ΛΑΜΙΑΣ ΣΧΟΛΗ ΤΕΧΝΟΛΟΓΙΚΩΝ ΕΦΑΡΜΟΓΩΝ ΤΜΗΜΑ ΗΛΕΚΤΡΟΝΙΚΗΣ ΣΥΜΠΛΗΡΩΜΑΤΙΚΕΣ ΣΗΜΕΙΩΣΕΙΣ ΜΑΘΗΜΑ: «ΘΕΩΡΙΑ ΠΛΗΡΟΦΟΡΙΑΣ-ΚΩ ΙΚΕΣ» ρ. ΒΑΡΖΑΚΑΣ ΠΑΝΑΓΙΩΤΗΣ ΕΠΙΚΟΥΡΟΣ ΚΑΘΗΓΗΤΗΣ

Διαβάστε περισσότερα

ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙ ΕΥΤΙΚΟ Ι ΡΥΜΑ (Τ.Ε.Ι.) ΛΑΜΙΑΣ ΣΧΟΛΗ ΤΕΧΝΟΛΟΓΙΚΩΝ ΕΦΑΡΜΟΓΩΝ ΤΜΗΜΑ ΗΛΕΚΤΡΟΝΙΚΗΣ Ι ΑΚΤΙΚΕΣ ΣΗΜΕΙΩΣΕΙΣ

ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙ ΕΥΤΙΚΟ Ι ΡΥΜΑ (Τ.Ε.Ι.) ΛΑΜΙΑΣ ΣΧΟΛΗ ΤΕΧΝΟΛΟΓΙΚΩΝ ΕΦΑΡΜΟΓΩΝ ΤΜΗΜΑ ΗΛΕΚΤΡΟΝΙΚΗΣ Ι ΑΚΤΙΚΕΣ ΣΗΜΕΙΩΣΕΙΣ ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙ ΕΥΤΙΚΟ Ι ΡΥΜΑ (Τ.Ε.Ι.) ΛΑΜΙΑΣ ΣΧΟΛΗ ΤΕΧΝΟΛΟΓΙΚΩΝ ΕΦΑΡΜΟΓΩΝ ΤΜΗΜΑ ΗΛΕΚΤΡΟΝΙΚΗΣ Ι ΑΚΤΙΚΕΣ ΣΗΜΕΙΩΣΕΙΣ ΕΡΓΑΣΤΗΡΙΟ: «ΘΕΩΡΙΑ ΠΛΗΡΟΦΟΡΙΑΣ-ΚΩ ΙΚΕΣ» ρ. ΒΑΡΖΑΚΑΣ ΠΑΝΑΓΙΩΤΗΣ ΕΠΙΚΟΥΡΟΣ ΚΑΘΗΓΗΤΗΣ

Διαβάστε περισσότερα

Πρόλογος 1. 1 Μαθηµατικό υπόβαθρο 9

Πρόλογος 1. 1 Μαθηµατικό υπόβαθρο 9 Πρόλογος 1 Μαθηµατικό υπόβαθρο 7 1 Μαθηµατικό υπόβαθρο 9 1.1 Η αριθµητική υπολοίπων.............. 10 1.2 Η πολυωνυµική αριθµητική............ 14 1.3 Θεωρία πεπερασµένων οµάδων και σωµάτων.... 17 1.4 Πράξεις

Διαβάστε περισσότερα

ΑΝΙΧΝΕΥΣΗ ΚΑΙ ΙΟΡΘΩΣΗ ΣΦΑΛΜΑΤΩΝ

ΑΝΙΧΝΕΥΣΗ ΚΑΙ ΙΟΡΘΩΣΗ ΣΦΑΛΜΑΤΩΝ Θεωρία-Εισαγωγή ΑΝΙΧΝΕΥΣΗ ΚΑΙ ΙΟΡΘΩΣΗ ΣΦΑΛΜΑΤΩΝ Τα σφάλµατα µετάδοσης στις τηλεπικοινωνιακές γραµµές προκαλούνται από µία ποικιλία φυσικών φαινοµένων. Ένα φαινόµενο το οποίο είναι πάντοτε παρόν είναι ο

Διαβάστε περισσότερα

Ψηφιακοί Υπολογιστές

Ψηφιακοί Υπολογιστές 1 η Θεµατική Ενότητα : υαδικά Συστήµατα Ψηφιακοί Υπολογιστές Παλαιότερα οι υπολογιστές χρησιµοποιούνταν για αριθµητικούς υπολογισµούς Ψηφίο (digit) Ψηφιακοί Υπολογιστές Σήµατα (signals) : διακριτά στοιχεία

Διαβάστε περισσότερα

Εργαστήριο 8: Τεχνικές πολλαπλής πρόσβασης στα Δίκτυα Κινητών Επικοινωνιών

Εργαστήριο 8: Τεχνικές πολλαπλής πρόσβασης στα Δίκτυα Κινητών Επικοινωνιών Εργαστήριο 8: Τεχνικές πολλαπλής πρόσβασης στα Δίκτυα Κινητών Επικοινωνιών Σε ένα σύστημα τηλεπικοινωνιών πολλών χρηστών, όπου περισσότεροι από ένας χρήστες στέλνουν πληροφορίες μέσω ενός κοινού καναλιού,

Διαβάστε περισσότερα

5.1 Θεωρητική εισαγωγή

5.1 Θεωρητική εισαγωγή ΨΗΦΙΑΚΑ ΚΥΚΛΩΜΑΤΑ - ΕΡΓΑΣΤΗΡΙΑΚΗ ΑΣΚΗΣΗ 5 ΚΩ ΙΚΟΠΟΙΗΣΗ BCD Σκοπός: Η κατανόηση της µετατροπής ενός τύπου δυαδικής πληροφορίας σε άλλον (κωδικοποίηση/αποκωδικοποίηση) µε τη µελέτη της κωδικοποίησης BCD

Διαβάστε περισσότερα

Περιεχόμενα. Πρώτο Κεφάλαιο. Εισαγωγή στα Ψηφιακά Συστήματα. Δεύτερο Κεφάλαιο. Αριθμητικά Συστήματα Κώδικες

Περιεχόμενα. Πρώτο Κεφάλαιο. Εισαγωγή στα Ψηφιακά Συστήματα. Δεύτερο Κεφάλαιο. Αριθμητικά Συστήματα Κώδικες Πρώτο Κεφάλαιο Εισαγωγή στα Ψηφιακά Συστήματα 1.1 Αναλογικά και Ψηφιακά Σήματα και Συστήματα... 1 1.2 Βασικά Ψηφιακά Κυκλώματα... 3 1.3 Ολοκληρωμένα κυκλώματα... 4 1.4 Τυπωμένα κυκλώματα... 7 1.5 Εργαλεία

Διαβάστε περισσότερα

ΠΕΡΙΕΧΟΜΕΝΑ. Πρόλογος...9 ΚΕΦ. 1. ΑΡΙΘΜΗΤΙΚΑ ΣΥΣΤΗΜΑΤΑ - ΚΩΔΙΚΕΣ

ΠΕΡΙΕΧΟΜΕΝΑ. Πρόλογος...9 ΚΕΦ. 1. ΑΡΙΘΜΗΤΙΚΑ ΣΥΣΤΗΜΑΤΑ - ΚΩΔΙΚΕΣ ΠΕΡΙΕΧΟΜΕΝΑ Πρόλογος...9 ΚΕΦ. 1. ΑΡΙΘΜΗΤΙΚΑ ΣΥΣΤΗΜΑΤΑ - ΚΩΔΙΚΕΣ 1.1 Εισαγωγή...11 1.2 Τα κύρια αριθμητικά Συστήματα...12 1.3 Μετατροπή αριθμών μεταξύ των αριθμητικών συστημάτων...13 1.3.1 Μετατροπή ακέραιων

Διαβάστε περισσότερα

Κώδικες µεταβλητού µήκους

Κώδικες µεταβλητού µήκους 6 Κώδικες µεταβλητού µήκους Στο κεφάλαιο αυτό µελετώνται οι κώδικες µεταβλητού µήκους, στους οποίους όλες οι λέξεις δεν έχουν το ίδιο µήκος και δίνονται οι µέ- ϑοδοι Fano-Shannon και Huffman για την κατασκευή

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ, ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ

ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ, ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ, ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΕΠΛ 4: ΣΥΣΤΗΜΑΤΑ ΠΟΛΥΜΕΣΩΝ Θεωρητικές Ασκήσεις (# ): ειγµατοληψία, κβαντοποίηση και συµπίεση σηµάτων. Στην τηλεφωνία θεωρείται ότι το ουσιαστικό περιεχόµενο της

Διαβάστε περισσότερα

ΣΗΜΑΤΑ ΚΑΙ ΣΥΣΤΗΜΑΤΑ. Εισαγωγή στα Σήµατα Εισαγωγή στα Συστήµατα Ανάπτυγµα - Μετασχηµατισµός Fourier Μετασχηµατισµός Z

ΣΗΜΑΤΑ ΚΑΙ ΣΥΣΤΗΜΑΤΑ. Εισαγωγή στα Σήµατα Εισαγωγή στα Συστήµατα Ανάπτυγµα - Μετασχηµατισµός Fourier Μετασχηµατισµός Z ΣΗΜΑΤΑ ΚΑΙ ΣΥΣΤΗΜΑΤΑ Εισαγωγή στα Σήµατα Εισαγωγή στα Συστήµατα Ανάπτυγµα - Μετασχηµατισµός Fourier Μετασχηµατισµός Laplace Μετασχηµατισµός Z Εφαρµογές Παράδειγµα ενός ηλεκτρικού συστήµατος Σύστηµα Παράδειγµα

Διαβάστε περισσότερα

ΘΕΜΑ. Προσομοίωση Φυσικού Επιπέδου και Επιπέδου Σύνδεσης Δεδομένων Ασύρματου Δικτύου Ιατρικών Αισθητήρων

ΘΕΜΑ. Προσομοίωση Φυσικού Επιπέδου και Επιπέδου Σύνδεσης Δεδομένων Ασύρματου Δικτύου Ιατρικών Αισθητήρων Πανεπιστήµιο Πατρών Σχολή Επιστηµών Υγείας Τµήµα Ιατρικής Εθνικό Μετσόβιο Πολυτεχνείο Τµήµα Ηλεκτρολόγων Μηχανικών & Μηχανικών Υπολογιστών Εθνικό Μετσόβιο Πολυτεχνείο Τµήµα Μηχανολόγων Μηχανικών ΔΙΑΤΜΗΜΑΤΙΚΟ

Διαβάστε περισσότερα

Εργαστηριακή Ασκηση 2- Κυκλικοί Κώδικες

Εργαστηριακή Ασκηση 2- Κυκλικοί Κώδικες Εργαστηριακή άσκηση 2 Θεωρία ΚΩ ΙΚΕΣ ΑΝΙΧΝΕΥΣΗΣ ΣΦΑΛΜΑΤΩΝ Οι κώδικες διόρθωσης σφαλµάτων χρησιµοποιούνται µερικές φορές για µετάδοση δεδοµένων, για παράδειγµα, όταν το κανάλι είναι µονόδροµο (simplex)

Διαβάστε περισσότερα

Μετάδοση πληροφορίας - Διαμόρφωση

Μετάδοση πληροφορίας - Διαμόρφωση ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΤΜΗΜΑ ΜΗΧ. Η/Υ & ΠΛΗΡΟΦΟΡΙΚΗΣ Μετάδοση πληροφορίας - Διαμόρφωση MYE006-ΠΛΕ065: ΑΣΥΡΜΑΤΑ ΔΙΚΤΥΑ Ευάγγελος Παπαπέτρου Διάρθρωση μαθήματος Βασικές έννοιες μετάδοσης Διαμόρφωση ορισμός

Διαβάστε περισσότερα

Εξομοίωση Τηλεπικοινωνιακού Συστήματος Βασικής Ζώνης

Εξομοίωση Τηλεπικοινωνιακού Συστήματος Βασικής Ζώνης Πανεπιστήμιο Πατρών Τμήμα Μηχ. Η/Υ & Πληροφορικής Ακαδημαϊκό Έτος 009-010 Ψ Η Φ Ι Α Κ Ε Σ Τ Η Λ Ε Π Ι Κ Ο Ι Ν Ω Ν Ι ΕΣ η Εργαστηριακή Άσκηση: Εξομοίωση Τηλεπικοινωνιακού Συστήματος Βασικής Ζώνης Στην άσκηση

Διαβάστε περισσότερα

ΤΕΙ ΚΡΗΤΗΣ ΤΜ. ΕΦΑΡΜΟΣΜΕΝΗΣ ΠΛΗΡ/ΚΗΣ & ΠΟΛΥΜΕΣΩΝ ΔΙΔΑΣΚΩΝ: Δρ. Γ. ΓΑΡΔΙΚΗΣ. Δορυφορική ψηφιακή τηλεόραση

ΤΕΙ ΚΡΗΤΗΣ ΤΜ. ΕΦΑΡΜΟΣΜΕΝΗΣ ΠΛΗΡ/ΚΗΣ & ΠΟΛΥΜΕΣΩΝ ΔΙΔΑΣΚΩΝ: Δρ. Γ. ΓΑΡΔΙΚΗΣ. Δορυφορική ψηφιακή τηλεόραση ΤΕΙ ΚΡΗΤΗΣ ΤΜ. ΕΦΑΡΜΟΣΜΕΝΗΣ ΠΛΗΡ/ΚΗΣ & ΠΟΛΥΜΕΣΩΝ ΔΙΔΑΣΚΩΝ: Δρ. Γ. ΓΑΡΔΙΚΗΣ 4 Δορυφορική ψηφιακή τηλεόραση Δορυφορική τηλεόραση: Η εκπομπή και λήψη του τηλεοπτικού σήματος από επίγειους σταθμούς μεταξύ

Διαβάστε περισσότερα

Δίαυλος Πληροφορίας. Δρ. Α. Πολίτης

Δίαυλος Πληροφορίας. Δρ. Α. Πολίτης Δίαυλος Πληροφορίας Η λειτουργία του διαύλου πληροφορίας περιγράφεται από: Τον πίνακα διαύλου μαθηματική περιγραφή. Το διάγραμμα διάυλου παραστατικός τρόπος περιγραφής. Πίνακας Διαύλου Κατασκευάζεται με

Διαβάστε περισσότερα

Κωδικοποίηση Πηγής. Δρ. Α. Πολίτης

Κωδικοποίηση Πηγής. Δρ. Α. Πολίτης Κωδικοποίηση Πηγής Coder Decoder Μεταξύ πομπού και καναλιού παρεμβάλλεται ο κωδικοποιητής (coder). Έργο του: η αντικατάσταση των συμβόλων πληροφορίας της πηγής με εναλλακτικά σύμβολα ή λέξεις. Κωδικοποίηση

Διαβάστε περισσότερα

Τμήμα Μηχανικών Η/Υ και Πληροφορικής. Κινητά Δίκτυα Επικοινωνιών

Τμήμα Μηχανικών Η/Υ και Πληροφορικής. Κινητά Δίκτυα Επικοινωνιών Τμήμα Μηχανικών Η/Υ και Πληροφορικής Εργαστήριο Επεξεργασίας Σημάτων και Τηλεπικοινωνιών Κινητά Δίκτυα Επικοινωνιών Μέρος Α: Τηλεπικοινωνιακά Θέματα: Πολλαπλές Κεραίες και Επικοινωνίες Χώρου - Χρόνου Μετάδοση

Διαβάστε περισσότερα

ΠΡΟΣΟΜΟΙΩΣΗ BPSK ΠΟΜΠΟΔΕΚΤΗ ΜΕ ΚΩΔΙΚΟΠΟΙΗΣΗ HAMMING ΣΕ ΠΕΡΙΒΑΛΛΟΝ AWGN ΕΡΓΑΣΤΗΡΙΟ ΤΗΛΕΠΙΚΟΙΝΩΝΙΑΚΩΝ ΣΥΣΤΗΜΑΤΩΝ

ΠΡΟΣΟΜΟΙΩΣΗ BPSK ΠΟΜΠΟΔΕΚΤΗ ΜΕ ΚΩΔΙΚΟΠΟΙΗΣΗ HAMMING ΣΕ ΠΕΡΙΒΑΛΛΟΝ AWGN ΕΡΓΑΣΤΗΡΙΟ ΤΗΛΕΠΙΚΟΙΝΩΝΙΑΚΩΝ ΣΥΣΤΗΜΑΤΩΝ ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ & ΜΗΧΑΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ ΠΡΟΣΟΜΟΙΩΣΗ BPSK ΠΟΜΠΟΔΕΚΤΗ ΜΕ ΚΩΔΙΚΟΠΟΙΗΣΗ HAMMING ΣΕ ΠΕΡΙΒΑΛΛΟΝ AWGN ΕΡΓΑΣΤΗΡΙΟ ΤΗΛΕΠΙΚΟΙΝΩΝΙΑΚΩΝ

Διαβάστε περισσότερα

! Εάν ο αριθμός διαθέτει περισσότερα bits, χρησιμοποιούμε μεγαλύτερες δυνάμεις του 2. ! Προσοχή στη θέση του περισσότερο σημαντικού bit!

! Εάν ο αριθμός διαθέτει περισσότερα bits, χρησιμοποιούμε μεγαλύτερες δυνάμεις του 2. ! Προσοχή στη θέση του περισσότερο σημαντικού bit! Ιόνιο Πανεπιστήμιο Τμήμα Πληροφορικής Εισαγωγή στην Επιστήμη των Υπολογιστών 25-6 Πράξεις με δυαδικούς αριθμούς (αριθμητικές ) http://di.ionio.gr/~mistral/tp/csintro/ Αριθμοί Πράξεις με δυαδικούς αριθμούς

Διαβάστε περισσότερα

ΓΡΑΜΜΙΚΑ ΣΥΣΤΗΜΑΤΑ ΕΞΙΣΩΣΕΩΝ

ΓΡΑΜΜΙΚΑ ΣΥΣΤΗΜΑΤΑ ΕΞΙΣΩΣΕΩΝ ΓΡΑΜΜΙΚΑ ΣΥΣΤΗΜΑΤΑ ΕΞΙΣΩΣΕΩΝ Θα ξεκινήσουµε την παρουσίαση των γραµµικών συστηµάτων µε ένα απλό παράδειγµα από τη Γεωµετρία, το οποίο ϑα µας ϐοηθήσει στην κατανόηση των συστηµάτων αυτών και των συνθηκών

Διαβάστε περισσότερα

ΠΟΛΥΤΕΧΝΕΙΟ ΚΡΗΤΗΣ Τµήµα Ηλεκτρονικών Μηχανικών & Μηχανικών Η/Υ ΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ

ΠΟΛΥΤΕΧΝΕΙΟ ΚΡΗΤΗΣ Τµήµα Ηλεκτρονικών Μηχανικών & Μηχανικών Η/Υ ΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ ΠΟΛΥΤΕΧΝΕΙΟ ΚΡΗΤΗΣ Τµήµα Ηλεκτρονικών Μηχανικών & Μηχανικών Η/Υ ΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ Επίδοση επαναληπτικών (Turbo) κωδίκων σε δίαυλο κινητών επικοινωνιών Κωνσταντίνος Κωνσταντινίδης Επιβλέπων : Καθηγητής

Διαβάστε περισσότερα

Ψηφιακή Επεξεργασία Σηµμάτων

Ψηφιακή Επεξεργασία Σηµμάτων Ψηφιακή Επεξεργασία Σηµμάτων Διάλεξη 3: DSP for Audio ΚΩΔΙΚΟΠΟΙΗΣΗ ΚΑΙ ΣΥΜΠΙΕΣΗ ΗΧΗΤΙΚΩΝ ΔΕΔΟΜΕΝΩΝ ΤΟ ΠΡΟΤΥΠΟ ISO/IEC 11172-3 MPEG-1 Δρ. Θωµμάς Ζαρούχας Επιστηµμονικός Συνεργάτης Μεταπτυχιακό Πρόγραµμµμα:

Διαβάστε περισσότερα

Ψηφιακή Επεξεργασία Εικόνας

Ψηφιακή Επεξεργασία Εικόνας ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα Ψηφιακή Επεξεργασία Εικόνας Ενότητα 6 : Κωδικοποίηση & Συμπίεση εικόνας Ιωάννης Έλληνας Τμήμα Η/ΥΣ Άδειες Χρήσης Το παρόν εκπαιδευτικό

Διαβάστε περισσότερα

Διπλωματική Εργασία του φοιτητή του Τμήματος Ηλεκτρολόγων Μηχανικών και Τεχνολογίας Υπολογιστών της Πολυτεχνικής Σχολής του Πανεπιστημίου Πατρών

Διπλωματική Εργασία του φοιτητή του Τμήματος Ηλεκτρολόγων Μηχανικών και Τεχνολογίας Υπολογιστών της Πολυτεχνικής Σχολής του Πανεπιστημίου Πατρών ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΑΤΡΩΝ ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΚΑΙ ΤΕΧΝΟΛΟΓΙΑΣ ΥΠΟΛΟΓΙΣΤΩΝ ΤΟΜΕΑΣ: Η/Υ ΕΡΓΑΣΤΗΡΙΟ ΣΧΕΔΙΑΣΜΟΥ ΟΛΟΚΛΗΡΩΜΕΝΩΝ ΚΥΚΛΩΜΑΤΩΝ ΜΕΓΑΛΗΣ ΚΛΙΜΑΚΑΣ Διπλωματική Εργασία του φοιτητή του Τμήματος Ηλεκτρολόγων

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 3ο ΤΥΧΑΙΟΙ ΑΡΙΘΜΟΙ ΕΛΕΓΧΟΣ ΤΥΧΑΙΟΤΗΤΑΣ

ΚΕΦΑΛΑΙΟ 3ο ΤΥΧΑΙΟΙ ΑΡΙΘΜΟΙ ΕΛΕΓΧΟΣ ΤΥΧΑΙΟΤΗΤΑΣ ΚΕΦΑΛΑΙΟ 3ο ΤΥΧΑΙΟΙ ΑΡΙΘΜΟΙ ΕΛΕΓΧΟΣ ΤΥΧΑΙΟΤΗΤΑΣ 3.1 Τυχαίοι αριθμοί Στην προσομοίωση διακριτών γεγονότων γίνεται χρήση ακολουθίας τυχαίων αριθμών στις περιπτώσεις που απαιτείται η δημιουργία στοχαστικών

Διαβάστε περισσότερα

Δομές Δεδομένων και Αλγόριθμοι

Δομές Δεδομένων και Αλγόριθμοι Δομές Δεδομένων και Αλγόριθμοι Χρήστος Γκόγκος ΤΕΙ Ηπείρου Χειμερινό Εξάμηνο 2014-2015 Παρουσίαση 20 Huffman codes 1 / 12 Κωδικοποίηση σταθερού μήκους Αν χρησιμοποιηθεί κωδικοποίηση σταθερού μήκους δηλαδή

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΣΧΟΛΗ ΘΕΤΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΚΑΙ ΤΕΧΝΟΛΟΓΙΑΣ ΠΡΟΓΡΑΜΜΑ ΣΠΟΥΔΩΝ ΠΛΗΡΟΦΟΡΙΚΗΣ ΘΕΜΑΤΙΚΗ ΕΝΟΤΗΤΑ: ΠΛΗ-21

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΣΧΟΛΗ ΘΕΤΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΚΑΙ ΤΕΧΝΟΛΟΓΙΑΣ ΠΡΟΓΡΑΜΜΑ ΣΠΟΥΔΩΝ ΠΛΗΡΟΦΟΡΙΚΗΣ ΘΕΜΑΤΙΚΗ ΕΝΟΤΗΤΑ: ΠΛΗ-21 ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΣΧΟΛΗ ΘΕΤΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΚΑΙ ΤΕΧΝΟΛΟΓΙΑΣ ΠΡΟΓΡΑΜΜΑ ΣΠΟΥΔΩΝ ΠΛΗΡΟΦΟΡΙΚΗΣ ΘΕΜΑΤΙΚΗ ΕΝΟΤΗΤΑ: ΠΛΗ-2 ΨΗΦΙΑΚΗ ΣΧΕΔΙΑΣΗ ΑΣΚΗΣΕΙΙΣ ΓΡΑΠΤΩΝ ΕΡΓΑΣΙΙΩΝ & ΘΕΜΑΤΩΝ ΕΞΕΤΑΣΕΩΝ ΣΥΝΤΕΛΕΣΤΕΣ

Διαβάστε περισσότερα

Πρόγραμμα Επικαιροποίησης Γνώσεων Αποφοίτων ΑΡΙΘΜΗΤΙΚΑ ΣΥΣΤΗΜΑΤΑ

Πρόγραμμα Επικαιροποίησης Γνώσεων Αποφοίτων ΑΡΙΘΜΗΤΙΚΑ ΣΥΣΤΗΜΑΤΑ Πρόγραμμα Επικαιροποίησης Γνώσεων Αποφοίτων ΕΝΟΤΗΤΑ Μ1 ΨΗΦΙΑΚΑ ΗΛΕΚΤΡΟΝΙΚΑ Εκπαιδευτής: Γ. Π. ΠΑΤΣΗΣ, Επικ. Καθηγητής, Τμήμα Ηλεκτρονικών Μηχανικών, ΤΕΙ Αθήνας ΑΡΙΘΜΗΤΙΚΑ ΣΥΣΤΗΜΑΤΑ 1. Ποια είναι η βάση

Διαβάστε περισσότερα

Ενότητα 7 ΑΠΟΚΩΔΙΚΟΠΟΙΗΤΕΣ - ΚΩΔΙΚΟΠΟΙΗΤΕΣ ΑΠΟΠΛΕΚΤΕΣ - ΠΟΛΥΠΛΕΚΤΕΣ

Ενότητα 7 ΑΠΟΚΩΔΙΚΟΠΟΙΗΤΕΣ - ΚΩΔΙΚΟΠΟΙΗΤΕΣ ΑΠΟΠΛΕΚΤΕΣ - ΠΟΛΥΠΛΕΚΤΕΣ Ενότητα 7 ΑΠΟΚΩΔΙΚΟΠΟΙΗΤΕΣ - ΚΩΔΙΚΟΠΟΙΗΤΕΣ ΑΠΟΠΛΕΚΤΕΣ - ΠΟΛΥΠΛΕΚΤΕΣ Γενικές Γραμμές Δυαδικοί Αριθμοί έναντι Δυαδικών Κωδίκων Δυαδικοί Αποκωδικοποιητές Υλοποίηση Συνδυαστικής Λογικής με Δυαδικό Αποκωδικοποιητή

Διαβάστε περισσότερα

4.3. Γραµµικοί ταξινοµητές

4.3. Γραµµικοί ταξινοµητές Γραµµικοί ταξινοµητές Γραµµικός ταξινοµητής είναι ένα σύστηµα ταξινόµησης που χρησιµοποιεί γραµµικές διακριτικές συναρτήσεις Οι ταξινοµητές αυτοί αναπαρίστανται συχνά µε οµάδες κόµβων εντός των οποίων

Διαβάστε περισσότερα

Εργαστήριο 3: Διαλείψεις

Εργαστήριο 3: Διαλείψεις Εργαστήριο 3: Διαλείψεις Διάλειψη (fading) είναι η παραμόρφωση ενός διαμορφωμένου σήματος λόγω της μετάδοσης του σε ασύρματο περιβάλλον. Η προσομοίωση μίας τέτοιας μετάδοσης γίνεται με την μοντελοποίηση

Διαβάστε περισσότερα

Εργαστήριο ΨΗΦΙΑΚΗ ΛΟΓΙΚΗ. Εισαγωγή

Εργαστήριο ΨΗΦΙΑΚΗ ΛΟΓΙΚΗ. Εισαγωγή Εισαγωγή Εργαστήριο ΨΗΦΙΑΚΗ ΛΟΓΙΚΗ Ξεκινάµε την εργαστηριακή µελέτη της Ψηφιακής Λογικής των Η/Υ εξετάζοντας αρχικά τη µορφή των δεδοµένων που αποθηκεύουν και επεξεργάζονται οι υπολογιστές και προχωρώντας

Διαβάστε περισσότερα

8.1 Θεωρητική εισαγωγή

8.1 Θεωρητική εισαγωγή ΨΗΦΙΑΚΑ ΚΥΚΛΩΜΑΤΑ - ΕΡΓΑΣΤΗΡΙΑΚΗ ΑΣΚΗΣΗ 8 ΣΤΟΙΧΕΙΑ ΜΝΗΜΗΣ ΚΑΤΑΧΩΡΗΤΕΣ Σκοπός: Η µελέτη της λειτουργίας των καταχωρητών. Θα υλοποιηθεί ένας απλός στατικός καταχωρητής 4-bit µε Flip-Flop τύπου D και θα µελετηθεί

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΕΛΟΠΟΝΝΗΣΟΥ

ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΕΛΟΠΟΝΝΗΣΟΥ ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΕΛΟΠΟΝΝΗΣΟΥ ΤΜΉΜΑ ΕΠΙΣΤΉΜΗΣ & ΤΕΧΝΟΛΟΓΙΑΣ ΤΗΛΕΠΙΚΟΙΝΩΝΙΩΝ Κ 7 Επικοινωνίες ΙΙ Χειμερινό Εξάμηνο Διάλεξη η Νικόλαος Χ. Σαγιάς Επίκουρος Καθηγητής Webpage: hp://ecla.uop.gr/coure/tst25 e-ail:

Διαβάστε περισσότερα

Μελέτη Επίδοσης Συστημάτων Πολλαπλών Εισόδων Πολλαπλών Εξόδων

Μελέτη Επίδοσης Συστημάτων Πολλαπλών Εισόδων Πολλαπλών Εξόδων Μελέτη Επίδοσης Συστημάτων Πολλαπλών Εισόδων Πολλαπλών Εξόδων Γεώργιος Χ. Αλεξανδρόπουλος Διπλ. Μηχανικός Η/Υ & Πληροφορικής MSc Συστήματα Επεξεργασίας Σημάτων & Εικόνων Εργαστήριο Ασυρμάτων Επικοινωνιών

Διαβάστε περισσότερα

Επιδόσεις της σύνδεσης για κάλυψη µε κεραία πολλαπλής δέσµης σε σχέση µε κάλυψη µε κεραία απλής δέσµης

Επιδόσεις της σύνδεσης για κάλυψη µε κεραία πολλαπλής δέσµης σε σχέση µε κάλυψη µε κεραία απλής δέσµης Επιδόσεις της σύνδεσης για κάλυψη µε κεραία πολλαπλής δέσµης σε σχέση µε κάλυψη µε κεραία απλής δέσµης Η συνολική ποιότητα της σύνδεσης µέσω ραδιοσυχνοτήτων εξαρτάται από την 9000 απολαβή της κεραίας του

Διαβάστε περισσότερα

ΤΕΙ ΚΡΗΤΗΣ ΤΜ. ΕΦΑΡΜΟΣΜΕΝΗΣ ΠΛΗΡ/ΚΗΣ & ΠΟΛΥΜΕΣΩΝ ΔΙΔΑΣΚΩΝ: Δρ. Γ. ΓΑΡΔΙΚΗΣ. Επίγεια ψηφιακή τηλεόραση

ΤΕΙ ΚΡΗΤΗΣ ΤΜ. ΕΦΑΡΜΟΣΜΕΝΗΣ ΠΛΗΡ/ΚΗΣ & ΠΟΛΥΜΕΣΩΝ ΔΙΔΑΣΚΩΝ: Δρ. Γ. ΓΑΡΔΙΚΗΣ. Επίγεια ψηφιακή τηλεόραση ΤΕΙ ΚΡΗΤΗΣ ΤΜ. ΕΦΑΡΜΟΣΜΕΝΗΣ ΠΛΗΡ/ΚΗΣ & ΠΟΛΥΜΕΣΩΝ ΔΙΔΑΣΚΩΝ: Δρ. Γ. ΓΑΡΔΙΚΗΣ 5 Επίγεια ψηφιακή τηλεόραση Επίγεια τηλεόραση: Η ασύρματη εκπομπή και λήψη του τηλεοπτικού σήματος αποκλειστικά από επίγειους

Διαβάστε περισσότερα

Κινητές επικοινωνίες. Κεφάλαιο 6 Τεχνικές πoλυπλεξίας - CDMA

Κινητές επικοινωνίες. Κεφάλαιο 6 Τεχνικές πoλυπλεξίας - CDMA Κινητές επικοινωνίες Κεφάλαιο 6 Τεχνικές πoλυπλεξίας - CDMA 1 Πολυπλεξία Η πολυπλεξία επιτρέπει την παράλληλη μετάδοση δεδομένων από διαφορετικές πηγές χωρίς αλληλοπαρεμβολές. Τρία βασικά είδη TDM/TDMA

Διαβάστε περισσότερα

1. Βάσεις αριθμητικών συστημάτων 2. Μετατροπές μεταξύ ξύβάσεων 3. Αρνητικοί δυαδικοί αριθμοί 4. Αριθμητικές πράξεις δυαδικών αριθμών

1. Βάσεις αριθμητικών συστημάτων 2. Μετατροπές μεταξύ ξύβάσεων 3. Αρνητικοί δυαδικοί αριθμοί 4. Αριθμητικές πράξεις δυαδικών αριθμών ΑΡΧΙΤΕΚΤΟΝΙΚΗ ΥΠΟΛΟΓΙΣΤΩΝ MHXANIKOI Η/Υ ΚΑΙ ΠΛΗΡΟΦΟΡΙΚΗΣ ΥΑ ΙΚΟΙ ΑΡΙΘΜΟΙ (ΑΚΕΡΑΙΟΙ ΑΡΙΘΜΟΙ) Γ. Τσιατούχας Παράρτηµα A ιάρθρωση 1. Βάσεις αριθμητικών συστημάτων 2. Μετατροπές μεταξύ ξύβάσεων 3. Αρνητικοί

Διαβάστε περισσότερα

ΤΟΠΟΓΡΑΦΙΚΑ ΔΙΚΤΥΑ ΚΑΙ ΥΠΟΛΟΓΙΣΜΟΙ ΑΝΑΣΚΟΠΗΣΗ ΘΕΩΡΙΑΣ ΣΥΝΟΡΘΩΣΕΩΝ

ΤΟΠΟΓΡΑΦΙΚΑ ΔΙΚΤΥΑ ΚΑΙ ΥΠΟΛΟΓΙΣΜΟΙ ΑΝΑΣΚΟΠΗΣΗ ΘΕΩΡΙΑΣ ΣΥΝΟΡΘΩΣΕΩΝ ΤΟΠΟΓΡΑΦΙΚΑ ΔΙΚΤΥΑ ΚΑΙ ΥΠΟΛΟΓΙΣΜΟΙ ΑΝΑΣΚΟΠΗΣΗ ΘΕΩΡΙΑΣ ΣΥΝΟΡΘΩΣΕΩΝ Βασίλης Δ. Ανδριτσάνος Δρ. Αγρονόμος - Τοπογράφος Μηχανικός ΑΠΘ Επίκουρος Καθηγητής ΤΕΙ Αθήνας 3ο εξάμηνο http://eclass.teiath.gr Παρουσιάσεις,

Διαβάστε περισσότερα

Τα µπιτ και η σηµασία τους. Σχήµα bit. ΚΕΦΑΛΑΙΟ 1: Αποθήκευση εδοµένων (1/2) 1.7 Αποθήκευση κλασµάτων 1.8 Συµπίεση δεδοµένων 1.9 Σφάλµατα επικοινωνίας

Τα µπιτ και η σηµασία τους. Σχήµα bit. ΚΕΦΑΛΑΙΟ 1: Αποθήκευση εδοµένων (1/2) 1.7 Αποθήκευση κλασµάτων 1.8 Συµπίεση δεδοµένων 1.9 Σφάλµατα επικοινωνίας ΚΕΦΑΛΑΙΟ 1: Αποθήκευση εδοµένων (1/2) ΚΕΦΑΛΑΙΟ 1: Αποθήκευση εδοµένων (2/2) 1.1 Τα bits και ο τρόπος που αποθηκεύονται 1.2 Κύρια µνήµη 1.3 Αποθηκευτικά µέσα 1.4 Αναπαράσταση πληροφοριών ως σχηµάτων bits

Διαβάστε περισσότερα

Περιεχόµενα. Επικοινωνίες εδοµένων: Τρόποι Μετάδοσης και Πρωτόκολλα. Εισαγωγή

Περιεχόµενα. Επικοινωνίες εδοµένων: Τρόποι Μετάδοσης και Πρωτόκολλα. Εισαγωγή Επικοινωνίες εδοµένων: Τρόποι Μετάδοσης και Πρωτόκολλα Περιεχόµενα Εισαγωγή Επικοινωνία εδοµένων Αναλογική vs. Ψηφιακή Μετάδοση ιαµόρφωση σήµατος Κανάλια επικοινωνίας Κατεύθυνση και ρυθµοί µετάδοσης Ασύγχρονη

Διαβάστε περισσότερα

ΑΡΧΗ 1ΗΣ ΣΕΛΙΔΑΣ Γ ΗΜΕΡΗΣΙΩΝ

ΑΡΧΗ 1ΗΣ ΣΕΛΙΔΑΣ Γ ΗΜΕΡΗΣΙΩΝ ΑΡΧΗ 1ΗΣ ΣΕΛΙΔΑΣ Γ ΗΜΕΡΗΣΙΩΝ ΕΠΑΝΑΛΗΠΤΙΚΕΣ ΠΑΝΕΛΛΑΔΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΠΑΡΑΣΚΕΥΗ 14 ΙΟΥΝΙΟΥ 2013 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ ΤΕΧΝΟΛΟΓΙΚΗΣ

Διαβάστε περισσότερα

Εργαστήριο 1: Αρχές Κινητών Επικοινωνιών

Εργαστήριο 1: Αρχές Κινητών Επικοινωνιών 1.1 Βασικές μετατροπές Εργαστήριο 1: Αρχές Κινητών Επικοινωνιών Όταν μας ενδιαφέρει ο υπολογισμός μεγεθών σχετικών με στάθμες ισχύος εκπεμπόμενων σημάτων, γίνεται χρήση και της λογαριθμικής κλίμακας με

Διαβάστε περισσότερα

DVB (DVB-S, DVB-C, DVB-T, DVB-H)

DVB (DVB-S, DVB-C, DVB-T, DVB-H) 1 Το DVB (Digital Video Broadcasting) αναφέρεται στην µετάδοση ψηφιακού βίντεο και περιλαµβάνει τα εξής συστήµατα µετάδοσης: 1. Τα δορυφορικά συστήµατα DVB-S και DVB-S2 2. Το καλωδιακό σύστηµα DVB-C 3.

Διαβάστε περισσότερα

Μέσα, Πολυµέσα & µέτρηση Πληροφορίας

Μέσα, Πολυµέσα & µέτρηση Πληροφορίας ΒΕΣ 04 Συµπίεση και Μετάδοση Πολυµέσων Μέσα, Πολυµέσα & µέτρηση Πληροφορίας Νικόλας Τσαπατσούλης Επίκουρος Καθηγητής Π..407/80 Τµήµα Επιστήµης & Τεχνολογίας Τηλεπικοινωνιών Πανεπιστήµιο Πελοποννήσου Επικοινωνία:

Διαβάστε περισσότερα

Εργαστήριο 4: Κυψελωτά Δίκτυα Κινητών Επικοινωνιών

Εργαστήριο 4: Κυψελωτά Δίκτυα Κινητών Επικοινωνιών Εργαστήριο 4: Κυψελωτά Δίκτυα Κινητών Επικοινωνιών Τα κυψελωτά συστήματα εξασφαλίζουν ασύρματη κάλυψη σε μια γεωγραφική περιοχή η οποία διαιρείται σε τμήματα τα οποία είναι γνωστά ως κυψέλες (Εικόνα 1).

Διαβάστε περισσότερα

Ασκήσεις C B (2) SNR 10log( SNR) 10log(31) 14.91dB ΑΣΚΗΣΗ 1

Ασκήσεις C B (2) SNR 10log( SNR) 10log(31) 14.91dB ΑΣΚΗΣΗ 1 Ασκήσεις ΑΣΚΗΣΗ 1 Ένα ψηφιακό κανάλι πρέπει να έχει χωρητικότητα 25Mbps. Το ίδιο κανάλι έχει φάσμα μεταξύ 19 ΜΗz και 24 ΜΗz. Α)Ποιος είναι ο απαιτούμενος λόγος σήματος προς θόρυβο σε db για να λειτουργήσει

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ Θ.Ε. ΠΛΗ6 / ΓΡΑΠΤΗ ΕΡΓΑΣΙΑ # - Λύσεις Ασκήσεων Θέµα Α Έστω T t ο µέσος χρόνος µετάδοσης ενός πλαισίου δεδοµένων και Τ f, αντίστοιχα, ο χρόνος µετάδοσης πλαισίου επιβεβαίωσης αρνητικής, na, ή θετικής ac

Διαβάστε περισσότερα

Δεύτερη Σειρά Ασκήσεων

Δεύτερη Σειρά Ασκήσεων Δεύτερη Σειρά Ασκήσεων ΑΣΚΗΣΗ 1 Από ένα αθόρυβο κανάλι 4 khz παίρνουμε δείγματα κάθε 1 msec. - Ποιος είναι ο μέγιστος ρυθμός μετάδοσης δεδομένων; - Πώς μεταβάλλεται ο μέγιστος ρυθμός μετάδοσης δεδομένων

Διαβάστε περισσότερα

Υπάρχουν δύο τύποι μνήμης, η μνήμη τυχαίας προσπέλασης (Random Access Memory RAM) και η μνήμη ανάγνωσης-μόνο (Read-Only Memory ROM).

Υπάρχουν δύο τύποι μνήμης, η μνήμη τυχαίας προσπέλασης (Random Access Memory RAM) και η μνήμη ανάγνωσης-μόνο (Read-Only Memory ROM). Μνήμες Ένα από τα βασικά πλεονεκτήματα των ψηφιακών συστημάτων σε σχέση με τα αναλογικά, είναι η ευκολία αποθήκευσης μεγάλων ποσοτήτων πληροφοριών, είτε προσωρινά είτε μόνιμα Οι πληροφορίες αποθηκεύονται

Διαβάστε περισσότερα

O n+2 = O n+1 + N n+1 = α n+1 N n+2 = O n+1. α n+2 = O n+2 + N n+2 = (O n+1 + N n+1 ) + (O n + N n ) = α n+1 + α n

O n+2 = O n+1 + N n+1 = α n+1 N n+2 = O n+1. α n+2 = O n+2 + N n+2 = (O n+1 + N n+1 ) + (O n + N n ) = α n+1 + α n Η ύλη συνοπτικά... Στοιχειώδης συνδυαστική Γεννήτριες συναρτήσεις Σχέσεις αναδρομής Θεωρία Μέτρησης Polyá Αρχή Εγκλεισμού - Αποκλεισμού Σχέσεις Αναδρομής Γραμμικές Σχέσεις Αναδρομής με σταθερούς συντελεστές

Διαβάστε περισσότερα

Ημιτονοειδή σήματα Σ.Χ.

Ημιτονοειδή σήματα Σ.Χ. Ημιτονοειδή σήματα Σ.Χ. Αρμονική ταλάντωση και επειδή Ω=2πF Περιοδικό με βασική περίοδο Τ p =1/F Ημιτονοειδή σήματα Σ.Χ. 1 Ημιτονοειδή σήματα Σ.Χ. Σύμφωνα με την ταυτότητα του Euler Το ημιτονοειδές σήμα

Διαβάστε περισσότερα

5. Γεννήτριες Τυχαίων Αριθµών.

5. Γεννήτριες Τυχαίων Αριθµών. 5. Γεννήτριες Τυχαίων Αριθµών. 5.1. Εισαγωγή. Στο Κεφάλαιο αυτό θα δούµε πώς µπορούµε να δηµιουργήσουµε τυχαίους αριθµούς από την οµοιόµορφη κατανοµή στο διάστηµα [0,1]. Την κατανοµή αυτή, συµβολίζουµε

Διαβάστε περισσότερα

Γραµµικός Προγραµµατισµός - Μέθοδος Simplex

Γραµµικός Προγραµµατισµός - Μέθοδος Simplex Γραµµικός Προγραµµατισµός - Μέθοδος Simplex Η πλέον γνωστή και περισσότερο χρησιµοποιηµένη µέθοδος για την επίλυση ενός γενικού προβλήµατος γραµµικού προγραµµατισµού, είναι η µέθοδος Simplex η οποία αναπτύχθηκε

Διαβάστε περισσότερα

Περιεχόµενα. Πρόλογος 11. 0 Εισαγωγή 21

Περιεχόµενα. Πρόλογος 11. 0 Εισαγωγή 21 Περιεχόµενα Πρόλογος 11 Σκοπός αυτού του βιβλίου 11 Σε ποιους απευθύνεται αυτό το βιβλίο 12 Βασικά χαρακτηριστικά του βιβλίου 12 Κάλυψη συστηµάτων CAD 14 Εργαστηριακή υποστήριξη 14 Συνοπτική παρουσίαση

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΑΤΡΩΝ ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΚΑΙ ΤΕΧΝΟΛΟΓΙΑΣ ΥΠΟΛΟΓΙΣΤΩΝ Τομέας: Ηλεκτρονικής και Υπολογιστών Εργαστήριο Ηλεκτρονικών Εφαρμογών

ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΑΤΡΩΝ ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΚΑΙ ΤΕΧΝΟΛΟΓΙΑΣ ΥΠΟΛΟΓΙΣΤΩΝ Τομέας: Ηλεκτρονικής και Υπολογιστών Εργαστήριο Ηλεκτρονικών Εφαρμογών ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΑΤΡΩΝ ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΚΑΙ ΤΕΧΝΟΛΟΓΙΑΣ ΥΠΟΛΟΓΙΣΤΩΝ Τομέας: Ηλεκτρονικής και Υπολογιστών Εργαστήριο Ηλεκτρονικών Εφαρμογών Διπλωματική Εργασία του Φοιτητή του Τμήματος Ηλεκτρολόγων

Διαβάστε περισσότερα

ΠΛΗΡΟΦΟΡΙΑΚΑ & ΤΗΛΕΠΙΚΟΙΝΩΝΙΑΚΑ ΣΥΣΤΗΜΑΤΑ

ΠΛΗΡΟΦΟΡΙΑΚΑ & ΤΗΛΕΠΙΚΟΙΝΩΝΙΑΚΑ ΣΥΣΤΗΜΑΤΑ Οικονοµικό Πανεπιστήµιο Αθηνών Τµήµα ιοικητικής Επιστήµης & Τεχνολογίας ΠΛΗΡΟΦΟΡΙΑΚΑ & ΤΗΛΕΠΙΚΟΙΝΩΝΙΑΚΑ ΣΥΣΤΗΜΑΤΑ Κεφάλαιο 2 Αριθµητικά Συστήµατα και Αριθµητική Υπολογιστών Γιώργος Γιαγλής Περίληψη Κεφαλαίου

Διαβάστε περισσότερα

ΠΡΟΓΡΑΜΜΑ ΣΠΟΥ ΩΝ ΠΛΗΡΟΦΟΡΙΚΗΣ

ΠΡΟΓΡΑΜΜΑ ΣΠΟΥ ΩΝ ΠΛΗΡΟΦΟΡΙΚΗΣ Θεµατική Ενότητα ΠΡΟΓΡΑΜΜΑ ΣΠΟΥ ΩΝ ΠΛΗΡΟΦΟΡΙΚΗΣ Ακαδηµαϊκό Έτος 2006 2007 Γραπτή Εργασία #2 Ηµεροµηνία Παράδοσης 28-0 - 2007 ΠΛΗ 2: Ψηφιακά Συστήµατα ΠΡΟΤΕΙΝΟΜΕΝΕΣ ΛΥΣΕΙΣ Άσκηση : [5 µονάδες] Έχετε στη

Διαβάστε περισσότερα

ΠΕΡΙΕΧΟΜΕΝΑ 1 ΣΥΣΤΗΜΑΤΑ ΑΡΙΘΜΩΝ ΚΑΙ ΚΩ ΙΚΕΣ 1

ΠΕΡΙΕΧΟΜΕΝΑ 1 ΣΥΣΤΗΜΑΤΑ ΑΡΙΘΜΩΝ ΚΑΙ ΚΩ ΙΚΕΣ 1 ΠΕΡΙΕΧΟΜΕΝΑ 1 ΣΥΣΤΗΜΑΤΑ ΑΡΙΘΜΩΝ ΚΑΙ ΚΩ ΙΚΕΣ 1 1-1 Σχηµατισµός Μηνύµατος 1 1-2 Βάση Αρίθµησης 2 1-3 Παράσταση Αριθµών στο εκαδικό Σύστηµα 2 Μετατροπή υαδικού σε εκαδικό 3 Μετατροπή εκαδικού σε υαδικό 4

Διαβάστε περισσότερα

Γενικά Στοιχεία Ηλεκτρονικού Υπολογιστή

Γενικά Στοιχεία Ηλεκτρονικού Υπολογιστή Γενικά Στοιχεία Ηλεκτρονικού Υπολογιστή 1. Ηλεκτρονικός Υπολογιστής Ο Ηλεκτρονικός Υπολογιστής είναι μια συσκευή, μεγάλη ή μικρή, που επεξεργάζεται δεδομένα και εκτελεί την εργασία του σύμφωνα με τα παρακάτω

Διαβάστε περισσότερα

Matrix Algorithms. Παρουσίαση στα πλαίσια του μαθήματος «Παράλληλοι. Αλγόριθμοι» Γ. Καούρη Β. Μήτσου

Matrix Algorithms. Παρουσίαση στα πλαίσια του μαθήματος «Παράλληλοι. Αλγόριθμοι» Γ. Καούρη Β. Μήτσου Matrix Algorithms Παρουσίαση στα πλαίσια του μαθήματος «Παράλληλοι Αλγόριθμοι» Γ. Καούρη Β. Μήτσου Περιεχόμενα παρουσίασης Πολλαπλασιασμός πίνακα με διάνυσμα Πολλαπλασιασμός πινάκων Επίλυση τριγωνικού

Διαβάστε περισσότερα

2 ΟΥ και 8 ΟΥ ΚΕΦΑΛΑΙΟΥ

2 ΟΥ και 8 ΟΥ ΚΕΦΑΛΑΙΟΥ ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ ΕΠΙΜΕΛΕΙΑ: ΜΑΡΙΑ Σ. ΖΙΩΓΑ ΚΑΘΗΓΗΤΡΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΘΕΩΡΙΑ 2 ΟΥ και 8 ΟΥ ΚΕΦΑΛΑΙΟΥ ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ ΔΟΜΗ ΕΠΑΝΑΛΗΨΗΣ 1) Πότε χρησιμοποιείται η δομή επανάληψης

Διαβάστε περισσότερα

Εισαγωγή. Προχωρημένα Θέματα Τηλεπικοινωνιών. Ανάκτηση Χρονισμού. Τρόποι Συγχρονισμού Συμβόλων. Συγχρονισμός Συμβόλων. t mt

Εισαγωγή. Προχωρημένα Θέματα Τηλεπικοινωνιών. Ανάκτηση Χρονισμού. Τρόποι Συγχρονισμού Συμβόλων. Συγχρονισμός Συμβόλων. t mt Προχωρημένα Θέματα Τηλεπικοινωνιών Συγχρονισμός Συμβόλων Εισαγωγή Σε ένα ψηφιακό τηλεπικοινωνιακό σύστημα, η έξοδος του φίλτρου λήψης είναι μια κυματομορφή συνεχούς χρόνου y( an x( t n ) n( n x( είναι

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα ΕΠΕΞΕΡΓΑΣΙΑ ΕΙΚΟΝΑΣ. Ενότητα 4: Δειγματοληψία και Κβάντιση Εικόνας

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα ΕΠΕΞΕΡΓΑΣΙΑ ΕΙΚΟΝΑΣ. Ενότητα 4: Δειγματοληψία και Κβάντιση Εικόνας ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα ΕΠΕΞΕΡΓΑΣΙΑ ΕΙΚΟΝΑΣ Ενότητα 4: Δειγματοληψία και Κβάντιση Εικόνας Ιωάννης Έλληνας Τμήμα Υπολογιστικών Συστημάτων Άδειες Χρήσης

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΤΜΗΜΑ ΜΗΧ. Η/Υ & ΠΛΗΡΟΦΟΡΙΚΗΣ. Ασύρματη Διάδοση ΑΣΥΡΜΑΤΑ ΔΙΚΤΥΑ. Ευάγγελος Παπαπέτρου

ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΤΜΗΜΑ ΜΗΧ. Η/Υ & ΠΛΗΡΟΦΟΡΙΚΗΣ. Ασύρματη Διάδοση ΑΣΥΡΜΑΤΑ ΔΙΚΤΥΑ. Ευάγγελος Παπαπέτρου ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΤΜΗΜΑ ΜΗΧ. Η/Υ & ΠΛΗΡΟΦΟΡΙΚΗΣ Ασύρματη Διάδοση ΑΣΥΡΜΑΤΑ ΔΙΚΤΥΑ Ευάγγελος Παπαπέτρου Διάρθρωση μαθήματος Ασύρματη διάδοση Εισαγωγή Κεραίες διάγραμμα ακτινοβολίας, κέρδος, κατευθυντικότητα

Διαβάστε περισσότερα

SOURCE. Transmitter. Channel Receiver

SOURCE. Transmitter. Channel Receiver Εισαγωγή στις Τηλεπικοινωνίες Εισαγωγή στα Σήµατα Ψηφιακές Επικοινωνίες - ειγµατοληψία ρ. Αθανάσιος. Παναγόπουλος Λέκτορας ΕΜΠ 1 Εργαστήριο Κινητών Ραδιοεπικοινωνιών, ΣΗΜΜΥ ΕΜΠ Εισαγωγή στις Τηλεπικοινωνίες

Διαβάστε περισσότερα

ΑΡΧΙΤΕΚΤΟΝΙΚΗ ΥΠΟΛΟΓΙΣΤΩΝ. Κεφάλαιο 3

ΑΡΧΙΤΕΚΤΟΝΙΚΗ ΥΠΟΛΟΓΙΣΤΩΝ. Κεφάλαιο 3 ΑΡΧΙΤΕΚΤΟΝΙΚΗ ΥΠΟΛΟΓΙΣΤΩΝ Κεφάλαιο 3 Κεντρική Μονάδα Επεξεργασίας Κεντρική Μονάδα Επεξεργασίας Μονάδα επεξεργασίας δεδομένων Μονάδα ελέγχου Μονάδα επεξεργασίας δεδομένων Δομή Αριθμητικής Λογικής Μονάδας

Διαβάστε περισσότερα

Μοντέλο συστήματος αποδιαμόρφωσης παρουσία θορύβου

Μοντέλο συστήματος αποδιαμόρφωσης παρουσία θορύβου Μοντέλο συστήματος αποδιαμόρφωσης παρουσία θορύβου Επίδοση παρουσία θορύβου Η ανάλυση της επίδοσης των συστημάτων διαμόρφωσης παρουσία θορύβου είναι εξαιρετικά σημαντική για τη σχεδίαση των διαφόρων επικοινωνιακών

Διαβάστε περισσότερα

Ήχος. Τεχνολογία Πολυμέσων και Πολυμεσικές Επικοινωνίες 04-1

Ήχος. Τεχνολογία Πολυμέσων και Πολυμεσικές Επικοινωνίες 04-1 Ήχος Χαρακτηριστικά του ήχου Ψηφιοποίηση με μετασχηματισμό Ψηφιοποίηση με δειγματοληψία Κβαντοποίηση δειγμάτων Παλμοκωδική διαμόρφωση Συμβολική αναπαράσταση μουσικής Τεχνολογία Πολυμέσων και Πολυμεσικές

Διαβάστε περισσότερα

Τεχνολογία Πολυμέσων. Ενότητα # 4: Ήχος Διδάσκων: Γεώργιος Ξυλωμένος Τμήμα: Πληροφορικής

Τεχνολογία Πολυμέσων. Ενότητα # 4: Ήχος Διδάσκων: Γεώργιος Ξυλωμένος Τμήμα: Πληροφορικής Τεχνολογία Πολυμέσων Ενότητα # 4: Ήχος Διδάσκων: Γεώργιος Ξυλωμένος Τμήμα: Πληροφορικής Χρηματοδότηση Το παρόν εκπαιδευτικό υλικό έχει αναπτυχθεί στα πλαίσια του εκπαιδευτικού έργου του διδάσκοντα. Το

Διαβάστε περισσότερα

ΑΠΟΤΕΛΕΣΜΑΤΑ ΠΕΠΕΡΑΣΜΕΝΗΣ ΑΚΡΙΒΕΙΑΣ (ΚΒΑΝΤΙΣΜΟΥ)

ΑΠΟΤΕΛΕΣΜΑΤΑ ΠΕΠΕΡΑΣΜΕΝΗΣ ΑΚΡΙΒΕΙΑΣ (ΚΒΑΝΤΙΣΜΟΥ) ΑΠΟΤΕΛΕΣΜΑΤΑ ΠΕΠΕΡΑΣΜΕΝΗΣ ΑΚΡΙΒΕΙΑΣ (ΚΒΑΝΤΙΣΜΟΥ) 0. Εισαγωγή Τα αποτελέσµατα πεπερασµένης ακρίβειας οφείλονται στα λάθη που προέρχονται από την παράσταση των αριθµών µε µια πεπερασµένη ακρίβεια. Τα αποτελέσµατα

Διαβάστε περισσότερα

Επίκ. Καθηγητής. Θεωρία-Ασκήσεις: Παρασκευή 8:00-11:00. όροφος

Επίκ. Καθηγητής. Θεωρία-Ασκήσεις: Παρασκευή 8:00-11:00. όροφος Θεωρία-Ασκήσεις: Παρασκευή 8:00-11:00 E-mail: tsiftsis@teilam.gr URL: http://users.teilam.gr/~tsiftsis Γραφείο: Κτήριο Βιβλιοθήκης, 1 ος όροφος 1 Πηγές Μαθήματος 1. Βιβλίο: Γ. K. Καραγιαννίδης, Τηλεπικοινωνιακά

Διαβάστε περισσότερα

5 η Θεµατική Ενότητα : Μνήµη & Προγραµµατιζόµενη Λογική. Επιµέλεια διαφανειών: Χρ. Καβουσιανός

5 η Θεµατική Ενότητα : Μνήµη & Προγραµµατιζόµενη Λογική. Επιµέλεια διαφανειών: Χρ. Καβουσιανός 5 η Θεµατική Ενότητα : Μνήµη & Προγραµµατιζόµενη Λογική Επιµέλεια διαφανειών: Χρ. Καβουσιανός Μνήµη Η µνήµη καταλαµβάνει το µεγαλύτερο µέρος ενός υπολογιστικού συστήµατος Δύο τύποι: ROM - RAM RΟΜs CPU

Διαβάστε περισσότερα

Γνωστό: P (M) = 2 M = τρόποι επιλογής υποσυνόλου του M. Π.χ. M = {A, B, C} π. 1. Π.χ.

Γνωστό: P (M) = 2 M = τρόποι επιλογής υποσυνόλου του M. Π.χ. M = {A, B, C} π. 1. Π.χ. Παραδείγματα Απαρίθμησης Γνωστό: P (M 2 M τρόποι επιλογής υποσυνόλου του M Τεχνικές Απαρίθμησης Πχ M {A, B, C} P (M 2 3 8 #(Υποσυνόλων με 2 στοιχεία ( 3 2 3 #(Διατεταγμένων υποσυνόλων με 2 στοιχεία 3 2

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΡΟΓΡΑΜΜΑ ΣΠΟΥ ΩΝ «ΠΛΗΡΟΦΟΡΙΚΗ» ΜΑΘΗΜΑΤΙΚΑ Ι (ΘΕ ΠΛΗ ) TEΛΙΚΕΣ ΕΞΕΤΑΣΕΙΣ 4 Ιουνίου 7 Από τα κάτωθι Θέµατα καλείστε να λύσετε το ο που περιλαµβάνει ερωτήµατα από όλη την ύλη

Διαβάστε περισσότερα

1. ΕΙΣΑΓΩΓΗ ΣΤΟ MATLAB... 13

1. ΕΙΣΑΓΩΓΗ ΣΤΟ MATLAB... 13 ΠΙΝΑΚΑΣ ΠΕΡΙΕΧΟΜΕΝΩΝ 1. ΕΙΣΑΓΩΓΗ ΣΤΟ MATLAB... 13 1.1. Τι είναι το Matlab... 13 1.2. Περιβάλλον εργασίας... 14 1.3. Δουλεύοντας με το Matlab... 16 1.3.1. Απλές αριθμητικές πράξεις... 16 1.3.2. Σχόλια...

Διαβάστε περισσότερα

Πληροφορική. Ενότητα 4 η : Κωδικοποίηση & Παράσταση Δεδομένων. Ι. Ψαρομήλιγκος Τμήμα Λογιστικής & Χρηματοοικονομικής

Πληροφορική. Ενότητα 4 η : Κωδικοποίηση & Παράσταση Δεδομένων. Ι. Ψαρομήλιγκος Τμήμα Λογιστικής & Χρηματοοικονομικής ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα Πληροφορική Ενότητα 4 η : Κωδικοποίηση & Παράσταση Δεδομένων Ι. Ψαρομήλιγκος Τμήμα Λογιστικής & Χρηματοοικονομικής Άδειες Χρήσης

Διαβάστε περισσότερα

ΕΙΣΑΓΩΓΗ ΣΤΟΥΣ ΥΠΟΛΟΓΙΣΤΕΣ. ΜΑΘΗΜΑ 2 ο. ΑΛΓΕΒΡΑ Boole ΛΟΓΙΚΑ ΚΥΚΛΩΜΑΤΑ

ΕΙΣΑΓΩΓΗ ΣΤΟΥΣ ΥΠΟΛΟΓΙΣΤΕΣ. ΜΑΘΗΜΑ 2 ο. ΑΛΓΕΒΡΑ Boole ΛΟΓΙΚΑ ΚΥΚΛΩΜΑΤΑ ΕΙΣΑΓΩΓΗ ΣΤΟΥΣ ΥΠΟΛΟΓΙΣΤΕΣ ΜΑΘΗΜΑ 2 ο ΑΛΓΕΒΡΑ Boole ΛΟΓΙΚΑ ΚΥΚΛΩΜΑΤΑ 2009-10 ΕΙΣΑΓΩΓΗ ΣΤΟΥΣ ΥΠΟΛΟΓΙΣΤΕΣ 1 Άλγεβρα Βοοle η θεωρητική βάση των λογικών κυκλωμάτων Η άλγεβρα Βοοle ορίζεται επάνω στο σύνολο

Διαβάστε περισσότερα

ΤΗΛΕΠΙΚΟΙΝΩΝΙΑΚΑ ΣΥΣΤΗΜΑΤΑ ΙΙ (ΨΗΦΙΑΚΑ ΤΗΛΕΠΙΚΟΙΝΩΙΑΚΑ ΣΥΣΤΗΜΑΤΑ) 3 η ΟΜΑΔΑ ΑΣΚΗΣΕΩΝ

ΤΗΛΕΠΙΚΟΙΝΩΝΙΑΚΑ ΣΥΣΤΗΜΑΤΑ ΙΙ (ΨΗΦΙΑΚΑ ΤΗΛΕΠΙΚΟΙΝΩΙΑΚΑ ΣΥΣΤΗΜΑΤΑ) 3 η ΟΜΑΔΑ ΑΣΚΗΣΕΩΝ ΤΗΛΕΠΙΚΟΙΝΩΝΙΑΚΑ ΣΥΣΤΗΜΑΤΑ ΙΙ (ΨΗΦΙΑΚΑ ΤΗΛΕΠΙΚΟΙΝΩΙΑΚΑ ΣΥΣΤΗΜΑΤΑ) 3 η ΟΜΑΔΑ ΑΣΚΗΣΕΩΝ ΑΣΚΗΣΗ 1 Στο ανωτέρω Σχήμα η πρώτη κυματομορφή αποτελεί την είσοδο δύο κωδικοποιητών (Line Coders) ενώ οι επόμενες δύο

Διαβάστε περισσότερα

Κ. Ι. ΠΑΠΑΧΡΗΣΤΟΥ. Τοµέας Φυσικών Επιστηµών Σχολή Ναυτικών οκίµων ΟΡΙΖΟΥΣΕΣ. Ιδιότητες & Εφαρµογές

Κ. Ι. ΠΑΠΑΧΡΗΣΤΟΥ. Τοµέας Φυσικών Επιστηµών Σχολή Ναυτικών οκίµων ΟΡΙΖΟΥΣΕΣ. Ιδιότητες & Εφαρµογές Κ Ι ΠΑΠΑΧΡΗΣΤΟΥ Τοµέας Φυσικών Επιστηµών Σχολή Ναυτικών οκίµων ΟΡΙΖΟΥΣΕΣ Ιδιότητες & Εφαρµογές ΠΕΙΡΑΙΑΣ 2013 ΟΡΙΖΟΥΣΕΣ Έστω 2 2 πίνακας: a b A= c d Όπως γνωρίζουµε, η ορίζουσα του Α είναι ο αριθµός a

Διαβάστε περισσότερα

Ασκήσεις στα Συστήµατα Ηλεκτρονικών Επικοινωνιών Κεφάλαιο 3 ο : ΕΙΣΑΓΩΓΗ στις ΤΗΛΕΠΙΚΟΙΝΩΝΙΕΣ ΗΛΕΚΤΡΟΜΑΓΝΗΤΙΚΟ ΚΥΜΑ και ΤΕΧΝΙΚΕΣ ΙΑΜΟΡΦΩΣΗΣ

Ασκήσεις στα Συστήµατα Ηλεκτρονικών Επικοινωνιών Κεφάλαιο 3 ο : ΕΙΣΑΓΩΓΗ στις ΤΗΛΕΠΙΚΟΙΝΩΝΙΕΣ ΗΛΕΚΤΡΟΜΑΓΝΗΤΙΚΟ ΚΥΜΑ και ΤΕΧΝΙΚΕΣ ΙΑΜΟΡΦΩΣΗΣ Κεφάλαιο 3 ο : ΕΙΣΑΓΩΓΗ στις ΤΗΛΕΠΙΚΟΙΝΩΝΙΕΣ ΗΛΕΚΤΡΟΜΑΓΝΗΤΙΚΟ ΚΥΜΑ και ΤΕΧΝΙΚΕΣ ΙΑΜΟΡΦΩΣΗΣ 1. Ποµπός ΑΜ εκπέµπει σε φέρουσα συχνότητα 1152 ΚΗz, µε ισχύ φέροντος 10KW. Η σύνθετη αντίσταση της κεραίας είναι

Διαβάστε περισσότερα

1. Πότε χρησιμοποιούμε την δομή επανάληψης; Ποιες είναι οι διάφορες εντολές (μορφές) της;

1. Πότε χρησιμοποιούμε την δομή επανάληψης; Ποιες είναι οι διάφορες εντολές (μορφές) της; 1. Πότε χρησιμοποιούμε την δομή επανάληψης; Ποιες είναι οι διάφορες (μορφές) της; Η δομή επανάληψης χρησιμοποιείται όταν μια σειρά εντολών πρέπει να εκτελεστεί σε ένα σύνολο περιπτώσεων, που έχουν κάτι

Διαβάστε περισσότερα

Μάθηµα Εισαγωγή στις Τηλεπικοινωνίες

Μάθηµα Εισαγωγή στις Τηλεπικοινωνίες Μάθηµα Εισαγωγή στις Τηλεπικοινωνίες Ενότητα 1η Βασικές έννοιες στις Τηλεπικοινωνίες Μάθηµα 2ο ΕΘΝΙΚΟ & ΚΑΠΟ ΙΣΤΡΙΑΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ Τοµέας Επικοινωνιών και Επεξεργασίας Σήµατος Τµήµα Πληροφορικής

Διαβάστε περισσότερα

1 Αριθμητική κινητής υποδιαστολής και σφάλματα στρογγύλευσης

1 Αριθμητική κινητής υποδιαστολής και σφάλματα στρογγύλευσης 1 Αριθμητική κινητής υποδιαστολής και σφάλματα στρογγύλευσης Στη συγκεκριμένη ενότητα εξετάζουμε θέματα σχετικά με την αριθμητική πεπερασμένης ακρίβειας που χρησιμοποιούν οι σημερινοί υπολογιστές και τα

Διαβάστε περισσότερα

Περιεχόμενα. Κεφάλαιο 3 Οι ιδιότητες των αριθμών... 37 3.1 Αριθμητικά σύνολα... 37 3.2 Ιδιότητες... 37 3.3 Περισσότερες ιδιότητες...

Περιεχόμενα. Κεφάλαιο 3 Οι ιδιότητες των αριθμών... 37 3.1 Αριθμητικά σύνολα... 37 3.2 Ιδιότητες... 37 3.3 Περισσότερες ιδιότητες... Περιεχόμενα Πρόλογος... 5 Κεφάλαιο Βασικές αριθμητικές πράξεις... 5. Τέσσερις πράξεις... 5. Σύστημα πραγματικών αριθμών... 5. Γραφική αναπαράσταση πραγματικών αριθμών... 6.4 Οι ιδιότητες της πρόσθεσης

Διαβάστε περισσότερα

Εισαγωγή στην Πληροφορική & τον Προγραμματισμό

Εισαγωγή στην Πληροφορική & τον Προγραμματισμό ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα Εισαγωγή στην Πληροφορική & τον Προγραμματισμό Ενότητα 3 η : Κωδικοποίηση & Παράσταση Δεδομένων Ι. Ψαρομήλιγκος Χ. Κυτάγιας Τμήμα

Διαβάστε περισσότερα

Γραµµική Άλγεβρα. Εισαγωγικά. Μέθοδος Απαλοιφής του Gauss

Γραµµική Άλγεβρα. Εισαγωγικά. Μέθοδος Απαλοιφής του Gauss Γραµµική Άλγεβρα Εισαγωγικά Υπάρχουν δύο βασικά αριθµητικά προβλήµατα στη Γραµµική Άλγεβρα. Το πρώτο είναι η λύση γραµµικών συστηµάτων Aλγεβρικών εξισώσεων και το δεύτερο είναι η εύρεση των ιδιοτιµών και

Διαβάστε περισσότερα

ΘΕΜΑ : ΨΗΦΙΑΚΑ ΗΛΕΚΤΡΟΝΙΚΑ DIGITAL ELECTRONICS

ΘΕΜΑ : ΨΗΦΙΑΚΑ ΗΛΕΚΤΡΟΝΙΚΑ DIGITAL ELECTRONICS ΘΕΜΑ : ΨΗΦΙΑΚΑ ΗΛΕΚΤΡΟΝΙΚΑ DIGITAL ELECTRONICS ΔΙΑΡΚΕΙΑ: 1 περιόδους 16/11/2011 10:31 (31) καθ. Τεχνολογίας ΚΑΤΗΓΟΡΙΕΣ ΜΕΓΕΘΩΝ ΑΝΑΛΟΓΙΚΟ (ANALOGUE) ΨΗΦΙΑΚΟ (DIGITAL) 16/11/2011 10:38 (38) ΕΙΣΑΓΩΓΗ ΣΤΑ

Διαβάστε περισσότερα

Πράξεις με δυαδικούς αριθμούς

Πράξεις με δυαδικούς αριθμούς Ιόνιο Πανεπιστήμιο Τμήμα Πληροφορικής Εισαγωγή στην Επιστήμη των Υπολογιστών 25-6 Πράξεις με δυαδικούς αριθμούς (λογικές πράξεις) http://di.ionio.gr/~mistral/tp/csintro/ Μ.Στεφανιδάκης Εκτέλεση πράξεων

Διαβάστε περισσότερα

ΕΦΑΡΜΟΓΗ ΤΟΥ ΣΥΝΕΛΙΚΤΙΚΟΥ ΚΩ ΙΚΑ ΣΤΗΝ ΑΣΥΡΜΑΤΗ ΟΠΤΙΚΗ ΤΕΧΝΟΛΟΓΙΑ

ΕΦΑΡΜΟΓΗ ΤΟΥ ΣΥΝΕΛΙΚΤΙΚΟΥ ΚΩ ΙΚΑ ΣΤΗΝ ΑΣΥΡΜΑΤΗ ΟΠΤΙΚΗ ΤΕΧΝΟΛΟΓΙΑ ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ & ΜΗΧΑΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ ΤΟΜΕΑΣ ΤΗΛΕΠΙΚΟΙΝΩΝΙΩΝ ΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ ΕΦΑΡΜΟΓΗ ΤΟΥ ΣΥΝΕΛΙΚΤΙΚΟΥ ΚΩ ΙΚΑ ΣΤΗΝ ΑΣΥΡΜΑΤΗ ΟΠΤΙΚΗ

Διαβάστε περισσότερα

Παράρτηµα 3 Εξισώσεις Διαφορών και Στοχαστικές Διαδικασίες

Παράρτηµα 3 Εξισώσεις Διαφορών και Στοχαστικές Διαδικασίες Γιώργος Αλογοσκούφης, Θέµατα Δυναµικής Μακροοικονοµικής, Αθήνα 0 Παράρτηµα 3 Εξισώσεις Διαφορών και Στοχαστικές Διαδικασίες Στο παράρτηµα αυτό εξετάζουµε τις ιδιότητες και τους τρόπους επίλυσης των εξισώσεων

Διαβάστε περισσότερα

Συστήµατα Αριθµών, Πληροφορία, και Ψηφιακή Υπολογιστές

Συστήµατα Αριθµών, Πληροφορία, και Ψηφιακή Υπολογιστές ΚΕΦΑΛΑΙΟ 1 Συστήµατα Αριθµών, Πληροφορία, και Ψηφιακή Υπολογιστές Σελίδες 3-21, 24-26 ΚΕΦΑΛΑΙΟ 1 Περιεχόµενα 1.1 ΨΗΦΙΑΚΗ ΥΠΟΛΟΓΙΣΤΕΣ 1.2 Αναπαράσταση Αριθµών 1.3 Αριθµητικές Λειτουργίες 1.4 εκαδικοί Κώδικες

Διαβάστε περισσότερα

9. OIΚΟΥΜΕΝΙΚΕΣ ΠΥΛΕΣ ΠΟΛΛΑΠΛΩΝ ΕΙΣΟ ΩΝ

9. OIΚΟΥΜΕΝΙΚΕΣ ΠΥΛΕΣ ΠΟΛΛΑΠΛΩΝ ΕΙΣΟ ΩΝ ΕΡΓΑΣΤΗΡΙΑΚΕΣ ΑΣΚΗΣΕΙΣ 61 9. OIΚΟΥΜΕΝΙΚΕΣ ΠΥΛΕΣ ΠΟΛΛΑΠΛΩΝ ΕΙΣΟ ΩΝ I. Βασική Θεωρία Οι πύλες NAND και NOR ονομάζονται οικουμενικές πύλες (universal gates) γιατί κάθε συνδυαστικό κύκλωμα μπορεί να υλοποιηθεί

Διαβάστε περισσότερα

Κωδικοποίηση ήχου. Κωδικοποίηση καναλιού φωνής Κωδικοποίηση πηγής φωνής Αντιληπτική κωδικοποίηση Κωδικοποίηση ήχου MPEG

Κωδικοποίηση ήχου. Κωδικοποίηση καναλιού φωνής Κωδικοποίηση πηγής φωνής Αντιληπτική κωδικοποίηση Κωδικοποίηση ήχου MPEG Κωδικοποίηση ήχου Κωδικοποίηση καναλιού φωνής Κωδικοποίηση πηγής φωνής Αντιληπτική κωδικοποίηση Κωδικοποίηση ήχου MPEG Τεχνολογία Πολυµέσων και Πολυµεσικές Επικοινωνίες 10-1 Κωδικοποίηση καναλιού φωνής

Διαβάστε περισσότερα

ηµοτικό ιαδικτυακό Ραδιόφωνο και Τηλεόραση

ηµοτικό ιαδικτυακό Ραδιόφωνο και Τηλεόραση Κατάρτιση και Πιστοποίηση σε βασικές εξιότητες και Κατάρτιση σε Προηγµένες εξιότητες στη Χρήση Τεχνολογιών Πληροφορικής & Επικοινωνιών Εργαζόµενων στην Τοπική Αυτοδιοίκηση ηµοτικό ιαδικτυακό Ραδιόφωνο

Διαβάστε περισσότερα

Γραµµικη Αλγεβρα Ι Επιλυση Επιλεγµενων Ασκησεων Φυλλαδιου 4

Γραµµικη Αλγεβρα Ι Επιλυση Επιλεγµενων Ασκησεων Φυλλαδιου 4 Γραµµικη Αλγεβρα Ι Επιλυση Επιλεγµενων Ασκησεων Φυλλαδιου 4 ιδασκοντες: Ν Μαρµαρίδης - Α Μπεληγιάννης Βοηθος Ασκησεων: Χ Ψαρουδάκης Ιστοσελιδα Μαθηµατος : http://wwwmathuoigr/ abeligia/linearalgebrai/laihtml

Διαβάστε περισσότερα