SUBSTAŢII DE TRACŢIUNE ELECTRICĂ
|
|
- Ἀλαλά Μαλαξός
- 7 χρόνια πριν
- Προβολές:
Transcript
1 Unvrstt Thncă Gh. Asch Iş Fcultt d Innr Elctrcă, Enrtcă ş Inormtcă Aplctă Lortor Trcţun Elctrcă SUBAŢII DE TRACŢIUNE ELECTRICĂ. Concpţ nrlă unu sstm d trcţun lctrcă Vhcull lctrc cu lmntr d l ln d contct (vhcul nutonom, l cr surs d nr nu st p vhcul) ncstă o sr d nstlţ cr ormză un sstm d trcţun lctrcă. În. s przntă prncpll chpmnt l unu sstm d trcţun lctrcă. Instlţl d producr, trnsport ş dstruţ nr lctrc sunt consttut dn: cntrl lctrc (hdrocntrl, trmocntrl, cntrl nuclr, oln), stţ d trnsormr rdcător d tnsun ş lnl lctrc rn d înltă tnsun LIT (0 kv, 0 kv, 440 kv) pntru trnsportul nr lctrc l mr dstnţă. D mnţont că cst LIT B L SS LC V nstlţ nu sunt spcc trcţun lctrc. F.. Schm nrlă unu sstm d trcţun lctrcă. Sustţl d trcţun rlzză rcordr l sstmul nţonl lctronrtc d înltă tnsun su l sstmul lctronrtc propru l că rt, prcum ş dptr prmtrlor nr lctrc (tnsun, curnt, rcvnţă) l vlorl stndrdzt ncsr l ln d contct LC. Ln d contct LC st o rţ lctrcă rnă monttă dsupr că d rulr ş d l cr vhculul pr nr prn ntrmdul unu cpttor su culător d curnt. D nott că unl vhcul sunt lmntt prntr-o şnă d contct, stută l nvlul solulu. Almntr s c în curnt contnuu su curnt ltrntv l dvrs tnsun ş rcvnţ. Cl d rulr CR st mtlcă (dn şn) pntru vhcull rovr, trmv ş mtrour, vând în clş tmp ş rol d întorcr curntulu l sustţ d trcţun. ntru unl vhcul cl d rulr pot ş dn ton su slt (troluz) su pot mxtă (pntru unl mtrour). Clurl d lmntr sunt ln lctrc rn, cr rlzză lătur într rl d josă tnsun l sustţlor d trcţun (rl poztv B) ş ln d contct. Zon nutrlă ZN rprzntă o zonă d sprr porţunlor ln d contct lmntt d l drt z l sstmulu lctronrtc. osturl d scţonr S prmt conctăr su scţonăr lontudnl l ln d contct într două sustţ d trcţun, în cst l lmtând zon p cr s pot mnst un S ZN LC CR B
2 Sustţ d Trcţun Elctrcă dct. Scţonr lontudnlă s pot ctu suplmntr ş în postur d suscţonr SS, mplst într sustţ ş posturl d scţonr. În plus, în czul călor d rulr dul, S ş SS rlzză ş lr în prll lnlor d contct d p cl două că, c c îmunătăţşt nvlul tnsun în ctnră prn mcşorr cădrlor d tnsun. Dcă nu xstă posturl SS, lr în prll s c prn posturl d lr în prll L. Clurl d întorcr sură închdr crcutulu lctrc. El c lătur într cl d întorcr curntulu (şn) ş prt d josă tnsun sustţ d trcţun (l rl ntv ). Vhculul lctrc V pr nr d l ln d contct prn ntrmdul cpttorulu, nr p cr o trnsormă în nr mcncă l od roţlor motor, c c sură dplsr vhcululu. În czul vhcullor utonom, sstmul przntt ntror s răsşt cu numt rducr chr p vhcul. Astl, p un vhcul dsl-lctrc xstă un motor dsl cuplt cu un nrtor d c.c. su c.. (cr consttu cntrl lctrcă ), nr lctrcă nd po urnztă drct motorlor d trcţun. Astl, nu m sunt ncsr stţl rdcător d tnsun, lnl lctrc LIT, sustţl d trcţun sustţ d trcţun, în cst l lmtând zon p cr s pot, ln d contct LC, posturl d scţonr S, clurl d lmntr ş cl d întorcr, c c c c rndmntul lol l sstmulu d trcţun dsl-lctrc să m mr dcât cl l sstmulu lctrc. Astl rndmntul lol l sstmulu d trcţun lctrc, luând în consdrr c punct d plcr cntrll lctrc ş c punct nl roţl motor l locomotv, vrză într 5% ş 30%, în tmp c l o locomotvă dsl-lctrcă vrză într 4% ş 33%. Sstml d trcţun lctrcă rlzt până în prznt sunt următorl: Sstmul trzt d rcvnţă rovră, (nu s- dzvoltt dtortă dcultăţlor mr d cptr ztă); Sstmul d trcţun în curnt contnuu; Sstmul d trcţun în curnt ltrntv monozt d josă rcvnţă (6 /3 Hz,5 kv); Sstmul d trcţun în curnt ltrntv monozt d rcvnţă ndustrlă (50 Hz, 5 kv).. Sstmul d trcţun în curnt contnuu CC st sstmul în cr ln d contct st lmnttă în curnt contnuu, nd utlzt tât în trcţun lctrcă urnă cât ş în trcţun lctrcă rovră. Schm d prncpu st prznttă în ur. LIT 50 Hz RD RD B S LC c.c. B S CR F.. Sstmul d trcţun în c.c. S Autor: Ş.l.dr.n. Grl Chrc, Ş.l.dr.n. Costcă Nţucă
3 Lortor Trcţun Elctrcă 3 Sustţl d trcţun sunt lmntt d l lnl d înltă tnsun l sstmulu nrtc trzt d 0 kv su 0 kv ş 50 Hz. În sustţ r loc rducr nvlulu tnsun trzt prntr-un trnsormtor coorâtor l vlor convnl prcum ş convrtr curntulu ltrntv trzt în curnt contnuu. ntru un rd sport d surnţă în lmntr cu nr, în sustţ xstă în nrl două rupur d orţă, unul nd în uncţun r clăllt nd rzrvă. Tnsunl stndrdzt l ln d contct sunt d 750 V în trcţun urnă ş d 500V ş 3000V în trcţun rovră ş suurnă. Lmtr l 3000 V st mpusă d condţl d construcţ motorlor d c.c. cr nu pot construt rţonl l tnsun m mr d,5 kv. Cu tot cst, încă m xstă sstm d trcţun urnă cu tnsun l ln d contct d 600 V. Vrţl d tnsun în rport cu tnsun nomnlă l ln d contct (dms d pulcţ I nr. 38) sunt cuprns într 33% ş +0%. Introducr vhcullor cu rânr rcuprtvă rprzntt un ps mportnt cătr crştr cnţ nrtc sstmlor d trnsport. Frânr rcuprtvă st poslă dcă p trsul vhcululu cr rânză xstă cl puţn un vhcul în rm d trcţun cr pr nr rcuprtă în sstm, ltl nr rspctvă nd prdută în rm d rânr rosttcă. ntru lmn cstă stuţ, sustţ d trcţun pot chptă cu nvrtor (. 3). Astl ln d contct st lmnttă d l rdrsor, r când putr rcuprtă dpăşşt crnţl vhcullor d p trsu, nvrtorul st ctvt utomt ş v trnsr nr în sstmul d c.. d înltă tnsun. Dsur, cst sstm prsupun o nvstţ suplmntră mportntă, c c ncstă un studu conomc tnt. F. 3 Sustţ d trcţun pntru rcuprr d nr 3. Sstmul d trcţun în curnt ltrntv monozt d rcvnţă ndustrlă (50 Hz) Est sstmul în cr ln d contct st lmnttă în curnt ltrntv monozt cu rcvnţ d 50 Hz ş l tnsun d 5 kv nd utlzt dor în trcţun lctrc rovră, nd dzvoltt încpând cu n 50. Schm d prncpu st prznttă în ur 4. LIT 50 Hz ZN 5kV, 50Hz CR F. 4 Sstm d trcţun în c.. monozt d 50 Hz. 3
4 4 Sustţ d Trcţun Elctrcă Sustţ d trcţun st ormtă dn trnsormtor coorâtor d tnsun lmntt d l sstmul nrtc nţonl. Dorc sstmul d trcţun st un consumtor monozt, rcordr s l sstmul trzt ntroduc nsmtr d curnt ş tnsun. ntru dmnur cstor, trnsormtorl dn sustţ s conctză în montj Scott, în V/V su s rlzză conctr cclcă trnsormtorlor monozt l cl 3 z. Dorc tnsunl dstrut nu sunt în ză, p ln d contct s prvăd zon nutrl ZN lt l pământ, cr sură sprr sctorlor vcn, cst nd conctt l lt z. În cst cz lmntr ltrlă nu v m poslă, însă s pot l în prll cl două ln d contct l un că dul, d o prt ş d lt zon nutrl. În prznt st cl m utlzt sstm d trcţun lctrcă (nd ş sstmul utlzt în Român în trnsportul rovr); cst s- mpus dtortă smpltăţ în construcţ ş d conctr sustţlor l sstmul nrtc trzt d 50 Hz ş după punr l punct locomotv lctrc monozt - contnuu cu rdrsor. Vrţl dms d tnsun în rport cu tnsun nomnlă l ln d contct sunt cuprns într 4% ş +0%. Sstmul d c.. monozt d rcvnţă ndustrlă przntă unl vntj: sustţl s conctză uşor l sstmul trzt d 50 Hz, u o construcţ smplă r chpmntul utlzt st în mr prt smlr cu cl pntru sstmul nrtc nţonl; dstnţl dntr sustţ sunt mr (50-80 km); rul d contct r scţun rdusă (50-00mm ), dc chltull d nvstţ sunt m mc r ctnr st m uşoră. Dzvntjl sstmulu sunt: locomotv lctrcă st complxă; ln d contct nlunţză lnl rn d tlcomuncţ dn propr; ntroduc nsmtr în sstmul trzt, c c nlunţză ntv consumtor trzţ. 3.. Sustt d trctun cu trnsormtor monozt O stl d solut utlzză cl m smplu trnsormtor monozt, st smplă dn punct d vdr constructv ş comodă în xplotr. ntru rducr dsmtrlor în sstmul nrtc, sustţl s lă cclc l cl tr z l sstmulu dup cum s osrv n. 5. Acst c mposlă uncţonr în prll sustţlor prn lmntr ltrlă tronsonlor ln d contct ş dn cst motv prdrl d tnsun în ln d contct sunt mult mărt. F. 5 Lr cclcă sustţlor. Autor: Ş.l.dr.n. Grl Chrc, Ş.l.dr.n. Costcă Nţucă
5 Lortor Trcţun Elctrcă Sustt d trcţun cu trnsormtor Scott rn ntrmdul schm Scott (. 6) s oţn în scundrul trnsormtorulu un sstm zt d tnsun dzt cu 90 0 lctrc. In cst scop s utlzză două trnsormtor monozt cu rport d trnormr drt. S oşnust s dnum:,,ză trnsormtorul cu 3N rport d trnormr N /N s,,înălţm trnsormtorul cu rportul. N F. 6 Sustţ cu trnsormtor în montj Scott. Sstmul zt d tnsun mpun c ln d contct s scţontă n ţ sustţ prn ntrmdul un,,zon nutrl. Dsmtrl produs d cstă schmă în sstmul nrtc sunt nul dor în czul încărcăr l clor două scundr (I I ). Dorc cstă condţ nu pot îndplntă în condţl trcţun lctrc, smtrzr compltă pr întâmplător Sustt d trcţun cu trnsormtor monozt conctt în V S rlzză cu două trnsormtor dntc conctt c în ur 7. Acstă soluţ mlorză cnt dsmtrl d tnsun ntrodus d srcn monoztă d trcţun, dr dsmtrl d curnt sunt smlr soluţ cu trnsormtor trzt. Conctr cclcă l zl sstmulu nrtc sustţlor succsv prmt chlrr compltă srcnlor monozt prn ntrmdul 3 sustt. Soluţ przntă ş posltt uncţonr în prll sustţlor învcnt. Alt vntj: utlzr unor trnsormtor monozt d construcţ normlă, ncstt unu snur trnsormtor d rzrvă pntru cl două în uncţun (rzrvă d 50%), lps curnţlor d lzr, poslt rljulu tnsun su srcnă sprt p cr trnsormtor. Acstă soluţ st lr utlztă. R S T URS Tr I Tr II U I I U RS U TS Ln d contct Zon nutr F. 7 Sustţ cu trnsormtor în montj în V. 5
6 6 Sustţ d Trcţun Elctrcă 4. Inlunţ srcn nsmtrc supr sstmulu lctronrtc. Dtrmnr xprmntlă nsmtrlor In comprţ cu lţ consumtor, cl rtă lctrctă în curnt ltrntv monozt d 50 Hz st un consumtor c încrcă nsmtrc sstmul nrtc. Locomotvl lctrc u o putr nstltă d 500 kw ş sunt chpt cu rdrsor, l ctl produs d nsmtr srcn dăuându-s ş ctl produs d rmoncl supror d curnt cuzt d consumtorul dormnt. ntru dtrmnr nsmtr în uncţ d tpul sustţ, în lortor s-u modlt cl tr tpur d sustţ d c.. przntt. Astl, stndul prmt conctr monoztă trnsormtorlor dn sustţ, prcum ş conctr Scott ş în V. ntru dtrmnr xprmntlă nsmtr s c următorl oprţ: - s închd I ş s dconctză srcn chlrtă; - s cuplză p rând C, C +C ş sprt C 3 ş s otn dzchlrul dort; - s măsoră cu jutorul unu wttmtru monozt putrl p zl R, S, T, ctrl trcândus într-un tl d orm: Indcţ wttmtru: Curnt I R I S I T Tnsun U c U d s U TR h und,,c... sunt ndcţl wttmtrulu. In tl s r în vdr nu dor urmărr ndcţlor wttmtrulu, c ş snsul cstor ndcţ. Intr cst sunt urmtorl rlţ undmntl, c rs dn condt închdr trunhulu curnţlor ş tnsunlor: + + c 0 + d + 0 d () s + + h 0 + h () ntru un sstm trzt: ' 3U I cosϕ ' ' Q 3U I snϕ und U st vlor cc tnsun drct d z. Cu ndcl prm s-u nott componntl drct l curntlor s tnsunlor, r cuφ unhul dntr cst componnt. Formull cr du ltur într cl două putr sunt: + d 3 Q c h d 3 Q c h rn dunr ş scădr rlţlor (3) ş (4) s ăssc ormul vntjos pntru clculul putrlor ctv ş rctv în snsul că, prn ntrmdul sum 3 chpj s pot măsur, olosnd Autor: Ş.l.dr.n. Grl Chrc, Ş.l.dr.n. Costcă Nţucă (3) (4)
7 Lortor Trcţun Elctrcă 7 7 rlţl dt, tât putr ctvă cât ş c rctvă. Dtortă încărcăr nsmtrc sstmulu, pr d smn ş o putr nsmtrcă, ns dtă d ormul: ns 3U I und I st o componntă nvrsă curntulu. rctc, 3 ns +, und s sunt dt d: - pntru comnţ ndpndnt,,: (5) (6) - Consdrnd comnţ ndpndnt,,: (7) (8) Cu jutorul rlţlor d m sus s vor dtrmn putrl ctvă, rctvă s nsmtr. S v dtrmn rdul d dsmtr cu rlţ: Q I I ns p ns " d + δ (9) rsul lucrăr. S vor prznt cl tr tpur d sustţ pntru lmntr în c... stndul dn lortor s vor cupl p rând cl 3 tpur d sustţ ş s v complt tlul putrlor przntt m sus. 3. S vor clcul nsmtrl pntru cl tr czur olosnd rlţl d l punctul S vor prznt concluzl studulu.
CÂMPUL ELECTROMAGNETIC CVASISTAŢIONAR ÎN CONDUCTOARE MASIVE
6 CÂMPUL ELECTROMAGNETC CVASSTAŢONAR ÎN CONDUCTOARE MASVE 6.. ECUAŢLE CÂMPULU ELECTROMAGNETC CVASSTAŢONAR ÎN CONDUCTOARE MASVE MOBLE În mdl conductor mobl, cuţl câmpulu lctromgntc s obţn scrnd lgl gnrl
Cursul 10 T. rezultă V(x) < 0.
ursul uţol ătrtă V: X R V s lsă stl: ) V st oztv tă ă X u X rzultă V(). ) V st tv tă ă X u X rzultă V()
SISTEME ELECTROENERGETICE
SISTEME ELECTROEERGETICE Captolul 3 CALCLL REGIMLI PERMAET DE FCTIOARE AL SEE Trmnolog Dfnt: Calculul rgmulu prmannt d funcţonar al SEE urmarst dtrmnara tuturor mărmlor d star caractrstc al sstmulu, pornnd
BARAJ DE JUNIORI,,Euclid Cipru, 28 mai 2012 (barajul 3)
BARAJ DE JUNIORI,,Euclid Cipru, 8 mi 0 (brjul ) Problem Arătţi că dcă, b, c sunt numere rele cre verifică + b + c =, tunci re loc ineglitte xy + yz + zx Problem Fie şi b numere nturle nenule Dcă numărul
CALCULUL NUMERIC AL CÂMPULUI ELECTROMAGNETIC
CLCULUL UMERIC L CÂMPULUI ELECTROMGETIC Calculul corct al câmpulu lctromagntc prsupun cunoaştra unu modl tortc d câmp adcvat. Ecuaţl afrnt acstu modl trbu să satsfacă torml d stnţă ş unctat al soluţlor,
7. INTEGRALA IMPROPRIE. arcsin x. cos xdx
7 INTEGRALA IMPROPRIE 7 Erciţii rzolv Erciţiul 7 Să s sudiz nur urăorlor ingrl irorii şi să s drin vloril csor în cz d convrgnţă: d c sin d 3 / rcsin d cos d d sin d > R Soluţii Funcţi f : - R f s ingrilă
Lucrarea Nr. 6 Reacţia negativă paralel-paralel
Lucrre Nr. 6 ecţ netă prlel-prlel Crcutul electrc pentru studul AN pp: Schem de semnl mc AN pp: Fur. Schem electrcă pentru studul AN pp Fur 2. Schem de semnl mc crcutulu pentru studul AN pp Intern cudrpl:
TUBURI CU PEREŢI GROŞI
CAPITOLUL TUBUI CU PŢI GOŞI.. Să d nsun xl-smc Tubul suz cu ţ goş c dn cgo d lmn d zsnţă, ş num cgo coulo msv, cu cl dmnsun d clş odn d măm. Tnsunl ş vţ cso dcţ gosm lu nu o nglj c ş în czul învlolo cu
SERII RADIOACTIVE. CINETICA DEZINTEGRĂRILOR Serie radioactivă- ansamblu de elemente radioactive care derivă unele din altele prin dezintegrări α şi β
SERII RDIOTIVE. IETI DEZITEGRĂRILOR Sr radoacvă- ansamblu d lmn radoacv car drvă unl dn all prn dzngrăr α ş β ca rzula al lg ransmuaţ radoacv -prn dzngrar α, numărul d masă scad cu 4 unăţ ş numărul aomc
LUCRAREA 1 ERORI DE CALCUL NUMERIC Obiectivele lucrării Aspecte teoretice Moduri de exprimare a erorii
LUCRR 1 RORI D CLCUL NUMRIC 1.1. Obictivl lucrării În cdrul lucrării s v vidnți modul în cr roril numric pot i crctrizt, motivl priții cstor, prcum şi mnir în cr cst s propgă. S vor studi roril inrnt (cr
5 Ι ^ο 3 X X X. go > 'α. ο. o f Ο > = S 3. > 3 w»a. *= < ^> ^ o,2 l g f ^ 2-3 ο. χ χ. > ω. m > ο ο ο - * * ^r 2 =>^ 3^ =5 b Ο? UJ. > ο ο.
728!. -θ-cr " -;. '. UW -,2 =*- Os Os rsi Tf co co Os r4 Ι. C Ι m. Ι? U Ι. Ι os ν ) ϋ. Q- o,2 l g f 2-2 CT= ν**? 1? «δ - * * 5 Ι -ΐ j s a* " 'g cn" w *" " 1 cog 'S=o " 1= 2 5 ν s/ O / 0Q Ε!θ Ρ h o."o.
MATRICELE DE MASĂ ALE ELEMENTELOR FINITE UZUALE ŞI CONSIDERAłII PRIVIND INTRODUCEREA AMORTIZĂRII
6. MATRICELE DE MASĂ ALE ELEMENTELOR FINITE UUALE ŞI CONSIDERAłII PRIIND INTRODUCEREA AMORTIĂRII Elmntul fnt Masa3D S consdră un lmnt fnt d tp masă concntrată într-un punct, pntru car drcńl prncpal al
Laborator Transportul şi distribuţia energiei electrice - B. Neagu
Laborator Trasportul ş dstrbuţa rg lctrc - B. Nagu ALGORITM ŞI PROGRAM DE CALCL DETINATE ANALIZEI REGIMRILOR PERMANENTE IMETRICE DE FNCŢIONARE ALE ITEMELOR DE DITRIBŢIE FOLOIND METODA TENINILOR NODALE.
Assessment of otoacoustic emission probe fit at the workfloor
Assessment of otoacoustic emission probe fit at the workfloor t s st tt r st s s r r t rs t2 t P t rs str t t r 1 t s ér r tr st tr r2 t r r t s t t t r t s r ss r rr t 2 s r r 1 s r r t s s s r t s t
K r i t i k i P u b l i s h i n g - d r a f t
T ij = A Y i Y j /D ij A T ij i j Y i i Y j j D ij T ij = A Y α Y b i j /D c ij b c b c a LW a LC L P F Q W Q C a LW Q W a LC Q C L a LC Q C + a LW Q W L P F L/a LC L/a LW 1.000/2 = 500
ss rt çã r s t Pr r Pós r çã ê t çã st t t ê s 1 t s r s r s r s r q s t r r t çã r str ê t çã r t r r r t r s
P P P P ss rt çã r s t Pr r Pós r çã ê t çã st t t ê s 1 t s r s r s r s r q s t r r t çã r str ê t çã r t r r r t r s r t r 3 2 r r r 3 t r ér t r s s r t s r s r s ér t r r t t q s t s sã s s s ér t
Αυτό το κεφάλαιο εξηγεί τις ΠΑΡΑΜΕΤΡΟΥΣ προς χρήση αυτού του προϊόντος. Πάντα να μελετάτε αυτές τις οδηγίες πριν την χρήση.
Αυτό το κεφάλαιο εξηγεί τις ΠΑΡΑΜΕΤΡΟΥΣ προς χρήση αυτού του προϊόντος. Πάντα να μελετάτε αυτές τις οδηγίες πριν την χρήση. 3. Λίστα Παραμέτρων 3.. Λίστα Παραμέτρων Στην αρχική ρύθμιση, μόνο οι παράμετροι
lim lim lim lim (criteriul cu şiruri); lim lim = lim ; Limite de funcńii NotaŃii: f :D R, D R, α - punct de acumulare a lui D;
Limit d fucńii Aliz mtmtică, cls XI- Limit d fucńii NotŃii: f :D R, D R, α - puct d cumulr lui D DfiiŃii l iti DfiiŃi f ( = l, l R, dcă ptru oric vciătt V lui l istă o vciătt α U lui α stfl îcât D U, α,
➆t r r 3 r st 40 Ω r t st 20 V t s. 3 t st U = U = U t s s t I = I + I
tr 3 P s tr r t t 0,5A s r t r r t s r r r r t st 220 V 3r 3 t r 3r r t r r t r r s e = I t = 0,5A 86400 s e = 43200As t r r r A = U e A = 220V 43200 As A = 9504000J r 1 kwh = 3,6MJ s 3,6MJ t 3r A = (9504000
Το άτομο του Υδρογόνου
Το άτομο του Υδρογόνου Δυναμικό Coulomb Εξίσωση Schrödinger h e (, r, ) (, r, ) E (, r, ) m ψ θφ r ψ θφ = ψ θφ Συνθήκες ψ(, r θφ, ) = πεπερασμένη ψ( r ) = 0 ψ(, r θφ, ) =ψ(, r θφ+, ) π Επιτρεπτές ενέργειες
Asupra unei metode pentru calculul unor integrale definite din functii trigonometrice
Educţi Mtemtică Vol. 1, Nr. (5), 59 68 Asupr unei metode pentru clculul unor integrle definite din functii trigonometrice Ion Alemn Astrct In this pper is presented one method of clcultion for the trigonometricl
FIZICA CAPITOLUL: ELECTRICITATE CURENT CONTINUU. Soluţii, indicaţii, schiţe de rezolvare
FZCA CAPTOLL: LCTCTAT CNT CONTN Souţii, indicţii, schiţ d rzovr. răspuns corct c;. răspuns corct d; 3. răspuns corct b; 4. răspuns corct ; 5. răspuns corct c ( t nrgi ctrică) ; 6. răspuns corct ( putr
Ecuaţia generală Probleme de tangenţă Sfera prin 4 puncte necoplanare. Elipsoidul Hiperboloizi Paraboloizi Conul Cilindrul. 1 Sfera.
pe ecuaţii generale 1 Sfera Ecuaţia generală Probleme de tangenţă 2 pe ecuaţii generale Sfera pe ecuaţii generale Ecuaţia generală Probleme de tangenţă Numim sferă locul geometric al punctelor din spaţiu
Τιμοκατάλογος αυτοκινήτων NISSAN
1 / 6 NEW MICRA (K14) 5dr 1.0lt 73hp Βενζίνη (Euro 6) 1.0lt 5dr Energy Z1E 103 0,98 101 12.690 450 1.0lt 5dr Acenta Z1A 103 0,98 101 13.690 450 1.0lt 5dr Acenta Εσωτερικό ΜΠΛΕ Z1AB 103 0,98 101 13.990
P P Ó P. r r t r r r s 1. r r ó t t ó rr r rr r rí st s t s. Pr s t P r s rr. r t r s s s é 3 ñ
P P Ó P r r t r r r s 1 r r ó t t ó rr r rr r rí st s t s Pr s t P r s rr r t r s s s é 3 ñ í sé 3 ñ 3 é1 r P P Ó P str r r r t é t r r r s 1 t r P r s rr 1 1 s t r r ó s r s st rr t s r t s rr s r q s
Curs 10 Funcţii reale de mai multe variabile reale. Limite şi continuitate.
Curs 10 Funcţii reale de mai multe variabile reale. Limite şi continuitate. Facultatea de Hidrotehnică Universitatea Tehnică "Gh. Asachi" Iaşi 2014 Fie p, q N. Fie funcţia f : D R p R q. Avem următoarele
def def punctul ( x, y )0R 2 de coordonate x = b a
Cetrul de reutte rl-mhl Zhr CENTE E GEUTTE Î prtă este evoe să se luleze r plălor ple de ee vom det plăle ple u mulńm Ştm ă ms este o măsură ttăń de mtere dtr-u orp e ms repreztă o uńe m re soză eăre plă
Jeux d inondation dans les graphes
Jeux d inondation dans les graphes Aurélie Lagoutte To cite this version: Aurélie Lagoutte. Jeux d inondation dans les graphes. 2010. HAL Id: hal-00509488 https://hal.archives-ouvertes.fr/hal-00509488
7. CONVOLUŢIA SEMNALELOR ANALOGICE
7. CONVOLUŢIA SEMNALELOR ANALOGICE S numş funcţi (prous) convoluţi în imp smnllor şi ingrl: f ( ) Noţi conscră prousului convoluţi în imp s urmăor: no Convoluţi unui smnl cu (7.) (7.) δ su u conuc l rzul
Seminar 3. Serii. Probleme rezolvate. 1 n . 7. Problema 3.2. Să se studieze natura seriei n 1. Soluţie 3.1. Avem inegalitatea. u n = 1 n 7. = v n.
Semir 3 Serii Probleme rezolvte Problem 3 Să se studieze tur seriei Soluţie 3 Avem ieglitte = ) u = ) ) = v, Seri = v este covergetă fiid o serie geometrică cu rţi q = < Pe bz criteriului de comprţie cu
Network Neutrality Debate and ISP Inter-Relations: Traffi c Exchange, Revenue Sharing, and Disconnection Threat
Network Neutrality Debate and ISP Inter-Relations: Traffi c Exchange, Revenue Sharing, and Disconnection Threat Pierre Coucheney, Patrick Maillé, runo Tuffin To cite this version: Pierre Coucheney, Patrick
ο ο 3 α. 3"* > ω > d καΐ 'Ενορία όλις ή Χώρί ^ 3 < KN < ^ < 13 > ο_ Μ ^~~ > > > > > Ο to X Η > ο_ ο Ο,2 Σχέδι Γλεγμα Ο Σ Ο Ζ < o w *< Χ χ Χ Χ < < < Ο
18 ρ * -sf. NO 1 D... 1: - ( ΰ ΐ - ι- *- 2 - UN _ ί=. r t ' \0 y «. _,2. "* co Ι». =; F S " 5 D 0 g H ', ( co* 5. «ΰ ' δ". o θ * * "ΰ 2 Ι o * "- 1 W co o -o1= to»g ι. *ΰ * Ε fc ΰ Ι.. L j to. Ι Q_ " 'T
HONDA. Έτος κατασκευής
Accord + Coupe IV 2.0 16V (CB3) F20A2-A3 81 110 01/90-09/93 0800-0175 11,00 2.0 16V (CB3) F20A6 66 90 01/90-09/93 0800-0175 11,00 2.0i 16V (CB3-CC9) F20A8 98 133 01/90-09/93 0802-9205M 237,40 2.0i 16V
m 1, m 2 F 12, F 21 F12 = F 21
m 1, m 2 F 12, F 21 F12 = F 21 r 1, r 2 r = r 1 r 2 = r 1 r 2 ê r = rê r F 12 = f(r)ê r F 21 = f(r)ê r f(r) f(r) < 0 f(r) > 0 m 1 r1 = f(r)ê r m 2 r2 = f(r)ê r r = r 1 r 2 r 1 = 1 m 1 f(r)ê r r 2 = 1 m
ΓΗ ΚΑΙ ΣΥΜΠΑΝ. Εικόνα 1. Φωτογραφία του γαλαξία μας (από αρχείο της NASA)
ΓΗ ΚΑΙ ΣΥΜΠΑΝ Φύση του σύμπαντος Η γη είναι μία μονάδα μέσα στο ηλιακό μας σύστημα, το οποίο αποτελείται από τον ήλιο, τους πλανήτες μαζί με τους δορυφόρους τους, τους κομήτες, τα αστεροειδή και τους μετεωρίτες.
Νόµοςπεριοδικότητας του Moseley:Η χηµική συµπεριφορά (οι ιδιότητες) των στοιχείων είναι περιοδική συνάρτηση του ατοµικού τους αριθµού.
Νόµοςπεριοδικότητας του Moseley:Η χηµική συµπεριφορά (οι ιδιότητες) των στοιχείων είναι περιοδική συνάρτηση του ατοµικού τους αριθµού. Περιοδικός πίνακας: α. Είναι µια ταξινόµηση των στοιχείων κατά αύξοντα
x (s-a neglijat curentul de câmp faţă de cel de difuzie, tranzistor fără câmp intern) * ecuaţiile de continuitate (valabile pentru orice x şi t ):
D omlr TP N. oţ.6. omlr TP. ţl ş modll brs-oll * s d ţ ş modl vlbl r or rgm d ţor - s drmă lgăr dr rţ ş sl l l bor * oz smlor: - rzsor oţ l l dmsol ' - bz m slb doă mrăţ >> - lgml zolor r l morl ş olorl
rs r r â t át r st tíst Ó P ã t r r r â
rs r r â t át r st tíst P Ó P ã t r r r â ã t r r P Ó P r sã rs r s t à r çã rs r st tíst r q s t r r t çã r r st tíst r t r ú r s r ú r â rs r r â t át r çã rs r st tíst 1 r r 1 ss rt q çã st tr sã
Radio détection des rayons cosmiques d ultra-haute énergie : mise en oeuvre et analyse des données d un réseau de stations autonomes.
Radio détection des rayons cosmiques d ultra-haute énergie : mise en oeuvre et analyse des données d un réseau de stations autonomes. Diego Torres Machado To cite this version: Diego Torres Machado. Radio
Integrale cu parametru
1 Integrle proprii cu prmetru 2 3 Integrle proprii cu prmetru Definiţi 1.1 Dcă f : [, b ] E R, E R este o funcţie cu propriette că pentru orice y E, funcţi de vribilă x x f (x, y) este integrbilă pe intervlul
r r t r r t t r t P s r t r P s r s r r rs tr t r r t s ss r P s s t r t t tr r r t t r t r r t t s r t rr t Ü rs t 3 r r r 3 rträ 3 röÿ r t
r t t r t ts r3 s r r t r r t t r t P s r t r P s r s r P s r 1 s r rs tr t r r t s ss r P s s t r t t tr r 2s s r t t r t r r t t s r t rr t Ü rs t 3 r t r 3 s3 Ü rs t 3 r r r 3 rträ 3 röÿ r t r r r rs
Physique des réacteurs à eau lourde ou légère en cycle thorium : étude par simulation des performances de conversion et de sûreté
Physique des réacteurs à eau lourde ou légère en cycle thorium : étude par simulation des performances de conversion et de sûreté Alexis Nuttin To cite this version: Alexis Nuttin. Physique des réacteurs
STUDIUL FENOMENULUI DE SCURTCIRCUIT
CNAL LCIC r lcrcă CAPIOLL 4 SDIL FNOMNLI D SCCICI 4. Inroucr Inslţl lcrc sun rvăzu cu rocţ l scurcrcu colo un xsă sconnuăţ în rţ. Acs sun, rgulă, uncl în cr s mocă scţun rnsvrslă. Curnul scurcrcu rbu rmn
Multi-GPU numerical simulation of electromagnetic waves
Multi-GPU numerical simulation of electromagnetic waves Philippe Helluy, Thomas Strub To cite this version: Philippe Helluy, Thomas Strub. Multi-GPU numerical simulation of electromagnetic waves. ESAIM:
ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΔΙΕΠΙΣΤΗΜΟΝΙΚΟ ΔΙΑΤΜΗΜΑΤΙΚΟ ΠΡΟΓΡΑΜΜΑ ΜΕΤΑΠΤΥΧΙΑΚΩΝ ΣΠΟΥΔΩΝ (Δ.Π.Μ.Σ.) «ΠΕΡΙΒΑΛΛΟΝ ΚΑΙ ΑΝΑΠΤΥΞΗ»
ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΔΙΕΠΙΣΤΗΜΟΝΙΚΟ ΔΙΑΤΜΗΜΑΤΙΚΟ ΠΡΟΓΡΑΜΜΑ ΜΕΤΑΠΤΥΧΙΑΚΩΝ ΣΠΟΥΔΩΝ (Δ.Π.Μ.Σ.) «ΠΕΡΙΒΑΛΛΟΝ ΚΑΙ ΑΝΑΠΤΥΞΗ» ΜΑΘΗΜΑ ΚΟΡΜΟΥ «ΥΔΑΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ ΚΑΙ ΑΝΑΠΤΥΞΗ» ΥΔΑΤΙΚΑ ΟΙΚΟΣΥΣΤΗΜΑΤΑ Σημειώσεις
Hygromécanique des panneaux en bois et conservation du patrimoine culturel. Des pathologies... aux outils pour la conservation
Hygromécanique des panneaux en bois et conservation du patrimoine culturel. Des pathologies... aux outils pour la conservation Bertrand Marcon To cite this version: Bertrand Marcon. Hygromécanique des
ΘΕΡΜΟΚΗΠΙΑΚΕΣ ΚΑΛΛΙΕΡΓΕΙΕΣ ΕΚΤΟΣ ΕΔΑΦΟΥΣ ΘΡΕΠΤΙΚΑ ΔΙΑΛΥΜΑΤΑ
ΘΕΡΜΟΚΗΠΙΑΚΕΣ ΚΑΛΛΙΕΡΓΕΙΕΣ ΕΚΤΟΣ ΕΔΑΦΟΥΣ ΘΡΕΠΤΙΚΑ ΔΙΑΛΥΜΑΤΑ Θρεπτικό διάλυμα Είναι ένα αραιό υδατικό διάλυμα όλων των θρεπτικών στοιχείων που είναι απαραίτητα για τα φυτά, τα οποία βρίσκονται διαλυμένα
ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΣΧΟΛΗ ΘΕΤΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΜΑΘΗΜΑΤΙΚΩΝ ΜΕ ΚΑΤΕΥΘΥΝΣΗ ΣΤΑΤΙΣΤΙΚΗ ΚΑΙ ΧΡΗΜΑΤΟΟΙΚΟΝΟΜΙΚΑ ΜΑΘΗΜΑΤΙΚΑ
ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΣΧΟΛΗ ΘΕΤΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΜΑΘΗΜΑΤΙΚΩΝ ΜΕ ΚΑΤΕΥΘΥΝΣΗ ΣΤΑΤΙΣΤΙΚΗ ΚΑΙ ΧΡΗΜΑΤΟΟΙΚΟΝΟΜΙΚΑ ΜΑΘΗΜΑΤΙΚΑ ΑΣΚΗΣΕΙΣ ΧΡΗΜΑΤΟΟΙΚΟΝΟΜΙΚΩΝ ΜΑΘΗΜΑΤΙΚΩΝ ΙΩΑΝΝΗΣ Σ. ΣΤΑΜΑΤΙΟΥ ΣΑΜΟΣ, ΧΕΙΜΕΡΙΝΟ ΕΞΑΜΗΝΟ
#%" )*& ##+," $ -,!./" %#/%0! %,!
-!"#$% -&!'"$ & #("$$, #%" )*& ##+," $ -,!./" %#/%0! %,! %!$"#" %!#0&!/" /+#0& 0.00.04. - 3 3,43 5 -, 4 $ $.. 04 ... 3. 6... 6.. #3 7 8... 6.. %9: 3 3 7....3. % 44 8... 6.4. 37; 3,, 443 8... 8.5. $; 3
(... )..!, ".. (! ) # - $ % % $ & % 2007
(! ), "! ( ) # $ % & % $ % 007 500 ' 67905:5394!33 : (! ) $, -, * +,'; ), -, *! ' - " #!, $ & % $ ( % %): /!, " ; - : - +', 007 5 ISBN 978-5-7596-0766-3 % % - $, $ &- % $ % %, * $ % - % % # $ $,, % % #-
Analiza matematică, clasa a XI-a probleme rezolvate Rolul derivatei întâi
Anliz mtemtică, cls XI- proleme rezolvte Rolul derivtei întâi Virgil-Mihil Zhri DefiniŃie: Punctele critice le unei funcńii derivile sunt rădăcinile (zerourile) derivtei întâi DefiniŃie: Fie f:i R, cu
ΠΕΡΙΟΔΙΚΟ ΣΥΣΤΗΜΑ ΤΩΝ ΣΤΟΙΧΕΙΩΝ (1) Ηλία Σκαλτσά ΠΕ ο Γυμνάσιο Αγ. Παρασκευής
ΠΕΡΙΟΔΙΚΟ ΣΥΣΤΗΜΑ ΤΩΝ ΣΤΟΙΧΕΙΩΝ (1) Ηλία Σκαλτσά ΠΕ04.01 5 ο Γυμνάσιο Αγ. Παρασκευής Όπως συμβαίνει στη φύση έτσι και ο άνθρωπος θέλει να πετυχαίνει σπουδαία αποτελέσματα καταναλώνοντας το λιγότερο δυνατό
(a) se numeşte derivata parţială a funcţiei f în raport cu variabila x i în punctul a.
Definiţie Spunem că: i) funcţia f are derivată parţială în punctul a în raport cu variabila i dacă funcţia de o variabilă ( ) are derivată în punctul a în sens obişnuit (ca funcţie reală de o variabilă
ss rt çã r s t à rs r ç s rt s 1 ê s Pr r Pós r çã ís r t çã tít st r t
ss rt çã r s t à rs r ç s rt s 1 ê s Pr r Pós r çã ís r t çã tít st r t FichaCatalografica :: Fichacatalografica https://www3.dti.ufv.br/bbt/ficha/cadastrarficha/visua... Ficha catalográfica preparada
ss rt t r s t t t rs r ç s s rt t r t Pr r r q r ts P 2s s r r t t t t t st r t
Ô P ss rt t r s t t t rs r ç s s rt t r t Pr r r q r ts P 2s s r r t t t t t st r t FichaCatalografica :: Fichacatalografica https://www3.dti.ufv.br/bbt/ficha/cadastrarficha/visua... Ficha catalográfica
r t t r t t à ré ér t é r t st é é t r s s2stè s t rs ts t s
r t r r é té tr q tr t q t t q t r t t rrêté stér ût Prés té r ré ér ès r é r r st P t ré r t érô t 2r ré ré s r t r tr q t s s r t t s t r tr q tr t q t t q t r t t r t t r t t à ré ér t é r t st é é
Solving an Air Conditioning System Problem in an Embodiment Design Context Using Constraint Satisfaction Techniques
Solving an Air Conditioning System Problem in an Embodiment Design Context Using Constraint Satisfaction Techniques Raphael Chenouard, Patrick Sébastian, Laurent Granvilliers To cite this version: Raphael
Βιομάζα είναι κάιε υλικό που παράγεται από ζωντανοφσ οργανιςμοφσ: Ξύλο και ϊλλα δαςικϊ προώόντα, Τπολεύμματα καλλιεργειών, Κτηνοτροφικϊ απόβλητα,
Βιομάζα είναι κάιε υλικό που παράγεται από ζωντανοφσ οργανιςμοφσ: Ξύλο και ϊλλα δαςικϊ προώόντα, Τπολεύμματα καλλιεργειών, Κτηνοτροφικϊ απόβλητα, Απόβλητα βιομηχανιών τροφύμων κ.λπ. Βαςικθ χρθςη: καύςιμο
Αριθμός 235 Ο ΠΕΡΙ ΠΟΛΕΟΔΟΜΙΑΣ ΚΑΙ ΧΩΡΟΤΑΞΙΑΣ ΝΟΜΟΣ (ΝΟΜΟΙ 90 ΤΟΥ 1972 ΚΑΙ 56 ΤΟΥ 1982)
Ε.Ε.Πα.ΙΙΙ(Ι) 2214.Δ.Π. 25/97 Α. 171,1.8.97 Αιθμός 25 ΠΕΙ ΠΛΕΔΜΙΑΣ ΑΙ ΩΤΑΞΙΑΣ ΝΜΣ (ΝΜΙ 90 ΤΥ 1972 ΑΙ 56 ΤΥ 1982) Διάταγμα Διατήησης σύμφνα με τ άθ 8(1) Ασώντας τις εξυσίες πυ ηγύνται σ' αυτόν από τ εάφι
MICROMASTER Vector MIDIMASTER Vector
s MICROMASTER Vector MIDIMASTER Vector... 2 1.... 4 2. -MICROMASTER VECTOR... 5 3. -MIDIMASTER VECTOR... 16 4.... 24 5.... 28 6.... 32 7.... 54 8.... 56 9.... 61 Siemens plc 1998 G85139-H1751-U553B 1.
ΝΟΜΟΣ ΤΗΣ ΠΕΡΙΟ ΙΚΟΤΗΤΑΣ : Οι ιδιότητες των χηµικών στοιχείων είναι περιοδική συνάρτηση του ατοµικού τους αριθµού.
1. Ο ΠΕΡΙΟ ΙΚΟΣ ΠΙΝΑΚΑΣ Οι άνθρωποι από την φύση τους θέλουν να πετυχαίνουν σπουδαία αποτελέσµατα καταναλώνοντας το λιγότερο δυνατό κόπο και χρόνο. Για το σκοπό αυτό προσπαθούν να οµαδοποιούν τα πράγµατα
Łs t r t rs tø r P r s tø PrØ rø rs tø P r s r t t r s t Ø t q s P r s tr. 2stŁ s q t q s t rt r s t s t ss s Ø r s t r t. Łs t r t t Ø t q s
Łs t r t rs tø r P r s tø PrØ rø rs tø P r s r t t r s t Ø t q s P r s tr st t t t Ø t q s ss P r s P 2stŁ s q t q s t rt r s t s t ss s Ø r s t r t P r røs r Łs t r t t Ø t q s r Ø r t t r t q t rs tø
Estimation of grain boundary segregation enthalpy and its role in stable nanocrystalline alloy design
Supplemental Material for Estimation of grain boundary segregation enthalpy and its role in stable nanocrystalline alloy design By H. A. Murdoch and C.A. Schuh Miedema model RKM model ΔH mix ΔH seg ΔH
Eşantionarea semnalelor
Eşantionara smnallor Eşantionara = prlvara d prob dintr-un smnal la momnt d timp dcalat intr l cu cu frcvnta d şantionar, f =/. xˆ t x k t k k = ( = δ ( Smnalul şantionat idal:. Spctrul Xˆ = X ( k k =
P t s st t t t t2 t s st t t rt t t tt s t t ä ör tt r t r 2ö r t ts t t t t t t st t t t s r s s s t är ä t t t 2ö r t ts rt t t 2 r äärä t r s Pr r
r s s s t t P t s st t t t t2 t s st t t rt t t tt s t t ä ör tt r t r 2ö r t ts t t t t t t st t t t s r s s s t är ä t t t 2ö r t ts rt t t 2 r äärä t r s Pr r t t s st ä r t str t st t tt2 t s s t st
LEM. Non-linear externalities in firm localization. Giulio Bottazzi Ugo Gragnolati * Fabio Vanni
LEM WORKING PAPER SERIES Non-linear externalities in firm localization Giulio Bottazzi Ugo Gragnolati * Fabio Vanni Institute of Economics, Scuola Superiore Sant'Anna, Pisa, Italy * University of Paris
Émergence des représentations perceptives de la parole : Des transformations verbales sensorielles à des éléments de modélisation computationnelle
Émergence des représentations perceptives de la parole : Des transformations verbales sensorielles à des éléments de modélisation computationnelle Anahita Basirat To cite this version: Anahita Basirat.
2CP Electropompe centrifugale cu turbina dubla
2CP Electropompe centrifugale cu turbina dubla DOMENIUL DE UTILIZARE Capacitate de până la 450 l/min (27 m³/h) Inaltimea de pompare până la 112 m LIMITELE DE UTILIZARE Inaltimea de aspiratie manometrică
Αλληλεπίδραση ακτίνων-χ με την ύλη
Άσκηση 8 Αλληλεπίδραση ακτίνων-χ με την ύλη Δ. Φ. Αναγνωστόπουλος Τμήμα Μηχανικών Επιστήμης Υλικών Πανεπιστήμιο Ιωαννίνων Ιωάννινα 2013 Άσκηση 8 ii Αλληλεπίδραση ακτίνων-χ με την ύλη Πίνακας περιεχομένων
τροχιακά Η στιβάδα καθορίζεται από τον κύριο κβαντικό αριθµό (n) Η υποστιβάδα καθορίζεται από τους δύο πρώτους κβαντικούς αριθµούς (n, l)
ΑΤΟΜΙΚΑ ΤΡΟΧΙΑΚΑ Σχέση κβαντικών αριθµών µε στιβάδες υποστιβάδες - τροχιακά Η στιβάδα καθορίζεται από τον κύριο κβαντικό αριθµό (n) Η υποστιβάδα καθορίζεται από τους δύο πρώτους κβαντικούς αριθµούς (n,
www.absolualarme.com met la disposition du public, via www.docalarme.com, de la documentation technique dont les rιfιrences, marques et logos, sont
w. ww lua so ab me lar m.co t me la sit po dis ion du c, bli pu via lar ca do w. ww me.co m, de la ion nta t do cu me on t ed hn iqu tec les en ce s, rι fιr ma rq ue se t lo go s, so nt la pr op riι tι
Alterazioni del sistema cardiovascolare nel volo spaziale
POLITECNICO DI TORINO Corso di Laurea in Ingegneria Aerospaziale Alterazioni del sistema cardiovascolare nel volo spaziale Relatore Ing. Stefania Scarsoglio Studente Marco Enea Anno accademico 2015 2016
Vers un assistant à la preuve en langue naturelle
Vers un assistant à la preuve en langue naturelle Thévenon Patrick To cite this version: Thévenon Patrick. Vers un assistant à la preuve en langue naturelle. Autre [cs.oh]. Université de Savoie, 2006.
Ι ΙΟΤΗΤΕΣ ΤΩΝ ΑΤΟΜΩΝ. Παππάς Χρήστος Επίκουρος Καθηγητής
ΗΛΕΚΤΡΟΝΙΚΗ ΟΜΗ ΚΑΙ Ι ΙΟΤΗΤΕΣ ΤΩΝ ΑΤΟΜΩΝ Παππάς Χρήστος Επίκουρος Καθηγητής ΤΟ ΜΕΓΕΘΟΣ ΤΩΝ ΑΤΟΜΩΝ Ατομική ακτίνα (r) : ½ της απόστασης μεταξύ δύο ομοιοπυρηνικών ατόμων, ενωμένων με απλό ομοιοπολικό δεσμό.
Forêts aléatoires : aspects théoriques, sélection de variables et applications
Forêts aléatoires : aspects théoriques, sélection de variables et applications Robin Genuer To cite this version: Robin Genuer. Forêts aléatoires : aspects théoriques, sélection de variables et applications.
Teorema Rezidurilor şi Bucuria Integralelor Reale
Torma Ridurilor şi Bucuria Intgrallor Ral Prntar d Alandru Ngrscu Intgral cu funcţii raţional c dpind d sin t şi cos t u notaţia it, avm: cos t ( + sin t ( i dt d i, iar intgrara s va fac d-a lungul crcului
P r s r r t. tr t. r P
P r s r r t tr t r P r t s rés t t rs s r s r r t é ér s r q s t r r r r t str t q q s r s P rs t s r st r q r P P r s r r t t s rés t t r t s rés t t é ér s r q s t r r r r t r st r q rs s r s r r t str
( 0) q =, p =, i = 1, 2,..., sn (1.2) i p i q. H q. H p. + = i i
- - IV. FIZIA STATISTIĂ. oţun fundamntal.. Stara macroscocă ş stara mcroscocă a unu sstm. Saţul fazlor Fzca statstcă ar ca sco dducra lglor fzc macroscoc ornnd d la lgl mcanc. Stara macroscocă a unu sstm
a n (ζ z 0 ) n. n=1 se numeste partea principala iar seria a n (z z 0 ) n se numeste partea
Serii Laurent Definitie. Se numeste serie Laurent o serie de forma Seria n= (z z 0 ) n regulata (tayloriana) = (z z n= 0 ) + n se numeste partea principala iar seria se numeste partea Sa presupunem ca,
CURS 10 ANALIZA PERFORMANŢELOR PE BAZA CONTULUI DE PROFIT ŞI PIERDERE
CURS ANALIZA PERFORMANŢELOR PE BAZA CONTULUI DE PROFIT ŞI PIERDERE Obictiv: însuşira concptului d cont d profit şi pirdr; însuşira concptului d rntabilitat; dtrminara soldurilor intrmdiar d gstiun; stabilira
A hybrid PSTD/DG method to solve the linearized Euler equations
A hybrid PSTD/ method to solve the linearized Euler equations ú P á ñ 3 rt r 1 rt t t t r t rs t2 2 t r s r2 r r Ps s tr r r P t s s t t 2 r t r r P s s r r 2s s s2 t s s t t t s t r t s t r q t r r t
Planul determinat de normală şi un punct Ecuaţia generală Plane paralele Unghi diedru Planul determinat de 3 puncte necoliniare
1 Planul în spaţiu Ecuaţia generală Plane paralele Unghi diedru 2 Ecuaţia generală Plane paralele Unghi diedru Fie reperul R(O, i, j, k ) în spaţiu. Numim normala a unui plan, un vector perpendicular pe
Capitolul 2 - HIDROCARBURI 2.5.ARENE
Capitolul 2 - HIDROCARBURI 2.5.ARENE TEST 2.5.2 I. Scrie cuvântul / cuvintele dintre paranteze care completează corect fiecare dintre afirmaţiile următoare. 1. Radicalul C 6 H 5 - se numeşte fenil. ( fenil/
CAPITOLUL 2 SERII FOURIER. discontinuitate de prima speţă al funcţiei f dacă limitele laterale f ( x 0 există şi sunt finite.
CAPITOLUL SERII FOURIER Ser trgoometrce Ser Fourer Fe fucţ f :[, Remtm că puctu [, ] se umeşte puct de b dscotutte de prm speţă fucţe f dcă mtee tere f ( ş f ( + estă ş sut fte y Defţ Fucţ f :[, se umeşte
ΠΕΡΙΟΔΙΚΟΣ ΠΙΝΑΚΑΣ ΣΤΟΙΧΕΙΩΝ
ΠΕΡΙΟΔΙΚΟΣ ΠΙΝΑΚΑΣ ΣΤΟΙΧΕΙΩΝ Περίοδοι περιοδικού πίνακα Ο περιοδικός πίνακας αποτελείται από 7 περιόδους. Ο αριθμός των στοιχείων που περιλαμβάνει κάθε περίοδος δεν είναι σταθερός, δηλ. η περιοδικότητα
5. POZIŢIILE RELATIVE ALE ELEMENTELOR GEOMETRICE
ZIŢII RELATIVE 53 5. ZIŢIILE RELATIVE ALE ELEMENTELR GEMETRICE 5. oţle relte ouă plne Două plne pot f prlele su concurente în spţu. 5.. lne prlele ornn e l teore confor căre ouă plne prlele sunt ntersectte
Contribution à l évolution des méthodologies de caractérisation et d amélioration des voies ferrées
Contribution à l évolution des méthodologies de caractérisation et d amélioration des voies ferrées Noureddine Rhayma To cite this version: Noureddine Rhayma. Contribution à l évolution des méthodologies
m r = F m r = F ( r) m r = F ( v) F = F (x) m dv dt = F (x) vdv = F (x)dx d dt = dx dv dt dx = v dv dx
m r = F m r = F ( r) m r = F ( v) x F = F (x) m dv dt = F (x) d dt = dx dv dt dx = v dv dx vdv = F (x)dx 2 mv2 x 2 mv2 0 = F (x )dx x 0 K = 2 mv2 W x0 x = x x 0 F (x)dx K K 0 = W x0 x x, x 2 x K 2 K =
DISPLAY SUPPLY: FILTER STANDBY
ircuit iagrams and PW Layouts. ircuit iagrams and PW Layouts J.0 P. 0 isplay Supply P: ilter Standby MNS NPUT -Vac 00 P-V- V_OT 0 0 0 0 0 0 0 0 SPLY SUPPLY: LT STNY 0 M0 V 0 T,/0V MSU -VOLTS NOML... STNY
Consommation marchande et contraintes non monétaires au Canada ( )
Consommation marchande et contraintes non monétaires au Canada (1969-2008) Julien Boelaert, François Gardes To cite this version: Julien Boelaert, François Gardes. Consommation marchande et contraintes
P P Ô. ss rt çã r s t à rs r ç s rt s 1 ê s Pr r Pós r çã ís r t çã tít st r t
P P Ô P ss rt çã r s t à rs r ç s rt s 1 ê s Pr r Pós r çã ís r t çã tít st r t FELIPE ANDRADE APOLÔNIO UM MODELO PARA DEFEITOS ESTRUTURAIS EM NANOMAGNETOS Dissertação apresentada à Universidade Federal
Transformations d Arbres XML avec des Modèles Probabilistes pour l Annotation
Transformations d Arbres XML avec des Modèles Probabilistes pour l Annotation Florent Jousse To cite this version: Florent Jousse. Transformations d Arbres XML avec des Modèles Probabilistes pour l Annotation.
Κεφάλαιο 8. Ηλεκτρονικές Διατάξεις και Περιοδικό Σύστημα
Κεφάλαιο 8 Ηλεκτρονικές Διατάξεις και Περιοδικό Σύστημα 1. H απαγορευτική αρχή του Pauli 2. Η αρχή της ελάχιστης ενέργειας 3. Ο κανόνας του Hund H απαγορευτική αρχή του Pauli «Είναι αδύνατο να υπάρχουν
ITU-R P (2009/10)
ITU-R.38-6 (009/0 $% #! " #( ' * & ' /0,-. # GHz 00 MHz 900 ITU-R.38-6 ii.. (IR (ITU-T/ITU-R/ISO/IEC.ITU-R http://www.itu.int/itu-r/go/patents/en. (http://www.itu.int/publ/r-rec/en ( ( BO BR BS BT F M
V.7. Condiţii necesare de optimalitate cazul funcţiilor diferenţiabile
Metode de Optimizare Curs V.7. Condiţii necesare de optimalitate cazul funcţiilor diferenţiabile Propoziţie 7. (Fritz-John). Fie X o submulţime deschisă a lui R n, f:x R o funcţie de clasă C şi ϕ = (ϕ,ϕ
EL-nesss.r.l. CONDENSATOARE DE MEDIE TENSIUNE
ONDENSATOARE DE MEDIE TENSIUNE EL-nesss.r.l. ondenstorele sunt destinte imunttirii fctorului de putere si filtrrii rmonicilor superiore in retelele de medie tensiune. Dielectricul este de tip ll-film impregnt
4. CIRCUITE LOGICE ELEMENTRE 4.. CIRCUITE LOGICE CU COMPONENTE DISCRETE 4.. PORŢI LOGICE ELEMENTRE CU COMPONENTE PSIVE Componente electronice pasive sunt componente care nu au capacitatea de a amplifica
Seminariile 1 2 Capitolul I. Integrale improprii
Cpitolul I: Integrle improprii Lect. dr. Lucin Mticiuc Fcultte de Mtemtică Clcul integrl şi Aplicţii, Semestrul I Lector dr. Lucin MATICIUC Seminriile Cpitolul I. Integrle improprii. Să se studieze ntur
5ppm/ SOT-23 AD5620/AD5640/AD5660. nanodac AD5660 16 AD5640 14 AD5620 12 12 1.25V/2.5V 5ppm/ 8 SOT-23/MSOP 480nA 5V 200nA 3V 3V/5V 16 DAC.
5ppm/ SOT-23 12/14/16nanoDAC AD562/AD564/AD566 nanodac AD566 16 AD564 14 AD562 12 12 1.25V/2.5V 5ppm/ 8SOT-23/MSOP 48nA 5V 2nA 3V 3V/5V 16 DAC 3 to SYNC 1. 1212/14/16nanoDAC 2. 1.25V/2.5V 5ppm/ 3. 8SOT-23