ΠΕΡΙΓΡΑΦΙΚΗ ΣΤΑΤΙΣΤΙΚΗ ΚΑΙ ΕΛΕΓΧΟΣ ΥΠΟΘΕΣΕΩΝ

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "ΠΕΡΙΓΡΑΦΙΚΗ ΣΤΑΤΙΣΤΙΚΗ ΚΑΙ ΕΛΕΓΧΟΣ ΥΠΟΘΕΣΕΩΝ"

Transcript

1 Αλεξάνδρειο Τεχνολογικό Εκπαιδευτικό Ίδρυμα Θεσσαλονίκης Τμήμα Πληροφορικής Εργαστήριο «Θεωρία Πιθανοτήτων και Στατιστική» ΠΕΡΙΓΡΑΦΙΚΗ ΣΤΑΤΙΣΤΙΚΗ ΚΑΙ ΕΛΕΓΧΟΣ ΥΠΟΘΕΣΕΩΝ Περιεχόμενα 1. ΠΕΡΙΓΡΑΦΙΚΗ ΣΤΑΤΙΣΤΙΚΗ Περιγραφή των τιμών μιας μεταβλητής Ποιοτικές μεταβλητές Ποσοτικές μεταβλητές Ανάλυση σε υποσύνολα του δείγματος Η Διαδικασία SPLIT FILE Η Διαδικασία EXPLORE Περιγραφή / συσχέτιση των τιμών δύο μεταβλητών Συσχέτιση μεταξύ δύο ποιοτικών μεταβλητών Συσχέτιση μεταξύ δύο ποσοτικών μεταβλητών ΕΛΕΓΧΟΣ ΥΠΟΘΕΣΕΩΝ Έλεγχος υποθέσεων για τη μέση τιμή ενός πληθυσμού Έλεγχος υποθέσεων για τη διαφορά των μέσων τιμών δύο ανεξάρτητων πληθυσμών... 9 Φάση 1 Σύγκριση διασπορών των δύο πληθυσμών: Φάση 2 Σύγκριση μέσων των δύο πληθυσμών: Έλεγχος υποθέσεων για τη διαφορά των μέσων τιμών δύο εξαρτημένων πληθυσμών Έλεγχος ανεξαρτησίας / ομοιογένειας μεταξύ δύο ποιοτικών μεταβλητών ΓΡΑΜΜΙΚΗ ΠΑΛΙΝΔΡΟΜΗΣΗ Παράδειγμα 1 ο (απλή παλινδρόμηση) Παράδειγμα 2 ο (πολλαπλή παλινδρόμηση)

2 1. ΠΕΡΙΓΡΑΦΙΚΗ ΣΤΑΤΙΣΤΙΚΗ Μερικές χρήσιμες διαδικασίες για τη σύνοψη, ταξινόμηση και παρουσίαση των πρωτογενών δεδομένων ενός δείγματος σε εύληπτη μορφή. 1.1 Περιγραφή των τιμών μιας μεταβλητής Ποιοτικές μεταβλητές Οι μέθοδοι σύνοψης και παρουσίασης ποιοτικών δεδομένων περιορίζονται στους πίνακες συχνοτήτων και τις γραφικές παραστάσεις. Με τη διαδικασία Frequencies μπορούμε να επιτύχουμε άμεσα την κατασκευή τους. Από τη βασική ράβδο προτιμήσεων του λογισμικού επιλέγοντας Analyze Descriptive Statistics Frequencies εμφανίζεται το πλαίσιο διαλόγου της διαδικασίας Frequencies. Επιλέγουμε τη μεταβλητή (ή τις μεταβλητές) που θέλουμε να περιγράψουμε και τη μετακινούμε (με τη χρήση του βέλους) στο πλαίσιο variable(s). Παρατηρούμε ότι η επιλογή Display frequency tables είναι ενεργοποιημένη. Εξ ορισμού η διαδικασία θα κατασκευάσει μόνο τον αντίστοιχο πίνακα συχνοτήτων. Αν επιθυμούμε την κατασκευή κάποιου γραφήματος θα πρέπει να ενεργοποιήσουμε την επιλογή Charts που βρίσκεται στο ίδιο παράθυρο διαλόγου. Τα κατάλληλα διαγράμματα για την περιγραφή ποιοτικών δεδομένων είναι τα κυκλικά διαγράμματα (pie charts) και τα ραβδογράμματα (bar charts). Εφόσον επιλεγούν τα δεύτερα, δίνεται η δυνατότητα επιλογής των τιμών που θα εμφανίζονται στον κατακόρυφο άξονα: απόλυτες συχνότητες (frequencies) ή ποσοστά (percentages). Επιλέγοντας το OΚ ή/και το Continue παίρνουμε τα αποτελέσματα της διαδικασίας σε ένα αρχείο αποτελεσμάτων. Ο πίνακας συχνοτήτων αποτελείται από 5 στήλες. Στην πρώτη στήλη εμφανίζονται οι τιμές της μεταβλητής. Στην δεύτερη εμφανίζονται οι συχνότητες εμφάνισης τους (frequency) και στην τρίτη τα αντίστοιχα ποσοστά (percent). Τα ποσοστά αυτά είναι ποσοστά επί του συνολικού μεγέθους του δείγματος συμπεριλαμβανομένων των ελλειπουσών τιμών. Στην τέταρτη στήλη εμφανίζονται τα έγκυρα ποσοστά (valid percent), τα οποία είναι ποσοστά επί του συνολικού μεγέθους του δείγματος εξαιρουμένων των ελλειπουσών τιμών. Στην πέμπτη στήλη εμφανίζονται τα αθροιστικά ποσοστά (cumulative percent). Το ποσοστό που αντιστοιχεί σε μια τιμή της μεταβλητής είναι το συνολικό ποσοστό που αντιστοιχεί στην τιμή αυτή και σε όλες τις προηγούμενες τιμές. 2

3 1.1.2 Ποσοτικές μεταβλητές Με τη διαδικασία Frequencies μπορούμε να περιγράψουμε και ποσοτικά χαρακτηριστικά, υπολογίζοντας κατάλληλα στατιστικά μετρά (statistics) και κατασκευάζοντας ιστογράμματα (histogram) για την γραφική παρουσίασή τους. Από τη βασική ράβδο προτιμήσεων του λογισμικού επιλέγοντας Analyze Descriptive Statistics Frequencies εμφανίζεται το πλαίσιο διαλόγου της διαδικασίας Frequencies. Επιλέγουμε τη μεταβλητή (ή τις μεταβλητές) που θέλουμε να περιγράψουμε και τη μετακινούμε (με τη χρήση του βέλους) στο πλαίσιο variable(s). Παρατηρούμε ότι η επιλογή Display frequency tables είναι ενεργοποιημένη. Στην περίπτωση που οι διαφορετικές τιμές που παίρνει η μεταβλητή είναι πολλές η επιλογή αυτή θα πρέπει να απενεργοποιηθεί, διότι τα αποτελέσματά της δεν θα είναι επαρκώς χρήσιμα. Για τον υπολογισμό στατιστικών μέτρων ενεργοποιούμε την επιλογή Statistics που βρίσκεται στο ίδιο παράθυρο διαλόγου και επιλέγουμε τα στατιστικά μέτρα που θέλουμε να υπολογιστούν. Μερικές Από Τις Επιλογές Στατιστικών Μέτρων Percentile Values Ποσοστιαίες Τιμές Quartiles Τεταρτημόρια Percentiles - Ποσοστημόρια Dispersion Διασπορά Standard Deviation Τυπική Απόκλιση Variance Διακύμανση Range - Εύρος Central Tendency Κεντρική Τάση Mean Αριθμητικός Μέσος Median Διάμεσος Mode Επικρατούσα Τιμή Sum Άθροισμα Distribution - Κατανομή Skewness Ασυμμετρία Kurtosis - Κύρτωση Αν επιθυμούμε την κατασκευή κάποιου γραφήματος θα πρέπει να ενεργοποιήσουμε την επιλογή Charts που βρίσκεται στο ίδιο παράθυρο διαλόγου και να επιλέξουμε το Histograms. Η επιλογή with normal curve (κανονική καμπύλη) είναι προαιρετική. 3

4 1.2 Ανάλυση σε υποσύνολα του δείγματος Η Διαδικασία SPLIT FILE Στην περίπτωση που επιθυμούμε να περιγράψουμε μια μεταβλητή στις διάφορες κατηγορίες μιας μεταβλητής (π.χ. να περιγράψουμε το μισθό των εργαζομένων μιας επιχείρησης ξεχωριστά για τους άντρες και τις γυναίκες), θα πρέπει πρώτα να διαχωρίσουμε το δείγμα μας με βάση τις κατηγορίες της μεταβλητής αυτής. Από τη βασική ράβδο προτιμήσεων του λογισμικού επιλέγοντας Data Split File εμφανίζεται το πλαίσιο διαλόγου της διαδικασίας Split File. Ενεργοποιούμε την επιλογή Compare Groups ή Organize output by groups (η διαφορά μεταξύ των δύο είναι μόνο ως προς την παρουσίαση των αποτελεσμάτων) και μετακινούμε στο πλαίσιο Groups Based On την μεταβλητή βάση της οποίας θα διαχωριστεί το δείγμα (π.χ. το φύλο). Επιλέγοντας το ΟΚ επανερχόμαστε στο αρχείο δεδομένων όπου οι περιπτώσεις (οι γραμμές) έχουν ταξινομηθεί με βάση τις τιμές της μεταβλητής που επιλέξαμε προηγουμένως. Στη συνέχεια μπορούμε να περιγράψουμε οποιαδήποτε άλλη μεταβλητή με τη διαδικασία Frequencies όπως παρουσιάσαμε προηγούμενα. Παρατήρηση: Η μεταβλητή που χρησιμοποιείται για τον διαχωρισμό του δείγματος είναι συνήθως ποιοτική. Στην περίπτωση που επιλεγεί μια ποσοτική μεταβλητή αυτή θα πρέπει να παίρνει λίγες διαφορετικές τιμές αλλιώς τα αποτελέσματα της ανάλυσης δεν θα είναι επαρκώς χρήσιμα Η Διαδικασία EXPLORE Με τη διαδικασία Explore μπορούμε να επιτύχουμε την πιο πλούσια και πλήρη περιγραφική στατιστική των παρατηρήσεων μιας ποσοτικής μεταβλητής στις διάφορες κατηγορίες κάποιας ποιοτικής. Από τη βασική ράβδο προτιμήσεων του λογισμικού επιλέγοντας Analyze Descriptive Statistics Explore εμφανίζεται το πλαίσιο διαλόγου της διαδικασίας Explore. Μετακινούμε την ποσοτική μεταβλητή που θέλουμε να περιγράψουμε στο πλαίσιο dependent list και την ποιοτική μεταβλητή στο πλαίσιο factor list. Εφόσον επιθυμούμε την κατασκευή ιστογραμμάτων ενεργοποιούμε την επιλογή Plots και επιλέγουμε το Histogram. Εξ ορισμού η διαδικασία Explore παράγει ένα πλήθος στατιστικών αποτελεσμάτων όπως στατιστικά μέτρα, το φυλλογράφημα (stem leaf) και το θηκόγραμμα (Box Plot). Σημαντικός είναι και ο υπολογισμός διαστημάτων εμπιστοσύνης για το μέσο ενός πληθυσμού (95% confidence interval for mean (lower bound, upper bound)) που παρουσιάζεται μαζί με τα στατιστικά μέτρα. 4

5 1.3 Περιγραφή / συσχέτιση των τιμών δύο μεταβλητών Συσχέτιση μεταξύ δύο ποιοτικών μεταβλητών Η βασική μέθοδος παρουσίασης δύο ποιοτικών χαρακτηριστικών είναι η κατασκευή της κοινής κατανομής συχνοτήτων (πίνακας συνάφειας) και ο υπολογισμός των αντίστοιχων ποσοστών. Από τη βασική ράβδο προτιμήσεων του λογισμικού επιλέγοντας Analyze Descriptive Statistics Crosstabs εμφανίζεται το πλαίσιο διαλόγου της διαδικασίας Crosstabs. Επιλέγουμε την μεταβλητή, τις κατηγορίες της οποίας θέλουμε να έχουμε στις γραμμές του πίνακα συνάφειας και τη μετακινούμε στο πλαίσιο Row(s). Επιλέγουμε την άλλη μεταβλητή και τη μετακινούμε στο πλαίσιο Column(s). Εφόσον επιθυμούμε τον υπολογισμό των αντίστοιχων ποσοστών, ενεργοποιούμε την επιλογή Cells και επιλέγουμε το ποσοστό που θέλουμε να υπολογιστεί. Ας σημειωθεί εδώ ότι υπάρχουν τρία είδη ποσοστών σε έναν πίνακα συνάφειας: Ποσοστό επί της γραμμής Ποσοστό επί της στήλης Ποσοστό επί του συνόλου (row percentages) (column percentages) (total percentages) Περισσότερα στοιχεία αναφέρονται στα συμπεράσματα της ενότητας 2.4. Παρατήρηση: Η διαδικασία Crosstabs μπορεί να χρησιμοποιηθεί και στην περίπτωση των ποσοτικών μεταβλητών των οποίων οι τιμές είναι λίγες ή έχουν κωδικοποιηθεί προηγουμένως και αντιστοιχηθεί σε διαστήματα τιμών. 5

6 1.3.2 Συσχέτιση μεταξύ δύο ποσοτικών μεταβλητών Ο υπολογισμός των περιγραφικών στατιστικών μέτρων για τον εντοπισμό της φύσης και της έντασης της σχέσης μεταξύ δύο ποσοτικών μεταβλητών πραγματοποιείται με τον υπολογισμό του συντελεστή γραμμικής συσχέτισης του Pearson (διαδικασία Correlate) και με την κατασκευή του διαγράμματος διασποράς (διαδικασία Scatter). Από τη βασική ράβδο προτιμήσεων του λογισμικού επιλέγοντας Analyze Correlate Bivariate εμφανίζεται το πλαίσιο διαλόγου της διαδικασίας Correlations. Επιλέγουμε τις μεταβλητές των οποίων τη σχέση αναζητούμε και τις μετακινούμε στο πλαίσιο variable(s). Μπορούμε να μετακινήσουμε περισσότερες από δύο μεταβλητές. Στην περίπτωση αυτή οι υπολογισμοί θα γίνουν για κάθε ανά δύο συνδυασμό τους. Παρατήρηση: Ο συντελεστής γραμμικής συσχέτισης του Pearson ( r ) παίρνει τις τιμές: -1 r Μηδενική γραμμική συσχέτιση Τέλεια αρνητική γραμμική συσχέτιση Τέλεια θετική γραμμική συσχέτιση Όσο το r βρίσκεται πιο κοντά στο +1 (-1), τόσό πιο ισχυρή θετική (αρνητική) συσχέτιση υπάρχει. Όσο το r βρίσκεται πιο κοντά στο 0, τόσό πιο ασθενής συσχέτιση υπάρχει. Συνήθως, θεωρούμε ότι η συσχέτιση είναι: Ισχυρή έως πολύ ισχυρή, όταν r > 0,7 Μέτρια έως ικανοποιητική, όταν 0,5 < r < 0,7 Ασθενής έως μέτρια, όταν r < 0,5 Από τη βασική ράβδο προτιμήσεων του λογισμικού επιλέγοντας Graphs Scatter εμφανίζεται το πλαίσιο διαλόγου της διαδικασίας Scatterplot. Επιλέγοντας την μορφή Simple με το πλήκτρο Define προχωρούμε στον προσδιορισμό των στοιχείων του. Επιλέγουμε τις δύο ποσοτικές μεταβλητές που μας ενδιαφέρουν και τις μετακινούμε στα πλαίσια Y Axis, X Axis. Όταν η μια από τις δύο μεταβλητές θεωρείται ως ανεξάρτητη μετακινείται στο πλαίσιο X Axis. 6

7 2. ΕΛΕΓΧΟΣ ΥΠΟΘΕΣΕΩΝ Όταν επιλέγουμε να πραγματοποιήσουμε οποιοδήποτε έλεγχο με επίπεδο σημαντικότητας α = 0,05 τότε το κριτήριο αποδοχής ή απόρριψης της μηδενικής υπόθεσης είναι: sig. > 0.05 αποδοχή της Η 0 sig. < 0,05 απόρριψη της Η Έλεγχος υποθέσεων για τη μέση τιμή ενός πληθυσμού Ο έλεγχος αυτός αφορά τις περιπτώσεις όπου θέλουμε να ελέγξουμε, αν η μέση τιμή μιας μεταβλητής διαφέρει στατιστικά σημαντικά από μία δεδομένη τιμή. Παράδειγμα: Μπορούμε να ισχυριστούμε ότι ο μέσος μισθός όλων των εργαζομένων είναι δολ.; Στατιστικές Υποθέσεις H 0 : μ = μ ο Η α : μ μ ο Η μέση τιμή δεν διαφέρει στατιστικά σημαντικά από την δεδομένη τιμή Η μέση τιμή διαφέρει στατιστικά σημαντικά από την δεδομένη τιμή Στατιστικός Έλεγχος t-test Διαδικασία Analyze Compare Means One-Sample T-Test Στο παράθυρο που ανοίγει, επιλέγουμε και μεταφέρουμε τη μεταβλητή που μας ενδιαφέρει (current salary) στο πλαίσιο Test Variable ενώ στο πλαίσιο Test Value πληκτρολογούμε την υπό έλεγχο τιμή (33000 χωρίς κόμμα ή τελεία). ΟΚ. 7

8 Αποτελέσματα One-Sample Statistics Current Salary Std. Error N Mean Std. Deviation Mean 474 $34, $17, $ One-Sample Test Current Salary Test Value = % Confidence Interval of the Mean Difference t df Sig. (2-tailed) Difference Lower Upper $1, $ $2, Ερμηνεία Αποτελεσμάτων Συμπέρασμα Το επίπεδο σημαντικότητας του ελέγχου 0,071 είναι μικρότερο του 0,05. Συνεπώς αποδεχόμαστε τη μηδενική υπόθεση. Ο μέσος μισθός των εργαζομένων δεν διαφέρει στατιστικά σημαντικά από τις δολ. (t = 1,810, df = 473, sig. = 0,071). Ο μέσος μισθός των εργαζομένων στο δείγμα είναι ,57 δολ. με τυπική απόκλιση ,661 δολ. 8

9 2.2 Έλεγχος υποθέσεων για τη διαφορά των μέσων τιμών δύο ανεξάρτητων πληθυσμών Ο έλεγχος αυτός αφορά τις περιπτώσεις όπου θέλουμε να ελέγξουμε αν η μέση τιμή μιας μεταβλητής διαφέρει ή όχι σε δύο ανεξάρτητους πληθυσμούς. Παράδειγμα Θα θέλαμε να ελέγξουμε αν η προϋπηρεσία των εργαζόμενων διαφέρει μεταξύ των ανώτερων και των κατώτερων στελεχών. Στατιστικές Υποθέσεις H 0 : μ 1 - μ 2 = 0 Οι μέσες τιμές των δύο πληθυσμών δεν διαφέρουν στατιστικά σημαντικά Η α : μ 1 - μ 2 0 Οι μέσες τιμές των δύο πληθυσμών διαφέρουν στατιστικά σημαντικά Στατιστικός Έλεγχος t-test Διαδικασία Analyze Compare Means Independent-Sample T-Test Επιλέγουμε τη μεταβλητή, της οποία θέλουμε να ελέγξουμε τη μέση τιμή, στο πλαίσιο Test Variable (prevexp) και τη μεταβλητή, βάση των τιμών της οποίας ορίζονται οι δύο ανεξάρτητοι πληθυσμοί, στο πλαίσιο Grouping Variable (jobcat). Παρατηρούμε ότι ενεργοποιείται το κουμπί Define Groups το οποίο και επιλέγουμε. Στο παράθυρο που ανοίγει στα πλαίσια Group1 και Group2 δίνουμε αντίστοιχα τις τιμές της μεταβλητής (jobcat) που προσδιορίζουν τους δύο πληθυσμούς. Παράδειγμα, στο πλαίσιο Group1 δίνουμε την τιμή 1 που αντιστοιχεί στα κατώτερα στελέχη (clericals) και στο Group2 την τιμή 3 που αντιστοιχεί στα ανώτερα στελέχη (managers). Στο παράθυρο Define Groups δίνεται και μια ακόμη δυνατότητα προσδιορισμού των δύο πληθυσμών, δηλώνοντας μια οριακή τιμή για τη μεταβλητή Grouping Variable. Για παράδειγμα, θα μπορούσαμε να προσδιορίσουμε δύο πληθυσμούς εργαζομένων ανάλογα με το αν ο μισθός τους (grouping variable) είναι μικρότερος ή μεγαλύτερος από $ (cut point). Επιλέγοντας το Continue και στη συνέχεια το OK, εκτελείται η διαδικασία t-test. 9

10 Αποτελέσματα Group Statistics Previous Experience (months) Employment Category Clerical Manager Std. Error N Mean Std. Deviation Mean Independent Samples Test Previous Experience (months) Equal variances assumed Equal variances not assumed Levene's Test for Equality of Variances F Sig. t df t-test for Equality of Means Sig. (2-tailed) Mean Difference 95% Confidence Interval of the Difference Std. Error Difference Lower Upper

11 Ερμηνεία Αποτελεσμάτων Ο έλεγχος υποθέσεων για την διαφορά μέσων τιμών σε 2 ανεξάρτητους πληθυσμούς (t-test) πραγματοποιείται σε δύο φάσεις. Φάση 1: Σύγκριση διασπορών των δύο πληθυσμών H 0 : σ 1 2 = σ 2 2 Οι διακυμάνσεις των δύο πληθυσμών δεν διαφέρουν σημαντικά (equal variances assumed) Η α : σ 1 2 σ 2 2 Οι διακυμάνσεις των δύο πληθυσμών διαφέρουν σημαντικά (equal variances not assumed) Ο στατιστικός έλεγχος που πραγματοποιείται είναι του Levene (F-test). Για το παραπάνω παράδειγμα F = sig. = Επειδή sig. > 0,05 αποδεχόμαστε τη μηδενική υπόθεση, δηλαδή ότι οι διακυμάνσεις δεν διαφέρουν (equal variances assumed) και συνεχίζουμε να διαβάζουμε την πρώτη γραμμή του ίδιου πίνακα. Αν απορρίπταμε τη μηδενική υπόθεση τότε θα συνεχίζαμε να διαβάζουμε τη δεύτερη γραμμή. Φάση 2: Σύγκριση μέσων των δύο πληθυσμών Για το παραπάνω παράδειγμα t = 0,669 df = 445 sig. = Επειδή sig. > 0,05 αποδεχόμαστε την μηδενική υπόθεση, δηλαδή ότι οι μέσοι των δύο πληθυσμών δεν διαφέρουν σημαντικά. Συμπέρασμα Η μέση προϋπηρεσία των εργαζομένων δεν διαφέρει στατιστικά σημαντικά μεταξύ των ανώτερων και των κατώτερων στελεχών (t = 0,669, df = 445, sig. = 0,504). Στα αποτελέσματα παρουσιάζονται και μερικά περιγραφικά στατιστικά, στον πρώτο πίνακα, όπου μπορούμε να παρατηρήσουμε ότι η μέση προϋπηρεσία είναι 85,04 μήνες για τα κατώτερα στελέχη (clericals) και 77,62 μήνες για τα ανώτερα στελέχη (managers). Συνηθίζουμε στην αναφορά των συμπερασμάτων να καταγράφουμε και τα στατιστικά στοιχεία του δείγματος (την τυπική απόκλιση επίσης). 11

12 2.3 Έλεγχος υποθέσεων για τη διαφορά των μέσων τιμών δύο εξαρτημένων πληθυσμών Ο έλεγχος αυτός αφορά τις περιπτώσεις όπου θέλουμε να ελέγξουμε αν οι μέσες τιμές δύο μεταβλητών διαφέρουν ή όχι σε δύο εξαρτημένους πληθυσμούς. Παράδειγμα Θα θέλαμε να ελέγξουμε αν ο μισθός των εργαζόμενων διαφέρει από τον αρχικό τους μισθό. Στατιστικές Υποθέσεις H 0 : μ 1 - μ 2 = 0 Οι μέσες τιμές των δύο πληθυσμών δεν διαφέρουν στατιστικά σημαντικά Η α : μ 1 - μ 2 0 Οι μέσες τιμές των δύο πληθυσμών διαφέρουν στατιστικά σημαντικά Στατιστικός Έλεγχος t-test Διαδικασία Analyze Compare Means Paired-Sample T-Test Επιλέγουμε τις δύο μεταβλητές, των οποίων θέλουμε να ελέγξουμε τη μέση τιμή τους και τις μεταφέρουμε στο πλαίσιο Paired Variables (current salary beginning salary). OK. 12

13 Αποτελέσματα Pair 1 Current Salary Beginning Salary Paired Samples Statistics Std. Error Mean N Std. Deviation Mean $34, $17, $ $17, $7, $ Paired Samples Correlations Pair 1 Current Salary & Beginning Salary N Correlation Sig Paired Samples Test Pair 1 Paired Differences 95% Confidence Interval of Std. Error the Difference Sig. Mean Std. Deviation Mean Lower Upper t df (2-tailed) Current Salary - $17, $10, $ $16, $18, Beginning Salary Ερμηνεία Αποτελεσμάτων Συμπέρασμα Το επίπεδο σημαντικότητας του ελέγχου 0,000 είναι μικρότερο του 0,05. Συνεπώς απορρίπτεται η μηδενική υπόθεση. Ο μέσος μισθός των εργαζομένων διαφέρει στατιστικά σημαντικά από το μέσο αρχικό μισθό τους (t = 35,036, df = 473, sig. < 0,001). Όταν η σημαντικότητα που δίνει το πρόγραμμα φαίνεται να είναι μηδέν, συνηθίζεται μα ανακοινώνεται στα αποτελέσματα ως sig. < 0,001. Στα αποτελέσματα παρουσιάζονται και μερικά περιγραφικά στατιστικά, στον πρώτο πίνακα, όπου μπορούμε να παρατηρήσουμε ότι ο μέσος μισθός είναι ,57 δολ. ενώ ο μέσος αρχικός μισθός είναι ,09. Συνηθίζεται στην αναφορά των συμπερασμάτων να καταγράφονται και τα στατιστικά στοιχεία του δείγματος (μέση τιμή και τυπική απόκλιση). 13

14 2.4 Έλεγχος ανεξαρτησίας / ομοιογένειας μεταξύ δύο ποιοτικών μεταβλητών Ο έλεγχος αυτός αφορά τις περιπτώσεις όπου θέλουμε να ελέγξουμε αν δύο ποιοτικές μεταβλητές είναι ανεξάρτητες μεταξύ τους ή όχι. Παράδειγμα Θα θέλαμε να ελέγξουμε αν το φύλο των εργαζομένων και η βαθμίδα στην οποία ανήκουν είναι ανεξάρτητα μεταξύ τους χαρακτηριστικά. Στατιστικές Υποθέσεις H 0 : Το φύλο και η βαθμίδα είναι ανεξάρτητα χαρακτηριστικά μεταξύ τους Η α : Το φύλο και η βαθμίδα δεν είναι ανεξάρτητα χαρακτηριστικά μεταξύ τους Στατιστικός Έλεγχος Διαδικασία: Χ 2 test (chi-square test) Ο έλεγχος Χ 2 εντοπίζει τυχόν διαφορές που υπάρχουν στην κατανομή των τιμών της μιας μεταβλητής στις τιμές της άλλης. Δυστυχώς, δεν μας παρέχει καμία πληροφορία ούτε για την ένταση ούτε για την αιτία της σχέσης που υπάρχει μεταξύ των δύο μεταβλητών (όταν υπάρχει). Analyze Descriptive Statistics Crosstabs Μεταφέρουμε τη μία μεταβλητή στο πλαίσιο Row(s) (gender) και την άλλη μεταβλητή στο πλαίσιο Columns(s) (Employment Category). Το αποτέλεσμα της διαδικασίας δεν επηρεάζεται από το ποια μεταβλητή θα μεταφερθεί σε ποιο πλαίσιο, παρά μόνο στην εμφάνιση κάποιων αποτελεσμάτων. Στη συνέχεια, ενεργοποιούμε το κουμπί Statistics και στο παράθυρο που ανοίγει επιλέγουμε το chi-square (Χ 2 test). Επιλέγοντας το Continue και στη συνέχεια το OK, το εκτελείται η διαδικασία Χ 2 -test. 14

15 Αποτελέσματα Gender * Employment Category Crosstabulation Count Gender Total Female Male Employment Category Clerical Custodial Manager Total Chi-Square Tests Pearson Chi-Square Likelihood Ratio N of Valid Cases Asymp. Sig. Value df (2-sided) a a. 0 cells (.0%) have expected count less than 5. The minimum expected count is Ερμηνεία Αποτελεσμάτων Συμπέρασμα Ο έλεγχος Χ 2 βασίζεται στο στατιστικό του Pearson και γι αυτό διαβάζουμε την πρώτη γραμμή του δεύτερου πίνακα. Το επίπεδο σημαντικότητας του ελέγχου 0,000 είναι μικρότερο του 0,05. Συνεπώς απορρίπτεται η μηδενική υπόθεση. Το φύλο ενός εργαζόμενου και η θέση που κατέχει στην εταιρία αυτή έχουν στατιστικά σημαντική σχέση μεταξύ τους (Χ 2 = 79,277, df = 2, sig. < 0,001). Ο πρώτος πίνακας των αποτελεσμάτων παρουσιάζει την κοινή κατανομή συχνοτήτων των δύο μεταβλητών και ονομάζεται πίνακας συνάφειας. Από αυτόν, προκύπτουν μερικές χρήσιμες περιγραφικές παρατηρήσεις. Για παράδειγμα, παρατηρούμε ότι στην ανώτερη θέση βρίσκονται 74 άντρες και 10 γυναίκες, ενώ στο σύνολο υπάρχουν 258 άντρες και 216 γυναίκες. Συνεπώς, οι πληθυσμοί των αντρών και των γυναικών δεν είναι ομοιογενείς στο πλήθος τους στην ανώτερη θέση. Αν θέλουμε να υπολογίζονται και τα αντίστοιχα ποσοστά στον πίνακ συνάφειας, θα πρέπει να το δηλώσουμε στο παράθυρο crosstabs και μέσα από την ενεργοποίηση του cells 15

16 Υπάρχουν 3 ποσοστά τα οποία θα μπορούσαν να υπολογιστούν: (α) επί του συνόλου της γραμμής (row) (β) επί του συνόλου της στήλης (column) και (γ) επί του γενικού συνόλου (total). Συνήθως, υπολογίζονται τα δύο πρώτα όταν ο στόχος είναι η διερεύνηση ύπαρξης σχέσης μεταξύ των δύο μεταβλητών. Gender * Employment Category Crosstabulation Gender Total Female Male Count % within Employment Category Count % within Employment Category Count % within Employment Category Employment Category Clerical Custodial Manager Total %.0% 11.9% 45.6% % 100.0% 88.1% 54.4% % 100.0% 100.0% 100.0% Στο παράδειγμα αυτό έχουν υπολογιστεί τα ποσοστά επί του συνόλου της στήλης και διαβάζονται ως εξής: Από το σύνολο των managers, το 11,9% είναι γυναίκες και το 88,1% είναι άνδρες. 16

17 3. ΓΡΑΜΜΙΚΗ ΠΑΛΙΝΔΡΟΜΗΣΗ Η Γραμμική Παλινδρόμηση αποτελεί μία στατιστική μέθοδο, η οποία αποσκοπεί στον προσδιορισμό ενός μαθηματικού μοντέλου για την περιγραφή της σχέσης μεταξύ δύο ή περισσοτέρων μεταβλητών, το οποίο θα μπορούσε εν δυνάμει να χρησιμοποιηθεί και ως ένα εργαλείο πρόβλεψης των τιμών της μίας μεταβλητής. 3.1 Παράδειγμα 1 ο (απλή παλινδρόμηση) Θα θέλαμε να προσδιορίσουμε ένα μαθηματικό μοντέλο το οποίο να περιγράφει το μισθό των εργαζόμενων σε σχέση με ένα από τα επιμέρους χαρακτηριστικά τους. Λογική Υπόθεση Ο μισθός ενός εργαζόμενου μπορεί να περιγραφεί επαρκώς («εξαρτάται») από το μισθό πρόσληψης (αρχικό μισθό) και συνεπώς θα επιθυμούσαμε να προσδιορίσουμε ένα μαθηματικό μοντέλο το οποίο να συσχετίζει τους δύο μισθούς. Επιλογή του Μαθηματικού Μοντέλου Το γραμμικό μοντέλο: Y = α + β Χ + ε Διαδικασία εξαρτημένη μεταβλητή ανεξάρτητη μεταβλητή σφάλμα όπου, α β και ε πραγματικοί αριθμοί Analyze Regression Linear Μεταφέρουμε τη μεταβλητή την οποία μελετούμε (ή / και θέλουμε να κάνουμε πρόβλεψη των τιμών της) στο πλαίσιο Dependent (current salary) και την μεταβλητή, την οποία θα χρησιμοποιήσουμε για να ερμηνεύσουμε τις τιμές της πρώτης, στο πλαίσιο Independent(s) (beginnining salary). ΟΚ. 17

18 Αποτελέσματα Model 1 Model Summary Adjusted Std. Error of R R Square R Square the Estimate.880 a $8, a. Predictors: (Constant), Beginning Salary Model 1 Regression Residual Total ANOVA b Sum of Squares df Mean Square F Sig. 1E E a 3E E a. Predictors: (Constant), Beginning Salary b. Dependent Variable: Current Salary Model 1 (Constant) Beginning Salary Coefficients a Unstandardized Coefficients a. Dependent Variable: Current Salary Standardized Coefficients B Std. Error Beta t Sig

19 Ερμηνεία Αποτελεσμάτων Τρίτος Πίνακας Το μαθηματικό μοντέλο το οποίο προκύπτει, σύμφωνα με τον τρίτο πίνακα, είναι το ακόλουθο: (Current Salary) = 1928, ,909 (Beginning Salary) + ε Έλεγχος του συντελεστή παλινδρόμησης β: Η 0 : β = 0 Η a : β 0 Εφαρμογή του t-test: sig = 0,000 < 0,05, συνεπώς απορρίπτεται η μηδενική υπόθεση Ο συντελεστής παλινδρόμησης β είναι στατιστικά σημαντικά διάφορος του μηδέν (t = 40,276, sig < 0,001), συνεπώς ο αρχικός μισθός ερμηνεύει στατιστικά σημαντικά τον τρέχον μισθό των εργαζομένων. Δεδομένου ότι ο συντελεστής αυτός είναι στατιστικά σημαντικός, η τιμή του ερμηνεύεται ως εξής: όταν ο αρχικός μισθός είναι αυξημένος κατά μία μονάδα (1 δολάριο), τότε ο τρέχον μισθός αναμένεται να είναι αυξημένος κατά 1,909 μονάδες (1,909 δολάρια, δηλαδή σχεδόν κατά δύο δολάρια). Πρώτος Πίνακας Ο δείκτης R-square (R 2 = 0,775) εκφράζει το ποσοστό της διακύμανσης της εξαρτημένης μεταβλητής το οποίο ερμηνεύεται από τη διακύμανση των τιμών της ανεξάρτητης μεταβλητής. Δηλαδή στο παράδειγμα, το 77,5% της διακύμανσης των μισθών των εργαζομένων ερμηνεύεται από τη διακύμανση των αρχικών μισθών τους. Ο συντελεστής αυτός ονομάζεται συντελεστής προσδιορισμού και υποδεικνύει την ποιότητα προσαρμογής της εξίσωσης παλινδρόμησης στα δεδομένα. 19

20 3.2 Παράδειγμα 2 ο (πολλαπλή παλινδρόμηση) Θα θέλαμε να προσδιορίσουμε ένα μαθηματικό μοντέλο το οποίο να περιγράφει το μισθό των εργαζόμενων σε σχέση με περισσότερα από ένα από τα επιμέρους χαρακτηριστικά τους. Λογική Υπόθεση Ο μισθός ενός εργαζόμενου μπορεί να περιγραφεί επαρκώς («εξαρτάται») από το μισθό πρόσληψης (beginning salary), την προϋπηρεσία (prevexp) και το αν ανήκει σε κάποια μειονότητα ή όχι (minority). Επιλογή του Μαθηματικού Μοντέλου Το γραμμικό μοντέλο: Y = α + β 1 Χ 1 + β 2 Χ 2 + β 3 Χ 3 + ε Διαδικασία Analyze Regression Linear Μεταφέρουμε τη μεταβλητή την οποία μελετούμε (ή / και θέλουμε να κάνουμε πρόβλεψη των τιμών της) στο πλαίσιο Dependent (current salary) και τις μεταβλητές, τις οποίες θα χρησιμοποιήσουμε για να ερμηνεύσουμε τις τιμές της πρώτης, στο πλαίσιο Independent(s) (beginnining salary, prevexp, minority). ΟΚ. Αποτελέσματα Model 1 Model Summary Adjusted Std. Error of R R Square R Square the Estimate.891 a $7, a. Predictors: (Constant), Minority Classification, Previous Experience (months), Beginning Salary Model 1 Regression Residual Total ANOVA b Sum of Squares df Mean Square F Sig. 1E E a 3E E a. Predictors: (Constant), Minority Classification, Previous Experience (months), Beginning Salary b. Dependent Variable: Current Salary 20

21 Model 1 (Constant) Beginning Salary Previous Experience (months) Minority Classification a. Dependent Variable: Current Salary Coefficients a Unstandardized Coefficients Standardized Coefficients B Std. Error Beta t Sig Ερμηνεία Αποτελεσμάτων Τρίτος Πίνακας Το μαθηματικό μοντέλο το οποίο προκύπτει, σύμφωνα με τον τρίτο πίνακα, είναι το ακόλουθο: (Current Salary) = 1928,206 + (1,926) (Beginning Salary) + + (-21,981) (Previous Experience) + + (-768,727) Minority Classification) + ε Έλεγχος των συντελεστών παλινδρόμησης β: Η 0 : β = 0 Η a : β 0 Εφαρμογή του t-test: Beginning Salary sig = 0,000 < 0,05 Previous Experience sig = 0,000 < 0,05 Minority Classification sig = 0,385 > 0,05, Συνεπώς, ο αρχικός μισθός και η προϋπηρεσία ερμηνεύουν στατιστικά σημαντικά τον τρέχοντα μισθό ενώ η μειονότητα όχι. Οι ερμηνείες των συντελεστών είναι ανάλογες του προηγούμενου παραδείγματος. Πρώτος Πίνακας Ο δείκτης R-square (R 2 = 0,794) εκφράζει το ποσοστό της διακύμανσης της εξαρτημένης μεταβλητής το οποίο ερμηνεύεται από τη διακύμανση των τιμών της ανεξάρτητης μεταβλητής. Δηλαδή στο παράδειγμα, το 79,4% της διακύμανσης των μισθών των εργαζομένων ερμηνεύεται από τη διακύμανση των αρχικών μισθών, της προϋπηρεσίας και του αν ανήκουν σε κάποια μειονότητα ή όχι. Ας παρατηρηθεί ότι, το ποσοστό αυτό δεν είναι σημαντικά μεγαλύτερο από αυτό που έχει προκύψει στο προηγούμενο παράδειγμα (77,5%). Η «μειονότητα», όπως φαίνεται στην προηγούμενη παράγραφο, δεν αποτελεί στατιστικά σημαντικό παράγοντα ερμηνείας των μισθών στο μοντέλο αυτό. Όμως, και η προϋπηρεσία δεν φαίνεται να συνεισφέρει πρακτικά σημαντικά. Στο σημείο αυτό θα πρέπει να αποφασίσουμε, αν είμαστε διατεθειμένοι να επιλέξουμε ένα περισσότερο πολύπλοκο μοντέλο, το οποίο βελτιώνει την ερμηνευτική δυνατότητα κατά αυτό το ποσοστό ή να επιλέξουμε ένα απλούστερο μοντέλο θυσιάζοντας (σε μικρό ποσοστό;) την ερμηνευτική δυνατότητα. 21

ΣΥΣΧΕΤΙΣΗ και ΓΡΑΜΜΙΚΗ ΠΑΛΙΝΔΡΟΜΗΣΗ

ΣΥΣΧΕΤΙΣΗ και ΓΡΑΜΜΙΚΗ ΠΑΛΙΝΔΡΟΜΗΣΗ Αλεξάνδρειο Τεχνολογικό Εκπαιδευτικό Ίδρυμα Θεσσαλονίκης Τμήμα Πληροφορικής Εργαστήριο «Θεωρία Πιθανοτήτων και Στατιστική» ΣΥΣΧΕΤΙΣΗ και ΓΡΑΜΜΙΚΗ ΠΑΛΙΝΔΡΟΜΗΣΗ Περιεχόμενα 1. Συσχέτιση μεταξύ δύο ποσοτικών

Διαβάστε περισσότερα

ΠΕΡΙΓΡΑΦΙΚΗ ΣΤΑΤΙΣΤΙΚΗ ΚΑΙ ΕΛΕΓΧΟΣ ΥΠΟΘΕΣΕΩΝ ΜΕ ΤΗ ΧΡΗΣΗ ΤΟΥ PSPP

ΠΕΡΙΓΡΑΦΙΚΗ ΣΤΑΤΙΣΤΙΚΗ ΚΑΙ ΕΛΕΓΧΟΣ ΥΠΟΘΕΣΕΩΝ ΜΕ ΤΗ ΧΡΗΣΗ ΤΟΥ PSPP Αλεξάνδρειο Τεχνολογικό Εκπαιδευτικό Ίδρυμα Θεσσαλονίκης Τμήμα Μηχανικών Πληροφορικής (ΤΕ) Εργαστήριο «Θεωρία Πιθανοτήτων και Στατιστική» ΠΕΡΙΓΡΑΦΙΚΗ ΣΤΑΤΙΣΤΙΚΗ ΚΑΙ ΕΛΕΓΧΟΣ ΥΠΟΘΕΣΕΩΝ ΜΕ ΤΗ ΧΡΗΣΗ ΤΟΥ PSPP

Διαβάστε περισσότερα

Για να ελέγξουµε αν η κατανοµή µιας µεταβλητής είναι συµβατή µε την κανονική εφαρµόζουµε το test Kolmogorov-Smirnov.

Για να ελέγξουµε αν η κατανοµή µιας µεταβλητής είναι συµβατή µε την κανονική εφαρµόζουµε το test Kolmogorov-Smirnov. A. ΈΛΕΓΧΟΣ ΚΑΝΟΝΙΚΟΤΗΤΑΣ A 1. Έλεγχος κανονικότητας Kolmogorov-Smirnov. Για να ελέγξουµε αν η κατανοµή µιας µεταβλητής είναι συµβατή µε την κανονική εφαρµόζουµε το test Kolmogorov-Smirnov. Μηδενική υπόθεση:

Διαβάστε περισσότερα

Μαντζούνη, Πιπερίγκου, Χατζή. ΒΙΟΣΤΑΤΙΣΤΙΚΗ Εργαστήριο 5 ο

Μαντζούνη, Πιπερίγκου, Χατζή. ΒΙΟΣΤΑΤΙΣΤΙΚΗ Εργαστήριο 5 ο Κατανομές Στατιστικών Συναρτήσεων Δύο δείγματα από κανονική κατανομή Έστω Χ= ( Χ, Χ,..., Χ ) τ.δ. από Ν( µ, σ ) μεγέθους n και 1 n 1 1 Y = (Y, Y,...,Y ) τ.δ. από Ν( µ, σ ) 1 n 1 Χ Y ( µ µ ) S σ Τ ( Χ,Y)

Διαβάστε περισσότερα

Μενύχτα, Πιπερίγκου, Σαββάτης. ΒΙΟΣΤΑΤΙΣΤΙΚΗ Εργαστήριο 5 ο

Μενύχτα, Πιπερίγκου, Σαββάτης. ΒΙΟΣΤΑΤΙΣΤΙΚΗ Εργαστήριο 5 ο Κατανομές Στατιστικών Συναρτήσεων Δύο ανεξάρτητα δείγματα από κανονική κατανομή Έστω Χ= ( Χ, Χ,..., Χ ) τ.δ. από Ν( µ, σ ) μεγέθους n και 1 n 1 1 Y = (Y, Y,..., Y ) τ.δ. από Ν( µ, σ ) 1 n 1 Χ Y ( µ µ )

Διαβάστε περισσότερα

ΚΟΙΝΩΝΙΟΒΙΟΛΟΓΙΑ, ΝΕΥΡΟΕΠΙΣΤΗΜΕΣ ΚΑΙ ΕΚΠΑΙΔΕΥΣΗ

ΚΟΙΝΩΝΙΟΒΙΟΛΟΓΙΑ, ΝΕΥΡΟΕΠΙΣΤΗΜΕΣ ΚΑΙ ΕΚΠΑΙΔΕΥΣΗ A εξάμηνο 2009-2010 ΠΡΟΓΡΑΜΜΑ ΜΕΤΑΠΤΥΧΙΑΚΩΝ ΣΠΟΥΔΩΝ ΚΟΙΝΩΝΙΟΒΙΟΛΟΓΙΑ, ΝΕΥΡΟΕΠΙΣΤΗΜΕΣ ΚΑΙ ΕΚΠΑΙΔΕΥΣΗ Μεθοδολογία Έρευνας και Στατιστική ΑΝΤΩΝΙΟΣ ΧΡ. ΜΠΟΥΡΑΣ Χειμερινό Εξάμηνο 2009-2010 Ποιοτικές και Ποσοτικές

Διαβάστε περισσότερα

1. Ιστόγραμμα. Προκειμένου να αλλάξουμε το εύρος των bins κάνουμε διπλό κλικ οπουδήποτε στο ιστόγραμμα και μετά

1. Ιστόγραμμα. Προκειμένου να αλλάξουμε το εύρος των bins κάνουμε διπλό κλικ οπουδήποτε στο ιστόγραμμα και μετά 1. Ιστόγραμμα Δεδομένα από το αρχείο Data_for_SPSS.xls Αλλαγή σε Variable View (Κάτω αριστερά) και μετονομασία της μεταβλητής σε NormData, Type: numeric και Measure: scale Αλλαγή πάλι σε Data View. Graphs

Διαβάστε περισσότερα

ΒΟΗΘΗΤΙΚΕΣ ΣΗΜΕΙΩΣΕΙΣ ΓΙΑ SPSS

ΒΟΗΘΗΤΙΚΕΣ ΣΗΜΕΙΩΣΕΙΣ ΓΙΑ SPSS ΒΟΗΘΗΤΙΚΕΣ ΣΗΜΕΙΩΣΕΙΣ ΓΙΑ SPSS ΣΤΑΤΙΣΤΙΚΗ ΑΝΑΛΥΣΗ ΜΕ ΧΡΗΣΗ Η/Υ Κωνσταντίνος Ζαφειρόπουλος Τμήμα Διεθνών και Ευρωπαϊκών Σπουδών Ανοικτά Ακαδημαϊκά Μαθήματα στο Πανεπιστήμιο Μακεδονίας Άδειες Χρήσης Το παρόν

Διαβάστε περισσότερα

Λυμένες Ασκήσεις για το μάθημα:

Λυμένες Ασκήσεις για το μάθημα: Λυμένες Ασκήσεις για το μάθημα: ΣΤΑΤΙΣΤΙΚΗ ΑΝΑΛΥΣΗ ΜΕ ΧΡΗΣΗ Η/Υ ΚΩΝΣΤΑΝΤΙΝΟΣ ΖΑΦΕΙΡΟΠΟΥΛΟΣ Τμήμα: ΔΙΕΘΝΩΝ ΚΑΙ ΕΥΡΩΠΑΪΚΩΝ ΣΠΟΥΔΩΝ Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative

Διαβάστε περισσότερα

ΕΙΔΙΚΑ ΘΕΜΑΤΑ ΣΤΗΝ ΣΤΑΤΙΣΤΙΚΗ ΕΡΓΑΣΤΗΡΙΟ (SPSS)

ΕΙΔΙΚΑ ΘΕΜΑΤΑ ΣΤΗΝ ΣΤΑΤΙΣΤΙΚΗ ΕΡΓΑΣΤΗΡΙΟ (SPSS) ΕΙΔΙΚΑ ΘΕΜΑΤΑ ΣΤΗΝ ΣΤΑΤΙΣΤΙΚΗ ΕΡΓΑΣΤΗΡΙΟ (SPSS) Έλεγχος Υποθέσεων για τους Μέσους - Εξαρτημένα Δείγματα (Paired samples t-test) Το κριτήριο Paired samples t-test χρησιμοποιείται όταν θέλουμε να συγκρίνουμε

Διαβάστε περισσότερα

Παράδειγμα: Γούργουλης Βασίλειος, Επίκουρος Καθηγητής Τ.Ε.Φ.Α.Α. Δ.Π.Θ.

Παράδειγμα: Γούργουλης Βασίλειος, Επίκουρος Καθηγητής Τ.Ε.Φ.Α.Α. Δ.Π.Θ. Έλεγχος ύπαρξης στατιστικά σημαντικών διαφορών μεταξύ περισσότερων από δύο ανεξάρτητων δειγμάτων, που διαχωρίζονται βάσει ενός ανεξάρτητου παράγοντα (Ανάλυση διακύμανσης για ανεξάρτητα δείγματα ως προς

Διαβάστε περισσότερα

Αν οι προϋποθέσεις αυτές δεν ισχύουν, τότε ανατρέχουµε σε µη παραµετρικό τεστ.

Αν οι προϋποθέσεις αυτές δεν ισχύουν, τότε ανατρέχουµε σε µη παραµετρικό τεστ. ΣΤ. ΑΝΑΛΥΣΗ ΙΑΣΠΟΡΑΣ (ANALYSIS OF VARIANCE - ANOVA) ΣΤ 1. Ανάλυση ιασποράς κατά µία κατεύθυνση. Όπως έχουµε δει στη παράγραφο Β 2, όταν θέλουµε να ελέγξουµε, αν η µέση τιµή µιας ποσοτικής µεταβλητής διαφέρει

Διαβάστε περισσότερα

Μενύχτα, Πιπερίγκου, Σαββάτης. ΒΙΟΣΤΑΤΙΣΤΙΚΗ Εργαστήριο 6 ο

Μενύχτα, Πιπερίγκου, Σαββάτης. ΒΙΟΣΤΑΤΙΣΤΙΚΗ Εργαστήριο 6 ο Παράδειγμα 1 Ο παρακάτω πίνακας δίνει τις πωλήσεις (ζήτηση) ενός προϊόντος Υ (σε κιλά) από το delicatessen μιας περιοχής και τις αντίστοιχες τιμές Χ του προϊόντος (σε ευρώ ανά κιλό) για μια ορισμένη χρονική

Διαβάστε περισσότερα

Έλεγχος ύπαρξης στατιστικά σημαντικών διαφορών μεταξύ δύο εξαρτημένων δειγμάτων, που ακολουθούν την κανονική κατανομή (t-test για εξαρτημένα δείγματα)

Έλεγχος ύπαρξης στατιστικά σημαντικών διαφορών μεταξύ δύο εξαρτημένων δειγμάτων, που ακολουθούν την κανονική κατανομή (t-test για εξαρτημένα δείγματα) Έλεγχος ύπαρξης στατιστικά σημαντικών διαφορών μεταξύ δύο εξαρτημένων δειγμάτων, που ακολουθούν την κανονική κατανομή (t-test για εξαρτημένα δείγματα) Όπως αναφέρθηκε στο προηγούμενο κεφάλαιο σε ορισμένες

Διαβάστε περισσότερα

ΑΝΑΛΥΣΗ ΔΕΔΟΜΕΝΩΝ. Δρ. Βασίλης Π. Αγγελίδης Τμήμα Μηχανικών Παραγωγής & Διοίκησης Δημοκρίτειο Πανεπιστήμιο Θράκης

ΑΝΑΛΥΣΗ ΔΕΔΟΜΕΝΩΝ. Δρ. Βασίλης Π. Αγγελίδης Τμήμα Μηχανικών Παραγωγής & Διοίκησης Δημοκρίτειο Πανεπιστήμιο Θράκης ΑΝΑΛΥΣΗ ΔΕΔΟΜΕΝΩΝ Δρ. Βασίλης Π. Αγγελίδης Τμήμα Μηχανικών Παραγωγής & Διοίκησης Δημοκρίτειο Πανεπιστήμιο Θράκης Άσκηση 1 η Ένας παραγωγός σταφυλιών ισχυρίζεται ότι τα κιβώτια σταφυλιών που συσκευάζει

Διαβάστε περισσότερα

ΤΜΗΜΑ ΕΠΙΧΕΙΡΗΜΑΤΙΚΟΥ ΣΧΕΔΙΑΣΜΟΥ & ΠΛΗΡΟΦΟΡΙΑΚΩΝ ΣΥΣΤΗΜΑΤΩΝ. ΟΙΚΟΝΟΜΕΤΡΙΚΑ ΠΡΟΤΥΠΑ ΕΡΓΑΣΤΗΡΙΟ ΜΑΘΗΜΑ 1 ο ΕΡΓΑΣΤΗΡΙΟΥ ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ ΣΤΑΤΙΣΤΙΚΗΣ

ΤΜΗΜΑ ΕΠΙΧΕΙΡΗΜΑΤΙΚΟΥ ΣΧΕΔΙΑΣΜΟΥ & ΠΛΗΡΟΦΟΡΙΑΚΩΝ ΣΥΣΤΗΜΑΤΩΝ. ΟΙΚΟΝΟΜΕΤΡΙΚΑ ΠΡΟΤΥΠΑ ΕΡΓΑΣΤΗΡΙΟ ΜΑΘΗΜΑ 1 ο ΕΡΓΑΣΤΗΡΙΟΥ ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ ΣΤΑΤΙΣΤΙΚΗΣ ΤΜΗΜΑ ΕΠΙΧΕΙΡΗΜΑΤΙΚΟΥ ΣΧΕΔΙΑΣΜΟΥ & ΠΛΗΡΟΦΟΡΙΑΚΩΝ ΣΥΣΤΗΜΑΤΩΝ ΟΙΚΟΝΟΜΕΤΡΙΚΑ ΠΡΟΤΥΠΑ ΕΡΓΑΣΤΗΡΙΟ ΜΑΘΗΜΑ 1 ο ΕΡΓΑΣΤΗΡΙΟΥ ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ ΣΤΑΤΙΣΤΙΚΗΣ ΕΠΙΧ Οικονομετρικά Πρότυπα Διαφάνεια 1 ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ ΣΤΑΤΙΣΤΙΚΗΣ

Διαβάστε περισσότερα

Έλεγχος ανεξαρτησίας μεταξύ δύο ποιοτικών μεταβλητών (Crosstabs - Chi-Square Tests)

Έλεγχος ανεξαρτησίας μεταξύ δύο ποιοτικών μεταβλητών (Crosstabs - Chi-Square Tests) Έλεγχος ανεξαρτησίας μεταξύ δύο ποιοτικών μεταβλητών (Crosstabs - Chi-Square Tests) Σε αρκετές περιπτώσεις απαιτείται να ελεγχθεί αν η συχνότητα εμφάνισης κάποιων συγκεκριμένων τιμών (κατηγοριών) μιας

Διαβάστε περισσότερα

ΕΙΔΙΚΑ ΘΕΜΑΤΑ ΣΤΗΝ ΣΤΑΤΙΣΤΙΚΗ ΕΡΓΑΣΤΗΡΙΟ (SPSS)

ΕΙΔΙΚΑ ΘΕΜΑΤΑ ΣΤΗΝ ΣΤΑΤΙΣΤΙΚΗ ΕΡΓΑΣΤΗΡΙΟ (SPSS) ΕΙΔΙΚΑ ΘΕΜΑΤΑ ΣΤΗΝ ΣΤΑΤΙΣΤΙΚΗ ΕΡΓΑΣΤΗΡΙΟ (SPSS) Έλεγχος Υποθέσεων για την Μέση Τιμή ενός Δείγματος (One Sample t-test) Το κριτήριο One sample t-test χρησιμοποιείται όταν θέλουμε να συγκρίνουμε τον αριθμητικό

Διαβάστε περισσότερα

τατιστική στην Εκπαίδευση II

τατιστική στην Εκπαίδευση II ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΣΙΑ ΠΑΝΕΠΙΣΗΜΙΟ ΚΡΗΣΗ τατιστική στην Εκπαίδευση II Λφση επαναληπτικής άσκησης Διδάσκων: Μιχάλης Λιναρδάκης ΠΑΙΔΑΓΩΓΙΚΟ ΤΜΗΜΑ ΔΗΜΟΤΙΚΗΣ ΕΚΠΑΙΔΕΥΣΗΣ ΣΧΟΛΗ ΕΠΙΣΤΗΜΩΝ ΑΓΩΓΗΣ Άδειες Χρήσης Το

Διαβάστε περισσότερα

ΑΝΑΛΥΣΗ Ε ΟΜΕΝΩΝ. 5. Στατιστική συµπερασµατολογία για ποσοτικές µεταβλητές: Έλεγχοι υποθέσεων και διαστήµατα εµπιστοσύνης

ΑΝΑΛΥΣΗ Ε ΟΜΕΝΩΝ. 5. Στατιστική συµπερασµατολογία για ποσοτικές µεταβλητές: Έλεγχοι υποθέσεων και διαστήµατα εµπιστοσύνης ΑΝΑΛΥΣΗ Ε ΟΜΕΝΩΝ 5. Στατιστική συµπερασµατολογία για ποσοτικές µεταβλητές: Έλεγχοι υποθέσεων και διαστήµατα εµπιστοσύνης ιαστήµατα εµπιστοσύνης και έλεγχοι υποθέσεων για τη µέση τιµή Για µια ποσοτική µεταβλητή

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 5 ο. 5.1 Εντολή EXPLORE 5.2 Εντολή CROSSTABS 5.3 Εντολή RAΤΙΟ STΑTISTIC 5.4 Εντολή OLAP CUBES. Daily calorie intake

ΚΕΦΑΛΑΙΟ 5 ο. 5.1 Εντολή EXPLORE 5.2 Εντολή CROSSTABS 5.3 Εντολή RAΤΙΟ STΑTISTIC 5.4 Εντολή OLAP CUBES. Daily calorie intake ----------Εισαγωγή στη Χρήση του SPSS for Windows ------------- Σελίδα: 0------------ ΚΕΦΑΛΑΙΟ 5 ο 5.1 Εντολή EXPLORE 5.2 Εντολή CROSSTABS 5.3 Εντολή RAΤΙΟ STΑTISTIC 5.4 Εντολή OLAP CUBES 5000 Daily calorie

Διαβάστε περισσότερα

Κεφάλαιο 3: Ανάλυση μιας μεταβλητής

Κεφάλαιο 3: Ανάλυση μιας μεταβλητής Κεφάλαιο 3: Ανάλυση μιας μεταβλητής Γενικά Στο Κεφάλαιο αυτό θα παρουσιάσουμε κάποιες μεθόδους της Περιγραφικής Στατιστικής και της Στατιστικής Συμπερασματολογίας που αφορούν στην ανάλυση μιας μεταβλητής.

Διαβάστε περισσότερα

Εκπαιδευτική έρευνα Οργάνωση & Παρουσίαση Δεδομένων (Εργαστήριο SPSS) Άγγελος Μάρκος, Λέκτορας Δημοκρίτειο Πανεπιστήμιο Θράκης

Εκπαιδευτική έρευνα Οργάνωση & Παρουσίαση Δεδομένων (Εργαστήριο SPSS) Άγγελος Μάρκος, Λέκτορας Δημοκρίτειο Πανεπιστήμιο Θράκης Εκπαιδευτική έρευνα Οργάνωση & Παρουσίαση Δεδομένων (Εργαστήριο SPSS) Άγγελος Μάρκος, Λέκτορας Δημοκρίτειο Πανεπιστήμιο Θράκης Σύνολα Δεδομένων - Είδη Ποσοτικής Έρευνας: Παράλογες Ιδέες Γονέων (Δειγματοληπτική)

Διαβάστε περισσότερα

1991 US Social Survey.sav

1991 US Social Survey.sav Παραδείγµατα στατιστικής συµπερασµατολογίας µε ένα δείγµα Στα παραδείγµατα χρησιµοποιείται απλό τυχαίο δείγµα µεγέθους 1 από το αρχείο δεδοµένων 1991 US Social Survey.sav Το δείγµα λαµβάνεται µε την διαδικασία

Διαβάστε περισσότερα

Ενότητα 5 η : Επαγωγική Στατιστική ΙΙ Ανάλυση ποσοτικών δεδομένων. Δημήτριος Σταμοβλάσης Φιλοσοφίας Παιδαγωγικής

Ενότητα 5 η : Επαγωγική Στατιστική ΙΙ Ανάλυση ποσοτικών δεδομένων. Δημήτριος Σταμοβλάσης Φιλοσοφίας Παιδαγωγικής ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΧΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Εισαγωγή στην Ανάλυση Ερευνητικών Δεδομένων στις Κοινωνικές Επιστήμες Με χρήση των λογισμικών IBM/SPSS και LISREL Ενότητα 5 η : Επαγωγική

Διαβάστε περισσότερα

Εξερευνώντας τα δεδομένα μας-περιγραφική Στατιστική

Εξερευνώντας τα δεδομένα μας-περιγραφική Στατιστική ΚΕΦΑΛΑΙΟ ΔΕΥΤΕΡΟ Εξερευνώντας τα δεδομένα μας-περιγραφική Στατιστική Το πρώτο βήμα στην ανάλυση ενός συνόλου δεδομένων, που αποτελούν μετρήσεις ενός δείγματος είναι η παρουσίαση και σύνοψη των πληροφοριών

Διαβάστε περισσότερα

Εργαστήριο στατιστικής Στατιστικό πακέτο S.P.S.S.

Εργαστήριο στατιστικής Στατιστικό πακέτο S.P.S.S. Σημειώσεις για το μάθημα Εργαστήριο στατιστικής Στατιστικό πακέτο S.P.S.S. Παπάνα Αγγελική E mail: papanagel@yahoo.gr, agpapana@gen.auth.gr Α.Τ.Ε.Ι. Θεσσαλονίκης ΠΑΡΑΡΤΗΜΑ ΚΑΤΕΡΙΝΗΣ Τμήμα Τυποποίησης και

Διαβάστε περισσότερα

ΕΚΠΑΙΔΕΥΤΙΚΗ ΤΕΧΝΟΛΟΓΙΑ ΚΑΙ ΑΝΑΠΤΥΞΗ ΑΝΘΡΩΠΙΝΩΝ ΠΟΡΩΝ

ΕΚΠΑΙΔΕΥΤΙΚΗ ΤΕΧΝΟΛΟΓΙΑ ΚΑΙ ΑΝΑΠΤΥΞΗ ΑΝΘΡΩΠΙΝΩΝ ΠΟΡΩΝ Α εξάμηνο 2010-2011 ΠΡΟΓΡΑΜΜΑ ΜΕΤΑΠΤΥΧΙΑΚΩΝ ΣΠΟΥΔΩΝ ΕΚΠΑΙΔΕΥΤΙΚΗ ΤΕΧΝΟΛΟΓΙΑ ΚΑΙ ΑΝΑΠΤΥΞΗ ΑΝΘΡΩΠΙΝΩΝ ΠΟΡΩΝ Ποιοτικές και Ποσοτικές μέθοδοι και προσεγγίσεις για την επιστημονική έρευνα users.sch.gr/abouras

Διαβάστε περισσότερα

Ερμηνεία αποτελεσμάτων Ανάλυση διακύμανσης κατά ένα παράγοντα

Ερμηνεία αποτελεσμάτων Ανάλυση διακύμανσης κατά ένα παράγοντα Ερμηνεία αποτελεσμάτων Ανάλυση διακύμανσης κατά ένα παράγοντα Αρχείο δεδομένων school.sav Στον πίνακα Descriptives, μας δίνονται για την Επίδοση ως προς τις πέντε διαφορετικές μεθόδους διδασκαλίας, το

Διαβάστε περισσότερα

ΑΝΑΛΥΣΗ ΔΕΔΟΜΕΝΩΝ. Δρ. Βασίλης Π. Αγγελίδης Τμήμα Μηχανικών Παραγωγής & Διοίκησης Δημοκρίτειο Πανεπιστήμιο Θράκης

ΑΝΑΛΥΣΗ ΔΕΔΟΜΕΝΩΝ. Δρ. Βασίλης Π. Αγγελίδης Τμήμα Μηχανικών Παραγωγής & Διοίκησης Δημοκρίτειο Πανεπιστήμιο Θράκης ΑΝΑΛΥΣΗ ΔΕΔΟΜΕΝΩΝ Δρ. Βασίλης Π. Αγγελίδης Τμήμα Μηχανικών Παραγωγής & Διοίκησης Δημοκρίτειο Πανεπιστήμιο Θράκης Περιεχόμενα Εισαγωγή Το πρόβλημα - Συντελεστής συσχέτισης Μοντέλο απλής γραμμικής παλινδρόμησης

Διαβάστε περισσότερα

Έλεγχος για τις παραμέτρους θέσης δύο πληθυσμών με ανεξάρτητα δείγματα

Έλεγχος για τις παραμέτρους θέσης δύο πληθυσμών με ανεξάρτητα δείγματα ΚΕΦΑΛΑΙΟ ΠΕΜΠΤΟ Έλεγχος για τις παραμέτρους θέσης δύο πληθυσμών με ανεξάρτητα δείγματα Θέλοντας να εξετάσουμε τις μέσες τιμές δύο πληθυσμών πρέπει να διακρίνουμε κατά τα γνωστά από τη θεωρία δύο περιπτώσεις

Διαβάστε περισσότερα

Παράδειγμα: Γούργουλης Βασίλειος, Επίκουρος Καθηγητής Τ.Ε.Φ.Α.Α.-Δ.Π.Θ.

Παράδειγμα: Γούργουλης Βασίλειος, Επίκουρος Καθηγητής Τ.Ε.Φ.Α.Α.-Δ.Π.Θ. Έλεγχος ύπαρξης στατιστικά σημαντικών διαφορών μεταξύ δειγμάτων, που διαχωρίζονται βάσει ενός επαναλαμβανόμενου και ενός ανεξάρτητου παράγοντα (Ανάλυση διακύμανσης για εξαρτημένα δείγματα ως προς δύο παράγοντες,

Διαβάστε περισσότερα

Απλή Ευθύγραµµη Συµµεταβολή

Απλή Ευθύγραµµη Συµµεταβολή Απλή Ευθύγραµµη Συµµεταβολή Επιστηµονική Επιµέλεια ρ. Γεώργιος Μενεξές Τοµέας Φυτών Μεγάλης Καλλιέργειας και Οικολογίας, Εργαστήριο Γεωργίας Viola adorata Εισαγωγή Ανάλυση Παλινδρόµησης και Συσχέτιση Απλή

Διαβάστε περισσότερα

Προϋποθέσεις : ! Και οι δύο µεταβλητές να κατανέµονται κανονικά και να έχουν επιλεγεί τυχαία.

Προϋποθέσεις : ! Και οι δύο µεταβλητές να κατανέµονται κανονικά και να έχουν επιλεγεί τυχαία. . ΣΤΑΤΙΣΤΙΚΗ ΣΥΣΧΕΤΙΣΗ. Υπολογισµός συντελεστών συσχέτισης Προκειµένου να ελέγξουµε την ύπαρξη γραµµικής σχέσης µεταξύ δύο ποσοτικών µεταβλητών, χρησιµοποιούµε συνήθως τον παραµετρικό συντελεστή συσχέτισης

Διαβάστε περισσότερα

Εισαγωγή στην ανάλυση μεταβλητών με το IBM SPSS Statistics

Εισαγωγή στην ανάλυση μεταβλητών με το IBM SPSS Statistics Εισαγωγή στην ανάλυση μεταβλητών με το IBM SPSS Statistics Στόχοι του κεφαλαίου Εξοικείωση με το περιβάλλον του SPSS Εξοικείωση με τις διαδικασίες περιγραφικής ανάλυσης μιας μεταβλητής Εξοικείωση με τη

Διαβάστε περισσότερα

Έλεγχος για τις παραμέτρους θέσης δύο πληθυσμών με εξαρτημένα δείγματα

Έλεγχος για τις παραμέτρους θέσης δύο πληθυσμών με εξαρτημένα δείγματα ΚΕΦΑΛΑΙΟ ΕΚΤΟ Έλεγχος για τις παραμέτρους θέσης δύο πληθυσμών με εξαρτημένα δείγματα Στο κεφάλαιο αυτό θα ασχοληθούμε με τον έλεγχο της υπόθεσης της ισότητα δύο μέσων τιμών με εξαρτημένα δείγματα. Εξαρτημένα

Διαβάστε περισσότερα

ΤΜΗΜΑ ΕΠΙΧΕΙΡΗΜΑΤΙΚΟΥ ΣΧΕ ΙΑΣΜΟΥ & ΠΛΗΡΟΦΟΡΙΑΚΩΝ ΣΥΣΤΗΜΑΤΩΝ

ΤΜΗΜΑ ΕΠΙΧΕΙΡΗΜΑΤΙΚΟΥ ΣΧΕ ΙΑΣΜΟΥ & ΠΛΗΡΟΦΟΡΙΑΚΩΝ ΣΥΣΤΗΜΑΤΩΝ ΤΜΗΜΑ ΕΠΙΧΕΙΡΗΜΑΤΙΚΟΥ ΣΧΕ ΙΑΣΜΟΥ & ΠΛΗΡΟΦΟΡΙΑΚΩΝ ΣΥΣΤΗΜΑΤΩΝ ΟΙΚΟΝΟΜΕΤΡΙΚΑ ΠΡΟΤΥΠΑ ΜΑΘΗΜΑ ΤΕΤΑΡΤΟ-ΠΕΜΠΤΟ ΘΕΩΡΙΑΣ- ΠΟΛΛΑΠΛΟ ΓΡΑΜΜΙΚΟ ΥΠΟ ΕΙΓΜΑ Σηµειώσεις: Θωµόπουλος Γιώργος Ρογκάκος Γιώργος Καθηγητής: Κουνετάς

Διαβάστε περισσότερα

ΕΡΓΑΣΤΗΡΙΟ ΣΤΑΤΙΣΤΙΚΗΣ

ΕΡΓΑΣΤΗΡΙΟ ΣΤΑΤΙΣΤΙΚΗΣ ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΣΧΟΛΗ ΘΕΤΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΜΑΘΗΜΑΤΙΚΩΝ ΤΟΜΕΑΣ ΣΤΑΤΙΣΤΙΚΗΣ ΚΑΙ ΕΠΙΧΕΙΡΗΣΙΑΚΗΣ ΕΡΕΥΝΑΣ ΕΡΓΑΣΤΗΡΙΟ ΣΤΑΤΙΣΤΙΚΗΣ Περιγραφική στατιστική δύο μεταβλητών Εισαγωγή στη

Διαβάστε περισσότερα

Στατιστική Επιχειρήσεων Ι

Στατιστική Επιχειρήσεων Ι ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Τεχνολογικό Εκπαιδευτικό Ίδρυμα Πειραιά Στατιστική Επιχειρήσεων Ι Ενότητα 7: Παρουσίαση δεδομένων-περιγραφική στατιστική Μιλτιάδης Χαλικιάς, Επίκουρος Καθηγητής Τμήμα Διοίκησης Επιχειρήσεων

Διαβάστε περισσότερα

Εισαγωγή στη Στατιστική Επεξεργασία Δεδομένων με το SPSS for Windows

Εισαγωγή στη Στατιστική Επεξεργασία Δεδομένων με το SPSS for Windows Εθνικό και Καποδιστριακό Πανεπιστήμιο Αθηνών Τμήμα Φιλοσοφίας, Παιδαγωγικής και Ψυχολογίας Τομέας Ψυχολογίας Εισαγωγή στη Στατιστική Επεξεργασία Δεδομένων με το SPSS for Windows Επιμέλεια: Λέκτορας Βασίλης

Διαβάστε περισσότερα

ΕΠΙΣΤΗΜΟΝΙΚΟ ΕΠΙΜΟΡΦΩΤΙΚΟ ΣΕΜΙΝΑΡΙΟ «ΚΑΤΑΡΤΙΣΗ ΕΡΩΤΗΜΑΤΟΛΟΓΙΟΥ ΚΑΙ ΣΤΑΤΙΣΤΙΚΗ ΕΠΕΞΕΡΓΑΣΙΑ ΔΕΔΟΜΕΝΩΝ» Τριανταφυλλίδου Ιωάννα Μαθηματικός

ΕΠΙΣΤΗΜΟΝΙΚΟ ΕΠΙΜΟΡΦΩΤΙΚΟ ΣΕΜΙΝΑΡΙΟ «ΚΑΤΑΡΤΙΣΗ ΕΡΩΤΗΜΑΤΟΛΟΓΙΟΥ ΚΑΙ ΣΤΑΤΙΣΤΙΚΗ ΕΠΕΞΕΡΓΑΣΙΑ ΔΕΔΟΜΕΝΩΝ» Τριανταφυλλίδου Ιωάννα Μαθηματικός ΕΠΙΣΤΗΜΟΝΙΚΟ ΕΠΙΜΟΡΦΩΤΙΚΟ ΣΕΜΙΝΑΡΙΟ «ΚΑΤΑΡΤΙΣΗ ΕΡΩΤΗΜΑΤΟΛΟΓΙΟΥ ΚΑΙ ΣΤΑΤΙΣΤΙΚΗ ΕΠΕΞΕΡΓΑΣΙΑ ΔΕΔΟΜΕΝΩΝ» ΠΕΡΙΓΡΑΦΙΚΗ ΣΤΑΤΙΣΤΙΚΗ ΜΕ ΤΟ SPSS To SPSS θα: - Κάνει πολύπλοκη στατιστική ανάλυση σε δευτερόλεπτα -

Διαβάστε περισσότερα

Τίτλος Μαθήματος: Στατιστική Ανάλυση Δεδομένων

Τίτλος Μαθήματος: Στατιστική Ανάλυση Δεδομένων Τίτλος Μαθήματος: Στατιστική Ανάλυση Δεδομένων Ενότητα: Εξερευνώντας τα δεδομένα μας-περιγραφική Στατιστική Διδάσκων: Επίκ. Καθ. Απόστολος Μπατσίδης Τμήμα: Μαθηματικών ΚΕΦΑΛΑΙΟ ΔΕΥΤΕΡΟ Εξερευνώντας τα

Διαβάστε περισσότερα

ΣΤΑΤΙΣΤΙΚΗ ΑΝΑΛΥΣΗ ΑΠΟΤΕΛΕΣΜΑΤΩΝ ΧΡΗΣΗ SPSS

ΣΤΑΤΙΣΤΙΚΗ ΑΝΑΛΥΣΗ ΑΠΟΤΕΛΕΣΜΑΤΩΝ ΧΡΗΣΗ SPSS ΣΤΑΤΙΣΤΙΚΗ ΑΝΑΛΥΣΗ ΑΠΟΤΕΛΕΣΜΑΤΩΝ ΧΡΗΣΗ SPSS Πανεπιστήμιο Θεσσαλίας-Τμήμα Πολιτικών Μηχανικών Εργαστήριο Κυκλοφορίας, Μεταφορών και Διαχείρισης Εφοδιαστικής Αλυσίδας Αντικείμενα διάλεξης Σύντομη εισαγωγή

Διαβάστε περισσότερα

Δείγμα (μεγάλο) από οποιαδήποτε κατανομή

Δείγμα (μεγάλο) από οποιαδήποτε κατανομή ΒΙΟΣΤΑΤΙΣΤΙΚΗ Εργαστήριο 4ο Κατανομές Στατιστικών Συναρτήσεων Δείγμα από κανονική κατανομή Έστω Χ= Χ Χ Χ τ.δ. από Ν µσ τότε ( 1,,..., n) (, ) Τ Χ Χ Ν Τ Χ σ σ Χ Τ Χ n Χ S µ S µ 1( ) = (0,1), ( ) = ( n 1)

Διαβάστε περισσότερα

Άσκηση 11. Δίνονται οι παρακάτω παρατηρήσεις:

Άσκηση 11. Δίνονται οι παρακάτω παρατηρήσεις: Άσκηση. Δίνονται οι παρακάτω παρατηρήσεις: X X X X Y 7 50 6 7 6 6 96 7 0 5 55 9 5 59 6 8 8 5 0 59 7 7 8 8 5 5 0 7 69 9 6 6 7 6 9 5 7 6 8 5 6 69 8 0 50 66 0 0 50 8 59 76 8 7 60 7 87 6 5 7 88 9 8 50 0 5

Διαβάστε περισσότερα

Άσκηση 10, σελ. 119. Για τη μεταβλητή x (άτυπος όγκος) έχουμε: x censored_x 1 F 3 F 3 F 4 F 10 F 13 F 13 F 16 F 16 F 24 F 26 F 27 F 28 F

Άσκηση 10, σελ. 119. Για τη μεταβλητή x (άτυπος όγκος) έχουμε: x censored_x 1 F 3 F 3 F 4 F 10 F 13 F 13 F 16 F 16 F 24 F 26 F 27 F 28 F Άσκηση 0, σελ. 9 από το βιβλίο «Μοντέλα Αξιοπιστίας και Επιβίωσης» της Χ. Καρώνη (i) Αρχικά, εισάγουμε τα δεδομένα στο minitab δημιουργώντας δύο μεταβλητές: τη x για τον άτυπο όγκο και την y για τον τυπικό

Διαβάστε περισσότερα

ΑΝΑΛΥΣΗ ΔΕΔΟΜΕΝΩΝ. Δρ. Βασίλης Π. Αγγελίδης Τμήμα Μηχανικών Παραγωγής & Διοίκησης Δημοκρίτειο Πανεπιστήμιο Θράκης

ΑΝΑΛΥΣΗ ΔΕΔΟΜΕΝΩΝ. Δρ. Βασίλης Π. Αγγελίδης Τμήμα Μηχανικών Παραγωγής & Διοίκησης Δημοκρίτειο Πανεπιστήμιο Θράκης ΑΝΑΛΥΣΗ ΔΕΔΟΜΕΝΩΝ Δρ. Βασίλης Π. Αγγελίδης Τμήμα Μηχανικών Παραγωγής & Διοίκησης Δημοκρίτειο Πανεπιστήμιο Θράκης Πολλαπλή Παλινδρόμηση Δρ. Βασίλης Π. Αγγελίδης Ανάλυση Δεδομένων (Εργαστήριο) Διαφάνεια

Διαβάστε περισσότερα

ΑΝΑΛΥΣΗ Ε ΟΜΕΝΩΝ. 2. Περιγραφική Στατιστική

ΑΝΑΛΥΣΗ Ε ΟΜΕΝΩΝ. 2. Περιγραφική Στατιστική ΑΝΑΛΥΣΗ Ε ΟΜΕΝΩΝ 2. Περιγραφική Στατιστική Βασικά είδη στατιστικής ανάλυσης 1. Περιγραφική στατιστική: περιγραφή του συνόλου των δεδοµένων (δείγµατος) 2. Συµπερασµατολογία: Παραγωγή συµπερασµάτων για τα

Διαβάστε περισσότερα

Τίτλος Μαθήματος: Στατιστική Ανάλυση Δεδομένων

Τίτλος Μαθήματος: Στατιστική Ανάλυση Δεδομένων Τίτλος Μαθήματος: Στατιστική Ανάλυση Δεδομένων Ενότητα: Έλεγχος για τις παραμέτρους θέσης δύο πληθυσμών με ανεξάρτητα δείγματα Διδάσκων: Επίκ. Καθ. Απόστολος Μπατσίδης Τμήμα: Μαθηματικών ΚΕΦΑΛΑΙΟ ΠΕΜΠΤΟ

Διαβάστε περισσότερα

ΑΝΑΛΥΣΗ Ε ΟΜΕΝΩΝ. 7. Παλινδρόµηση

ΑΝΑΛΥΣΗ Ε ΟΜΕΝΩΝ. 7. Παλινδρόµηση ΑΝΑΛΥΣΗ Ε ΟΜΕΝΩΝ 7. Παλινδρόµηση Γενικά Επέκταση της έννοιας της συσχέτισης: Πώς µπορούµε να προβλέπουµε τη µια µεταβλητή από την άλλη; Απλή παλινδρόµηση (simple regression): Κατασκευή µοντέλου πρόβλεψης

Διαβάστε περισσότερα

Δείγμα πριν τις διορθώσεις

Δείγμα πριν τις διορθώσεις Εισαγωγή Α ΜΕΡΟΣ ΠΕΡΙΓΡΑΦΙΚΗ ΣΤΑΤΙΣΤΙΚΗ 1 ΕΙΣΑΓΩΓΗ ΣΤΗ ΣΤΑΤΙΣΤΙΚΗ 1.1 Εισαγωγή 1.1.1 Περιγραφική Στατιστική (Descriptive Statistics) 1.1.2 Επαγωγική ή Αναλυτική Στατιστική (Inferential or Αnalytical Statistics)

Διαβάστε περισσότερα

ΑΝΤΙΚΕΙΜΕΝΟ ΜΑΘΗΜΑΤΟΣ

ΑΝΤΙΚΕΙΜΕΝΟ ΜΑΘΗΜΑΤΟΣ ΑΝΤΙΚΕΙΜΕΝΟ ΜΑΘΗΜΑΤΟΣ Στόχοι: (a) να δοθεί µια εισαγωγή στη θεωρία της στατιστικής συµπερασµατολογίας ελέγχων υποθέσεων, (b) να παρουσιάσει τις βασικές εφαρµογές αυτών των ελέγχων: µέσης τιµής, ποσοστού

Διαβάστε περισσότερα

Περιγραφή των εργαλείων ρουτινών του στατιστικού

Περιγραφή των εργαλείων ρουτινών του στατιστικού Κεφάλαιο 5 ο Περιγραφή των εργαλείων ρουτινών του στατιστικού πακέτου SPSS που χρησιµοποιήθηκαν. 5.1 Γενικά Το στατιστικό πακέτο SPSS είναι ένα λογισµικό που χρησιµοποιείται ευρέως ανά τον κόσµο από επιχειρήσεις

Διαβάστε περισσότερα

Media Monitoring. Ενότητα 7: Εισαγωγή & Ανάλυση δεδομένων με το SPSS. Σταμάτης Πουλακιδάκος Σχολή ΟΠΕ Τμήμα ΕΜΜΕ

Media Monitoring. Ενότητα 7: Εισαγωγή & Ανάλυση δεδομένων με το SPSS. Σταμάτης Πουλακιδάκος Σχολή ΟΠΕ Τμήμα ΕΜΜΕ Media Monitoring Ενότητα 7: Εισαγωγή & Ανάλυση δεδομένων με το SPSS Σταμάτης Πουλακιδάκος Σχολή ΟΠΕ Τμήμα ΕΜΜΕ Output Είναι ο όρος που χρησιμοποιείται για να περιγράψει τα αποτελέσματα από αναλύσεις που

Διαβάστε περισσότερα

Έλεγχος ύπαρξης στατιστικά σημαντικών διαφορών μεταξύ δύο εξαρτημένων δειγμάτων, που δεν ακολουθούν την κανονική κατανομή (Wilcoxon test)

Έλεγχος ύπαρξης στατιστικά σημαντικών διαφορών μεταξύ δύο εξαρτημένων δειγμάτων, που δεν ακολουθούν την κανονική κατανομή (Wilcoxon test) Έλεγχος ύπαρξης στατιστικά σημαντικών διαφορών μεταξύ δύο εξαρτημένων δειγμάτων, που δεν ακολουθούν την κανονική κατανομή (Wilcoxon test) Σε ορισμένες περιπτώσεις απαιτείται ο έλεγχος της ύπαρξης στατιστικά

Διαβάστε περισσότερα

Περιεχόμενα. Πρόλογος... v

Περιεχόμενα. Πρόλογος... v Περιεχόμενα Πρόλογος... v 1 Χρήση της έκδοσης 10 του SPSS για Windows και καταχώριση δεδομένων... 1 2 Περιγραφή μεταβλητών: πίνακες και γραφήματα... 19 3 Περιγραφή μεταβλητών αριθμητικά: μέσοι όροι, διακύμανση,

Διαβάστε περισσότερα

ΤΣΑΛΤΑ ΜΑΡΙΑ Α.Μ: 1946 ΠΑΥΛΕΛΛΗ ΛΟΥΙΖΑ Α.Μ: 2342 ΤΣΑΪΛΑΚΗ ΦΑΝΗ Α.Μ: Οικονομετρικά. Εργαστήριο 15/05/11

ΤΣΑΛΤΑ ΜΑΡΙΑ Α.Μ: 1946 ΠΑΥΛΕΛΛΗ ΛΟΥΙΖΑ Α.Μ: 2342 ΤΣΑΪΛΑΚΗ ΦΑΝΗ Α.Μ: Οικονομετρικά. Εργαστήριο 15/05/11 ΤΣΑΛΤΑ ΜΑΡΙΑ Α.Μ: 1946 ΠΑΥΛΕΛΛΗ ΛΟΥΙΖΑ Α.Μ: 34 ΤΣΑΪΛΑΚΗ ΦΑΝΗ Α.Μ: 17 Οικονομετρικά Εργαστήριο 15/5/11 ΟΙΚΟΝΟΜΕΤΡΙΚΑ ΠΡΟΤΥΠΑ ΜΑΘΗΜΑ 7 ΕΡΓΑΣΤΗΡΙΟ ΜΗ ΓΡΑΜΜΙΚΑ ΜΟΝΤΕΛΑ Σκοπός του παρόντος µαθήµατος είναι η

Διαβάστε περισσότερα

Προσοµοίωση Εξέτασης στο µάθηµα του Γεωργικού Πειραµατισµού

Προσοµοίωση Εξέτασης στο µάθηµα του Γεωργικού Πειραµατισµού Προσοµοίωση Εξέτασης στο µάθηµα του Γεωργικού Πειραµατισµού ρ. Γεώργιος Μενεξές Τοµέας Φυτών Μεγάλης Καλλιέργειας και Οικολογίας Viola adorata Σκηνή Πρώτη Ερωτήσεις Σωστού-Λάθους (µέρος Ι). Ο µέσος όρος

Διαβάστε περισσότερα

Περιεχόμενα. Πρόλογος 17 ΚΕΦΑΛΑΙΟ 1 23

Περιεχόμενα. Πρόλογος 17 ΚΕΦΑΛΑΙΟ 1 23 Περιεχόμενα Πρόλογος 17 Μέρος A ΚΕΦΑΛΑΙΟ 1 23 ΕΙΣΑΓΩΓΗ ΣΤΗ ΣΤΑΤΙΣΤΙΚΗ 23 1.1 Εισαγωγή 23 1.1.1 Περιγραφική Στατιστική (Descriptive Statistics) 24 1.1.2 Επαγωγική ή Αναλυτική Στατιστική (Inferential or

Διαβάστε περισσότερα

Στατιστική και Θεωρία Πιθανοτήτων (ΓΓ04) ΑΝΤΩΝΙΟΣ ΧΡ. ΜΠΟΥΡΑΣ Εαρινό Εξάμηνο

Στατιστική και Θεωρία Πιθανοτήτων (ΓΓ04) ΑΝΤΩΝΙΟΣ ΧΡ. ΜΠΟΥΡΑΣ Εαρινό Εξάμηνο Εαρινό εξάμηνο 2009-2010 Στατιστική και Θεωρία Πιθανοτήτων (ΓΓ04) ΑΝΤΩΝΙΟΣ ΧΡ. ΜΠΟΥΡΑΣ Εαρινό Εξάμηνο 2009-2010 Στατιστική και Θεωρία Πιθανοτήτων users.att.sch.gr/abouras abouras@sch.gr sch.gr abouras@uth.gr

Διαβάστε περισσότερα

ΒΙΟΣΤΑΤΙΣΤΙΚΗ. ΑΛΕΓΚΑΚΗΣ ΑΘΑΝΑΣΙΟΣ Φυσικός, PH.D. Σχολής Επιστηµών Υγείας

ΒΙΟΣΤΑΤΙΣΤΙΚΗ. ΑΛΕΓΚΑΚΗΣ ΑΘΑΝΑΣΙΟΣ Φυσικός, PH.D. Σχολής Επιστηµών Υγείας ΒΙΟΣΤΑΤΙΣΤΙΚΗ ΑΛΕΓΚΑΚΗΣ ΑΘΑΝΑΣΙΟΣ Φυσικός, PH.D. Σχολής Επιστηµών Υγείας Επικοινωνία: Πτέρυγα 4, Τοµέας Κοινωνικής Ιατρικής Εργαστήριο Βιοστατιστικής Τηλ. 4613 e-mail: biostats@med.uoc.gr thalegak@med.uoc.gr

Διαβάστε περισσότερα

Διερευνητική Ανάλυση Δεδομένων Exploratory Data Analysis

Διερευνητική Ανάλυση Δεδομένων Exploratory Data Analysis Διερευνητική Ανάλυση Δεδομένων Exploratory Data Analysis Περιλαμβάνει ένα σύνολο αριθμητικών και γραφικών μεθόδων, που μας επιτρέπουν να αποκτήσουμε μια πρώτη εικόνα για την κατανομή των τιμών της μεταβλητής

Διαβάστε περισσότερα

Δρ. Χάϊδω Δριτσάκη. MSc Τραπεζική & Χρηματοοικονομική

Δρ. Χάϊδω Δριτσάκη. MSc Τραπεζική & Χρηματοοικονομική Ποσοτικές Μέθοδοι Δρ. Χάϊδω Δριτσάκη MSc Τραπεζική & Χρηματοοικονομική Τεχνολογικό Εκπαιδευτικό Ίδρυμα Δυτικής Μακεδονίας Western Macedonia University of Applied Sciences Κοίλα Κοζάνης 50100 Kozani GR

Διαβάστε περισσότερα

6.4. LOGLINEAR 90 8.5 (MANOVA) 121

6.4. LOGLINEAR 90 8.5 (MANOVA) 121 Φ Γ SPSS Dr. υ υ α α Θ α 2012 2 1. Γ SPSS 19.0 1.1 Φ Γ SPSS 4 1.2 Φ Γ 7 1.3 9 1.4 Φ 10 1.5 Pτ ΘHKH IAΓPAΦH 16 1.6 16 1.7 17 1.8 20 1.9 22 1.10 Γ 23 1.11 Γ Φ 25 1.12 Γ 27 1.13 Θ 28 2. Γ Φ 2.1 Θ, Γ, Γ 29

Διαβάστε περισσότερα

Κεφάλαιο 4. Περιγραφική Στατιστική - Γραφήματα. Σύνοψη. Προαπαιτούμενη γνώση. 4.1 Βασικές Έννοιες και Ορισμοί

Κεφάλαιο 4. Περιγραφική Στατιστική - Γραφήματα. Σύνοψη. Προαπαιτούμενη γνώση. 4.1 Βασικές Έννοιες και Ορισμοί Κεφάλαιο 4 Σύνοψη Περιγραφική Στατιστική - Γραφήματα Αρχικά περιέχονται βασικές έννοιες και ορισμοί για την περιγραφική στατιστική, τις έννοιες του πληθυσμού και του δείγματος και τα είδη των μεταβλητών.

Διαβάστε περισσότερα

ΕΝ ΕΙΚΤΙΚΕΣ ΑΠΑΝΤΗΣΕΙΣ ΑΣΚΗΣΗΣ 2 (Εργαστήρια µαθήµατος «Στατιστικά Προγράµµατα», τµ. Στατ. & Ασφ. Επιστ., 04-05) (Επιµέλεια: Ελευθεράκη Αναστασία)

ΕΝ ΕΙΚΤΙΚΕΣ ΑΠΑΝΤΗΣΕΙΣ ΑΣΚΗΣΗΣ 2 (Εργαστήρια µαθήµατος «Στατιστικά Προγράµµατα», τµ. Στατ. & Ασφ. Επιστ., 04-05) (Επιµέλεια: Ελευθεράκη Αναστασία) ΕΝ ΕΙΚΤΙΚΕΣ ΑΠΑΝΤΗΣΕΙΣ ΑΣΚΗΣΗΣ (Εργαστήρια µαθήµατος «Στατιστικά Προγράµµατα», τµ. Στατ. & Ασφ. Επιστ., -) (Επιµέλεια: Ελευθεράκη Αναστασία) Άσκηση (Εργαστήριο #) Στις εξετάσεις Φεβρουαρίου του µαθήµατος

Διαβάστε περισσότερα

Τίτλος Μαθήματος: Στατιστική Ανάλυση Δεδομένων

Τίτλος Μαθήματος: Στατιστική Ανάλυση Δεδομένων Τίτλος Μαθήματος: Στατιστική Ανάλυση Δεδομένων Ενότητα: Έλεγχος για τις παραμέτρους θέσης δύο πληθυσμών με εξαρτημένα δείγματα Διδάσκων: Επίκ. Καθ. Απόστολος Μπατσίδης Τμήμα: Μαθηματικών ΚΕΦΑΛΑΙΟ ΕΚΤΟ

Διαβάστε περισσότερα

Σύντομο Εγχειρίδιο SPSS 16.0. Πέτρος Ρούσσος & Γιώργος Ευσταθίου Πρόγραμμα Ψυχολογίας, Τμήμα ΦΠΨ, ΕΚΠΑ

Σύντομο Εγχειρίδιο SPSS 16.0. Πέτρος Ρούσσος & Γιώργος Ευσταθίου Πρόγραμμα Ψυχολογίας, Τμήμα ΦΠΨ, ΕΚΠΑ Πέτρος Ρούσσος & Γιώργος Ευσταθίου Πρόγραμμα Ψυχολογίας, Τμήμα ΦΠΨ, ΕΚΠΑ ΑΘΗΝΑ 2008 [2] Περιεχόμενα Δυο λόγια εισαγωγικά... 3 1.0 Το περιβάλλον του SPSS... 3 2.0 Εισαγωγή και διαχείριση δεδομένων... 6

Διαβάστε περισσότερα

Στατιστικό κριτήριο χ 2

Στατιστικό κριτήριο χ 2 18 Μεθοδολογία Επιστηµονικής Έρευνας & Στατιστική Στατιστικό κριτήριο χ 2 Ο υπολογισµός του κριτηρίου χ 2 γίνεται µέσω του µενού [Statistics => Summarize => Crosstabs...]. Κατά τη συγκεκριµένη διαδικασία

Διαβάστε περισσότερα

ΑΝΑΛΥΣΗ ΔΕΔΟΜΕΝΩΝ. Δρ. Βασίλης Π. Αγγελίδης Τμήμα Μηχανικών Παραγωγής & Διοίκησης Δημοκρίτειο Πανεπιστήμιο Θράκης

ΑΝΑΛΥΣΗ ΔΕΔΟΜΕΝΩΝ. Δρ. Βασίλης Π. Αγγελίδης Τμήμα Μηχανικών Παραγωγής & Διοίκησης Δημοκρίτειο Πανεπιστήμιο Θράκης ΑΝΑΛΥΣΗ ΔΕΔΟΜΕΝΩΝ Δρ. Βασίλης Π. Αγγελίδης Τμήμα Μηχανικών Παραγωγής & Διοίκησης Δημοκρίτειο Πανεπιστήμιο Θράκης Περιεχόμενα Έλεγχος κανονικότητας P-P Plot και Q-Q Plot Τεστ Κανονικότητας Τεστ Κανονικότητας

Διαβάστε περισσότερα

ΠΕΡΙΓΡΑΦΙΚΗ ΣΤΑΤΙΣΤΙΚΗ Ι Κ. Μ. 436

ΠΕΡΙΓΡΑΦΙΚΗ ΣΤΑΤΙΣΤΙΚΗ Ι Κ. Μ. 436 ΠΕΡΙΓΡΑΦΙΚΗ ΣΤΑΤΙΣΤΙΚΗ Ι Κ. Μ. 436 A εξάμηνο 2009-2010 Περιγραφική Στατιστική Ι users.att.sch.gr/abouras abouras@sch.gr sch.gr abouras@uth.gr Μέτρα θέσης Η θέση αντιπροσωπεύει τη θέση της κατανομής κατά

Διαβάστε περισσότερα

Εισαγωγή στην Ανάλυση Δεδομένων

Εισαγωγή στην Ανάλυση Δεδομένων ΑΝΑΛΥΣΗ ΔΕΔΟΜΕΝΩΝ ΔΙΑΛΕΞΗ 09-10-2015 Εισαγωγή στην Ανάλυση Δεδομένων Βασικές έννοιες Αν. Καθ. Μαρί-Νοέλ Ντυκέν ΑΝΑΛΥΣΗ ΔΕΔΟΜΕΝΩΝ ΔΙΑΛΕΞΗ 30-10-2015 1. Στατιστικοί παράμετροι - Διάστημα εμπιστοσύνης Υπολογισμός

Διαβάστε περισσότερα

2. ΧΡΗΣΗ ΣΤΑΤΙΣΤΙΚΩΝ ΠΑΚΕΤΩΝ ΣΤΗ ΓΡΑΜΜΙΚΗ ΠΑΛΙΝΔΡΟΜΗΣΗ

2. ΧΡΗΣΗ ΣΤΑΤΙΣΤΙΚΩΝ ΠΑΚΕΤΩΝ ΣΤΗ ΓΡΑΜΜΙΚΗ ΠΑΛΙΝΔΡΟΜΗΣΗ 2. ΧΡΗΣΗ ΣΤΑΤΙΣΤΙΚΩΝ ΠΑΚΕΤΩΝ ΣΤΗ ΓΡΑΜΜΙΚΗ ΠΑΛΙΝΔΡΟΜΗΣΗ Η χρησιμοποίηση των τεχνικών της παλινδρόμησης για την επίλυση πρακτικών προβλημάτων έχει διευκολύνει εξαιρετικά από την χρήση διαφόρων στατιστικών

Διαβάστε περισσότερα

ΤΜΗΜΑ ΔΙΟΙΚΗΣΗΣ ΕΠΙΧΕΙΡΗΣΕΩΝ ΕΡΓΑΣΤΗΡΙΑΚΕΣ ΣΗΜΕΙΩΣΕΙΣ ΣΤΑΤΙΣΤΙΚΗΣ ΔΡ. ΙΩΑΝΝΗΣ Σ. ΤΡΙΑΝΤΑΦΥΛΛΟΥ

ΤΜΗΜΑ ΔΙΟΙΚΗΣΗΣ ΕΠΙΧΕΙΡΗΣΕΩΝ ΕΡΓΑΣΤΗΡΙΑΚΕΣ ΣΗΜΕΙΩΣΕΙΣ ΣΤΑΤΙΣΤΙΚΗΣ ΔΡ. ΙΩΑΝΝΗΣ Σ. ΤΡΙΑΝΤΑΦΥΛΛΟΥ ΤΜΗΜΑ ΔΙΟΙΚΗΣΗΣ ΕΠΙΧΕΙΡΗΣΕΩΝ ΕΡΓΑΣΤΗΡΙΑΚΕΣ ΣΗΜΕΙΩΣΕΙΣ ΣΤΑΤΙΣΤΙΚΗΣ ΔΡ. ΙΩΑΝΝΗΣ Σ. ΤΡΙΑΝΤΑΦΥΛΛΟΥ ΑΚΑΔΗΜΑΪΚΟ ΕΤΟΣ -3 Ακαδημαϊκό Έτος -3 . ΕΙΣΑΓΩ ΓΗ ΣΤΟ SPSS ΒΑΣΙΚΕΣ ΛΕΙΤΟΥΡΓΙΕΣ..... Καταγραφή δεδομένων και

Διαβάστε περισσότερα

Η βιτρίνα των καταστημάτων ως εργαλείο δημοσίων σχέσεων. Ονοματεπώνυμο: Ειρήνη Πορτάλιου Σειρά: 8 η Επιβλέπουσα: Αν. Καθηγήτρια : Βεντούρα Ζωή

Η βιτρίνα των καταστημάτων ως εργαλείο δημοσίων σχέσεων. Ονοματεπώνυμο: Ειρήνη Πορτάλιου Σειρά: 8 η Επιβλέπουσα: Αν. Καθηγήτρια : Βεντούρα Ζωή Η βιτρίνα των καταστημάτων ως εργαλείο δημοσίων σχέσεων Ονοματεπώνυμο: Ειρήνη Πορτάλιου Σειρά: 8 η Επιβλέπουσα: Αν. Καθηγήτρια : Βεντούρα Ζωή Δεκέμβριος 2011 Στόχος Έρευνας H βιτρίνα των καταστημάτων αποτελεί

Διαβάστε περισσότερα

Lampiran 1 Output SPSS MODEL I

Lampiran 1 Output SPSS MODEL I 67 Variables Entered/Removed(b) Lampiran 1 Output SPSS MODEL I Model Variables Entered Variables Removed Method 1 CFO, ACCOTHER, ACCPAID, ACCDEPAMOR,. Enter ACCREC, ACCINV(a) a All requested variables

Διαβάστε περισσότερα

Ενότητα 3 η : Περιγραφική Στατιστική Ι. Πίνακες και Γραφικές παραστάσεις. Δημήτριος Σταμοβλάσης Φιλοσοφίας Παιδαγωγικής

Ενότητα 3 η : Περιγραφική Στατιστική Ι. Πίνακες και Γραφικές παραστάσεις. Δημήτριος Σταμοβλάσης Φιλοσοφίας Παιδαγωγικής ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΧΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Εισαγωγή στην Ανάλυση Ερευνητικών Δεδομένων στις Κοινωνικές Επιστήμες Με χρήση των λογισμικών IBM/SPSS και LISREL Ενότητα 3 η : Περιγραφική

Διαβάστε περισσότερα

ΕΛΕΓΧΟΙ ΥΠΟΘΕΣΕΩΝ ΓΙΑ ΤΗΝ ΣΥΓΚΡΙΣΗ ΜΕΣΩΝ ΤΙΜΩΝ ΚΑΙ ΑΝΑΛΟΓΙΩΝ ΔΥΟ

ΕΛΕΓΧΟΙ ΥΠΟΘΕΣΕΩΝ ΓΙΑ ΤΗΝ ΣΥΓΚΡΙΣΗ ΜΕΣΩΝ ΤΙΜΩΝ ΚΑΙ ΑΝΑΛΟΓΙΩΝ ΔΥΟ ΚΕΦΑΛΑΙΟ 19 ΕΛΕΓΧΟΙ ΥΠΟΘΕΣΕΩΝ ΓΙΑ ΤΗΝ ΣΥΓΚΡΙΣΗ ΜΕΣΩΝ ΤΙΜΩΝ ΚΑΙ ΑΝΑΛΟΓΙΩΝ ΔΥΟ ΚΑΝΟΝΙΚΩΝ ΠΛΗΘΥΣΜΩΝ Όταν ενδιαφερόμαστε να συγκρίνουμε δύο πληθυσμούς, η φυσιολογική προσέγγιση είναι να προσπαθήσουμε να συγκρίνουμε

Διαβάστε περισσότερα

+ ε βελτιώνει ουσιαστικά το προηγούμενο (β 3 = 0;) 2. Εξετάστε ποιο από τα παρακάτω τρία μοντέλα:

+ ε βελτιώνει ουσιαστικά το προηγούμενο (β 3 = 0;) 2. Εξετάστε ποιο από τα παρακάτω τρία μοντέλα: ΑΝΑΛΥΣΗ ΠΑΛΙΝΔΡΟΜΗΣΗΣ, 6-5-0 Άσκηση 8. Δίνονται οι παρακάτω 0 παρατηρήσεις (πίνακας Α) με βάση τις οποίες θέλουμε να δημιουργήσουμε ένα γραμμικό μοντέλο για την πρόβλεψη της Υ μέσω των ανεξάρτητων μεταβλητών

Διαβάστε περισσότερα

Το στατιστικό κριτήριο που μας επιτρέπει να. μιας ή πολλών άλλων γνωστών μεταβλητών. Η σχέση ανάμεσα στις μεταβλητές που μελετώνται

Το στατιστικό κριτήριο που μας επιτρέπει να. μιας ή πολλών άλλων γνωστών μεταβλητών. Η σχέση ανάμεσα στις μεταβλητές που μελετώνται Κεφάλαιο 10 Η Ανάλυση Παλινδρόμησης Η Ανάλυση Παλινδρόμησης Το στατιστικό κριτήριο που μας επιτρέπει να προβλέψουμε τις τιμές μιας μεταβλητής από τις τιμές μιας ή πολλών άλλων γνωστών μεταβλητών Η σχέση

Διαβάστε περισσότερα

Άσκηση 2. i β. 1 ου έτους (Υ i )

Άσκηση 2. i β. 1 ου έτους (Υ i ) Άσκηση Ο επόμενος πίνακας δίνει τους βαθμούς φοιτητών (Χ i ) στις εισαγωγικές εξετάσεις ενός κολεγίου και τους αντίστοιχους βαθμούς τους (Υ i ) στο τέλος της πρώτης χρονιάς φοίτησης στο συγκεκριμένο κολέγιο.

Διαβάστε περισσότερα

Ανάλυση ιακύµανσης Μονής Κατεύθυνσης

Ανάλυση ιακύµανσης Μονής Κατεύθυνσης 24 Μεθοδολογία Επιστηµονικής Έρευνας & Στατιστική Ανάλυση ιακύµανσης Μονής Κατεύθυνσης Όπως ακριβώς συνέβη και στο κριτήριο t, τα δεδοµένα µας θα πρέπει να έχουν οµαδοποιηθεί χρησιµοποιώντας µια αντίστοιχη

Διαβάστε περισσότερα

ΑΝΑΛΥΣΗ Ε ΟΜΕΝΩΝ. 8. Ανάλυση διασποράς (ANOVA)

ΑΝΑΛΥΣΗ Ε ΟΜΕΝΩΝ. 8. Ανάλυση διασποράς (ANOVA) ΑΝΑΛΥΣΗ Ε ΟΜΕΝΩΝ 8. Ανάλυση διασποράς (ANOVA) Γενικά Επέκταση της σύγκρισης µέσων τιµών µεταβλητής ανάµεσα σε 2 δείγµατα (οµάδες ήστάθµες): Σύγκριση πολλών δειγµάτων (K>2) µαζί Σχέση ανάµεσα σε µια ποσοτική

Διαβάστε περισσότερα

ΑΝΑΛΥΣΗ ΠΑΛΙΝΔΡΟΜΗΣΗΣ,

ΑΝΑΛΥΣΗ ΠΑΛΙΝΔΡΟΜΗΣΗΣ, ΑΝΑΛΥΣΗ ΠΑΛΙΝΔΡΟΜΗΣΗΣ, -- Άσκηση. Δίνονται τα παρακάτω δεδομένα 5 7 8 9 5 X 8 5 5 5 9 7 Y. 5.. 7..7.7.9.. 5.... 8.. α) Να γίνει το διάγραμμα διασποράς β) εξετάστε τα μοντέλα Υ = β + β Χ + ε, (linear),

Διαβάστε περισσότερα

Ενότητα 2 η : Περιγραφική Στατιστική Ι. Πίνακες και Γραφικές παραστάσεις. Δημήτριος Σταμοβλάσης Φιλοσοφίας Παιδαγωγικής

Ενότητα 2 η : Περιγραφική Στατιστική Ι. Πίνακες και Γραφικές παραστάσεις. Δημήτριος Σταμοβλάσης Φιλοσοφίας Παιδαγωγικής ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΧΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Εισαγωγή στην Ανάλυση Ερευνητικών Δεδομένων στις Κοινωνικές Επιστήμες Με χρήση των λογισμικών IBM/SPSS και LISREL Ενότητα 2 η : Περιγραφική

Διαβάστε περισσότερα

ΕΡΓΑΣΤΗΡΙΟ ΣΤΑΤΙΣΤΙΚΗΣ

ΕΡΓΑΣΤΗΡΙΟ ΣΤΑΤΙΣΤΙΚΗΣ ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΣΧΟΛΗ ΘΕΤΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΜΑΘΗΜΑΤΙΚΩΝ ΤΟΜΕΑΣ ΣΤΑΤΙΣΤΙΚΗΣ ΚΑΙ ΕΠΙΧΕΙΡΗΣΙΑΚΗΣ ΕΡΕΥΝΑΣ ΕΡΓΑΣΤΗΡΙΟ ΣΤΑΤΙΣΤΙΚΗΣ Χ 2 test ανεξαρτησίας: σχέση 2 ποιοτικών μεταβλητών

Διαβάστε περισσότερα

2. ΕΠΙΛΟΓΗ ΤΟΥ ΜΕΓΕΘΟΥΣ ΤΩΝ ΠΑΡΑΤΗΡΗΣΕΩΝ

2. ΕΠΙΛΟΓΗ ΤΟΥ ΜΕΓΕΘΟΥΣ ΤΩΝ ΠΑΡΑΤΗΡΗΣΕΩΝ 1. ΕΙΣΑΓΩΓΗ ΣΤΟ SPSS Το SPSS είναι ένα στατιστικό πρόγραμμα γενικής στατιστικής ανάλυσης αρκετά εύκολο στη λειτουργία του. Για να πραγματοποιηθεί ανάλυση χρονοσειρών με τη βοήθεια του SPSS θα πρέπει απαραίτητα

Διαβάστε περισσότερα

ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΧΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ

ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΧΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΧΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Εισαγωγή στην Ανάλυση Ερευνητικών Δεδομένων στις Κοινωνικές Επιστήμες Με χρήση των λογισμικών IBM/SPSS και LISREL Ενότητα 7 η : Ανάλυση

Διαβάστε περισσότερα

Πίσω στα βασικά: Βασικές αρχές στατιστικής για κοινωνιολογικές έρευνες

Πίσω στα βασικά: Βασικές αρχές στατιστικής για κοινωνιολογικές έρευνες Σχετικές πληροφορίες: http://dlib.ionio.gr/~spver/seminars/statistics/ Πίσω στα βασικά: Βασικές αρχές στατιστικής για κοινωνιολογικές έρευνες Σπύρος Βερονίκης Τμήμα Αρχειονομίας - Βιβλιοθηκονομίας Θεματικές

Διαβάστε περισσότερα

έρευνας και στατιστική» παραμετρικές συγκρίσεις»

έρευνας και στατιστική» παραμετρικές συγκρίσεις» ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΙΑΣ ΤΜΗΜΑ ΕΠΙΣΤΗΜΗΣ ΦΥΣΙΚΗΣ ΑΓΩΓΗΣ & ΑΘΛΗΤΙΣΜΟΥ «Μεθοδολογία έρευνας και στατιστική» Μάθημα μεταπτυχιακού κύκλου σπουδών Διάλεξη: «Μη παραμετρικές συγκρίσεις» ΔΙΔΑΣΚΩΝ: Δρ. Αθανάσιος

Διαβάστε περισσότερα

ΠΕΡΙΓΡΑΦΙΚΗ και ΕΠΑΓΩΓΙΚΗ ΣΤΑΤΙΣΤΙΚΗ

ΠΕΡΙΓΡΑΦΙΚΗ και ΕΠΑΓΩΓΙΚΗ ΣΤΑΤΙΣΤΙΚΗ ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ ΠΕΡΙΓΡΑΦΙΚΗ και ΕΠΑΓΩΓΙΚΗ ΣΤΑΤΙΣΤΙΚΗ Εισήγηση 5Α: ΠΑΡΑΜΕΤΡΙΚΟ Χ 2 Διδάσκων: Δαφέρμος Βασίλειος ΤΜΗΜΑ ΠΟΛΙΤΙΚΗΣ ΕΠΙΣΤΗΜΗΣ ΣΧΟΛΗΣ ΚΟΙΝΩΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ Άδειες Χρήσης

Διαβάστε περισσότερα

Στατιστική Επιχειρήσεων Ι

Στατιστική Επιχειρήσεων Ι ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Τεχνολογικό Εκπαιδευτικό Ίδρυμα Πειραιά Στατιστική Επιχειρήσεων Ι Ενότητα 6: Συσχέτιση και παλινδρόμηση εμπειρική προσέγγιση Μιλτιάδης Χαλικιάς, Επίκουρος Καθηγητής Τμήμα Διοίκησης

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΑΚΑ ΦΡΟΝΤΙΣΤΗΡΙΑ ΚΟΛΛΙΝΤΖΑ. Ερωτήσεις πολλαπλής επιλογής. Συντάκτης: Δημήτριος Κρέτσης

ΠΑΝΕΠΙΣΤΗΜΙΑΚΑ ΦΡΟΝΤΙΣΤΗΡΙΑ ΚΟΛΛΙΝΤΖΑ. Ερωτήσεις πολλαπλής επιλογής. Συντάκτης: Δημήτριος Κρέτσης ΠΑΝΕΠΙΣΤΗΜΙΑΚΑ ΦΡΟΝΤΙΣΤΗΡΙΑ ΚΟΛΛΙΝΤΖΑ Ερωτήσεις πολλαπλής επιλογής Συντάκτης: Δημήτριος Κρέτσης 1. Ο κλάδος της περιγραφικής Στατιστικής: α. Ασχολείται με την επεξεργασία των δεδομένων και την ανάλυση

Διαβάστε περισσότερα

ΠΕΡΙΕΧΟΜΕΝΑ 1 ΕΙΣΑΓΩΓΗ... 1 2 ΤΟ PASW ΜΕ ΜΙΑ ΜΑΤΙΑ... 13 3 ΠΕΡΙΓΡΑΦΙΚΗ ΣΤΑΤΙΣΤΙΚΗ: Η ΜΕΣΗ ΤΙΜΗ ΚΑΙ Η ΔΙΑΜΕΣΟΣ... 29

ΠΕΡΙΕΧΟΜΕΝΑ 1 ΕΙΣΑΓΩΓΗ... 1 2 ΤΟ PASW ΜΕ ΜΙΑ ΜΑΤΙΑ... 13 3 ΠΕΡΙΓΡΑΦΙΚΗ ΣΤΑΤΙΣΤΙΚΗ: Η ΜΕΣΗ ΤΙΜΗ ΚΑΙ Η ΔΙΑΜΕΣΟΣ... 29 ΠΕΡΙΕΧΟΜΕΝΑ 1 ΕΙΣΑΓΩΓΗ... 1 Μεταβλητές...5 Πληθυσμός, δείγμα...7 Το ευρύτερο γραμμικό μοντέλο...8 Αναφορές στη βιβλιογραφία... 11 2 ΤΟ PASW ΜΕ ΜΙΑ ΜΑΤΙΑ... 13 Περίληψη... 13 Εισαγωγή... 13 Με μια ματιά...

Διαβάστε περισσότερα

Ποιοτική και ποσοτική ανάλυση ιατρικών δεδομένων

Ποιοτική και ποσοτική ανάλυση ιατρικών δεδομένων Ποιοτική και ποσοτική ανάλυση ιατρικών δεδομένων Κωνσταντίνος Τζιόμαλος Επίκουρος Καθηγητής Παθολογίας ΑΠΘ Α Προπαιδευτική Παθολογική Κλινική, Νοσοκομείο ΑΧΕΠΑ 1 ο βήμα : καταγραφή δεδομένων Το πιο πρακτικό

Διαβάστε περισσότερα

ΑΝΑΛΥΣΗ ΔΕΔΟΜΕΝΩΝ. Δρ. Βασίλης Π. Αγγελίδης Τμήμα Μηχανικών Παραγωγής & Διοίκησης Δημοκρίτειο Πανεπιστήμιο Θράκης

ΑΝΑΛΥΣΗ ΔΕΔΟΜΕΝΩΝ. Δρ. Βασίλης Π. Αγγελίδης Τμήμα Μηχανικών Παραγωγής & Διοίκησης Δημοκρίτειο Πανεπιστήμιο Θράκης ΑΝΑΛΥΣΗ ΔΕΔΟΜΕΝΩΝ Δρ. Βασίλης Π. Αγγελίδης Τμήμα Μηχανικών Παραγωγής & Διοίκησης Δημοκρίτειο Πανεπιστήμιο Θράκης Περιεχόμενα Εισαγωγή στο SPSS Ο Data editor Ο Viewer Άνοιγμα Αρχείου στο SPSS Εισαγωγή Δεδομένων

Διαβάστε περισσότερα

$ι ιι η ι ι!η ηι ι ANOVA. To ANOVA ι ι ι η η η ιη (Analysis of Variance). * ι! ι ι ι ι ι η ιη. ;, ι ι ι! η ιι ηιη ι ι!η ι η η ιη ι ι η ι η.

$ι ιι η ι ι!η ηι ι ANOVA. To ANOVA ι ι ι η η η ιη (Analysis of Variance). * ι! ι ι ι ι ι η ιη. ;, ι ι ι! η ιι ηιη ι ι!η ι η η ιη ι ι η ι η. η &, 7!# v # $ι ιι η ι ι!η ηι ι ANOVA. To ANOVA ι ι ι η η η ιη (Analysis of Variance). * ι! ι ι ι ι ι η ιη. ;, ι ι ι! η ιι ηιη ι ι!η ι η η ιη ι ι η ι η. - ι% ιι* ι' F ι ι ι% MS F MS between within MS MS

Διαβάστε περισσότερα

----------Εισαγωγή στη Χρήση του SPSS for Windows ------------- Σελίδα: 0------------

----------Εισαγωγή στη Χρήση του SPSS for Windows ------------- Σελίδα: 0------------ ----------Εισαγωγή στη Χρήση του SPSS for Windows ------------- Σελίδα: 0------------ ΚΕΦΑΛΑΙΟ 8 ο 8.1 Συντελεστές συσχέτισης: 8.1.1 Συσχέτιση Pearson, και ρ του Spearman 8.1.2 Υπολογισµός του συντελεστή

Διαβάστε περισσότερα

Κεφάλαιο 12. Σύγκριση μεταξύ δύο δειγμάτων: Το κριτήριο t

Κεφάλαιο 12. Σύγκριση μεταξύ δύο δειγμάτων: Το κριτήριο t Κεφάλαιο 12 Σύγκριση μεταξύ δύο δειγμάτων: Το κριτήριο t 1 Πώς δημιουργήθηκε W. S. Gosset (1908) Χημικός στη βιομηχανία Μπύρας Guiness Σύγκριση διαφόρων δειγμάτων μπύρας Δημοσίευση αποτελεσμάτων ως Student

Διαβάστε περισσότερα

Έλεγχος για τις παραμέτρους θέσης περισσοτέρων των δύο πληθυσμών με ανεξάρτητα δείγματα

Έλεγχος για τις παραμέτρους θέσης περισσοτέρων των δύο πληθυσμών με ανεξάρτητα δείγματα ΚΕΦΑΛΑΙΟ ΕΒΔΟΜΟ Έλεγχος για τις παραμέτρους θέσης περισσοτέρων των δύο πληθυσμών με ανεξάρτητα δείγματα Έστω Y,, j1 Yjn, j το πλήθος j = 1,..., k, k 2 τυχαία ανεξάρτητα δείγματα j μεγέθους n j από έναν

Διαβάστε περισσότερα