ΠΕΡΙΓΡΑΦΙΚΗ ΣΤΑΤΙΣΤΙΚΗ ΚΑΙ ΕΛΕΓΧΟΣ ΥΠΟΘΕΣΕΩΝ

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "ΠΕΡΙΓΡΑΦΙΚΗ ΣΤΑΤΙΣΤΙΚΗ ΚΑΙ ΕΛΕΓΧΟΣ ΥΠΟΘΕΣΕΩΝ"

Transcript

1 Αλεξάνδρειο Τεχνολογικό Εκπαιδευτικό Ίδρυμα Θεσσαλονίκης Τμήμα Πληροφορικής Εργαστήριο «Θεωρία Πιθανοτήτων και Στατιστική» ΠΕΡΙΓΡΑΦΙΚΗ ΣΤΑΤΙΣΤΙΚΗ ΚΑΙ ΕΛΕΓΧΟΣ ΥΠΟΘΕΣΕΩΝ Περιεχόμενα 1. ΠΕΡΙΓΡΑΦΙΚΗ ΣΤΑΤΙΣΤΙΚΗ Περιγραφή των τιμών μιας μεταβλητής Ποιοτικές μεταβλητές Ποσοτικές μεταβλητές Ανάλυση σε υποσύνολα του δείγματος Η Διαδικασία SPLIT FILE Η Διαδικασία EXPLORE Περιγραφή / συσχέτιση των τιμών δύο μεταβλητών Συσχέτιση μεταξύ δύο ποιοτικών μεταβλητών Συσχέτιση μεταξύ δύο ποσοτικών μεταβλητών ΕΛΕΓΧΟΣ ΥΠΟΘΕΣΕΩΝ Έλεγχος υποθέσεων για τη μέση τιμή ενός πληθυσμού Έλεγχος υποθέσεων για τη διαφορά των μέσων τιμών δύο ανεξάρτητων πληθυσμών... 9 Φάση 1 Σύγκριση διασπορών των δύο πληθυσμών: Φάση 2 Σύγκριση μέσων των δύο πληθυσμών: Έλεγχος υποθέσεων για τη διαφορά των μέσων τιμών δύο εξαρτημένων πληθυσμών Έλεγχος ανεξαρτησίας / ομοιογένειας μεταξύ δύο ποιοτικών μεταβλητών ΓΡΑΜΜΙΚΗ ΠΑΛΙΝΔΡΟΜΗΣΗ Παράδειγμα 1 ο (απλή παλινδρόμηση) Παράδειγμα 2 ο (πολλαπλή παλινδρόμηση)

2 1. ΠΕΡΙΓΡΑΦΙΚΗ ΣΤΑΤΙΣΤΙΚΗ Μερικές χρήσιμες διαδικασίες για τη σύνοψη, ταξινόμηση και παρουσίαση των πρωτογενών δεδομένων ενός δείγματος σε εύληπτη μορφή. 1.1 Περιγραφή των τιμών μιας μεταβλητής Ποιοτικές μεταβλητές Οι μέθοδοι σύνοψης και παρουσίασης ποιοτικών δεδομένων περιορίζονται στους πίνακες συχνοτήτων και τις γραφικές παραστάσεις. Με τη διαδικασία Frequencies μπορούμε να επιτύχουμε άμεσα την κατασκευή τους. Από τη βασική ράβδο προτιμήσεων του λογισμικού επιλέγοντας Analyze Descriptive Statistics Frequencies εμφανίζεται το πλαίσιο διαλόγου της διαδικασίας Frequencies. Επιλέγουμε τη μεταβλητή (ή τις μεταβλητές) που θέλουμε να περιγράψουμε και τη μετακινούμε (με τη χρήση του βέλους) στο πλαίσιο variable(s). Παρατηρούμε ότι η επιλογή Display frequency tables είναι ενεργοποιημένη. Εξ ορισμού η διαδικασία θα κατασκευάσει μόνο τον αντίστοιχο πίνακα συχνοτήτων. Αν επιθυμούμε την κατασκευή κάποιου γραφήματος θα πρέπει να ενεργοποιήσουμε την επιλογή Charts που βρίσκεται στο ίδιο παράθυρο διαλόγου. Τα κατάλληλα διαγράμματα για την περιγραφή ποιοτικών δεδομένων είναι τα κυκλικά διαγράμματα (pie charts) και τα ραβδογράμματα (bar charts). Εφόσον επιλεγούν τα δεύτερα, δίνεται η δυνατότητα επιλογής των τιμών που θα εμφανίζονται στον κατακόρυφο άξονα: απόλυτες συχνότητες (frequencies) ή ποσοστά (percentages). Επιλέγοντας το OΚ ή/και το Continue παίρνουμε τα αποτελέσματα της διαδικασίας σε ένα αρχείο αποτελεσμάτων. Ο πίνακας συχνοτήτων αποτελείται από 5 στήλες. Στην πρώτη στήλη εμφανίζονται οι τιμές της μεταβλητής. Στην δεύτερη εμφανίζονται οι συχνότητες εμφάνισης τους (frequency) και στην τρίτη τα αντίστοιχα ποσοστά (percent). Τα ποσοστά αυτά είναι ποσοστά επί του συνολικού μεγέθους του δείγματος συμπεριλαμβανομένων των ελλειπουσών τιμών. Στην τέταρτη στήλη εμφανίζονται τα έγκυρα ποσοστά (valid percent), τα οποία είναι ποσοστά επί του συνολικού μεγέθους του δείγματος εξαιρουμένων των ελλειπουσών τιμών. Στην πέμπτη στήλη εμφανίζονται τα αθροιστικά ποσοστά (cumulative percent). Το ποσοστό που αντιστοιχεί σε μια τιμή της μεταβλητής είναι το συνολικό ποσοστό που αντιστοιχεί στην τιμή αυτή και σε όλες τις προηγούμενες τιμές. 2

3 1.1.2 Ποσοτικές μεταβλητές Με τη διαδικασία Frequencies μπορούμε να περιγράψουμε και ποσοτικά χαρακτηριστικά, υπολογίζοντας κατάλληλα στατιστικά μετρά (statistics) και κατασκευάζοντας ιστογράμματα (histogram) για την γραφική παρουσίασή τους. Από τη βασική ράβδο προτιμήσεων του λογισμικού επιλέγοντας Analyze Descriptive Statistics Frequencies εμφανίζεται το πλαίσιο διαλόγου της διαδικασίας Frequencies. Επιλέγουμε τη μεταβλητή (ή τις μεταβλητές) που θέλουμε να περιγράψουμε και τη μετακινούμε (με τη χρήση του βέλους) στο πλαίσιο variable(s). Παρατηρούμε ότι η επιλογή Display frequency tables είναι ενεργοποιημένη. Στην περίπτωση που οι διαφορετικές τιμές που παίρνει η μεταβλητή είναι πολλές η επιλογή αυτή θα πρέπει να απενεργοποιηθεί, διότι τα αποτελέσματά της δεν θα είναι επαρκώς χρήσιμα. Για τον υπολογισμό στατιστικών μέτρων ενεργοποιούμε την επιλογή Statistics που βρίσκεται στο ίδιο παράθυρο διαλόγου και επιλέγουμε τα στατιστικά μέτρα που θέλουμε να υπολογιστούν. Μερικές Από Τις Επιλογές Στατιστικών Μέτρων Percentile Values Ποσοστιαίες Τιμές Quartiles Τεταρτημόρια Percentiles - Ποσοστημόρια Dispersion Διασπορά Standard Deviation Τυπική Απόκλιση Variance Διακύμανση Range - Εύρος Central Tendency Κεντρική Τάση Mean Αριθμητικός Μέσος Median Διάμεσος Mode Επικρατούσα Τιμή Sum Άθροισμα Distribution - Κατανομή Skewness Ασυμμετρία Kurtosis - Κύρτωση Αν επιθυμούμε την κατασκευή κάποιου γραφήματος θα πρέπει να ενεργοποιήσουμε την επιλογή Charts που βρίσκεται στο ίδιο παράθυρο διαλόγου και να επιλέξουμε το Histograms. Η επιλογή with normal curve (κανονική καμπύλη) είναι προαιρετική. 3

4 1.2 Ανάλυση σε υποσύνολα του δείγματος Η Διαδικασία SPLIT FILE Στην περίπτωση που επιθυμούμε να περιγράψουμε μια μεταβλητή στις διάφορες κατηγορίες μιας μεταβλητής (π.χ. να περιγράψουμε το μισθό των εργαζομένων μιας επιχείρησης ξεχωριστά για τους άντρες και τις γυναίκες), θα πρέπει πρώτα να διαχωρίσουμε το δείγμα μας με βάση τις κατηγορίες της μεταβλητής αυτής. Από τη βασική ράβδο προτιμήσεων του λογισμικού επιλέγοντας Data Split File εμφανίζεται το πλαίσιο διαλόγου της διαδικασίας Split File. Ενεργοποιούμε την επιλογή Compare Groups ή Organize output by groups (η διαφορά μεταξύ των δύο είναι μόνο ως προς την παρουσίαση των αποτελεσμάτων) και μετακινούμε στο πλαίσιο Groups Based On την μεταβλητή βάση της οποίας θα διαχωριστεί το δείγμα (π.χ. το φύλο). Επιλέγοντας το ΟΚ επανερχόμαστε στο αρχείο δεδομένων όπου οι περιπτώσεις (οι γραμμές) έχουν ταξινομηθεί με βάση τις τιμές της μεταβλητής που επιλέξαμε προηγουμένως. Στη συνέχεια μπορούμε να περιγράψουμε οποιαδήποτε άλλη μεταβλητή με τη διαδικασία Frequencies όπως παρουσιάσαμε προηγούμενα. Παρατήρηση: Η μεταβλητή που χρησιμοποιείται για τον διαχωρισμό του δείγματος είναι συνήθως ποιοτική. Στην περίπτωση που επιλεγεί μια ποσοτική μεταβλητή αυτή θα πρέπει να παίρνει λίγες διαφορετικές τιμές αλλιώς τα αποτελέσματα της ανάλυσης δεν θα είναι επαρκώς χρήσιμα Η Διαδικασία EXPLORE Με τη διαδικασία Explore μπορούμε να επιτύχουμε την πιο πλούσια και πλήρη περιγραφική στατιστική των παρατηρήσεων μιας ποσοτικής μεταβλητής στις διάφορες κατηγορίες κάποιας ποιοτικής. Από τη βασική ράβδο προτιμήσεων του λογισμικού επιλέγοντας Analyze Descriptive Statistics Explore εμφανίζεται το πλαίσιο διαλόγου της διαδικασίας Explore. Μετακινούμε την ποσοτική μεταβλητή που θέλουμε να περιγράψουμε στο πλαίσιο dependent list και την ποιοτική μεταβλητή στο πλαίσιο factor list. Εφόσον επιθυμούμε την κατασκευή ιστογραμμάτων ενεργοποιούμε την επιλογή Plots και επιλέγουμε το Histogram. Εξ ορισμού η διαδικασία Explore παράγει ένα πλήθος στατιστικών αποτελεσμάτων όπως στατιστικά μέτρα, το φυλλογράφημα (stem leaf) και το θηκόγραμμα (Box Plot). Σημαντικός είναι και ο υπολογισμός διαστημάτων εμπιστοσύνης για το μέσο ενός πληθυσμού (95% confidence interval for mean (lower bound, upper bound)) που παρουσιάζεται μαζί με τα στατιστικά μέτρα. 4

5 1.3 Περιγραφή / συσχέτιση των τιμών δύο μεταβλητών Συσχέτιση μεταξύ δύο ποιοτικών μεταβλητών Η βασική μέθοδος παρουσίασης δύο ποιοτικών χαρακτηριστικών είναι η κατασκευή της κοινής κατανομής συχνοτήτων (πίνακας συνάφειας) και ο υπολογισμός των αντίστοιχων ποσοστών. Από τη βασική ράβδο προτιμήσεων του λογισμικού επιλέγοντας Analyze Descriptive Statistics Crosstabs εμφανίζεται το πλαίσιο διαλόγου της διαδικασίας Crosstabs. Επιλέγουμε την μεταβλητή, τις κατηγορίες της οποίας θέλουμε να έχουμε στις γραμμές του πίνακα συνάφειας και τη μετακινούμε στο πλαίσιο Row(s). Επιλέγουμε την άλλη μεταβλητή και τη μετακινούμε στο πλαίσιο Column(s). Εφόσον επιθυμούμε τον υπολογισμό των αντίστοιχων ποσοστών, ενεργοποιούμε την επιλογή Cells και επιλέγουμε το ποσοστό που θέλουμε να υπολογιστεί. Ας σημειωθεί εδώ ότι υπάρχουν τρία είδη ποσοστών σε έναν πίνακα συνάφειας: Ποσοστό επί της γραμμής Ποσοστό επί της στήλης Ποσοστό επί του συνόλου (row percentages) (column percentages) (total percentages) Περισσότερα στοιχεία αναφέρονται στα συμπεράσματα της ενότητας 2.4. Παρατήρηση: Η διαδικασία Crosstabs μπορεί να χρησιμοποιηθεί και στην περίπτωση των ποσοτικών μεταβλητών των οποίων οι τιμές είναι λίγες ή έχουν κωδικοποιηθεί προηγουμένως και αντιστοιχηθεί σε διαστήματα τιμών. 5

6 1.3.2 Συσχέτιση μεταξύ δύο ποσοτικών μεταβλητών Ο υπολογισμός των περιγραφικών στατιστικών μέτρων για τον εντοπισμό της φύσης και της έντασης της σχέσης μεταξύ δύο ποσοτικών μεταβλητών πραγματοποιείται με τον υπολογισμό του συντελεστή γραμμικής συσχέτισης του Pearson (διαδικασία Correlate) και με την κατασκευή του διαγράμματος διασποράς (διαδικασία Scatter). Από τη βασική ράβδο προτιμήσεων του λογισμικού επιλέγοντας Analyze Correlate Bivariate εμφανίζεται το πλαίσιο διαλόγου της διαδικασίας Correlations. Επιλέγουμε τις μεταβλητές των οποίων τη σχέση αναζητούμε και τις μετακινούμε στο πλαίσιο variable(s). Μπορούμε να μετακινήσουμε περισσότερες από δύο μεταβλητές. Στην περίπτωση αυτή οι υπολογισμοί θα γίνουν για κάθε ανά δύο συνδυασμό τους. Παρατήρηση: Ο συντελεστής γραμμικής συσχέτισης του Pearson ( r ) παίρνει τις τιμές: -1 r Μηδενική γραμμική συσχέτιση Τέλεια αρνητική γραμμική συσχέτιση Τέλεια θετική γραμμική συσχέτιση Όσο το r βρίσκεται πιο κοντά στο +1 (-1), τόσό πιο ισχυρή θετική (αρνητική) συσχέτιση υπάρχει. Όσο το r βρίσκεται πιο κοντά στο 0, τόσό πιο ασθενής συσχέτιση υπάρχει. Συνήθως, θεωρούμε ότι η συσχέτιση είναι: Ισχυρή έως πολύ ισχυρή, όταν r > 0,7 Μέτρια έως ικανοποιητική, όταν 0,5 < r < 0,7 Ασθενής έως μέτρια, όταν r < 0,5 Από τη βασική ράβδο προτιμήσεων του λογισμικού επιλέγοντας Graphs Scatter εμφανίζεται το πλαίσιο διαλόγου της διαδικασίας Scatterplot. Επιλέγοντας την μορφή Simple με το πλήκτρο Define προχωρούμε στον προσδιορισμό των στοιχείων του. Επιλέγουμε τις δύο ποσοτικές μεταβλητές που μας ενδιαφέρουν και τις μετακινούμε στα πλαίσια Y Axis, X Axis. Όταν η μια από τις δύο μεταβλητές θεωρείται ως ανεξάρτητη μετακινείται στο πλαίσιο X Axis. 6

7 2. ΕΛΕΓΧΟΣ ΥΠΟΘΕΣΕΩΝ Όταν επιλέγουμε να πραγματοποιήσουμε οποιοδήποτε έλεγχο με επίπεδο σημαντικότητας α = 0,05 τότε το κριτήριο αποδοχής ή απόρριψης της μηδενικής υπόθεσης είναι: sig. > 0.05 αποδοχή της Η 0 sig. < 0,05 απόρριψη της Η Έλεγχος υποθέσεων για τη μέση τιμή ενός πληθυσμού Ο έλεγχος αυτός αφορά τις περιπτώσεις όπου θέλουμε να ελέγξουμε, αν η μέση τιμή μιας μεταβλητής διαφέρει στατιστικά σημαντικά από μία δεδομένη τιμή. Παράδειγμα: Μπορούμε να ισχυριστούμε ότι ο μέσος μισθός όλων των εργαζομένων είναι δολ.; Στατιστικές Υποθέσεις H 0 : μ = μ ο Η α : μ μ ο Η μέση τιμή δεν διαφέρει στατιστικά σημαντικά από την δεδομένη τιμή Η μέση τιμή διαφέρει στατιστικά σημαντικά από την δεδομένη τιμή Στατιστικός Έλεγχος t-test Διαδικασία Analyze Compare Means One-Sample T-Test Στο παράθυρο που ανοίγει, επιλέγουμε και μεταφέρουμε τη μεταβλητή που μας ενδιαφέρει (current salary) στο πλαίσιο Test Variable ενώ στο πλαίσιο Test Value πληκτρολογούμε την υπό έλεγχο τιμή (33000 χωρίς κόμμα ή τελεία). ΟΚ. 7

8 Αποτελέσματα One-Sample Statistics Current Salary Std. Error N Mean Std. Deviation Mean 474 $34, $17, $ One-Sample Test Current Salary Test Value = % Confidence Interval of the Mean Difference t df Sig. (2-tailed) Difference Lower Upper $1, $ $2, Ερμηνεία Αποτελεσμάτων Συμπέρασμα Το επίπεδο σημαντικότητας του ελέγχου 0,071 είναι μικρότερο του 0,05. Συνεπώς αποδεχόμαστε τη μηδενική υπόθεση. Ο μέσος μισθός των εργαζομένων δεν διαφέρει στατιστικά σημαντικά από τις δολ. (t = 1,810, df = 473, sig. = 0,071). Ο μέσος μισθός των εργαζομένων στο δείγμα είναι ,57 δολ. με τυπική απόκλιση ,661 δολ. 8

9 2.2 Έλεγχος υποθέσεων για τη διαφορά των μέσων τιμών δύο ανεξάρτητων πληθυσμών Ο έλεγχος αυτός αφορά τις περιπτώσεις όπου θέλουμε να ελέγξουμε αν η μέση τιμή μιας μεταβλητής διαφέρει ή όχι σε δύο ανεξάρτητους πληθυσμούς. Παράδειγμα Θα θέλαμε να ελέγξουμε αν η προϋπηρεσία των εργαζόμενων διαφέρει μεταξύ των ανώτερων και των κατώτερων στελεχών. Στατιστικές Υποθέσεις H 0 : μ 1 - μ 2 = 0 Οι μέσες τιμές των δύο πληθυσμών δεν διαφέρουν στατιστικά σημαντικά Η α : μ 1 - μ 2 0 Οι μέσες τιμές των δύο πληθυσμών διαφέρουν στατιστικά σημαντικά Στατιστικός Έλεγχος t-test Διαδικασία Analyze Compare Means Independent-Sample T-Test Επιλέγουμε τη μεταβλητή, της οποία θέλουμε να ελέγξουμε τη μέση τιμή, στο πλαίσιο Test Variable (prevexp) και τη μεταβλητή, βάση των τιμών της οποίας ορίζονται οι δύο ανεξάρτητοι πληθυσμοί, στο πλαίσιο Grouping Variable (jobcat). Παρατηρούμε ότι ενεργοποιείται το κουμπί Define Groups το οποίο και επιλέγουμε. Στο παράθυρο που ανοίγει στα πλαίσια Group1 και Group2 δίνουμε αντίστοιχα τις τιμές της μεταβλητής (jobcat) που προσδιορίζουν τους δύο πληθυσμούς. Παράδειγμα, στο πλαίσιο Group1 δίνουμε την τιμή 1 που αντιστοιχεί στα κατώτερα στελέχη (clericals) και στο Group2 την τιμή 3 που αντιστοιχεί στα ανώτερα στελέχη (managers). Στο παράθυρο Define Groups δίνεται και μια ακόμη δυνατότητα προσδιορισμού των δύο πληθυσμών, δηλώνοντας μια οριακή τιμή για τη μεταβλητή Grouping Variable. Για παράδειγμα, θα μπορούσαμε να προσδιορίσουμε δύο πληθυσμούς εργαζομένων ανάλογα με το αν ο μισθός τους (grouping variable) είναι μικρότερος ή μεγαλύτερος από $ (cut point). Επιλέγοντας το Continue και στη συνέχεια το OK, εκτελείται η διαδικασία t-test. 9

10 Αποτελέσματα Group Statistics Previous Experience (months) Employment Category Clerical Manager Std. Error N Mean Std. Deviation Mean Independent Samples Test Previous Experience (months) Equal variances assumed Equal variances not assumed Levene's Test for Equality of Variances F Sig. t df t-test for Equality of Means Sig. (2-tailed) Mean Difference 95% Confidence Interval of the Difference Std. Error Difference Lower Upper

11 Ερμηνεία Αποτελεσμάτων Ο έλεγχος υποθέσεων για την διαφορά μέσων τιμών σε 2 ανεξάρτητους πληθυσμούς (t-test) πραγματοποιείται σε δύο φάσεις. Φάση 1: Σύγκριση διασπορών των δύο πληθυσμών H 0 : σ 1 2 = σ 2 2 Οι διακυμάνσεις των δύο πληθυσμών δεν διαφέρουν σημαντικά (equal variances assumed) Η α : σ 1 2 σ 2 2 Οι διακυμάνσεις των δύο πληθυσμών διαφέρουν σημαντικά (equal variances not assumed) Ο στατιστικός έλεγχος που πραγματοποιείται είναι του Levene (F-test). Για το παραπάνω παράδειγμα F = sig. = Επειδή sig. > 0,05 αποδεχόμαστε τη μηδενική υπόθεση, δηλαδή ότι οι διακυμάνσεις δεν διαφέρουν (equal variances assumed) και συνεχίζουμε να διαβάζουμε την πρώτη γραμμή του ίδιου πίνακα. Αν απορρίπταμε τη μηδενική υπόθεση τότε θα συνεχίζαμε να διαβάζουμε τη δεύτερη γραμμή. Φάση 2: Σύγκριση μέσων των δύο πληθυσμών Για το παραπάνω παράδειγμα t = 0,669 df = 445 sig. = Επειδή sig. > 0,05 αποδεχόμαστε την μηδενική υπόθεση, δηλαδή ότι οι μέσοι των δύο πληθυσμών δεν διαφέρουν σημαντικά. Συμπέρασμα Η μέση προϋπηρεσία των εργαζομένων δεν διαφέρει στατιστικά σημαντικά μεταξύ των ανώτερων και των κατώτερων στελεχών (t = 0,669, df = 445, sig. = 0,504). Στα αποτελέσματα παρουσιάζονται και μερικά περιγραφικά στατιστικά, στον πρώτο πίνακα, όπου μπορούμε να παρατηρήσουμε ότι η μέση προϋπηρεσία είναι 85,04 μήνες για τα κατώτερα στελέχη (clericals) και 77,62 μήνες για τα ανώτερα στελέχη (managers). Συνηθίζουμε στην αναφορά των συμπερασμάτων να καταγράφουμε και τα στατιστικά στοιχεία του δείγματος (την τυπική απόκλιση επίσης). 11

12 2.3 Έλεγχος υποθέσεων για τη διαφορά των μέσων τιμών δύο εξαρτημένων πληθυσμών Ο έλεγχος αυτός αφορά τις περιπτώσεις όπου θέλουμε να ελέγξουμε αν οι μέσες τιμές δύο μεταβλητών διαφέρουν ή όχι σε δύο εξαρτημένους πληθυσμούς. Παράδειγμα Θα θέλαμε να ελέγξουμε αν ο μισθός των εργαζόμενων διαφέρει από τον αρχικό τους μισθό. Στατιστικές Υποθέσεις H 0 : μ 1 - μ 2 = 0 Οι μέσες τιμές των δύο πληθυσμών δεν διαφέρουν στατιστικά σημαντικά Η α : μ 1 - μ 2 0 Οι μέσες τιμές των δύο πληθυσμών διαφέρουν στατιστικά σημαντικά Στατιστικός Έλεγχος t-test Διαδικασία Analyze Compare Means Paired-Sample T-Test Επιλέγουμε τις δύο μεταβλητές, των οποίων θέλουμε να ελέγξουμε τη μέση τιμή τους και τις μεταφέρουμε στο πλαίσιο Paired Variables (current salary beginning salary). OK. 12

13 Αποτελέσματα Pair 1 Current Salary Beginning Salary Paired Samples Statistics Std. Error Mean N Std. Deviation Mean $34, $17, $ $17, $7, $ Paired Samples Correlations Pair 1 Current Salary & Beginning Salary N Correlation Sig Paired Samples Test Pair 1 Paired Differences 95% Confidence Interval of Std. Error the Difference Sig. Mean Std. Deviation Mean Lower Upper t df (2-tailed) Current Salary - $17, $10, $ $16, $18, Beginning Salary Ερμηνεία Αποτελεσμάτων Συμπέρασμα Το επίπεδο σημαντικότητας του ελέγχου 0,000 είναι μικρότερο του 0,05. Συνεπώς απορρίπτεται η μηδενική υπόθεση. Ο μέσος μισθός των εργαζομένων διαφέρει στατιστικά σημαντικά από το μέσο αρχικό μισθό τους (t = 35,036, df = 473, sig. < 0,001). Όταν η σημαντικότητα που δίνει το πρόγραμμα φαίνεται να είναι μηδέν, συνηθίζεται μα ανακοινώνεται στα αποτελέσματα ως sig. < 0,001. Στα αποτελέσματα παρουσιάζονται και μερικά περιγραφικά στατιστικά, στον πρώτο πίνακα, όπου μπορούμε να παρατηρήσουμε ότι ο μέσος μισθός είναι ,57 δολ. ενώ ο μέσος αρχικός μισθός είναι ,09. Συνηθίζεται στην αναφορά των συμπερασμάτων να καταγράφονται και τα στατιστικά στοιχεία του δείγματος (μέση τιμή και τυπική απόκλιση). 13

14 2.4 Έλεγχος ανεξαρτησίας / ομοιογένειας μεταξύ δύο ποιοτικών μεταβλητών Ο έλεγχος αυτός αφορά τις περιπτώσεις όπου θέλουμε να ελέγξουμε αν δύο ποιοτικές μεταβλητές είναι ανεξάρτητες μεταξύ τους ή όχι. Παράδειγμα Θα θέλαμε να ελέγξουμε αν το φύλο των εργαζομένων και η βαθμίδα στην οποία ανήκουν είναι ανεξάρτητα μεταξύ τους χαρακτηριστικά. Στατιστικές Υποθέσεις H 0 : Το φύλο και η βαθμίδα είναι ανεξάρτητα χαρακτηριστικά μεταξύ τους Η α : Το φύλο και η βαθμίδα δεν είναι ανεξάρτητα χαρακτηριστικά μεταξύ τους Στατιστικός Έλεγχος Διαδικασία: Χ 2 test (chi-square test) Ο έλεγχος Χ 2 εντοπίζει τυχόν διαφορές που υπάρχουν στην κατανομή των τιμών της μιας μεταβλητής στις τιμές της άλλης. Δυστυχώς, δεν μας παρέχει καμία πληροφορία ούτε για την ένταση ούτε για την αιτία της σχέσης που υπάρχει μεταξύ των δύο μεταβλητών (όταν υπάρχει). Analyze Descriptive Statistics Crosstabs Μεταφέρουμε τη μία μεταβλητή στο πλαίσιο Row(s) (gender) και την άλλη μεταβλητή στο πλαίσιο Columns(s) (Employment Category). Το αποτέλεσμα της διαδικασίας δεν επηρεάζεται από το ποια μεταβλητή θα μεταφερθεί σε ποιο πλαίσιο, παρά μόνο στην εμφάνιση κάποιων αποτελεσμάτων. Στη συνέχεια, ενεργοποιούμε το κουμπί Statistics και στο παράθυρο που ανοίγει επιλέγουμε το chi-square (Χ 2 test). Επιλέγοντας το Continue και στη συνέχεια το OK, το εκτελείται η διαδικασία Χ 2 -test. 14

15 Αποτελέσματα Gender * Employment Category Crosstabulation Count Gender Total Female Male Employment Category Clerical Custodial Manager Total Chi-Square Tests Pearson Chi-Square Likelihood Ratio N of Valid Cases Asymp. Sig. Value df (2-sided) a a. 0 cells (.0%) have expected count less than 5. The minimum expected count is Ερμηνεία Αποτελεσμάτων Συμπέρασμα Ο έλεγχος Χ 2 βασίζεται στο στατιστικό του Pearson και γι αυτό διαβάζουμε την πρώτη γραμμή του δεύτερου πίνακα. Το επίπεδο σημαντικότητας του ελέγχου 0,000 είναι μικρότερο του 0,05. Συνεπώς απορρίπτεται η μηδενική υπόθεση. Το φύλο ενός εργαζόμενου και η θέση που κατέχει στην εταιρία αυτή έχουν στατιστικά σημαντική σχέση μεταξύ τους (Χ 2 = 79,277, df = 2, sig. < 0,001). Ο πρώτος πίνακας των αποτελεσμάτων παρουσιάζει την κοινή κατανομή συχνοτήτων των δύο μεταβλητών και ονομάζεται πίνακας συνάφειας. Από αυτόν, προκύπτουν μερικές χρήσιμες περιγραφικές παρατηρήσεις. Για παράδειγμα, παρατηρούμε ότι στην ανώτερη θέση βρίσκονται 74 άντρες και 10 γυναίκες, ενώ στο σύνολο υπάρχουν 258 άντρες και 216 γυναίκες. Συνεπώς, οι πληθυσμοί των αντρών και των γυναικών δεν είναι ομοιογενείς στο πλήθος τους στην ανώτερη θέση. Αν θέλουμε να υπολογίζονται και τα αντίστοιχα ποσοστά στον πίνακ συνάφειας, θα πρέπει να το δηλώσουμε στο παράθυρο crosstabs και μέσα από την ενεργοποίηση του cells 15

16 Υπάρχουν 3 ποσοστά τα οποία θα μπορούσαν να υπολογιστούν: (α) επί του συνόλου της γραμμής (row) (β) επί του συνόλου της στήλης (column) και (γ) επί του γενικού συνόλου (total). Συνήθως, υπολογίζονται τα δύο πρώτα όταν ο στόχος είναι η διερεύνηση ύπαρξης σχέσης μεταξύ των δύο μεταβλητών. Gender * Employment Category Crosstabulation Gender Total Female Male Count % within Employment Category Count % within Employment Category Count % within Employment Category Employment Category Clerical Custodial Manager Total %.0% 11.9% 45.6% % 100.0% 88.1% 54.4% % 100.0% 100.0% 100.0% Στο παράδειγμα αυτό έχουν υπολογιστεί τα ποσοστά επί του συνόλου της στήλης και διαβάζονται ως εξής: Από το σύνολο των managers, το 11,9% είναι γυναίκες και το 88,1% είναι άνδρες. 16

17 3. ΓΡΑΜΜΙΚΗ ΠΑΛΙΝΔΡΟΜΗΣΗ Η Γραμμική Παλινδρόμηση αποτελεί μία στατιστική μέθοδο, η οποία αποσκοπεί στον προσδιορισμό ενός μαθηματικού μοντέλου για την περιγραφή της σχέσης μεταξύ δύο ή περισσοτέρων μεταβλητών, το οποίο θα μπορούσε εν δυνάμει να χρησιμοποιηθεί και ως ένα εργαλείο πρόβλεψης των τιμών της μίας μεταβλητής. 3.1 Παράδειγμα 1 ο (απλή παλινδρόμηση) Θα θέλαμε να προσδιορίσουμε ένα μαθηματικό μοντέλο το οποίο να περιγράφει το μισθό των εργαζόμενων σε σχέση με ένα από τα επιμέρους χαρακτηριστικά τους. Λογική Υπόθεση Ο μισθός ενός εργαζόμενου μπορεί να περιγραφεί επαρκώς («εξαρτάται») από το μισθό πρόσληψης (αρχικό μισθό) και συνεπώς θα επιθυμούσαμε να προσδιορίσουμε ένα μαθηματικό μοντέλο το οποίο να συσχετίζει τους δύο μισθούς. Επιλογή του Μαθηματικού Μοντέλου Το γραμμικό μοντέλο: Y = α + β Χ + ε Διαδικασία εξαρτημένη μεταβλητή ανεξάρτητη μεταβλητή σφάλμα όπου, α β και ε πραγματικοί αριθμοί Analyze Regression Linear Μεταφέρουμε τη μεταβλητή την οποία μελετούμε (ή / και θέλουμε να κάνουμε πρόβλεψη των τιμών της) στο πλαίσιο Dependent (current salary) και την μεταβλητή, την οποία θα χρησιμοποιήσουμε για να ερμηνεύσουμε τις τιμές της πρώτης, στο πλαίσιο Independent(s) (beginnining salary). ΟΚ. 17

18 Αποτελέσματα Model 1 Model Summary Adjusted Std. Error of R R Square R Square the Estimate.880 a $8, a. Predictors: (Constant), Beginning Salary Model 1 Regression Residual Total ANOVA b Sum of Squares df Mean Square F Sig. 1E E a 3E E a. Predictors: (Constant), Beginning Salary b. Dependent Variable: Current Salary Model 1 (Constant) Beginning Salary Coefficients a Unstandardized Coefficients a. Dependent Variable: Current Salary Standardized Coefficients B Std. Error Beta t Sig

19 Ερμηνεία Αποτελεσμάτων Τρίτος Πίνακας Το μαθηματικό μοντέλο το οποίο προκύπτει, σύμφωνα με τον τρίτο πίνακα, είναι το ακόλουθο: (Current Salary) = 1928, ,909 (Beginning Salary) + ε Έλεγχος του συντελεστή παλινδρόμησης β: Η 0 : β = 0 Η a : β 0 Εφαρμογή του t-test: sig = 0,000 < 0,05, συνεπώς απορρίπτεται η μηδενική υπόθεση Ο συντελεστής παλινδρόμησης β είναι στατιστικά σημαντικά διάφορος του μηδέν (t = 40,276, sig < 0,001), συνεπώς ο αρχικός μισθός ερμηνεύει στατιστικά σημαντικά τον τρέχον μισθό των εργαζομένων. Δεδομένου ότι ο συντελεστής αυτός είναι στατιστικά σημαντικός, η τιμή του ερμηνεύεται ως εξής: όταν ο αρχικός μισθός είναι αυξημένος κατά μία μονάδα (1 δολάριο), τότε ο τρέχον μισθός αναμένεται να είναι αυξημένος κατά 1,909 μονάδες (1,909 δολάρια, δηλαδή σχεδόν κατά δύο δολάρια). Πρώτος Πίνακας Ο δείκτης R-square (R 2 = 0,775) εκφράζει το ποσοστό της διακύμανσης της εξαρτημένης μεταβλητής το οποίο ερμηνεύεται από τη διακύμανση των τιμών της ανεξάρτητης μεταβλητής. Δηλαδή στο παράδειγμα, το 77,5% της διακύμανσης των μισθών των εργαζομένων ερμηνεύεται από τη διακύμανση των αρχικών μισθών τους. Ο συντελεστής αυτός ονομάζεται συντελεστής προσδιορισμού και υποδεικνύει την ποιότητα προσαρμογής της εξίσωσης παλινδρόμησης στα δεδομένα. 19

20 3.2 Παράδειγμα 2 ο (πολλαπλή παλινδρόμηση) Θα θέλαμε να προσδιορίσουμε ένα μαθηματικό μοντέλο το οποίο να περιγράφει το μισθό των εργαζόμενων σε σχέση με περισσότερα από ένα από τα επιμέρους χαρακτηριστικά τους. Λογική Υπόθεση Ο μισθός ενός εργαζόμενου μπορεί να περιγραφεί επαρκώς («εξαρτάται») από το μισθό πρόσληψης (beginning salary), την προϋπηρεσία (prevexp) και το αν ανήκει σε κάποια μειονότητα ή όχι (minority). Επιλογή του Μαθηματικού Μοντέλου Το γραμμικό μοντέλο: Y = α + β 1 Χ 1 + β 2 Χ 2 + β 3 Χ 3 + ε Διαδικασία Analyze Regression Linear Μεταφέρουμε τη μεταβλητή την οποία μελετούμε (ή / και θέλουμε να κάνουμε πρόβλεψη των τιμών της) στο πλαίσιο Dependent (current salary) και τις μεταβλητές, τις οποίες θα χρησιμοποιήσουμε για να ερμηνεύσουμε τις τιμές της πρώτης, στο πλαίσιο Independent(s) (beginnining salary, prevexp, minority). ΟΚ. Αποτελέσματα Model 1 Model Summary Adjusted Std. Error of R R Square R Square the Estimate.891 a $7, a. Predictors: (Constant), Minority Classification, Previous Experience (months), Beginning Salary Model 1 Regression Residual Total ANOVA b Sum of Squares df Mean Square F Sig. 1E E a 3E E a. Predictors: (Constant), Minority Classification, Previous Experience (months), Beginning Salary b. Dependent Variable: Current Salary 20

21 Model 1 (Constant) Beginning Salary Previous Experience (months) Minority Classification a. Dependent Variable: Current Salary Coefficients a Unstandardized Coefficients Standardized Coefficients B Std. Error Beta t Sig Ερμηνεία Αποτελεσμάτων Τρίτος Πίνακας Το μαθηματικό μοντέλο το οποίο προκύπτει, σύμφωνα με τον τρίτο πίνακα, είναι το ακόλουθο: (Current Salary) = 1928,206 + (1,926) (Beginning Salary) + + (-21,981) (Previous Experience) + + (-768,727) Minority Classification) + ε Έλεγχος των συντελεστών παλινδρόμησης β: Η 0 : β = 0 Η a : β 0 Εφαρμογή του t-test: Beginning Salary sig = 0,000 < 0,05 Previous Experience sig = 0,000 < 0,05 Minority Classification sig = 0,385 > 0,05, Συνεπώς, ο αρχικός μισθός και η προϋπηρεσία ερμηνεύουν στατιστικά σημαντικά τον τρέχοντα μισθό ενώ η μειονότητα όχι. Οι ερμηνείες των συντελεστών είναι ανάλογες του προηγούμενου παραδείγματος. Πρώτος Πίνακας Ο δείκτης R-square (R 2 = 0,794) εκφράζει το ποσοστό της διακύμανσης της εξαρτημένης μεταβλητής το οποίο ερμηνεύεται από τη διακύμανση των τιμών της ανεξάρτητης μεταβλητής. Δηλαδή στο παράδειγμα, το 79,4% της διακύμανσης των μισθών των εργαζομένων ερμηνεύεται από τη διακύμανση των αρχικών μισθών, της προϋπηρεσίας και του αν ανήκουν σε κάποια μειονότητα ή όχι. Ας παρατηρηθεί ότι, το ποσοστό αυτό δεν είναι σημαντικά μεγαλύτερο από αυτό που έχει προκύψει στο προηγούμενο παράδειγμα (77,5%). Η «μειονότητα», όπως φαίνεται στην προηγούμενη παράγραφο, δεν αποτελεί στατιστικά σημαντικό παράγοντα ερμηνείας των μισθών στο μοντέλο αυτό. Όμως, και η προϋπηρεσία δεν φαίνεται να συνεισφέρει πρακτικά σημαντικά. Στο σημείο αυτό θα πρέπει να αποφασίσουμε, αν είμαστε διατεθειμένοι να επιλέξουμε ένα περισσότερο πολύπλοκο μοντέλο, το οποίο βελτιώνει την ερμηνευτική δυνατότητα κατά αυτό το ποσοστό ή να επιλέξουμε ένα απλούστερο μοντέλο θυσιάζοντας (σε μικρό ποσοστό;) την ερμηνευτική δυνατότητα. 21

ΣΥΣΧΕΤΙΣΗ και ΓΡΑΜΜΙΚΗ ΠΑΛΙΝΔΡΟΜΗΣΗ

ΣΥΣΧΕΤΙΣΗ και ΓΡΑΜΜΙΚΗ ΠΑΛΙΝΔΡΟΜΗΣΗ Αλεξάνδρειο Τεχνολογικό Εκπαιδευτικό Ίδρυμα Θεσσαλονίκης Τμήμα Πληροφορικής Εργαστήριο «Θεωρία Πιθανοτήτων και Στατιστική» ΣΥΣΧΕΤΙΣΗ και ΓΡΑΜΜΙΚΗ ΠΑΛΙΝΔΡΟΜΗΣΗ Περιεχόμενα 1. Συσχέτιση μεταξύ δύο ποσοτικών

Διαβάστε περισσότερα

ΠΕΡΙΓΡΑΦΙΚΗ ΣΤΑΤΙΣΤΙΚΗ ΚΑΙ ΕΛΕΓΧΟΣ ΥΠΟΘΕΣΕΩΝ ΜΕ ΤΗ ΧΡΗΣΗ ΤΟΥ PSPP

ΠΕΡΙΓΡΑΦΙΚΗ ΣΤΑΤΙΣΤΙΚΗ ΚΑΙ ΕΛΕΓΧΟΣ ΥΠΟΘΕΣΕΩΝ ΜΕ ΤΗ ΧΡΗΣΗ ΤΟΥ PSPP Αλεξάνδρειο Τεχνολογικό Εκπαιδευτικό Ίδρυμα Θεσσαλονίκης Τμήμα Μηχανικών Πληροφορικής (ΤΕ) Εργαστήριο «Θεωρία Πιθανοτήτων και Στατιστική» ΠΕΡΙΓΡΑΦΙΚΗ ΣΤΑΤΙΣΤΙΚΗ ΚΑΙ ΕΛΕΓΧΟΣ ΥΠΟΘΕΣΕΩΝ ΜΕ ΤΗ ΧΡΗΣΗ ΤΟΥ PSPP

Διαβάστε περισσότερα

Για να ελέγξουµε αν η κατανοµή µιας µεταβλητής είναι συµβατή µε την κανονική εφαρµόζουµε το test Kolmogorov-Smirnov.

Για να ελέγξουµε αν η κατανοµή µιας µεταβλητής είναι συµβατή µε την κανονική εφαρµόζουµε το test Kolmogorov-Smirnov. A. ΈΛΕΓΧΟΣ ΚΑΝΟΝΙΚΟΤΗΤΑΣ A 1. Έλεγχος κανονικότητας Kolmogorov-Smirnov. Για να ελέγξουµε αν η κατανοµή µιας µεταβλητής είναι συµβατή µε την κανονική εφαρµόζουµε το test Kolmogorov-Smirnov. Μηδενική υπόθεση:

Διαβάστε περισσότερα

ΒΟΗΘΗΤΙΚΕΣ ΣΗΜΕΙΩΣΕΙΣ ΓΙΑ SPSS

ΒΟΗΘΗΤΙΚΕΣ ΣΗΜΕΙΩΣΕΙΣ ΓΙΑ SPSS ΒΟΗΘΗΤΙΚΕΣ ΣΗΜΕΙΩΣΕΙΣ ΓΙΑ SPSS ΣΤΑΤΙΣΤΙΚΗ ΑΝΑΛΥΣΗ ΜΕ ΧΡΗΣΗ Η/Υ Κωνσταντίνος Ζαφειρόπουλος Τμήμα Διεθνών και Ευρωπαϊκών Σπουδών Ανοικτά Ακαδημαϊκά Μαθήματα στο Πανεπιστήμιο Μακεδονίας Άδειες Χρήσης Το παρόν

Διαβάστε περισσότερα

ΕΙΔΙΚΑ ΘΕΜΑΤΑ ΣΤΗΝ ΣΤΑΤΙΣΤΙΚΗ ΕΡΓΑΣΤΗΡΙΟ (SPSS)

ΕΙΔΙΚΑ ΘΕΜΑΤΑ ΣΤΗΝ ΣΤΑΤΙΣΤΙΚΗ ΕΡΓΑΣΤΗΡΙΟ (SPSS) ΕΙΔΙΚΑ ΘΕΜΑΤΑ ΣΤΗΝ ΣΤΑΤΙΣΤΙΚΗ ΕΡΓΑΣΤΗΡΙΟ (SPSS) Έλεγχος Υποθέσεων για τους Μέσους - Εξαρτημένα Δείγματα (Paired samples t-test) Το κριτήριο Paired samples t-test χρησιμοποιείται όταν θέλουμε να συγκρίνουμε

Διαβάστε περισσότερα

Αν οι προϋποθέσεις αυτές δεν ισχύουν, τότε ανατρέχουµε σε µη παραµετρικό τεστ.

Αν οι προϋποθέσεις αυτές δεν ισχύουν, τότε ανατρέχουµε σε µη παραµετρικό τεστ. ΣΤ. ΑΝΑΛΥΣΗ ΙΑΣΠΟΡΑΣ (ANALYSIS OF VARIANCE - ANOVA) ΣΤ 1. Ανάλυση ιασποράς κατά µία κατεύθυνση. Όπως έχουµε δει στη παράγραφο Β 2, όταν θέλουµε να ελέγξουµε, αν η µέση τιµή µιας ποσοτικής µεταβλητής διαφέρει

Διαβάστε περισσότερα

ΕΙΔΙΚΑ ΘΕΜΑΤΑ ΣΤΗΝ ΣΤΑΤΙΣΤΙΚΗ ΕΡΓΑΣΤΗΡΙΟ (SPSS)

ΕΙΔΙΚΑ ΘΕΜΑΤΑ ΣΤΗΝ ΣΤΑΤΙΣΤΙΚΗ ΕΡΓΑΣΤΗΡΙΟ (SPSS) ΕΙΔΙΚΑ ΘΕΜΑΤΑ ΣΤΗΝ ΣΤΑΤΙΣΤΙΚΗ ΕΡΓΑΣΤΗΡΙΟ (SPSS) Έλεγχος Υποθέσεων για την Μέση Τιμή ενός Δείγματος (One Sample t-test) Το κριτήριο One sample t-test χρησιμοποιείται όταν θέλουμε να συγκρίνουμε τον αριθμητικό

Διαβάστε περισσότερα

Εκπαιδευτική έρευνα Οργάνωση & Παρουσίαση Δεδομένων (Εργαστήριο SPSS) Άγγελος Μάρκος, Λέκτορας Δημοκρίτειο Πανεπιστήμιο Θράκης

Εκπαιδευτική έρευνα Οργάνωση & Παρουσίαση Δεδομένων (Εργαστήριο SPSS) Άγγελος Μάρκος, Λέκτορας Δημοκρίτειο Πανεπιστήμιο Θράκης Εκπαιδευτική έρευνα Οργάνωση & Παρουσίαση Δεδομένων (Εργαστήριο SPSS) Άγγελος Μάρκος, Λέκτορας Δημοκρίτειο Πανεπιστήμιο Θράκης Σύνολα Δεδομένων - Είδη Ποσοτικής Έρευνας: Παράλογες Ιδέες Γονέων (Δειγματοληπτική)

Διαβάστε περισσότερα

Εργαστήριο στατιστικής Στατιστικό πακέτο S.P.S.S.

Εργαστήριο στατιστικής Στατιστικό πακέτο S.P.S.S. Σημειώσεις για το μάθημα Εργαστήριο στατιστικής Στατιστικό πακέτο S.P.S.S. Παπάνα Αγγελική E mail: papanagel@yahoo.gr, agpapana@gen.auth.gr Α.Τ.Ε.Ι. Θεσσαλονίκης ΠΑΡΑΡΤΗΜΑ ΚΑΤΕΡΙΝΗΣ Τμήμα Τυποποίησης και

Διαβάστε περισσότερα

Ερμηνεία αποτελεσμάτων Ανάλυση διακύμανσης κατά ένα παράγοντα

Ερμηνεία αποτελεσμάτων Ανάλυση διακύμανσης κατά ένα παράγοντα Ερμηνεία αποτελεσμάτων Ανάλυση διακύμανσης κατά ένα παράγοντα Αρχείο δεδομένων school.sav Στον πίνακα Descriptives, μας δίνονται για την Επίδοση ως προς τις πέντε διαφορετικές μεθόδους διδασκαλίας, το

Διαβάστε περισσότερα

Εξερευνώντας τα δεδομένα μας-περιγραφική Στατιστική

Εξερευνώντας τα δεδομένα μας-περιγραφική Στατιστική ΚΕΦΑΛΑΙΟ ΔΕΥΤΕΡΟ Εξερευνώντας τα δεδομένα μας-περιγραφική Στατιστική Το πρώτο βήμα στην ανάλυση ενός συνόλου δεδομένων, που αποτελούν μετρήσεις ενός δείγματος είναι η παρουσίαση και σύνοψη των πληροφοριών

Διαβάστε περισσότερα

Προϋποθέσεις : ! Και οι δύο µεταβλητές να κατανέµονται κανονικά και να έχουν επιλεγεί τυχαία.

Προϋποθέσεις : ! Και οι δύο µεταβλητές να κατανέµονται κανονικά και να έχουν επιλεγεί τυχαία. . ΣΤΑΤΙΣΤΙΚΗ ΣΥΣΧΕΤΙΣΗ. Υπολογισµός συντελεστών συσχέτισης Προκειµένου να ελέγξουµε την ύπαρξη γραµµικής σχέσης µεταξύ δύο ποσοτικών µεταβλητών, χρησιµοποιούµε συνήθως τον παραµετρικό συντελεστή συσχέτισης

Διαβάστε περισσότερα

Στατιστική Επιχειρήσεων Ι

Στατιστική Επιχειρήσεων Ι ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Τεχνολογικό Εκπαιδευτικό Ίδρυμα Πειραιά Στατιστική Επιχειρήσεων Ι Ενότητα 7: Παρουσίαση δεδομένων-περιγραφική στατιστική Μιλτιάδης Χαλικιάς, Επίκουρος Καθηγητής Τμήμα Διοίκησης Επιχειρήσεων

Διαβάστε περισσότερα

Εισαγωγή στη Στατιστική Επεξεργασία Δεδομένων με το SPSS for Windows

Εισαγωγή στη Στατιστική Επεξεργασία Δεδομένων με το SPSS for Windows Εθνικό και Καποδιστριακό Πανεπιστήμιο Αθηνών Τμήμα Φιλοσοφίας, Παιδαγωγικής και Ψυχολογίας Τομέας Ψυχολογίας Εισαγωγή στη Στατιστική Επεξεργασία Δεδομένων με το SPSS for Windows Επιμέλεια: Λέκτορας Βασίλης

Διαβάστε περισσότερα

ΕΠΙΣΤΗΜΟΝΙΚΟ ΕΠΙΜΟΡΦΩΤΙΚΟ ΣΕΜΙΝΑΡΙΟ «ΚΑΤΑΡΤΙΣΗ ΕΡΩΤΗΜΑΤΟΛΟΓΙΟΥ ΚΑΙ ΣΤΑΤΙΣΤΙΚΗ ΕΠΕΞΕΡΓΑΣΙΑ ΔΕΔΟΜΕΝΩΝ» Τριανταφυλλίδου Ιωάννα Μαθηματικός

ΕΠΙΣΤΗΜΟΝΙΚΟ ΕΠΙΜΟΡΦΩΤΙΚΟ ΣΕΜΙΝΑΡΙΟ «ΚΑΤΑΡΤΙΣΗ ΕΡΩΤΗΜΑΤΟΛΟΓΙΟΥ ΚΑΙ ΣΤΑΤΙΣΤΙΚΗ ΕΠΕΞΕΡΓΑΣΙΑ ΔΕΔΟΜΕΝΩΝ» Τριανταφυλλίδου Ιωάννα Μαθηματικός ΕΠΙΣΤΗΜΟΝΙΚΟ ΕΠΙΜΟΡΦΩΤΙΚΟ ΣΕΜΙΝΑΡΙΟ «ΚΑΤΑΡΤΙΣΗ ΕΡΩΤΗΜΑΤΟΛΟΓΙΟΥ ΚΑΙ ΣΤΑΤΙΣΤΙΚΗ ΕΠΕΞΕΡΓΑΣΙΑ ΔΕΔΟΜΕΝΩΝ» ΠΕΡΙΓΡΑΦΙΚΗ ΣΤΑΤΙΣΤΙΚΗ ΜΕ ΤΟ SPSS To SPSS θα: - Κάνει πολύπλοκη στατιστική ανάλυση σε δευτερόλεπτα -

Διαβάστε περισσότερα

ΑΝΑΛΥΣΗ Ε ΟΜΕΝΩΝ. 2. Περιγραφική Στατιστική

ΑΝΑΛΥΣΗ Ε ΟΜΕΝΩΝ. 2. Περιγραφική Στατιστική ΑΝΑΛΥΣΗ Ε ΟΜΕΝΩΝ 2. Περιγραφική Στατιστική Βασικά είδη στατιστικής ανάλυσης 1. Περιγραφική στατιστική: περιγραφή του συνόλου των δεδοµένων (δείγµατος) 2. Συµπερασµατολογία: Παραγωγή συµπερασµάτων για τα

Διαβάστε περισσότερα

ΑΝΤΙΚΕΙΜΕΝΟ ΜΑΘΗΜΑΤΟΣ

ΑΝΤΙΚΕΙΜΕΝΟ ΜΑΘΗΜΑΤΟΣ ΑΝΤΙΚΕΙΜΕΝΟ ΜΑΘΗΜΑΤΟΣ Στόχοι: (a) να δοθεί µια εισαγωγή στη θεωρία της στατιστικής συµπερασµατολογίας ελέγχων υποθέσεων, (b) να παρουσιάσει τις βασικές εφαρµογές αυτών των ελέγχων: µέσης τιµής, ποσοστού

Διαβάστε περισσότερα

Άσκηση 10, σελ. 119. Για τη μεταβλητή x (άτυπος όγκος) έχουμε: x censored_x 1 F 3 F 3 F 4 F 10 F 13 F 13 F 16 F 16 F 24 F 26 F 27 F 28 F

Άσκηση 10, σελ. 119. Για τη μεταβλητή x (άτυπος όγκος) έχουμε: x censored_x 1 F 3 F 3 F 4 F 10 F 13 F 13 F 16 F 16 F 24 F 26 F 27 F 28 F Άσκηση 0, σελ. 9 από το βιβλίο «Μοντέλα Αξιοπιστίας και Επιβίωσης» της Χ. Καρώνη (i) Αρχικά, εισάγουμε τα δεδομένα στο minitab δημιουργώντας δύο μεταβλητές: τη x για τον άτυπο όγκο και την y για τον τυπικό

Διαβάστε περισσότερα

ΒΙΟΣΤΑΤΙΣΤΙΚΗ. ΑΛΕΓΚΑΚΗΣ ΑΘΑΝΑΣΙΟΣ Φυσικός, PH.D. Σχολής Επιστηµών Υγείας

ΒΙΟΣΤΑΤΙΣΤΙΚΗ. ΑΛΕΓΚΑΚΗΣ ΑΘΑΝΑΣΙΟΣ Φυσικός, PH.D. Σχολής Επιστηµών Υγείας ΒΙΟΣΤΑΤΙΣΤΙΚΗ ΑΛΕΓΚΑΚΗΣ ΑΘΑΝΑΣΙΟΣ Φυσικός, PH.D. Σχολής Επιστηµών Υγείας Επικοινωνία: Πτέρυγα 4, Τοµέας Κοινωνικής Ιατρικής Εργαστήριο Βιοστατιστικής Τηλ. 4613 e-mail: biostats@med.uoc.gr thalegak@med.uoc.gr

Διαβάστε περισσότερα

ΑΝΑΛΥΣΗ Ε ΟΜΕΝΩΝ. 7. Παλινδρόµηση

ΑΝΑΛΥΣΗ Ε ΟΜΕΝΩΝ. 7. Παλινδρόµηση ΑΝΑΛΥΣΗ Ε ΟΜΕΝΩΝ 7. Παλινδρόµηση Γενικά Επέκταση της έννοιας της συσχέτισης: Πώς µπορούµε να προβλέπουµε τη µια µεταβλητή από την άλλη; Απλή παλινδρόµηση (simple regression): Κατασκευή µοντέλου πρόβλεψης

Διαβάστε περισσότερα

Περιεχόμενα. Πρόλογος... v

Περιεχόμενα. Πρόλογος... v Περιεχόμενα Πρόλογος... v 1 Χρήση της έκδοσης 10 του SPSS για Windows και καταχώριση δεδομένων... 1 2 Περιγραφή μεταβλητών: πίνακες και γραφήματα... 19 3 Περιγραφή μεταβλητών αριθμητικά: μέσοι όροι, διακύμανση,

Διαβάστε περισσότερα

6.4. LOGLINEAR 90 8.5 (MANOVA) 121

6.4. LOGLINEAR 90 8.5 (MANOVA) 121 Φ Γ SPSS Dr. υ υ α α Θ α 2012 2 1. Γ SPSS 19.0 1.1 Φ Γ SPSS 4 1.2 Φ Γ 7 1.3 9 1.4 Φ 10 1.5 Pτ ΘHKH IAΓPAΦH 16 1.6 16 1.7 17 1.8 20 1.9 22 1.10 Γ 23 1.11 Γ Φ 25 1.12 Γ 27 1.13 Θ 28 2. Γ Φ 2.1 Θ, Γ, Γ 29

Διαβάστε περισσότερα

ΕΝ ΕΙΚΤΙΚΕΣ ΑΠΑΝΤΗΣΕΙΣ ΑΣΚΗΣΗΣ 2 (Εργαστήρια µαθήµατος «Στατιστικά Προγράµµατα», τµ. Στατ. & Ασφ. Επιστ., 04-05) (Επιµέλεια: Ελευθεράκη Αναστασία)

ΕΝ ΕΙΚΤΙΚΕΣ ΑΠΑΝΤΗΣΕΙΣ ΑΣΚΗΣΗΣ 2 (Εργαστήρια µαθήµατος «Στατιστικά Προγράµµατα», τµ. Στατ. & Ασφ. Επιστ., 04-05) (Επιµέλεια: Ελευθεράκη Αναστασία) ΕΝ ΕΙΚΤΙΚΕΣ ΑΠΑΝΤΗΣΕΙΣ ΑΣΚΗΣΗΣ (Εργαστήρια µαθήµατος «Στατιστικά Προγράµµατα», τµ. Στατ. & Ασφ. Επιστ., -) (Επιµέλεια: Ελευθεράκη Αναστασία) Άσκηση (Εργαστήριο #) Στις εξετάσεις Φεβρουαρίου του µαθήµατος

Διαβάστε περισσότερα

ΑΝΑΛΥΣΗ ΔΕΔΟΜΕΝΩΝ. Δρ. Βασίλης Π. Αγγελίδης Τμήμα Μηχανικών Παραγωγής & Διοίκησης Δημοκρίτειο Πανεπιστήμιο Θράκης

ΑΝΑΛΥΣΗ ΔΕΔΟΜΕΝΩΝ. Δρ. Βασίλης Π. Αγγελίδης Τμήμα Μηχανικών Παραγωγής & Διοίκησης Δημοκρίτειο Πανεπιστήμιο Θράκης ΑΝΑΛΥΣΗ ΔΕΔΟΜΕΝΩΝ Δρ. Βασίλης Π. Αγγελίδης Τμήμα Μηχανικών Παραγωγής & Διοίκησης Δημοκρίτειο Πανεπιστήμιο Θράκης Περιεχόμενα Έλεγχος κανονικότητας P-P Plot και Q-Q Plot Τεστ Κανονικότητας Τεστ Κανονικότητας

Διαβάστε περισσότερα

Σύντομο Εγχειρίδιο SPSS 16.0. Πέτρος Ρούσσος & Γιώργος Ευσταθίου Πρόγραμμα Ψυχολογίας, Τμήμα ΦΠΨ, ΕΚΠΑ

Σύντομο Εγχειρίδιο SPSS 16.0. Πέτρος Ρούσσος & Γιώργος Ευσταθίου Πρόγραμμα Ψυχολογίας, Τμήμα ΦΠΨ, ΕΚΠΑ Πέτρος Ρούσσος & Γιώργος Ευσταθίου Πρόγραμμα Ψυχολογίας, Τμήμα ΦΠΨ, ΕΚΠΑ ΑΘΗΝΑ 2008 [2] Περιεχόμενα Δυο λόγια εισαγωγικά... 3 1.0 Το περιβάλλον του SPSS... 3 2.0 Εισαγωγή και διαχείριση δεδομένων... 6

Διαβάστε περισσότερα

Στατιστικό κριτήριο χ 2

Στατιστικό κριτήριο χ 2 18 Μεθοδολογία Επιστηµονικής Έρευνας & Στατιστική Στατιστικό κριτήριο χ 2 Ο υπολογισµός του κριτηρίου χ 2 γίνεται µέσω του µενού [Statistics => Summarize => Crosstabs...]. Κατά τη συγκεκριµένη διαδικασία

Διαβάστε περισσότερα

2. ΧΡΗΣΗ ΣΤΑΤΙΣΤΙΚΩΝ ΠΑΚΕΤΩΝ ΣΤΗ ΓΡΑΜΜΙΚΗ ΠΑΛΙΝΔΡΟΜΗΣΗ

2. ΧΡΗΣΗ ΣΤΑΤΙΣΤΙΚΩΝ ΠΑΚΕΤΩΝ ΣΤΗ ΓΡΑΜΜΙΚΗ ΠΑΛΙΝΔΡΟΜΗΣΗ 2. ΧΡΗΣΗ ΣΤΑΤΙΣΤΙΚΩΝ ΠΑΚΕΤΩΝ ΣΤΗ ΓΡΑΜΜΙΚΗ ΠΑΛΙΝΔΡΟΜΗΣΗ Η χρησιμοποίηση των τεχνικών της παλινδρόμησης για την επίλυση πρακτικών προβλημάτων έχει διευκολύνει εξαιρετικά από την χρήση διαφόρων στατιστικών

Διαβάστε περισσότερα

ΕΛΕΓΧΟΙ ΥΠΟΘΕΣΕΩΝ ΓΙΑ ΤΗΝ ΣΥΓΚΡΙΣΗ ΜΕΣΩΝ ΤΙΜΩΝ ΚΑΙ ΑΝΑΛΟΓΙΩΝ ΔΥΟ

ΕΛΕΓΧΟΙ ΥΠΟΘΕΣΕΩΝ ΓΙΑ ΤΗΝ ΣΥΓΚΡΙΣΗ ΜΕΣΩΝ ΤΙΜΩΝ ΚΑΙ ΑΝΑΛΟΓΙΩΝ ΔΥΟ ΚΕΦΑΛΑΙΟ 19 ΕΛΕΓΧΟΙ ΥΠΟΘΕΣΕΩΝ ΓΙΑ ΤΗΝ ΣΥΓΚΡΙΣΗ ΜΕΣΩΝ ΤΙΜΩΝ ΚΑΙ ΑΝΑΛΟΓΙΩΝ ΔΥΟ ΚΑΝΟΝΙΚΩΝ ΠΛΗΘΥΣΜΩΝ Όταν ενδιαφερόμαστε να συγκρίνουμε δύο πληθυσμούς, η φυσιολογική προσέγγιση είναι να προσπαθήσουμε να συγκρίνουμε

Διαβάστε περισσότερα

ΤΜΗΜΑ ΔΙΟΙΚΗΣΗΣ ΕΠΙΧΕΙΡΗΣΕΩΝ ΕΡΓΑΣΤΗΡΙΑΚΕΣ ΣΗΜΕΙΩΣΕΙΣ ΣΤΑΤΙΣΤΙΚΗΣ ΔΡ. ΙΩΑΝΝΗΣ Σ. ΤΡΙΑΝΤΑΦΥΛΛΟΥ

ΤΜΗΜΑ ΔΙΟΙΚΗΣΗΣ ΕΠΙΧΕΙΡΗΣΕΩΝ ΕΡΓΑΣΤΗΡΙΑΚΕΣ ΣΗΜΕΙΩΣΕΙΣ ΣΤΑΤΙΣΤΙΚΗΣ ΔΡ. ΙΩΑΝΝΗΣ Σ. ΤΡΙΑΝΤΑΦΥΛΛΟΥ ΤΜΗΜΑ ΔΙΟΙΚΗΣΗΣ ΕΠΙΧΕΙΡΗΣΕΩΝ ΕΡΓΑΣΤΗΡΙΑΚΕΣ ΣΗΜΕΙΩΣΕΙΣ ΣΤΑΤΙΣΤΙΚΗΣ ΔΡ. ΙΩΑΝΝΗΣ Σ. ΤΡΙΑΝΤΑΦΥΛΛΟΥ ΑΚΑΔΗΜΑΪΚΟ ΕΤΟΣ -3 Ακαδημαϊκό Έτος -3 . ΕΙΣΑΓΩ ΓΗ ΣΤΟ SPSS ΒΑΣΙΚΕΣ ΛΕΙΤΟΥΡΓΙΕΣ..... Καταγραφή δεδομένων και

Διαβάστε περισσότερα

Η βιτρίνα των καταστημάτων ως εργαλείο δημοσίων σχέσεων. Ονοματεπώνυμο: Ειρήνη Πορτάλιου Σειρά: 8 η Επιβλέπουσα: Αν. Καθηγήτρια : Βεντούρα Ζωή

Η βιτρίνα των καταστημάτων ως εργαλείο δημοσίων σχέσεων. Ονοματεπώνυμο: Ειρήνη Πορτάλιου Σειρά: 8 η Επιβλέπουσα: Αν. Καθηγήτρια : Βεντούρα Ζωή Η βιτρίνα των καταστημάτων ως εργαλείο δημοσίων σχέσεων Ονοματεπώνυμο: Ειρήνη Πορτάλιου Σειρά: 8 η Επιβλέπουσα: Αν. Καθηγήτρια : Βεντούρα Ζωή Δεκέμβριος 2011 Στόχος Έρευνας H βιτρίνα των καταστημάτων αποτελεί

Διαβάστε περισσότερα

Ανάλυση ιακύµανσης Μονής Κατεύθυνσης

Ανάλυση ιακύµανσης Μονής Κατεύθυνσης 24 Μεθοδολογία Επιστηµονικής Έρευνας & Στατιστική Ανάλυση ιακύµανσης Μονής Κατεύθυνσης Όπως ακριβώς συνέβη και στο κριτήριο t, τα δεδοµένα µας θα πρέπει να έχουν οµαδοποιηθεί χρησιµοποιώντας µια αντίστοιχη

Διαβάστε περισσότερα

Άσκηση 2. i β. 1 ου έτους (Υ i )

Άσκηση 2. i β. 1 ου έτους (Υ i ) Άσκηση Ο επόμενος πίνακας δίνει τους βαθμούς φοιτητών (Χ i ) στις εισαγωγικές εξετάσεις ενός κολεγίου και τους αντίστοιχους βαθμούς τους (Υ i ) στο τέλος της πρώτης χρονιάς φοίτησης στο συγκεκριμένο κολέγιο.

Διαβάστε περισσότερα

ΑΝΑΛΥΣΗ Ε ΟΜΕΝΩΝ. 8. Ανάλυση διασποράς (ANOVA)

ΑΝΑΛΥΣΗ Ε ΟΜΕΝΩΝ. 8. Ανάλυση διασποράς (ANOVA) ΑΝΑΛΥΣΗ Ε ΟΜΕΝΩΝ 8. Ανάλυση διασποράς (ANOVA) Γενικά Επέκταση της σύγκρισης µέσων τιµών µεταβλητής ανάµεσα σε 2 δείγµατα (οµάδες ήστάθµες): Σύγκριση πολλών δειγµάτων (K>2) µαζί Σχέση ανάµεσα σε µια ποσοτική

Διαβάστε περισσότερα

Πίσω στα βασικά: Βασικές αρχές στατιστικής για κοινωνιολογικές έρευνες

Πίσω στα βασικά: Βασικές αρχές στατιστικής για κοινωνιολογικές έρευνες Σχετικές πληροφορίες: http://dlib.ionio.gr/~spver/seminars/statistics/ Πίσω στα βασικά: Βασικές αρχές στατιστικής για κοινωνιολογικές έρευνες Σπύρος Βερονίκης Τμήμα Αρχειονομίας - Βιβλιοθηκονομίας Θεματικές

Διαβάστε περισσότερα

2. ΕΠΙΛΟΓΗ ΤΟΥ ΜΕΓΕΘΟΥΣ ΤΩΝ ΠΑΡΑΤΗΡΗΣΕΩΝ

2. ΕΠΙΛΟΓΗ ΤΟΥ ΜΕΓΕΘΟΥΣ ΤΩΝ ΠΑΡΑΤΗΡΗΣΕΩΝ 1. ΕΙΣΑΓΩΓΗ ΣΤΟ SPSS Το SPSS είναι ένα στατιστικό πρόγραμμα γενικής στατιστικής ανάλυσης αρκετά εύκολο στη λειτουργία του. Για να πραγματοποιηθεί ανάλυση χρονοσειρών με τη βοήθεια του SPSS θα πρέπει απαραίτητα

Διαβάστε περισσότερα

----------Εισαγωγή στη Χρήση του SPSS for Windows ------------- Σελίδα: 0------------

----------Εισαγωγή στη Χρήση του SPSS for Windows ------------- Σελίδα: 0------------ ----------Εισαγωγή στη Χρήση του SPSS for Windows ------------- Σελίδα: 0------------ ΚΕΦΑΛΑΙΟ 8 ο 8.1 Συντελεστές συσχέτισης: 8.1.1 Συσχέτιση Pearson, και ρ του Spearman 8.1.2 Υπολογισµός του συντελεστή

Διαβάστε περισσότερα

έρευνας και στατιστική» παραμετρικές συγκρίσεις»

έρευνας και στατιστική» παραμετρικές συγκρίσεις» ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΙΑΣ ΤΜΗΜΑ ΕΠΙΣΤΗΜΗΣ ΦΥΣΙΚΗΣ ΑΓΩΓΗΣ & ΑΘΛΗΤΙΣΜΟΥ «Μεθοδολογία έρευνας και στατιστική» Μάθημα μεταπτυχιακού κύκλου σπουδών Διάλεξη: «Μη παραμετρικές συγκρίσεις» ΔΙΔΑΣΚΩΝ: Δρ. Αθανάσιος

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΑΚΑ ΦΡΟΝΤΙΣΤΗΡΙΑ ΚΟΛΛΙΝΤΖΑ. Ερωτήσεις πολλαπλής επιλογής. Συντάκτης: Δημήτριος Κρέτσης

ΠΑΝΕΠΙΣΤΗΜΙΑΚΑ ΦΡΟΝΤΙΣΤΗΡΙΑ ΚΟΛΛΙΝΤΖΑ. Ερωτήσεις πολλαπλής επιλογής. Συντάκτης: Δημήτριος Κρέτσης ΠΑΝΕΠΙΣΤΗΜΙΑΚΑ ΦΡΟΝΤΙΣΤΗΡΙΑ ΚΟΛΛΙΝΤΖΑ Ερωτήσεις πολλαπλής επιλογής Συντάκτης: Δημήτριος Κρέτσης 1. Ο κλάδος της περιγραφικής Στατιστικής: α. Ασχολείται με την επεξεργασία των δεδομένων και την ανάλυση

Διαβάστε περισσότερα

ΠΕΡΙΕΧΟΜΕΝΑ 1 ΕΙΣΑΓΩΓΗ... 1 2 ΤΟ PASW ΜΕ ΜΙΑ ΜΑΤΙΑ... 13 3 ΠΕΡΙΓΡΑΦΙΚΗ ΣΤΑΤΙΣΤΙΚΗ: Η ΜΕΣΗ ΤΙΜΗ ΚΑΙ Η ΔΙΑΜΕΣΟΣ... 29

ΠΕΡΙΕΧΟΜΕΝΑ 1 ΕΙΣΑΓΩΓΗ... 1 2 ΤΟ PASW ΜΕ ΜΙΑ ΜΑΤΙΑ... 13 3 ΠΕΡΙΓΡΑΦΙΚΗ ΣΤΑΤΙΣΤΙΚΗ: Η ΜΕΣΗ ΤΙΜΗ ΚΑΙ Η ΔΙΑΜΕΣΟΣ... 29 ΠΕΡΙΕΧΟΜΕΝΑ 1 ΕΙΣΑΓΩΓΗ... 1 Μεταβλητές...5 Πληθυσμός, δείγμα...7 Το ευρύτερο γραμμικό μοντέλο...8 Αναφορές στη βιβλιογραφία... 11 2 ΤΟ PASW ΜΕ ΜΙΑ ΜΑΤΙΑ... 13 Περίληψη... 13 Εισαγωγή... 13 Με μια ματιά...

Διαβάστε περισσότερα

Ποιοτική και ποσοτική ανάλυση ιατρικών δεδομένων

Ποιοτική και ποσοτική ανάλυση ιατρικών δεδομένων Ποιοτική και ποσοτική ανάλυση ιατρικών δεδομένων Κωνσταντίνος Τζιόμαλος Επίκουρος Καθηγητής Παθολογίας ΑΠΘ Α Προπαιδευτική Παθολογική Κλινική, Νοσοκομείο ΑΧΕΠΑ 1 ο βήμα : καταγραφή δεδομένων Το πιο πρακτικό

Διαβάστε περισσότερα

Κεφάλαιο 16 Απλή Γραμμική Παλινδρόμηση και Συσχέτιση

Κεφάλαιο 16 Απλή Γραμμική Παλινδρόμηση και Συσχέτιση Κεφάλαιο 16 Απλή Γραμμική Παλινδρόμηση και Συσχέτιση Copyright 2009 Cengage Learning 16.1 Ανάλυση Παλινδρόμησης Σκοπός του προβλήματος είναι η ανάλυση της σχέσης μεταξύ συνεχών μεταβλητών. Η ανάλυση παλινδρόμησης

Διαβάστε περισσότερα

ΑΚΑΔΗΜΙΑ ΤΩΝ ΠΟΛΙΤΩΝ

ΑΚΑΔΗΜΙΑ ΤΩΝ ΠΟΛΙΤΩΝ ΑΚΑΔΗΜΙΑ ΤΩΝ ΠΟΛΙΤΩΝ Αστική Μη Κερδοσκοπική Εταιρεία- ISO 9001 Σαπφούς 3, 81100 Μυτιλήνη (1ος Όροφος) 2251054739 (09:00-14:30) academy@aigaion.org civilacademy.ucoz.org «ΠΡΟΓΡΑΜΜΑ ΜΕΘΟΔΟΛΟΓΙΑΣ ΕΡΕΥΝΑΣ

Διαβάστε περισσότερα

Στατιστική Ι. Μέτρα Διασποράς (measures of dispersion) Δρ. Δημήτρης Σωτηρόπουλος e-mail: dgs@eap.gr

Στατιστική Ι. Μέτρα Διασποράς (measures of dispersion) Δρ. Δημήτρης Σωτηρόπουλος e-mail: dgs@eap.gr Στατιστική Ι Μέτρα Διασποράς (measures of dispersion) Δρ. Δημήτρης Σωτηρόπουλος e-mail: dgs@eap.gr Παρασκευή, 30 Νοεμβρίου 2012 Στατιστική Ι Έννοιες - Κλειδιά Μεταβλητότητα Εύρος (range) Εκατοστημόρια

Διαβάστε περισσότερα

Εισόδημα Κατανάλωση 1500 500 1600 600 1300 450 1100 400 600 250 700 275 900 300 800 352 850 400 1100 500

Εισόδημα Κατανάλωση 1500 500 1600 600 1300 450 1100 400 600 250 700 275 900 300 800 352 850 400 1100 500 Εισόδημα Κατανάλωση 1500 500 1600 600 1300 450 1100 400 600 250 700 275 900 300 800 352 850 400 1100 500 Πληθυσμός Δείγμα Δείγμα Δείγμα Ο ρόλος της Οικονομετρίας Οικονομική Θεωρία Διατύπωση της

Διαβάστε περισσότερα

Λογαριθμικά Γραμμικά Μοντέλα Poisson Παλινδρόμηση Παράδειγμα στο SPSS

Λογαριθμικά Γραμμικά Μοντέλα Poisson Παλινδρόμηση Παράδειγμα στο SPSS Λογαριθμικά Γραμμικά Μοντέλα Poisson Παλινδρόμηση Παράδειγμα στο SPSS Ο παρακάτω πίνακας παρουσιάζει θανάτους από καρδιακή ανεπάρκεια ανάμεσα σε άνδρες γιατρούς οι οποίοι έχουν κατηγοριοποιηθεί κατά ηλικία

Διαβάστε περισσότερα

Περιγραφική Στατιστική. Π.Μ.Σ. "Μαθηματικά των Υπολογιστών και των Αποφάσεων"

Περιγραφική Στατιστική. Π.Μ.Σ. Μαθηματικά των Υπολογιστών και των Αποφάσεων Περιγραφική Στατιστική Παράδειγμα Γίνεται μια μελέτη για τους τραυματισμούς στο μάτι (σοβαροί ή όχι τόσο σοβαροί) κατά τη διάρκεια αγώνων τέννις, squash, badminton και ρακέτας. Σοβαρός Τραυματισμός Επιπόλαιος

Διαβάστε περισσότερα

ΕΝΕΡΓΟΠΟΙΗΣΗ Η ενεργοποίηση του SPSS γίνεται με 2 τρόπους : Με διπλό πάτημα του εικονιδίου SPSS στην επιφάνεια εργασίας, ή

ΕΝΕΡΓΟΠΟΙΗΣΗ Η ενεργοποίηση του SPSS γίνεται με 2 τρόπους : Με διπλό πάτημα του εικονιδίου SPSS στην επιφάνεια εργασίας, ή ΤΟ ΣΤΑΤΙΣΤΙΚΟ ΠΡΟΓΡΑΜΜΑ SPSS Το SPSS (Statistical Package for Social Sciences) είναι ένα στατιστικό πρόγραμμα με ευρύτατη χρήση σε όλους τους ερευνητικούς χώρους και ιδιαίτερα στο χώρο των κοινωνικών επιστημών.

Διαβάστε περισσότερα

ΒΙΟΣΤΑΤΙΣΤΙΚΗ ΙΙ. ΜΑΘΗΜΑ 12 Συµπερασµατολογία για την επίδραση πολλών µεταβλητών σε µια ποσοτική (Πολλαπλή Παλινδρόµηση) [µέρος 2ο]

ΒΙΟΣΤΑΤΙΣΤΙΚΗ ΙΙ. ΜΑΘΗΜΑ 12 Συµπερασµατολογία για την επίδραση πολλών µεταβλητών σε µια ποσοτική (Πολλαπλή Παλινδρόµηση) [µέρος 2ο] Ενότητα 2 ιαφάνειες Μαθήµατος: 2- Ενότητα 2 ιαφάνειες Μαθήµατος: 2-2 ΠΜΣ ΕΠΑΓΓΕΛΜΑΤΙΚΗ ΚΑΙ ΠΕΡΙΒΑΛΛΟΝΤΙΚΗ ΥΓΕΙΑ, ΙΑΧΕΙΡΙΣΗ ΚΑΙ ΟΙΚΟΝΟΜΙΚΗ ΑΠΟΤΙΜΗΣΗ ΑΚ. ΕΤΟΣ 2006-2007, 3ο εξάµηνο.6. είκτες µερικής συσχέτισης

Διαβάστε περισσότερα

ΤΕΙ ΗΠΕΙΡΟΥ ΣΧΟΛΗ ΕΠΑΓΓΕΛΜΑΤΩΝ ΥΓΕΙΑΣ ΚΑΙ ΠΡΟΝΟΙΑΣ ΤΜΗΜΑ ΛΟΓΟΘΕΡΑΠΕΙΑΣ. Μεγγίσογλου Ευθυμία Ξενογιώργη Αικατερίνη Σβολιανίτη Χριστίνα

ΤΕΙ ΗΠΕΙΡΟΥ ΣΧΟΛΗ ΕΠΑΓΓΕΛΜΑΤΩΝ ΥΓΕΙΑΣ ΚΑΙ ΠΡΟΝΟΙΑΣ ΤΜΗΜΑ ΛΟΓΟΘΕΡΑΠΕΙΑΣ. Μεγγίσογλου Ευθυμία Ξενογιώργη Αικατερίνη Σβολιανίτη Χριστίνα ΤΕΙ ΗΠΕΙΡΟΥ ΣΧΟΛΗ ΕΠΑΓΓΕΛΜΑΤΩΝ ΥΓΕΙΑΣ ΚΑΙ ΠΡΟΝΟΙΑΣ ΤΜΗΜΑ ΛΟΓΟΘΕΡΑΠΕΙΑΣ Σπουδάστριες Γιαννιού Λαμπρινή Μεγγίσογλου Ευθυμία Ξενογιώργη Αικατερίνη Σβολιανίτη Χριστίνα Εισηγητής Ταφιάδης Χρ.Διονύσης «Η γλώσσα

Διαβάστε περισσότερα

Στατιστική Ι (ΨΥΧ-1202) ιάλεξη 4

Στατιστική Ι (ΨΥΧ-1202) ιάλεξη 4 (ΨΥΧ-1202) Λεωνίδας Α. Ζαμπετάκης Β.Sc., M.Env.Eng., M.Ind.Eng., D.Eng. Εmail: statisticsuoc@gmail.com ιαλέξεις: ftp://ftp.soc.uoc.gr/psycho/zampetakis/ ιάλεξη 4 ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ ΤΜΗΜΑ ΨΥΧΟΛΟΓΙΑΣ Ρέθυμνο,

Διαβάστε περισσότερα

----------Εισαγωγή στη Χρήση του SPSS for Windows ------------- Σελίδα: 0------------

----------Εισαγωγή στη Χρήση του SPSS for Windows ------------- Σελίδα: 0------------ ----------Εισαγωγή στη Χρήση του SPSS for Windows ------------- Σελίδα: 0------------ ΚΕΦΑΛΑΙΟ 6 ο 6.1 Ερωτήσεις Πολλαπλών Απαντήσεων 6.2 Εντολή Case Summaries 6.3 Ο έλεγχος t : (correlate t-test) 6.3.1Σύγκριση

Διαβάστε περισσότερα

Μέρος 1 Εισαγωγή στο SPSS 37. 1 Βασικές αρχές καταχώρισης δεδομένων και στατιστικής ανάλυσης με το SPSS 39

Μέρος 1 Εισαγωγή στο SPSS 37. 1 Βασικές αρχές καταχώρισης δεδομένων και στατιστικής ανάλυσης με το SPSS 39 41 Περιεχόμενα Ξενάγηση στο βιβλίο 25 Ξενάγηση στο συνοδευτικό CD 27 Εισαγωγή 29 Ευχαριστίες 33 Οι βασικές διαφορές μεταξύ του SPSS 16 και των προηγούμενων εκδόσεων 35 Μέρος 1 Εισαγωγή στο SPSS 37 1 Βασικές

Διαβάστε περισσότερα

ROEHAMPTON UNIVERSITY MA IN EDUCATION Ρ ΚΟΡΡEΣ ΚΩΝΣΤΑΝΤIΝΟΣ ΑΘΗΝΑ 2011

ROEHAMPTON UNIVERSITY MA IN EDUCATION Ρ ΚΟΡΡEΣ ΚΩΝΣΤΑΝΤIΝΟΣ ΑΘΗΝΑ 2011 Ι.Τ.Ε. ROEHAMPTON UNIVERSITY MA IN EDUCATION ΣΤΑΤΙΣΤΙΚΗ ΑΝΑΛΥΣΗ ΜΕ ΤΟ SPSS Ρ ΚΟΡΡEΣ ΚΩΝΣΤΑΝΤIΝΟΣ ΑΘΗΝΑ 2011 ΕΚΚΙΝΗΣΗ ΤΟΥ SPSS Από την Έναρξη των Windows, επιλέγουµε: Προγράµµατα SPSS for Windows SPSS *.*

Διαβάστε περισσότερα

T-tests One Way Anova

T-tests One Way Anova William S. Gosset Student s t Sir Ronald Fisher T-tests One Way Anova ΣΤΑΤΙΣΤΙΚΗ Νίκος Ζουρμπάνος Ρούσσος, Π.Λ., & Τσαούσης, Γ. (2002). Στατιστική εφαρμοσμένη στις κοινωνικές επιστήμες. Αθήνα: Ελληνικά

Διαβάστε περισσότερα

ΣΤΟΧΟΙ ΤΗΣ ΕΝΟΤΗΤΑΣ ΒΑΣΙΚΑ ΣΤΟΙΧΕΙΑ ΜΗ ΠΑΡΑΜΕΤΡΙΚΩΝ ΕΛΕΓΧΩΝ

ΣΤΟΧΟΙ ΤΗΣ ΕΝΟΤΗΤΑΣ ΒΑΣΙΚΑ ΣΤΟΙΧΕΙΑ ΜΗ ΠΑΡΑΜΕΤΡΙΚΩΝ ΕΛΕΓΧΩΝ ΣΤΟΧΟΙ ΤΗΣ ΕΝΟΤΗΤΑΣ Να δοθούν οι βασικές αρχές των µη παραµετρικών ελέγχων (non-parametric tests). Να παρουσιασθούν και να αναλυθούν οι γνωστότεροι µη παραµετρικοί έλεγχοι Να αναπτυχθεί η µεθοδολογία των

Διαβάστε περισσότερα

Στόχος µαθήµατος: ΒΙΟΣΤΑΤΙΣΤΙΚΗ ΙΙ. 1. Απλή γραµµική παλινδρόµηση. 1.2 Παράδειγµα 6 (συνέχεια)

Στόχος µαθήµατος: ΒΙΟΣΤΑΤΙΣΤΙΚΗ ΙΙ. 1. Απλή γραµµική παλινδρόµηση. 1.2 Παράδειγµα 6 (συνέχεια) ΠΜΣ ΕΠΑΓΓΕΛΜΑΤΙΚΗ ΚΑΙ ΠΕΡΙΒΑΛΛΟΝΤΙΚΗ ΥΓΕΙΑ, ΙΑΧΕΙΡΙΣΗ ΚΑΙ ΟΙΚΟΝΟΜΙΚΗ ΑΠΟΤΙΜΗΣΗ ΑΚ. ΕΤΟΣ 2006-2007, 3ο εξάµηνο ΒΙΟΣΤΑΤΙΣΤΙΚΗ ΙΙ. Απλή γραµµική παλινδρόµηση Παράδειγµα 6: Χρόνος παράδοσης φορτίου ΜΑΘΗΜΑ

Διαβάστε περισσότερα

ΕΡΕΥΝΑ ΑΓΟΡΑΣ ΣΕ ΞΕΝΟΔΟΧΕΙΑ ΤΗΣ ΚΡΗΤΗΣ ΠΤΥΧΙΑΚΗ ΕΡΓΑΣΙΑ ΑΠΌ ΣΑΛΟΥΣΤΡΟΥ ΑΝΤΙΓΟΝΗ ΣΥΓΛΕΤΟΥ ΕΛΕΝΗ

ΕΡΕΥΝΑ ΑΓΟΡΑΣ ΣΕ ΞΕΝΟΔΟΧΕΙΑ ΤΗΣ ΚΡΗΤΗΣ ΠΤΥΧΙΑΚΗ ΕΡΓΑΣΙΑ ΑΠΌ ΣΑΛΟΥΣΤΡΟΥ ΑΝΤΙΓΟΝΗ ΣΥΓΛΕΤΟΥ ΕΛΕΝΗ ΕΡΕΥΝΑ ΑΓΟΡΑΣ ΣΕ ΞΕΝΟΔΟΧΕΙΑ ΤΗΣ ΚΡΗΤΗΣ ΠΤΥΧΙΑΚΗ ΕΡΓΑΣΙΑ ΑΠΌ ΣΑΛΟΥΣΤΡΟΥ ΑΝΤΙΓΟΝΗ ΣΥΓΛΕΤΟΥ ΕΛΕΝΗ ΑΝΑΓΚΗ ΔΗΜΙΟΥΡΓΙΑΣ ΤΗΣ ΕΡΕΥΝΑΣ Μελέτη ποιοτικών χαρακτηριστικών ξενοδοχείων Συμβουλευτικές υπηρεσίες από εσωτερικούς

Διαβάστε περισσότερα

Επαγωγική Στατιστική. Εισαγωγή Βασικές έννοιες

Επαγωγική Στατιστική. Εισαγωγή Βασικές έννοιες Επαγωγική Στατιστική Εισαγωγή Βασικές έννοιες Επαγωγική Στατιστική Πως μπορούμε να συγκρίνουμε μεταβλητές μεταξύ τους? Διαφορά συγκρίνοντας το μέσο μιας μεταβλητής (λόγος ή διάστημα) στις ομάδες πχ. t-test

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ ΙΙΙ ΠΟΛΛΑΠΛΗ ΠΑΛΙΝΔΡΟΜΗΣΗ

ΚΕΦΑΛΑΙΟ ΙΙΙ ΠΟΛΛΑΠΛΗ ΠΑΛΙΝΔΡΟΜΗΣΗ ΚΕΦΑΛΑΙΟ ΙΙΙ ΠΟΛΛΑΠΛΗ ΠΑΛΙΝΔΡΟΜΗΣΗ ΕΝΟΤΗΤΕΣ 1. ΓΕΝΙΚΗ ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΠΟΛΛΑΠΛΗ ΠΑΛΙΝΔΡΟΜΗΣΗ 2. ΕΠΙΛΟΓΗ ΜΟΝΤΕΛΟΥ ΜΕ ΤΗ ΜΕΘΟΔΟ ΤΟΥ ΑΠΟΚΛΕΙΣΜΟΥ ΜΕΤΑΒΛΗΤΩΝ 3. ΕΠΙΛΟΓΗ ΜΟΝΤΕΛΟΥ ΜΕ ΤΗ ΜΕΘΟΔΟ ΤΗΣ ΠΡΟΟΔΕΥΤΙΚΗΣ ΠΡΟΣΘΗΚΗΣ

Διαβάστε περισσότερα

ΕΚΤΙΜΗΤΙΚΗ: ΔΙΑΣΤΗΜΑΤΑ ΕΜΠΙΣΤΟΣΥΝΗΣ

ΕΚΤΙΜΗΤΙΚΗ: ΔΙΑΣΤΗΜΑΤΑ ΕΜΠΙΣΤΟΣΥΝΗΣ ΚΕΦΑΛΑΙΟ 13 ΕΚΤΙΜΗΤΙΚΗ: ΔΙΑΣΤΗΜΑΤΑ ΕΜΠΙΣΤΟΣΥΝΗΣ Στις προηγούμενες ενότητες ασχοληθήκαμε με μεθόδους που οδηγούν σε εκτιμήτριες των τιμών μιας ή και περισσοτέρων αγνώστων παραμέτρων. Αυτό έγινε με την κατασκευή

Διαβάστε περισσότερα

Μη Παραµετρικοί Έλεγχοι

Μη Παραµετρικοί Έλεγχοι Μη Παραµετρικοί Έλεγχοι Επιστηµονική Επιµέλεια: ρ. Γεώργιος Μενεξές Τοµέας Φυτών Μεγάλης Καλλιέργειας και Οικολογίας Εργαστήριο Γεωργίας Viola adorata Καταρχήν Μη Παραµετρικοί Έλεγχοι εν απαιτούν κανονικότητα

Διαβάστε περισσότερα

«ΘΥΜΑΤΟΠΟΙΗΣΗ ΚΑΙ ΦΟΒΟΣ ΤΟΥ ΕΓΚΛΗΜΑΤΟΣ ΣΤΟ ΔΙΑΔΙΚΤΥΟ»

«ΘΥΜΑΤΟΠΟΙΗΣΗ ΚΑΙ ΦΟΒΟΣ ΤΟΥ ΕΓΚΛΗΜΑΤΟΣ ΣΤΟ ΔΙΑΔΙΚΤΥΟ» Ελληνική Εταιρεία Μελέτης της Διαταραχής Εθισμού στο Διαδίκτυο 3ο Πανελλήνιο Διεπιστημονικό Συνέδριο E-LIFE 2013 Κινηματογράφος ΔΑΝΑΟΣ - Αθήνα, 1-2 Νοεμβρίου 2013 «ΘΥΜΑΤΟΠΟΙΗΣΗ ΚΑΙ ΦΟΒΟΣ ΤΟΥ ΕΓΚΛΗΜΑΤΟΣ

Διαβάστε περισσότερα

ΣΤΑΤΙΣΤΙΚΗ ΕΠΙΧΕΙΡΗΣΕΩΝ ΕΙΔΙΚΑ ΘΕΜΑΤΑ. Κεφάλαιο 16. Απλή Γραμμική Παλινδρόμηση και Συσχέτιση

ΣΤΑΤΙΣΤΙΚΗ ΕΠΙΧΕΙΡΗΣΕΩΝ ΕΙΔΙΚΑ ΘΕΜΑΤΑ. Κεφάλαιο 16. Απλή Γραμμική Παλινδρόμηση και Συσχέτιση ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΔΥΤΙΚΗΣ ΕΛΛΑΔΑΣ ΤΜΗΜΑ ΔΙΟΙΚΗΣΗΣ ΕΠΙΧΕΙΡΗΣΕΩΝ ΠΑΤΡΑΣ Εργαστήριο Λήψης Αποφάσεων & Επιχειρησιακού Προγραμματισμού Καθηγητής Ι. Μητρόπουλος ΣΤΑΤΙΣΤΙΚΗ ΕΠΙΧΕΙΡΗΣΕΩΝ ΕΙΔΙΚΑ ΘΕΜΑΤΑ

Διαβάστε περισσότερα

ΤΜΗΜΑΕΠΙΧΕΙΡΗΜΑΤΙΚΟΥ ΣΧΕΔΙΑΣΜΟΥ& ΠΛΗΡΟΦΟΡΙΑΚΩΝ ΣΥΣΤΗΜΑΤΩΝ

ΤΜΗΜΑΕΠΙΧΕΙΡΗΜΑΤΙΚΟΥ ΣΧΕΔΙΑΣΜΟΥ& ΠΛΗΡΟΦΟΡΙΑΚΩΝ ΣΥΣΤΗΜΑΤΩΝ ΤΜΗΜΑΕΠΙΧΕΙΡΗΜΑΤΙΚΟΥ ΣΧΕΔΙΑΣΜΟΥ& ΠΛΗΡΟΦΟΡΙΑΚΩΝ ΣΥΣΤΗΜΑΤΩΝ ΟΙΚΟΝΟΜΕΤΡΙΚΑΠΡΟΤΥΠΑΜΑΘΗΜΑ4ο-5ο-6 ο (β) ΠΟΛΛΑΠΛΟ ΓΡΑΜΜΙΚΟ ΥΠΟΔΕΙΓΜΑ- ΕΡΓΑΣΤΗΡΙΟ PASW 18 Δρ. Κουνετάς Η Κωνσταντίνος Ακαδημαϊκό Έτος 2011-2012 ΕΠΙΧ

Διαβάστε περισσότερα

Εισαγωγή στην Ανάλυση Διακύμανσης

Εισαγωγή στην Ανάλυση Διακύμανσης Εισαγωγή στην Ανάλυση Διακύμανσης 1 Η Ανάλυση Διακύμανσης Από τα πιο συχνά χρησιμοποιούμενα στατιστικά κριτήρια στην κοινωνική έρευνα Γιατί; 1. Ενώ αναφέρεται σε διαφορές μέσων όρων, όπως και το κριτήριο

Διαβάστε περισσότερα

η πιθανότητα επιτυχίας. Επομένως, η συνάρτηση πιθανοφάνειας είναι ίση με: ( ) 32 = p 18 1 p

η πιθανότητα επιτυχίας. Επομένως, η συνάρτηση πιθανοφάνειας είναι ίση με: ( ) 32 = p 18 1 p ΑΣΚΗΣΗ 1 ΣΕΜΦΕ 14-15 i. Έστω yi ο αριθμός των προσπαθειών κάθε μαθητή μέχρι να πετύχει τρίποντο. Ο αριθμός των προσπαθειών πριν ο μαθητής να πετύχει τρίποντο θα είναι xi = yi - 1, i = 1,,18. 2 2 3 2 1

Διαβάστε περισσότερα

ΣΤΑΤΙΣΤΙΚΗ ΕΠΙΧΕΙΡΗΣΕΩΝ ΕΙΔΙΚΑ ΘΕΜΑΤΑ. Κεφάλαιο 10. Εισαγωγή στην εκτιμητική

ΣΤΑΤΙΣΤΙΚΗ ΕΠΙΧΕΙΡΗΣΕΩΝ ΕΙΔΙΚΑ ΘΕΜΑΤΑ. Κεφάλαιο 10. Εισαγωγή στην εκτιμητική ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΔΥΤΙΚΗΣ ΕΛΛΑΔΑΣ ΤΜΗΜΑ ΔΙΟΙΚΗΣΗΣ ΕΠΙΧΕΙΡΗΣΕΩΝ ΠΑΤΡΑΣ Εργαστήριο Λήψης Αποφάσεων & Επιχειρησιακού Προγραμματισμού Καθηγητής Ι. Μητρόπουλος ΣΤΑΤΙΣΤΙΚΗ ΕΠΙΧΕΙΡΗΣΕΩΝ ΕΙΔΙΚΑ ΘΕΜΑΤΑ

Διαβάστε περισσότερα

Μην ξεχάσετε να προσθέσετε μόνοι σας τα Session του Minitab! Δηλαδή την ημερομηνία και ώρα που κάνατε κάθε άσκηση!

Μην ξεχάσετε να προσθέσετε μόνοι σας τα Session του Minitab! Δηλαδή την ημερομηνία και ώρα που κάνατε κάθε άσκηση! Μην ξεχάσετε να προσθέσετε μόνοι σας τα Session του Minitab! Δηλαδή την ημερομηνία και ώρα που κάνατε κάθε άσκηση! ΘΕΜΑ ο [Μονάδες 20] Ερώτημα i (4 μονάδες). Για να κάνουμε τους υπολογισμούς που χρειάζονται

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ Πρόγραμμα Σπουδών: ΔΙΟΙΚΗΣΗ ΕΠΙΧΕΙΡΗΣΕΩΝ και ΟΡΓΑΝΙΣΜΩΝ Θεματική Ενότητα: ΔΕΟ-13 Ποσοτικές Μέθοδοι Ακαδημαϊκό Έτος: 2010-11 Τρίτη Γραπτή Εργασία στη Στατιστική Γενικές οδηγίες

Διαβάστε περισσότερα

Σύντοµο εγχειρίδιο του SPSS 13.0

Σύντοµο εγχειρίδιο του SPSS 13.0 Σύντοµο εγχειρίδιο του SPSS 13.0 1.0 ΤΟ ΠΕΡΙΒΑΛΛΟΝ ΤΟΥ SPSS 4 ΣΧΗΜΑ 1.1 Η ΕΙΣΑΓΩΓΙΚΗ ΟΘΟΝΗ ΤΟΥ SPSS 4 ΣΧΗΜΑ 1.2 Η ΑΡΧΙΚΗ ΟΘΟΝΗ ΤΟΥ SPSS 5 ΣΧΗΜΑ 1.3 ΤΟ ΜΕΝΟΥ ΕΠΙΛΟΓΩΝ ΤΟΥ [FILE] 7 2.0 ΕΙΣΑΓΩΓΗ Ε ΟΜΕΝΩΝ

Διαβάστε περισσότερα

ΤΜΗΜΑ ΕΠΙΧΕΙΡΗΜΑΤΙΚΟΥ ΣΧΕΔΙΑΣΜΟΥ & ΠΛΗΡΟΦΟΡΙΑΚΩΝ ΣΥΣΤΗΜΑΤΩΝ

ΤΜΗΜΑ ΕΠΙΧΕΙΡΗΜΑΤΙΚΟΥ ΣΧΕΔΙΑΣΜΟΥ & ΠΛΗΡΟΦΟΡΙΑΚΩΝ ΣΥΣΤΗΜΑΤΩΝ ΤΜΗΜΑ ΕΠΙΧΕΙΡΗΜΑΤΙΚΟΥ ΣΧΕΔΙΑΣΜΟΥ & ΠΛΗΡΟΦΟΡΙΑΚΩΝ ΣΥΣΤΗΜΑΤΩΝ ΟΙΚΟΝΟΜΕΤΡΙΚΑ ΠΡΟΤΥΠΑ ΜΑΘΗΜΑ ΠΡΩΤΟ ΘΕΩΡΙΑΣ-ΑΠΛΟ ΓΡΑΜΜΙΚΟ ΥΠΟΔΕΙΓΜΑ ΕΡΓΑΣΤΗΡΙΟ PASW 18 Δρ. Κουνετάς Η Κωνσταντίνος Ακαδημαϊκό Έτος 2011 2012 ΕΠΙΧ

Διαβάστε περισσότερα

Εισαγωγή στη Στατιστική

Εισαγωγή στη Στατιστική Εισαγωγή στη Στατιστική Μετεκπαιδευτικό Σεμινάριο στην ΨΥΧΟΚΟΙΝΩΝΙΚΗ ΑΠΟΚΑΤΑΣΤΑΣΗ ΨΥΧΟΚΟΙΝΩΝΙΚΕΣ ΘΕΡΑΠΕΥΤΙΚΕΣ ΠΡΟΣΕΓΓΙΣΕΙΣ Δημήτρης Φουσκάκης, Επίκουρος Καθηγητής, Τομέας Μαθηματικών, Σχολή Εφαρμοσμένων

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ Πρόγραμμα Σπουδών: ΔΙΟΙΚΗΣΗ ΕΠΙΧΕΙΡΗΣΕΩΝ και ΟΡΓΑΝΙΣΜΩΝ Θεματική Ενότητα: ΔΕΟ-13 Ποσοτικές Μέθοδοι Ακαδημαϊκό Έτος: 2006-07 Τρίτη Γραπτή Εργασία στη Στατιστική Γενικές οδηγίες

Διαβάστε περισσότερα

Σκοπός του κεφαλαίου είναι η κατανόηση των βασικών στοιχείων μιας στατιστικής έρευνας.

Σκοπός του κεφαλαίου είναι η κατανόηση των βασικών στοιχείων μιας στατιστικής έρευνας. 7 ο ΜΑΘΗΜΑ ΚΕΦΑΛΑΙΟ 2 ΣΤΑΤΙΣΤΙΚΗ Σκοπός Σκοπός του κεφαλαίου είναι η κατανόηση των βασικών στοιχείων μιας στατιστικής έρευνας. Προσδοκώμενα αποτελέσματα Όταν θα έχετε ολοκληρώσει τη μελέτη αυτού του κεφαλαίου

Διαβάστε περισσότερα

Διάλεξη 1 Βασικές έννοιες

Διάλεξη 1 Βασικές έννοιες Εργαστήριο SPSS Ψ-4201 (ΕΡΓ) Λεωνίδας Α. Ζαμπετάκης Β.Sc., M.Env.Eng., M.Ind.Eng., D.Eng. Εmail: statisticsuoc@gmail.com Διαλέξεις αναρτημένες στο: Διαλέξεις: ftp://ftp.soc.uoc.gr/psycho/zampetakis/ Διάλεξη

Διαβάστε περισσότερα

Σπουδαστές Γιαννουλάκης Αντρέας Α.Μ. 11796 Τσουρουνάκης 'Αγγελος Α.Μ. 12133 Μουτουσίδου Πόπη Α.Μ. 12279 Εισηγητής: Ταφιάδης Χρ.

Σπουδαστές Γιαννουλάκης Αντρέας Α.Μ. 11796 Τσουρουνάκης 'Αγγελος Α.Μ. 12133 Μουτουσίδου Πόπη Α.Μ. 12279 Εισηγητής: Ταφιάδης Χρ. ΤΕΙ ΗΠΕΙΡΟΥ ΣΧΟΛΗ ΕΠΑΓΓΕΛΜΑΤΩΝ ΥΓΕΙΑΣ ΚΑΙ ΠΡΟΝΟΙΑΣ ΤΜΗΜΑ ΛΟΓΟΘΕΡΑΠΕΙΑΣ Σπουδαστές Γιαννουλάκης Αντρέας Α.Μ. 11796 Τσουρουνάκης 'Αγγελος Α.Μ. 12133 Μουτουσίδου Πόπη Α.Μ. 12279 Εισηγητής: Ταφιάδης Χρ. Διονύσης

Διαβάστε περισσότερα

Εισαγωγή στο SPSS. ΚΕΔΙΜΑ 28/9/2013 Γεώργιος Σπανούδης (spanouod@ucy.ac.cy) Τμήμα Ψυχολογίας

Εισαγωγή στο SPSS. ΚΕΔΙΜΑ 28/9/2013 Γεώργιος Σπανούδης (spanouod@ucy.ac.cy) Τμήμα Ψυχολογίας Εισαγωγή στο SPSS ΚΕΔΙΜΑ 28/9/2013 Γεώργιος Σπανούδης (spanouod@ucy.ac.cy) Τμήμα Ψυχολογίας Στόχος του μαθήματος Τα τέσσερα παράθυρα του SPSS Η διαχείριση των αρχείων δεδομένων Βασικά στοιχεία ανάλυσης

Διαβάστε περισσότερα

Kruskal-Wallis H... 176

Kruskal-Wallis H... 176 Περιεχόμενα KΕΦΑΛΑΙΟ 1: Περιγραφή, παρουσίαση και σύνοψη δεδομένων................. 15 1.1 Τύποι μεταβλητών..................................................... 16 1.2 Κλίμακες μέτρησης....................................................

Διαβάστε περισσότερα

ΕΙΣΑΓΩΓΗ ΣΤΟ ΠΡΟΓΡΑΜΜΑ SPSS FOR WINDOWS

ΕΙΣΑΓΩΓΗ ΣΤΟ ΠΡΟΓΡΑΜΜΑ SPSS FOR WINDOWS ΔΗΜΟΚΡΙΤΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΡΑΚΗΣ ΠΑΙΔΑΓΩΓΙΚΟ ΤΜΗΜΑ ΔΗΜΟΤΙΚΗΣ ΕΚΠΑΙΔΕΥΣΗΣ ΤΟΜΕΑΣ ΘΕΤΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΕΡΓΑΣΤΗΡΙΟ ΜΑΘΗΜΑΤΙΚΩΝ ΚΑΙ ΠΛΗΡΟΦΟΡΙΚΗΣ ΕΙΣΑΓΩΓΗ ΣΤΟ ΠΡΟΓΡΑΜΜΑ SPSS FOR WINDOWS ΦΑΧΙΡΙΔΗΣ ΓΕΩΡΓΙΟΣ ΤΟ ΠΡΟΓΡΑΜΜΑ

Διαβάστε περισσότερα

= p 20 1 p 18. 1 p Το σημείο στο οποίο μηδενίζεται η παραπάνω μερική παράγωγος είναι

= p 20 1 p 18. 1 p Το σημείο στο οποίο μηδενίζεται η παραπάνω μερική παράγωγος είναι Άσκηση 1 i) Σε κάθε παρατήρηση περιλαμβάνεται ένας έλεγχος (ο τελευταίος) κατά τον οποίο εμφανίστηκε το πρώτο ελαττωματικό της παραγωγικής διαδικασίας. Επομένως, ο αριθμός ελέγχων που έγιναν πριν εμφανιστεί

Διαβάστε περισσότερα

ΕΙΣΑΓΩΓΗ. Βασικές έννοιες

ΕΙΣΑΓΩΓΗ. Βασικές έννοιες ΕΙΣΑΓΩΓΗ Βασικές έννοιες Σε ένα ερωτηματολόγιο έχουμε ένα σύνολο ερωτήσεων. Μπορούμε να πούμε ότι σε κάθε ερώτηση αντιστοιχεί μία μεταβλητή. Αν θεωρήσουμε μια ερώτηση, τα άτομα δίνουν κάποιες απαντήσεις

Διαβάστε περισσότερα

Στατιστική Ανάλυση Δεδομένων με το S.P.S.S.

Στατιστική Ανάλυση Δεδομένων με το S.P.S.S. ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΤΜΗΜΑ ΜΑΘΗΜΑΤΙΚΩΝ ΤΟΜΕΑΣ ΠΙΘΑΝΟΤΗΤΩΝ-ΣΤΑΤΙΣΤΙΚΗΣ & ΕΠΙΧΕΙΡΗΣΙΑΚΗΣ ΕΡΕΥΝΑΣ Στατιστική Ανάλυση Δεδομένων με το S.P.S.S. Διδακτικές Σημειώσεις Απόστολος Δ. Μπατσίδης ΙΩΑΝΝΙΝΑ 2014 Στην

Διαβάστε περισσότερα

Εισαγωγή στη Βιοστατιστική

Εισαγωγή στη Βιοστατιστική Εισαγωγή στη Βιοστατιστική Π.Μ.Σ.: Έρευνα στη Γυναικεία Αναπαραγωγή Οκτώβριος Νοέµβριος 2013 Αλέξανδρος Γρυπάρης, PhD Αλέξανδρος Γρυπάρης, PhD 3 Περιεχόµενα o Ορισµός της Στατιστικής o Περιγραφική στατιστική

Διαβάστε περισσότερα

2. ΕΠΙΛΟΓΗ ΜΟΝΤΕΛΟΥ ΜΕ ΤΗ ΜΕΘΟΔΟ ΤΟΥ ΑΠΟΚΛΕΙΣΜΟΥ ΜΕΤΑΒΛΗΤΩΝ (Backward Elimination Procedure) Στην στατιστική βιβλιογραφία υπάρχουν πολλές μέθοδοι για

2. ΕΠΙΛΟΓΗ ΜΟΝΤΕΛΟΥ ΜΕ ΤΗ ΜΕΘΟΔΟ ΤΟΥ ΑΠΟΚΛΕΙΣΜΟΥ ΜΕΤΑΒΛΗΤΩΝ (Backward Elimination Procedure) Στην στατιστική βιβλιογραφία υπάρχουν πολλές μέθοδοι για 2. ΕΠΙΛΟΓΗ ΜΟΝΤΕΛΟΥ ΜΕ ΤΗ ΜΕΘΟΔΟ ΤΟΥ ΑΠΟΚΛΕΙΣΜΟΥ ΜΕΤΑΒΛΗΤΩΝ (Backward Elimination Procedure) Στην στατιστική βιβλιογραφία υπάρχουν πολλές μέθοδοι για τον καθορισμό του καλύτερου υποσυνόλου από ένα σύνολο

Διαβάστε περισσότερα

Μελέτη Συμπεριφοράς Καταναλωτή στο Ηλεκτρονικό Εμπόριο: Η περίπτωση των Ιστοσελίδων Ηλεκτρονικών Κουπονιών

Μελέτη Συμπεριφοράς Καταναλωτή στο Ηλεκτρονικό Εμπόριο: Η περίπτωση των Ιστοσελίδων Ηλεκτρονικών Κουπονιών Μελέτη Συμπεριφοράς Καταναλωτή στο Ηλεκτρονικό Εμπόριο: Η περίπτωση των Ιστοσελίδων Ηλεκτρονικών Κουπονιών Ονοματεπώνυμο: Βλαχάκη Παρασκευή- Ερασμία Σειρά: 9η Επιβλέπων Καθηγητής: Αδάμ Βρεχόπουλος Δεκέμβριος

Διαβάστε περισσότερα

Κεφάλαιο 17. Σύγκριση συχνοτήτων κατηγοριών: Το στατιστικό κριτήριο χ 2 17.1. ΠΡΟΫΠΟΘΕΣΕΙΣ ΓΙΑ ΤΗ ΧΡΗΣΗ ΤΟΥ ΚΡΙΤΗΡΙΟΥ 17.2.

Κεφάλαιο 17. Σύγκριση συχνοτήτων κατηγοριών: Το στατιστικό κριτήριο χ 2 17.1. ΠΡΟΫΠΟΘΕΣΕΙΣ ΓΙΑ ΤΗ ΧΡΗΣΗ ΤΟΥ ΚΡΙΤΗΡΙΟΥ 17.2. Κεφάλαιο 17 Σύγκριση συχνοτήτων κατηγοριών: Το στατιστικό κριτήριο χ 2 17.1. ΠΡΟΫΠΟΘΕΣΕΙΣ ΓΙΑ ΤΗ ΧΡΗΣΗ ΤΟΥ ΚΡΙΤΗΡΙΟΥ 17.2. ΕΙΣΑΓΩΓΗ 17.3. ΤΟ χ 2 ΓΙΑ ΜΙΑ ΠΟΙΟΤΙΚΗ ΜΕΤΑΒΛΗΤΗ 17.3.1. Ένα ερευνητικό παράδειγμα

Διαβάστε περισσότερα

Εισαγωγή στο SPSS, Ενότητα 1

Εισαγωγή στο SPSS, Ενότητα 1 Εισαγωγή στο SPSS, Ενότητα Βήματα για την Στατιστική ανάλυση δεδομένων.. Εισαγωγή δεδομένων στον data editor (Εισαγωγή από μία βάση δεδομένων ή από ένα spreadsheet ή από ένα αρχείο txt, ή απευθείας εισαγωγή

Διαβάστε περισσότερα

Σ ΤΑΤΙΣΤΙΚΗ ΑΝΑΛΥΣΗ ΚΑΙ ΕΡΜΗΝΕΙΑ ΑΠΟΤΕΛΕΣΜΑΤΩΝ

Σ ΤΑΤΙΣΤΙΚΗ ΑΝΑΛΥΣΗ ΚΑΙ ΕΡΜΗΝΕΙΑ ΑΠΟΤΕΛΕΣΜΑΤΩΝ Σ ΤΑΤΙΣΤΙΚΗ ΑΝΑΛΥΣΗ ΚΑΙ ΕΡΜΗΝΕΙΑ ΑΠΟΤΕΛΕΣΜΑΤΩΝ ΤΩΝ ΕΞΕΤΑΣΕΩΝ Μ ΑΪΟΥ 2002 2004 Δ ΕΥΤΕΡΟ ΜΕΡΟΣ Π ΕΡΙΛΗΨΗ: Η μελέτη αυτή έχει σκοπό να παρουσιάσει και να ερμηνεύσει τα ευρήματα που προέκυψαν από τη στατιστική

Διαβάστε περισσότερα

----------Εισαγωγή στη Χρήση του SPSS for Windows ------------- Σελίδα: 0------------

----------Εισαγωγή στη Χρήση του SPSS for Windows ------------- Σελίδα: 0------------ ----------Εισαγωγή στη Χρήση του SPSS for Windows ------------- Σελίδα: 0------------ ΚΕΦΑΛΑΙΟ 9 ο 9.1 ηµιουργία µοντέλων πρόβλεψης 9.2 Απλή Γραµµική Παλινδρόµηση 9.3 Αναλυτικά για το ιάγραµµα ιασποράς

Διαβάστε περισσότερα

ΕΛΕΓΧΟΙ ΥΠΟΘΕΣΕΩΝ ΓΙΑ ΙΣΟΤΗΤΑ ΔΥΟ ΚΑΤΑΝΟΜΩΝ

ΕΛΕΓΧΟΙ ΥΠΟΘΕΣΕΩΝ ΓΙΑ ΙΣΟΤΗΤΑ ΔΥΟ ΚΑΤΑΝΟΜΩΝ ΚΕΦΑΛΑΙO 5 ΕΛΕΓΧΟΙ ΥΠΟΘΕΣΕΩΝ ΓΙΑ ΙΣΟΤΗΤΑ ΔΥΟ ΚΑΤΑΝΟΜΩΝ Στο προηγούμενο κεφάλαιο εξετάσαμε διάφορες μορφές ελέγχου της υπόθεσης ότι ένα δείγμα παρατηρήσεων προέρχεται από κάποια συγκεκριμένη κατανομή. Στην

Διαβάστε περισσότερα

ΣΤΑΤΙΣΤΙΚΗ ΜΕ ΤΟ SPSS12 ΓΙΑ WINDOWS. Κριτσωτάκης Ευάγγελος. Παπαδοπούλου Ελένη. Μαθηµατικός, MSc Στατιστική. Στατιστικός MSc Περιβαλλοντική ιαχείριση

ΣΤΑΤΙΣΤΙΚΗ ΜΕ ΤΟ SPSS12 ΓΙΑ WINDOWS. Κριτσωτάκης Ευάγγελος. Παπαδοπούλου Ελένη. Μαθηµατικός, MSc Στατιστική. Στατιστικός MSc Περιβαλλοντική ιαχείριση T.E.I. ΗΡΑΚΛΕΙΟΥ Σ.Ε.Υ.Π ΤΜΗΜΑ ΚΟΙΝΩΝΙΚΗΣ ΕΡΓΑΣΙΑΣ ΣΤΑΤΙΣΤΙΚΗ ΜΕ ΤΟ SPSS12 ΓΙΑ WINDOWS Κριτσωτάκης Ευάγγελος Μαθηµατικός, MSc Στατιστική Παπαδοπούλου Ελένη Στατιστικός MSc Περιβαλλοντική ιαχείριση Ηράκλειο

Διαβάστε περισσότερα

H ΑΝΑΛΥΣΗ ΣΥΣΧΕΤΙΣΗΣ (PEARSON s r)

H ΑΝΑΛΥΣΗ ΣΥΣΧΕΤΙΣΗΣ (PEARSON s r) 5 H ΑΝΑΛΥΣΗ ΣΥΣΧΕΤΙΣΗΣ (PEARSON s r) Περίληψη Σκοπός του κεφαλαίου είναι η εφαρμογή της ανάλυσης συσχέτισης (Pearson r) μέσω του PASW. H ανάλυση συσχέτισης Pearson r χρησιμοποιείται για να εξεταστεί η

Διαβάστε περισσότερα

Δύο κύριοι τρόποι παρουσίασης δεδομένων. Παράδειγμα

Δύο κύριοι τρόποι παρουσίασης δεδομένων. Παράδειγμα Δύο κύριοι τρόποι παρουσίασης δεδομένων Παράδειγμα Με πίνακες Με διαγράμματα Ονομαστικά δεδομένα Εδώ τα περιγραφικά μέτρα (μέσος, διάμεσος κλπ ) δεν έχουν νόημα Πήραμε ένα δείγμα από 25 άτομα και τα ρωτήσαμε

Διαβάστε περισσότερα

ΤΕΙ ΠΕΙΡΑΙΑ ΠΡΟΓΡΑΜΜΑ ΜΕΤΑΠΤΥΧΙΑΚΩΝ ΣΠΟΥΔΩΝ ΕΠΙΣΤΗΜΗ ΤΩΝ ΑΠΟΦΑΣΕΩΝ ΜΕ ΠΛΗΡΟΦΟΡΙΑΚΑ ΣΥΣΤΗΜΑΤΑ

ΤΕΙ ΠΕΙΡΑΙΑ ΠΡΟΓΡΑΜΜΑ ΜΕΤΑΠΤΥΧΙΑΚΩΝ ΣΠΟΥΔΩΝ ΕΠΙΣΤΗΜΗ ΤΩΝ ΑΠΟΦΑΣΕΩΝ ΜΕ ΠΛΗΡΟΦΟΡΙΑΚΑ ΣΥΣΤΗΜΑΤΑ ΤΕΙ ΠΕΙΡΑΙΑ ΠΡΟΓΡΑΜΜΑ ΜΕΤΑΠΤΥΧΙΑΚΩΝ ΣΠΟΥΔΩΝ ΕΠΙΣΤΗΜΗ ΤΩΝ ΑΠΟΦΑΣΕΩΝ ΜΕ ΠΛΗΡΟΦΟΡΙΑΚΑ ΣΥΣΤΗΜΑΤΑ ΜΑΘΗΜΑ: Ανάλυση Πολυδιάστατων (Πολυμεταβλητών) Δεδομένων και Συστήματα Εξόρυξης Δεδομένων (Multivariate Data

Διαβάστε περισσότερα

ΣΤΑΤΙΣΤΙΚΗ ΜΕ ΤΗ ΧΡΗΣΗ ΤΟΥ ΠΑΚΕΤΟΥ SPSS 15

ΣΤΑΤΙΣΤΙΚΗ ΜΕ ΤΗ ΧΡΗΣΗ ΤΟΥ ΠΑΚΕΤΟΥ SPSS 15 ΣΤΑΤΙΣΤΙΚΗ ΜΕ ΤΗ ΧΡΗΣΗ ΤΟΥ ΠΑΚΕΤΟΥ SPSS 15 STTISTICL PCKGE for the SOCIL SCIENCES ΤΣΑΓΡΗΣ ΜΙΧΑΗΛ BSc in Statistics Email: mtsagris@yahoo.gr ΑΘΗΝΑ 2008 2 Περιεχόμενα 1.1 Σύντομη εισαγωγή στη Στατιστική...4

Διαβάστε περισσότερα

SPSS Statistical Package for the Social Sciences

SPSS Statistical Package for the Social Sciences SPSS Statistical Package for the Social Sciences Ξεκινώντας την εφαρμογή Εισαγωγή εδομένων Ορισμός Μεταβλητών Εισαγωγή περίπτωσης και μεταβλητής ιαγραφή περιπτώσεων ή και μεταβλητών ΣΤΑΤΙΣΤΙΚΗ Αθανάσιος

Διαβάστε περισσότερα

----------Εισαγωγή στη Χρήση του SPSS for Windows ------------- Σελίδα: 0------------

----------Εισαγωγή στη Χρήση του SPSS for Windows ------------- Σελίδα: 0------------ ----------Εισαγωγή στη Χρήση του SPSS for Windows ------------- Σελίδα: 0------------ ΚΕΦΑΛΑΙΟ 10 ο 10.1 Πολλαπλή Γραµµική Παλινδρόµηση 10.2 Η εφαρµογή της Πολλαπλής Γραµµικής Παλινδρόµησης 10.3 Παράδειγµα

Διαβάστε περισσότερα

Εισαγωγή στη Στατιστική

Εισαγωγή στη Στατιστική Εισαγωγή στη Στατιστική Μετεκπαιδευτικό Σεμινάριο στην ΨΥΧΟΚΟΙΝΩΝΙΚΗ ΑΠΟΚΑΤΑΣΤΑΣΗ ΨΥΧΟΚΟΙΝΩΝΙΚΕΣ ΘΕΡΑΠΕΥΤΙΚΕΣ ΠΡΟΣΕΓΓΙΣΕΙΣ Δημήτρης Φουσκάκης, Επίκουρος Καθηγητής, Τομέας Μαθηματικών, Σχολή Εφαρμοσμένων

Διαβάστε περισσότερα

Πρακτικές Θετικής Οργανωσιακής Αλλαγής και οι στάσεις των εργαζομένων απέναντι στην αλλαγή

Πρακτικές Θετικής Οργανωσιακής Αλλαγής και οι στάσεις των εργαζομένων απέναντι στην αλλαγή Πρακτικές Θετικής Οργανωσιακής Αλλαγής και οι στάσεις των εργαζομένων απέναντι στην αλλαγή Ονοματεπώνυμο : Ευανθία Καρακατσάνη Σειρά: 9 Επιβλέπων Καθηγητής: Ο. Κυριακίδου Δεκέμβριος 2012 ΣΤΟΧΟΣ/ ΣΚΟΠΟΣ

Διαβάστε περισσότερα

Η εύρεση της πιθανής σχέσης μεταξύ δύο ποιοτικών μεταβλητών επιτυγχάνεται

Η εύρεση της πιθανής σχέσης μεταξύ δύο ποιοτικών μεταβλητών επιτυγχάνεται ΚΕΦΑΛΑΙΟ ΤΡΙΤΟ Εξέταση της σχέσης δυο μεταβλητών Μία στατιστική ανάλυση δεν περιορίζεται ποτέ στη μελέτη μίας μεταβλητής, αλλά πάντοτε απαιτείται η μελέτη της σχέσης μεταξύ δύο ή και περισσότερων μεταβλητών.

Διαβάστε περισσότερα