ΑΝΤΙΚΕΙΜΕΝΟ ΜΑΘΗΜΑΤΟΣ

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "ΑΝΤΙΚΕΙΜΕΝΟ ΜΑΘΗΜΑΤΟΣ"

Transcript

1 ΑΝΤΙΚΕΙΜΕΝΟ ΜΑΘΗΜΑΤΟΣ Στόχοι: (a) να δοθεί µια εισαγωγή στη θεωρία της στατιστικής συµπερασµατολογίας ελέγχων υποθέσεων, (b) να παρουσιάσει τις βασικές εφαρµογές αυτών των ελέγχων: µέσης τιµής, ποσοστού (πιθανότητας), συγκρίσεων δύο µέσων τιµών ή δύο ποσοστών, ανάλυση πινάκων συνάφειας, κλπ. Θα πρέπει: Να κατανοείτε την µεθοδολογία των στατιστικών ελέγχων Να γνωρίζετε την χρήση των στατιστικών πινάκων (z-, t-, χ 2 - πίνακες, κλπ.) Να είσθε σε θέση να επιλέγετε και να εκτελείτε στατιστικούς ελέγχους για συνήθη προβλήµατα επιστηµονικής έρευνας 1

2 ΕΞΕΤΑΖΟΜΕΝΟΙ ΕΛΕΓΧΟΙ ΚΕΦΑΛΑΙΟΥ 1) Έλεγχος υποθέσεως µέσης τιµής κανονικής κατανοµής (µε γνωστή τυπική απόκλιση) 2) Έλεγχος υποθέσεως µέσης τιµής κανονικής κατανοµής (µε άγνωστη τυπική απόκλιση) 3) Έλεγχος υπόθεσης για την διαφορά δύο µέσων τιµών: t- έλεγχος για ζευγαρωτά δείγµατα 4) Έλεγχος υπόθεσης για το ποσοστό επιτυχιών πληθυσµού 5) Έλεγχος υπόθεσης για την διαφορά δύο µέσων τιµών: z- και t-έλεγχος για δύο ανεξάρτητα δείγµατα α) z-έλεγχος σύγκρισης µέσων τιµών δύο ανεξάρτητων πληθυσµών µε γνωστές τυπικές αποκλίσεις β) t- έλεγχος σύγκρισης µέσων τιµών δύο ανεξάρτητων πληθυσµών µε άγνωστες, αλλά ίσες τυπικές αποκλίσεις 6) Έλεγχος υπόθεσης για την διαφορά δύο ποσοστών 7) χ 2 -έλεγχος για πίνακες συνάφειας 8) Έλεγχος χ 2 - βαθµού-προσαρµογής (χ 2 -goodness-of-fit test) 2

3 ΧΑΡΑΚΤΗΡΙΣΤΙΚΑ ΤΩΝ ΕΛΕΓΧΩΝ Οι διαδικασίες ελέγχου υποθέσεων χαρακτηρίζονται από τα παρακάτω βήµατα: 1) Βήµα 1ο. Καταγραφή της αρχικής (Ηο) και εναλλακτικής (Ηα) υπόθεσης (Πρέπει να προσεχθεί: το είδος των δεδοµένων, ο βαθµός σηµαντικότητας, εάν έχουµε µονόπλευρο ή δίπλευρο έλεγχο) 2) Βήµα 2ο. Υπολογισµός των χαρακτηριστικών του δείγµατος που πρέπει να ελέγξουµε. (Π.χ. υπολογισµός της µέσης τιµής, της τυπικής απόκλισης, του ποσοστού) 3) Βήµα 3ο. Εύρεση του κατάλληλου στατιστικού. (Ζ- ή t- κατανοµή, χ 2 -κατανοµή. Υπολογισµός της τιµής του. Πρέπει να προσεχθεί το επίπεδο σηµαντικότητας, οι βαθµοί ελευθερίας. 4) Βήµα 4ο. Εύρεση από πίνακες της τιµής του κατάλληλου στατιστικού και ορισµού της περιοχής απόρριψης. 5) Βήµα 5ο. Σύγκριση των τιµών των στατιστικών και αποδοχή της Ηο (απόρριψη της Ηα) ή απόρριψη της Ηο (αποδοχή της Ηα). 3

4 ΧΑΡΑΚΤΗΡΙΣΤΙΚΑ ΤΩΝ ΕΛΕΓΧΩΝ «ΠΡΑΓΜΑΤΙΚΟΤΗΤΑ» Ηο αληθής Ηο ψευδής ΣΩΣΤΟ ΣΦΑΛΜΑ (Tύπου ΙΙ) ΑΠΟΤΕΛΕΣΜΑ ΕΛΕΓΧΟΥ Ηο ψευδής Ηο αληθής ΣΦΑΛΜΑ (Tύπου Ι) ΣΩΣΤΟ Σε κάθε έλεγχο υπόθεσης υπάρχουν δύο τύπου σφαλµάτων. Τα σφάλµατα τύπου Ι και ΙΙ. Τύπου Ι απόρριψη της µηδενικής υπόθεσης όταν αυτή είναι αληθής P(απόρριψη Ho Ho αληθής) Τύπου ΙΙ αποδοχή της µηδενικής υπόθεσης όταν αυτή είναι ψευδής P(Αποδοχή Ηο Ηο ψευδής) 4

5 ΧΑΡΑΚΤΗΡΙΣΤΙΚΑ ΤΩΝ ΕΛΕΓΧΩΝ Βέλτιστη απόφαση όταν και τα δύο σφάλµατα είναι µικρά. Επίπεδο σηµαντικότητας α=0,05 ή 0,01. Ανώτατο όριο σφάλµατος τύπου Ι Ισχύς (Power)=1 - P(Σφάλµα Τύπου ΙΙ) Γιατί βελτιστοποιούµε το σφάλµα Τύπου Ι; Ευαισθησία (sensitivity) και ειδικότητα (specificity) P(+ έχει τον παράγοντα) P(- δεν έχει τον παράγοντα) 5

6 Παράδειγµα 5.1. Μια πρόσφατη στατιστική επετηρίδα «Περιγεννητικών Σωµατοµετρικών Μετρήσεων» ανέφερε ότι το µέσο βάρος γέννησης νεογνών στην Ελλάδα ήταν 3,20 κιλά και η τυπική απόκλιση (τ.α.) ήταν 1,25 κιλά. 3,7 3,0 4,3 2,3 1,8 3,9 2,0 1,4 2,8 3,7 3,6 3,5 3,1 4,0 3,5 3,7 3,3 2,6 4,9 4,0 5,5 3,1 3,9 2,5 4,0 5,3 4,8 3,0 3,4 5,2 3,8 3,2 3,6 2,9 3,5 Η Χ ακολουθεί κανονική κατανοµή N(µ, σ 2 ) µε µ=3,20 και σ=1,25 Kg. Σηµειώνουµε αν είναι µονόπλευρος ή δίπλευρος έλεγχος. Βήµα 1ο. Υποθέσεις H o : µ = µ ο εναντίον της H A : µ µ ο, Βήµα 2ο. Υπολογισµός της µέσης τιµής και της τυπικής απόκλισης της, 3,509 και n = 35. σ= 1,25 και = 1,25/ 35 = 0,211. X Βήµα 3ο. Από ΚΟΘ-1 η ~N(µ, σ 2 /n). Χρησιµοποιούµε το x µ 0 z = στατιστικό σ n. Τιµή Ζ παραδείγµατος 1,464 Βήµα 4ο. Υπολογίζουµε την κρίσιµη περιοχή απόρριψης από στατιστικούς πίνακες Ζ-κατανοµής. Στο παράδ. Ζ>1,96 ή Ζ<-1,96. Βήµα 5ο. εχόµαστε ή απορρίπτουµε την Ηο. Στο παράδ. 1,464 <1,96 άρα η Ηο είναι αποδεκτή. 6

7 ΛΥΣΗ ΠΑΡΑ ΕΙΓΜΑΤΟΣ 5.1. (EXCEL) 7

8 ΛΥΣΗ ΠΑΡΑ ΕΙΓΜΑΤΟΣ 5.1. (EXCEL) ΙΑ ΙΚΑΣΙΕΣ ΚΑΙ ΧΡΗΣΙΜΟΠΟΙΟΥΜΕΝΕΣ ΣΥΝΑΡΤΗΣΕΙΣ ΣΥΝΑΡΤΗΣΕΙΣ ΠΕΡΙΓΡΑΦΙΚΑ ΣΤΑΤΙΣΤΙΚΑ ΜΕΣΗ ΤΙΜΗ =AVERAGE(A2:A36) ΤΥΠΙΚΗ ΑΠΟΚΛΙΣΗ =STDEV(A2: A36) ΚΑΤΑΜΕΤΡΗΣΗ =COUNT(A2:A36) σ-γνωστό ΚΑΝΟΝΙΚΟΠΟΙΗΣΗ =STANDARDIZE(E1;E2;E4) ΕΠΙΠΕ Ο ΣΗΜΑΝΤΙΚΟΤΗΤΑΣ =NORMSDIST(E9) ΚΡΙΣΙΜΟ Ζ =NORMSINV(0.975) ή =NORMSINV(0.025) σ-άγνωστο ΕΠΙΠΕ Ο ΣΗΜΑΝΤΙΚΟΤΗΤΑΣ =TDIST(E15; E6-1; 2) ΚΡΙΣΙΜΟ T =TINV(0.05;E6-1) 8

9 ΛΥΣΗ ΠΑΡΑ ΕΙΓΜΑΤΟΣ 5.1. (SPSS) T-Test One-Sample Statistics ΣΥΝΤΑΞΗ BAROS BAROS Std. Error N Mean Std. Deviation Mean 35 3,5086,94445,15964 One-Sample Test Test Value = % Confidence Interval of the Difference Mean Difference Lower Upper t df Sig. (2-tailed) 1,933 34,062,3086 -,0159,6330 T-TEST /TESTVAL=3.20 /MISSING=ANALYSIS /VARIABLES=baros /CRITERIA=CIN (.95). Επιλέγουµε ANALYZE-COMPARE MEANS- ONE SAMPLE T TEST 9

10 Παράδειγµα 5.2 Μια ιατρική οµάδα, ειδική στην θεραπεία των διαταραχών του ύπνου πιστεύει ότι ένα νέο φάρµακο µπορεί να είναι αποτελεσµατικό για την θεραπεία της αϋπνίας. Για να ελεγχθεί η αποτελεσµατικότητα του φάρµακου η οµάδα προχώρησε στο παρακάτω ερευνητικό πρόγραµµα: σε καθένα από τους επόµενους 16 διαδοχικούς ασθενείς καταγράφηκαν οι ώρες ύπνου/νύκτα κατά την διάρκεια µιας εβδοµάδας κατά την οποία οι ασθενείς ήταν υπό την καθιερωµένη (µη φαρµακευτική) θεραπεία (Κ), και µετά οι ώρες ύπνου/νύκτα κατά την διάρκεια µιας εβδοµάδας κατά την οποία οι ασθενείς έπαιρναν την νέα θεραπεία (Ν). Τα αποτελέσµατα δίνονται παρακάτω: Κ: 0,7 4,8 3,9 0,2 3,2 3,6 3,8 2,9 N: 3,7 4,3 2,9 1,2 5,7 4,3 2,8 5,4 d= Κ-N -3,0 0,5 1,0-1,0-2,5-0,7 1,0-2,5 Κ: 0,5 3,5 1,5 1,6 2,0 2,0 3,2 3,0 N: 3,0 5,9 5,5 2,0 1,0 3,8 3,2 1,7 d= Κ-N -2,5-2,4-4,0-0,4 1,0-1,8 0,0 1,3 10

11 ΛΥΣΗ ΠΑΡΑ ΕΙΓΜΑΤΟΣ 5.2 Βήµα 1ο: H 0 : m d =0 εναντίον H A : m d 0, όπου m d είναι η µέση τιµή των διαφορών d. Βήµα 2ο. Υπολογισµός της µέσης τιµής και της τυπικής απόκλισης της, -1,0 s= 1,7 και SE= 1,7/ 16 = 0,425 Βήµα 3ο. Υπολογισµός της τιµής t d 0 1,0 = = = s n 0,425 Βήµα 4ο. Υπολογισµός της τιµή του t από τους πίνακες της t-κατανοµής για 16-1=15 β.ε. και επίπεδο σηµαντικότητας 5%. ίπλευρος έλεγχος. t 16., 0,05 =2,13. Κρίσιµη περιοχή >2,13 <-2,13 2,353 Βήµα 5ο. Η Ηο απορρίπτεται 11

12 ΛΥΣΗ ΠΑΡΑ ΕΙΓΜΑΤΟΣ 5.2 (EXCEL) Από Εργαλεία-Ανάλυση δεδοµένων-έλεγχος t του µέσου δύο δειγµάτων συσχετισµένων ζευγών (ελληνική έκδοση) 12

13 ΛΥΣΗ ΠΑΡΑ ΕΙΓΜΑΤΟΣ 5.2 (EXCEL) 13

14 Pair 1 OLD_DRUG - NEW_DRUG ΛΥΣΗ ΠΑΡΑ ΕΙΓΜΑΤΟΣ 5.2 (SPSS) T-TEST PAIRS= old_drug WITH new_drug (PAIRED) /CRITERIA=CIN(.95) /MISSING=ANALYSIS. Από ANALYSE COMPARE MEANS PAIRED SAMPLES T-TEST Paired Samples Test Paired Differences 95% Confidence Interval of the Std. Error Difference Mean Std. Deviation Mean Lower Upper t df Sig. (2-tailed) -1,0000 1,69980, ,9058 -,0942-2,353 15,033 14

15 ΕΛΕΓΧΟΣ ΠΟΣΟΣΤΟΥ Παράδειγµα 1.2. Αντιληπτική ικανότητα νηπίων. Βήµα 1ο: H 0 : p =0,05 εναντίον H A : p 0,05, Βήµα 2ο. Υπολογισµός του ποσοστού επιτυχιών και της τυπικής απόκλισης της, 0,14 και SE= p0(1 p0) 0, 05(1 0, 05) Βήµα 3ο. Υπολογισµός της τιµής z = = n 50 pˆ p 0,14 0, 05 0 = = = p 0,031 0(1 p0) n Βήµα 4ο. Υπολογισµός της τιµή του Ζ από τους πίνακες της Ζ-κατανοµής µε επίπεδο σηµαντικότητας 5%. ίπλευρος έλεγχος. Κρίσιµη περιοχή >1,96 ή <-1,96 Βήµα 5ο. ΗΗ ο απορρίπτεται 0,031 2,903 15

16 ΛΥΣΗ ΠΑΡΑ ΕΙΓΜΑΤΟΣ 1.2 (SPSS) NPAR TEST /BINOMIAL (0.05)= neogna (312) /STATISTICS DESCRIPTIVES /MISSING `. NPar Tests Descriptive Statistics NEOGNA N Mean Std. Deviation Minimum Maximum ,12 6, Binomial Test NEOGNA a. Group 1 Group 2 Total Based on Z Approximation. Observed Prop. Test Prop. Asymp. Sig. (1-tailed) Category N <= 312 7,14,05,012 a > , ,00 16

17 ΛΥΣΗ ΠΑΡΑ ΕΙΓΜΑΤΟΣ 1.2 (EXCEL) 17

18 ΛΥΣΗ ΠΑΡΑ ΕΙΓΜΑΤΟΣ 1.2 (EXCEL) ΣΥΝΑΡΤΗΣΕΙΣ ΚΑΤΑΜΕΤΡΗΣΗ 0 =COUNTIF($B$2:$B$51;0) ΚΑΤΑΜΕΤΡΗΣΗ 1 =COUNTIF($B$2:$B$51;1) ΣΥΝΟΛΟ =SUM(E2:E3) ΚΑΤΗΓΟΡΙΟΠΟΙΗΣΗ (ΙQ_rec) =GESTEP(A5;313) AΛΛΕΣ ΣΥΝΑΡΤΗΣΕΙΣ ΤΕΤΡΑΓΩΝΙΚΗ ΡΙΖΑ =SQRT(Ε8) ΑΠΟ ΟΧΗ =IF(E10>E12; "Ho Μη αποδεκτή"; "Ho αποδεκτή") 18

19 Πίνακας 5.1 Χρόνοι επιβίωσης, σε µέρες, µετά από χειρουργική επέµβαση ποντικών σε δύο οµάδες (θεραπεία και µάρτυρες). είχνονται επίσης οι µέσες τιµές, τυπικές αποκλίσεις, τυπικά σφάλµατα και µεγέθη των δύο δειγµάτων. Μέγεθος Μέση Τυπική Τυπικό Οµάδα εδοµένα δείγµατος τιµή απόκλιση σφάλµα Θεραπεία ,857 66,767 25,236 Μάρτυρες: ,222 42,417 14,134 ιαφορά 30,635 27,319* 19

20 ΛΥΣΗ ΠΑΡΑ ΕΙΓΜΑΤΟΣ 5.1 Βήµα 1ο: H 0 : µ 1 =µ 2 εναντίον H A : µ 1 µ 2, Βήµα 2ο. Υπολογισµός των µέσων τιµών και διασπορών: x1 = 86,857 & x2 = 56, 222 n1 = 7 S = 66,767 & S = 42, 417 n = Ενώ το s (7 1)66,767 + (9 1)42, 417 = = ,615 Βήµα 3ο. Υπολογισµός της τιµής του t για n 1 +n 2-2 βε και α=0,05 t x1 x2 30, 635 = = = 2 2 s s 27,319 + n n 1 2 Βήµα 4ο. Υπολογισµός της τιµή του t από τους πίνακες της t-κατανοµής µε επίπεδο σηµαντικότητας 5%. ίπλευρος έλεγχος. Κρίσιµη περιοχή >2,15 ή <-2,15 Βήµα 5ο. ΗΗοείναι αποδεκτή 1,121 20

21 ΛΥΣΗ ΠΑΡΑ ΕΙΓΜΑΤΟΣ 5.1. (EXCEL) 21

22 MERES ΛΥΣΗ ΠΑΡΑ ΕΙΓΜΑΤΟΣ 5.1. (SPSS) T-TEST GROUPS=therapy(0 1) /MISSING=ANALYSIS /VARIABLES=meres /CRITERIA=CIN(.95). Group Statistics MERES THERAPY Controls Therapy Std. Error N Mean Std. Deviation Mean 9 56,22 42,417 14, ,86 66,767 25,235 Independent Samples Test Equal variances assumed Equal variances not assumed Levene's Test for Equality of Variances F Sig. t df Sig. (2-tailed) t-test for Equality of Means Mean Difference 95% Confidence Interval of the Std. Error Difference Difference Lower Upper 1,959,183-1,121 14,281-30,63 27,319-89,228 27,958-1,059 9,645,315-30,63 28,926-95,410 34,140 22

23 Παράδειγµα 5.3 Σε µια κλινική έρευνα σύγκρισης 5-ετούς επιβίωσης µεταξύ δύο οµάδων µε διαφορετική φαρµακευτική θεραπεία (Α και Β) ελήφθησαν τα αποτελέσµατα Θεραπεία Επιβίωσαν Πέθαναν Σύνολο Α 21 (0.91) 2 (0.09) 23 Β 19 (0.59) 13 (0.41) 32 Σύνολο 40 (0.73) 15 (0.27) 55 Βήµα 1ο: H 0 : p 1 =p 2 εναντίον H A : p 1 p 2, Βήµα 2ο. Υπολογισµός των ποσοστών p 1, p 2 και p. p 1 =21/23=0,913 p 2 =19/32=0,594 & p=(21+19)/(23+32)=0,594 Βήµα 3ο. Υπολογισµός της τιµής του Z pˆ ˆ 1 p2 0,913 0,594 z = = = pˆ(1 pˆ) pˆ(1 pˆ) 0, 727(1 0, 727) 0, 727(1 0, 727) + + n n ,615 Βήµα 4ο. Υπολογισµός από τους πίνακες της Z-κατανοµής α= 5%. ίπλευρος έλεγχος. Κρίσιµη περιοχή >1,96 ή <-1,96 Βήµα 5ο. Η Ηο απορρίπτεται 23

24 Παράδειγµα 5.4 Ο παρακάτω 3x2 πίνακας συνάφειας (3 γραµµές και 2 στήλες) δείχνει την διασταυρωτή ταξινόµηση 1861 ατόµων, που εξετάσθηκαν αν ήταν φορείς Ηπατίτιδας C (HCV), σύµφωνα µε το αποτέλεσµα (αρνητικό/θετικό) και τον χρόνο νοσηλείας σε νοσοκοµείο. Ο σκοπός της ανάλυσης αυτού του πίνακα είναι να εξετάσουµε κατά πόσον η HCV-µόλυνση και η είσοδος/παραµονή σε νοσοκοµείο σχετίζονται. Είσοδος και χρόνος νοσηλείας Αποτέλεσµα Αρνητικό Θετικό Σύνολο Καµιά Ναι, 1-3 ηµέρες Ναι, 4 ηµέρες ή περισσότερο ΣΥΝΟΛΟ

25 ΛΥΣΗ ΠΑΡΑ ΕΙΓΜΑΤΟΣ 5.4 Βήµα 1ο: H 0 : τα γεγονότα είναι ανεξάρτητα εναντίον H A : τα γεγονότα είναι εξαρτηµένα Βήµα 2ο. Υπολογισµός των αναµενόµενων ποσοστών. Είσοδος και χρόνος νοσηλείας Αρνητικό Θετικό Σύνολο Καµιά 557 (551,4) 15 (20,6) 572 Ναι, 1-3 ηµέρες 1144 (1141,4) 40 (42,6) 1184 Ναι, 4 ηµέρες ή περισσότερο 93 (101,2) 12 (3,8) 105 Σύνολο Βήµα 3ο. Υπολογισµός της τιµής του χ ( Οι Ε ι) ( , 4) ( ,4) (12 3,8) χ = = = 20,3 Ε 551, ,4 3,8 ι ι Βήµα 4ο. Υπολογισµός από τους πίνακες της χ 2 -κατανοµής α= 5% µε (r-1)(c-1) β.ε. ίπλευρος έλεγχος χ 2 2, 0,05. Κρίσιµη περιοχή>5,99 Βήµα 5ο. Η Ηο απορρίπτεται 25

26 EISODOS Total ΛΥΣΗ ΠΑΡΑ ΕΙΓΜΑΤΟΣ 5.4 (SPSS) CROSSTABS /TABLES=eisodos BY test /FORMAT= AVALUE TABLES /STATISTIC=CHISQ /CELLS= COUNT EXPECTED ROW. Επιλογή Descriptive Statistics Crosstabs Statistics Chi-square Επιλογή Counts-Observed-Expected Percentages-Row EISODOS * TEST Crosstabulation None 1-3 days >4 days Count Expected Count % within EISODO Count Expected Count % within EISODO Count Expected Count % within EISODO Count Expected Count % within EISODO TEST Negative Positive Total ,4 20,6 572,0 97,4% 2,6% 100,0% ,4 42,6 1184,0 96,6% 3,4% 100,0% ,2 3,8 105,0 88,6% 11,4% 100,0% ,0 67,0 1861,0 96,4% 3,6% 100,0% Pearson Chi-Square Likelihood Ratio Linear-by-Linear Association N of Valid Cases a. Chi-Square Tests Asymp. Sig. Value df (2-sided) 20,284 a 2,000 13,877 2,001 9,815 1, cells (16,7%) have expected count less than 5. The minimum expected count is 3,78. 26

27 Παράδειγµα 3.4 Εξετάζουµε αν οι παρατηρούµενες τιµές παρουσιάζουν κατανοµή Poisson Αρ. εισαγωγών Poisson Πιθανότητα Παρατηρηθείσα συχνότητα Αναµενόµενη συχνότητα 0 0, , , , , , , , , , , , , , , , , , , , , ,434 27

28 ΛΥΣΗ ΠΑΡΑ ΕΙΓΜΑΤΟΣ 3.4 Βήµα 1ο: H 0 : Ακολουθεί κατανοµή Poisson H α : εν ακολουθεί κατανοµή Poisson Βήµα 2ο. Εκτίµηση του λ από τα δεδοµένα και συγχώνευση των κελιών µε παρατηρήσεις <5. (λ=3,48) Βήµα 3ο. Υπολογισµός της τιµής του χ ( Οι Ε ι) (15 13,863) (49 48, 244) (19 17,002) (9 11,69) χ = = = 1,574 Ε 13,863 48, , , 69 ι ι Βήµα 4ο. Υπολογισµός από τους πίνακες της χ 2 -κατανοµής α=5% µε 9-1-1=7 β.ε. ίπλευρος έλεγχος χ 2 7, 0,05. Κρίσιµη περιοχή >14,07 Βήµα 5ο. Η Ηο αποδεκτή 28

29 ΛΥΣΗ ΠΑΡΑ ΕΙΓΜΑΤΟΣ 3.4 (EXCEL) 29

30 ΛΥΣΗ ΠΑΡΑ ΕΙΓΜΑΤΟΣ 3.4 (EXCEL) ΣΥΝΑΡΤΗΣΕΙΣ ΣΥΝΟΛA =SUM(B3:L3) =SUM(B6:J6) =SUM(B8:L8) =SUM(B14:J14) λ Poisson =M8/M3 Πιθανότητες κατά Poisson =POISSON(B5;$M$10;FALSE) Αναµενόµενη fi κατά Poisson =B12*$M$13 ιαφορές E i, O i =(B13-B6)^2/B13 χ 2 -critical =CHINV(0,05;7) ΑΠΟ ΟΧΗ =IF(G10>B12; "Ho Μη αποδεκτή"; "Ho αποδεκτή") 30

31 NPar Tests ΛΥΣΗ ΠΑΡΑ ΕΙΓΜΑΤΟΣ 3.4 (SPSS) (Kolmogorov-Smirnov) Descriptive Statistics ACC2 N Mean Std. Deviation Minimum Maximum 450 3,48 1, One-Sample Kolmogorov-Smirnov Test N Poisson Parameter a,b Mean Most Extreme Differences Absolute Positive Negative ACC ,48,012,006 -,012 Kolmogorov-Smirnov Z Asymp. Sig. (2-tailed) a. Test distribution is Poisson. b. Calculated from data.,256 1,000 31

32 ΛΥΣΗ ΠΑΡΑ ΕΙΓΜΑΤΟΣ 3.4 (SPSS) (Kolmogorov-Smirnov) NPAR TESTS /K-S(POISSON)= acc2 /STATISTICS DESCRIPTIVES /MISSING ANALYSIS. 32

33 ΠΙΝΑΚΑΣ 3 ΚΑΤΑΝΟΜΗ χ 2 ν 0,995 0,99 0,975 0,95 0,05 0,025 0,01 0, , , , , ,841 5,024 6,635 7, ,010 0,0201 0,0506 0,103 5,991 7,378 9,210 10, ,072 0,115 0,216 0,352 7,815 9,348 11,345 12, ,207 0,297 0,484 0,711 9,488 11,143 13,277 14, ,412 0,554 0,831 1,145 11,070 12,832 15,086 16, ,676 0,872 1,237 1,635 12,592 14,449 16,812 18, ,989 1,239 1,690 2,167 14,067 16,013 18,475 20, ,344 1,647 2,180 2,733 15,507 17,535 20,090 21, ,735 2,088 2,700 3,325 16,919 19,023 21,666 23, ,156 2,558 3,247 3,940 18,307 20,483 23,209 25, ,603 3,053 3,816 4,575 19,675 21,920 24,725 26, ,074 3,571 4,404 5,226 21,026 23,337 26,217 28, ,565 4,107 5,009 5,892 22,362 24,736 27,688 29, ,075 4,660 5,629 6,571 23,685 26,119 29,141 31, ,601 5,229 6,262 7,261 24,996 27,488 30,578 32, ,142 5,812 6,908 7,962 26,296 28,845 32,000 34, ,697 6,408 7,564 8,672 27,587 30,191 33,409 35, ,265 7,015 8,231 9,390 28,869 31,526 34,805 37, ,844 7,633 8,907 10,117 30,144 32,852 36,191 38, ,434 8,260 9,591 10,851 31,410 34,170 37,566 39, ,034 8,897 10,283 11,591 32,671 35,479 38,932 41, ,643 9,542 10,982 12,338 33,924 36,781 40,289 42, ,260 10,196 11,689 13,091 35,172 38,076 41,638 44, ,886 10,856 12,401 13,848 36,415 39,364 42,980 45, ,520 11,524 13,120 14,611 37,652 40,646 44,314 46, ,160 12,198 13,844 15,379 38,885 41,923 45,642 48, ,808 12,878 14,573 16,151 40,113 43,195 46,963 49, ,461 13,565 15,308 16,928 41,337 44,461 48,278 50, ,121 14,256 16,047 17,708 42,557 45,722 49,588 52, ,787 14,953 16,791 18,493 43,773 46,979 50,892 53,672 33

Για να ελέγξουµε αν η κατανοµή µιας µεταβλητής είναι συµβατή µε την κανονική εφαρµόζουµε το test Kolmogorov-Smirnov.

Για να ελέγξουµε αν η κατανοµή µιας µεταβλητής είναι συµβατή µε την κανονική εφαρµόζουµε το test Kolmogorov-Smirnov. A. ΈΛΕΓΧΟΣ ΚΑΝΟΝΙΚΟΤΗΤΑΣ A 1. Έλεγχος κανονικότητας Kolmogorov-Smirnov. Για να ελέγξουµε αν η κατανοµή µιας µεταβλητής είναι συµβατή µε την κανονική εφαρµόζουµε το test Kolmogorov-Smirnov. Μηδενική υπόθεση:

Διαβάστε περισσότερα

ΣΤΟΧΟΙ ΤΗΣ ΕΝΟΤΗΤΑΣ ΒΑΣΙΚΑ ΣΤΟΙΧΕΙΑ ΜΗ ΠΑΡΑΜΕΤΡΙΚΩΝ ΕΛΕΓΧΩΝ

ΣΤΟΧΟΙ ΤΗΣ ΕΝΟΤΗΤΑΣ ΒΑΣΙΚΑ ΣΤΟΙΧΕΙΑ ΜΗ ΠΑΡΑΜΕΤΡΙΚΩΝ ΕΛΕΓΧΩΝ ΣΤΟΧΟΙ ΤΗΣ ΕΝΟΤΗΤΑΣ Να δοθούν οι βασικές αρχές των µη παραµετρικών ελέγχων (non-parametric tests). Να παρουσιασθούν και να αναλυθούν οι γνωστότεροι µη παραµετρικοί έλεγχοι Να αναπτυχθεί η µεθοδολογία των

Διαβάστε περισσότερα

Αν οι προϋποθέσεις αυτές δεν ισχύουν, τότε ανατρέχουµε σε µη παραµετρικό τεστ.

Αν οι προϋποθέσεις αυτές δεν ισχύουν, τότε ανατρέχουµε σε µη παραµετρικό τεστ. ΣΤ. ΑΝΑΛΥΣΗ ΙΑΣΠΟΡΑΣ (ANALYSIS OF VARIANCE - ANOVA) ΣΤ 1. Ανάλυση ιασποράς κατά µία κατεύθυνση. Όπως έχουµε δει στη παράγραφο Β 2, όταν θέλουµε να ελέγξουµε, αν η µέση τιµή µιας ποσοτικής µεταβλητής διαφέρει

Διαβάστε περισσότερα

ΛΥΣΕΙΣ ΑΣΚΗΣΕΩΝ 5.1 5.8

ΛΥΣΕΙΣ ΑΣΚΗΣΕΩΝ 5.1 5.8 ΛΥΣΕΙΣ ΑΣΚΗΣΕΩΝ 5. 5.8 5. Ένας υγειονοµικός σταθµός θέλει να ελέγξει αν ο µέσος αριθµός βακτηριδίων ανά µονάδα όγκου θαλασσινού νερού σε µια παραλία υπερβαίνει το επίπεδο ασφαλείας των 9 µονάδων. ώδεκα

Διαβάστε περισσότερα

ΕΙΔΙΚΑ ΘΕΜΑΤΑ ΣΤΗΝ ΣΤΑΤΙΣΤΙΚΗ ΕΡΓΑΣΤΗΡΙΟ (SPSS)

ΕΙΔΙΚΑ ΘΕΜΑΤΑ ΣΤΗΝ ΣΤΑΤΙΣΤΙΚΗ ΕΡΓΑΣΤΗΡΙΟ (SPSS) ΕΙΔΙΚΑ ΘΕΜΑΤΑ ΣΤΗΝ ΣΤΑΤΙΣΤΙΚΗ ΕΡΓΑΣΤΗΡΙΟ (SPSS) Έλεγχος Υποθέσεων για την Μέση Τιμή ενός Δείγματος (One Sample t-test) Το κριτήριο One sample t-test χρησιμοποιείται όταν θέλουμε να συγκρίνουμε τον αριθμητικό

Διαβάστε περισσότερα

«ΘΥΜΑΤΟΠΟΙΗΣΗ ΚΑΙ ΦΟΒΟΣ ΤΟΥ ΕΓΚΛΗΜΑΤΟΣ ΣΤΟ ΔΙΑΔΙΚΤΥΟ»

«ΘΥΜΑΤΟΠΟΙΗΣΗ ΚΑΙ ΦΟΒΟΣ ΤΟΥ ΕΓΚΛΗΜΑΤΟΣ ΣΤΟ ΔΙΑΔΙΚΤΥΟ» Ελληνική Εταιρεία Μελέτης της Διαταραχής Εθισμού στο Διαδίκτυο 3ο Πανελλήνιο Διεπιστημονικό Συνέδριο E-LIFE 2013 Κινηματογράφος ΔΑΝΑΟΣ - Αθήνα, 1-2 Νοεμβρίου 2013 «ΘΥΜΑΤΟΠΟΙΗΣΗ ΚΑΙ ΦΟΒΟΣ ΤΟΥ ΕΓΚΛΗΜΑΤΟΣ

Διαβάστε περισσότερα

ΕΙΔΙΚΑ ΘΕΜΑΤΑ ΣΤΗΝ ΣΤΑΤΙΣΤΙΚΗ ΕΡΓΑΣΤΗΡΙΟ (SPSS)

ΕΙΔΙΚΑ ΘΕΜΑΤΑ ΣΤΗΝ ΣΤΑΤΙΣΤΙΚΗ ΕΡΓΑΣΤΗΡΙΟ (SPSS) ΕΙΔΙΚΑ ΘΕΜΑΤΑ ΣΤΗΝ ΣΤΑΤΙΣΤΙΚΗ ΕΡΓΑΣΤΗΡΙΟ (SPSS) Έλεγχος Υποθέσεων για τους Μέσους - Εξαρτημένα Δείγματα (Paired samples t-test) Το κριτήριο Paired samples t-test χρησιμοποιείται όταν θέλουμε να συγκρίνουμε

Διαβάστε περισσότερα

ΠΕΡΙΓΡΑΦΙΚΗ ΣΤΑΤΙΣΤΙΚΗ ΚΑΙ ΕΛΕΓΧΟΣ ΥΠΟΘΕΣΕΩΝ

ΠΕΡΙΓΡΑΦΙΚΗ ΣΤΑΤΙΣΤΙΚΗ ΚΑΙ ΕΛΕΓΧΟΣ ΥΠΟΘΕΣΕΩΝ Αλεξάνδρειο Τεχνολογικό Εκπαιδευτικό Ίδρυμα Θεσσαλονίκης Τμήμα Πληροφορικής Εργαστήριο «Θεωρία Πιθανοτήτων και Στατιστική» ΠΕΡΙΓΡΑΦΙΚΗ ΣΤΑΤΙΣΤΙΚΗ ΚΑΙ ΕΛΕΓΧΟΣ ΥΠΟΘΕΣΕΩΝ Περιεχόμενα 1. ΠΕΡΙΓΡΑΦΙΚΗ ΣΤΑΤΙΣΤΙΚΗ...

Διαβάστε περισσότερα

ΤΕΙ ΗΠΕΙΡΟΥ ΣΧΟΛΗ ΕΠΑΓΓΕΛΜΑΤΩΝ ΥΓΕΙΑΣ ΚΑΙ ΠΡΟΝΟΙΑΣ ΤΜΗΜΑ ΛΟΓΟΘΕΡΑΠΕΙΑΣ. Μεγγίσογλου Ευθυμία Ξενογιώργη Αικατερίνη Σβολιανίτη Χριστίνα

ΤΕΙ ΗΠΕΙΡΟΥ ΣΧΟΛΗ ΕΠΑΓΓΕΛΜΑΤΩΝ ΥΓΕΙΑΣ ΚΑΙ ΠΡΟΝΟΙΑΣ ΤΜΗΜΑ ΛΟΓΟΘΕΡΑΠΕΙΑΣ. Μεγγίσογλου Ευθυμία Ξενογιώργη Αικατερίνη Σβολιανίτη Χριστίνα ΤΕΙ ΗΠΕΙΡΟΥ ΣΧΟΛΗ ΕΠΑΓΓΕΛΜΑΤΩΝ ΥΓΕΙΑΣ ΚΑΙ ΠΡΟΝΟΙΑΣ ΤΜΗΜΑ ΛΟΓΟΘΕΡΑΠΕΙΑΣ Σπουδάστριες Γιαννιού Λαμπρινή Μεγγίσογλου Ευθυμία Ξενογιώργη Αικατερίνη Σβολιανίτη Χριστίνα Εισηγητής Ταφιάδης Χρ.Διονύσης «Η γλώσσα

Διαβάστε περισσότερα

ΒΙΟΣΤΑΤΙΣΤΙΚΗ. ΑΛΕΓΚΑΚΗΣ ΑΘΑΝΑΣΙΟΣ Φυσικός, PH.D. Σχολής Επιστηµών Υγείας

ΒΙΟΣΤΑΤΙΣΤΙΚΗ. ΑΛΕΓΚΑΚΗΣ ΑΘΑΝΑΣΙΟΣ Φυσικός, PH.D. Σχολής Επιστηµών Υγείας ΒΙΟΣΤΑΤΙΣΤΙΚΗ ΑΛΕΓΚΑΚΗΣ ΑΘΑΝΑΣΙΟΣ Φυσικός, PH.D. Σχολής Επιστηµών Υγείας Επικοινωνία: Πτέρυγα 4, Τοµέας Κοινωνικής Ιατρικής Εργαστήριο Βιοστατιστικής Τηλ. 4613 e-mail: biostats@med.uoc.gr thalegak@med.uoc.gr

Διαβάστε περισσότερα

ΕΛΕΓΧΟΙ ΥΠΟΘΕΣΕΩΝ ΓΙΑ ΤΗΝ ΣΥΓΚΡΙΣΗ ΜΕΣΩΝ ΤΙΜΩΝ ΚΑΙ ΑΝΑΛΟΓΙΩΝ ΔΥΟ

ΕΛΕΓΧΟΙ ΥΠΟΘΕΣΕΩΝ ΓΙΑ ΤΗΝ ΣΥΓΚΡΙΣΗ ΜΕΣΩΝ ΤΙΜΩΝ ΚΑΙ ΑΝΑΛΟΓΙΩΝ ΔΥΟ ΚΕΦΑΛΑΙΟ 19 ΕΛΕΓΧΟΙ ΥΠΟΘΕΣΕΩΝ ΓΙΑ ΤΗΝ ΣΥΓΚΡΙΣΗ ΜΕΣΩΝ ΤΙΜΩΝ ΚΑΙ ΑΝΑΛΟΓΙΩΝ ΔΥΟ ΚΑΝΟΝΙΚΩΝ ΠΛΗΘΥΣΜΩΝ Όταν ενδιαφερόμαστε να συγκρίνουμε δύο πληθυσμούς, η φυσιολογική προσέγγιση είναι να προσπαθήσουμε να συγκρίνουμε

Διαβάστε περισσότερα

Εισαγωγή στη Στατιστική

Εισαγωγή στη Στατιστική Εισαγωγή στη Στατιστική Μετεκπαιδευτικό Σεμινάριο στην ΨΥΧΟΚΟΙΝΩΝΙΚΗ ΑΠΟΚΑΤΑΣΤΑΣΗ ΨΥΧΟΚΟΙΝΩΝΙΚΕΣ ΘΕΡΑΠΕΥΤΙΚΕΣ ΠΡΟΣΕΓΓΙΣΕΙΣ Δημήτρης Φουσκάκης, Επίκουρος Καθηγητής, Τομέας Μαθηματικών, Σχολή Εφαρμοσμένων

Διαβάστε περισσότερα

ΑΝΑΛΥΣΗ Ε ΟΜΕΝΩΝ. 8. Ανάλυση διασποράς (ANOVA)

ΑΝΑΛΥΣΗ Ε ΟΜΕΝΩΝ. 8. Ανάλυση διασποράς (ANOVA) ΑΝΑΛΥΣΗ Ε ΟΜΕΝΩΝ 8. Ανάλυση διασποράς (ANOVA) Γενικά Επέκταση της σύγκρισης µέσων τιµών µεταβλητής ανάµεσα σε 2 δείγµατα (οµάδες ήστάθµες): Σύγκριση πολλών δειγµάτων (K>2) µαζί Σχέση ανάµεσα σε µια ποσοτική

Διαβάστε περισσότερα

Χαρακτηριστικά της ανάλυσης διασποράς. ΑΝΑΛΥΣΗ ΙΑΣΠΟΡΑΣ (One-way analysis of variance)

Χαρακτηριστικά της ανάλυσης διασποράς. ΑΝΑΛΥΣΗ ΙΑΣΠΟΡΑΣ (One-way analysis of variance) ΑΝΑΛΥΣΗ ΙΑΣΠΟΡΑΣ (Oe-way aalysis of variace) Να γίνει µια εισαγωγή στη µεθοδολογία της ανάλυσης > δειγµάτων Να εφαρµοσθεί και να κατανοηθεί η ανάλυση διασποράς µε ένα παράγοντα. Να κατανοηθεί η χρήση των

Διαβάστε περισσότερα

Η Σχέση Της Επιχειρηματικής Στρατηγικής Και Της Καινοτομικής Επίδοσης: Μια Εμπειρική Διερεύνηση Σε 2000 Ελληνικές Επιχειρήσεις

Η Σχέση Της Επιχειρηματικής Στρατηγικής Και Της Καινοτομικής Επίδοσης: Μια Εμπειρική Διερεύνηση Σε 2000 Ελληνικές Επιχειρήσεις Η Σχέση Της Επιχειρηματικής Στρατηγικής Και Της Καινοτομικής Επίδοσης: Μια Εμπειρική Διερεύνηση Σε 2000 Ελληνικές Επιχειρήσεις Άγγελος Τσακανίκας, Επίκουρος Καθηγητής ΕΜΠ Γεώργιος Σιώκας, Υποψήφιος Διδάκτορας

Διαβάστε περισσότερα

Ερμηνεία αποτελεσμάτων Ανάλυση διακύμανσης κατά ένα παράγοντα

Ερμηνεία αποτελεσμάτων Ανάλυση διακύμανσης κατά ένα παράγοντα Ερμηνεία αποτελεσμάτων Ανάλυση διακύμανσης κατά ένα παράγοντα Αρχείο δεδομένων school.sav Στον πίνακα Descriptives, μας δίνονται για την Επίδοση ως προς τις πέντε διαφορετικές μεθόδους διδασκαλίας, το

Διαβάστε περισσότερα

ROEHAMPTON UNIVERSITY MA IN EDUCATION Ρ ΚΟΡΡEΣ ΚΩΝΣΤΑΝΤIΝΟΣ ΑΘΗΝΑ 2011

ROEHAMPTON UNIVERSITY MA IN EDUCATION Ρ ΚΟΡΡEΣ ΚΩΝΣΤΑΝΤIΝΟΣ ΑΘΗΝΑ 2011 Ι.Τ.Ε. ROEHAMPTON UNIVERSITY MA IN EDUCATION ΣΤΑΤΙΣΤΙΚΗ ΑΝΑΛΥΣΗ ΜΕ ΤΟ SPSS Ρ ΚΟΡΡEΣ ΚΩΝΣΤΑΝΤIΝΟΣ ΑΘΗΝΑ 2011 ΕΚΚΙΝΗΣΗ ΤΟΥ SPSS Από την Έναρξη των Windows, επιλέγουµε: Προγράµµατα SPSS for Windows SPSS *.*

Διαβάστε περισσότερα

Μη Παραµετρικοί Έλεγχοι

Μη Παραµετρικοί Έλεγχοι Μη Παραµετρικοί Έλεγχοι Επιστηµονική Επιµέλεια: ρ. Γεώργιος Μενεξές Τοµέας Φυτών Μεγάλης Καλλιέργειας και Οικολογίας Εργαστήριο Γεωργίας Viola adorata Καταρχήν Μη Παραµετρικοί Έλεγχοι εν απαιτούν κανονικότητα

Διαβάστε περισσότερα

ΑΝΑΛΥΣΗ ΔΕΔΟΜΕΝΩΝ. Δρ. Βασίλης Π. Αγγελίδης Τμήμα Μηχανικών Παραγωγής & Διοίκησης Δημοκρίτειο Πανεπιστήμιο Θράκης

ΑΝΑΛΥΣΗ ΔΕΔΟΜΕΝΩΝ. Δρ. Βασίλης Π. Αγγελίδης Τμήμα Μηχανικών Παραγωγής & Διοίκησης Δημοκρίτειο Πανεπιστήμιο Θράκης ΑΝΑΛΥΣΗ ΔΕΔΟΜΕΝΩΝ Δρ. Βασίλης Π. Αγγελίδης Τμήμα Μηχανικών Παραγωγής & Διοίκησης Δημοκρίτειο Πανεπιστήμιο Θράκης Περιεχόμενα Έλεγχος κανονικότητας P-P Plot και Q-Q Plot Τεστ Κανονικότητας Τεστ Κανονικότητας

Διαβάστε περισσότερα

Λογαριθμικά Γραμμικά Μοντέλα Poisson Παλινδρόμηση Παράδειγμα στο SPSS

Λογαριθμικά Γραμμικά Μοντέλα Poisson Παλινδρόμηση Παράδειγμα στο SPSS Λογαριθμικά Γραμμικά Μοντέλα Poisson Παλινδρόμηση Παράδειγμα στο SPSS Ο παρακάτω πίνακας παρουσιάζει θανάτους από καρδιακή ανεπάρκεια ανάμεσα σε άνδρες γιατρούς οι οποίοι έχουν κατηγοριοποιηθεί κατά ηλικία

Διαβάστε περισσότερα

ΕΛΕΓΧΟΙ ΥΠΟΘΕΣΕΩΝ ΓΙΑ ΙΣΟΤΗΤΑ ΔΥΟ ΚΑΤΑΝΟΜΩΝ

ΕΛΕΓΧΟΙ ΥΠΟΘΕΣΕΩΝ ΓΙΑ ΙΣΟΤΗΤΑ ΔΥΟ ΚΑΤΑΝΟΜΩΝ ΚΕΦΑΛΑΙO 5 ΕΛΕΓΧΟΙ ΥΠΟΘΕΣΕΩΝ ΓΙΑ ΙΣΟΤΗΤΑ ΔΥΟ ΚΑΤΑΝΟΜΩΝ Στο προηγούμενο κεφάλαιο εξετάσαμε διάφορες μορφές ελέγχου της υπόθεσης ότι ένα δείγμα παρατηρήσεων προέρχεται από κάποια συγκεκριμένη κατανομή. Στην

Διαβάστε περισσότερα

Στατιστικό κριτήριο χ 2

Στατιστικό κριτήριο χ 2 18 Μεθοδολογία Επιστηµονικής Έρευνας & Στατιστική Στατιστικό κριτήριο χ 2 Ο υπολογισµός του κριτηρίου χ 2 γίνεται µέσω του µενού [Statistics => Summarize => Crosstabs...]. Κατά τη συγκεκριµένη διαδικασία

Διαβάστε περισσότερα

1. Εισαγωγή Ο έλεγχος υποθέσεων αναφέρεται στις ιδιότητες µιας άγνωστης παραµέτρους του πληθυσµού: Ο κατηγορούµενος είναι αθώος

1. Εισαγωγή Ο έλεγχος υποθέσεων αναφέρεται στις ιδιότητες µιας άγνωστης παραµέτρους του πληθυσµού: Ο κατηγορούµενος είναι αθώος Έλεγχοι Υποθέσεων 1. Εισαγωγή Ο έλεγχος υποθέσεων αναφέρεται στις ιδιότητες µιας άγνωστης παραµέτρους του πληθυσµού: Ο κατηγορούµενος είναι αθώος µ = 100 Κάθε υπόθεση συνοδεύεται από µια εναλλακτική: Ο

Διαβάστε περισσότερα

Στόχος µαθήµατος: Παράδειγµα 1: µελέτη ασθενών-µαρτύρων ΒΙΟΣΤΑΤΙΣΤΙΚΗ ΙΙ

Στόχος µαθήµατος: Παράδειγµα 1: µελέτη ασθενών-µαρτύρων ΒΙΟΣΤΑΤΙΣΤΙΚΗ ΙΙ ΠΜΣ ΕΠΑΓΓΕΛΜΑΤΙΚΗ ΚΑΙ ΠΕΡΙΒΑΛΛΟΝΤΙΚΗ ΥΓΕΙΑ, ΙΑΧΕΙΡΙΣΗ ΚΑΙ ΟΙΚΟΝΟΜΙΚΗ ΑΠΟΤΙΜΗΣΗ ΑΚ. ΕΤΟΣ 2006-2007, 3ο εξάµηνο ΒΙΟΣΤΑΤΙΣΤΙΚΗ ΙΙ ΜΑΘΗΜΑ 5 ΕΡΓΑΣΤΗΡΙΟ 1 ΜΕΤΡΑ ΚΙΝ ΥΝΟΥ & ΣΥΜΠΕΡΑΣΜΑΤΟΛΟΓΙΑ ΜΕ ΤΗΝ ΧΡΗΣΗ SPSS

Διαβάστε περισσότερα

Άσκηση 10, σελ. 119. Για τη μεταβλητή x (άτυπος όγκος) έχουμε: x censored_x 1 F 3 F 3 F 4 F 10 F 13 F 13 F 16 F 16 F 24 F 26 F 27 F 28 F

Άσκηση 10, σελ. 119. Για τη μεταβλητή x (άτυπος όγκος) έχουμε: x censored_x 1 F 3 F 3 F 4 F 10 F 13 F 13 F 16 F 16 F 24 F 26 F 27 F 28 F Άσκηση 0, σελ. 9 από το βιβλίο «Μοντέλα Αξιοπιστίας και Επιβίωσης» της Χ. Καρώνη (i) Αρχικά, εισάγουμε τα δεδομένα στο minitab δημιουργώντας δύο μεταβλητές: τη x για τον άτυπο όγκο και την y για τον τυπικό

Διαβάστε περισσότερα

Ποιοτική και ποσοτική ανάλυση ιατρικών δεδομένων

Ποιοτική και ποσοτική ανάλυση ιατρικών δεδομένων Ποιοτική και ποσοτική ανάλυση ιατρικών δεδομένων Κωνσταντίνος Τζιόμαλος Επίκουρος Καθηγητής Παθολογίας ΑΠΘ Α Προπαιδευτική Παθολογική Κλινική, Νοσοκομείο ΑΧΕΠΑ 1 ο βήμα : καταγραφή δεδομένων Το πιο πρακτικό

Διαβάστε περισσότερα

ΒΟΗΘΗΤΙΚΕΣ ΣΗΜΕΙΩΣΕΙΣ ΓΙΑ SPSS

ΒΟΗΘΗΤΙΚΕΣ ΣΗΜΕΙΩΣΕΙΣ ΓΙΑ SPSS ΒΟΗΘΗΤΙΚΕΣ ΣΗΜΕΙΩΣΕΙΣ ΓΙΑ SPSS ΣΤΑΤΙΣΤΙΚΗ ΑΝΑΛΥΣΗ ΜΕ ΧΡΗΣΗ Η/Υ Κωνσταντίνος Ζαφειρόπουλος Τμήμα Διεθνών και Ευρωπαϊκών Σπουδών Ανοικτά Ακαδημαϊκά Μαθήματα στο Πανεπιστήμιο Μακεδονίας Άδειες Χρήσης Το παρόν

Διαβάστε περισσότερα

ΑΝΑΛΥΣΗ Ε ΟΜΕΝΩΝ. 7. Παλινδρόµηση

ΑΝΑΛΥΣΗ Ε ΟΜΕΝΩΝ. 7. Παλινδρόµηση ΑΝΑΛΥΣΗ Ε ΟΜΕΝΩΝ 7. Παλινδρόµηση Γενικά Επέκταση της έννοιας της συσχέτισης: Πώς µπορούµε να προβλέπουµε τη µια µεταβλητή από την άλλη; Απλή παλινδρόµηση (simple regression): Κατασκευή µοντέλου πρόβλεψης

Διαβάστε περισσότερα

Εισαγωγή στη Στατιστική Επεξεργασία Δεδομένων με το SPSS for Windows

Εισαγωγή στη Στατιστική Επεξεργασία Δεδομένων με το SPSS for Windows Εθνικό και Καποδιστριακό Πανεπιστήμιο Αθηνών Τμήμα Φιλοσοφίας, Παιδαγωγικής και Ψυχολογίας Τομέας Ψυχολογίας Εισαγωγή στη Στατιστική Επεξεργασία Δεδομένων με το SPSS for Windows Επιμέλεια: Λέκτορας Βασίλης

Διαβάστε περισσότερα

Επαγωγική Στατιστική. Εισαγωγή Βασικές έννοιες

Επαγωγική Στατιστική. Εισαγωγή Βασικές έννοιες Επαγωγική Στατιστική Εισαγωγή Βασικές έννοιες Επαγωγική Στατιστική Πως μπορούμε να συγκρίνουμε μεταβλητές μεταξύ τους? Διαφορά συγκρίνοντας το μέσο μιας μεταβλητής (λόγος ή διάστημα) στις ομάδες πχ. t-test

Διαβάστε περισσότερα

ΑΝΤΙΚΕΙΜΕΝΟ ΜΑΘΗΜΑΤΟΣ

ΑΝΤΙΚΕΙΜΕΝΟ ΜΑΘΗΜΑΤΟΣ ΑΝΤΙΚΕΙΜΕΝΟ ΜΑΘΗΜΑΤΟΣ Χρήση τυχαίων µεταβλητών για την απεικόνιση εκβάσεων τυχαίου πειράµατος Κατανόηση της έννοιας κατανοµής πιθανοτήτων τυχαίας µεταβλητής Υπολογισµός της συνάρτηση κατανοµής πιθανοτήτων

Διαβάστε περισσότερα

Ενότητα 4: Πίνακες συνάφειας (Contingency tables)

Ενότητα 4: Πίνακες συνάφειας (Contingency tables) Ενότητα 4: Πίνακες συνάφειας (Cotigecy tables Σε αρκετές εφαρµογές παρουσιάζεται η ανάγκη ελέγχου της σχέσης µεταξύ δυο κατηγορικών µεταβλητών (Ordial ή omial. Π.χ. θέλουµε να διερευνήσουµε τη σχέση µεταξύ

Διαβάστε περισσότερα

ΤΜΗΜΑ ΔΙΟΙΚΗΣΗΣ ΕΠΙΧΕΙΡΗΣΕΩΝ ΕΡΓΑΣΤΗΡΙΑΚΕΣ ΣΗΜΕΙΩΣΕΙΣ ΣΤΑΤΙΣΤΙΚΗΣ ΔΡ. ΙΩΑΝΝΗΣ Σ. ΤΡΙΑΝΤΑΦΥΛΛΟΥ

ΤΜΗΜΑ ΔΙΟΙΚΗΣΗΣ ΕΠΙΧΕΙΡΗΣΕΩΝ ΕΡΓΑΣΤΗΡΙΑΚΕΣ ΣΗΜΕΙΩΣΕΙΣ ΣΤΑΤΙΣΤΙΚΗΣ ΔΡ. ΙΩΑΝΝΗΣ Σ. ΤΡΙΑΝΤΑΦΥΛΛΟΥ ΤΜΗΜΑ ΔΙΟΙΚΗΣΗΣ ΕΠΙΧΕΙΡΗΣΕΩΝ ΕΡΓΑΣΤΗΡΙΑΚΕΣ ΣΗΜΕΙΩΣΕΙΣ ΣΤΑΤΙΣΤΙΚΗΣ ΔΡ. ΙΩΑΝΝΗΣ Σ. ΤΡΙΑΝΤΑΦΥΛΛΟΥ ΑΚΑΔΗΜΑΪΚΟ ΕΤΟΣ -3 Ακαδημαϊκό Έτος -3 . ΕΙΣΑΓΩ ΓΗ ΣΤΟ SPSS ΒΑΣΙΚΕΣ ΛΕΙΤΟΥΡΓΙΕΣ..... Καταγραφή δεδομένων και

Διαβάστε περισσότερα

έρευνας και στατιστική» παραμετρικές συγκρίσεις»

έρευνας και στατιστική» παραμετρικές συγκρίσεις» ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΙΑΣ ΤΜΗΜΑ ΕΠΙΣΤΗΜΗΣ ΦΥΣΙΚΗΣ ΑΓΩΓΗΣ & ΑΘΛΗΤΙΣΜΟΥ «Μεθοδολογία έρευνας και στατιστική» Μάθημα μεταπτυχιακού κύκλου σπουδών Διάλεξη: «Μη παραμετρικές συγκρίσεις» ΔΙΔΑΣΚΩΝ: Δρ. Αθανάσιος

Διαβάστε περισσότερα

Εισαγωγή στην Ανάλυση Διακύμανσης

Εισαγωγή στην Ανάλυση Διακύμανσης Εισαγωγή στην Ανάλυση Διακύμανσης 1 Η Ανάλυση Διακύμανσης Από τα πιο συχνά χρησιμοποιούμενα στατιστικά κριτήρια στην κοινωνική έρευνα Γιατί; 1. Ενώ αναφέρεται σε διαφορές μέσων όρων, όπως και το κριτήριο

Διαβάστε περισσότερα

T-tests One Way Anova

T-tests One Way Anova William S. Gosset Student s t Sir Ronald Fisher T-tests One Way Anova ΣΤΑΤΙΣΤΙΚΗ Νίκος Ζουρμπάνος Ρούσσος, Π.Λ., & Τσαούσης, Γ. (2002). Στατιστική εφαρμοσμένη στις κοινωνικές επιστήμες. Αθήνα: Ελληνικά

Διαβάστε περισσότερα

Σύντομο Εγχειρίδιο SPSS 16.0. Πέτρος Ρούσσος & Γιώργος Ευσταθίου Πρόγραμμα Ψυχολογίας, Τμήμα ΦΠΨ, ΕΚΠΑ

Σύντομο Εγχειρίδιο SPSS 16.0. Πέτρος Ρούσσος & Γιώργος Ευσταθίου Πρόγραμμα Ψυχολογίας, Τμήμα ΦΠΨ, ΕΚΠΑ Πέτρος Ρούσσος & Γιώργος Ευσταθίου Πρόγραμμα Ψυχολογίας, Τμήμα ΦΠΨ, ΕΚΠΑ ΑΘΗΝΑ 2008 [2] Περιεχόμενα Δυο λόγια εισαγωγικά... 3 1.0 Το περιβάλλον του SPSS... 3 2.0 Εισαγωγή και διαχείριση δεδομένων... 6

Διαβάστε περισσότερα

1.α ιαγνωστικοί Έλεγχοι. 2.α Ευαισθησία και Ειδικότητα (εισαγωγικές έννοιες) ΒΙΟΣΤΑΤΙΣΤΙΚΗ ΙΙ. Πολύ σηµαντικό το θεώρηµα του Bayes:

1.α ιαγνωστικοί Έλεγχοι. 2.α Ευαισθησία και Ειδικότητα (εισαγωγικές έννοιες) ΒΙΟΣΤΑΤΙΣΤΙΚΗ ΙΙ. Πολύ σηµαντικό το θεώρηµα του Bayes: ΠΜΣ ΕΠΑΓΓΕΛΜΑΤΙΚΗ ΚΑΙ ΠΕΡΙΒΑΛΛΟΝΤΙΚΗ ΥΓΕΙΑ, ΙΑΧΕΙΡΙΣΗ ΚΑΙ ΟΙΚΟΝΟΜΙΚΗ ΑΠΟΤΙΜΗΣΗ ΑΚ. ΕΤΟΣ 2006-2007, 3ο εξάµηνο ΒΙΟΣΤΑΤΙΣΤΙΚΗ ΙΙ ΜΑΘΗΜΑ 6 ΙΑΓΝΩΣΤΙΚΟΙ ΕΛΕΓΧΟΙ 1.β ιαγνωστικοί Έλεγχοι Πολύ σηµαντικό το θεώρηµα

Διαβάστε περισσότερα

= p 20 1 p 18. 1 p Το σημείο στο οποίο μηδενίζεται η παραπάνω μερική παράγωγος είναι

= p 20 1 p 18. 1 p Το σημείο στο οποίο μηδενίζεται η παραπάνω μερική παράγωγος είναι Άσκηση 1 i) Σε κάθε παρατήρηση περιλαμβάνεται ένας έλεγχος (ο τελευταίος) κατά τον οποίο εμφανίστηκε το πρώτο ελαττωματικό της παραγωγικής διαδικασίας. Επομένως, ο αριθμός ελέγχων που έγιναν πριν εμφανιστεί

Διαβάστε περισσότερα

----------Εισαγωγή στη Χρήση του SPSS for Windows ------------- Σελίδα: 0------------

----------Εισαγωγή στη Χρήση του SPSS for Windows ------------- Σελίδα: 0------------ ----------Εισαγωγή στη Χρήση του SPSS for Windows ------------- Σελίδα: 0------------ ΚΕΦΑΛΑΙΟ 6 ο 6.1 Ερωτήσεις Πολλαπλών Απαντήσεων 6.2 Εντολή Case Summaries 6.3 Ο έλεγχος t : (correlate t-test) 6.3.1Σύγκριση

Διαβάστε περισσότερα

ΕΛΕΓΧΟΙ ΚΑΤΑΝΟΜΩΝ ΚΕΦΑΛΑΙΟ 4

ΕΛΕΓΧΟΙ ΚΑΤΑΝΟΜΩΝ ΚΕΦΑΛΑΙΟ 4 ΚΕΦΑΛΑΙΟ 4 ΕΛΕΓΧΟΙ ΚΑΤΑΝΟΜΩΝ Οι πληθυσμοί, ανεξάρτητα από το αν έχουν ίδιες θέσεις (ίσες μέσες τιμές) ή ίσες διασπορές, ενδέχεται να διαφέρουν πάρα πολύ ως προς άλλα χαρακτηριστικά τους. Έτσι, οι έλεγχοι

Διαβάστε περισσότερα

ΟΙΚΟΝΟΜΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ ΤΜΗΜΑ ΣΤΑΤΙΣΤΙΚΗΣ. Εαρινό εξάµηνο ακαδηµαϊκού έτους 2003-2004 ΑΝΑΛΥΣΗ Ε ΟΜΕΝΩΝ. Εργασία 4 - Ενδεικτική λύση

ΟΙΚΟΝΟΜΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ ΤΜΗΜΑ ΣΤΑΤΙΣΤΙΚΗΣ. Εαρινό εξάµηνο ακαδηµαϊκού έτους 2003-2004 ΑΝΑΛΥΣΗ Ε ΟΜΕΝΩΝ. Εργασία 4 - Ενδεικτική λύση ΟΙΚΟΝΟΜΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ ΤΜΗΜΑ ΣΤΑΤΙΣΤΙΚΗΣ Εαρινό εξάµηνο ακαδηµαϊκού έτους 34 ΑΝΑΛΥΣΗ Ε ΟΜΕΝΩΝ 5 Μαΐου 4 Εργασία 4 - Ενδεικτική λύση Το κείµενο απευθύνεται στους φοιτητές και αιτιολογεί και περιγράφει

Διαβάστε περισσότερα

ΠΕΡΙΓΡΑΦΙΚΗ ΣΤΑΤΙΣΤΙΚΗ ΚΑΙ ΕΛΕΓΧΟΣ ΥΠΟΘΕΣΕΩΝ ΜΕ ΤΗ ΧΡΗΣΗ ΤΟΥ PSPP

ΠΕΡΙΓΡΑΦΙΚΗ ΣΤΑΤΙΣΤΙΚΗ ΚΑΙ ΕΛΕΓΧΟΣ ΥΠΟΘΕΣΕΩΝ ΜΕ ΤΗ ΧΡΗΣΗ ΤΟΥ PSPP Αλεξάνδρειο Τεχνολογικό Εκπαιδευτικό Ίδρυμα Θεσσαλονίκης Τμήμα Μηχανικών Πληροφορικής (ΤΕ) Εργαστήριο «Θεωρία Πιθανοτήτων και Στατιστική» ΠΕΡΙΓΡΑΦΙΚΗ ΣΤΑΤΙΣΤΙΚΗ ΚΑΙ ΕΛΕΓΧΟΣ ΥΠΟΘΕΣΕΩΝ ΜΕ ΤΗ ΧΡΗΣΗ ΤΟΥ PSPP

Διαβάστε περισσότερα

ΒΙΟΣΤΑΤΙΣΤΙΚΗ ΙΙ. ΜΑΘΗΜΑ 12 Συµπερασµατολογία για την επίδραση πολλών µεταβλητών σε µια ποσοτική (Πολλαπλή Παλινδρόµηση) [µέρος 2ο]

ΒΙΟΣΤΑΤΙΣΤΙΚΗ ΙΙ. ΜΑΘΗΜΑ 12 Συµπερασµατολογία για την επίδραση πολλών µεταβλητών σε µια ποσοτική (Πολλαπλή Παλινδρόµηση) [µέρος 2ο] Ενότητα 2 ιαφάνειες Μαθήµατος: 2- Ενότητα 2 ιαφάνειες Μαθήµατος: 2-2 ΠΜΣ ΕΠΑΓΓΕΛΜΑΤΙΚΗ ΚΑΙ ΠΕΡΙΒΑΛΛΟΝΤΙΚΗ ΥΓΕΙΑ, ΙΑΧΕΙΡΙΣΗ ΚΑΙ ΟΙΚΟΝΟΜΙΚΗ ΑΠΟΤΙΜΗΣΗ ΑΚ. ΕΤΟΣ 2006-2007, 3ο εξάµηνο.6. είκτες µερικής συσχέτισης

Διαβάστε περισσότερα

ΑΣΚΗΣΕΙΣ ΣΤΟΥΣ ΕΛΕΓΧΟΥΣ ΥΠΟΘΕΣΕΩΝ

ΑΣΚΗΣΕΙΣ ΣΤΟΥΣ ΕΛΕΓΧΟΥΣ ΥΠΟΘΕΣΕΩΝ .Φουσκάκης- Ασκήσεις στους Ελέγχους Υποθέσεων ΑΣΚΗΣΕΙΣ ΣΤΟΥΣ ΕΛΕΓΧΟΥΣ ΥΠΟΘΕΣΕΩΝ ) Με µια νέα µέθοδο προσδιορισµού του σηµείου τήξης (σ.τ.) µετάλλων προέκυψαν οι παρακάτω µετρήσεις για το µαγγάνιο: 67,

Διαβάστε περισσότερα

Στατιστικοί Έλεγχοι Υποθέσεων. Σαλαντή Γεωργία Εργαστήριο Υγιεινής και Επιδημιολογίας Ιατρική Σχολή

Στατιστικοί Έλεγχοι Υποθέσεων. Σαλαντή Γεωργία Εργαστήριο Υγιεινής και Επιδημιολογίας Ιατρική Σχολή Στατιστικοί Έλεγχοι Υποθέσεων Σαλαντή Γεωργία Εργαστήριο Υγιεινής και Επιδημιολογίας Ιατρική Σχολή Τι θέλουμε να συγκρίνουμε; Δύο δείγματα Μέση αρτηριακή πίεση σε δύο ομάδες Πιθανότητα θανάτου με δύο διαφορετικά

Διαβάστε περισσότερα

ΣΤΑΤΙΣΤΙΚΗ ΕΠΙΧΕΙΡΗΣΕΩΝ ΕΙΔΙΚΑ ΘΕΜΑΤΑ. Κεφάλαιο 10. Εισαγωγή στην εκτιμητική

ΣΤΑΤΙΣΤΙΚΗ ΕΠΙΧΕΙΡΗΣΕΩΝ ΕΙΔΙΚΑ ΘΕΜΑΤΑ. Κεφάλαιο 10. Εισαγωγή στην εκτιμητική ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΔΥΤΙΚΗΣ ΕΛΛΑΔΑΣ ΤΜΗΜΑ ΔΙΟΙΚΗΣΗΣ ΕΠΙΧΕΙΡΗΣΕΩΝ ΠΑΤΡΑΣ Εργαστήριο Λήψης Αποφάσεων & Επιχειρησιακού Προγραμματισμού Καθηγητής Ι. Μητρόπουλος ΣΤΑΤΙΣΤΙΚΗ ΕΠΙΧΕΙΡΗΣΕΩΝ ΕΙΔΙΚΑ ΘΕΜΑΤΑ

Διαβάστε περισσότερα

Σπουδαστές Γιαννουλάκης Αντρέας Α.Μ. 11796 Τσουρουνάκης 'Αγγελος Α.Μ. 12133 Μουτουσίδου Πόπη Α.Μ. 12279 Εισηγητής: Ταφιάδης Χρ.

Σπουδαστές Γιαννουλάκης Αντρέας Α.Μ. 11796 Τσουρουνάκης 'Αγγελος Α.Μ. 12133 Μουτουσίδου Πόπη Α.Μ. 12279 Εισηγητής: Ταφιάδης Χρ. ΤΕΙ ΗΠΕΙΡΟΥ ΣΧΟΛΗ ΕΠΑΓΓΕΛΜΑΤΩΝ ΥΓΕΙΑΣ ΚΑΙ ΠΡΟΝΟΙΑΣ ΤΜΗΜΑ ΛΟΓΟΘΕΡΑΠΕΙΑΣ Σπουδαστές Γιαννουλάκης Αντρέας Α.Μ. 11796 Τσουρουνάκης 'Αγγελος Α.Μ. 12133 Μουτουσίδου Πόπη Α.Μ. 12279 Εισηγητής: Ταφιάδης Χρ. Διονύσης

Διαβάστε περισσότερα

η πιθανότητα επιτυχίας. Επομένως, η συνάρτηση πιθανοφάνειας είναι ίση με: ( ) 32 = p 18 1 p

η πιθανότητα επιτυχίας. Επομένως, η συνάρτηση πιθανοφάνειας είναι ίση με: ( ) 32 = p 18 1 p ΑΣΚΗΣΗ 1 ΣΕΜΦΕ 14-15 i. Έστω yi ο αριθμός των προσπαθειών κάθε μαθητή μέχρι να πετύχει τρίποντο. Ο αριθμός των προσπαθειών πριν ο μαθητής να πετύχει τρίποντο θα είναι xi = yi - 1, i = 1,,18. 2 2 3 2 1

Διαβάστε περισσότερα

ΕΠΙΣΤΗΜΟΝΙΚΟ ΕΠΙΜΟΡΦΩΤΙΚΟ ΣΕΜΙΝΑΡΙΟ «ΚΑΤΑΡΤΙΣΗ ΕΡΩΤΗΜΑΤΟΛΟΓΙΟΥ ΚΑΙ ΣΤΑΤΙΣΤΙΚΗ ΕΠΕΞΕΡΓΑΣΙΑ ΔΕΔΟΜΕΝΩΝ» Τριανταφυλλίδου Ιωάννα Μαθηματικός

ΕΠΙΣΤΗΜΟΝΙΚΟ ΕΠΙΜΟΡΦΩΤΙΚΟ ΣΕΜΙΝΑΡΙΟ «ΚΑΤΑΡΤΙΣΗ ΕΡΩΤΗΜΑΤΟΛΟΓΙΟΥ ΚΑΙ ΣΤΑΤΙΣΤΙΚΗ ΕΠΕΞΕΡΓΑΣΙΑ ΔΕΔΟΜΕΝΩΝ» Τριανταφυλλίδου Ιωάννα Μαθηματικός ΕΠΙΣΤΗΜΟΝΙΚΟ ΕΠΙΜΟΡΦΩΤΙΚΟ ΣΕΜΙΝΑΡΙΟ «ΚΑΤΑΡΤΙΣΗ ΕΡΩΤΗΜΑΤΟΛΟΓΙΟΥ ΚΑΙ ΣΤΑΤΙΣΤΙΚΗ ΕΠΕΞΕΡΓΑΣΙΑ ΔΕΔΟΜΕΝΩΝ» ΠΕΡΙΓΡΑΦΙΚΗ ΣΤΑΤΙΣΤΙΚΗ ΜΕ ΤΟ SPSS To SPSS θα: - Κάνει πολύπλοκη στατιστική ανάλυση σε δευτερόλεπτα -

Διαβάστε περισσότερα

6.4. LOGLINEAR 90 8.5 (MANOVA) 121

6.4. LOGLINEAR 90 8.5 (MANOVA) 121 Φ Γ SPSS Dr. υ υ α α Θ α 2012 2 1. Γ SPSS 19.0 1.1 Φ Γ SPSS 4 1.2 Φ Γ 7 1.3 9 1.4 Φ 10 1.5 Pτ ΘHKH IAΓPAΦH 16 1.6 16 1.7 17 1.8 20 1.9 22 1.10 Γ 23 1.11 Γ Φ 25 1.12 Γ 27 1.13 Θ 28 2. Γ Φ 2.1 Θ, Γ, Γ 29

Διαβάστε περισσότερα

ΕΚΤΙΜΗΤΙΚΗ: ΔΙΑΣΤΗΜΑΤΑ ΕΜΠΙΣΤΟΣΥΝΗΣ

ΕΚΤΙΜΗΤΙΚΗ: ΔΙΑΣΤΗΜΑΤΑ ΕΜΠΙΣΤΟΣΥΝΗΣ ΚΕΦΑΛΑΙΟ 13 ΕΚΤΙΜΗΤΙΚΗ: ΔΙΑΣΤΗΜΑΤΑ ΕΜΠΙΣΤΟΣΥΝΗΣ Στις προηγούμενες ενότητες ασχοληθήκαμε με μεθόδους που οδηγούν σε εκτιμήτριες των τιμών μιας ή και περισσοτέρων αγνώστων παραμέτρων. Αυτό έγινε με την κατασκευή

Διαβάστε περισσότερα

Ανάλυση Δεδομένων με χρήση του Στατιστικού Πακέτου R

Ανάλυση Δεδομένων με χρήση του Στατιστικού Πακέτου R Ανάλυση Δεδομένων με χρήση του Στατιστικού Πακέτου R Δημήτρης Φουσκάκης, Επίκουρος Καθηγητής, Τομέας Μαθηματικών, Σχολή Εφαρμοσμένων Μαθηματικών και Φυσικών Επιστημών, Εθνικό Μετσόβιο Πολυτεχνείο. Περιεχόμενα

Διαβάστε περισσότερα

Μη Παραµετρικά Κριτήρια. Παραµετρικά Κριτήρια

Μη Παραµετρικά Κριτήρια. Παραµετρικά Κριτήρια Κεφάλαιο 7 Μη Παραµετρικά Κριτήρια Παραµετρικά Κριτήρια Τα παραµετρικά κριτήρια είναι στατιστικά κριτήρια που απαιτούν την ικανοποίηση συγκεκριµένων προϋποθέσεων είτε αναφορικά µε συγκεκριµένες παραµέτρους

Διαβάστε περισσότερα

2. ΧΡΗΣΗ ΣΤΑΤΙΣΤΙΚΩΝ ΠΑΚΕΤΩΝ ΣΤΗ ΓΡΑΜΜΙΚΗ ΠΑΛΙΝΔΡΟΜΗΣΗ

2. ΧΡΗΣΗ ΣΤΑΤΙΣΤΙΚΩΝ ΠΑΚΕΤΩΝ ΣΤΗ ΓΡΑΜΜΙΚΗ ΠΑΛΙΝΔΡΟΜΗΣΗ 2. ΧΡΗΣΗ ΣΤΑΤΙΣΤΙΚΩΝ ΠΑΚΕΤΩΝ ΣΤΗ ΓΡΑΜΜΙΚΗ ΠΑΛΙΝΔΡΟΜΗΣΗ Η χρησιμοποίηση των τεχνικών της παλινδρόμησης για την επίλυση πρακτικών προβλημάτων έχει διευκολύνει εξαιρετικά από την χρήση διαφόρων στατιστικών

Διαβάστε περισσότερα

ΠΕΡΙΕΧΟΜΕΝΑ 1 ΕΙΣΑΓΩΓΗ... 1 2 ΤΟ PASW ΜΕ ΜΙΑ ΜΑΤΙΑ... 13 3 ΠΕΡΙΓΡΑΦΙΚΗ ΣΤΑΤΙΣΤΙΚΗ: Η ΜΕΣΗ ΤΙΜΗ ΚΑΙ Η ΔΙΑΜΕΣΟΣ... 29

ΠΕΡΙΕΧΟΜΕΝΑ 1 ΕΙΣΑΓΩΓΗ... 1 2 ΤΟ PASW ΜΕ ΜΙΑ ΜΑΤΙΑ... 13 3 ΠΕΡΙΓΡΑΦΙΚΗ ΣΤΑΤΙΣΤΙΚΗ: Η ΜΕΣΗ ΤΙΜΗ ΚΑΙ Η ΔΙΑΜΕΣΟΣ... 29 ΠΕΡΙΕΧΟΜΕΝΑ 1 ΕΙΣΑΓΩΓΗ... 1 Μεταβλητές...5 Πληθυσμός, δείγμα...7 Το ευρύτερο γραμμικό μοντέλο...8 Αναφορές στη βιβλιογραφία... 11 2 ΤΟ PASW ΜΕ ΜΙΑ ΜΑΤΙΑ... 13 Περίληψη... 13 Εισαγωγή... 13 Με μια ματιά...

Διαβάστε περισσότερα

ΧΡΗΣΗ ΥΠΗΡΕΣΙΩΝ ΥΓΕΙΑΣ

ΧΡΗΣΗ ΥΠΗΡΕΣΙΩΝ ΥΓΕΙΑΣ Εθνική Σχολή Δημόσιας Υγείας Τομέας Οικονομικών της Υγείας ΠΑΝΕΛΛΑΔΙΚΗ ΕΡΕΥΝΑ ΚΟΙΝΗΣ ΓΝΩΜΗΣ: ΔΙΕΡΕΥΝΗΣΗ ΤΟΥ ΕΠΙΠΕΔΟΥ ΥΓΕΙΑΣ ΚΑΙ ΑΞΙΟΛΟΓΗΣΗ ΤΩΝ ΥΠΗΡΕΣΙΩΝ ΥΓΕΙΑΣ ΣΤΗΝ ΕΛΛΑΔΑ ΜΕΡΟΣ 2 Ο ΧΡΗΣΗ ΥΠΗΡΕΣΙΩΝ ΥΓΕΙΑΣ

Διαβάστε περισσότερα

ΓΡΑΜΜΙΚΗ ΠΑΛΙΝ ΡΟΜΗΣΗ

ΓΡΑΜΜΙΚΗ ΠΑΛΙΝ ΡΟΜΗΣΗ ΓΡΑΜΜΙΚΗ ΠΑΛΙΝ ΡΟΜΗΣΗ ιαφάνειες για το µάθηµα Information Management ΑθανάσιοςΝ. Σταµούλης 1 ΠΗΓΗ Κονδύλης Ε. (1999) Στατιστικές τεχνικές διοίκησης επιχειρήσεων, Interbooks 2 1 Γραµµική παλινδρόµηση Είναι

Διαβάστε περισσότερα

Σύντοµο εγχειρίδιο του SPSS 13.0

Σύντοµο εγχειρίδιο του SPSS 13.0 Σύντοµο εγχειρίδιο του SPSS 13.0 1.0 ΤΟ ΠΕΡΙΒΑΛΛΟΝ ΤΟΥ SPSS 4 ΣΧΗΜΑ 1.1 Η ΕΙΣΑΓΩΓΙΚΗ ΟΘΟΝΗ ΤΟΥ SPSS 4 ΣΧΗΜΑ 1.2 Η ΑΡΧΙΚΗ ΟΘΟΝΗ ΤΟΥ SPSS 5 ΣΧΗΜΑ 1.3 ΤΟ ΜΕΝΟΥ ΕΠΙΛΟΓΩΝ ΤΟΥ [FILE] 7 2.0 ΕΙΣΑΓΩΓΗ Ε ΟΜΕΝΩΝ

Διαβάστε περισσότερα

Στόχος µαθήµατος: ΒΙΟΣΤΑΤΙΣΤΙΚΗ ΙΙ. 1. Απλή γραµµική παλινδρόµηση. 1.2 Παράδειγµα 6 (συνέχεια)

Στόχος µαθήµατος: ΒΙΟΣΤΑΤΙΣΤΙΚΗ ΙΙ. 1. Απλή γραµµική παλινδρόµηση. 1.2 Παράδειγµα 6 (συνέχεια) ΠΜΣ ΕΠΑΓΓΕΛΜΑΤΙΚΗ ΚΑΙ ΠΕΡΙΒΑΛΛΟΝΤΙΚΗ ΥΓΕΙΑ, ΙΑΧΕΙΡΙΣΗ ΚΑΙ ΟΙΚΟΝΟΜΙΚΗ ΑΠΟΤΙΜΗΣΗ ΑΚ. ΕΤΟΣ 2006-2007, 3ο εξάµηνο ΒΙΟΣΤΑΤΙΣΤΙΚΗ ΙΙ. Απλή γραµµική παλινδρόµηση Παράδειγµα 6: Χρόνος παράδοσης φορτίου ΜΑΘΗΜΑ

Διαβάστε περισσότερα

Στατιστική Ι (ΨΥΧ-1202) ιάλεξη 4

Στατιστική Ι (ΨΥΧ-1202) ιάλεξη 4 (ΨΥΧ-1202) Λεωνίδας Α. Ζαμπετάκης Β.Sc., M.Env.Eng., M.Ind.Eng., D.Eng. Εmail: statisticsuoc@gmail.com ιαλέξεις: ftp://ftp.soc.uoc.gr/psycho/zampetakis/ ιάλεξη 4 ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ ΤΜΗΜΑ ΨΥΧΟΛΟΓΙΑΣ Ρέθυμνο,

Διαβάστε περισσότερα

Μέρος 1 Εισαγωγή στο SPSS 37. 1 Βασικές αρχές καταχώρισης δεδομένων και στατιστικής ανάλυσης με το SPSS 39

Μέρος 1 Εισαγωγή στο SPSS 37. 1 Βασικές αρχές καταχώρισης δεδομένων και στατιστικής ανάλυσης με το SPSS 39 41 Περιεχόμενα Ξενάγηση στο βιβλίο 25 Ξενάγηση στο συνοδευτικό CD 27 Εισαγωγή 29 Ευχαριστίες 33 Οι βασικές διαφορές μεταξύ του SPSS 16 και των προηγούμενων εκδόσεων 35 Μέρος 1 Εισαγωγή στο SPSS 37 1 Βασικές

Διαβάστε περισσότερα

ΕΝ ΕΙΚΤΙΚΕΣ ΑΠΑΝΤΗΣΕΙΣ ΑΣΚΗΣΗΣ 2 (Εργαστήρια µαθήµατος «Στατιστικά Προγράµµατα», τµ. Στατ. & Ασφ. Επιστ., 04-05) (Επιµέλεια: Ελευθεράκη Αναστασία)

ΕΝ ΕΙΚΤΙΚΕΣ ΑΠΑΝΤΗΣΕΙΣ ΑΣΚΗΣΗΣ 2 (Εργαστήρια µαθήµατος «Στατιστικά Προγράµµατα», τµ. Στατ. & Ασφ. Επιστ., 04-05) (Επιµέλεια: Ελευθεράκη Αναστασία) ΕΝ ΕΙΚΤΙΚΕΣ ΑΠΑΝΤΗΣΕΙΣ ΑΣΚΗΣΗΣ (Εργαστήρια µαθήµατος «Στατιστικά Προγράµµατα», τµ. Στατ. & Ασφ. Επιστ., -) (Επιµέλεια: Ελευθεράκη Αναστασία) Άσκηση (Εργαστήριο #) Στις εξετάσεις Φεβρουαρίου του µαθήµατος

Διαβάστε περισσότερα

----------Εισαγωγή στη Χρήση του SPSS for Windows ------------- Σελίδα: 0------------

----------Εισαγωγή στη Χρήση του SPSS for Windows ------------- Σελίδα: 0------------ ----------Εισαγωγή στη Χρήση του SPSS for Windows ------------- Σελίδα: 0------------ ΚΕΦΑΛΑΙΟ 9 ο 9.1 ηµιουργία µοντέλων πρόβλεψης 9.2 Απλή Γραµµική Παλινδρόµηση 9.3 Αναλυτικά για το ιάγραµµα ιασποράς

Διαβάστε περισσότερα

2. ΕΠΙΛΟΓΗ ΤΟΥ ΜΕΓΕΘΟΥΣ ΤΩΝ ΠΑΡΑΤΗΡΗΣΕΩΝ

2. ΕΠΙΛΟΓΗ ΤΟΥ ΜΕΓΕΘΟΥΣ ΤΩΝ ΠΑΡΑΤΗΡΗΣΕΩΝ 1. ΕΙΣΑΓΩΓΗ ΣΤΟ SPSS Το SPSS είναι ένα στατιστικό πρόγραμμα γενικής στατιστικής ανάλυσης αρκετά εύκολο στη λειτουργία του. Για να πραγματοποιηθεί ανάλυση χρονοσειρών με τη βοήθεια του SPSS θα πρέπει απαραίτητα

Διαβάστε περισσότερα

ΣΤΑΤΙΣΤΙΚΗ ΕΠΙΧΕΙΡΗΣΕΩΝ ΕΙΔΙΚΑ ΘΕΜΑΤΑ. Κεφάλαιο 13. Συμπεράσματα για τη σύγκριση δύο πληθυσμών

ΣΤΑΤΙΣΤΙΚΗ ΕΠΙΧΕΙΡΗΣΕΩΝ ΕΙΔΙΚΑ ΘΕΜΑΤΑ. Κεφάλαιο 13. Συμπεράσματα για τη σύγκριση δύο πληθυσμών ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΔΥΤΙΚΗΣ ΕΛΛΑΔΑΣ ΤΜΗΜΑ ΔΙΟΙΚΗΣΗΣ ΕΠΙΧΕΙΡΗΣΕΩΝ ΠΑΤΡΑΣ Εργαστήριο Λήψης Αποφάσεων & Επιχειρησιακού Προγραμματισμού Καθηγητής Ι. Μητρόπουλος ΣΤΑΤΙΣΤΙΚΗ ΕΠΙΧΕΙΡΗΣΕΩΝ ΕΙΔΙΚΑ ΘΕΜΑΤΑ

Διαβάστε περισσότερα

Ανάλυση ιακύµανσης Μονής Κατεύθυνσης

Ανάλυση ιακύµανσης Μονής Κατεύθυνσης 24 Μεθοδολογία Επιστηµονικής Έρευνας & Στατιστική Ανάλυση ιακύµανσης Μονής Κατεύθυνσης Όπως ακριβώς συνέβη και στο κριτήριο t, τα δεδοµένα µας θα πρέπει να έχουν οµαδοποιηθεί χρησιµοποιώντας µια αντίστοιχη

Διαβάστε περισσότερα

Kruskal-Wallis H... 176

Kruskal-Wallis H... 176 Περιεχόμενα KΕΦΑΛΑΙΟ 1: Περιγραφή, παρουσίαση και σύνοψη δεδομένων................. 15 1.1 Τύποι μεταβλητών..................................................... 16 1.2 Κλίμακες μέτρησης....................................................

Διαβάστε περισσότερα

Διάλεξη 1 Βασικές έννοιες

Διάλεξη 1 Βασικές έννοιες Εργαστήριο SPSS Ψ-4201 (ΕΡΓ) Λεωνίδας Α. Ζαμπετάκης Β.Sc., M.Env.Eng., M.Ind.Eng., D.Eng. Εmail: statisticsuoc@gmail.com Διαλέξεις αναρτημένες στο: Διαλέξεις: ftp://ftp.soc.uoc.gr/psycho/zampetakis/ Διάλεξη

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 6 ΧΡΗΣΗ ΓΡΑΜΜΙΚΩΝ ΜΟΝΤΕΛΩΝ ΚΑΙ ΓΡΑΜΜΙΚΗΣ ΠΑΛΙΝ ΡΟΜΗΣΗΣ

ΚΕΦΑΛΑΙΟ 6 ΧΡΗΣΗ ΓΡΑΜΜΙΚΩΝ ΜΟΝΤΕΛΩΝ ΚΑΙ ΓΡΑΜΜΙΚΗΣ ΠΑΛΙΝ ΡΟΜΗΣΗΣ ΚΕΦΑΛΑΙΟ 6 ΧΡΗΣΗ ΓΡΑΜΜΙΚΩΝ ΜΟΝΤΕΛΩΝ ΚΑΙ ΓΡΑΜΜΙΚΗΣ ΠΑΛΙΝ ΡΟΜΗΣΗΣ 6.1 Εισαγωγή Σε πολλές στατιστικές εφαρµογές συναντάται το πρόβληµα της µελέτης της σχέσης δυο ή περισσότερων τυχαίων µεταβλητών. Η σχέση

Διαβάστε περισσότερα

Προϋποθέσεις : ! Και οι δύο µεταβλητές να κατανέµονται κανονικά και να έχουν επιλεγεί τυχαία.

Προϋποθέσεις : ! Και οι δύο µεταβλητές να κατανέµονται κανονικά και να έχουν επιλεγεί τυχαία. . ΣΤΑΤΙΣΤΙΚΗ ΣΥΣΧΕΤΙΣΗ. Υπολογισµός συντελεστών συσχέτισης Προκειµένου να ελέγξουµε την ύπαρξη γραµµικής σχέσης µεταξύ δύο ποσοτικών µεταβλητών, χρησιµοποιούµε συνήθως τον παραµετρικό συντελεστή συσχέτισης

Διαβάστε περισσότερα

«ΠΡΟΣΔΙΟΡΙΣΜΟΣ ΤΟΥ ΑΓΧΟΥΣ ΚΑΙ ΤΗΣ ΚΑΤΑΘΛΙΨΗΣ ΣΕ ΕΙΔΙΚΟ ΠΛΗΘΥΣΜΟ ΑΤΟΜΩΝ ΜΕ ΕΠΙΛΗΨΙΑ»

«ΠΡΟΣΔΙΟΡΙΣΜΟΣ ΤΟΥ ΑΓΧΟΥΣ ΚΑΙ ΤΗΣ ΚΑΤΑΘΛΙΨΗΣ ΣΕ ΕΙΔΙΚΟ ΠΛΗΘΥΣΜΟ ΑΤΟΜΩΝ ΜΕ ΕΠΙΛΗΨΙΑ» Π.Μ.Σ. ΣΤΗΝ ΕΦΑΡΜΟΣΜΕΝΗ ΣΤΑΤΙΣΤΙΚΗ Διπλωματική Εργασία με θέμα: «ΠΡΟΣΔΙΟΡΙΣΜΟΣ ΤΟΥ ΑΓΧΟΥΣ ΚΑΙ ΤΗΣ ΚΑΤΑΘΛΙΨΗΣ ΣΕ ΕΙΔΙΚΟ ΠΛΗΘΥΣΜΟ ΑΤΟΜΩΝ ΜΕ ΕΠΙΛΗΨΙΑ» Επιβλέπων Καθηγητής: Πολίτης Κων/νος Φοιτήτρια: Κατσίπη

Διαβάστε περισσότερα

----------Εισαγωγή στη Χρήση του SPSS for Windows ------------- Σελίδα: 0------------

----------Εισαγωγή στη Χρήση του SPSS for Windows ------------- Σελίδα: 0------------ ----------Εισαγωγή στη Χρήση του SPSS for Windows ------------- Σελίδα: 0------------ ΚΕΦΑΛΑΙΟ 10 ο 10.1 Πολλαπλή Γραµµική Παλινδρόµηση 10.2 Η εφαρµογή της Πολλαπλής Γραµµικής Παλινδρόµησης 10.3 Παράδειγµα

Διαβάστε περισσότερα

Οι δείκτες διασποράς. Ένα παράδειγµα εργασίας

Οι δείκτες διασποράς. Ένα παράδειγµα εργασίας Κεφάλαιο 5 Οι δείκτες διασποράς 1 Ένα παράδειγµα εργασίας Ένας καθηγητής µαθηµατικών έδωσε σε δύο τµήµατα µιας τάξης του σχολείου του το ίδιο τεστ. Η επίδοση των µαθητών του κάθε τµήµατος (όπως µετρήθηκε

Διαβάστε περισσότερα

Στατιστικοί έλεγχοι για διακριτά δεδομένα

Στατιστικοί έλεγχοι για διακριτά δεδομένα Στατιστικοί έλεγχοι για διακριτά δεδομένα Διαστρωμάτωση Mantel-Haenszel test Γεωργία Σαλαντή Λέκτορας επιδημιολογίας Λεπτοσπείρωση Πιο πολλά κρούσματα στις αγροτικές περιοχές; Πόσο επί τις εκατό του πληθυσμού

Διαβάστε περισσότερα

Κεφάλαιο 7. Έλεγχος Υποθέσεων. Ένα παράδειγµα

Κεφάλαιο 7. Έλεγχος Υποθέσεων. Ένα παράδειγµα Κεφάλαιο 7 Έλεγχος Υποθέσεων 1 Ένα παράδειγµα Ένας ερευνητής θέλησε να διαπιστώσει κατά πόσο η από απόσταση εκπαίδευση είναι καλύτερη από τη δια ζώσης εκπαίδευση. Για το σκοπό αυτό, επέλεξε δύο οµάδες

Διαβάστε περισσότερα

3.4.2 Ο Συντελεστής Συσχέτισης τ Του Kendall

3.4.2 Ο Συντελεστής Συσχέτισης τ Του Kendall 3..2 Ο Συντελεστής Συσχέτισης τ Του Kendall Ο συντελεστής συχέτισης τ του Kendall μοιάζει με τον συντελεστή ρ του Spearman ως προς το ότι υπολογίζεται με βάση την τάξη μεγέθους των παρατηρήσεων και όχι

Διαβάστε περισσότερα

Στατιστική Ι (ΨΥΧ-1202) Διάλεξη 7. Στατιστικός έλεγχος υποθέσεων

Στατιστική Ι (ΨΥΧ-1202) Διάλεξη 7. Στατιστικός έλεγχος υποθέσεων (ΨΥΧ-1202) Λεωνίδας Α. Ζαμπετάκης Β.Sc., M.Env.Eng., M.Ind.Eng., D.Eng. Εmail: statisticsuoc@gmail.com Διαλέξεις: ftp://ftp.soc.uoc.gr/psycho/zampetakis/ Διάλεξη 7 Στατιστικός έλεγχος υποθέσεων ΠΑΝΕΠΙΣΤΗΜΙΟ

Διαβάστε περισσότερα

4.3.3 Ο Έλεγχος των Shapiro-Wilk για την Κανονική Κατανομή

4.3.3 Ο Έλεγχος των Shapiro-Wilk για την Κανονική Κατανομή 4.3.3 Ο Έλεγχος των Shapro-Wlk για την Κανονική Κατανομή Ένας άλλος πολύ γνωστός έλεγχος καλής προσαρμογής για την κανονική κατανομή, ο οποίος μπορεί να χρησιμοποιηθεί στην θέση του ελέγχου Lllefors, είναι

Διαβάστε περισσότερα

----------Εισαγωγή στη Χρήση του SPSS for Windows ------------- Σελίδα: 0------------

----------Εισαγωγή στη Χρήση του SPSS for Windows ------------- Σελίδα: 0------------ ----------Εισαγωγή στη Χρήση του SPSS for Windows ------------- Σελίδα: 0------------ ΚΕΦΑΛΑΙΟ 8 ο 8.1 Συντελεστές συσχέτισης: 8.1.1 Συσχέτιση Pearson, και ρ του Spearman 8.1.2 Υπολογισµός του συντελεστή

Διαβάστε περισσότερα

Υ: Νόσος. Χ: Παράγοντας Κινδύνου 1 (Ασθενής) 2 (Υγιής) Σύνολο. 1 (Παρόν) n 11 n 12 n 1. 2 (Απών) n 21 n 22 n 2. Σύνολο n.1 n.2 n..

Υ: Νόσος. Χ: Παράγοντας Κινδύνου 1 (Ασθενής) 2 (Υγιής) Σύνολο. 1 (Παρόν) n 11 n 12 n 1. 2 (Απών) n 21 n 22 n 2. Σύνολο n.1 n.2 n.. Μέτρα Κινδύνου για Δίτιμα Κατηγορικά Δεδομένα Σε αυτή την ενότητα θα ορίσουμε δείκτες μέτρησης του κινδύνου εμφάνισης μίας νόσου όταν έχουμε δίτιμες κατηγορικές μεταβλητές. Στην πιο απλή περίπτωση μας

Διαβάστε περισσότερα

TABLES AND FORMULAS FOR MOORE Basic Practice of Statistics

TABLES AND FORMULAS FOR MOORE Basic Practice of Statistics TABLES AND FORMULAS FOR MOORE Basic Practice of Statistics Exploring Data: Distributions Look for overall pattern (shape, center, spread) and deviations (outliers). Mean (use a calculator): x = x 1 + x

Διαβάστε περισσότερα

Κεφάλαιο 17. Σύγκριση συχνοτήτων κατηγοριών: Το στατιστικό κριτήριο χ 2 17.1. ΠΡΟΫΠΟΘΕΣΕΙΣ ΓΙΑ ΤΗ ΧΡΗΣΗ ΤΟΥ ΚΡΙΤΗΡΙΟΥ 17.2.

Κεφάλαιο 17. Σύγκριση συχνοτήτων κατηγοριών: Το στατιστικό κριτήριο χ 2 17.1. ΠΡΟΫΠΟΘΕΣΕΙΣ ΓΙΑ ΤΗ ΧΡΗΣΗ ΤΟΥ ΚΡΙΤΗΡΙΟΥ 17.2. Κεφάλαιο 17 Σύγκριση συχνοτήτων κατηγοριών: Το στατιστικό κριτήριο χ 2 17.1. ΠΡΟΫΠΟΘΕΣΕΙΣ ΓΙΑ ΤΗ ΧΡΗΣΗ ΤΟΥ ΚΡΙΤΗΡΙΟΥ 17.2. ΕΙΣΑΓΩΓΗ 17.3. ΤΟ χ 2 ΓΙΑ ΜΙΑ ΠΟΙΟΤΙΚΗ ΜΕΤΑΒΛΗΤΗ 17.3.1. Ένα ερευνητικό παράδειγμα

Διαβάστε περισσότερα

Ανάλυση Διασποράς Ανάλυση Διασποράς διακύμανση κατά παράγοντες διακύμανση σφάλματος Παράδειγμα 1: Ισομεγέθη δείγματα

Ανάλυση Διασποράς Ανάλυση Διασποράς διακύμανση κατά παράγοντες διακύμανση σφάλματος Παράδειγμα 1: Ισομεγέθη δείγματα Ανάλυση Διασποράς Έστω ότι μας δίνονται δείγματα που προέρχονται από άγνωστους πληθυσμούς. Πόσο διαφέρουν οι μέσες τιμές τους; Με άλλα λόγια: πόσο πιθανό είναι να προέρχονται από πληθυσμούς με την ίδια

Διαβάστε περισσότερα

«ΘΥΜΑΤΟΠΟΙΗΣΗ ΚΑΙ ΦΟΒΟΣ ΤΟΥ ΕΓΚΛΗΜΑΤΟΣ ΣΤΟ ΔΙΑΔΙΚΤΥΟ»

«ΘΥΜΑΤΟΠΟΙΗΣΗ ΚΑΙ ΦΟΒΟΣ ΤΟΥ ΕΓΚΛΗΜΑΤΟΣ ΣΤΟ ΔΙΑΔΙΚΤΥΟ» Ελληνική Εταιρεία Μελέτης της Διαταραχής Εθισμού στο Διαδίκτυο 3ο Πανελλήνιο Διεπιστημονικό Συνέδριο E-LIFE 2013 Κινηματογράφος ΔΑΝΑΟΣ - Αθήνα, 1-2 Νοεμβρίου 2013 «ΘΥΜΑΤΟΠΟΙΗΣΗ ΚΑΙ ΦΟΒΟΣ ΤΟΥ ΕΓΚΛΗΜΑΤΟΣ

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΑΚΑ ΦΡΟΝΤΙΣΤΗΡΙΑ ΚΟΛΛΙΝΤΖΑ. Ερωτήσεις πολλαπλής επιλογής. Συντάκτης: Δημήτριος Κρέτσης

ΠΑΝΕΠΙΣΤΗΜΙΑΚΑ ΦΡΟΝΤΙΣΤΗΡΙΑ ΚΟΛΛΙΝΤΖΑ. Ερωτήσεις πολλαπλής επιλογής. Συντάκτης: Δημήτριος Κρέτσης ΠΑΝΕΠΙΣΤΗΜΙΑΚΑ ΦΡΟΝΤΙΣΤΗΡΙΑ ΚΟΛΛΙΝΤΖΑ Ερωτήσεις πολλαπλής επιλογής Συντάκτης: Δημήτριος Κρέτσης 1. Ο κλάδος της περιγραφικής Στατιστικής: α. Ασχολείται με την επεξεργασία των δεδομένων και την ανάλυση

Διαβάστε περισσότερα

Εξερευνώντας τα δεδομένα μας-περιγραφική Στατιστική

Εξερευνώντας τα δεδομένα μας-περιγραφική Στατιστική ΚΕΦΑΛΑΙΟ ΔΕΥΤΕΡΟ Εξερευνώντας τα δεδομένα μας-περιγραφική Στατιστική Το πρώτο βήμα στην ανάλυση ενός συνόλου δεδομένων, που αποτελούν μετρήσεις ενός δείγματος είναι η παρουσίαση και σύνοψη των πληροφοριών

Διαβάστε περισσότερα

Μέθοδοι δειγματοληψίας, καθορισμός μεγέθους δείγματος, τύποι σφαλμάτων, κριτήρια εισαγωγής και αποκλεισμού

Μέθοδοι δειγματοληψίας, καθορισμός μεγέθους δείγματος, τύποι σφαλμάτων, κριτήρια εισαγωγής και αποκλεισμού Μέθοδοι δειγματοληψίας, καθορισμός μεγέθους δείγματος, τύποι σφαλμάτων, κριτήρια εισαγωγής και αποκλεισμού Γεσθημανή Μηντζιώρη MD, MSc, PhD Μονάδα Ενδοκρινολογίας της Αναπαραγωγής, Α Μαιευτική και Γυναικολογική

Διαβάστε περισσότερα

ΕΙ Η ΠΑΛΙΝ ΡΟΜΗΣΗΣ. ΑΠΛΗ ΓΡΑΜΜΙΚΗ ΠΑΛΛΙΝ ΡΟΜΗΣΗ (Simple Linear Regression) ΓΡΑΜΜΙΚΗ ΠΑΛΙΝ ΡΟΜΗΣΗ (Regression) ΠΑΛΙΝ ΡΟΜΗΣΗ.

ΕΙ Η ΠΑΛΙΝ ΡΟΜΗΣΗΣ. ΑΠΛΗ ΓΡΑΜΜΙΚΗ ΠΑΛΛΙΝ ΡΟΜΗΣΗ (Simple Linear Regression) ΓΡΑΜΜΙΚΗ ΠΑΛΙΝ ΡΟΜΗΣΗ (Regression) ΠΑΛΙΝ ΡΟΜΗΣΗ. ΑΠΛΗ ΓΡΑΜΜΙΚΗ ΠΑΛΛΙΝ ΡΟΜΗΣΗ (Smple Lear Regresso) Να κατανοηθεί η έννοια της παλινδρόµησης Ποιες οι προϋποθέσεις για να εφαρµοσθεί η γραµµική παλινδρόµηση; Τι είναι το γραµµικό µοντέλο και πως εκτιµούνται

Διαβάστε περισσότερα

Επιδρά το προφίλ παρακίνησης του διευθυντή στην αποτελεσματική άσκηση σχολικής ηγεσίας;

Επιδρά το προφίλ παρακίνησης του διευθυντή στην αποτελεσματική άσκηση σχολικής ηγεσίας; Έρκυνα, Επιθεώρηση Εκπαιδευτικών Επιστημονικών Θεμάτων, Τεύχος 3ο, 109-135, 2014 Επιδρά το προφίλ παρακίνησης του διευθυντή στην αποτελεσματική άσκηση σχολικής ηγεσίας; Χρήστος Θεοδώρου, christheodorou@sch.gr

Διαβάστε περισσότερα

Στόχος µαθήµατος: ΒΙΟΣΤΑΤΙΣΤΙΚΗ ΙΙ. Α1.2 Παράδειγµα 1 (συνέχεια) Α1. ΙΤΙΜΕΣ ΚΑΤΗΓΟΡΙΚΕΣ ΜΕΤΑΒΛΗΤΕΣ ΣΕ ΕΞΑΡΤΗΜΕΝΑ ΕΙΓΜΑΤΑ Παράδειγµα 1: αρτηριακή πίεση

Στόχος µαθήµατος: ΒΙΟΣΤΑΤΙΣΤΙΚΗ ΙΙ. Α1.2 Παράδειγµα 1 (συνέχεια) Α1. ΙΤΙΜΕΣ ΚΑΤΗΓΟΡΙΚΕΣ ΜΕΤΑΒΛΗΤΕΣ ΣΕ ΕΞΑΡΤΗΜΕΝΑ ΕΙΓΜΑΤΑ Παράδειγµα 1: αρτηριακή πίεση ΠΜΣ ΕΠΑΓΓΕΛΜΑΤΙΚΗ ΚΑΙ ΠΕΡΙΒΑΛΛΟΝΤΙΚΗ ΥΓΕΙΑ, ΙΑΧΕΙΡΙΣΗ ΚΑΙ ΟΙΚΟΝΟΜΙΚΗ ΑΠΟΤΙΜΗΣΗ ΑΚ. ΕΤΟΣ 20062007, 3ο εξάµηνο ΒΙΟΣΤΑΤΙΣΤΙΚΗ ΙΙ ΜΑΘΗΜΑ 9 ΕΡΓΑΣΤΗΡΙΟ 2 ΑΝΑΛΥΣΗ ΜΕΤΑΒΛΗΤΩΝ ΓΙΑ 2 ΕΞΑΡΤΗΜΕΝΑ ΕΙΓΜΑΤΑ & ΓΙΑ ΠΙΝΑΚΕΣ

Διαβάστε περισσότερα

Η εύρεση της πιθανής σχέσης μεταξύ δύο ποιοτικών μεταβλητών επιτυγχάνεται

Η εύρεση της πιθανής σχέσης μεταξύ δύο ποιοτικών μεταβλητών επιτυγχάνεται ΚΕΦΑΛΑΙΟ ΤΡΙΤΟ Εξέταση της σχέσης δυο μεταβλητών Μία στατιστική ανάλυση δεν περιορίζεται ποτέ στη μελέτη μίας μεταβλητής, αλλά πάντοτε απαιτείται η μελέτη της σχέσης μεταξύ δύο ή και περισσότερων μεταβλητών.

Διαβάστε περισσότερα

Ενδεικτικές ασκήσεις ΔΙΠ 50

Ενδεικτικές ασκήσεις ΔΙΠ 50 Ενδεικτικές ασκήσεις ΔΙΠ 50 Άσκηση 1 (άσκηση 1 1 ης εργασίας 2009-10) Σε ένα ράφι μιας βιβλιοθήκης τοποθετούνται με τυχαία σειρά 11 διαφορετικά βιβλία τεσσάρων θεματικών ενοτήτων. Πιο συγκεκριμένα, υπάρχουν

Διαβάστε περισσότερα

Methods of analysis. Assumptions. Normality. Variables. Normality. Groups. Summary Guide. Quantitative Qualitative. Normal Non-normal distributed

Methods of analysis. Assumptions. Normality. Variables. Normality. Groups. Summary Guide. Quantitative Qualitative. Normal Non-normal distributed Methods of analysis Summary Guide Assumptions Variables Quantitative Qualitative Normality Normal Non-normal distributed Groups Number (1, 2, >2) Pair or independent Normality Cases Cases >50

Διαβάστε περισσότερα

ΜΙΑ ΕΜΠΕΙΡΙΚΗ ΔΙΕΡΕΥΝΗΣΗ ΤΩΝ ΕΝΕΡΓΕΙΑΚΩΝ ΠΙΣΤΟΠΟΙΗΤΙΚΩΝ ΣΤΗΝ ΠΕΡΙΦΕΡΕΙΑ ΚΕΝΤΡΙΚΗΣ ΜΑΚΕΔΟΝΙΑΣ

ΜΙΑ ΕΜΠΕΙΡΙΚΗ ΔΙΕΡΕΥΝΗΣΗ ΤΩΝ ΕΝΕΡΓΕΙΑΚΩΝ ΠΙΣΤΟΠΟΙΗΤΙΚΩΝ ΣΤΗΝ ΠΕΡΙΦΕΡΕΙΑ ΚΕΝΤΡΙΚΗΣ ΜΑΚΕΔΟΝΙΑΣ ΔΙΑΤΜΗΜΑΤΙΚΟ ΠΡΟΓΡΑΜΜΑ ΜΕΤΑΠΤΥΧΙΑΚΩΝ ΣΠΟΥΔΩΝ ΣΤΗ ΔΙΟΙΚΗΣΗ ΕΠΙΧΕΙΡΗΣΕΩΝ ΔΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ ΜΙΑ ΕΜΠΕΙΡΙΚΗ ΔΙΕΡΕΥΝΗΣΗ ΤΩΝ ΕΝΕΡΓΕΙΑΚΩΝ ΠΙΣΤΟΠΟΙΗΤΙΚΩΝ ΣΤΗΝ ΠΕΡΙΦΕΡΕΙΑ ΣΩΤΗΡΙΟΥ ΣΤΥΛΙΑΝΟΣ ΕΠΙΒΛΕΠΩΝ ΚΑΘΗΓΗΤΗΣ:

Διαβάστε περισσότερα

ΕΠΙΛΟΓΗ ΥΠΗΡΕΣΙΩΝ ΥΓΕΙΑΣ

ΕΠΙΛΟΓΗ ΥΠΗΡΕΣΙΩΝ ΥΓΕΙΑΣ Εθνική Σχολή Δημόσιας Υγείας Τομέας Οικονομικών της Υγείας ΔΙΕΡΕΥΝΗΣΗ ΤΟΥ ΕΠΙΠΕΔΟΥ ΥΓΕΙΑΣ ΚΑΙ ΑΞΙΟΛΟΓΗΣΗ ΤΩΝ ΥΠΗΡΕΣΙΩΝ ΥΓΕΙΑΣ ΣΤΗΝ ΕΛΛΑΔΑ ΜΕΡΟΣ 3 Ο ΕΠΙΛΟΓΗ ΥΠΗΡΕΣΙΩΝ ΥΓΕΙΑΣ ΑΘΗΝΑ, ΣΕΠΤΕΜΒΡΙΟΣ 2006 1 ΣΥΝΟΠΤΙΚΑ

Διαβάστε περισσότερα

Κεφάλαιο 16 Απλή Γραμμική Παλινδρόμηση και Συσχέτιση

Κεφάλαιο 16 Απλή Γραμμική Παλινδρόμηση και Συσχέτιση Κεφάλαιο 16 Απλή Γραμμική Παλινδρόμηση και Συσχέτιση Copyright 2009 Cengage Learning 16.1 Ανάλυση Παλινδρόμησης Σκοπός του προβλήματος είναι η ανάλυση της σχέσης μεταξύ συνεχών μεταβλητών. Η ανάλυση παλινδρόμησης

Διαβάστε περισσότερα

ΣΤΑΤΙΣΤΙΚΗ ΣΥΜΠΕΡΑΣΜΑΤΟΛΟΓΙΑ

ΣΤΑΤΙΣΤΙΚΗ ΣΥΜΠΕΡΑΣΜΑΤΟΛΟΓΙΑ ΣΤΑΤΙΣΤΙΚΗ ΣΥΜΠΕΡΑΣΜΑΤΟΛΟΓΙΑ Στα πλαίσια της ΣΤΑΤΙΣΤΙΚΗΣ ΣΥΜΠΕΡΑΣΜΑΤΟΛΟΓΙΑΣ προσπαθούµε να προσεγγίσουµε τα χαρακτηριστικά ενός συνόλου (πληθυσµός) δια της µελέτης των χαρακτηριστικών αυτών επί ενός µικρού

Διαβάστε περισσότερα

Στόχος µαθήµατος: ΒΙΟΣΤΑΤΙΣΤΙΚΗ ΙΙ. 1. Πολλαπλή γραµµική παλινδρόµηση. 1.2 Παράδειγµα 7 (συνέχεια)

Στόχος µαθήµατος: ΒΙΟΣΤΑΤΙΣΤΙΚΗ ΙΙ. 1. Πολλαπλή γραµµική παλινδρόµηση. 1.2 Παράδειγµα 7 (συνέχεια) ΠΜΣ ΕΠΑΓΓΕΛΜΑΤΙΚΗ ΚΑΙ ΠΕΡΙΒΑΛΛΟΝΤΙΚΗ ΥΓΕΙΑ, ΙΑΧΕΙΡΙΣΗ ΚΑΙ ΟΙΚΟΝΟΜΙΚΗ ΑΠΟΤΙΜΗΣΗ ΑΚ. ΕΤΟΣ 2006-2007, 3ο εξάµηνο ΒΙΟΣΤΑΤΙΣΤΙΚΗ ΙΙ ΜΑΘΗΜΑ 12β ΕΡΓΑΣΤΗΡΙΟ 4β ΠΟΛΛΑΠΛΗ ΓΡΑΜΜΙΚΗ ΠΑΛΙΝ ΡΟΜΗΣΗ ΜΕ ΤΗΝ ΧΡΗΣΗ SPSS

Διαβάστε περισσότερα

Ανάλυση Δεδοµένων µε χρήση του Στατιστικού Πακέτου R

Ανάλυση Δεδοµένων µε χρήση του Στατιστικού Πακέτου R Ανάλυση Δεδοµένων µε χρήση του Στατιστικού Πακέτου R, Επίκουρος Καθηγητής, Τοµέας Μαθηµατικών, Σχολή Εφαρµοσµένων Μαθηµατικών και Φυσικών Επιστηµών, Εθνικό Μετσόβιο Πολυτεχνείο. Περιεχόµενα Εισαγωγή στη

Διαβάστε περισσότερα