A Discre)za)on of Deep Atmospheric Model Dynamics for NCEP Global Forecast System

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "A Discre)za)on of Deep Atmospheric Model Dynamics for NCEP Global Forecast System"

Transcript

1 A Discre)za)on of Deep Atmospheric Model Dynamics for NCEP Global Forecast System Hann- Ming Henry Juang Environment Modeling Center, NOAA/NWS/NCEP, Washington, DC 10 April 2014 PDEs 2014, H. Juang 1

2 Introduction While NCEP GFS extends its vertical domain to couple with space environmental model, we called this version of GFS as Whole Atmospheric Model (WAM). WAM is a hydrostatic system with enthalpy as thermodynamic variable (Juang 2011 MWR). We propose to do deep atmospheric dynamics for NCEP GFS to support WAM Here, we would lie to re-iterate the reasons to use deep atmospheric dynamics and to illustrate the discretization of deep atmospheric dynamics for NCEP GFS. 10 April 2014 PDEs 2014, H. Juang 2

3 Opr GFS vs WAM 64 layers 150 layers 10 April 2014 PDEs 2014, H. Juang 3

4 Example of T profile of 150 layers WAM uses generalized hybrid coordinate with enthalpy CpT as thermodynamics variables, where Cp is summaton of each gases. R Cp O O O Dry air H2O April 2014 PDEs 2014, H. Juang 4

5 Maxima wind (m/s) at NCEP GFS 150 layers WAM in do_dynamics_two_loop for spdmx at = spdmx(001:010)= spdmx(011:020)= spdmx(021:030)= spdmx(031:040)= spdmx(041:050)= spdmx(051:060)= spdmx(061:070)= spdmx(071:080)= spdmx(081:090)= spdmx(091:100)= spdmx(101:110)= spdmx(111:120)= spdmx(121:130)= spdmx(131:140)= spdmx(141:150)= April 2014 PDEs 2014, H. Juang 5

6 Shallow (r=a) vs Deep (r=a+z) Assume at z=637.12m, so r = 1.1a For shallow dynamic u = acosφ dλ For deep atmosphere u = r cosφ dλ For example, ϕ=45, u=400m/s, after one hour advection, the displacement has about 1 error in λ. 10 April 2014 PDEs 2014, H. Juang 6

7 Deep atmospheric equation in height spherical coordinates du uvtanφ + uw r r (2Ωsinφ)v + (2Ωcosφ)w + 1 p ρ r cosφ = F u Momentum where dv + u2 tanφ + vw r r + (2Ωsinφ)u + 1 p ρ r φ = F v dw u2 + v 2 r da = A t + u A r cosφ + v A r φ + w A r p = p n = ρ n R n T = ρ n n n ρ n R n ρ ρ t + ρu r cosφ + ρvcosφ r cosφ φ + ρr2 w r 2 r = F ρ T = ρ (2Ωcosφ)u + 1 p ρ r + g = F w n q n R n T = ρrt r = a + z u = r cosφ dλ v = r dφ Gas law Density 10 April 2014 PDEs 2014, H. Juang 7

8 From IEE ρe t + ρev + p V = ρq replace N e = q i e i = q i C Vi T = C V T i=1 N i=1 = ( C P R)T = h RT We have where N ρh t Combine IEE in h form with + ρhv dp = ρq C V = q i C Vi C P = q i C Pi R = q i R i i=1 N i=1 N i=1 ρ t + ρv = F ρ Specific value q i = ρ i ρ ρ = N n=1 ρ n We have dh κh p dp = Q h ρ F ρ we need dq i = F q i where h=cpt is an Enthalpy 10 April 2014 PDEs 2014, H. Juang 8

9 du uvtanφ + uw r r f sv + f c w + κh p dv dw + u2 tanφ r + vw r u2 + v 2 r + f s u + κh p f c u Deep Atmos Dyn in generalized coordinate Staniforth and Wood (2003) where d() = () t + λ () +φ () φ +ζ () 1 p r cosφ p r = F u r 1 r p φ p r = F v r φ + κh p f s = 2Ωsinφ ; f c = 2Ωcosφ ; g = g(r) ; p = ρκh p r + g = F w dh κh p dp = F h β t + β λ + β φ φ + βζ = F β ρ dq i = F q i ; β = ρr 2 cosφ r ; w = r t + λ r +φ r φ +ζ r 10 April 2014 PDEs 2014, H. Juang 9

10 da Angular momentum put = r cosφ du We have + ( u + 2Ωr cosφ) du = uvtanφ uw r r + f sv f c w κh p da = r cosφ ( * F u κh ) p A = r cosφ ( u + Ωr cosφ) dr cosφ = r cosφ du + ( u + 2Ωr cosφ) ( wcosφ vsinφ) 1 p r cosφ p r + F u r 1 p r cosφ p r + - r, in da = A t + u A r cosφ + v A A r φ +ζ β t + u r cosφ β v + r β β φ + = 0 βa t u r cosφ βa + v + r βa + βa φ = β da where β = ρr 2 cosφ r 10 April 2014 PDEs 2014, H. Juang 10

11 βa +! t ) = βr cosφ+ F u κh * p uβa +! r cosφ φ vβa r + βa 1! p r cosφ p r,. r - = r 2 cosφ r p + r2 cosφ p r + βr cosφf u pr 2 cosφ r = + p pr 2 cosφ r = + t r 2 cosφ r + pr 2 cosφ r p pr 2 cosφ r + βr cosφf u ρadv = ρr cosφf u dv r 2 cosφ r + βr cosφf u + p r ( ds p r ( T B ds Angular momentum conserved if top p=0 or r=constant thus the bottom is the only torque. 10 April 2014 PDEs 2014, H. Juang 11

12 Consider Kinetic energy from momentum equations u du u uvtanφ + u uw r r uf v + uf w + uκh s c p v dv w dw + v u2 tanφ r + v vw r w u2 + v 2 K t + λ K +φ K φ +ζ K = 1 ρ λ r + vf s u + v κh p wf c u Sum them together, we have βk t β t + β λ + β φ φ + βζ 1 p r cosφ p r = 0 r 1 r p φ p r = 0 r φ + w κh p Combine with mass and w equations as p r + wg = 0 p p r ( 1 p r ρ φ φ p r ( 1 r φ ρ w p r gw = 0 and w = r λ β K + p φ β K + p β K + p ρ ρ ρ φ β ρ λ β = p + ρ φ β φ + ρ ζ pr 2 cosφ r t β ρ λ = p r 2 cosφ r + p t t + r r r λ +φ φ +ζ β + p ρ φ φ β ρ βgw = p t ( ) K = 1 2 u2 + v 2 + w 2 β + p ρ ζ p β r ρ t r + p β ρ λ β + + ρ φ β φ + ρ ζ We have β r ρ t r βgw pr 2 cosφ r t βgw 10 April 2014 PDEs 2014, H. Juang 12

13 Consider geo-potential energy gdr = Φ or g = dφ gw = dφ dr dr = Φ t + Φ Φ Φ λ +φ φ +ζ Combine with mass equation We have βφ t + λ βφ Consider internal energy dc P T 1 dp ρ = dc VT + φ βφ + βφ φ + drt β t + β λ + β φ φ + βζ = 0 = βgw 1 dp ρ = dc VT d 1 ρ + p = 0 Apply mass equations in both total derivative terms, We have βc V T t + βc V T + φ βc V T φ + βc V T ) = p β (+ β t ρ λ (+ β ρ φ φ (+ β, + ρ ζ (. * ρ - 10 April 2014 PDEs 2014, H. Juang 13

14 Combine previous three red enclosed equations βk t βφ t βc V T t λ β K + p φ β K + p β K + p β β ρ ρ ρ ρ ρ λ β = p + φ r t + ρ φ β φ + ρ ζ + λ βφ + βc V T + φ βφ + βφ φ + φ βc V T φ βk + βc T V + βφ ( t t t = βgw + βc V T Integral globally with all BC, include dζdλdφ = - pr 2 cosφ r ) = p β (+ β t ρ λ (+ β ρ φ φ (+ β, + ρ ζ (. * ρ - r p ζt = 0 = 0 t ζ B +, ( t ζ T pr 2 cosφ r ( t pr 2 cosφ r t ζ B. 0dλdφ / βgw and BC give t ( ) β K + C V T + Φ dζdλdφ = t Total energy conserved ρ ( K + C V T + Φ) dv = 0 10 April 2014 PDEs 2014, H. Juang 14

15 Deep Atmos vs non- Hydro From Deep atmosphere, we require r changes with Tme, thus we need dw/ equaton And we need full curvature and Coriolis force terms to satsfy conservaton Thus, based on conservaton requirement, a deep atmospheric dynamic is a non- hydrosta)c dynamic. A non- hydrosta)c dynamics can be shallow or deep atmospheric dynamics. Both r and vertcal components of curvature and Coriolis force should be considered in deep atmosphere; and should not be considered in shallow atmosphere. 10 April 2014 PDEs 2014, H. Juang 15

16 du * + u* w r dv * + v* w r dw s * 2 m2 r f s v * + f c * w + κh p + f s u * + m 2 s * 2 Deep Atmos Dyn in spherical mapping generalized coordinates m 2 f c * u * r sinφ + κh p ρ * t + κh p 1 r 1 r * ρ * u + m 2 r p p r r p ϕ p r r ϕ p r * v * ρ + r m2 ϕ dh κh p = F u = F v +g = F w dp = F h + ρ* ζ = F * ρ Staniforth and Wood (2003) Juang (2014) NCEP Office Note dq i = F q i p = ρκh where d() = () t + λ () +ϕ () ϕ +ζ () = () t + m2 u * () r + m2 v * () r ϕ +ζ () f s = 2Ωsinφ ; f c * = 2Ωcos 2 φ ; g = g(r) ; κ = R C P ; γ = C P ; s * 2 C V ; ρ * = ρ r2 a 2 r = u *2 + v *2 10 April 2014 PDEs 2014, H. Juang 16

17 Start from continuity equation to have similar to shallow and hydrostatic system to mae as mass coordinates, Mass at give area can be obtained by integral vertical as Mass = φ 2 φ 1 λ 2 λ 1 ζ Top ζ sfc ρr 2 cosφ r dζ dλ dφ Then project this mass to earth surface pressure = Mass g Area = ρgr 2 cosφ r dζ dλ dφ a 2 cosφ dλ dφ We define it as coordinate pressure 10 April 2014 PDEs 2014, H. Juang 17

18 Previous integral can be deduced to be only in vertical as ζ TOP ρg r2 =!p ζsurface = ζ surface r a 2 dζ ζ TOP ζ surface!p dζ Thus, we have!p r2 r = ρg a 2 = ρ* g Put into continuity equation ρ * t ρ * u + m 2 r * * v * ρ + r m2 ϕ + ρ* ζ = 0 We have p t p u * + m 2 r p + ϕ v * r p ζ + = 0 10 April 2014 PDEs 2014, H. Juang 18

19 Since!p = ρ* g and ρ * > 0 Thus!p is monotone with vertical coordinate We can use it for coordinate definition and we can call it height weighted coordinate pressure or simply coordinate pressure So we can have!ˆp = Â + ˆB!p s + Ĉ h 1 + h h h 0 C pd /R d For opr compatibility, we use!ˆp = Â + ˆB!p s 10 April 2014 PDEs 2014, H. Juang 19

20 =K, last layer at the top ζˆ +1 ˆp +1 ˆr +1 u v w h p q ζˆ ˆp ˆr =1, the first layer next to ground For dynamics, all source terms are set to be zero! 10 April 2014 PDEs 2014, H. Juang 20

21 Vertical integral angular momentum principle, we have ζ T p κh p p p ζ r T (dζ = p r ζ S ζ S κh p p p κh p p r (dζ r ζ T = r gr 2 p a 2 + gr2 p r (dζ a 2 ζ S ζ T = g r3 p 3a 2 + p r 3 (dζ ζ S ζ T = g 3a 2 ζ S r3 p + r 3 p r3 = g r 3 p 3 p ζ T r ( 3a 2 ( dζ ζ S ( = ζ T g p 3a 2 r3 dζ gr T3 ζ S 3a 2 p T p ( ( dζ ( + gr 3 S p S 3a 2 10 April 2014 PDEs 2014, H. Juang 21

22 Discretize the fourth and last LHSs ζ T ζ S g 3a 2 r3 p + r 3 p r3 With P top zero, we have K =1 p dζ = ζ T g p 3a 2 r3 dζ gr T3 p T ζ S 3a 2 + gr 3 S p S 3a 2 ( ( ˆr 3 +1 ˆr 3 ) p + r 3 ˆp +1 ˆp + * - ), = ˆr S 3 p S let p = f ( ˆp +1, ˆp ) Then we have so p = f ˆp +1 ˆp +1 + f ˆp ˆp and f ˆp +1 + f ˆp =1 K =1 ( ˆr 3 +1 ˆr 3 ) f 3 ˆp + r +1 ˆp +1 + ( ˆr 3 +1 ˆr 3 ) f 3 ˆp r ˆp = ˆr S 3 p S 10 April 2014 PDEs 2014, H. Juang 22

23 For simplicity, we let f ˆp = f ˆp +1 = 1 2 so r 3 = 1 2 ˆr ˆr 3 since ˆr 3 = +1 ˆr 3 + 3! κh pg so r 3 = ˆr ! κh pg a 2 ( ˆp ˆp ) +1 a 2 (!ˆp!ˆp ) +1 remove layer value we have ˆr 3 +1 = ˆr a2 g κ h ˆ p ˆp +1 p so r 3 = ˆr a2 g 1 ˆp κ i h i ˆp i+1 i + 3 i=1 p i 2 a 2 g κ h ˆ p ˆp +1 p 10 April 2014 PDEs 2014, H. Juang 23

24 We have ˆr 3 +1 a 2 = ˆr 3 a + 3! κh 2 pg ( p!ˆ!ˆp ) +1 then transform to spectral for r to do derivative, then transform bac to grid space for nonlinear computing. du * dv * = u * w r = v * w r * + f s v * f s u f c * w 2 * m 2 s r κ h p sinφ κ h p a r p a g 6 a r p a ϕ g 6 ˆp ˆp +1 a p!ˆ!ˆp +1 r ˆp ˆp +1 a p!ˆ!ˆp +1 r ˆr 3 a a + ˆr a 2 ˆr 3 a ϕ a + ˆr a 2 10 April 2014 PDEs 2014, H. Juang 24

25 ! Select two forms of advection of PGF dp 1 p κh dp γ p = p H p κh p V H )+ p κh p ( p r w V H H r = p H p κh p V H ) p p κh ( p Continue discretization, we have ( ) r w V H H r ( ) dp = γ p 1!p κh H!p κh p V 1!p κh H ) γ p (!p κh p p p! = γ p H ( V H ) + 1 Δr V 3 H H Δr 3 1 Δr Δ ( V 3 H H r 3 ) + a2 Δ!w r 2 Δr!! = γ p + µ µ! + u *! v * - = γ p m 2 r + - r - ϕ -, λ 1 λ 2 3 ˆr + λ λ ˆr +1 + µ 1 µ 2 Δr 3 10 April 2014 PDEs 2014, H. Juang 25 ) ( p p κh p r w V H H r 3 ˆr µ + µ µ +1 2 ( ) 3 ˆr +1 µ r w V H H r + a2 ( ) ) (! Δ!w r 2 Δr! * u 1 u * ˆr 3 r 1 r +! u * u * +1 ˆr 3 +1 r r +1 +! v * 1 v * ˆr 3 r 1 r ϕ +! v * v * +1 r r +1 ˆr ϕ 0 2Δr / + a2 ) (! Δ!w r 2 Δr

26 So we use dp/ from momentum equation to thermodynamic equation, thus total energy will be conserved. dh so ) u * v * + = γ κ h m 2 r + ( * r ( + ϕ (, + m 2 * u 1 * r 1 u r dh κh p dp = 0 ( ˆr 3 + u * u * +1 ( ˆr 3 +1 r r +1 + v * 1 v * ( ˆr 3 r 1 r ϕ + v * v * +1 r r +1 ( ˆr 3 +1 ϕ 2Δr 3 Δ!w ( r 2 Δr + a2. + / where w = r2 a 2 w 10 April 2014 PDEs 2014, H. Juang 26

27 dw = s * 2 m2 r + m2 f u * κh c* p p r g = s * 2 m2 r + m2 f * c u * + g r2 Δp a 2 Δ p g dr 2 w and so ( ) 2 = 2rw 2 + r 2 dw = 2 r 2 w + m 2 rs * r 3 w = r2 a 2 w d w = w 2 2a2 r + r 2 3 m2 a 2 s* + m 2 r 2 a m 2 r 2 f * c u * + ga 2 r 4 Δp a 4 Δ p 1 ( f c * u * + g r 4 Δp a 4 Δ p 1 ( Since And BC r 2 w = 1 2 ˆr 2 +1ŵ ˆr 2 ŵ so w = 1 2 ŵ ŵ * * ŵ 1 = m 2 u 1 ˆr 1 ˆr 1 + v 1 ˆr 1 m2 ˆr 1 ϕ so ŵ1 = ˆr 1 m2 a u 1 * ˆr 1 a + v * ˆr 1 1 a ϕ Then we have w at all levels 10 April 2014 PDEs 2014, H. Juang 27

28 Linearize for SISL Collect discretized equations Linearization Matrixes for semi-implicit Add semi-lagrangian with semi-implicit 10 April 2014 PDEs 2014, H. Juang 28

29 To linearize, we define a base state start ˆp 01 = ; ˆr 01 = a = ; h o = C Pd T 0 ; T 0 = 300 ˆ p 0 = Â + ˆB ˆp 01 ; Δ p 0 = ˆp 0 ˆp 0+1 ; 0 = R d / C Pd Since p equals to p bar, so p r2 r = ρg a 2 = pg r κh So we can get all r at interface as ( ) a2 then use ˆp 0 ˆp 0+1 =!ˆp 0!ˆp 0+1 r 0 ˆr 0+1 = ˆr 0 + κ 0h 0 g ln ˆp 0 ˆ p 0+1 ( ) 2 ; p 0 = 1 2 ˆp 0 + ˆp 0+1 then and r 0 ( ) Δp 0 = ˆp 0 ˆp = 1 2 ˆr ˆr 0+1 ε 0 = r 0 a 10 April 2014 PDEs 2014, H. Juang 29

30 Summary of linear equations in matrix/vector short form!!!!! D p s Dt dp dh d w dd * L L L L = Π 1i D i * L = b 0 p s + Γ i p i = d 0 D * + Μ i w i = f 0 D * + Ζ i w i = n(n +1) a 2 ( Α i p i + Β i h i + e p s ) 10 April 2014 PDEs 2014, H. Juang 30

31 δd * n(n +1) αδt ( Α a 2 i δ p i + Β i δh i + e δ p ) s = S D* δ w +αδt ( b 0 δ p s Γ i δ p ) i = S w δh +αδt ( f 0 δd * Ζ i δ w ) i = S h δ p +αδt ( d 0 δd * Μ i δ w ) i = S p δ p s +αδtπ 1i δd i * = S p s To solve it, we put ps and p into w to get w as function of D Then put w as function of D into h and p, thus we get p, h, and ps are all function of D, then put them into D equation to solve D 10 April 2014 PDEs 2014, H. Juang 31

32 Hydrostatic IC Surface pressure Divergence/vorticity => U/V Use coordinate pressure to interpolation Use hydrostatic pressure as coordinate pressure and nonhydrostatic pressure Generate vertical velocity from w=dz/ equation 10 April 2014 PDEs 2014, H. Juang 32

33 From hydrostatic system, we have all p at interfaces as ˆp = Â + ˆB p s ( p!ˆ ) = (!ˆp ) +1 + a + ẑ +1 hydro hydro ( ) 3 ( a + ẑ ) 3 3a 2 pg κh The new nonhydrostatic coordinate pressure is From hydrostatic relation, we have ẑ +1 = ẑ + ( ˆp ˆp +1 ) κ h p g So coordinate pressure in hydrostatic system is!ˆ p = Â + ˆB!ˆp s p = 1 ( 2 ˆp + ˆp +1 ) So interpolate u, v, h, and q from hydro to new coordinates 10 April 2014 PDEs 2014, H. Juang 33

34 Remaining p and w at deep atmospheric system From coordinate pressure definition ˆr 3 = +1 ˆr 3 + 3! κh a 2 (!ˆp!ˆp ) +1 pg and hydrostatc relaton ˆr +1 = ˆr + ( ˆp ˆp +1 ) κ h p g combine both by eliminating h/(pg), we have! ˆp ˆp +1 = 3 ˆr +1 ˆr a 2 (!ˆp ˆr 3 +1 ˆr 3!ˆp ) +1 can obtain p from top to surface p = 1 ( 2 ˆp + ˆp +1 ) 10 April 2014 PDEs 2014, H. Juang 34

35 Get vertical velocity w in deep atmospheric system ˆr 3 = +1 ˆr 3 + 3! κh a 2 ( ˆp ˆp ) from +1 Do d/ pg We have where! dp! = γ p H V H ŵ+1 = ŵ + κ h p g ΔB d ˆp s K = m 2 ˆp ˆp +1 =1 ( ) + 1 d ˆp s ( ) u * v * r + ( r ( ϕ ( Δ p κ h γ p 2 g Δr V 3 H H Δr3 1 Δr Δ V 3 H H r3 dp ( ) + a2 Δ w r 2 Δr and ŵ1 = m2 ˆr 1 a u 1 * ˆr 1 a + v * ˆr 1 1 a ϕ w = 1 2 ŵ ŵ 4/10/14 Henry Juang 35

36 Summary Deep atmospheric dynamics is discretized in generalized hybrid coordinates Semi-implicit semi-lagrangian is used Initial condition with hydrostatic system is used It is suitable for very high resolution and coupling with space model Details can be found in Juang 2014, NCEP office note 477 Coded and still under testing. 10 April 2014 PDEs 2014, H. Juang 36

derivation of the Laplacian from rectangular to spherical coordinates

derivation of the Laplacian from rectangular to spherical coordinates derivation of the Laplacian from rectangular to spherical coordinates swapnizzle 03-03- :5:43 We begin by recognizing the familiar conversion from rectangular to spherical coordinates (note that φ is used

Διαβάστε περισσότερα

2 Composition. Invertible Mappings

2 Composition. Invertible Mappings Arkansas Tech University MATH 4033: Elementary Modern Algebra Dr. Marcel B. Finan Composition. Invertible Mappings In this section we discuss two procedures for creating new mappings from old ones, namely,

Διαβάστε περισσότερα

DESIGN OF MACHINERY SOLUTION MANUAL h in h 4 0.

DESIGN OF MACHINERY SOLUTION MANUAL h in h 4 0. DESIGN OF MACHINERY SOLUTION MANUAL -7-1! PROBLEM -7 Statement: Design a double-dwell cam to move a follower from to 25 6, dwell for 12, fall 25 and dwell for the remader The total cycle must take 4 sec

Διαβάστε περισσότερα

Eulerian Simulation of Large Deformations

Eulerian Simulation of Large Deformations Eulerian Simulation of Large Deformations Shayan Hoshyari April, 2018 Some Applications 1 Biomechanical Engineering 2 / 11 Some Applications 1 Biomechanical Engineering 2 Muscle Animation 2 / 11 Some Applications

Διαβάστε περισσότερα

Numerical Analysis FMN011

Numerical Analysis FMN011 Numerical Analysis FMN011 Carmen Arévalo Lund University carmen@maths.lth.se Lecture 12 Periodic data A function g has period P if g(x + P ) = g(x) Model: Trigonometric polynomial of order M T M (x) =

Διαβάστε περισσότερα

Answer sheet: Third Midterm for Math 2339

Answer sheet: Third Midterm for Math 2339 Answer sheet: Third Midterm for Math 339 November 3, Problem. Calculate the iterated integrals (Simplify as much as possible) (a) e sin(x) dydx y e sin(x) dydx y sin(x) ln y ( cos(x)) ye y dx sin(x)(lne

Διαβάστε περισσότερα

1 String with massive end-points

1 String with massive end-points 1 String with massive end-points Πρόβλημα 5.11:Θεωρείστε μια χορδή μήκους, τάσης T, με δύο σημειακά σωματίδια στα άκρα της, το ένα μάζας m, και το άλλο μάζας m. α) Μελετώντας την κίνηση των άκρων βρείτε

Διαβάστε περισσότερα

Phys460.nb Solution for the t-dependent Schrodinger s equation How did we find the solution? (not required)

Phys460.nb Solution for the t-dependent Schrodinger s equation How did we find the solution? (not required) Phys460.nb 81 ψ n (t) is still the (same) eigenstate of H But for tdependent H. The answer is NO. 5.5.5. Solution for the tdependent Schrodinger s equation If we assume that at time t 0, the electron starts

Διαβάστε περισσότερα

Areas and Lengths in Polar Coordinates

Areas and Lengths in Polar Coordinates Kiryl Tsishchanka Areas and Lengths in Polar Coordinates In this section we develop the formula for the area of a region whose boundary is given by a polar equation. We need to use the formula for the

Διαβάστε περισσότερα

Parametrized Surfaces

Parametrized Surfaces Parametrized Surfaces Recall from our unit on vector-valued functions at the beginning of the semester that an R 3 -valued function c(t) in one parameter is a mapping of the form c : I R 3 where I is some

Διαβάστε περισσότερα

Lecture 2: Dirac notation and a review of linear algebra Read Sakurai chapter 1, Baym chatper 3

Lecture 2: Dirac notation and a review of linear algebra Read Sakurai chapter 1, Baym chatper 3 Lecture 2: Dirac notation and a review of linear algebra Read Sakurai chapter 1, Baym chatper 3 1 State vector space and the dual space Space of wavefunctions The space of wavefunctions is the set of all

Διαβάστε περισσότερα

Areas and Lengths in Polar Coordinates

Areas and Lengths in Polar Coordinates Kiryl Tsishchanka Areas and Lengths in Polar Coordinates In this section we develop the formula for the area of a region whose boundary is given by a polar equation. We need to use the formula for the

Διαβάστε περισσότερα

Higher Derivative Gravity Theories

Higher Derivative Gravity Theories Higher Derivative Gravity Theories Black Holes in AdS space-times James Mashiyane Supervisor: Prof Kevin Goldstein University of the Witwatersrand Second Mandelstam, 20 January 2018 James Mashiyane WITS)

Διαβάστε περισσότερα

1. (a) (5 points) Find the unit tangent and unit normal vectors T and N to the curve. r(t) = 3cost, 4t, 3sint

1. (a) (5 points) Find the unit tangent and unit normal vectors T and N to the curve. r(t) = 3cost, 4t, 3sint 1. a) 5 points) Find the unit tangent and unit normal vectors T and N to the curve at the point P, π, rt) cost, t, sint ). b) 5 points) Find curvature of the curve at the point P. Solution: a) r t) sint,,

Διαβάστε περισσότερα

DERIVATION OF MILES EQUATION FOR AN APPLIED FORCE Revision C

DERIVATION OF MILES EQUATION FOR AN APPLIED FORCE Revision C DERIVATION OF MILES EQUATION FOR AN APPLIED FORCE Revision C By Tom Irvine Email: tomirvine@aol.com August 6, 8 Introduction The obective is to derive a Miles equation which gives the overall response

Διαβάστε περισσότερα

CHAPTER 25 SOLVING EQUATIONS BY ITERATIVE METHODS

CHAPTER 25 SOLVING EQUATIONS BY ITERATIVE METHODS CHAPTER 5 SOLVING EQUATIONS BY ITERATIVE METHODS EXERCISE 104 Page 8 1. Find the positive root of the equation x + 3x 5 = 0, correct to 3 significant figures, using the method of bisection. Let f(x) =

Διαβάστε περισσότερα

3.4 SUM AND DIFFERENCE FORMULAS. NOTE: cos(α+β) cos α + cos β cos(α-β) cos α -cos β

3.4 SUM AND DIFFERENCE FORMULAS. NOTE: cos(α+β) cos α + cos β cos(α-β) cos α -cos β 3.4 SUM AND DIFFERENCE FORMULAS Page Theorem cos(αβ cos α cos β -sin α cos(α-β cos α cos β sin α NOTE: cos(αβ cos α cos β cos(α-β cos α -cos β Proof of cos(α-β cos α cos β sin α Let s use a unit circle

Διαβάστε περισσότερα

Section 8.3 Trigonometric Equations

Section 8.3 Trigonometric Equations 99 Section 8. Trigonometric Equations Objective 1: Solve Equations Involving One Trigonometric Function. In this section and the next, we will exple how to solving equations involving trigonometric functions.

Διαβάστε περισσότερα

b. Use the parametrization from (a) to compute the area of S a as S a ds. Be sure to substitute for ds!

b. Use the parametrization from (a) to compute the area of S a as S a ds. Be sure to substitute for ds! MTH U341 urface Integrals, tokes theorem, the divergence theorem To be turned in Wed., Dec. 1. 1. Let be the sphere of radius a, x 2 + y 2 + z 2 a 2. a. Use spherical coordinates (with ρ a) to parametrize.

Διαβάστε περισσότερα

HOMEWORK 4 = G. In order to plot the stress versus the stretch we define a normalized stretch:

HOMEWORK 4 = G. In order to plot the stress versus the stretch we define a normalized stretch: HOMEWORK 4 Problem a For the fast loading case, we want to derive the relationship between P zz and λ z. We know that the nominal stress is expressed as: P zz = ψ λ z where λ z = λ λ z. Therefore, applying

Διαβάστε περισσότερα

6.3 Forecasting ARMA processes

6.3 Forecasting ARMA processes 122 CHAPTER 6. ARMA MODELS 6.3 Forecasting ARMA processes The purpose of forecasting is to predict future values of a TS based on the data collected to the present. In this section we will discuss a linear

Διαβάστε περισσότερα

ECE Spring Prof. David R. Jackson ECE Dept. Notes 2

ECE Spring Prof. David R. Jackson ECE Dept. Notes 2 ECE 634 Spring 6 Prof. David R. Jackson ECE Dept. Notes Fields in a Source-Free Region Example: Radiation from an aperture y PEC E t x Aperture Assume the following choice of vector potentials: A F = =

Διαβάστε περισσότερα

Spherical Coordinates

Spherical Coordinates Spherical Coordinates MATH 311, Calculus III J. Robert Buchanan Department of Mathematics Fall 2011 Spherical Coordinates Another means of locating points in three-dimensional space is known as the spherical

Διαβάστε περισσότερα

상대론적고에너지중이온충돌에서 제트입자와관련된제동복사 박가영 인하대학교 윤진희교수님, 권민정교수님

상대론적고에너지중이온충돌에서 제트입자와관련된제동복사 박가영 인하대학교 윤진희교수님, 권민정교수님 상대론적고에너지중이온충돌에서 제트입자와관련된제동복사 박가영 인하대학교 윤진희교수님, 권민정교수님 Motivation Bremsstrahlung is a major rocess losing energies while jet articles get through the medium. BUT it should be quite different from low energy

Διαβάστε περισσότερα

Integrals in cylindrical, spherical coordinates (Sect. 15.7)

Integrals in cylindrical, spherical coordinates (Sect. 15.7) Integrals in clindrical, spherical coordinates (Sect. 5.7 Integration in spherical coordinates. Review: Clindrical coordinates. Spherical coordinates in space. Triple integral in spherical coordinates.

Διαβάστε περισσότερα

Partial Differential Equations in Biology The boundary element method. March 26, 2013

Partial Differential Equations in Biology The boundary element method. March 26, 2013 The boundary element method March 26, 203 Introduction and notation The problem: u = f in D R d u = ϕ in Γ D u n = g on Γ N, where D = Γ D Γ N, Γ D Γ N = (possibly, Γ D = [Neumann problem] or Γ N = [Dirichlet

Διαβάστε περισσότερα

D Alembert s Solution to the Wave Equation

D Alembert s Solution to the Wave Equation D Alembert s Solution to the Wave Equation MATH 467 Partial Differential Equations J. Robert Buchanan Department of Mathematics Fall 2018 Objectives In this lesson we will learn: a change of variable technique

Διαβάστε περισσότερα

Homework 3 Solutions

Homework 3 Solutions Homework 3 Solutions Igor Yanovsky (Math 151A TA) Problem 1: Compute the absolute error and relative error in approximations of p by p. (Use calculator!) a) p π, p 22/7; b) p π, p 3.141. Solution: For

Διαβάστε περισσότερα

The Simply Typed Lambda Calculus

The Simply Typed Lambda Calculus Type Inference Instead of writing type annotations, can we use an algorithm to infer what the type annotations should be? That depends on the type system. For simple type systems the answer is yes, and

Διαβάστε περισσότερα

Example Sheet 3 Solutions

Example Sheet 3 Solutions Example Sheet 3 Solutions. i Regular Sturm-Liouville. ii Singular Sturm-Liouville mixed boundary conditions. iii Not Sturm-Liouville ODE is not in Sturm-Liouville form. iv Regular Sturm-Liouville note

Διαβάστε περισσότερα

Concrete Mathematics Exercises from 30 September 2016

Concrete Mathematics Exercises from 30 September 2016 Concrete Mathematics Exercises from 30 September 2016 Silvio Capobianco Exercise 1.7 Let H(n) = J(n + 1) J(n). Equation (1.8) tells us that H(2n) = 2, and H(2n+1) = J(2n+2) J(2n+1) = (2J(n+1) 1) (2J(n)+1)

Διαβάστε περισσότερα

Econ 2110: Fall 2008 Suggested Solutions to Problem Set 8 questions or comments to Dan Fetter 1

Econ 2110: Fall 2008 Suggested Solutions to Problem Set 8  questions or comments to Dan Fetter 1 Eon : Fall 8 Suggested Solutions to Problem Set 8 Email questions or omments to Dan Fetter Problem. Let X be a salar with density f(x, θ) (θx + θ) [ x ] with θ. (a) Find the most powerful level α test

Διαβάστε περισσότερα

Srednicki Chapter 55

Srednicki Chapter 55 Srednicki Chapter 55 QFT Problems & Solutions A. George August 3, 03 Srednicki 55.. Use equations 55.3-55.0 and A i, A j ] = Π i, Π j ] = 0 (at equal times) to verify equations 55.-55.3. This is our third

Διαβάστε περισσότερα

Exercises 10. Find a fundamental matrix of the given system of equations. Also find the fundamental matrix Φ(t) satisfying Φ(0) = I. 1.

Exercises 10. Find a fundamental matrix of the given system of equations. Also find the fundamental matrix Φ(t) satisfying Φ(0) = I. 1. Exercises 0 More exercises are available in Elementary Differential Equations. If you have a problem to solve any of them, feel free to come to office hour. Problem Find a fundamental matrix of the given

Διαβάστε περισσότερα

( y) Partial Differential Equations

( y) Partial Differential Equations Partial Dierential Equations Linear P.D.Es. contains no owers roducts o the deendent variables / an o its derivatives can occasionall be solved. Consider eamle ( ) a (sometimes written as a ) we can integrate

Διαβάστε περισσότερα

Solutions to Exercise Sheet 5

Solutions to Exercise Sheet 5 Solutions to Eercise Sheet 5 jacques@ucsd.edu. Let X and Y be random variables with joint pdf f(, y) = 3y( + y) where and y. Determine each of the following probabilities. Solutions. a. P (X ). b. P (X

Διαβάστε περισσότερα

ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 19/5/2007

ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 19/5/2007 Οδηγίες: Να απαντηθούν όλες οι ερωτήσεις. Αν κάπου κάνετε κάποιες υποθέσεις να αναφερθούν στη σχετική ερώτηση. Όλα τα αρχεία που αναφέρονται στα προβλήματα βρίσκονται στον ίδιο φάκελο με το εκτελέσιμο

Διαβάστε περισσότερα

Problem Set 9 Solutions. θ + 1. θ 2 + cotθ ( ) sinθ e iφ is an eigenfunction of the ˆ L 2 operator. / θ 2. φ 2. sin 2 θ φ 2. ( ) = e iφ. = e iφ cosθ.

Problem Set 9 Solutions. θ + 1. θ 2 + cotθ ( ) sinθ e iφ is an eigenfunction of the ˆ L 2 operator. / θ 2. φ 2. sin 2 θ φ 2. ( ) = e iφ. = e iφ cosθ. Chemistry 362 Dr Jean M Standard Problem Set 9 Solutions The ˆ L 2 operator is defined as Verify that the angular wavefunction Y θ,φ) Also verify that the eigenvalue is given by 2! 2 & L ˆ 2! 2 2 θ 2 +

Διαβάστε περισσότερα

EE512: Error Control Coding

EE512: Error Control Coding EE512: Error Control Coding Solution for Assignment on Finite Fields February 16, 2007 1. (a) Addition and Multiplication tables for GF (5) and GF (7) are shown in Tables 1 and 2. + 0 1 2 3 4 0 0 1 2 3

Διαβάστε περισσότερα

Approximation of distance between locations on earth given by latitude and longitude

Approximation of distance between locations on earth given by latitude and longitude Approximation of distance between locations on earth given by latitude and longitude Jan Behrens 2012-12-31 In this paper we shall provide a method to approximate distances between two points on earth

Διαβάστε περισσότερα

The kinetic and potential energies as T = 1 2. (m i η2 i k(η i+1 η i ) 2 ). (3) The Hooke s law F = Y ξ, (6) with a discrete analog

The kinetic and potential energies as T = 1 2. (m i η2 i k(η i+1 η i ) 2 ). (3) The Hooke s law F = Y ξ, (6) with a discrete analog Lecture 12: Introduction to Analytical Mechanics of Continuous Systems Lagrangian Density for Continuous Systems The kinetic and potential energies as T = 1 2 i η2 i (1 and V = 1 2 i+1 η i 2, i (2 where

Διαβάστε περισσότερα

Statistical Inference I Locally most powerful tests

Statistical Inference I Locally most powerful tests Statistical Inference I Locally most powerful tests Shirsendu Mukherjee Department of Statistics, Asutosh College, Kolkata, India. shirsendu st@yahoo.co.in So far we have treated the testing of one-sided

Διαβάστε περισσότερα

w o = R 1 p. (1) R = p =. = 1

w o = R 1 p. (1) R = p =. = 1 Πανεπιστήµιο Κρήτης - Τµήµα Επιστήµης Υπολογιστών ΗΥ-570: Στατιστική Επεξεργασία Σήµατος 205 ιδάσκων : Α. Μουχτάρης Τριτη Σειρά Ασκήσεων Λύσεις Ασκηση 3. 5.2 (a) From the Wiener-Hopf equation we have:

Διαβάστε περισσότερα

Fourier Series. MATH 211, Calculus II. J. Robert Buchanan. Spring Department of Mathematics

Fourier Series. MATH 211, Calculus II. J. Robert Buchanan. Spring Department of Mathematics Fourier Series MATH 211, Calculus II J. Robert Buchanan Department of Mathematics Spring 2018 Introduction Not all functions can be represented by Taylor series. f (k) (c) A Taylor series f (x) = (x c)

Διαβάστε περισσότερα

Απόκριση σε Μοναδιαία Ωστική Δύναμη (Unit Impulse) Απόκριση σε Δυνάμεις Αυθαίρετα Μεταβαλλόμενες με το Χρόνο. Απόστολος Σ.

Απόκριση σε Μοναδιαία Ωστική Δύναμη (Unit Impulse) Απόκριση σε Δυνάμεις Αυθαίρετα Μεταβαλλόμενες με το Χρόνο. Απόστολος Σ. Απόκριση σε Δυνάμεις Αυθαίρετα Μεταβαλλόμενες με το Χρόνο The time integral of a force is referred to as impulse, is determined by and is obtained from: Newton s 2 nd Law of motion states that the action

Διαβάστε περισσότερα

Problem 3.1 Vector A starts at point (1, 1, 3) and ends at point (2, 1,0). Find a unit vector in the direction of A. Solution: A = 1+9 = 3.

Problem 3.1 Vector A starts at point (1, 1, 3) and ends at point (2, 1,0). Find a unit vector in the direction of A. Solution: A = 1+9 = 3. Problem 3.1 Vector A starts at point (1, 1, 3) and ends at point (, 1,0). Find a unit vector in the direction of A. Solution: A = ˆx( 1)+ŷ( 1 ( 1))+ẑ(0 ( 3)) = ˆx+ẑ3, A = 1+9 = 3.16, â = A A = ˆx+ẑ3 3.16

Διαβάστε περισσότερα

Geodesic Equations for the Wormhole Metric

Geodesic Equations for the Wormhole Metric Geodesic Equations for the Wormhole Metric Dr R Herman Physics & Physical Oceanography, UNCW February 14, 2018 The Wormhole Metric Morris and Thorne wormhole metric: [M S Morris, K S Thorne, Wormholes

Διαβάστε περισσότερα

Homework 8 Model Solution Section

Homework 8 Model Solution Section MATH 004 Homework Solution Homework 8 Model Solution Section 14.5 14.6. 14.5. Use the Chain Rule to find dz where z cosx + 4y), x 5t 4, y 1 t. dz dx + dy y sinx + 4y)0t + 4) sinx + 4y) 1t ) 0t + 4t ) sinx

Διαβάστε περισσότερα

Jesse Maassen and Mark Lundstrom Purdue University November 25, 2013

Jesse Maassen and Mark Lundstrom Purdue University November 25, 2013 Notes on Average Scattering imes and Hall Factors Jesse Maassen and Mar Lundstrom Purdue University November 5, 13 I. Introduction 1 II. Solution of the BE 1 III. Exercises: Woring out average scattering

Διαβάστε περισσότερα

forms This gives Remark 1. How to remember the above formulas: Substituting these into the equation we obtain with

forms This gives Remark 1. How to remember the above formulas: Substituting these into the equation we obtain with Week 03: C lassification of S econd- Order L inear Equations In last week s lectures we have illustrated how to obtain the general solutions of first order PDEs using the method of characteristics. We

Διαβάστε περισσότερα

Matrices and Determinants

Matrices and Determinants Matrices and Determinants SUBJECTIVE PROBLEMS: Q 1. For what value of k do the following system of equations possess a non-trivial (i.e., not all zero) solution over the set of rationals Q? x + ky + 3z

Διαβάστε περισσότερα

Mock Exam 7. 1 Hong Kong Educational Publishing Company. Section A 1. Reference: HKDSE Math M Q2 (a) (1 + kx) n 1M + 1A = (1) =

Mock Exam 7. 1 Hong Kong Educational Publishing Company. Section A 1. Reference: HKDSE Math M Q2 (a) (1 + kx) n 1M + 1A = (1) = Mock Eam 7 Mock Eam 7 Section A. Reference: HKDSE Math M 0 Q (a) ( + k) n nn ( )( k) + nk ( ) + + nn ( ) k + nk + + + A nk... () nn ( ) k... () From (), k...() n Substituting () into (), nn ( ) n 76n 76n

Διαβάστε περισσότερα

9.09. # 1. Area inside the oval limaçon r = cos θ. To graph, start with θ = 0 so r = 6. Compute dr

9.09. # 1. Area inside the oval limaçon r = cos θ. To graph, start with θ = 0 so r = 6. Compute dr 9.9 #. Area inside the oval limaçon r = + cos. To graph, start with = so r =. Compute d = sin. Interesting points are where d vanishes, or at =,,, etc. For these values of we compute r:,,, and the values

Διαβάστε περισσότερα

Appendix A. Curvilinear coordinates. A.1 Lamé coefficients. Consider set of equations. ξ i = ξ i (x 1,x 2,x 3 ), i = 1,2,3

Appendix A. Curvilinear coordinates. A.1 Lamé coefficients. Consider set of equations. ξ i = ξ i (x 1,x 2,x 3 ), i = 1,2,3 Appendix A Curvilinear coordinates A. Lamé coefficients Consider set of equations ξ i = ξ i x,x 2,x 3, i =,2,3 where ξ,ξ 2,ξ 3 independent, single-valued and continuous x,x 2,x 3 : coordinates of point

Διαβάστε περισσότερα

PARTIAL NOTES for 6.1 Trigonometric Identities

PARTIAL NOTES for 6.1 Trigonometric Identities PARTIAL NOTES for 6.1 Trigonometric Identities tanθ = sinθ cosθ cotθ = cosθ sinθ BASIC IDENTITIES cscθ = 1 sinθ secθ = 1 cosθ cotθ = 1 tanθ PYTHAGOREAN IDENTITIES sin θ + cos θ =1 tan θ +1= sec θ 1 + cot

Διαβάστε περισσότερα

SOLUTIONS TO MATH38181 EXTREME VALUES AND FINANCIAL RISK EXAM

SOLUTIONS TO MATH38181 EXTREME VALUES AND FINANCIAL RISK EXAM SOLUTIONS TO MATH38181 EXTREME VALUES AND FINANCIAL RISK EXAM Solutions to Question 1 a) The cumulative distribution function of T conditional on N n is Pr (T t N n) Pr (max (X 1,..., X N ) t N n) Pr (max

Διαβάστε περισσότερα

Section 7.6 Double and Half Angle Formulas

Section 7.6 Double and Half Angle Formulas 09 Section 7. Double and Half Angle Fmulas To derive the double-angles fmulas, we will use the sum of two angles fmulas that we developed in the last section. We will let α θ and β θ: cos(θ) cos(θ + θ)

Διαβάστε περισσότερα

Chapter 6: Systems of Linear Differential. be continuous functions on the interval

Chapter 6: Systems of Linear Differential. be continuous functions on the interval Chapter 6: Systems of Linear Differential Equations Let a (t), a 2 (t),..., a nn (t), b (t), b 2 (t),..., b n (t) be continuous functions on the interval I. The system of n first-order differential equations

Διαβάστε περισσότερα

Notes on the Open Economy

Notes on the Open Economy Notes on the Open Econom Ben J. Heijdra Universit of Groningen April 24 Introduction In this note we stud the two-countr model of Table.4 in more detail. restated here for convenience. The model is Table.4.

Διαβάστε περισσότερα

Lecture 26: Circular domains

Lecture 26: Circular domains Introductory lecture notes on Partial Differential Equations - c Anthony Peirce. Not to be copied, used, or revised without eplicit written permission from the copyright owner. 1 Lecture 6: Circular domains

Διαβάστε περισσότερα

Example 1: THE ELECTRIC DIPOLE

Example 1: THE ELECTRIC DIPOLE Example 1: THE ELECTRIC DIPOLE 1 The Electic Dipole: z + P + θ d _ Φ = Q 4πε + Q = Q 4πε 4πε 1 + 1 2 The Electic Dipole: d + _ z + Law of Cosines: θ A B α C A 2 = B 2 + C 2 2ABcosα P ± = 2 ( + d ) 2 2

Διαβάστε περισσότερα

Model Description. 1.1 Governing equations. The vertical coordinate (eta) is defined by: p re f. z s p T 0 p T. p p T p s p T. η s

Model Description. 1.1 Governing equations. The vertical coordinate (eta) is defined by: p re f. z s p T 0 p T. p p T p s p T. η s Model Description. Governing equations The vertical coordinate (eta) is defined by: η p p T p s p T η s ; η s p re f z s p T p re f 0 p T The horizontal equations of motion in the η system may be expressed

Διαβάστε περισσότερα

Second Order RLC Filters

Second Order RLC Filters ECEN 60 Circuits/Electronics Spring 007-0-07 P. Mathys Second Order RLC Filters RLC Lowpass Filter A passive RLC lowpass filter (LPF) circuit is shown in the following schematic. R L C v O (t) Using phasor

Διαβάστε περισσότερα

Forced Pendulum Numerical approach

Forced Pendulum Numerical approach Numerical approach UiO April 8, 2014 Physical problem and equation We have a pendulum of length l, with mass m. The pendulum is subject to gravitation as well as both a forcing and linear resistance force.

Διαβάστε περισσότερα

Solution to Review Problems for Midterm III

Solution to Review Problems for Midterm III Solution to Review Problems for Mierm III Mierm III: Friday, November 19 in class Topics:.8-.11, 4.1,4. 1. Find the derivative of the following functions and simplify your answers. (a) x(ln(4x)) +ln(5

Διαβάστε περισσότερα

Mean bond enthalpy Standard enthalpy of formation Bond N H N N N N H O O O

Mean bond enthalpy Standard enthalpy of formation Bond N H N N N N H O O O Q1. (a) Explain the meaning of the terms mean bond enthalpy and standard enthalpy of formation. Mean bond enthalpy... Standard enthalpy of formation... (5) (b) Some mean bond enthalpies are given below.

Διαβάστε περισσότερα

Tridiagonal matrices. Gérard MEURANT. October, 2008

Tridiagonal matrices. Gérard MEURANT. October, 2008 Tridiagonal matrices Gérard MEURANT October, 2008 1 Similarity 2 Cholesy factorizations 3 Eigenvalues 4 Inverse Similarity Let α 1 ω 1 β 1 α 2 ω 2 T =......... β 2 α 1 ω 1 β 1 α and β i ω i, i = 1,...,

Διαβάστε περισσότερα

Section 9.2 Polar Equations and Graphs

Section 9.2 Polar Equations and Graphs 180 Section 9. Polar Equations and Graphs In this section, we will be graphing polar equations on a polar grid. In the first few examples, we will write the polar equation in rectangular form to help identify

Διαβάστε περισσότερα

An Inventory of Continuous Distributions

An Inventory of Continuous Distributions Appendi A An Inventory of Continuous Distributions A.1 Introduction The incomplete gamma function is given by Also, define Γ(α; ) = 1 with = G(α; ) = Z 0 Z 0 Z t α 1 e t dt, α > 0, >0 t α 1 e t dt, α >

Διαβάστε περισσότερα

Lifting Entry (continued)

Lifting Entry (continued) ifting Entry (continued) Basic planar dynamics of motion, again Yet another equilibrium glide Hypersonic phugoid motion Planar state equations MARYAN 1 01 avid. Akin - All rights reserved http://spacecraft.ssl.umd.edu

Διαβάστε περισσότερα

Figure A.2: MPC and MPCP Age Profiles (estimating ρ, ρ = 2, φ = 0.03)..

Figure A.2: MPC and MPCP Age Profiles (estimating ρ, ρ = 2, φ = 0.03).. Supplemental Material (not for publication) Persistent vs. Permanent Income Shocks in the Buffer-Stock Model Jeppe Druedahl Thomas H. Jørgensen May, A Additional Figures and Tables Figure A.: Wealth and

Διαβάστε περισσότερα

C.S. 430 Assignment 6, Sample Solutions

C.S. 430 Assignment 6, Sample Solutions C.S. 430 Assignment 6, Sample Solutions Paul Liu November 15, 2007 Note that these are sample solutions only; in many cases there were many acceptable answers. 1 Reynolds Problem 10.1 1.1 Normal-order

Διαβάστε περισσότερα

Ordinal Arithmetic: Addition, Multiplication, Exponentiation and Limit

Ordinal Arithmetic: Addition, Multiplication, Exponentiation and Limit Ordinal Arithmetic: Addition, Multiplication, Exponentiation and Limit Ting Zhang Stanford May 11, 2001 Stanford, 5/11/2001 1 Outline Ordinal Classification Ordinal Addition Ordinal Multiplication Ordinal

Διαβάστε περισσότερα

MATH423 String Theory Solutions 4. = 0 τ = f(s). (1) dτ ds = dxµ dτ f (s) (2) dτ 2 [f (s)] 2 + dxµ. dτ f (s) (3)

MATH423 String Theory Solutions 4. = 0 τ = f(s). (1) dτ ds = dxµ dτ f (s) (2) dτ 2 [f (s)] 2 + dxµ. dτ f (s) (3) 1. MATH43 String Theory Solutions 4 x = 0 τ = fs). 1) = = f s) ) x = x [f s)] + f s) 3) equation of motion is x = 0 if an only if f s) = 0 i.e. fs) = As + B with A, B constants. i.e. allowe reparametrisations

Διαβάστε περισσότερα

Πανεπιστήµιο Κρήτης - Τµήµα Επιστήµης Υπολογιστών. ΗΥ-570: Στατιστική Επεξεργασία Σήµατος. ιδάσκων : Α. Μουχτάρης. εύτερη Σειρά Ασκήσεων.

Πανεπιστήµιο Κρήτης - Τµήµα Επιστήµης Υπολογιστών. ΗΥ-570: Στατιστική Επεξεργασία Σήµατος. ιδάσκων : Α. Μουχτάρης. εύτερη Σειρά Ασκήσεων. Πανεπιστήµιο Κρήτης - Τµήµα Επιστήµης Υπολογιστών ΗΥ-570: Στατιστική Επεξεργασία Σήµατος 2015 ιδάσκων : Α. Μουχτάρης εύτερη Σειρά Ασκήσεων Λύσεις Ασκηση 1. 1. Consder the gven expresson for R 1/2 : R 1/2

Διαβάστε περισσότερα

4.6 Autoregressive Moving Average Model ARMA(1,1)

4.6 Autoregressive Moving Average Model ARMA(1,1) 84 CHAPTER 4. STATIONARY TS MODELS 4.6 Autoregressive Moving Average Model ARMA(,) This section is an introduction to a wide class of models ARMA(p,q) which we will consider in more detail later in this

Διαβάστε περισσότερα

6.4 Superposition of Linear Plane Progressive Waves

6.4 Superposition of Linear Plane Progressive Waves .0 - Marine Hydrodynamics, Spring 005 Lecture.0 - Marine Hydrodynamics Lecture 6.4 Superposition of Linear Plane Progressive Waves. Oblique Plane Waves z v k k k z v k = ( k, k z ) θ (Looking up the y-ais

Διαβάστε περισσότερα

Variational Wavefunction for the Helium Atom

Variational Wavefunction for the Helium Atom Technische Universität Graz Institut für Festkörperphysik Student project Variational Wavefunction for the Helium Atom Molecular and Solid State Physics 53. submitted on: 3. November 9 by: Markus Krammer

Διαβάστε περισσότερα

Lifting Entry 2. Basic planar dynamics of motion, again Yet another equilibrium glide Hypersonic phugoid motion MARYLAND U N I V E R S I T Y O F

Lifting Entry 2. Basic planar dynamics of motion, again Yet another equilibrium glide Hypersonic phugoid motion MARYLAND U N I V E R S I T Y O F ifting Entry Basic planar dynamics of motion, again Yet another equilibrium glide Hypersonic phugoid motion MARYAN 1 010 avid. Akin - All rights reserved http://spacecraft.ssl.umd.edu ifting Atmospheric

Διαβάστε περισσότερα

Math221: HW# 1 solutions

Math221: HW# 1 solutions Math: HW# solutions Andy Royston October, 5 7.5.7, 3 rd Ed. We have a n = b n = a = fxdx = xdx =, x cos nxdx = x sin nx n sin nxdx n = cos nx n = n n, x sin nxdx = x cos nx n + cos nxdx n cos n = + sin

Διαβάστε περισσότερα

SOLUTIONS TO MATH38181 EXTREME VALUES AND FINANCIAL RISK EXAM

SOLUTIONS TO MATH38181 EXTREME VALUES AND FINANCIAL RISK EXAM SOLUTIONS TO MATH38181 EXTREME VALUES AND FINANCIAL RISK EXAM Solutions to Question 1 a) The cumulative distribution function of T conditional on N n is Pr T t N n) Pr max X 1,..., X N ) t N n) Pr max

Διαβάστε περισσότερα

wave energy Superposition of linear plane progressive waves Marine Hydrodynamics Lecture Oblique Plane Waves:

wave energy Superposition of linear plane progressive waves Marine Hydrodynamics Lecture Oblique Plane Waves: 3.0 Marine Hydrodynamics, Fall 004 Lecture 0 Copyriht c 004 MIT - Department of Ocean Enineerin, All rihts reserved. 3.0 - Marine Hydrodynamics Lecture 0 Free-surface waves: wave enery linear superposition,

Διαβάστε περισσότερα

CRASH COURSE IN PRECALCULUS

CRASH COURSE IN PRECALCULUS CRASH COURSE IN PRECALCULUS Shiah-Sen Wang The graphs are prepared by Chien-Lun Lai Based on : Precalculus: Mathematics for Calculus by J. Stuwart, L. Redin & S. Watson, 6th edition, 01, Brooks/Cole Chapter

Διαβάστε περισσότερα

2. THEORY OF EQUATIONS. PREVIOUS EAMCET Bits.

2. THEORY OF EQUATIONS. PREVIOUS EAMCET Bits. EAMCET-. THEORY OF EQUATIONS PREVIOUS EAMCET Bits. Each of the roots of the equation x 6x + 6x 5= are increased by k so that the new transformed equation does not contain term. Then k =... - 4. - Sol.

Διαβάστε περισσότερα

Other Test Constructions: Likelihood Ratio & Bayes Tests

Other Test Constructions: Likelihood Ratio & Bayes Tests Other Test Constructions: Likelihood Ratio & Bayes Tests Side-Note: So far we have seen a few approaches for creating tests such as Neyman-Pearson Lemma ( most powerful tests of H 0 : θ = θ 0 vs H 1 :

Διαβάστε περισσότερα

SCHOOL OF MATHEMATICAL SCIENCES G11LMA Linear Mathematics Examination Solutions

SCHOOL OF MATHEMATICAL SCIENCES G11LMA Linear Mathematics Examination Solutions SCHOOL OF MATHEMATICAL SCIENCES GLMA Linear Mathematics 00- Examination Solutions. (a) i. ( + 5i)( i) = (6 + 5) + (5 )i = + i. Real part is, imaginary part is. (b) ii. + 5i i ( + 5i)( + i) = ( i)( + i)

Διαβάστε περισσότερα

Reminders: linear functions

Reminders: linear functions Reminders: linear functions Let U and V be vector spaces over the same field F. Definition A function f : U V is linear if for every u 1, u 2 U, f (u 1 + u 2 ) = f (u 1 ) + f (u 2 ), and for every u U

Διαβάστε περισσότερα

Partial Trace and Partial Transpose

Partial Trace and Partial Transpose Partial Trace and Partial Transpose by José Luis Gómez-Muñoz http://homepage.cem.itesm.mx/lgomez/quantum/ jose.luis.gomez@itesm.mx This document is based on suggestions by Anirban Das Introduction This

Διαβάστε περισσότερα

Pg The perimeter is P = 3x The area of a triangle is. where b is the base, h is the height. In our case b = x, then the area is

Pg The perimeter is P = 3x The area of a triangle is. where b is the base, h is the height. In our case b = x, then the area is Pg. 9. The perimeter is P = The area of a triangle is A = bh where b is the base, h is the height 0 h= btan 60 = b = b In our case b =, then the area is A = = 0. By Pythagorean theorem a + a = d a a =

Διαβάστε περισσότερα

ES440/ES911: CFD. Chapter 5. Solution of Linear Equation Systems

ES440/ES911: CFD. Chapter 5. Solution of Linear Equation Systems ES440/ES911: CFD Chapter 5. Solution of Linear Equation Systems Dr Yongmann M. Chung http://www.eng.warwick.ac.uk/staff/ymc/es440.html Y.M.Chung@warwick.ac.uk School of Engineering & Centre for Scientific

Διαβάστε περισσότερα

The ε-pseudospectrum of a Matrix

The ε-pseudospectrum of a Matrix The ε-pseudospectrum of a Matrix Feb 16, 2015 () The ε-pseudospectrum of a Matrix Feb 16, 2015 1 / 18 1 Preliminaries 2 Definitions 3 Basic Properties 4 Computation of Pseudospectrum of 2 2 5 Problems

Διαβάστε περισσότερα

Solutions to the Schrodinger equation atomic orbitals. Ψ 1 s Ψ 2 s Ψ 2 px Ψ 2 py Ψ 2 pz

Solutions to the Schrodinger equation atomic orbitals. Ψ 1 s Ψ 2 s Ψ 2 px Ψ 2 py Ψ 2 pz Solutions to the Schrodinger equation atomic orbitals Ψ 1 s Ψ 2 s Ψ 2 px Ψ 2 py Ψ 2 pz ybridization Valence Bond Approach to bonding sp 3 (Ψ 2 s + Ψ 2 px + Ψ 2 py + Ψ 2 pz) sp 2 (Ψ 2 s + Ψ 2 px + Ψ 2 py)

Διαβάστε περισσότερα

k A = [k, k]( )[a 1, a 2 ] = [ka 1,ka 2 ] 4For the division of two intervals of confidence in R +

k A = [k, k]( )[a 1, a 2 ] = [ka 1,ka 2 ] 4For the division of two intervals of confidence in R + Chapter 3. Fuzzy Arithmetic 3- Fuzzy arithmetic: ~Addition(+) and subtraction (-): Let A = [a and B = [b, b in R If x [a and y [b, b than x+y [a +b +b Symbolically,we write A(+)B = [a (+)[b, b = [a +b

Διαβάστε περισσότερα

Durbin-Levinson recursive method

Durbin-Levinson recursive method Durbin-Levinson recursive method A recursive method for computing ϕ n is useful because it avoids inverting large matrices; when new data are acquired, one can update predictions, instead of starting again

Διαβάστε περισσότερα

Arithmetical applications of lagrangian interpolation. Tanguy Rivoal. Institut Fourier CNRS and Université de Grenoble 1

Arithmetical applications of lagrangian interpolation. Tanguy Rivoal. Institut Fourier CNRS and Université de Grenoble 1 Arithmetical applications of lagrangian interpolation Tanguy Rivoal Institut Fourier CNRS and Université de Grenoble Conference Diophantine and Analytic Problems in Number Theory, The 00th anniversary

Διαβάστε περισσότερα

CE 530 Molecular Simulation

CE 530 Molecular Simulation C 53 olecular Siulation Lecture Histogra Reweighting ethods David. Kofke Departent of Cheical ngineering SUNY uffalo kofke@eng.buffalo.edu Histogra Reweighting ethod to cobine results taken at different

Διαβάστε περισσότερα

Second Order Partial Differential Equations

Second Order Partial Differential Equations Chapter 7 Second Order Partial Differential Equations 7.1 Introduction A second order linear PDE in two independent variables (x, y Ω can be written as A(x, y u x + B(x, y u xy + C(x, y u u u + D(x, y

Διαβάστε περισσότερα

Solution Series 9. i=1 x i and i=1 x i.

Solution Series 9. i=1 x i and i=1 x i. Lecturer: Prof. Dr. Mete SONER Coordinator: Yilin WANG Solution Series 9 Q1. Let α, β >, the p.d.f. of a beta distribution with parameters α and β is { Γ(α+β) Γ(α)Γ(β) f(x α, β) xα 1 (1 x) β 1 for < x

Διαβάστε περισσότερα

Space-Time Symmetries

Space-Time Symmetries Chapter Space-Time Symmetries In classical fiel theory any continuous symmetry of the action generates a conserve current by Noether's proceure. If the Lagrangian is not invariant but only shifts by a

Διαβάστε περισσότερα

Οδηγίες Αγοράς Ηλεκτρονικού Βιβλίου Instructions for Buying an ebook

Οδηγίες Αγοράς Ηλεκτρονικού Βιβλίου Instructions for Buying an ebook Οδηγίες Αγοράς Ηλεκτρονικού Βιβλίου Instructions for Buying an ebook Βήμα 1: Step 1: Βρείτε το βιβλίο που θα θέλατε να αγοράσετε και πατήστε Add to Cart, για να το προσθέσετε στο καλάθι σας. Αυτόματα θα

Διαβάστε περισσότερα