Εκτίμηση όγκου φλοιού δέντρων πεύκης (Pinus brutia) με χρήση τεχνητών νευρωνικών δικτύων

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "Εκτίμηση όγκου φλοιού δέντρων πεύκης (Pinus brutia) με χρήση τεχνητών νευρωνικών δικτύων"

Transcript

1 Εκτίμηση όγκου φλοιού δέντρων πεύκης (Pinus brutia) με χρήση τεχνητών νευρωνικών δικτύων Διαμαντοπούλου Μαρία και Μάτης Κων/νος Εργαστήριο Δ. Βιομετρίας, Τμήμα Δασολογίας και Φυσικού Περιβάλλοντος, Αριστοτέλειο Πανεπιστήμιο Θεσσαλονίκης Τηλ.:

2 Εκτίμηση όγκου φλοιού δέντρων πεύκης (Pinus brutia) με χρήση τεχνητών νευρωνικών δικτύων Διαμαντοπούλου Μαρία και Μάτης Κων/νος Εργαστήριο Δ. Βιομετρίας, Τμήμα Δασολογίας και Φυσικού Περιβάλλοντος, Αριστοτέλειο Πανεπιστήμιο Θεσσαλονίκης ΠΕΡΙΛΗΨΗ Τα τεχνητά νευρωνικά δίκτυα αποτελούν σήμερα ένα πολύ δημοφιλές εργαλείο ανάλυσης δεδομένων και εκτίμησης παραμέτρων, με ένα ιδιαίτερα μεγάλο πεδίο εφαρμογής. Στη δασολογική επιστήμη σε παγκόσμιο επίπεδο, άρχισε τα τελευταία χρόνια η χρήση των τεχνητών νευρωνικών δικτύων ως μεθοδολογία εκτίμησης των τιμών μιας μεταβλητής «εξόδου» από μία ή ένα σύνολο μεταβλητών «εισόδου» σε διάφορα δασικά προβλήματα όπου η σχέση μεταξύ των μεταβλητών «εισόδου-εξόδου» είναι άγνωστη ή δύσκολα προβλέψιμη. Στην εργασία αυτή, γίνεται εκτίμηση του όγκου του φλοιού τραχείας πεύκης πριν την κοπή των αντίστοιχων δέντρων, με χρήση τεχνητών νευρωνικών δικτύων. Για το σκοπό αυτό χρησιμοποιήθηκαν δεδομένα δέντρων πεύκης από τη δασική θέση «Μπαρμπαγιώργης» η οποία βρίσκεται στη βορειοδυτική πλευρά του περιαστικού δάσους (Σέιχ-Σου) Θεσσαλονίκης. To νευρωνικό δίκτυο που χρησιμοποιήθηκε, διαρθρώθηκε με πορεία μίας κατεύθυνσης (feedforward), χρησιμοποιώντας την αρχιτεκτονική διαδοχικής συσχέτισης (Cascade-Correlation architecture). H στάθμιση των βαρών (weights), έγινε χρησιμοποιώντας τον αλγόριθμο «εκπαίδευσης» του Kalman (Kalman s learning rule), με υπερβολική εξίσωση μεταφοράς (hyperbolic transfer function). Από τα αποτελέσματα προκύπτει ότι οι εκτιμήσεις του όγκου του φλοιού από το τεχνητό νευρωνικό δίκτυο που διερευνήθηκε εκτιμούν τις μετρημένες τιμές του όγκου του φλοιού με μεγάλη ακρίβεια. ΕΙΣΑΓΩΓΗ Το πρόβλημα εύρεσης της κατάλληλης σχέσης εκτίμησης δύσκολα μετρούμενων βιολογικών μεταβλητών των οποίων οι τιμές διαμορφώνονται από πολλούς και ανεξέλεγκτους παράγοντες όπως κλιματεδαφικό περιβάλλον, βιολογία του ίδιου του οργανισμού κλπ., αποτελεί πεδίο εντατικής έρευνας στη δασολογική επιστήμη. Η περισσότερο διαδεδομένη αντιμετώπιση του προβλήματος είναι μέσω της εφαρμογής της διαδικασίας της παλινδρόμησης (Draper και Smith, 1998) μέσω της οποίας πράγματι καταρτίζονται πολύ καλά μοντέλα εκτίμησης με μικρά σχετικά σφάλματα, όταν όμως οι προϋποθέσεις εφαρμογής της θεωρίας της παλινδρόμησης ικανοποιούνται. Το γεγονός αυτό σε συνδυασμό με την ιδιαιτερότητα της μεταβλητής που εξετάζεται, πόσο δηλαδή η εκτίμησή της εξαρτάται από απροσδιόριστους παράγοντες, αποτελούν τροχοπέδη στην εύρεση ενός στατιστικά «καλού» μοντέλου εκτίμησης. Σε τέτοια προβλήματα τα τεχνητά νευρωνικά δίκτυα (Fausett 1994, Dowla and Rogers 1995, Gurney 1999) δίνουν πολλές φορές λύση και αποτελούν εναλλακτική διαδικασία που μπορεί να αντικαταστήσει τις κλασικές μεθόδους. Γενικά, τα τεχνητά νευρωνικά δίκτυα είναι κατάλληλα για εύρεση μοντέλου εκτίμησης όταν (Bailey and Thompson 1990, Leduc et al. 001): α. η εφαρμογή γίνεται σε δεδομένα που εξαρτώνται από πολλαπλές και αλληλοεξαρτώμενες παραμέτρους, β. υπάρχει επαρκής αριθμός δεδομένων ή παραδειγμάτων, γ. τα διαθέσιμα δεδομένα δεν είναι πλήρη, περιέχουν σφάλματα και περιγράφουν συγκεκριμένα παραδείγματα και δ. η σχέση που αποτελεί τη λύση στο πρόβλημα είναι ή άγνωστη ή ο προσδιορισμός της είναι επίπονος (απαιτεί χρόνο, έμπειρο προσωπικό, καταστροφή του πρωτογενούς υλικού που είναι η πηγή πληροφόρησης κλπ.). 1

3 Τα τεχνητά νευρωνικά δίκτυα έχουν χρησιμοποιηθεί για την επίλυση αρκετών δασολογικών προβλημάτων (Corne et al. 004, Diamantopoulou 005, Özcelik et al. 008, Diamantopoulou et al. 009, Özcelik et al. 009). Στην εργασία αυτή εκτιμάται ο όγκος του φλοιού δέντρων τραχείας πεύκης (Pinus brutia) πριν την κοπή των αντίστοιχων δέντρων με χρήση τεχνητών νευρωνικών δικτύων. Τα δεδομένα που χρησιμοποιούνται, σε κάποιο βαθμό ανήκουν στις περιπτώσεις που προαναφέρθηκαν και συγκεκριμένα στην πρώτη και στην τέταρτη περίπτωση, οπότε τα τεχνητά νευρωνικά δίκτυα θεωρήθηκαν ως η κατάλληλη μεθοδολογία για την υλοποίηση ενός μοντέλου εκτίμησης του όγκου του φλοιού. Ο φλοιός της τραχείας πεύκης κατεργάζεται και χρησιμοποιείται κύρια στην αρχιτεκτονική τοπίου ως εδαφοκαλυπτικό. Πρόκειται για ένα ακριβό υλικό, με αυξανόμενη ζήτηση τα τελευταία χρόνια. Γι αυτό, ο διαχειριστής ενός δάσους είναι απαραίτητο να γνωρίζει την ποσότητα του φλοιού που μπορεί το δασικό οικοσύστημα να παράγει, πριν τη λήψη της απόφασης της κοπής δέντρων, προκειμένου να επιτυγχάνεται η οικονομική αποτίμηση του προϊόντος και η αειφορία στη διαχείριση των φυσικών πόρων. Στην εργασία αυτή, για την κατάρτιση του κατάλληλου τεχνητού νευρωνικού δικτύου εκτίμησης του όγκου του φλοιού δέντρων τραχείας πεύκης, χρησιμοποιήθηκε απλό τυχαίο δείγμα 188 δέντρων πεύκης στη δασική θέσης «Μπαρμπαγιώργης», έκτασης 150 στρεμμάτων η οποία βρίσκεται στη βορειοδυτική πλευρά του περιαστικού δάσους (Σέιχ-Σου) Θεσσαλονίκης, σε ύψος που κυμαίνεται από 8 μέχρι 64 μέτρα. Προκειμένου να αξιολογηθεί το μοντέλο τεχνητού νευρωνικού δικτύου το οποίο καταρτίστηκε, χρησιμοποιήθηκε ένα νέο απλό τυχαίο δείγμα 31 δέντρων πεύκης (verification data set) από την ίδια περιοχή. ΥΛΙΚΑ ΚΑΙ ΜΕΘΟΔΟΙ Η συλλογή του δείγματος έγινε με εφαρμογή απλής τυχαίας δειγματοληψίας. Το μέγεθος του δείγματος για την κατάρτιση του μοντέλου ανέρχεται σε 188 ιστάμενα δέντρα, στα οποία μετρήθηκαν η έμφλοια πρεμνική διάμετρος (d 0,3ε ) σε ύψος 0,3 μέτρα από το έδαφος και η έμφλοια στηθιαία διάμετρος (d 1,3ε ) σε ύψος 1,3 μέτρα από το έδαφος, με παχύμετρο, σε εκατοστά, καθώς επίσης και όλες οι έμφλοιες διάμετροι ανά μέτρα από το στηθιαίο ύψος, με ρελασκόπιο, σε εκατοστά. Μετρήθηκε το διπλάσιο πάχος φλοιού (b th1,3 ) με μετρητή φλοιού, σε ύψος 1,3 μέτρα από το έδαφος, σε χιλιοστά. Υπολογίστηκαν η άφλοια στηθιαία διάμετρος (d 1,3α ) (Μάτης, 004): d d (1) 1,3 1,3 b th1,3 ο συντελεστής φλοιού (k 1,3 ) στο στηθιαίο ύψος: k d () 1,3 1,3 d1,3 και ο έμφλοιος όγκος του κορμού (v ε ) κάνοντας χρήση της τμηματικής ογκομέτρησης κατά Smalian (Philip 1994, Μάτης 004): v n i d 0, d 1, d d vi v... d l (3) όπου v i :ο όγκος του I-οστού τμήματος από τα n τμήματα στα οποία χωρίζεται ο κορμός, v κ : ο όγκος του κορυφοτεμαχίου, d 1,, d κ, οι διάμετροι του κορμού ανά δύο μέτρα αρχής γενομένης της στηθιαίας διαμέτρου και l κ : το μήκος του κορυφοτεμαχίου. Επίσης υπολογίστηκε και ο άφλοιος όγκος του κορμού (v α ) (Μάτης, 004): v v (4) k 1,3 και τέλος υπολογίστηκε ο όγκος φλοιού (v φλ ): v v v (5)

4 Παρόμοιες μετρήσεις και υπολογισμοί με τους παραπάνω έγιναν και για το νέο δείγμα των 31 δέντρων τραχείας πεύκης το οποίο χρησιμοποιήθηκε για την αξιολόγηση του μοντέλου νευρωνικού δικτύου το οποίο καταρτίστηκε στα πλαίσια αυτής της ερευνητικής εργασίας. Στοιχεία θεωρίας τεχνητών νευρωνικών δικτύων Η ανάγκη για συστήματα τεχνητής νοημοσύνης ικανά για πολύπλοκους και ταυτόχρονα έξυπνους υπολογισμούς, τα οποία προσπαθούν να μιμηθούν τις τεχνικές σκέψης του ανθρώπινου εγκεφάλου, δημιούργησε τα τεχνητά νευρωνικά δίκτυα. Ένα τεχνητό νευρωνικό δίκτυο στη γενική του μορφή αποτελείται από έναν αριθμό διαφορετικών επιπέδων, δηλ. ένα επίπεδο εισόδου (input layer) που αποτελείται από μονάδες εισόδου (input nodes), από ένα επίπεδο εξόδου (output layer) που αποτελείται από μονάδες εξόδου (output nodes) και μεταξύ αυτών ένα ή περισσότερα εσωτερικά (κρυμμένα) επίπεδα (hidden layer-s) που αποτελούνται από εσωτερικές (κρυμμένες) μονάδες (hidden nodes) οι οποίες δεν είναι ορατές αλλά αποτελούν εσωτερικό τμήμα του τεχνητού νευρωνικού δικτύου. Το σύνολο των απλών μονάδων (τεχνητοί νευρώνες) από τις οποίες αποτελείται το νευρωνικό δίκτυο έχουν μικρό μέγεθος τοπικής μνήμης και συγκεκριμένη επεξεργαστική ισχύ. Οι μονάδες αυτές συνδέονται μεταξύ τους με κανάλια επικοινωνίας που μεταφέρουν κωδικοποιημένα τα αριθμητικά δεδομένα που δίνονται στην είσοδο (input layer) του συστήματος. Κάθε τεχνητός νευρώνας δέχεται εισόδους από νευρώνες με τους οποίους συνδέεται και υπολογίζει μια τιμή εξόδου σαν συνάρτηση των εισόδων του την οποία διοχετεύει σε επόμενους νευρώνες με τους οποίους και επικοινωνεί. Οι μονάδες (n i ) αλληλεπιδρούν και υφίστανται κατά τη χρονική στιγμή (t) ενεργοποίηση e i (t). Στις μονάδες αντιστοιχεί μία συνάρτηση μεταφοράς f i, η οποία παράγει μία έξοδο out i (t) = f i (e i (t)). Το όλο σύστημα είναι δομημένο να λειτουργεί παράλληλα έτσι ώστε πολλές μονάδες να έχουν τη δυνατότητα να πραγματοποιούν ταυτόχρονα τους υπολογισμούς τους οι οποίοι όμως υπολογισμοί είναι μη γραμμικοί. Το νευρωνικό δίκτυο απαιτεί κάποιου είδους «εκπαίδευση» (training), ακολουθώντας συγκεκριμένο κανόνα μάθησης (learning rule), που μπορεί να δομείται είτε με επίβλεψη (supervised learning), όπου το δίκτυο καθοδηγείται σχετικά με την ορθή πορεία του, είτε χωρίς επίβλεψη (unsupervised learning), όπου το δίκτυο είναι εντελώς αυτόνομο. H εκπαίδευση αυτή αναφέρεται στην προσπάθεια του νευρωνικού δικτύου, αφενός μεν να αποκτήσει γνώση από τα δεδομένα με κάποια διαδικασία μάθησης, αφετέρου δε να αποθηκεύσει τη γνώση αυτή, η οποία μεταφέρεται μέσω των βαρών (weights) στους νευρώνες του συστήματος. Όταν η εκπαίδευση γίνει με επιτυχία, τότε το νευρωνικό σύστημα μπορεί να γενικεύσει τη γνώση του και πέρα από τα δεδομένα της εκπαίδευσης με επιτυχία. Η πορεία την οποία ακολουθεί το νευρωνικό δίκτυο κατά την εκπαίδευσή του προαποφασίζεται και μπορεί να είναι κατά μία κατεύθυνση (feedforward) όπου η σύνδεση και αλληλεπίδραση των μονάδων των επιπέδων γίνεται με ροή μόνο από το προηγούμενο προς το επόμενο μέχρι την έξοδο ή και κατά δύο κατευθύνσεις (feedback), όπου υπάρχει επανατροφοδότηση του συστήματος από την έξοδο προς την είσοδο. Αρχιτεκτονική διαδοχικής συσχέτισης (Cascade-Correlation architecture) Η αρχιτεκτονική διαδοχικής συσχέτισης (Cascade-Correlation architecture) προτάθηκε από τους Fahlman και Lebiere (1990) (Σχήμα 1). Η διαδικασία του χτισίματος του νευρωνικού δικτύου διαρθρώνεται χρησιμοποιώντας διαδικασία όπου τα βάρη (w i ) σταθμίζονται (supervised training), χρησιμοποιώντας έναν αλγόριθμο εκπαίδευσης (learning algorithm). Στο κρυμμένο επίπεδο οι μονάδες (nodes) προστίθενται μία κάθε φορά και πάντα λαμβάνοντας υπ όψη για το σχηματισμό της επόμενης μονάδας, όλες τις δεδομένες πληροφορίες των προηγούμενων πεδίων, έτσι ώστε η εκπαίδευση (training) του νευρωνικού δικτύου να προσπαθεί να πετύχει το στόχο της μέγιστης συσχέτισης μεταξύ της εξόδου από το κάθε πεδίο του κρυμμένου επιπέδου και το επιθυμητό αποτέλεσμα. 3

5 Επίπεδο εξόδου Εκπαιδευμένες συνδέσεις (Trained connections) Μονάδα εξόδου Σταθερές συνδέσεις (Frozen connections) Κρυμμένο επίπεδο Επίπεδο εισόδου Μονάδες εισόδου Πορεία εκπαίδευσης w 1 Επίπεδο w s f(s) Επίπεδο εισόδου s i n i 1 w i x i tanh(s): εξόδου w n Σχήμα 1. Διάρθρωση νευρωνικού δικτύου αρχιτεκτονικής διαδοχικής συσχέτισης, με απεικόνιση μεταφοράς πληροφορίας από το επίπεδο εισόδου στο επίπεδο εξόδου. Αυτό συμβαίνει όταν σε κάθε βήμα εκπαίδευσης, μία νέα εσωτερική μονάδα προστίθεται στο κρυμμένο επίπεδο και τα βάρη σταθμίζονται κατά τέτοιο τρόπο ώστε να επιτευχθεί η μέγιστη συσχέτιση μεταξύ της εξόδου της καινούριας εσωτερικής μονάδας και του αντίστοιχου σφάλματος που αντικατοπτρίζεται στην έξοδο του νευρωνικού δικτύου. Με τη διαδικασία αυτή γίνεται προσπάθεια μεγιστοποίησης της τιμής της παραμέτρου συσχέτισης R: O p R V V E E (6) o 1 p 1 p po o όπου Ο : ο αριθμός εξόδων του νευρωνικού δικτύου, Ρ : ο αριθμός των εκπαιδευόμενων δειγμάτων, V p : η έξοδος της καινούριας κρυμμένης μονάδας και Ε po : το σφάλμα της εξόδου του νευρωνικού δικτύου. Η στάθμιση του βάρους για τη νέα κρυμμένη μονάδα βρίσκεται από τη σχέση: 4

6 i O P Δw σ E E f ' x (7) o 1p 1 o po o p ip όπου σ ο : η ένδειξη της συσχέτισης μεταξύ της εξόδου της καινούριας κρυμμένης μονάδας και του αντίστοιχου σφάλματος που αντικατοπτρίζεται στην έξοδο του νευρωνικού δικτύου, f p : η παράγωγος της συνάρτησης f και x ip : η αντίστοιχη τιμή της εισόδου. Κάθε κρυμμένη μονάδα εκπαιδεύεται μόνο μια φορά και στην υπόλοιπη διαδικασία το βάρος της διατηρείται σταθερό. Στην εργασία αυτή ο κανόνας κατάρτισης των βαρών που χρησιμοποιήθηκε είναι αυτός του Kalman (Kalman learning rule) (Kalman 1960, Brown and Hwang 1997, Grewal and Andrews 001, Demuth and Beale 001, Welch and Bishop 003), ο οποίος βρίσκει πολύ καλή εφαρμογή σε δεδομένα τύπου «παλινδρόμησης». Η διαδικασία ολοκληρώνεται όταν τελικά το άθροισμα των τετραγώνων των διαφορών των εκτιμώμενων τιμών από το νευρωνικό δίκτυο και των προσδοκώμενων τιμών είναι το ελάχιστο. Δηλαδή, ο σκοπός του αλγόριθμου εκπαίδευσης είναι να ελαχιστοποιήσει το ολικό σφάλμα: 1 P e e p (8) P p 1 όπου P είναι το σύνολο των εκπαιδευόμενων στοιχείων και e p είναι το σφάλμα για το εκπαιδευόμενο στοιχείο p το οποίο προσδιορίζεται με τη σχέση: 1 n e p (O i d i ) (9) i όπου: n ο συνολικός αριθμός των μονάδων (nodes), O i είναι το αποτέλεσμα του νευρωνικού δικτύου από τη i-οστή μονάδα εξόδου και d i είναι το επιθυμητό αποτέλεσμα στη i-οστή μονάδα εξόδου. Για να καθοριστεί η έξοδος για κάθε πεδίο εισόδου πρέπει να χρησιμοποιηθεί μια εξίσωση μεταφοράς (transfer function). Η εξίσωση μεταφοράς που χρησιμοποιήθηκε είναι η υπερβολική μη γραμμική (hyperbolic transfer function) της μορφής (Fausett, 1994): e (s) e ( s) 1 e ( s) f (s) tanh(s) (10) e (s) e ( s) 1 e ( s) όπου: s w i x i. Πρόκειται για την αποτελεσματική πληροφορία που εισέρχεται στη μονάδα i του i1 κρυμμένου επιπέδου και μεταφέρεται με την εξίσωση μεταφοράς f (s) (Σχήμα 1). Εφαρμογή σε μετρημένα δεδομένα Για την κατάρτιση του μοντέλου νευρωνικού δικτύου είναι απαραίτητο να διαιρεθούν τα δεδομένα σε δύο μέρη (δεδομένα εκπαίδευσης και δεδομένα δοκιμής), έτσι ώστε να εξασφαλίζεται η αποφυγή υπερπαραμετροποίησης του μοντέλου (Leahy, 1994). Γι αυτό το λόγο, τα δεδομένα των 188 δέντρων χωρίστηκαν κάνοντας χρήση τυχαίων αριθμών σε μέρη. Το πρώτο μέρος που αποτελεί το 70% (training set) χρησιμοποιήθηκε για το «χτίσιμο» του κατάλληλου νευρωνικού δικτύου, ενώ το υπόλοιπο 30% (test set) χρησιμοποιήθηκε για την δοκιμή του μοντέλου. Επιπλέον, για την αξιολόγηση του μοντέλου χρησιμοποιήθηκε νέο απλό τυχαίο δείγμα 31 δέντρων πεύκης από την περιοχή μελέτης. Χρησιμοποιήθηκε νευρωνικό δίκτυο τριών επιπέδων. Το πρώτο επίπεδο, το επίπεδο εισόδου (input layer) απαρτίζεται από τέσσερις μεταβλητές εισόδου (nodes), δηλ. τα δεδομένα που χρησιμοποιήθηκαν προς άντληση πληροφορίας (d 1,3εi, v εi, d 1,3αi, k 1,3i ) για την εκτίμηση του όγκου του φλοιού. Το τελευταίο επίπεδο (output layer) αποτελείται από μία μεταβλητή εξόδου (v φλ i ) και ενδιάμεσα βρίσκεται το κρυμμένο επίπεδο (hidden layer) που απαρτίζεται από έναν αριθμό στοιχειωδών μονάδων (units). Ο βέλτιστος 5

7 αριθμός των στοιχειωδών μονάδων του κρυμμένου επιπέδου διερευνάται, με το κριτήριο της μέγιστης συσχέτισης (εξ. 6), ενώ η στάθμιση των βαρών για κάθε νέα κρυμμένη μονάδα υπολογίστηκε από την εξίσωση (7), χρησιμοποιώντας τον κανόνα κατάρτισης βαρών του Kalman. Γενικά προτείνεται η χρησιμοποίηση ενός μόνο κρυμμένου επιπέδου (Masters, 1993) και η πρόταση αυτή υιοθετήθηκε στην παρούσα εργασία. Το τελικό διαμορφωμένο μοντέλο νευρωνικού δικτύου που προέκυψε ικανοποιεί τη συνθήκη της μεγιστοποίησης της παραμέτρου συσχέτισης της εξίσωσης (6) και ταυτόχρονα ελαχιστοποιεί το ολικό σφάλμα της εξίσωσης (8). Επιπλέον, η διαδικασία εφαρμογής του εκπαιδευμένου νευρωνικού δικτύου σε διαφορετικά ζεύγη συνόλων εκπαίδευσης (training data sets) και ελέγχου (test data sets), πάντα στην ίδια αναλογία 70% προς 30%, έγινε επαναληπτικά σε 1000 τυχαίους συνδυασμούς δεδομένων εκπαίδευσης (bootstrap technique), προκειμένου να ελεγχθεί αν το διαμορφούμενο νευρωνικό δίκτυο είναι γενικής ισχύος ή αντλεί πληροφορίες από τοπικές συνθήκες των δεδομένων. Η μεταβλητότητα στην εκτίμηση του συντελεστή συσχέτισης, ήταν μικρή και δεν υπερέβη το 0,33%. Για το συνολικό αριθμό δεδομένων εκπαίδευσης και για τα δεδομένα αξιολόγησης υπολογίστηκαν: 1. Ο γραμμικός συντελεστής συσχέτισης (R), ο οποίος δίνει τη γραμμική συσχέτιση μεταξύ των πραγματικών τιμών του όγκου του φλοιού και των αντίστοιχων τιμών που προέκυψαν από το μοντέλο νευρωνικού δικτύου που επιλέχθηκε,. Το μέσο απόλυτο σφάλμα (ΜAE) μεταξύ των πραγματικών τιμών και των αντίστοιχων τιμών του μοντέλου και 3. Το τυπικό μέσο τετραγωνικό σφάλμα (RMSE) μεταξύ των πραγματικών τιμών και των αντίστοιχων του μοντέλου. ΑΠΟΤΕΛΕΣΜΑΤΑ Τα περιγραφικά στατιστικά στοιχεία για τα δεδομένα κατάρτισης και αξιολόγησης των πεδίων εισόδου και εξόδου δίνονται στον Πίνακα 1. Πίνακας 1. Περιγραφικά στατιστικά στοιχεία για τις μεταβλητές d 1,3ε, d 1,3α, k 1,3, v ε, και v φλ, για όλα τα δεδομένα κατάρτισης και αξιολόγησης. Δεδομένα κατάρτισης Δεδομένα αξιολόγησης Μεταβλητές Αριθμητικός μέσος Διασπορά Σφάλμα μέσου Αριθμητικός μέσος Διασπορά Σφάλμα μέσου d 1,3ε, (cm) 4,43 8,478 0,389 17,44 6,999 0,4750 d 1,3α, (cm) 0,1 3,073 0, ,83 6,936 0,4730 k 1,3 1,0 0,008 0,0067 1,18 0,007 0,0148 v ε, (m 3 ) 0,1 0,01 0,0105 0,1 0,019 0,048 v φλ, (m 3 ) 0,06 0,00 0,0035 0,03 0,00 0,0074 Η αρχιτεκτονική διάρθρωση του νευρωνικού δικτύου που έδωσε τη μεγαλύτερη συσχέτιση μεταξύ πραγματικών και εκτιμώμενων τιμών όγκου φλοιού είναι η : με R = 0,9965. Πρόκειται δηλαδή για νευρωνικό δίκτυο τριών επιπέδων: 1 ο : επίπεδο εισόδου με τέσσερα πεδία, ο : κρυμμένο επίπεδο με έξι πεδία και 3 ο : επίπεδο εξόδου με ένα πεδίο. O αριθμός των πεδίων του κρυμμένου επιπέδου διερευνήθηκε και τα αποτελέσματα δίνονται στον Πίνακα. Επιλέχθηκε ο αριθμός πεδίων ίσος με 6 γιατί είναι η μεγαλύτερη συσχέτιση που μπορεί να επιτευχθεί από το νευρωνικό δίκτυο, δεδομένου ότι με αύξηση των πεδίων στα 8 δεν υπήρξε καμιά βελτίωση στην τιμή του συντελεστή συσχέτισης. 6

8 Πίνακας. Αριθμός κρυμμένων μονάδων και συντελεστής συσχέτισης στη διερεύνηση του βέλτιστου αριθμού πεδίων του κρυμμένου επιπέδου. Αριθμός κρυμμένων μονάδων Συντελεστής συσχέτισης 0,9803 0,991 0,9939 0,9965 0,9965 Η διαδικασία εφαρμογής του εκπαιδευμένου νευρωνικού δικτύου σε διαφορετικά ζεύγη συνόλων εκπαίδευσης (training data sets) και ελέγχου (test data sets), έγινε επαναληπτικά σε 1000 τυχαίους συνδυασμούς δεδομένων εκπαίδευσης. Ο μέσος όρος των τιμών των συντελεστών συσχέτισης που προέκυψαν είναι ίσος με 0,9965 με ελάχιστη τιμή ίση με 0,9901 και μέγιστη 0,9999. Η τυπική απόκλιση των τιμών των συντελεστών είναι μικρή και ισούται με 0,003, ενώ η μεταβλητότητα που εμφανίζουν οι τιμές είναι όπως αναμενόταν μικρή με τιμή συντελεστή κύμανσης ίσο με 0,33%. Όπως φαίνεται στον Πίνακα 3, η τιμή του μέσου τετραγωνικού σφάλματος είναι παρόμοια και στα δύο διαφορετικά σετ δεδομένων γεγονός που ενισχύει την άποψη ότι δεν υπάρχει υπερπαραμετροποίηση (overfitting) στο νευρωνικό δίκτυο που εκπαιδεύτηκε. Επιπλέον, τα σφάλματα που προέκυψαν από την εκτίμηση των πραγματικών τιμών από το μοντέλο είναι μικρά. Η τιμή του μέσου απόλυτου σφάλματος είναι 0,00 κ.μ. και για τα δεδομένα κατάρτισης αλλά και για τα δεδομένα αξιολόγησης. Παρόμοια συμπεράσματα εξάγονται και για το συντελεστή συσχέτισης του οποίου η τιμή είναι πολύ κοντά για τα δύο σετ δεδομένων. Πίνακας 3. Γραμμικός συντελεστής συσχέτισης (R), μέσο απόλυτο σφάλμα (MAE) και τυπικό μέσο τετραγωνικό σφάλμα (RMSE) για τα δεδομένα κατάρτισης και αξιολόγησης. Δεδομένα R MAE RMSE Κατάρτισης 0,9965 0,00 0,0040 Αξιολόγησης 0,9986 0,00 0,0043 Στο Σχήμα, δίνονται τα στικτά διαγράμματα των πραγματικών και εκτιμώμενων τιμών όγκου φλοιού, όπου φαίνεται η πολύ καλή σύμπτωση των τιμών τους (Σχήμα α), γεγονός το οποίο ενισχύεται από την τιμή του τυπικού μέσου τετραγωνικού σφάλματος το οποίο υπολογίστηκε ίσο με 0,004, δηλαδή 6,4% του μέσου όγκου φλοιού για τα δεδομένα κατάρτισης του δικτύου. Επίσης, στο ίδιο σχήμα (Σχήμα β) δίνονται τα σφάλματα που προέκυψαν από την εκτίμηση των τιμών του όγκου του φλοιού των 188 δέντρων από το μοντέλο του νευρωνικού δικτύου, ως προς τις αντίστοιχες πραγματικές τιμές του όγκου φλοιού των δέντρων αυτών. Οι τιμές των σφαλμάτων του όγκου φλοιού ανά δέντρο είναι ιδιαίτερα μικρές και κατανέμονται πολύ κοντά και γύρω από τον άξονα του μηδενικού σφάλματος. Παρόλα αυτά παρατηρείται μια αύξηση των τιμών των σφαλμάτων σε κάποια δέντρα. Για τα συγκεκριμένα δέντρα η προσαρμογή του νευρωνικού δεν ήταν τόσο ακριβής όσα για τα υπόλοιπα δέντρα. Αυτό μπορεί να οφείλεται στο μικρό αριθμό δέντρων στη συγκεκριμένη βαθμίδα όγκου φλοιού, με αποτέλεσμα η εκπαίδευση του δικτύου να μην είναι τόσο επαρκής όσο η προσαρμογή του για τις υπόλοιπες βαθμίδες. 7

9 Σφάλματα vφλ εκτίμηση, σε κ.μ. 0,300 vφλ vφλ εκτίμηση (α) 0,50 0,00 0,150 0,100 0,050 0,000 0,000 0,050 0,100 0,150 0,00 0,50 0,300 0,350 vφλ, σε κ.μ. 0,030 Σφάλματα εκτίμησης vφλ (β) 0,00 0,010 0, ,010-0,00-0,030 Αύξοντας αριθμός παρατήρησης μετρούμενου δέντρου Σχήμα. (α) Στικτά διαγράμματα πραγματικών και εκτιμώμενων από το μοντέλο τιμών όγκου φλοιού και (β) Κατανομή σφαλμάτων όγκου φλοιού ανά μετρημένο δέντρο (σε κυβικά μέτρα). 8

10 Μέσο εκατοστιαίο σφάλμα βαθμίδας Για να διερευνηθεί η προσαρμογή του δικτύου το οποίο καταρτίστηκε, τα δέντρα ταξινομήθηκαν σε 6 βαθμίδες όγκου φλοιού εύρους 0,048 κ.μ. Υπολογίστηκε το μέσο εκατοστιαίο σφάλμα για την κάθε βαθμίδα και δίνεται στο Σχήμα % 8.15% 8.0% 7.0% 6.0% 5.0% 4.0% 3.0%.0% 1.0% 0.0% -1.0% -.0% 4.40% -1.44% -1.4% -1.65% 0.0% [ ) [ ) [ ) [ ) [ ) [ ) Βαθμίδα όγκου φλοιού Σχήμα 3. Ραβδόγραμμα μέσου εκατοστιαίου σφάλματος όγκου φλοιού. Στο Σχήμα 3 φαίνεται ότι για όλες τις βαθμίδες όγκου φλοιού τα σφάλματα είναι μικρά και κυμαίνονται σε απόλυτες τιμές από 0,% για την τέταρτη βαθμίδα έως 8,15% για την πέμπτη. ΣΥΜΠΕΡΑΣΜΑΤΑ Στην εργασία αυτή γίνεται εκτίμηση του όγκου του φλοιού δέντρων τραχείας πεύκης μέσω της εφαρμογής της θεωρίας των τεχνητών νευρωνικών δικτύων. Το μοντέλο που εκπαιδεύτηκε είναι το: /0,9965. Πρόκειται για δίκτυο που διαρθρώθηκε χρησιμοποιώντας διαδικασία κατά την οποία η στάθμιση των βαρών έγινε χρησιμοποιώντας τον αλγόριθμο «εκπαίδευσης» του Kalman και τη διαδοχική μέθοδο εκπαίδευσης, κάνοντας χρήση την υπερβολικής εφαπτομένης, μη γραμμική εξίσωση μεταφοράς. Οι εκτιμήσεις του όγκου του φλοιού από το μοντέλο νευρωνικού δικτύου που επιλέχθηκε προσεγγίζουν άριστα τις μετρημένες τιμές του όγκου του φλοιού με μέσo τυπικό τετραγωνικό σφάλμα ίσo με 7,7% του μέσου όγκου φλοιού, για τα δεδομένα κατάρτισης Το μοντέλο δίνει άριστη προσαρμογή και στα δεδομένα που χρησιμοποιήθηκαν για αξιολόγηση (verification data set) γεγονός που εγγυάται την απουσία της υπερπαραμετροποίησης του τεχνητού νευρωνικού δικτύου που εκπαιδεύτηκε. Η μεθοδολογία που χρησιμοποιήθηκε είναι γενική και μπορεί να έχει εφαρμογή στην επίλυση πολλών δασικών προβλημάτων εκτίμησης δύσκολα μετρούμενων μεταβλητών από άλλες ευκολότερα μετρούμενες. 9

11 Pine trees (Pinus brutia) bark volume estimation using Artificial Neural Networks M.J. Diamantopoulou and KG. Matis Lab. of Forest Biometry, School of Forestry and Natural Environment, Aristotle University of Thessaloniki Abstract A well-known procedure for finding relationships between predicted variables and predictors is regression analysis. Artificial neural networks are becoming a popular estimation tool, because of the absence of assumptions that free the modeler from reliance on parametric approximating functions that may fit the observed data. In this paper, an attempt was made to identify a neural network procedure that will enable the accurate estimation of pine trees bark volume from easy measured tree characteristics. Μeasurements of pine (Pinus brutia) trees from Mparmpagiorgis location in Seix Sou urban forest of Thessaloniki, Greece, were used. Neural networks were trained by supervised training. Cascade method of training with Kalman learning rule and the hyperbolic transfer function was used. The results demonstrate the ability of the selected Artificial Neural Network (ANN) model for estimating pine bark volume. The ANN technique introduced in this paper is general and is promising to be applicable to other regression/prediction problems of data related with forest applications. ΒΙΒΛΙΟΓΡΑΦΙΑ Bailey, D. and D. Thompson, How to develop neural-networks applications. AI Expert. S(6): Brown, R.G. and P.Y.C. Hwang, Introduction to Random Signals and Applied Kalman Filtering. Third Edition. Wiley & Sons, Inc. Ν.Υork. 484pp. Corne, S.A., S.J., Carver, W.E., Kunin, J.J., Lennon, and W.W.S. Van Hees, 004. Predicting forest attributes in southeast Alaska using artificial neural networks. For. Sci. 50(): Demuth, H. and M. Beale, 001. Neural Network Toolbox. For Use with Matlab. User s Guide. Version 4. The MathWorks Inc. 846pp. Diamantopoulou, M.J., 005. Artificial Neural Networks as an alternative tool in pine bark volume estimation. Comput. Electron. Agric. 48: Diamantopoulou, M.J., E., Milios, D., Doganos, and I. Bistinas, 009. Artificial neural network modeling for reforestation design through the dominant trees bole-volume estimation. Nat. Resour. Model. (4): Dowla, U.F., and L. Rogers, Solving Problems in Environmental Engineering and Geosciences with Artificial Neural Networks. Massachusetts Institute of Technology. USA. 39pp. Draper, N.R, and H. Smith, Applied Regression Analysis. Third Edition. Wiley and Sons, Inc. USA. 706pp. Fahlman, S.E., and C. Lebiere, The Cascade Correlation learning architecture. Advances in Neural Information Processing Systems. San Mateo, C.A., Morgan Kaufmann, Fausett, L., Fundamentals of Neural Networks Architectures. Algorithms and Applications. Prentice Hall, USA. 461pp. Grewal, M.S., and A.P. Andrews, 001. Kalman Filtering. Theory and Practice using Matlab. Second Edition. Wiley & Sons, Inc. USA. 401pp. Gurney, K., An Introduction to neural networks. UCL Press. UK. 34 pp. Kalman, R.E., A New Approach to Linear Filtering and Prediction Problems. Transaction of the ASME-Journal of Basic Engineering Leahy, K., The overfitting problem in perspective. Al Expert 9(IO):

12 Leduc, D.J., T.G., Matney, K.L., Belli, and V.C. Baldwin, 001. Predicting Diameter Distributions of Longleaf Pine Plantations: A Comparison between Artificial Neural Networks and other accepted methodologies. Southern Research Station: RS-5. Masters, T., Practical neural networks recipes in C ++. Academic press, Inc., USA. 473pp. Μάτης, Κ.Γ., 004. Δασική Βιομετρία ΙΙ. Δενδρομετρία. Εκδ. Πήγασος 000. Θεσσαλονίκη. 674 σελ. Özcelik, R., M.J., Diamantopoulou, H.V. Wiant, and J.R. Brooks, 008. Comparative study of standard and modern methods for estimating tree bole volume of three different species in Turkey. For. Prod. J. 58(6): Özcelik, R., M.J., Diamantopoulou, H.V., Wiant, and J.R. Brooks, 009. Estimating tree bole volume using artificial neural network models for four species in Turkey. J. Environ. Manage. 91(3): Philip, M., Measuring Trees and Forests. Second edition. CAB International, Wallingford, UK. 310pp. Welch, G., and G. Bishop, 003. An Introduction to the Kalman Filter. Kalman filter web page. 11

ΕΛΕΓΧΟΣ ΠΑΡΑΓΩΓΙΚΩΝ ΔΙΕΡΓΑΣΙΩΝ

ΕΛΕΓΧΟΣ ΠΑΡΑΓΩΓΙΚΩΝ ΔΙΕΡΓΑΣΙΩΝ ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα ΕΛΕΓΧΟΣ ΠΑΡΑΓΩΓΙΚΩΝ ΔΙΕΡΓΑΣΙΩΝ Ενότητα: Αναγνώριση Διεργασίας - Προσαρμοστικός Έλεγχος (Process Identification) Αλαφοδήμος Κωνσταντίνος

Διαβάστε περισσότερα

Μέθοδοι Μηχανών Μάθησης για Ευφυή Αναγνώριση και ιάγνωση Ιατρικών εδοµένων

Μέθοδοι Μηχανών Μάθησης για Ευφυή Αναγνώριση και ιάγνωση Ιατρικών εδοµένων Μέθοδοι Μηχανών Μάθησης για Ευφυή Αναγνώριση και ιάγνωση Ιατρικών εδοµένων Εισηγητής: ρ Ηλίας Ζαφειρόπουλος Εισαγωγή Ιατρικά δεδοµένα: Συλλογή Οργάνωση Αξιοποίηση Data Mining ιαχείριση εδοµένων Εκπαίδευση

Διαβάστε περισσότερα

Μια εισαγωγή στο φίλτρο Kalman

Μια εισαγωγή στο φίλτρο Kalman 1 Μια εισαγωγή στο φίλτρο Kalman Το 1960, R.E. Kalman δημόσιευσε το διάσημο έγγραφό του περιγράφοντας μια επαναλαμβανόμενη λύση στο γραμμικό πρόβλημα φιλτραρίσματος διακριτών δεδομένων. Από εκείνη τη στιγμή,

Διαβάστε περισσότερα

Μαζοπίνακες για τη δασική πεύκη (Pinus sylvestris L.) στο κεντρικό τμήμα της οροσειράς της Ροδόπης.

Μαζοπίνακες για τη δασική πεύκη (Pinus sylvestris L.) στο κεντρικό τμήμα της οροσειράς της Ροδόπης. Μαζοπίνακες για τη δασική πεύκη (Pinus sylvestris L.) στο κεντρικό τμήμα της οροσειράς της Ροδόπης. Ιωάννης Λυπηρίδης Δασολόγος 1 ΠΕΡΙΓΡΑΜΜΑ Εισαγωγή Περιοχή έρευνας Υλικά και Μέθοδοι Αποτελέσματα - Συζήτηση

Διαβάστε περισσότερα

Εισόδημα Κατανάλωση 1500 500 1600 600 1300 450 1100 400 600 250 700 275 900 300 800 352 850 400 1100 500

Εισόδημα Κατανάλωση 1500 500 1600 600 1300 450 1100 400 600 250 700 275 900 300 800 352 850 400 1100 500 Εισόδημα Κατανάλωση 1500 500 1600 600 1300 450 1100 400 600 250 700 275 900 300 800 352 850 400 1100 500 Πληθυσμός Δείγμα Δείγμα Δείγμα Ο ρόλος της Οικονομετρίας Οικονομική Θεωρία Διατύπωση της

Διαβάστε περισσότερα

ΑΛΓΟΡΙΘΜΟΣ ΕΠΙΛΟΓΗΣ ΥΠΟΠΙΝΑΚΑ ΜΕ ΤΗΝ ΠΛΗΣΙΕΣΤΕΡΗ ΑΠΕΙΚΟΝΙΣΗ ΜΕΣΩ ΤΗΣ AFC ΣΤΟ ΓΕΝΙΚΕΥΜΕΝΟ ΠΙΝΑΚΑ

ΑΛΓΟΡΙΘΜΟΣ ΕΠΙΛΟΓΗΣ ΥΠΟΠΙΝΑΚΑ ΜΕ ΤΗΝ ΠΛΗΣΙΕΣΤΕΡΗ ΑΠΕΙΚΟΝΙΣΗ ΜΕΣΩ ΤΗΣ AFC ΣΤΟ ΓΕΝΙΚΕΥΜΕΝΟ ΠΙΝΑΚΑ Ελληνικό Στατιστικό Ινστιτούτο Πρακτικά 18 ου Πανελληνίου Συνεδρίου Στατιστικής (2005) σελ.247-256 ΑΛΓΟΡΙΘΜΟΣ ΕΠΙΛΟΓΗΣ ΥΠΟΠΙΝΑΚΑ ΜΕ ΤΗΝ ΠΛΗΣΙΕΣΤΕΡΗ ΑΠΕΙΚΟΝΙΣΗ ΜΕΣΩ ΤΗΣ AFC ΣΤΟ ΓΕΝΙΚΕΥΜΕΝΟ ΠΙΝΑΚΑ ΣΥΜΠΤΩΣΕΩΝ

Διαβάστε περισσότερα

ΟΜΑΔΟΠΟΙΗΣΗ ΑΡΙΘΜΗΤΙΚΩΝ ΔΕΔΟΜΕΝΩΝ

ΟΜΑΔΟΠΟΙΗΣΗ ΑΡΙΘΜΗΤΙΚΩΝ ΔΕΔΟΜΕΝΩΝ ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΑΓΡΟΝΟΜΩΝ ΤΟΠΟΓΡΑΦΩΝ ΜΗΧΑΝΙΚΩΝ ΤΟΜΕΑΣ ΤΟΠΟΓΡΑΦΙΑΣ ΟΜΑΔΟΠΟΙΗΣΗ ΑΡΙΘΜΗΤΙΚΩΝ ΔΕΔΟΜΕΝΩΝ ΒΥΡΩΝΑΣ ΝΑΚΟΣ ΑΘΗΝΑ 2006 ΠΕΡΙΕΧΟΜΕΝΑ Περιεχόμενα 1. Εισαγωγή 1 2. Μέθοδοι σταθερών

Διαβάστε περισσότερα

Η Μηχανική Μάθηση στο Σχολείο: Μια Προσέγγιση για την Εισαγωγή της Ενισχυτικής Μάθησης στην Τάξη

Η Μηχανική Μάθηση στο Σχολείο: Μια Προσέγγιση για την Εισαγωγή της Ενισχυτικής Μάθησης στην Τάξη 6 ο Πανελλήνιο Συνέδριο «Διδακτική της Πληροφορικής» Φλώρινα, 20-22 Απριλίου 2012 Η Μηχανική Μάθηση στο Σχολείο: Μια Προσέγγιση για την Εισαγωγή της Ενισχυτικής Μάθησης στην Τάξη Σάββας Νικολαΐδης 1 ο

Διαβάστε περισσότερα

Προσομοίωση Νευρωνικού Δικτύου στο MATLAB. Κυριακίδης Ιωάννης 2013

Προσομοίωση Νευρωνικού Δικτύου στο MATLAB. Κυριακίδης Ιωάννης 2013 Προσομοίωση Νευρωνικού Δικτύου στο MATLAB Κυριακίδης Ιωάννης 2013 Εισαγωγή Ένα νευρωνικό δίκτυο αποτελεί μια πολύπλοκη δομή, όπου τα βασικά σημεία που περιλαμβάνει είναι τα εξής: Πίνακες με τα βάρη των

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΑΚΑ ΦΡΟΝΤΙΣΤΗΡΙΑ ΚΟΛΛΙΝΤΖΑ. Ερωτήσεις πολλαπλής επιλογής. Συντάκτης: Δημήτριος Κρέτσης

ΠΑΝΕΠΙΣΤΗΜΙΑΚΑ ΦΡΟΝΤΙΣΤΗΡΙΑ ΚΟΛΛΙΝΤΖΑ. Ερωτήσεις πολλαπλής επιλογής. Συντάκτης: Δημήτριος Κρέτσης ΠΑΝΕΠΙΣΤΗΜΙΑΚΑ ΦΡΟΝΤΙΣΤΗΡΙΑ ΚΟΛΛΙΝΤΖΑ Ερωτήσεις πολλαπλής επιλογής Συντάκτης: Δημήτριος Κρέτσης 1. Ο κλάδος της περιγραφικής Στατιστικής: α. Ασχολείται με την επεξεργασία των δεδομένων και την ανάλυση

Διαβάστε περισσότερα

Πληροφοριακά Συστήματα & Περιβάλλον

Πληροφοριακά Συστήματα & Περιβάλλον ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΧΤΑ ΑΚΑΔΗΜΑΙΚΑ ΜΑΘΗΜΑΤΑ Πληροφοριακά Συστήματα & Περιβάλλον Ενότητα 8: Τεχνητά Νευρωνικά Δίκτυα Παναγιώτης Λεφάκης Δασολογίας & Φυσικού Περιβάλλοντος Άδειες Χρήσης

Διαβάστε περισσότερα

Απλή Ευθύγραµµη Συµµεταβολή

Απλή Ευθύγραµµη Συµµεταβολή Απλή Ευθύγραµµη Συµµεταβολή Επιστηµονική Επιµέλεια ρ. Γεώργιος Μενεξές Τοµέας Φυτών Μεγάλης Καλλιέργειας και Οικολογίας, Εργαστήριο Γεωργίας Viola adorata Εισαγωγή Ανάλυση Παλινδρόµησης και Συσχέτιση Απλή

Διαβάστε περισσότερα

Στατιστική είναι το σύνολο των μεθόδων και θεωριών που εφαρμόζονται σε αριθμητικά δεδομένα προκειμένου να ληφθεί κάποια απόφαση σε συνθήκες

Στατιστική είναι το σύνολο των μεθόδων και θεωριών που εφαρμόζονται σε αριθμητικά δεδομένα προκειμένου να ληφθεί κάποια απόφαση σε συνθήκες Ορισμός Στατιστική είναι το σύνολο των μεθόδων και θεωριών που εφαρμόζονται σε αριθμητικά δεδομένα προκειμένου να ληφθεί κάποια απόφαση σε συνθήκες αβεβαιότητας. Βασικές έννοιες Η μελέτη ενός πληθυσμού

Διαβάστε περισσότερα

ΓΕΩΠΟΝΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙO ΑΘΗΝΩΝ ΤΜΗΜΑ ΑΞΙΟΠΟΙΗΣΗΣ ΦΥΣΙΚΩΝ ΠΟΡΩΝ & ΓΕΩΡΓΙΚΗΣ ΜΗΧΑΝΙΚΗΣ

ΓΕΩΠΟΝΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙO ΑΘΗΝΩΝ ΤΜΗΜΑ ΑΞΙΟΠΟΙΗΣΗΣ ΦΥΣΙΚΩΝ ΠΟΡΩΝ & ΓΕΩΡΓΙΚΗΣ ΜΗΧΑΝΙΚΗΣ ΓΕΩΠΟΝΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙO ΑΘΗΝΩΝ ΤΜΗΜΑ ΑΞΙΟΠΟΙΗΣΗΣ ΦΥΣΙΚΩΝ ΠΟΡΩΝ & ΓΕΩΡΓΙΚΗΣ ΜΗΧΑΝΙΚΗΣ ΠΡΟΓΡΑΜΜΑ ΜΕΤΑΠΤΥΧΙΑΚΩΝ ΣΠΟΥΔΩΝ «ΕΦΑΡΜΟΓΕΣ ΤΗΣ ΓΕΩΠΛΗΡΟΦΟΡΙΚΗΣ ΣΤΟΥΣ ΦΥΣΙΚΟΥΣ ΠΟΡΟΥΣ» «Χωρικά μοντέλα πρόβλεψης αναβλάστησης

Διαβάστε περισσότερα

Κεφάλαιο 16 Απλή Γραμμική Παλινδρόμηση και Συσχέτιση

Κεφάλαιο 16 Απλή Γραμμική Παλινδρόμηση και Συσχέτιση Κεφάλαιο 16 Απλή Γραμμική Παλινδρόμηση και Συσχέτιση Copyright 2009 Cengage Learning 16.1 Ανάλυση Παλινδρόμησης Σκοπός του προβλήματος είναι η ανάλυση της σχέσης μεταξύ συνεχών μεταβλητών. Η ανάλυση παλινδρόμησης

Διαβάστε περισσότερα

Πτυχιακή Εργασι α «Εκτι μήσή τής ποιο τήτας εικο νων με τήν χρή σή τεχνήτων νευρωνικων δικτυ ων»

Πτυχιακή Εργασι α «Εκτι μήσή τής ποιο τήτας εικο νων με τήν χρή σή τεχνήτων νευρωνικων δικτυ ων» Ανώτατο Τεχνολογικό Εκπαιδευτικό Ίδρυμα Ανατολικής Μακεδονίας και Θράκης Σχολή Τεχνολογικών Εφαρμογών Τμήμα Μηχανικών Πληροφορικής Πτυχιακή Εργασι α «Εκτι μήσή τής ποιο τήτας εικο νων με τήν χρή σή τεχνήτων

Διαβάστε περισσότερα

ΑΝΑΠΤΥΞΗ ΠΡΟΓΡΑΜΜΑΤΩΝ ΕΚΠΑΙΔΕΥΣΗΣ ΜΕ ΣΤΟΧΟ ΤΗΝ ΠΕΡΙΒΑΛΛΟΝΤΙΚΗ ΕΥΑΙΣΘΗΤΟΠΟΙΗΣΗ ΑΤΟΜΩΝ ΜΕ ΕΙΔΙΚΕΣ ΑΝΑΓΚΕΣ ΚΑΙ ΤΗΝ ΚΟΙΝΩΝΙΚΗ ΤΟΥΣ ΕΝΣΩΜΑΤΩΣΗ

ΑΝΑΠΤΥΞΗ ΠΡΟΓΡΑΜΜΑΤΩΝ ΕΚΠΑΙΔΕΥΣΗΣ ΜΕ ΣΤΟΧΟ ΤΗΝ ΠΕΡΙΒΑΛΛΟΝΤΙΚΗ ΕΥΑΙΣΘΗΤΟΠΟΙΗΣΗ ΑΤΟΜΩΝ ΜΕ ΕΙΔΙΚΕΣ ΑΝΑΓΚΕΣ ΚΑΙ ΤΗΝ ΚΟΙΝΩΝΙΚΗ ΤΟΥΣ ΕΝΣΩΜΑΤΩΣΗ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΙΑΣ ΠΑΙΔΑΓΩΓΙΚΟ ΤΜΗΜΑ ΕΙΔΙΚΗΣ ΑΓΩΓΗΣ ΧΡΙΣΤΙΝΑ Σ. ΛΑΠΠΑ ΑΝΑΠΤΥΞΗ ΠΡΟΓΡΑΜΜΑΤΩΝ ΕΚΠΑΙΔΕΥΣΗΣ ΜΕ ΣΤΟΧΟ ΤΗΝ ΠΕΡΙΒΑΛΛΟΝΤΙΚΗ ΕΥΑΙΣΘΗΤΟΠΟΙΗΣΗ ΑΤΟΜΩΝ ΜΕ ΕΙΔΙΚΕΣ ΑΝΑΓΚΕΣ ΚΑΙ ΤΗΝ ΚΟΙΝΩΝΙΚΗ ΤΟΥΣ

Διαβάστε περισσότερα

Υφαλμύρινση Παράκτιων Υδροφορέων - προσδιορισμός και αντιμετώπιση του φαινομένου με συνδυασμό μοντέλων προσομοίωσης και μεθόδων βελτιστοποίησης

Υφαλμύρινση Παράκτιων Υδροφορέων - προσδιορισμός και αντιμετώπιση του φαινομένου με συνδυασμό μοντέλων προσομοίωσης και μεθόδων βελτιστοποίησης Υφαλμύρινση Παράκτιων Υδροφορέων - προσδιορισμός και αντιμετώπιση του φαινομένου με συνδυασμό μοντέλων προσομοίωσης και μεθόδων βελτιστοποίησης Καθ. Καρατζάς Γεώργιος Υπ. Διδ. Δόκου Ζωή Σχολή Μηχανικών

Διαβάστε περισσότερα

Χημική Τεχνολογία. Ενότητα 1: Στατιστική Επεξεργασία Μετρήσεων. Ευάγγελος Φουντουκίδης Τμήμα Μηχανολόγων Μηχανικών Τ.Ε.

Χημική Τεχνολογία. Ενότητα 1: Στατιστική Επεξεργασία Μετρήσεων. Ευάγγελος Φουντουκίδης Τμήμα Μηχανολόγων Μηχανικών Τ.Ε. ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα Χημική Τεχνολογία Ενότητα 1: Στατιστική Επεξεργασία Μετρήσεων Ευάγγελος Φουντουκίδης Τμήμα Μηχανολόγων Μηχανικών Τ.Ε. Άδειες Χρήσης

Διαβάστε περισσότερα

Ανάλυση διακύμανσης (Μέρος 1 ο ) 17/3/2017

Ανάλυση διακύμανσης (Μέρος 1 ο ) 17/3/2017 Ανάλυση διακύμανσης (Μέρος 1 ο ) 17/3/2017 2 Γιατί ανάλυση διακύμανσης; (1) Ας θεωρήσουμε k πληθυσμούς με μέσες τιμές μ 1, μ 2,, μ k, αντίστοιχα Πως μπορούμε να συγκρίνουμε τις μέσες τιμές k πληθυσμών

Διαβάστε περισσότερα

ΠΠΜ 512: Ανάλυση Κινδύνου για Πολιτικούς Μηχανικούς και Μηχανικούς Περιβάλλοντος

ΠΠΜ 512: Ανάλυση Κινδύνου για Πολιτικούς Μηχανικούς και Μηχανικούς Περιβάλλοντος ΠΠΜ 512: Ανάλυση Κινδύνου για Πολιτικούς Μηχανικούς και Μηχανικούς Περιβάλλοντος Εαρινό Εξάμηνο 2008 Τρίτη 6:00 μμ 9:00 μμ ΧΩΔ01-101 Το μάθημα περιλαμβάνει προχωρημένες έννοιες σε θέματα πιθανοτήτων, συλλογής

Διαβάστε περισσότερα

HMY 220: Σήματα και Συστήματα Ι

HMY 220: Σήματα και Συστήματα Ι HMY 220: Σήματα και Συστήματα Ι Διδάσκων: Γεώργιος Μήτσης, Λέκτορας, Τμήμα ΗΜΜΥ Γραφείο: 401 Πράσινο Άλσος Ώρες γραφείου: Οποτεδήποτε (κατόπιν επικοινωνίας) Ηλ. Ταχ.: : gmitsis@ucy.ac.cy Ιωάννης Τζιώρτζης

Διαβάστε περισσότερα

ΕΥΦΥΗΣ ΕΛΕΓΧΟΣ. Ενότητα #12: Εισαγωγή στα Nευρωνικά Δίκτυα. Αναστάσιος Ντούνης Τμήμα Μηχανικών Αυτοματισμού Τ.Ε.

ΕΥΦΥΗΣ ΕΛΕΓΧΟΣ. Ενότητα #12: Εισαγωγή στα Nευρωνικά Δίκτυα. Αναστάσιος Ντούνης Τμήμα Μηχανικών Αυτοματισμού Τ.Ε. ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα ΕΥΦΥΗΣ ΕΛΕΓΧΟΣ Ενότητα #12: Εισαγωγή στα Nευρωνικά Δίκτυα Αναστάσιος Ντούνης Τμήμα Μηχανικών Αυτοματισμού Τ.Ε. Άδειες Χρήσης Το

Διαβάστε περισσότερα

Μοντέλα Παλινδρόμησης. Άγγελος Μάρκος, Λέκτορας ΠΤ Ε, ΠΘ

Μοντέλα Παλινδρόμησης. Άγγελος Μάρκος, Λέκτορας ΠΤ Ε, ΠΘ Μοντέλα Παλινδρόμησης Άγγελος Μάρκος, Λέκτορας ΠΤ Ε, ΠΘ Εισαγωγή (1) Σε αρκετές περιπτώσεις επίλυσης προβλημάτων ενδιαφέρει η ταυτόχρονη μελέτη δύο ή περισσότερων μεταβλητών, για να προσδιορίσουμε με ποιο

Διαβάστε περισσότερα

Ανάπτυξη και δηµιουργία µοντέλων προσοµοίωσης ροής και µεταφοράς µάζας υπογείων υδάτων σε καρστικούς υδροφορείς µε χρήση θεωρίας νευρωνικών δικτύων

Ανάπτυξη και δηµιουργία µοντέλων προσοµοίωσης ροής και µεταφοράς µάζας υπογείων υδάτων σε καρστικούς υδροφορείς µε χρήση θεωρίας νευρωνικών δικτύων Ανάπτυξη και δηµιουργία µοντέλων προσοµοίωσης ροής και µεταφοράς µάζας υπογείων υδάτων σε καρστικούς υδροφορείς µε χρήση θεωρίας νευρωνικών δικτύων Περίληψη ιδακτορικής ιατριβής Τριχακης Ιωάννης Εργαστήριο

Διαβάστε περισσότερα

Σ ΤΑΤ Ι Σ Τ Ι Κ Η. Statisticum collegium iv

Σ ΤΑΤ Ι Σ Τ Ι Κ Η. Statisticum collegium iv Σ ΤΑΤ Ι Σ Τ Ι Κ Η i Statisticum collegium iv Στατιστική Συμπερασματολογία Ι Σημειακές Εκτιμήσεις Διαστήματα Εμπιστοσύνης Στατιστική Συμπερασματολογία (Statistical Inference) Το πεδίο της Στατιστικής Συμπερασματολογία,

Διαβάστε περισσότερα

Εισαγωγή στα Τεχνητά Νευρωνικά Δίκτυα. "Τεχνητά Νευρωνικά Δίκτυα" (Διαφάνειες), Α. Λύκας, Παν. Ιωαννίνων

Εισαγωγή στα Τεχνητά Νευρωνικά Δίκτυα. Τεχνητά Νευρωνικά Δίκτυα (Διαφάνειες), Α. Λύκας, Παν. Ιωαννίνων Εισαγωγή στα Τεχνητά Νευρωνικά Δίκτυα Τεχνητή Νοημοσύνη (Artificial Intelligence) Ανάπτυξη μεθόδων και τεχνολογιών για την επίλυση προβλημάτων στα οποία ο άνθρωπος υπερέχει (?) του υπολογιστή Συλλογισμοί

Διαβάστε περισσότερα

2. ΧΡΗΣΗ ΣΤΑΤΙΣΤΙΚΩΝ ΠΑΚΕΤΩΝ ΣΤΗ ΓΡΑΜΜΙΚΗ ΠΑΛΙΝΔΡΟΜΗΣΗ

2. ΧΡΗΣΗ ΣΤΑΤΙΣΤΙΚΩΝ ΠΑΚΕΤΩΝ ΣΤΗ ΓΡΑΜΜΙΚΗ ΠΑΛΙΝΔΡΟΜΗΣΗ 2. ΧΡΗΣΗ ΣΤΑΤΙΣΤΙΚΩΝ ΠΑΚΕΤΩΝ ΣΤΗ ΓΡΑΜΜΙΚΗ ΠΑΛΙΝΔΡΟΜΗΣΗ Η χρησιμοποίηση των τεχνικών της παλινδρόμησης για την επίλυση πρακτικών προβλημάτων έχει διευκολύνει εξαιρετικά από την χρήση διαφόρων στατιστικών

Διαβάστε περισσότερα

Στατιστική Ι. Ανάλυση Παλινδρόμησης

Στατιστική Ι. Ανάλυση Παλινδρόμησης Στατιστική Ι Ανάλυση Παλινδρόμησης Ανάλυση παλινδρόμησης Η πρόβλεψη πωλήσεων, εσόδων, κόστους, παραγωγής, κτλ. είναι η βάση του επιχειρηματικού σχεδιασμού. Η ανάλυση παλινδρόμησης και συσχέτισης είναι

Διαβάστε περισσότερα

Πανεπιστήµιο Κύπρου Πολυτεχνική Σχολή

Πανεπιστήµιο Κύπρου Πολυτεχνική Σχολή Πανεπιστήµιο Κύπρου Πολυτεχνική Σχολή Τµήµα Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών ΗΜΜΥ 795: ΑΝΑΓΝΩΡΙΣΗ ΠΡΟΤΥΠΩΝ Ακαδηµαϊκό έτος 2010-11 Χειµερινό Εξάµηνο Τελική εξέταση Τρίτη, 21 εκεµβρίου 2010,

Διαβάστε περισσότερα

Αποκλίσεις των εκτιμήσεων όγκου και αξίας των δένδρων υλοτομίας

Αποκλίσεις των εκτιμήσεων όγκου και αξίας των δένδρων υλοτομίας Αποκλίσεις των εκτιμήσεων όγκου και αξίας των δένδρων υλοτομίας στο Πανεπιστημιακό Δάσος Περτουλίου Ιωάννης Παπαδόπουλος 1, Γεώργιος Σταματέλλος, Νικόλαος Στάμου 3 Περίληψη Οι ακριβείς εκτιμήσεις του όγκου

Διαβάστε περισσότερα

Υπολογιστική Νοημοσύνη. Μάθημα 9: Γενίκευση

Υπολογιστική Νοημοσύνη. Μάθημα 9: Γενίκευση Υπολογιστική Νοημοσύνη Μάθημα 9: Γενίκευση Υπερπροσαρμογή (Overfitting) Ένα από τα βασικά προβλήματα που μπορεί να εμφανιστεί κατά την εκπαίδευση νευρωνικών δικτύων είναι αυτό της υπερβολικής εκπαίδευσης.

Διαβάστε περισσότερα

Μάθηση και Γενίκευση. "Τεχνητά Νευρωνικά Δίκτυα" (Διαφάνειες), Α. Λύκας, Παν. Ιωαννίνων

Μάθηση και Γενίκευση. Τεχνητά Νευρωνικά Δίκτυα (Διαφάνειες), Α. Λύκας, Παν. Ιωαννίνων Μάθηση και Γενίκευση Το Πολυεπίπεδο Perceptron (MultiLayer Perceptron (MLP)) Έστω σύνολο εκπαίδευσης D={(x n,t n )}, n=1,,n. x n =(x n1,, x nd ) T, t n =(t n1,, t np ) T Θα πρέπει το MLP να έχει d νευρώνες

Διαβάστε περισσότερα

ΜΟΝΤΕΛΑ ΛΗΨΗΣ ΑΠΟΦΑΣΕΩΝ

ΜΟΝΤΕΛΑ ΛΗΨΗΣ ΑΠΟΦΑΣΕΩΝ ΜΟΝΤΕΛΑ ΛΗΨΗΣ ΑΠΟΦΑΣΕΩΝ Ενότητα 8 Τμήμα Εφαρμοσμένης Πληροφορικής Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό υλικό, όπως εικόνες, που υπόκειται

Διαβάστε περισσότερα

ΤΕΧΝΟΛΟΓΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΣΧΟΛΗ ΓΕΩΤΕΧΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΚΑΙ ΔΙΑΧΕΙΡΙΣΗΣ ΠΕΡΙΒΑΛΛΟΝΤΟΣ. Πτυχιακή εργασία

ΤΕΧΝΟΛΟΓΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΣΧΟΛΗ ΓΕΩΤΕΧΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΚΑΙ ΔΙΑΧΕΙΡΙΣΗΣ ΠΕΡΙΒΑΛΛΟΝΤΟΣ. Πτυχιακή εργασία ΤΕΧΝΟΛΟΓΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΣΧΟΛΗ ΓΕΩΤΕΧΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΚΑΙ ΔΙΑΧΕΙΡΙΣΗΣ ΠΕΡΙΒΑΛΛΟΝΤΟΣ Πτυχιακή εργασία ΜΑΘΗΜΑΤΙΚΟΙ ΑΛΓΟΡΙΘΜΟΙ ΓΙΑ ΑΝΑΛΥΣΗ ΠΙΣΤΟΠΟΙΗΤΙΚΩΝ ΕΝΕΡΓΕΙΑΚΗΣ ΑΠΟΔΟΣΗΣ ΚΤΙΡΙΩΝ Εβελίνα Θεμιστοκλέους

Διαβάστε περισσότερα

Η πρόληψη των κατακλίσεων σε βαριά πάσχοντες και η χρήση ειδικών στρωμάτων για την πρόληψη και αντιμετώπιση των κατακλίσεων

Η πρόληψη των κατακλίσεων σε βαριά πάσχοντες και η χρήση ειδικών στρωμάτων για την πρόληψη και αντιμετώπιση των κατακλίσεων ΤΕΧΝΟΛΟΓΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΣΧΟΛΗ ΕΠΙΣΤΗΜΩΝ ΥΓΕΙΑΣ ΠΤΥΧΙΑΚΗ ΕΡΓΑΣΙΑ Η πρόληψη των κατακλίσεων σε βαριά πάσχοντες και η χρήση ειδικών στρωμάτων για την πρόληψη και αντιμετώπιση των κατακλίσεων Ονοματεπώνυμο

Διαβάστε περισσότερα

Η ΑΝΑΓΚΗ ΓΙΑ ΠΟΣΟΤΙΚΟΠΟΙΗΣΗ ΣΤΗΝ ΕΝΟΡΓΑΝΗ ΑΝΑΛΥΣΗ

Η ΑΝΑΓΚΗ ΓΙΑ ΠΟΣΟΤΙΚΟΠΟΙΗΣΗ ΣΤΗΝ ΕΝΟΡΓΑΝΗ ΑΝΑΛΥΣΗ Η ΑΝΑΓΚΗ ΓΙΑ ΠΟΣΟΤΙΚΟΠΟΙΗΣΗ ΣΤΗΝ ΕΝΟΡΓΑΝΗ ΑΝΑΛΥΣΗ Οι Ενόργανες Μέθοδοι Ανάλυσης είναι σχετικές μέθοδοι και σχεδόν στο σύνολο τους παρέχουν την αριθμητική τιμή μιας φυσικής ή φυσικοχημικής ιδιότητας, η

Διαβάστε περισσότερα

Μέρος V. Ανάλυση Παλινδρόμηση (Regression Analysis)

Μέρος V. Ανάλυση Παλινδρόμηση (Regression Analysis) Μέρος V. Ανάλυση Παλινδρόμηση (Regresso Aalss) Βασικές έννοιες Απλή Γραμμική Παλινδρόμηση Πολλαπλή Παλινδρόμηση Εφαρμοσμένη Στατιστική Μέρος 5 ο - Κ. Μπλέκας () Βασικές έννοιες Έστω τ.μ. Χ,Υ όπου υπάρχει

Διαβάστε περισσότερα

HMY 795: Αναγνώριση Προτύπων. Διαλέξεις 15-16

HMY 795: Αναγνώριση Προτύπων. Διαλέξεις 15-16 HMY 795: Αναγνώριση Προτύπων Διαλέξεις 15-16 Νευρωνικά Δίκτυα(Neural Networks) Fisher s linear discriminant: Μείωση διαστάσεων (dimensionality reduction) y Τ =w x s + s =w S w 2 2 Τ 1 2 W ( ) 2 2 ( ) m2

Διαβάστε περισσότερα

Τηλ./Fax: ,

Τηλ./Fax: , Ποσοτικές Μέθοδοι στη Χρηματοοικονομική Π.Μ.Σ. Λογιστικής & Χρηματοοικονομικής Ανδριανός Ε. Τσεκρέκος Οκτώβριος Νοέμβριος, 2015 Περίληψη Το παρόν κείμενο παρέχει πληροφορίες για την διεξαγωγή του μαθήματος

Διαβάστε περισσότερα

Πρόλογος... xv. Κεφάλαιο 1. Εισαγωγικές Έννοιες... 1

Πρόλογος... xv. Κεφάλαιο 1. Εισαγωγικές Έννοιες... 1 Πρόλογος... xv Κεφάλαιο 1. Εισαγωγικές Έννοιες... 1 1.1.Ιστορική Αναδρομή... 1 1.2.Βασικές Έννοιες... 5 1.3.Πλαίσιο ειγματοληψίας (Sampling Frame)... 9 1.4.Κατηγορίες Ιατρικών Μελετών.... 11 1.4.1.Πειραµατικές

Διαβάστε περισσότερα

Μιχαήλ Νικητάκης 1, Ανέστης Σίτας 2, Γιώργος Παπαδουράκης Ph.D 1, Θοδωρής Πιτηκάρης 3

Μιχαήλ Νικητάκης 1, Ανέστης Σίτας 2, Γιώργος Παπαδουράκης Ph.D 1, Θοδωρής Πιτηκάρης 3 Information literacy and the autonomous learner Μιχαήλ Νικητάκης 1, Ανέστης Σίτας 2, Γιώργος Παπαδουράκης Ph.D 1, Θοδωρής Πιτηκάρης 3 1) Τεχνολογικό Εκπαιδευτικό Ίδρυµα Κρήτης, nikit@lib.teiher.gr, r,

Διαβάστε περισσότερα

Απλή Παλινδρόμηση και Συσχέτιση

Απλή Παλινδρόμηση και Συσχέτιση Απλή Παλινδρόμηση και Συσχέτιση Πωλήσεις, Δαπάνες Διαφήμισης και Αριθμός Πωλητών Έτος Πωλήσεις (χιλ ) Διαφήμιση (χιλ ) Πωλητές (Άτομα) Έτος Πωλήσεις (χιλ ) Διαφήμιση (χιλ ) Πωλητές (Άτομα) 98 050 6 3 989

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΑΤΡΩΝ ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ Η/Υ & ΠΛΗΡΟΦΟΡΙΚΗΣ. του Γεράσιμου Τουλιάτου ΑΜ: 697

ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΑΤΡΩΝ ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ Η/Υ & ΠΛΗΡΟΦΟΡΙΚΗΣ. του Γεράσιμου Τουλιάτου ΑΜ: 697 ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΑΤΡΩΝ ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ Η/Υ & ΠΛΗΡΟΦΟΡΙΚΗΣ ΔΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ ΣΤΑ ΠΛΑΙΣΙΑ ΤΟΥ ΜΕΤΑΠΤΥΧΙΑΚΟΥ ΔΙΠΛΩΜΑΤΟΣ ΕΙΔΙΚΕΥΣΗΣ ΕΠΙΣΤΗΜΗ ΚΑΙ ΤΕΧΝΟΛΟΓΙΑ ΤΩΝ ΥΠΟΛΟΓΙΣΤΩΝ του Γεράσιμου Τουλιάτου

Διαβάστε περισσότερα

ΒΕΛΤΙΣΤΕΣ ΙΑ ΡΟΜΕΣ ΣΕ ΙΚΤΥΑ ΜΕΤΑΒΛΗΤΟΥ ΚΟΣΤΟΥΣ

ΒΕΛΤΙΣΤΕΣ ΙΑ ΡΟΜΕΣ ΣΕ ΙΚΤΥΑ ΜΕΤΑΒΛΗΤΟΥ ΚΟΣΤΟΥΣ ΒΕΛΤΙΣΤΕΣ ΙΑ ΡΟΜΕΣ ΣΕ ΙΚΤΥΑ ΜΕΤΑΒΛΗΤΟΥ ΚΟΣΤΟΥΣ Μωυσιάδης Πολυχρόνης, Ανδρεάδης Ιωάννης Τμήμα Μαθηματικών Α.Π.Θ. ΠΕΡΙΛΗΨΗ Στην εργασία αυτή παρουσιάζεται μία μελέτη για την ελάχιστη διαδρομή σε δίκτυα μεταβλητού

Διαβάστε περισσότερα

ΣΤΑΤΙΣΤΙΚΗ ΕΠΙΧΕΙΡΗΣΕΩΝ ΕΙΔΙΚΑ ΘΕΜΑΤΑ. Κεφάλαιο 10. Εισαγωγή στην εκτιμητική

ΣΤΑΤΙΣΤΙΚΗ ΕΠΙΧΕΙΡΗΣΕΩΝ ΕΙΔΙΚΑ ΘΕΜΑΤΑ. Κεφάλαιο 10. Εισαγωγή στην εκτιμητική ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΔΥΤΙΚΗΣ ΕΛΛΑΔΑΣ ΤΜΗΜΑ ΔΙΟΙΚΗΣΗΣ ΕΠΙΧΕΙΡΗΣΕΩΝ ΠΑΤΡΑΣ Εργαστήριο Λήψης Αποφάσεων & Επιχειρησιακού Προγραμματισμού Καθηγητής Ι. Μητρόπουλος ΣΤΑΤΙΣΤΙΚΗ ΕΠΙΧΕΙΡΗΣΕΩΝ ΕΙΔΙΚΑ ΘΕΜΑΤΑ

Διαβάστε περισσότερα

iii ΠΕΡΙΕΧΟΜΕΝΑ Πρόλογος

iii ΠΕΡΙΕΧΟΜΕΝΑ Πρόλογος iii ΠΕΡΙΕΧΟΜΕΝΑ Πρόλογος xi 1 Αντικείμενα των Πιθανοτήτων και της Στατιστικής 1 1.1 Πιθανοτικά Πρότυπα και Αντικείμενο των Πιθανοτήτων, 1 1.2 Αντικείμενο της Στατιστικής, 3 1.3 Ο Ρόλος των Πιθανοτήτων

Διαβάστε περισσότερα

ΠΕΡΙΛΗΨΗ. Λέξεις κλειδιά: Υγεία και συμπεριφορές υγείας, χρήση, ψυχότροπες ουσίες, κοινωνικό κεφάλαιο.

ΠΕΡΙΛΗΨΗ. Λέξεις κλειδιά: Υγεία και συμπεριφορές υγείας, χρήση, ψυχότροπες ουσίες, κοινωνικό κεφάλαιο. Α.Τ.Ε.Ι. ΚΡΗΤΗΣ Σ.Ε.Υ.Π. ΤΜΗΜΑ ΚΟΙΝΩΝΙΚΗΣ ΕΡΓΑΣΙΑΣ ΠΤΥΧΙΑΚΗ ΕΡΓΑΣΙΑ Τίτλος: «Χρήση ψυχοτρόπων ουσιών από μαθητές Α Λυκείου της Δευτεροβάθμιας Εκπαίδευσης του Νομού Ηρακλείου και ο ρόλος του Κοινωνικού

Διαβάστε περισσότερα

Διοίκησης Επιχειρήσεων. ΠΡΟΓΡΑΜΜΑ eμβα ΚΩΔ. ΤΜΗΜΑ ΤΙΤΛΟΣ ΔΙΕΠ5 ΜΑΘΗΜΑΤΟΣ ΜΑΘΗΜΑΤΟΣ. Credits 6 ΕΞΑΜΗΝΟ 3 ος κύκλος ΟΝΟΜ/ΝΟ ΔΙΔΑΣΚΟΝΤΟΣ

Διοίκησης Επιχειρήσεων. ΠΡΟΓΡΑΜΜΑ eμβα ΚΩΔ. ΤΜΗΜΑ ΤΙΤΛΟΣ ΔΙΕΠ5 ΜΑΘΗΜΑΤΟΣ ΜΑΘΗΜΑΤΟΣ. Credits 6 ΕΞΑΜΗΝΟ 3 ος κύκλος ΟΝΟΜ/ΝΟ ΔΙΔΑΣΚΟΝΤΟΣ ΤΜΗΜΑ Διοίκησης Επιχειρήσεων ΠΡΟΓΡΑΜΜΑ eμβα ΚΩΔ. ΤΙΤΛΟΣ Επιχειρησιακή ΔΙΕΠ5 ΜΑΘΗΜΑΤΟΣ ΜΑΘΗΜΑΤΟΣ Έρευνα Credits 6 ΕΞΑΜΗΝΟ 3 ος κύκλος ΟΝΟΜ/ΝΟ ΔΙΔΑΣΚΟΝΤΟΣ Βασίλης Αγγελής Ε-ΜAIL v.angelis@aegean.gr ΠΕΡΙΓΡΑΦΗ

Διαβάστε περισσότερα

Γεώργιος ΡΟΥΒΕΛΑΣ 1, Κων/νος ΞΗΝΤΑΡΑΣ / ΑΓΕΤ ΗΡΑΚΛΗΣ 2, Λέξεις κλειδιά: Αδρανή, άργιλος, ασβεστολιθική παιπάλη, ισοδύναμο άμμου, μπλε του μεθυλενίου

Γεώργιος ΡΟΥΒΕΛΑΣ 1, Κων/νος ΞΗΝΤΑΡΑΣ / ΑΓΕΤ ΗΡΑΚΛΗΣ 2, Λέξεις κλειδιά: Αδρανή, άργιλος, ασβεστολιθική παιπάλη, ισοδύναμο άμμου, μπλε του μεθυλενίου Προσδιορισμός περιεκτικότητας σε άργιλο ή πλαστικών λεπτών στα αδρανή μέσω των δοκιμών Ισοδυνάμου άμμου (ASTM D 2419-2 & EN 933 8) και Μπλε του μεθυλενίου (ΕΝ 933.9) Σύγκριση αποτελεσμάτων Determination

Διαβάστε περισσότερα

ΠΠΜ 512: Ανάλυση Κινδύνου για Πολιτικούς Μηχανικούς και Μηχανικούς Περιβάλλοντος

ΠΠΜ 512: Ανάλυση Κινδύνου για Πολιτικούς Μηχανικούς και Μηχανικούς Περιβάλλοντος ΠΠΜ 512: Ανάλυση Κινδύνου για Πολιτικούς Μηχανικούς και Μηχανικούς Περιβάλλοντος Εαρινό Εξάµηνο 2010/11 Τρίτη 6:00 µµ 9:00 µµ ΧΩΔ01-002 Το µάθηµα περιλαµβάνει προχωρηµένες έννοιες σε θέµατα πιθανοτήτων,

Διαβάστε περισσότερα

Data Analytics Και Ευφυή Συστήματα Πρόβλεψης Δεδομένων Σε Χρονοσειρά. Εφαρμογή Στον Εναρμονισμένο Δείκτη Τιμών Καταναλωτή.

Data Analytics Και Ευφυή Συστήματα Πρόβλεψης Δεδομένων Σε Χρονοσειρά. Εφαρμογή Στον Εναρμονισμένο Δείκτη Τιμών Καταναλωτή. Data Analytics Και Ευφυή Συστήματα Πρόβλεψης Δεδομένων Σε Χρονοσειρά. Εφαρμογή Στον Εναρμονισμένο Δείκτη Τιμών Καταναλωτή. Τόγιας Παναγιώτης ΤΕΙ Δυτικής Ελλάδας ptogias@outlook.com Μαργαρίτης Σωτήρης ΤΕΙ

Διαβάστε περισσότερα

Ταξινόμηση και διαχρονική παρακολούθηση των βοσκόμενων δασικών εκτάσεων στη λεκάνη απορροής του χειμάρρου Μπογδάνα Ν. Θεσσαλονίκης

Ταξινόμηση και διαχρονική παρακολούθηση των βοσκόμενων δασικών εκτάσεων στη λεκάνη απορροής του χειμάρρου Μπογδάνα Ν. Θεσσαλονίκης Ταξινόμηση και διαχρονική παρακολούθηση των βοσκόμενων δασικών εκτάσεων στη λεκάνη απορροής του χειμάρρου Μπογδάνα Ν. Θεσσαλονίκης Α. Αϊναλής 1, Ι. Μελιάδης 2, Π. Πλατής 3 και Κ. Τσιουβάρας 4 1 Διεύθυνση

Διαβάστε περισσότερα

ΟΡΙΣΜΟΣ ΤΗΣ ΕΠΙΧΕΙΡΗΣΙΑΚΗΣ ΕΡΕΥΝΑΣ

ΟΡΙΣΜΟΣ ΤΗΣ ΕΠΙΧΕΙΡΗΣΙΑΚΗΣ ΕΡΕΥΝΑΣ ΟΡΙΣΜΟΣ ΤΗΣ ΕΠΙΧΕΙΡΗΣΙΑΚΗΣ ΕΡΕΥΝΑΣ (MANAGEMENT SCIENCE/OPERATIONS RESEARCH) Δρ. Βασιλική Καζάνα Αναπλ. Καθηγήτρια ΤΕΙ Καβάλας, Τμήμα Δασοπονίας & Διαχείρισης Φυσικού Περιβάλλοντος Δράμας Εργαστήριο Δασικής

Διαβάστε περισσότερα

ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΕΦΑΡΜΟΣΜΕΝΩΝ ΜΑΘΗΜΑΤΙΚΩΝ ΚΑΙ ΦΥΣΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΠΛΗΡΟΦΟΡΙΑΣ ΠΑΡΟΥΣΙΑΣΗ ΤΕΛΙΚΗΣ ΕΡΓΑΣΙΑΣ ΛΙΝΑ ΜΑΣΣΟΥ

ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΕΦΑΡΜΟΣΜΕΝΩΝ ΜΑΘΗΜΑΤΙΚΩΝ ΚΑΙ ΦΥΣΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΠΛΗΡΟΦΟΡΙΑΣ ΠΑΡΟΥΣΙΑΣΗ ΤΕΛΙΚΗΣ ΕΡΓΑΣΙΑΣ ΛΙΝΑ ΜΑΣΣΟΥ ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΕΦΑΡΜΟΣΜΕΝΩΝ ΜΑΘΗΜΑΤΙΚΩΝ ΚΑΙ ΦΥΣΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΑΛΓΟΡΙΘΜΟΙ ΕΞΟΡΥΞΗΣ ΠΛΗΡΟΦΟΡΙΑΣ ΠΑΡΟΥΣΙΑΣΗ ΤΕΛΙΚΗΣ ΕΡΓΑΣΙΑΣ ΛΙΝΑ ΜΑΣΣΟΥ Δ.Π.Μ.Σ: «Εφαρμοσμένες Μαθηματικές Επιστήμες» 2008

Διαβάστε περισσότερα

ΠΟΛΥΤΕΧΝΕΙΟ ΚΡΗΤΗΣ ΣΧΟΛΗ ΜΗΧΑΝΙΚΩΝ ΠΕΡΙΒΑΛΛΟΝΤΟΣ

ΠΟΛΥΤΕΧΝΕΙΟ ΚΡΗΤΗΣ ΣΧΟΛΗ ΜΗΧΑΝΙΚΩΝ ΠΕΡΙΒΑΛΛΟΝΤΟΣ ΠΟΛΥΤΕΧΝΕΙΟ ΚΡΗΤΗΣ ΣΧΟΛΗ ΜΗΧΑΝΙΚΩΝ ΠΕΡΙΒΑΛΛΟΝΤΟΣ Τομέας Περιβαλλοντικής Υδραυλικής και Γεωπεριβαλλοντικής Μηχανικής (III) Εργαστήριο Γεωπεριβαλλοντικής Μηχανικής TECHNICAL UNIVERSITY OF CRETE SCHOOL of

Διαβάστε περισσότερα

ΟΙΚΟΝΟΜΕΤΡΙΑ. Ενότητα 2: Παλινδρόμηση. Αναπλ. Καθηγητής Νικόλαος Σαριαννίδης Τμήμα Διοίκησης Επιχειρήσεων (Γρεβενά)

ΟΙΚΟΝΟΜΕΤΡΙΑ. Ενότητα 2: Παλινδρόμηση. Αναπλ. Καθηγητής Νικόλαος Σαριαννίδης Τμήμα Διοίκησης Επιχειρήσεων (Γρεβενά) ΟΙΚΟΝΟΜΕΤΡΙΑ Ενότητα 2: Παλινδρόμηση. Αναπλ. Καθηγητής Νικόλαος Σαριαννίδης Τμήμα Διοίκησης Επιχειρήσεων (Γρεβενά) Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons.

Διαβάστε περισσότερα

MIA MONTE CARLO ΜΕΛΕΤΗ ΤΩΝ ΕΚΤΙΜΗΤΩΝ RIDGE ΚΑΙ ΕΛΑΧΙΣΤΩΝ ΤΕΤΡΑΓΩΝΩΝ

MIA MONTE CARLO ΜΕΛΕΤΗ ΤΩΝ ΕΚΤΙΜΗΤΩΝ RIDGE ΚΑΙ ΕΛΑΧΙΣΤΩΝ ΤΕΤΡΑΓΩΝΩΝ «ΣΠΟΥΔΑΙ», Τόμος 41, Τεύχος 2ο, Πανεπιστήμιο Πειραιώς «SPOUDAI», Vol. 41, No 2, University of Piraeus MIA MONTE CARLO ΜΕΛΕΤΗ ΤΩΝ ΕΚΤΙΜΗΤΩΝ RIDGE ΚΑΙ ΕΛΑΧΙΣΤΩΝ ΤΕΤΡΑΓΩΝΩΝ Του Πάνου Αναστ. Πανόπουλου Οικονομικό

Διαβάστε περισσότερα

Εφαρμοσμένη Στατιστική

Εφαρμοσμένη Στατιστική ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Εφαρμοσμένη Στατιστική Παλινδρόμηση Διδάσκων: Επίκουρος Καθηγητής Κωνσταντίνος Μπλέκας Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης

Διαβάστε περισσότερα

Κεφάλαιο 14: Διαστασιολόγηση αγωγών και έλεγχος πιέσεων δικτύων διανομής

Κεφάλαιο 14: Διαστασιολόγηση αγωγών και έλεγχος πιέσεων δικτύων διανομής Κεφάλαιο 14: Διαστασιολόγηση αγωγών και έλεγχος πιέσεων δικτύων διανομής Έλεγχος λειτουργίας δικτύων διανομής με χρήση μοντέλων υδραυλικής ανάλυσης Βασικό ζητούμενο της υδραυλικής ανάλυσης είναι ο έλεγχος

Διαβάστε περισσότερα

Ανδρέας Παπαζώης. Τμ. Διοίκησης Επιχειρήσεων

Ανδρέας Παπαζώης. Τμ. Διοίκησης Επιχειρήσεων Ανδρέας Παπαζώης Τμ. Διοίκησης Επιχειρήσεων Περιεχόμενα Εργ. Μαθήματος Βιολογικά Νευρωνικά Δίκτυα Η έννοια των Τεχνητών Νευρωνικών Δικτύων Η δομή ενός νευρώνα Διαδικασία εκπαίδευσης Παραδείγματα απλών

Διαβάστε περισσότερα

ΜΙΑ ΜΕΛΕΤΗ ΠΕΡΙΠΤΩΣΗΣ: ΣΤΑΤΙΣΤΙΚΗ ΕΠΕΞΕΡΓΑΣΙΑ ΤΩΝ ΒΑΘΜΟΛΟΓΙΩΝ ΤΩΝ ΜΑΘΗΤΩΝ ΕΝΟΣ ΛΥΚΕΙΟΥ ΑΠΟ ΤΟ 2000 ΩΣ ΤΟ 2013.

ΜΙΑ ΜΕΛΕΤΗ ΠΕΡΙΠΤΩΣΗΣ: ΣΤΑΤΙΣΤΙΚΗ ΕΠΕΞΕΡΓΑΣΙΑ ΤΩΝ ΒΑΘΜΟΛΟΓΙΩΝ ΤΩΝ ΜΑΘΗΤΩΝ ΕΝΟΣ ΛΥΚΕΙΟΥ ΑΠΟ ΤΟ 2000 ΩΣ ΤΟ 2013. ΜΙΑ ΜΕΛΕΤΗ ΠΕΡΙΠΤΩΣΗΣ: ΣΤΑΤΙΣΤΙΚΗ ΕΠΕΞΕΡΓΑΣΙΑ ΤΩΝ ΒΑΘΜΟΛΟΓΙΩΝ ΤΩΝ ΜΑΘΗΤΩΝ ΕΝΟΣ ΛΥΚΕΙΟΥ ΑΠΟ ΤΟ 2000 ΩΣ ΤΟ 2013. Πρακτικές και καινοτομίες στην εκπαίδευση και την έρευνα. Άγγελος Μπέλλος Καθηγητής Μαθηματικών

Διαβάστε περισσότερα

Μια από τις σημαντικότερες δυσκολίες που συναντά ο φυσικός στη διάρκεια ενός πειράματος, είναι τα σφάλματα.

Μια από τις σημαντικότερες δυσκολίες που συναντά ο φυσικός στη διάρκεια ενός πειράματος, είναι τα σφάλματα. Εισαγωγή Μετρήσεις-Σφάλματα Πολλές φορές θα έχει τύχει να ακούσουμε τη λέξη πείραμα, είτε στο μάθημα είτε σε κάποια είδηση που αφορά τη Φυσική, τη Χημεία ή τη Βιολογία. Είναι όμως γενικώς παραδεκτό ότι

Διαβάστε περισσότερα

6. Στατιστικές μέθοδοι εκπαίδευσης

6. Στατιστικές μέθοδοι εκπαίδευσης 6. Στατιστικές μέθοδοι εκπαίδευσης Μία διαφορετική μέθοδος εκπαίδευσης των νευρωνικών δικτύων χρησιμοποιεί ιδέες από την Στατιστική Φυσική για να φέρει τελικά το ίδιο αποτέλεσμα όπως οι άλλες μέθοδοι,

Διαβάστε περισσότερα

ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ

ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΑΓΡΟΝΟΜΩΝ ΚΑΙ ΤΟΠΟΓΡΑΦΩΝ ΜΗΧΑΝΙΚΩΝ ΤΟΜΕΑΣ ΓΕΩΓΡΑΦΙΑΣ ΚΑΙ ΠΕΡΙΦΕΡΕΙΑΚΟΥ ΣΧΕ ΙΑΣΜΟΥ, ΠΕΡΙΟΧΗ ΟΙΚΙΣΤΙΚΩΝ ΚΑΙ ΠΟΛΕΟ ΟΜΙΚΩΝ ΘΕΜΑΤΩΝ ΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ: ΠΟΛΕΟ ΟΜΙΚΕΣ ΚΑΙ ΚΥΚΛΟΦΟΡΙΑΚΕΣ

Διαβάστε περισσότερα

Συνοπτικά περιεχόμενα

Συνοπτικά περιεχόμενα b Συνοπτικά περιεχόμενα 1 Τι είναι η στατιστική;... 25 2 Περιγραφικές τεχνικές... 37 3 Επιστήμη και τέχνη των διαγραμματικών παρουσιάσεων... 119 4 Αριθμητικές μέθοδοι της περιγραφικής στατιστικής... 141

Διαβάστε περισσότερα

Προσδιορισμός Σημαντικών Χαρακτηριστικών της Αυθόρμητης Δραστηριότητας Απομονωμένου Εγκεφαλικού Φλοιού in vitro

Προσδιορισμός Σημαντικών Χαρακτηριστικών της Αυθόρμητης Δραστηριότητας Απομονωμένου Εγκεφαλικού Φλοιού in vitro ΕΘΝΙΚΟ ΚΑΙ ΚΑΠΟΔΙΣΤΡΙΑΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ ΣΧΟΛΗ ΘΕΤΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΚΑΙ ΤΗΛΕΠΙΚΟΙΝΩΝΙΩΝ ΔΙΑΤΜΗΜΑΤΙΚΟ ΠΡΟΓΡΑΜΜΑ ΜΕΤΑΠΤΥΧΙΑΚΩΝ ΣΠΟΥΔΩΝ "ΤΕΧΝΟΛΟΓΙΕΣ ΠΛΗΡΟΦΟΡΙΚΗΣ ΣΤΗΝ ΙΑΤΡΙΚΗ ΚΑΙ ΤΗ ΒΙΟΛΟΓΙΑ"

Διαβάστε περισσότερα

FORTRAN & Αντικειμενοστραφής Προγραμματισμός ΣΝΜΜ 2016

FORTRAN & Αντικειμενοστραφής Προγραμματισμός ΣΝΜΜ 2016 FORTRAN & Αντικειμενοστραφής Προγραμματισμός ΣΝΜΜ 2016 Δρ. Γεώργιος Παπαλάμπρου Επικ. Καθηγητής ΕΜΠ Εργαστήριο Ναυτικής Μηχανολογίας george.papalambrou@lme.ntua.gr ΕΜΠ/ΣΝΜΜ Εργαστήριο Ναυτικής Μηχανολογίας

Διαβάστε περισσότερα

Αν έχουμε δύο μεταβλητές Χ και Υ και σύμφωνα με την οικονομική θεωρία η μεταβλητή Χ προσδιορίζει τη συμπεριφορά της Υ το ερώτημα που τίθεται είναι αν

Αν έχουμε δύο μεταβλητές Χ και Υ και σύμφωνα με την οικονομική θεωρία η μεταβλητή Χ προσδιορίζει τη συμπεριφορά της Υ το ερώτημα που τίθεται είναι αν ΜΑΘΗΜΑ 12ο Αιτιότητα Ένα από τα βασικά προβλήματα που υπάρχουν στην εξειδίκευση ενός υποδείγματος είναι να προσδιοριστεί η κατεύθυνση που μία μεταβλητή προκαλεί μία άλλη σε μία εξίσωση παλινδρόμησης. Στην

Διαβάστε περισσότερα

ΠΕΡΙΕΧΟΜΕΝΑ. ΠΡΟΛΟΓΟΣ... vii ΠΕΡΙΕΧΟΜΕΝΑ... ix ΓΕΝΙΚΗ ΒΙΒΛΙΟΓΡΑΦΙΑ... xv. Κεφάλαιο 1 ΓΕΝΙΚΕΣ ΕΝΝΟΙΕΣ ΑΠΟ ΤΗ ΣΤΑΤΙΣΤΙΚΗ

ΠΕΡΙΕΧΟΜΕΝΑ. ΠΡΟΛΟΓΟΣ... vii ΠΕΡΙΕΧΟΜΕΝΑ... ix ΓΕΝΙΚΗ ΒΙΒΛΙΟΓΡΑΦΙΑ... xv. Κεφάλαιο 1 ΓΕΝΙΚΕΣ ΕΝΝΟΙΕΣ ΑΠΟ ΤΗ ΣΤΑΤΙΣΤΙΚΗ ΠΡΟΛΟΓΟΣ... vii ΠΕΡΙΕΧΟΜΕΝΑ... ix ΓΕΝΙΚΗ ΒΙΒΛΙΟΓΡΑΦΙΑ... xv Κεφάλαιο 1 ΓΕΝΙΚΕΣ ΕΝΝΟΙΕΣ ΑΠΟ ΤΗ ΣΤΑΤΙΣΤΙΚΗ 1.1 Πίνακες, κατανομές, ιστογράμματα... 1 1.2 Πυκνότητα πιθανότητας, καμπύλη συχνοτήτων... 5 1.3

Διαβάστε περισσότερα

Γ. Πειραματισμός - Βιομετρία

Γ. Πειραματισμός - Βιομετρία Γ. Πειραματισμός - Βιομετρία Πληθυσμοί και δείγματα Πληθυσμός Περιλαμβάνει όλες τις πιθανές τιμές μιας μεταβλητής, δηλαδή αναφέρεται σε μια παρατήρηση σε όλα τα άτομα του πληθυσμού Ο πληθυσμός προσδιορίζεται

Διαβάστε περισσότερα

1 ΙΑ ΙΚΑΣΙΑ ΑΝΑΛΥΣΗΣ. Εικόνα 7. Ακατέργαστα δεδοµένα

1 ΙΑ ΙΚΑΣΙΑ ΑΝΑΛΥΣΗΣ. Εικόνα 7. Ακατέργαστα δεδοµένα 1 ΙΑ ΙΚΑΣΙΑ ΑΝΑΛΥΣΗΣ Μετά την καταγραφή όλων των απαραίτητων στοιχείων µέσω της τεχνικής γεωραντάρ, ακολούθησε η επεξεργασία και ανάλυσή τους. Σκοπός της επεξεργασίας των αρχικών δεδοµένων που προέκυψαν

Διαβάστε περισσότερα

ΔΕΟ13 - Επαναληπτικές Εξετάσεις 2010 Λύσεις

ΔΕΟ13 - Επαναληπτικές Εξετάσεις 2010 Λύσεις ΔΕΟ - Επαναληπτικές Εξετάσεις Λύσεις ΘΕΜΑ () Το Διάγραμμα Διασποράς εμφανίζεται στο επόμενο σχήμα. Από αυτό προκύπτει καταρχήν μία θετική σχέση μεταξύ των δύο μεταβλητών. Επίσης, από το διάγραμμα φαίνεται

Διαβάστε περισσότερα

VBA Microsoft Excel. J. Comput. Chem. Jpn., Vol. 5, No. 1, pp (2006)

VBA Microsoft Excel. J. Comput. Chem. Jpn., Vol. 5, No. 1, pp (2006) J. Comput. Chem. Jpn., Vol. 5, No. 1, pp. 29 38 (2006) Microsoft Excel, 184-8588 2-24-16 e-mail: yosimura@cc.tuat.ac.jp (Received: July 28, 2005; Accepted for publication: October 24, 2005; Published on

Διαβάστε περισσότερα

ΕΠΙΣΤΗΜΟΝΙΚΟ ΕΠΙΜΟΡΦΩΤΙΚΟ ΣΕΜΙΝΑΡΙΟ «ΚΑΤΑΡΤΙΣΗ ΕΡΩΤΗΜΑΤΟΛΟΓΙΟΥ ΚΑΙ ΣΤΑΤΙΣΤΙΚΗ ΕΠΕΞΕΡΓΑΣΙΑ ΔΕΔΟΜΕΝΩΝ» Τριανταφυλλίδου Ιωάννα Μαθηματικός

ΕΠΙΣΤΗΜΟΝΙΚΟ ΕΠΙΜΟΡΦΩΤΙΚΟ ΣΕΜΙΝΑΡΙΟ «ΚΑΤΑΡΤΙΣΗ ΕΡΩΤΗΜΑΤΟΛΟΓΙΟΥ ΚΑΙ ΣΤΑΤΙΣΤΙΚΗ ΕΠΕΞΕΡΓΑΣΙΑ ΔΕΔΟΜΕΝΩΝ» Τριανταφυλλίδου Ιωάννα Μαθηματικός ΕΠΙΣΤΗΜΟΝΙΚΟ ΕΠΙΜΟΡΦΩΤΙΚΟ ΣΕΜΙΝΑΡΙΟ «ΚΑΤΑΡΤΙΣΗ ΕΡΩΤΗΜΑΤΟΛΟΓΙΟΥ ΚΑΙ ΣΤΑΤΙΣΤΙΚΗ ΕΠΕΞΕΡΓΑΣΙΑ ΔΕΔΟΜΕΝΩΝ» ΠΕΡΙΓΡΑΦΙΚΗ ΣΤΑΤΙΣΤΙΚΗ ΜΕ ΤΟ SPSS To SPSS θα: - Κάνει πολύπλοκη στατιστική ανάλυση σε δευτερόλεπτα -

Διαβάστε περισσότερα

Ποσοτικές Μέθοδοι στη Διοίκηση Επιχειρήσεων ΙΙ Σύνολο- Περιεχόμενο Μαθήματος

Ποσοτικές Μέθοδοι στη Διοίκηση Επιχειρήσεων ΙΙ Σύνολο- Περιεχόμενο Μαθήματος Ποσοτικές Μέθοδοι στη Διοίκηση Επιχειρήσεων ΙΙ Σύνολο- Περιεχόμενο Μαθήματος Χιωτίδης Γεώργιος Τμήμα Λογιστικής και Χρηματοοικονομικής Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης

Διαβάστε περισσότερα

Διδάσκουσα: Χάλκου Χαρά,

Διδάσκουσα: Χάλκου Χαρά, Διδάσκουσα: Χάλκου Χαρά, Διπλωματούχος Ηλεκτρολόγος Μηχανικός & Τεχνολογίας Η/Υ, MSc e-mail: chalkou@upatras.gr Επιβλεπόμενοι Μη Επιβλεπόμενοι Ομάδα Κατηγορία Κανονικοποίηση Δεδομένων Συμπλήρωση Ελλιπών

Διαβάστε περισσότερα

Γραπτή Εξέταση Περιόδου Φεβρουαρίου 2011 για τα Τμήματα Ε.Τ.Τ. και Γ.Β. στη Στατιστική 25/02/2011

Γραπτή Εξέταση Περιόδου Φεβρουαρίου 2011 για τα Τμήματα Ε.Τ.Τ. και Γ.Β. στη Στατιστική 25/02/2011 Εργαστήριο Μαθηματικών & Στατιστικής Γραπτή Εξέταση Περιόδου Φεβρουαρίου για τα Τμήματα Ε.Τ.Τ. και Γ.Β. στη Στατιστική 5//. [] Η ποσότητα, έστω Χ, ενός συντηρητικού που περιέχεται σε φιάλες αναψυκτικού

Διαβάστε περισσότερα

Αποτύπωση Απόψεων Μαθητών και Έλεγχος Επίδρασης στην Επίδοση τους από τη Χρήση Διαδικτυακού Εργαλείου Αξιολόγησης

Αποτύπωση Απόψεων Μαθητών και Έλεγχος Επίδρασης στην Επίδοση τους από τη Χρήση Διαδικτυακού Εργαλείου Αξιολόγησης Αποτύπωση Απόψεων Μαθητών και Έλεγχος Επίδρασης στην Επίδοση τους από τη Χρήση Διαδικτυακού Εργαλείου Αξιολόγησης Στ. Φιλιππίδης Εργαστήριο Πολυμέσων, Τμήμα Πληροφορικής, Αριστοτέλειο Πανεπιστήμιο Θεσσαλονίκης

Διαβάστε περισσότερα

Παράδειγμα. Χρονολογικά δεδομένα. Οι πωλήσεις μιας εταιρείας ανά έτος για το διάστημα (σε χιλιάδες $)

Παράδειγμα. Χρονολογικά δεδομένα. Οι πωλήσεις μιας εταιρείας ανά έτος για το διάστημα (σε χιλιάδες $) Χρονολογικά δεδομένα Ένα διάγραμμα που παριστάνει την εξέλιξη των τιμών μιας μεταβλητής στο χρόνο χρονόγραμμα (ή χρονοδιάγραμμα). Κύρια μέθοδος παρουσίασης χρονολογικών δεδομένων είναι η πολυγωνική γραμμή

Διαβάστε περισσότερα

ΕΦΑΡΜΟΓΗ ΕΥΤΕΡΟΒΑΘΜΙΑ ΕΠΕΞΕΡΓΑΣΜΕΝΩΝ ΥΓΡΩΝ ΑΠΟΒΛΗΤΩΝ ΣΕ ΦΥΣΙΚΑ ΣΥΣΤΗΜΑΤΑ ΚΛΙΝΗΣ ΚΑΛΑΜΙΩΝ

ΕΦΑΡΜΟΓΗ ΕΥΤΕΡΟΒΑΘΜΙΑ ΕΠΕΞΕΡΓΑΣΜΕΝΩΝ ΥΓΡΩΝ ΑΠΟΒΛΗΤΩΝ ΣΕ ΦΥΣΙΚΑ ΣΥΣΤΗΜΑΤΑ ΚΛΙΝΗΣ ΚΑΛΑΜΙΩΝ ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙ ΕΥΤΙΚΟ Ι ΡΥΜΑ ΚΡΗΤΗΣ ΤΜΗΜΑ ΦΥΣΙΚΩΝ ΠΟΡΩΝ ΚΑΙ ΠΕΡΙΒΑΛΛΟΝΤΟΣ ΕΦΑΡΜΟΓΗ ΕΥΤΕΡΟΒΑΘΜΙΑ ΕΠΕΞΕΡΓΑΣΜΕΝΩΝ ΥΓΡΩΝ ΑΠΟΒΛΗΤΩΝ ΣΕ ΦΥΣΙΚΑ ΣΥΣΤΗΜΑΤΑ ΚΛΙΝΗΣ ΚΑΛΑΜΙΩΝ ΕΠΙΜΕΛΕΙΑ: ΑΡΜΕΝΑΚΑΣ ΜΑΡΙΝΟΣ ΧΑΝΙΑ

Διαβάστε περισσότερα

Έλεγχος Υποθέσεων. Δρ. Αθανάσιος Δαγούμας, Επ. Καθηγητής Οικονομικής της Ενέργειας & των Φυσικών Πόρων, Πανεπιστήμιο Πειραιώς

Έλεγχος Υποθέσεων. Δρ. Αθανάσιος Δαγούμας, Επ. Καθηγητής Οικονομικής της Ενέργειας & των Φυσικών Πόρων, Πανεπιστήμιο Πειραιώς Δρ. Αθανάσιος Δαγούμας, Επ. Καθηγητής Οικονομικής της Ενέργειας & των Φυσικών Πόρων, Πανεπιστήμιο Πειραιώς Η μηδενική υπόθεση είναι ένας ισχυρισμός σχετικά με την τιμή μιας πληθυσμιακής παραμέτρου. Είναι

Διαβάστε περισσότερα

Δασική Δειγματοληψία

Δασική Δειγματοληψία Δασική Δειγματοληψία Δημοκρίτειο Πανεπιστήμιο Θράκης Τμήμα Δασολογίας και Διαχείρισης Περιβάλλοντος και Φυσικών Πόρων 5 ο εξάμηνο ΚΙΤΙΚΙΔΟΥ ΚΥΡΙΑΚΗ Εισαγωγή Δειγματοληψία Επιλογή ενός μέρους από ένα σύνολο

Διαβάστε περισσότερα

Δρ. Χάϊδω Δριτσάκη. MSc Τραπεζική & Χρηματοοικονομική

Δρ. Χάϊδω Δριτσάκη. MSc Τραπεζική & Χρηματοοικονομική Ποσοτικές Μέθοδοι Δρ. Χάϊδω Δριτσάκη MSc Τραπεζική & Χρηματοοικονομική Τεχνολογικό Εκπαιδευτικό Ίδρυμα Δυτικής Μακεδονίας Western Macedonia University of Applied Sciences Κοίλα Κοζάνης 50100 Kozani GR

Διαβάστε περισσότερα

ΤΕΧΝΟΛΟΓΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΣΧΟΛΗ ΜΗΧΑΝΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΑΣ. Πτυχιακή εργασία

ΤΕΧΝΟΛΟΓΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΣΧΟΛΗ ΜΗΧΑΝΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΑΣ. Πτυχιακή εργασία ΤΕΧΝΟΛΟΓΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΣΧΟΛΗ ΜΗΧΑΝΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΑΣ Πτυχιακή εργασία ΕΠΙΛΥΣΗ ΤΟΥ ΠΡΟΒΛΗΜΑΤΟΣ ΧΡΟΝΟΠΡΟΓΡΑΜΜΑΤΙΣΜΟΥ ΜΕΤΑΔΟΣΗΣ ΣΕ ΑΣΥΡΜΑΤΑ ΔΙΚΤΥΑ ΜΕ ΣΥΣΚΕΥΕΣ ΔΙΑΚΡΙΤΩΝ ΤΙΜΩΝ ΙΣΧΥΟΣ ΜΕ ΤΗ ΧΡΗΣΗ

Διαβάστε περισσότερα

Τεχνητή Νοημοσύνη. 17η διάλεξη ( ) Ίων Ανδρουτσόπουλος.

Τεχνητή Νοημοσύνη. 17η διάλεξη ( ) Ίων Ανδρουτσόπουλος. Τεχνητή Νοημοσύνη 17η διάλεξη (2016-17) Ίων Ανδρουτσόπουλος http://.aueb.gr/users/ion/ 1 Οι διαφάνειες αυτής της διάλεξης βασίζονται: στο βιβλίο Artificia Inteigence A Modern Approach των S. Russe και

Διαβάστε περισσότερα

ΕΙΔΙΚΑ ΘΕΜΑΤΑ ΣΤΗΝ ΣΤΑΤΙΣΤΙΚΗ ΕΡΓΑΣΤΗΡΙΟ (SPSS)

ΕΙΔΙΚΑ ΘΕΜΑΤΑ ΣΤΗΝ ΣΤΑΤΙΣΤΙΚΗ ΕΡΓΑΣΤΗΡΙΟ (SPSS) ΕΙΔΙΚΑ ΘΕΜΑΤΑ ΣΤΗΝ ΣΤΑΤΙΣΤΙΚΗ ΕΡΓΑΣΤΗΡΙΟ (SPSS) Έλεγχος Υποθέσεων για τους Μέσους - Εξαρτημένα Δείγματα (Paired samples t-test) Το κριτήριο Paired samples t-test χρησιμοποιείται όταν θέλουμε να συγκρίνουμε

Διαβάστε περισσότερα

ΠΕΡΙΓΡΑΜΜΑ ΜΑΘΗΜΑΤΟΣ- ΑΝΑΛΥΣΗ ΔΕΔΟΜΕΝΩΝ & ΣΤΑΤΙΣΤΙΚΑ ΠΑΚΕΤΑ (ΣΤ3) ΘΕΤΙΚΩΝ ΕΠΙΣΤΗΜΩΝ. ΚΩΔΙΚΟΣ ΜΑΘΗΜΑΤΟΣ ΣT3 ΕΞΑΜΗΝΟ ΣΠΟΥΔΩΝ 2 ο

ΠΕΡΙΓΡΑΜΜΑ ΜΑΘΗΜΑΤΟΣ- ΑΝΑΛΥΣΗ ΔΕΔΟΜΕΝΩΝ & ΣΤΑΤΙΣΤΙΚΑ ΠΑΚΕΤΑ (ΣΤ3) ΘΕΤΙΚΩΝ ΕΠΙΣΤΗΜΩΝ. ΚΩΔΙΚΟΣ ΜΑΘΗΜΑΤΟΣ ΣT3 ΕΞΑΜΗΝΟ ΣΠΟΥΔΩΝ 2 ο ΓΕΝΙΚΑ ΠΕΡΙΓΡΑΜΜΑ ΜΑΘΗΜΑΤΟΣ- ΑΝΑΛΥΣΗ ΔΕΔΟΜΕΝΩΝ & ΣΤΑΤΙΣΤΙΚΑ ΠΑΚΕΤΑ (ΣΤ3) ΣΧΟΛΗ ΤΜΗΜΑ ΕΠΙΠΕΔΟ ΣΠΟΥΔΩΝ ΘΕΤΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΜΑΘΗΜΑΤΙΚΩΝ ΜΕΤΑΠΤΥΧΙΑΚΟ ΚΩΔΙΚΟΣ ΜΑΘΗΜΑΤΟΣ ΣT3 ΕΞΑΜΗΝΟ ΣΠΟΥΔΩΝ 2 ο ΤΙΤΛΟΣ ΜΑΘΗΜΑΤΟΣ

Διαβάστε περισσότερα

Ελλιπή δεδομένα. Εδώ έχουμε 1275. Στον πίνακα που ακολουθεί δίνεται η κατά ηλικία κατανομή 1275 ατόμων

Ελλιπή δεδομένα. Εδώ έχουμε 1275. Στον πίνακα που ακολουθεί δίνεται η κατά ηλικία κατανομή 1275 ατόμων Ελλιπή δεδομένα Στον πίνακα που ακολουθεί δίνεται η κατά ηλικία κατανομή 75 ατόμων Εδώ έχουμε δ 75,0 75 5 Ηλικία Συχνότητες f 5-4 70 5-34 50 35-44 30 45-54 465 55-64 335 Δεν δήλωσαν 5 Σύνολο 75 Μπορεί

Διαβάστε περισσότερα

Τεχνολογικό Εκπαιδευτικό Ίδρυμα Δυτικής Μακεδονίας Western Macedonia University of Applied Sciences Κοίλα Κοζάνης Kozani GR 50100

Τεχνολογικό Εκπαιδευτικό Ίδρυμα Δυτικής Μακεδονίας Western Macedonia University of Applied Sciences Κοίλα Κοζάνης Kozani GR 50100 Ποσοτικές Μέθοδοι Τεχνολογικό Εκπαιδευτικό Ίδρυμα Δυτικής Μακεδονίας Western Macedonia University of Applied Sciences Κοίλα Κοζάνης 50100 Kozani GR 50100 Απλή Παλινδρόμηση Η διερεύνηση του τρόπου συμπεριφοράς

Διαβάστε περισσότερα

Πολλαπλή παλινδρόμηση (Multivariate regression)

Πολλαπλή παλινδρόμηση (Multivariate regression) ΜΑΘΗΜΑ 3 ο 1 Πολλαπλή παλινδρόμηση (Multivariate regression) Η συμπεριφορά των περισσότερων οικονομικών μεταβλητών είναι συνάρτηση όχι μιας αλλά πολλών μεταβλητών Υ = f ( X 1, X 2,... X n ) δηλαδή η Υ

Διαβάστε περισσότερα

ΠΑΡΟΥΣΙΑΣΗ ΣΤΑΤΙΣΤΙΚΩΝ ΔΕΔΟΜΕΝΩΝ

ΠΑΡΟΥΣΙΑΣΗ ΣΤΑΤΙΣΤΙΚΩΝ ΔΕΔΟΜΕΝΩΝ ο Κεφάλαιο: Στατιστική ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ ΚΑΙ ΟΡΙΣΜΟΙ ΣΤΗ ΣΤΑΤΙΣΤΙΚΗ ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ Πληθυσμός: Λέγεται ένα σύνολο στοιχείων που θέλουμε να εξετάσουμε με ένα ή περισσότερα χαρακτηριστικά. Μεταβλητές X: Ονομάζονται

Διαβάστε περισσότερα

Υπερπροσαρμογή (Overfitting) (1)

Υπερπροσαρμογή (Overfitting) (1) Αλγόριθμος C4.5 Αποφυγή υπερπροσαρμογής (overfitting) Reduced error pruning Rule post-pruning Χειρισμός χαρακτηριστικών συνεχών τιμών Επιλογή κατάλληλης μετρικής για την επιλογή των χαρακτηριστικών διάσπασης

Διαβάστε περισσότερα

Σεμινάριο Τελειοφοίτων. 2 - Επιλογή Επεξεργασία Ερευνητικού Θέματος

Σεμινάριο Τελειοφοίτων. 2 - Επιλογή Επεξεργασία Ερευνητικού Θέματος Σεμινάριο Τελειοφοίτων 2 - Επιλογή Επεξεργασία Ερευνητικού Θέματος 2 o o o o Το πρόβλημα σας θα είναι να επιλέξετε μία από τις πολλές ιδέες που θα έχετε. Από πού προέρχονται αυτές; από τη δουλειά σας από

Διαβάστε περισσότερα

Νευρωνικά ίκτυα και Εξελικτικός

Νευρωνικά ίκτυα και Εξελικτικός Νευρωνικά ίκτυα και Εξελικτικός Προγραµµατισµός Σηµερινό Μάθηµα RBF (Radial Basis Functions) δίκτυα Παρεµβολή συνάρτησης Θεώρηµα Cover ιαχωρισµός προτύπων Υβριδική Εκµάθηση Σύγκριση µε MLP Εφαρµογή: Αναγνώριση

Διαβάστε περισσότερα

ΜΕΘΟΔΟΙ ΥΠΟΛΟΓΙΣΜΟΥ ΤΗΣ ΖΕΝΙΘΕΙΑΣ ΤΡΟΠΟΣΦΑΙΡΙΚΗΣ ΥΣΤΕΡΗΣΗΣ ΣΕ ΜΟΝΙΜΟΥΣ ΣΤΑΘΜΟΥΣ GNSS

ΜΕΘΟΔΟΙ ΥΠΟΛΟΓΙΣΜΟΥ ΤΗΣ ΖΕΝΙΘΕΙΑΣ ΤΡΟΠΟΣΦΑΙΡΙΚΗΣ ΥΣΤΕΡΗΣΗΣ ΣΕ ΜΟΝΙΜΟΥΣ ΣΤΑΘΜΟΥΣ GNSS ΤΟΜΕΑΣ ΓΕΩΔΑΙΣΙΑΣ ΚΑΙ ΤΟΠΟΓΡΑΦΙΑΣ ΤΕΙ ΣΕΡΡΩΝ, ΣΧΟΛΗ ΤΕΧΝΟΛΟΓΙΚΩΝ ΕΦΑΡΜΟΓΩΝ Τμήμα Γεωπληροφορικής & Τοπογραφίας ΜΕΘΟΔΟΙ ΥΠΟΛΟΓΙΣΜΟΥ ΤΗΣ ΖΕΝΙΘΕΙΑΣ ΤΡΟΠΟΣΦΑΙΡΙΚΗΣ ΥΣΤΕΡΗΣΗΣ ΣΕ ΜΟΝΙΜΟΥΣ ΣΤΑΘΜΟΥΣ GNSS ΣΥΜΕΩΝ

Διαβάστε περισσότερα

Κεφάλαιο 10 Εισαγωγή στην Εκτίμηση

Κεφάλαιο 10 Εισαγωγή στην Εκτίμηση Κεφάλαιο 10 Εισαγωγή στην Εκτίμηση Εκεί που είμαστε Κεφάλαια 7 και 8: Οι διωνυμικές,κανονικές, εκθετικές κατανομές και κατανομές Poisson μας επιτρέπουν να κάνουμε διατυπώσεις πιθανοτήτων γύρω από το Χ

Διαβάστε περισσότερα

athanasiadis@rhodes.aegean.gr , -.

athanasiadis@rhodes.aegean.gr , -. παιδαγωγικά ρεύµατα στο Αιγαίο Προσκήνιο 88 - * athanasiadis@rhodes.aegean.gr -., -.. Abstract The aim of this survey is to show how students of the three last school classes of the Primary School evaluated

Διαβάστε περισσότερα

Για το δείγμα από την παραγωγή της εταιρείας τροφίμων δίνεται επίσης ότι, = 1.3 και για το δείγμα από το συνεταιρισμό ότι, x

Για το δείγμα από την παραγωγή της εταιρείας τροφίμων δίνεται επίσης ότι, = 1.3 και για το δείγμα από το συνεταιρισμό ότι, x Εργαστήριο Μαθηματικών & Στατιστικής η Πρόοδος στο Μάθημα Στατιστική // (Για τα Τμήματα Ε.Τ.Τ. και Γ.Β.) ο Θέμα [] Επιλέξαμε φακελάκια (της μισής ουγκιάς) που περιέχουν σταφίδες από την παραγωγή μιας εταιρείας

Διαβάστε περισσότερα

Ανάκτηση Πληροφορίας

Ανάκτηση Πληροφορίας Το Πιθανοκρατικό Μοντέλο Κλασικά Μοντέλα Ανάκτησης Τρία είναι τα, λεγόμενα, κλασικά μοντέλα ανάκτησης: Λογικό (Boolean) που βασίζεται στη Θεωρία Συνόλων Διανυσματικό (Vector) που βασίζεται στη Γραμμική

Διαβάστε περισσότερα