2. ΧΡΗΣΗ ΣΤΑΤΙΣΤΙΚΩΝ ΠΑΚΕΤΩΝ ΣΤΗ ΓΡΑΜΜΙΚΗ ΠΑΛΙΝΔΡΟΜΗΣΗ

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "2. ΧΡΗΣΗ ΣΤΑΤΙΣΤΙΚΩΝ ΠΑΚΕΤΩΝ ΣΤΗ ΓΡΑΜΜΙΚΗ ΠΑΛΙΝΔΡΟΜΗΣΗ"

Transcript

1 2. ΧΡΗΣΗ ΣΤΑΤΙΣΤΙΚΩΝ ΠΑΚΕΤΩΝ ΣΤΗ ΓΡΑΜΜΙΚΗ ΠΑΛΙΝΔΡΟΜΗΣΗ Η χρησιμοποίηση των τεχνικών της παλινδρόμησης για την επίλυση πρακτικών προβλημάτων έχει διευκολύνει εξαιρετικά από την χρήση διαφόρων στατιστικών πακέτων. Τα πακέτα αυτά αφενός μεν διευκολύνουν την ανάλυση μεγάλου όγκου στοιχείων, αφετέρου δε επιτρέπουν, ως ένα βαθμό, την εξέταση του κατά πόσο οι υποθέσεις που απαιτείται να πληρούνται για την εφαρμογή των μεθόδων της γραμμικής παλινδρόμησης πληρούνται σε κάθε συγκεκριμένο πρόβλημα. Στην ενότητα αυτή θα αναφερθούμε στις εντολές που απαιτούνται για την εφαρμογή των μεθόδων γραμμικής παλινδρόμησης σε δύο από τα πιο γνωστά στατιστικά πακέτα, το MINITAB και το SAS. (Για μια γενική εισαγωγή στα πακέτα αυτά, ο αναγνώστης παραπέμπεται στο βιβλίο: Ι. Πανάρετος και Ε. Ξεκαλάκη Εισαγωγή στη Στατιστική Σκέψη, Αθήνα 1993). Προκειμένου να δούμε πώς χρησιμοποιούνται τα δύο στατιστικά πακέτα που προαναφέρθηκαν για την γραμμική παλινδρόμηση, ας αναφέρουμε ένα παράδειγμα. Παράδειγμα: Ένα μεσιτικό γραφείο ενδιαφέρεται να προβλέψει την τιμή πώλησης μονοκατοικιών. Μετά από προσεκτική μελέτη ο αναλυτής που εργάζεται για το γραφείο καταλήγει στο συμπέρασμα ότι η μεταβλητή που επηρεάζει περισσότερο την τιμή πώλησης των μονοκατοικιών είναι το εμβαδόν του σπιτιού. Για το λόγο αυτό, παίρνει ένα τυχαίο δείγμα από 15 μονοκατοικίες που πωλήθηκαν πρόσφατα και καταγράφει την τιμή πώλησης (σε εκατομμύρια δραχμές) και το εμβαδόν του σπιτιού (σε δεκάδες τ.μ.) Τα δεδομένα που καταγράφηκαν δίνονται στις μεταβλητές C1 και C2 που ακολουθούν. Να γίνει η ανάλυση γραμμικής παλινδρόμησης για το πρόβλημα αυτό με το MINITAB και το SAS.

2 2.1 Γραμμική Παλινδρόμηση με το MINITAB Προκειμένου να εισαχθούν τα δεδομένα στις μεταβλητές C1 και C2 στο MINITAB χρησιμοποιούμε την εντολή READ C1 C END Η εντολή που χρειάζεται για να εκτελέσει το MINITAB τους υπολογισμούς είναι η REGRESS C1 1 C2 Η εντολή αυτή υπολογίζει την ευθεία παλινδρόμησης ελαχίστων τετραγώνων όπου οι πρατηρηθείσες τιμές για το Υ και Χ έχουν τοποθετηθεί στις στήλες 1 και 2 αντίστοιχα. Ο αριθμός 1 μεταξύ του C1 και του C2 στην βασική εντολή αναφέρεται στη χρησιμοποίηση μιας μόνο ανεξάρτητης μεταβλητής, στη συγκεκριμένη περίπτωση της μεταβλητής οι τιμές της οποίας έχουν τοποθετηθεί στη στήλη 2.

3 Σε μερικές περιπτώσεις της εντολής REGRESS είναι δυνατόν να προηγείται η εντολή BRIEF K όπου K μπορεί να είναι ίσο με 1, 2 ή 3. Όσο αυξάνει η τιμή του K, τόσο περισσότερα στατιστικά αποτελέσματα δίνει ο υπολογιστής. Γενικά, η τιμή K=1 δίνει τιμές για στατιστικές συναρτήσεις που είναι αρκετές για τις περισσότερες εφαρμογές. Εάν η εντολή BRIEF δεν δοθεί, τότε το MINITAB θα προχωρήσει θεωρώντας ότι η εντολή BRIEF 1 έχει δοθεί. Προκειμένου να ερμηνευθεί ευκολότερα η απάντηση του υπολογιστή, χρησιμοποιούμε ονόματα για τις μεταβλητές NAME C1 = y NAME C2 = x Με τον τρόπο αυτό οι σχετικές στατιστικές συναρτήσεις θα παραχθούν με την εντολή REGRESS y 1 x Το αποτέλεσμα που δίνει ο υπολογιστής στην εντολή αυτή είναι το εξής: The regression equation is y = x Predictor Coef Stdev t-ratio p Constant x s = R-sq = 64.8% R-sq(adj) = 62.0% Analysis of Variance SOURCE DF SS MS F P Regression

4 Error Total Unusual Observations Obs. x y Fit Stdev.Fit Residual St. Resid R R denotes an obs. with large st. resid. Ο πίνακας αυτός έχει τα εξής στοιχεία: η πρώτη γραμμή (the regression equation is) δίνει την εκτιμηθείσα με την μέθοδο των ελαχίστων τετραγώνων, ευθεία παλινδρόμησης. Στη συνέχεια, δίνονται στοιχεία για τις παραμέτρους του μοντέλου. Η πρώτη γραμμή δίνει τις επικεφαλίδες: predictor, coef (coefficientσυντελεστής), St.dev (standard deviation = τυπική απόκλιση t-ration (τιμή της στατιστικής συνάρτησης t κάτω από τη μηδενική υπόθεση α=0 και β=0 αντίστοιχα) και p (p-value = παρατηρούμενο επίπεδο σημαντικότητας). (Για τον ορισμό και τις ιδιότητες του παρατηρούμενου επιπέδου σημαντικότητας, ο αναγνώστης παραπέμπεται στο βιβλίο: Ι. Πανάρετος Εκτιμητική-Έλεγχοι Υποθέσεων, Αθήνα 1993). Η δεύτερη γραμμή δίνει τις τιμές των στατιστικών συναρτήσεων που εμφανίζονται στην πρώτη γραμμή για την παράμετρο α του μοντέλου, ενώ η τρίτη γραμμή δίνει τις τιμές των στατιστικών αυτών συναρτήσεων για την παράμετρο β του μοντέλου. Η επόμενη γραμμή περιέχει την τιμή της εκτίμησης για την τυπική απόκλιση του σφάλματος (s), την τιμή του συντελεστή προσδιορισμού (R-sq) και την τιμή του προσαρμοσμένου συντελεστή προσδιορισμού (R-sq(adj)). Η επόμενη ενότητα του πίνακα αναφέρεται στην ανάλυση της διακύμανσης (analysis of variance). Στην πρώτη γραμμή του υποπίνακα αυτού έχουμε την πηγή (SOURCE) της διακύμανσης, στη συνέχεια έχουμε τους βαθμούς ελευθερίας (DF = degree of freedom), το άθροισμα των τετραγώνων (MS = mean square), τον λόγο F της στατιστικής συνάρτησης ελέγχου και της p-τιμής. Οι επόμενες γραμμές δίνουν τις τιμές των στατιστικών αυτών συναρτήσεων για

5 την παλινδρόμηση (regression), το σφάλμα (error) και το σύνολο (total). Η τελευταία ενότητα του πίνακα προσδιορίζει τις ακραίες τιμές (Unusual Observations). Στην επόμενη γραμμή έχουμε τη σειρά της παρατήρησης (Obs. = observation) η οποία είναι ασυνήθιστη, την τιμή χ, της παρατήρησης αυτής, την τιμή y, την τιμή του y που προκύπτει με την χρήση του μοντέλου για την συγκεκριμένη τιμή του χ (Fit = προσαρμογή), την τυπική απόκλιση της κατανομής της τυχαίας αυτής μεταβλητής (Stdev. Fit = standard deviation fit), το κατάλοιπο για την τιμή αυτή (residual) και την τυποποιημένη τιμή του καταλοίπου αυτού (St.resid. = standardized residual). Η τελευταία γραμμή του πίνακα μας εξηγεί ότι το R που εμφανίζεται δίπλα στην τιμή 2.29 του τυποποιημένου καταλοίπου εμφανίζεται εκεί για να μας ειδοποιήσει ότι η συγκεκριμένη παρατήρηση έχει υπερβολικά μεγάλο τυποποιημένο κατάλοιπο (R denotes an observation with a large standardized residual). Για να κατασκευάσουμε ένα 95% διάστημα εμπιστοσύνης για την αναμενόμενη τιμή του y για δοθέν χ και το 95% διάστημα πρόβλεψης του y για δοθέν x χρειάζεται να χρησιμοποιήσουμε μια εντολή και μια υποεντολή. Η εντολή και η υποεντολή είναι REGRESS y 1 x ; PREDICT 20. Με τον τρόπο αυτό καθορίζουμε την τιμή x=20 στην υποεντολή PREDICT. Ο υπολογιστής θα δώσει την εξής απάντηση: Fit Stdev.Fit 95% C.I. 95% P.I (88.03, ) (66.75, ) Ο πίνακας αυτός δίνει την προβλεπόμενη τιμή (fit) για την τιμή x=20, την τυπική απόκλιση της προβλεπόμενης αυτής τιμής (Stdev.Fit), το 95% διάστημα εμπιστοσύνης (95% C.I. = 95%,

6 confidence interval), και το 95% διάστημα πρόβλεψης (95% P.I. prediction interval). Εάν θέλουμε να έχουμε ένα διάγραμμα σημείων (scattergram) χρησιμοποιούμε την εντολή PLOT y x Τα σημεία στο διάγραμμα παρουσιάζονται με έναν αστερίσκο. Όπου στο διάγραμμα εμφανίζονται αριθμοί αυτό σημαίνει ότι στο συγκεκριμένο σημείο συμπίπτουν τόσα σημεία του διαγράμματος όσος είναι ο συγκεκριμένος αριθμός. Αν μας ενδιαφέρει ο συντελεστής συσχέτισης των μεταβλητών x και y, η εντολή που θα πρέπει να χρησιμοποιήσουμε είναι η CORRELATION y x ή, αν χρησιμοποιήσουμε τις δύο αρχικές μεταβλητές C1 και C2 CORRELATION C1 C2 2.2 Γραμμική Παλινδρόμηση με το SAS Το στατιστικό πακέτο SAS χρησιμοποιεί την εντολή REG για να πραγματοποιήσει και απλή και πολλαπλή παλινδρόμηση (που θα δούμε στη συνέχεια). Η διαδικαστική αυτή εντολή (procedure statement) ακολουθείται από την εντολή MODEL η οποία καθορίζει την εξαρτημένη μεταβλητή και την ανεξάρτητη μεταβλητή (ή μεταβλητές αν πρόκειται για πολλαπλή παλινδρόμηση). Οι εντολές που προαναφέρθηκαν, βέβαια, ακολουθούν τις εντολές με τις οποίες εισάγονται τα δεδομένα στον υπολογιστή. Έτσι, στο παράδειγμά μας

7 με τις τιμές πώλησης των μονοκατοικιών χρειάζεται να χρησιμοποιήσουμε τις εξής εντολές για εισαγωγή δεδομένων. DATA; INPUT Y X; CARDS; PROC MODEL REG; Y=X;

8 Ο υπολογιστής δίνει τον εξής πίνακα ως απάντηση στις προηγηθείσες εντολές: Dependent Variable: Y Analysis of Variance Source DF Sum of Squares Mean Square F Value Prob F Model Error C Total Root MSE R-square Dep Mean Adj. R-sq C.V Parameter Estimates Variable DF Parameter Estimate Standard Error T for H 0 Parameter=0 Prob T Intercep X Η πρώτη ενότητα του πίνακα δίνει στοιχεία αντίστοιχα με αυτά του αντίστοιχου πίνακα του ΜΙΝΙΤΑΒ με την ισοδύναμη ορολογία. Η επόμενη ενότητα αναφέρεται στο τυπικό σφάλμα των λαθών (Root MSE =square root of mean square error = τετραγωνική ρίζα μέσου τετραγωνικού σφάλματος), στον αριθμητικό μέσο y των παρατηρήσεων στην εξαρτημένη μεταβλητή (Dep Mean = dependent mean), στον συντελεστή μεταβλητότητας C.V. (coefficient of variation). (Ο συντελεστής μεταβλητότητας στο SAS ορίζεται ως * S C.V. x100 y ε Στην περίπτωσή μας, η τιμή αυτή είναι

9 C.V x100 = ) Η ίδια ενότητα του πίνακα δίνει τις τιμές του συντελεστή προσδιορισμού και του προσαρμοσμένου συντελεστή προσδιορισμού όπως αυτοί έχουν ορισθεί νωρίτερα. Τέλος, η τρίτη ενότητα αναφέρεται σε εκτιμήσεις των παραμέτρων του μοντέλου α (INTERCEP) και β, τις τιμές των αντιστοίχων στατιστικών συναρτήσεων Τ για τις υποθέσεις Η 0 : α=0 και Η 0 : β=0 και τα παρατηρούμενα επίπεδα σημαντικότητας. Για να κατασκευάσουμε το 95% διάστημα πρόβλεψης για μια συγκεκριμένη τιμή του υ και το 95% διάστημα εμπιστοσύνης για την αναμενόμενη τιμή του Υ x, μπορούμε να χρησιμοποιήσουμε τις εντολές CLI και CLM, αντίστοιχα. Οι προβλέψεις αυτές όμως και οι εκτιμήσεις μπορούν να βασισθούν μόνο στις παρατηρηθείσες τιμές της ανεξάρτητης μεταβλητής x. Μπορούμε όμως να ξεγελάσουμε το SAS ώστε να δώσει διαστήματα πρόβλεψης και εμπιστοσύνης για άλλες τιμές του x. Για να το κάνουμε αυτό προσθέτουμε μια επιπλέον παρατήρηση που αναφέρεται στη δεδομένη τιμή του x (x g ) και μια τελεία (.) για το y. Το SAS θεωρεί την τελεία σαν μια χαμένη παρατήρηση (missing observation) και την αγνοεί όταν υπολογίζει την ευθεία παλινδρόμησης με την μέθοδο των ελαχίστων τετραγώνων. Παρ όλα αυτά όμως κατασκευάζει το διάστημα πρόβλεψης και το διάστημα εμπιστοσύνης για την συγκεκριμένη τιμή του x όταν κάνουμε τις επιλογές CLI και CLM. Έτσι, για παράδειγμα, αν θέλουμε να βρούμε το 95% διάστημα πρόβλεψης για την τιμή μιας μονοκατοικίας 200 τ.μ. και ένα 95% διάστημα εμπιστοσύνης για την μέση τιμή μονοκατοικιών εμβαδού 200 τ.μ., θα προσθέσουμε στις ήδη υπάρχουσες παρατηρήσεις μια 16η παρατήρηση (y =. και x = 20). Δηλαδή Επίσης, αλλάζουμε κατάλληλα την εντολή MODEL και την γράφουμε ως εξής: MODEL Y=X/CLI CLM;

10 Η εντολή αυτή παρέχει τις εξής παραπέρα πληροφορίες ως απάντηση του υπολογιστή (πέραν αυτών που είδαμε μέχρι τώρα): Obs Dep Var Y Predict Value Std Err Predict

11 Lower 95% Mean Upper 95% Mean Lower 95% Predict Upper 95% Predict Η πρώτη ενότητα αναφέρεται στις παρατηρήσεις (Obs. = observations) για την εξαρτημένη μεταβλητή (Dep.var. = dependent variable), την προβλεπόμενη, μέσω του μοντέλου, τιμή (predict value) και το τυπικό σφάλμα της πρόβλεψης (Std Err Predict = standard error of prediction). Το δεύτερο μέρος του πίνακα δίνει τα κατώτερα και τα ανώτερα 95% σημεία των διαστημάτων εμπιστοσύνης για την μέση τιμή των μονοκατοικιών (αριστερά) και των διαστημάτων πρόβλεψης για την τιμή μονοκατοικιών (δεξιά) για τις διάφορες επιφάνειες μονοκατοικιών. Αν θέλαμε να κατασκευάσουμε το διάγραμμα σημείων με το SAS, μετά την εντολή MODEL θα δώσουμε την εντολή PLOT Y*X;

12 Στο διάγραμμα που δίνει ο υπολογιστής, τα διάφορα σημεία εμφανίζονται με τους αριθμούς 1 ή 2 ανάλογα με το αν είναι απλά ή διπλά σημεία στο διάγραμμα αυτό.

Άσκηση 10, σελ. 119. Για τη μεταβλητή x (άτυπος όγκος) έχουμε: x censored_x 1 F 3 F 3 F 4 F 10 F 13 F 13 F 16 F 16 F 24 F 26 F 27 F 28 F

Άσκηση 10, σελ. 119. Για τη μεταβλητή x (άτυπος όγκος) έχουμε: x censored_x 1 F 3 F 3 F 4 F 10 F 13 F 13 F 16 F 16 F 24 F 26 F 27 F 28 F Άσκηση 0, σελ. 9 από το βιβλίο «Μοντέλα Αξιοπιστίας και Επιβίωσης» της Χ. Καρώνη (i) Αρχικά, εισάγουμε τα δεδομένα στο minitab δημιουργώντας δύο μεταβλητές: τη x για τον άτυπο όγκο και την y για τον τυπικό

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ ΙΙΙ ΠΟΛΛΑΠΛΗ ΠΑΛΙΝΔΡΟΜΗΣΗ

ΚΕΦΑΛΑΙΟ ΙΙΙ ΠΟΛΛΑΠΛΗ ΠΑΛΙΝΔΡΟΜΗΣΗ ΚΕΦΑΛΑΙΟ ΙΙΙ ΠΟΛΛΑΠΛΗ ΠΑΛΙΝΔΡΟΜΗΣΗ ΕΝΟΤΗΤΕΣ 1. ΓΕΝΙΚΗ ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΠΟΛΛΑΠΛΗ ΠΑΛΙΝΔΡΟΜΗΣΗ 2. ΕΠΙΛΟΓΗ ΜΟΝΤΕΛΟΥ ΜΕ ΤΗ ΜΕΘΟΔΟ ΤΟΥ ΑΠΟΚΛΕΙΣΜΟΥ ΜΕΤΑΒΛΗΤΩΝ 3. ΕΠΙΛΟΓΗ ΜΟΝΤΕΛΟΥ ΜΕ ΤΗ ΜΕΘΟΔΟ ΤΗΣ ΠΡΟΟΔΕΥΤΙΚΗΣ ΠΡΟΣΘΗΚΗΣ

Διαβάστε περισσότερα

ΣΥΣΧΕΤΙΣΗ και ΓΡΑΜΜΙΚΗ ΠΑΛΙΝΔΡΟΜΗΣΗ

ΣΥΣΧΕΤΙΣΗ και ΓΡΑΜΜΙΚΗ ΠΑΛΙΝΔΡΟΜΗΣΗ Αλεξάνδρειο Τεχνολογικό Εκπαιδευτικό Ίδρυμα Θεσσαλονίκης Τμήμα Πληροφορικής Εργαστήριο «Θεωρία Πιθανοτήτων και Στατιστική» ΣΥΣΧΕΤΙΣΗ και ΓΡΑΜΜΙΚΗ ΠΑΛΙΝΔΡΟΜΗΣΗ Περιεχόμενα 1. Συσχέτιση μεταξύ δύο ποσοτικών

Διαβάστε περισσότερα

Κεφάλαιο 16 Απλή Γραμμική Παλινδρόμηση και Συσχέτιση

Κεφάλαιο 16 Απλή Γραμμική Παλινδρόμηση και Συσχέτιση Κεφάλαιο 16 Απλή Γραμμική Παλινδρόμηση και Συσχέτιση Copyright 2009 Cengage Learning 16.1 Ανάλυση Παλινδρόμησης Σκοπός του προβλήματος είναι η ανάλυση της σχέσης μεταξύ συνεχών μεταβλητών. Η ανάλυση παλινδρόμησης

Διαβάστε περισσότερα

5. ΤΟ ΓΕΝΙΚΟ ΓΡΑΜΜΙΚΟ ΜΟΝΤΕΛΟ (GENERAL LINEAR MODEL) 5.1 Εναλλακτικά μοντέλα του απλού γραμμικού μοντέλου: Το εκθετικό μοντέλο

5. ΤΟ ΓΕΝΙΚΟ ΓΡΑΜΜΙΚΟ ΜΟΝΤΕΛΟ (GENERAL LINEAR MODEL) 5.1 Εναλλακτικά μοντέλα του απλού γραμμικού μοντέλου: Το εκθετικό μοντέλο 5. ΤΟ ΓΕΝΙΚΟ ΓΡΑΜΜΙΚΟ ΜΟΝΤΕΛΟ (GENERAL LINEAR MODEL) 5.1 Εναλλακτικά μοντέλα του απλού γραμμικού μοντέλου: Το εκθετικό μοντέλο Ένα εναλλακτικό μοντέλο της απλής γραμμικής παλινδρόμησης (που χρησιμοποιήθηκε

Διαβάστε περισσότερα

ΣΤΑΤΙΣΤΙΚΗ ΕΠΙΧΕΙΡΗΣΕΩΝ ΕΙΔΙΚΑ ΘΕΜΑΤΑ. Κεφάλαιο 16. Απλή Γραμμική Παλινδρόμηση και Συσχέτιση

ΣΤΑΤΙΣΤΙΚΗ ΕΠΙΧΕΙΡΗΣΕΩΝ ΕΙΔΙΚΑ ΘΕΜΑΤΑ. Κεφάλαιο 16. Απλή Γραμμική Παλινδρόμηση και Συσχέτιση ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΔΥΤΙΚΗΣ ΕΛΛΑΔΑΣ ΤΜΗΜΑ ΔΙΟΙΚΗΣΗΣ ΕΠΙΧΕΙΡΗΣΕΩΝ ΠΑΤΡΑΣ Εργαστήριο Λήψης Αποφάσεων & Επιχειρησιακού Προγραμματισμού Καθηγητής Ι. Μητρόπουλος ΣΤΑΤΙΣΤΙΚΗ ΕΠΙΧΕΙΡΗΣΕΩΝ ΕΙΔΙΚΑ ΘΕΜΑΤΑ

Διαβάστε περισσότερα

Άσκηση 2. i β. 1 ου έτους (Υ i )

Άσκηση 2. i β. 1 ου έτους (Υ i ) Άσκηση Ο επόμενος πίνακας δίνει τους βαθμούς φοιτητών (Χ i ) στις εισαγωγικές εξετάσεις ενός κολεγίου και τους αντίστοιχους βαθμούς τους (Υ i ) στο τέλος της πρώτης χρονιάς φοίτησης στο συγκεκριμένο κολέγιο.

Διαβάστε περισσότερα

3. ΣΕΙΡΙΑΚΟΣ ΣΥΝΤΕΛΕΣΤΗΣ ΣΥΣΧΕΤΙΣΗΣ

3. ΣΕΙΡΙΑΚΟΣ ΣΥΝΤΕΛΕΣΤΗΣ ΣΥΣΧΕΤΙΣΗΣ 3. ΣΕΙΡΙΑΚΟΣ ΣΥΝΤΕΛΕΣΤΗΣ ΣΥΣΧΕΤΙΣΗΣ Πρόβλημα: Ένας ραδιοφωνικός σταθμός ενδιαφέρεται να κάνει μια ανάλυση για τους πελάτες του που διαφημίζονται σ αυτόν για να εξετάσει την ποσοστιαία μεταβολή των πωλήσεων

Διαβάστε περισσότερα

Μενύχτα, Πιπερίγκου, Σαββάτης. ΒΙΟΣΤΑΤΙΣΤΙΚΗ Εργαστήριο 6 ο

Μενύχτα, Πιπερίγκου, Σαββάτης. ΒΙΟΣΤΑΤΙΣΤΙΚΗ Εργαστήριο 6 ο Παράδειγμα 1 Ο παρακάτω πίνακας δίνει τις πωλήσεις (ζήτηση) ενός προϊόντος Υ (σε κιλά) από το delicatessen μιας περιοχής και τις αντίστοιχες τιμές Χ του προϊόντος (σε ευρώ ανά κιλό) για μια ορισμένη χρονική

Διαβάστε περισσότερα

Παράδειγμα: Γούργουλης Βασίλειος, Επίκουρος Καθηγητής Τ.Ε.Φ.Α.Α. Δ.Π.Θ.

Παράδειγμα: Γούργουλης Βασίλειος, Επίκουρος Καθηγητής Τ.Ε.Φ.Α.Α. Δ.Π.Θ. Έλεγχος ύπαρξης στατιστικά σημαντικών διαφορών μεταξύ περισσότερων από δύο ανεξάρτητων δειγμάτων, που διαχωρίζονται βάσει ενός ανεξάρτητου παράγοντα (Ανάλυση διακύμανσης για ανεξάρτητα δείγματα ως προς

Διαβάστε περισσότερα

Απλή Ευθύγραµµη Συµµεταβολή

Απλή Ευθύγραµµη Συµµεταβολή Απλή Ευθύγραµµη Συµµεταβολή Επιστηµονική Επιµέλεια ρ. Γεώργιος Μενεξές Τοµέας Φυτών Μεγάλης Καλλιέργειας και Οικολογίας, Εργαστήριο Γεωργίας Viola adorata Εισαγωγή Ανάλυση Παλινδρόµησης και Συσχέτιση Απλή

Διαβάστε περισσότερα

Προσοµοίωση Εξέτασης στο µάθηµα του Γεωργικού Πειραµατισµού

Προσοµοίωση Εξέτασης στο µάθηµα του Γεωργικού Πειραµατισµού Προσοµοίωση Εξέτασης στο µάθηµα του Γεωργικού Πειραµατισµού ρ. Γεώργιος Μενεξές Τοµέας Φυτών Μεγάλης Καλλιέργειας και Οικολογίας Viola adorata Σκηνή Πρώτη Ερωτήσεις Σωστού-Λάθους (µέρος Ι). Ο µέσος όρος

Διαβάστε περισσότερα

ΤΕΛΙΚΗ ΕΞΕΤΑΣΗ ΔΕΙΓΜΑ ΟΙΚΟΝΟΜΕΤΡΙΑ Ι (3ο Εξάμηνο) Όνομα εξεταζόμενου: Α.Α. Οικονομικό Πανεπιστήμιο Αθήνας -- Τμήμα ΔΕΟΣ Καθηγητής: Γιάννης Μπίλιας

ΤΕΛΙΚΗ ΕΞΕΤΑΣΗ ΔΕΙΓΜΑ ΟΙΚΟΝΟΜΕΤΡΙΑ Ι (3ο Εξάμηνο) Όνομα εξεταζόμενου: Α.Α. Οικονομικό Πανεπιστήμιο Αθήνας -- Τμήμα ΔΕΟΣ Καθηγητής: Γιάννης Μπίλιας ΤΕΛΙΚΗ ΕΞΕΤΑΣΗ ΔΕΙΓΜΑ ΟΙΚΟΝΟΜΕΤΡΙΑ Ι (3ο Εξάμηνο) Όνομα εξεταζόμενου: Α.Α. Οικονομικό Πανεπιστήμιο Αθήνας -- Τμήμα ΔΕΟΣ Καθηγητής: Γιάννης Μπίλιας ΟΔΗΓΙΕΣ: Απαντήστε σε όλα τα θέματα. Απαντήστε με ακρίβεια

Διαβάστε περισσότερα

Άσκηση 11. Δίνονται οι παρακάτω παρατηρήσεις:

Άσκηση 11. Δίνονται οι παρακάτω παρατηρήσεις: Άσκηση. Δίνονται οι παρακάτω παρατηρήσεις: X X X X Y 7 50 6 7 6 6 96 7 0 5 55 9 5 59 6 8 8 5 0 59 7 7 8 8 5 5 0 7 69 9 6 6 7 6 9 5 7 6 8 5 6 69 8 0 50 66 0 0 50 8 59 76 8 7 60 7 87 6 5 7 88 9 8 50 0 5

Διαβάστε περισσότερα

Μονοπαραγοντική Ανάλυση Διακύμανσης Ανεξάρτητων Δειγμάτων

Μονοπαραγοντική Ανάλυση Διακύμανσης Ανεξάρτητων Δειγμάτων Μονοπαραγοντική Ανάλυση Διακύμανσης Ανεξάρτητων Δειγμάτων 1 Μονοπαραγοντική Ανάλυση Διακύμανσης Παραμετρικό στατιστικό κριτήριο για τη μελέτη της επίδρασης μιας ανεξάρτητης μεταβλητής στην εξαρτημένη Λογική

Διαβάστε περισσότερα

ΑΝΑΛΥΣΗ ΔΕΔΟΜΕΝΩΝ. Δρ. Βασίλης Π. Αγγελίδης Τμήμα Μηχανικών Παραγωγής & Διοίκησης Δημοκρίτειο Πανεπιστήμιο Θράκης

ΑΝΑΛΥΣΗ ΔΕΔΟΜΕΝΩΝ. Δρ. Βασίλης Π. Αγγελίδης Τμήμα Μηχανικών Παραγωγής & Διοίκησης Δημοκρίτειο Πανεπιστήμιο Θράκης ΑΝΑΛΥΣΗ ΔΕΔΟΜΕΝΩΝ Δρ. Βασίλης Π. Αγγελίδης Τμήμα Μηχανικών Παραγωγής & Διοίκησης Δημοκρίτειο Πανεπιστήμιο Θράκης Περιεχόμενα Εισαγωγή Το πρόβλημα - Συντελεστής συσχέτισης Μοντέλο απλής γραμμικής παλινδρόμησης

Διαβάστε περισσότερα

ΜΕΘΟΔΟΣ ΤΗΣ ΒΗΜΑΤΙΚΗΣ ΠΑΛΙΝΔΡΟΜΗΣΗΣ (STEPWISE REGRESSION)

ΜΕΘΟΔΟΣ ΤΗΣ ΒΗΜΑΤΙΚΗΣ ΠΑΛΙΝΔΡΟΜΗΣΗΣ (STEPWISE REGRESSION) 4. ΜΕΘΟΔΟΣ ΤΗΣ ΒΗΜΑΤΙΚΗΣ ΠΑΛΙΝΔΡΟΜΗΣΗΣ (STEPWISE REGRESSION) Η μέθοδος της βηματικής παλινδρόμησης (stepwise regression) είναι μιά άλλη μέθοδος επιλογής ενός "καλού" υποσυνόλου ανεξαρτήτων μεταβλητών.

Διαβάστε περισσότερα

ΠΟΣΟΤΙΚΕΣ ΜΕΘΟΔΟΙ ΙI (ΣΤΑΤΙΣΤΙΚΗ ΓΙΑ ΤΗ ΔΙΟΙΚΗΣΗ ΤΩΝ ΕΠΙΧΕΙΡΗΣΕΩΝ) (ΟΔΕ 2116)

ΠΟΣΟΤΙΚΕΣ ΜΕΘΟΔΟΙ ΙI (ΣΤΑΤΙΣΤΙΚΗ ΓΙΑ ΤΗ ΔΙΟΙΚΗΣΗ ΤΩΝ ΕΠΙΧΕΙΡΗΣΕΩΝ) (ΟΔΕ 2116) Σελίδα 1 ΟΙΚΟΝΟΜΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ ΤΜΗΜΑ ΟΡΓΑΝΩΣΗΣ ΚΑΙ ΔΙΟΙΚΗΣΗΣ ΕΠΙΧΕΙΡΗΣΕΩΝ ΜΑΘΗΜΑ: ΠΟΣΟΤΙΚΕΣ ΜΕΘΟΔΟΙ ΙΙ (ΣΤΑΤΙΣΤΙΚΗ ΓΙΑ ΤΗ ΔΙΟΙΚΗΣΗ ΤΩΝ ΕΠΙΧΕΙΡΗΣΕΩΝ) (ΟΔΕ 2116) ΠΑΝΕΠΙΣΤΗΜΙΑΚΟΣ ΥΠΟΤΡΟΦΟΣ ΠΑΝΑΓΙΩΤΗΣ

Διαβάστε περισσότερα

+ ε βελτιώνει ουσιαστικά το προηγούμενο (β 3 = 0;) 2. Εξετάστε ποιο από τα παρακάτω τρία μοντέλα:

+ ε βελτιώνει ουσιαστικά το προηγούμενο (β 3 = 0;) 2. Εξετάστε ποιο από τα παρακάτω τρία μοντέλα: ΑΝΑΛΥΣΗ ΠΑΛΙΝΔΡΟΜΗΣΗΣ, 6-5-0 Άσκηση 8. Δίνονται οι παρακάτω 0 παρατηρήσεις (πίνακας Α) με βάση τις οποίες θέλουμε να δημιουργήσουμε ένα γραμμικό μοντέλο για την πρόβλεψη της Υ μέσω των ανεξάρτητων μεταβλητών

Διαβάστε περισσότερα

Άσκηση 1. Πληθυσμός (Χ i1 )

Άσκηση 1. Πληθυσμός (Χ i1 ) Άσκηση Μία αντιπροσωπεία πωλήσεως αυτοκινήτων διαθέτει καταστήματα σε 5 διαφορετικές πόλεις. Ο επόμενος πίνακας δίνει τις πωλήσεις Υ i του τελευταίου μήνα καθώς επίσης και τον πληθυσμό Χ i και το οικογενειακό

Διαβάστε περισσότερα

2. ΕΠΙΛΟΓΗ ΜΟΝΤΕΛΟΥ ΜΕ ΤΗ ΜΕΘΟΔΟ ΤΟΥ ΑΠΟΚΛΕΙΣΜΟΥ ΜΕΤΑΒΛΗΤΩΝ (Backward Elimination Procedure) Στην στατιστική βιβλιογραφία υπάρχουν πολλές μέθοδοι για

2. ΕΠΙΛΟΓΗ ΜΟΝΤΕΛΟΥ ΜΕ ΤΗ ΜΕΘΟΔΟ ΤΟΥ ΑΠΟΚΛΕΙΣΜΟΥ ΜΕΤΑΒΛΗΤΩΝ (Backward Elimination Procedure) Στην στατιστική βιβλιογραφία υπάρχουν πολλές μέθοδοι για 2. ΕΠΙΛΟΓΗ ΜΟΝΤΕΛΟΥ ΜΕ ΤΗ ΜΕΘΟΔΟ ΤΟΥ ΑΠΟΚΛΕΙΣΜΟΥ ΜΕΤΑΒΛΗΤΩΝ (Backward Elimination Procedure) Στην στατιστική βιβλιογραφία υπάρχουν πολλές μέθοδοι για τον καθορισμό του καλύτερου υποσυνόλου από ένα σύνολο

Διαβάστε περισσότερα

Παράδειγμα: Γούργουλης Βασίλειος, Επίκουρος Καθηγητής Τ.Ε.Φ.Α.Α.-Δ.Π.Θ.

Παράδειγμα: Γούργουλης Βασίλειος, Επίκουρος Καθηγητής Τ.Ε.Φ.Α.Α.-Δ.Π.Θ. Έλεγχος ύπαρξης στατιστικά σημαντικών διαφορών μεταξύ δειγμάτων, που διαχωρίζονται βάσει ενός επαναλαμβανόμενου και ενός ανεξάρτητου παράγοντα (Ανάλυση διακύμανσης για εξαρτημένα δείγματα ως προς δύο παράγοντες,

Διαβάστε περισσότερα

Το στατιστικό κριτήριο που μας επιτρέπει να. μιας ή πολλών άλλων γνωστών μεταβλητών. Η σχέση ανάμεσα στις μεταβλητές που μελετώνται

Το στατιστικό κριτήριο που μας επιτρέπει να. μιας ή πολλών άλλων γνωστών μεταβλητών. Η σχέση ανάμεσα στις μεταβλητές που μελετώνται Κεφάλαιο 10 Η Ανάλυση Παλινδρόμησης Η Ανάλυση Παλινδρόμησης Το στατιστικό κριτήριο που μας επιτρέπει να προβλέψουμε τις τιμές μιας μεταβλητής από τις τιμές μιας ή πολλών άλλων γνωστών μεταβλητών Η σχέση

Διαβάστε περισσότερα

ΕΚΤΙΜΗΤΙΚΗ: ΔΙΑΣΤΗΜΑΤΑ ΕΜΠΙΣΤΟΣΥΝΗΣ

ΕΚΤΙΜΗΤΙΚΗ: ΔΙΑΣΤΗΜΑΤΑ ΕΜΠΙΣΤΟΣΥΝΗΣ ΚΕΦΑΛΑΙΟ 13 ΕΚΤΙΜΗΤΙΚΗ: ΔΙΑΣΤΗΜΑΤΑ ΕΜΠΙΣΤΟΣΥΝΗΣ Στις προηγούμενες ενότητες ασχοληθήκαμε με μεθόδους που οδηγούν σε εκτιμήτριες των τιμών μιας ή και περισσοτέρων αγνώστων παραμέτρων. Αυτό έγινε με την κατασκευή

Διαβάστε περισσότερα

ΑΝΑΛΥΣΗ ΔΕΔΟΜΕΝΩΝ. Δρ. Βασίλης Π. Αγγελίδης Τμήμα Μηχανικών Παραγωγής & Διοίκησης Δημοκρίτειο Πανεπιστήμιο Θράκης

ΑΝΑΛΥΣΗ ΔΕΔΟΜΕΝΩΝ. Δρ. Βασίλης Π. Αγγελίδης Τμήμα Μηχανικών Παραγωγής & Διοίκησης Δημοκρίτειο Πανεπιστήμιο Θράκης ΑΝΑΛΥΣΗ ΔΕΔΟΜΕΝΩΝ Δρ. Βασίλης Π. Αγγελίδης Τμήμα Μηχανικών Παραγωγής & Διοίκησης Δημοκρίτειο Πανεπιστήμιο Θράκης Πολλαπλή Παλινδρόμηση Δρ. Βασίλης Π. Αγγελίδης Ανάλυση Δεδομένων (Εργαστήριο) Διαφάνεια

Διαβάστε περισσότερα

Πολλαπλή παλινδρόμηση (Multivariate regression)

Πολλαπλή παλινδρόμηση (Multivariate regression) ΜΑΘΗΜΑ 3 ο 1 Πολλαπλή παλινδρόμηση (Multivariate regression) Η συμπεριφορά των περισσότερων οικονομικών μεταβλητών είναι συνάρτηση όχι μιας αλλά πολλών μεταβλητών Υ = f ( X 1, X 2,... X n ) δηλαδή η Υ

Διαβάστε περισσότερα

ΑΝΑΛΥΣΗ Ε ΟΜΕΝΩΝ. 7. Παλινδρόµηση

ΑΝΑΛΥΣΗ Ε ΟΜΕΝΩΝ. 7. Παλινδρόµηση ΑΝΑΛΥΣΗ Ε ΟΜΕΝΩΝ 7. Παλινδρόµηση Γενικά Επέκταση της έννοιας της συσχέτισης: Πώς µπορούµε να προβλέπουµε τη µια µεταβλητή από την άλλη; Απλή παλινδρόµηση (simple regression): Κατασκευή µοντέλου πρόβλεψης

Διαβάστε περισσότερα

Παράδειγμα: Γούργουλης Βασίλειος, Επίκουρος Καθηγητής Τ.Ε.Φ.Α.Α.-Δ.Π.Θ.

Παράδειγμα: Γούργουλης Βασίλειος, Επίκουρος Καθηγητής Τ.Ε.Φ.Α.Α.-Δ.Π.Θ. Έλεγχος ύπαρξης στατιστικά σημαντικών διαφορών μεταξύ περισσότερων από δύο εξαρτημένων δειγμάτων, που διαχωρίζονται βάσει ενός επαναλαμβανόμενου παράγοντα (Ανάλυση διακύμανσης για εξαρτημένα δείγματα ως

Διαβάστε περισσότερα

ΟΙΚΟΝΟΜΕΤΡΙΑ 2 ΦΡΟΝΤΙΣΤΗΡΙΟ 2 BASICS OF IV ESTIMATION USING STATA

ΟΙΚΟΝΟΜΕΤΡΙΑ 2 ΦΡΟΝΤΙΣΤΗΡΙΟ 2 BASICS OF IV ESTIMATION USING STATA ΟΙΚΟΝΟΜΕΤΡΙΑ 2 ΦΡΟΝΤΙΣΤΗΡΙΟ 2 BASICS OF IV ESTIMATION USING STATA Στις ασκήσεις που ακολουθούν χρησιμοποιούμε δεδομένα για 3010 εργαζόμενους άνδρες ηλικίας 24 έως 34 από έρευνα που πραγματοποιήθηκε το

Διαβάστε περισσότερα

Εισόδημα Κατανάλωση 1500 500 1600 600 1300 450 1100 400 600 250 700 275 900 300 800 352 850 400 1100 500

Εισόδημα Κατανάλωση 1500 500 1600 600 1300 450 1100 400 600 250 700 275 900 300 800 352 850 400 1100 500 Εισόδημα Κατανάλωση 1500 500 1600 600 1300 450 1100 400 600 250 700 275 900 300 800 352 850 400 1100 500 Πληθυσμός Δείγμα Δείγμα Δείγμα Ο ρόλος της Οικονομετρίας Οικονομική Θεωρία Διατύπωση της

Διαβάστε περισσότερα

ΕΛΕΓΧΟΙ ΥΠΟΘΕΣΕΩΝ ΓΙΑ ΤΗΝ ΣΥΓΚΡΙΣΗ ΜΕΣΩΝ ΤΙΜΩΝ ΚΑΙ ΑΝΑΛΟΓΙΩΝ ΔΥΟ

ΕΛΕΓΧΟΙ ΥΠΟΘΕΣΕΩΝ ΓΙΑ ΤΗΝ ΣΥΓΚΡΙΣΗ ΜΕΣΩΝ ΤΙΜΩΝ ΚΑΙ ΑΝΑΛΟΓΙΩΝ ΔΥΟ ΚΕΦΑΛΑΙΟ 19 ΕΛΕΓΧΟΙ ΥΠΟΘΕΣΕΩΝ ΓΙΑ ΤΗΝ ΣΥΓΚΡΙΣΗ ΜΕΣΩΝ ΤΙΜΩΝ ΚΑΙ ΑΝΑΛΟΓΙΩΝ ΔΥΟ ΚΑΝΟΝΙΚΩΝ ΠΛΗΘΥΣΜΩΝ Όταν ενδιαφερόμαστε να συγκρίνουμε δύο πληθυσμούς, η φυσιολογική προσέγγιση είναι να προσπαθήσουμε να συγκρίνουμε

Διαβάστε περισσότερα

Έλεγχος ύπαρξης στατιστικά σημαντικών διαφορών μεταξύ δύο εξαρτημένων δειγμάτων, που ακολουθούν την κανονική κατανομή (t-test για εξαρτημένα δείγματα)

Έλεγχος ύπαρξης στατιστικά σημαντικών διαφορών μεταξύ δύο εξαρτημένων δειγμάτων, που ακολουθούν την κανονική κατανομή (t-test για εξαρτημένα δείγματα) Έλεγχος ύπαρξης στατιστικά σημαντικών διαφορών μεταξύ δύο εξαρτημένων δειγμάτων, που ακολουθούν την κανονική κατανομή (t-test για εξαρτημένα δείγματα) Όπως αναφέρθηκε στο προηγούμενο κεφάλαιο σε ορισμένες

Διαβάστε περισσότερα

Κεφάλαιο 14. Ανάλυση ιακύµανσης Μονής Κατεύθυνσης. Ανάλυση ιακύµανσης Μονής Κατεύθυνσης

Κεφάλαιο 14. Ανάλυση ιακύµανσης Μονής Κατεύθυνσης. Ανάλυση ιακύµανσης Μονής Κατεύθυνσης Κεφάλαιο 14 Ανάλυση ιακύµανσης Μονής Κατεύθυνσης 1 Ανάλυση ιακύµανσης Μονής Κατεύθυνσης Παραµετρικό στατιστικό κριτήριο για τη µελέτη της επίδρασης µιας ανεξάρτητης µεταβλητής στην εξαρτηµένη Λογική παρόµοια

Διαβάστε περισσότερα

τρόπος για να εμπεδωθεί η θεωρία. Για την επίλυση των παραδειγμάτων χρησιμοποιούνται στατιστικά πακέτα, ώστε να είναι δυνατή η ανάλυση μεγάλου όγκου

τρόπος για να εμπεδωθεί η θεωρία. Για την επίλυση των παραδειγμάτων χρησιμοποιούνται στατιστικά πακέτα, ώστε να είναι δυνατή η ανάλυση μεγάλου όγκου ΠΡΟΛΟΓΟΣ Η γραμμική παλινδρόμηση χρησιμοποιείται για την μελέτη των σχέσεων μεταξύ μετρήσιμων μεταβλητών. Γενικότερα, η γραμμική στατιστική συμπερασματολογία αποτελεί ένα ευρύ πεδίο της στατιστικής ανάλυσης

Διαβάστε περισσότερα

Οικονομετρία Ι. Ενότητα 4: Διάστημα Εμπιστοσύνης - Έλεγχος Υποθέσεων. Δρ. Χαϊδώ Δριτσάκη Τμήμα Λογιστικής & Χρηματοοικονομικής

Οικονομετρία Ι. Ενότητα 4: Διάστημα Εμπιστοσύνης - Έλεγχος Υποθέσεων. Δρ. Χαϊδώ Δριτσάκη Τμήμα Λογιστικής & Χρηματοοικονομικής Οικονομετρία Ι Ενότητα 4: Διάστημα Εμπιστοσύνης - Έλεγχος Υποθέσεων Δρ. Χαϊδώ Δριτσάκη Τμήμα Λογιστικής & Χρηματοοικονομικής Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative

Διαβάστε περισσότερα

ΕΙΔΙΚΑ ΘΕΜΑΤΑ ΣΤΗΝ ΣΤΑΤΙΣΤΙΚΗ ΕΡΓΑΣΤΗΡΙΟ (SPSS)

ΕΙΔΙΚΑ ΘΕΜΑΤΑ ΣΤΗΝ ΣΤΑΤΙΣΤΙΚΗ ΕΡΓΑΣΤΗΡΙΟ (SPSS) ΕΙΔΙΚΑ ΘΕΜΑΤΑ ΣΤΗΝ ΣΤΑΤΙΣΤΙΚΗ ΕΡΓΑΣΤΗΡΙΟ (SPSS) Έλεγχος Υποθέσεων για την Μέση Τιμή ενός Δείγματος (One Sample t-test) Το κριτήριο One sample t-test χρησιμοποιείται όταν θέλουμε να συγκρίνουμε τον αριθμητικό

Διαβάστε περισσότερα

ΚΟΙΝΩΝΙΟΒΙΟΛΟΓΙΑ, ΝΕΥΡΟΕΠΙΣΤΗΜΕΣ ΚΑΙ ΕΚΠΑΙΔΕΥΣΗ

ΚΟΙΝΩΝΙΟΒΙΟΛΟΓΙΑ, ΝΕΥΡΟΕΠΙΣΤΗΜΕΣ ΚΑΙ ΕΚΠΑΙΔΕΥΣΗ A εξάμηνο 2009-2010 ΠΡΟΓΡΑΜΜΑ ΜΕΤΑΠΤΥΧΙΑΚΩΝ ΣΠΟΥΔΩΝ ΚΟΙΝΩΝΙΟΒΙΟΛΟΓΙΑ, ΝΕΥΡΟΕΠΙΣΤΗΜΕΣ ΚΑΙ ΕΚΠΑΙΔΕΥΣΗ Μεθοδολογία Έρευνας και Στατιστική ΑΝΤΩΝΙΟΣ ΧΡ. ΜΠΟΥΡΑΣ Χειμερινό Εξάμηνο 2009-2010 Ποιοτικές και Ποσοτικές

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΕΙΡΑΙΩΣ ΤΜΗΜΑ ΣΤΑΤΙΣΤΙΚΗΣ ΚΑΙ ΑΣΦΑΛΙΣΤΙΚΗΣ ΕΠΙΣΤΗΜΗΣ Εξετάσεις περιόδου στο μάθημα ΑΝΑΛΥΣΗ ΠΑΛΙΝΔΡΟΜΗΣΗΣ

ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΕΙΡΑΙΩΣ ΤΜΗΜΑ ΣΤΑΤΙΣΤΙΚΗΣ ΚΑΙ ΑΣΦΑΛΙΣΤΙΚΗΣ ΕΠΙΣΤΗΜΗΣ Εξετάσεις περιόδου στο μάθημα ΑΝΑΛΥΣΗ ΠΑΛΙΝΔΡΟΜΗΣΗΣ ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΕΙΡΑΙΩΣ ΤΜΗΜΑ ΣΤΑΤΙΣΤΙΚΗΣ ΚΑΙ ΑΣΦΑΛΙΣΤΙΚΗΣ ΕΠΙΣΤΗΜΗΣ Εξετάσεις περιόδου στο μάθημα ΑΝΑΛΥΣΗ ΠΑΛΙΝΔΡΟΜΗΣΗΣ Ονοματεπώνυμο: Όνομα Πατρός:... Σ ΑΜ:. Ημερομηνία: Παρακαλώ μη γράφετε στα παρακάτω

Διαβάστε περισσότερα

ΠΕΡΙΕΧΟΜΕΝΑ ΠΡΟΛΟΓΟΣ 7. ΚΕΦΑΛΑΙΟ 1: Εισαγωγικές Έννοιες 13

ΠΕΡΙΕΧΟΜΕΝΑ ΠΡΟΛΟΓΟΣ 7. ΚΕΦΑΛΑΙΟ 1: Εισαγωγικές Έννοιες 13 ΠΕΡΙΕΧΟΜΕΝΑ ΠΡΟΛΟΓΟΣ 7 ΚΕΦΑΛΑΙΟ 1: Εισαγωγικές Έννοιες 13 1.1. Εισαγωγή 13 1.2. Μοντέλο ή Υπόδειγμα 13 1.3. Η Ανάλυση Παλινδρόμησης 16 1.4. Το γραμμικό μοντέλο Παλινδρόμησης 17 1.5. Πρακτική χρησιμότητα

Διαβάστε περισσότερα

Προϋποθέσεις : ! Και οι δύο µεταβλητές να κατανέµονται κανονικά και να έχουν επιλεγεί τυχαία.

Προϋποθέσεις : ! Και οι δύο µεταβλητές να κατανέµονται κανονικά και να έχουν επιλεγεί τυχαία. . ΣΤΑΤΙΣΤΙΚΗ ΣΥΣΧΕΤΙΣΗ. Υπολογισµός συντελεστών συσχέτισης Προκειµένου να ελέγξουµε την ύπαρξη γραµµικής σχέσης µεταξύ δύο ποσοτικών µεταβλητών, χρησιµοποιούµε συνήθως τον παραµετρικό συντελεστή συσχέτισης

Διαβάστε περισσότερα

ΤΣΑΛΤΑ ΜΑΡΙΑ Α.Μ: 1946 ΠΑΥΛΕΛΛΗ ΛΟΥΙΖΑ Α.Μ: 2342 ΤΣΑΪΛΑΚΗ ΦΑΝΗ Α.Μ: Οικονομετρικά. Εργαστήριο 15/05/11

ΤΣΑΛΤΑ ΜΑΡΙΑ Α.Μ: 1946 ΠΑΥΛΕΛΛΗ ΛΟΥΙΖΑ Α.Μ: 2342 ΤΣΑΪΛΑΚΗ ΦΑΝΗ Α.Μ: Οικονομετρικά. Εργαστήριο 15/05/11 ΤΣΑΛΤΑ ΜΑΡΙΑ Α.Μ: 1946 ΠΑΥΛΕΛΛΗ ΛΟΥΙΖΑ Α.Μ: 34 ΤΣΑΪΛΑΚΗ ΦΑΝΗ Α.Μ: 17 Οικονομετρικά Εργαστήριο 15/5/11 ΟΙΚΟΝΟΜΕΤΡΙΚΑ ΠΡΟΤΥΠΑ ΜΑΘΗΜΑ 7 ΕΡΓΑΣΤΗΡΙΟ ΜΗ ΓΡΑΜΜΙΚΑ ΜΟΝΤΕΛΑ Σκοπός του παρόντος µαθήµατος είναι η

Διαβάστε περισσότερα

ΜΟΝΟΠΑΡΑΜΕΤΡΙΚΗ ΚΑΙ ΠΟΛΥΠΑΡΑΜΕΤΡΙΚΗ ΣΤΑΤΙΣΤΙΚΗ ΑΝΑΛΥΣΗ ΔΕΔΟΜΕΝΩΝ. Αριάδνη Αργυράκη

ΜΟΝΟΠΑΡΑΜΕΤΡΙΚΗ ΚΑΙ ΠΟΛΥΠΑΡΑΜΕΤΡΙΚΗ ΣΤΑΤΙΣΤΙΚΗ ΑΝΑΛΥΣΗ ΔΕΔΟΜΕΝΩΝ. Αριάδνη Αργυράκη ΜΟΝΟΠΑΡΑΜΕΤΡΙΚΗ ΚΑΙ ΠΟΛΥΠΑΡΑΜΕΤΡΙΚΗ ΣΤΑΤΙΣΤΙΚΗ ΑΝΑΛΥΣΗ ΔΕΔΟΜΕΝΩΝ Αριάδνη Αργυράκη ΣΤΑΔΙΑ ΕΚΤΕΛΕΣΗΣ ΠΕΡΙΒΑΛΛΟΝΤΙΚΩΝ ΓΕΩΧΗΜΙΚΩΝ ΕΡΕΥΝΩΝ 1.ΣΧΕΔΙΑΣΜΟΣ: - Καθορισμός στόχων έρευνας - Ιστορικό περιοχής 2 4.

Διαβάστε περισσότερα

Ελένη Κανδηλώρου Αναπλ. Καθηγήτρια. Γραμμικά Μοντέλα. Λύσεις Ασκήσεων

Ελένη Κανδηλώρου Αναπλ. Καθηγήτρια. Γραμμικά Μοντέλα. Λύσεις Ασκήσεων Ελένη Κανδηλώρου Αναπλ. Καθηγήτρια Αθήνα, 6-4-7 Γραμμικά Μοντέλα Λύσεις Ασκήσεων η Άσκηση: (α) Eίναι η σχέση μεταξύ των δύο μεταβλητών γραμμική; Διάγραμμα Διασποράς Για το Υψόμετρο & τις Αρνητικές Τιμές

Διαβάστε περισσότερα

Παράδειγμα: Γούργουλης Βασίλειος, Επίκουρος Καθηγητής Τ.Ε.Φ.Α.Α.-Δ.Π.Θ.

Παράδειγμα: Γούργουλης Βασίλειος, Επίκουρος Καθηγητής Τ.Ε.Φ.Α.Α.-Δ.Π.Θ. Έλεγχος ύπαρξης στατιστικά σημαντικών διαφορών μεταξύ περισσότερων από δύο δειγμάτων, που διαχωρίζονται βάσει δύο ανεξάρτητων παραγόντων (Ανάλυση διακύμανσης για ανεξάρτητα δείγματα ως προς περισσότερους

Διαβάστε περισσότερα

ΜΗ ΠΑΡΑΜΕΤΡΙΚΗ ΠΑΛΙΝΔΡΟΜΗΣΗ

ΜΗ ΠΑΡΑΜΕΤΡΙΚΗ ΠΑΛΙΝΔΡΟΜΗΣΗ ΚΕΦΑΛΑΙΟ 7 ΜΗ ΠΑΡΑΜΕΤΡΙΚΗ ΠΑΛΙΝΔΡΟΜΗΣΗ (Non Parametrc Regresson) Το κεφάλαιο αυτό συνδέεται άμεσα με το κεφάλαιο που αναφέρεται στην συσχέτιση τάξης μεγέθους με την έννοια υπό την οποία η κλασική παραμετρική

Διαβάστε περισσότερα

ΕΙΔΙΚΑ ΘΕΜΑΤΑ ΣΤΗΝ ΣΤΑΤΙΣΤΙΚΗ ΕΡΓΑΣΤΗΡΙΟ (SPSS)

ΕΙΔΙΚΑ ΘΕΜΑΤΑ ΣΤΗΝ ΣΤΑΤΙΣΤΙΚΗ ΕΡΓΑΣΤΗΡΙΟ (SPSS) ΕΙΔΙΚΑ ΘΕΜΑΤΑ ΣΤΗΝ ΣΤΑΤΙΣΤΙΚΗ ΕΡΓΑΣΤΗΡΙΟ (SPSS) Έλεγχος Υποθέσεων για τους Μέσους - Εξαρτημένα Δείγματα (Paired samples t-test) Το κριτήριο Paired samples t-test χρησιμοποιείται όταν θέλουμε να συγκρίνουμε

Διαβάστε περισσότερα

ΑΝΑΛΥΣΗ Ε ΟΜΕΝΩΝ. 6. Συσχέτιση

ΑΝΑΛΥΣΗ Ε ΟΜΕΝΩΝ. 6. Συσχέτιση ΑΝΑΛΥΣΗ Ε ΟΜΕΝΩΝ 6. Συσχέτιση Γενικά Υπάρχει σχέση ανάµεσα σε δύο (ή περισσότερες) µεταβλητές; Αν υπάρχει σχέση ποια η φύση της σχέσης αυτής; Συσχέτιση: µέτρο σχέσης ανάµεσα σε µεταβλητές Θετικά συσχετισµένες

Διαβάστε περισσότερα

ΜΑΘΗΜΑ 3ο. Υποδείγματα μιας εξίσωσης

ΜΑΘΗΜΑ 3ο. Υποδείγματα μιας εξίσωσης ΜΑΘΗΜΑ 3ο Υποδείγματα μιας εξίσωσης Οι βασικές υποθέσεις 1. Ο διαταρακτικός όρος u t είναι μια τυχαία μεταβλητή με μέσο το μηδέν. Eu t = 0 για t = 1,2,3..n 2. Η διακύμανση της τυχαίας μεταβλητής u t είναι

Διαβάστε περισσότερα

SOURCE DF SUM OF SQUARES MEAN SQUARE F VALUE PR F MODEL (a) 2.882 E04 (e) (g) (h) ERROR (b) (d) (f) TOTAL (c) 4.063 E04 R SQUARE (i) PARAMETER

SOURCE DF SUM OF SQUARES MEAN SQUARE F VALUE PR F MODEL (a) 2.882 E04 (e) (g) (h) ERROR (b) (d) (f) TOTAL (c) 4.063 E04 R SQUARE (i) PARAMETER ΑΣΚΗΣΕΙΣ. Θεωρήστε το παράδειγμα που αναφέρεται στη συσχέτιση του βαθμού ικανοποίησης των εργαζομένων σε ένα εργαστήριο σε σχέση με τις οκτώ μεταβλητές που ορίστηκαν εκεί. (Χ =ηλικία, Χ =φύλο, Χ =εβδομαδιαίος

Διαβάστε περισσότερα

ΟΙΚΟΝΟΜΕΤΡΙΑ Ι ΦΥΛΛΑΔΙΟ

ΟΙΚΟΝΟΜΕΤΡΙΑ Ι ΦΥΛΛΑΔΙΟ ΟΙΚΟΝΟΜΕΤΡΙΑ Ι ΦΥΛΛΑΔΙΟ Παράρτημα Πανεπιστημίου: Δεληγιώργη 6 Α (έναντι Πανεπιστημίου Πειραιώς) Τηλ.: 4..97,,, Fax : 4..634 URL : www.vtal.gr emal: f@vtal.gr Παράρτημα Πανεπιστημίου: Δεληγιώργη 6 Α (έναντι

Διαβάστε περισσότερα

Μοντέλα Παλινδρόμησης. Άγγελος Μάρκος, Λέκτορας ΠΤ Ε, ΠΘ

Μοντέλα Παλινδρόμησης. Άγγελος Μάρκος, Λέκτορας ΠΤ Ε, ΠΘ Μοντέλα Παλινδρόμησης Άγγελος Μάρκος, Λέκτορας ΠΤ Ε, ΠΘ Εισαγωγή (1) Σε αρκετές περιπτώσεις επίλυσης προβλημάτων ενδιαφέρει η ταυτόχρονη μελέτη δύο ή περισσότερων μεταβλητών, για να προσδιορίσουμε με ποιο

Διαβάστε περισσότερα

Λογαριθμικά Γραμμικά Μοντέλα Poisson Παλινδρόμηση Παράδειγμα στο SPSS

Λογαριθμικά Γραμμικά Μοντέλα Poisson Παλινδρόμηση Παράδειγμα στο SPSS Λογαριθμικά Γραμμικά Μοντέλα Poisson Παλινδρόμηση Παράδειγμα στο SPSS Ο παρακάτω πίνακας παρουσιάζει θανάτους από καρδιακή ανεπάρκεια ανάμεσα σε άνδρες γιατρούς οι οποίοι έχουν κατηγοριοποιηθεί κατά ηλικία

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΟΙΚΟΝΟΜΙΚΩΝ ΚΑΙ ΚΟΙΝΩΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ. ΜΑΘΗΜΑ 3ο

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΟΙΚΟΝΟΜΙΚΩΝ ΚΑΙ ΚΟΙΝΩΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ. ΜΑΘΗΜΑ 3ο ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΟΙΚΟΝΟΜΙΚΩΝ ΚΑΙ ΚΟΙΝΩΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΜΑΘΗΜΑ 3ο Κίβδηλες παλινδρομήσεις Μια από τις υποθέσεις που χρησιμοποιούμε στην ανάλυση της παλινδρόμησης είναι ότι οι χρονικές σειρές που χρησιμοποιούμε

Διαβάστε περισσότερα

Ερμηνεία αποτελεσμάτων Ανάλυση διακύμανσης κατά ένα παράγοντα

Ερμηνεία αποτελεσμάτων Ανάλυση διακύμανσης κατά ένα παράγοντα Ερμηνεία αποτελεσμάτων Ανάλυση διακύμανσης κατά ένα παράγοντα Αρχείο δεδομένων school.sav Στον πίνακα Descriptives, μας δίνονται για την Επίδοση ως προς τις πέντε διαφορετικές μεθόδους διδασκαλίας, το

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΣΧΟΛΗ ΕΠΙΣΤΗΜΩΝ ΤΗΣ ΔΙΟΙΚΗΣΗΣ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΔΙΟΙΚΗΣΗΣ ΣΤΑΤΙΣΤΙΚΗ

ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΣΧΟΛΗ ΕΠΙΣΤΗΜΩΝ ΤΗΣ ΔΙΟΙΚΗΣΗΣ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΔΙΟΙΚΗΣΗΣ ΣΤΑΤΙΣΤΙΚΗ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΣΧΟΛΗ ΕΠΙΣΤΗΜΩΝ ΤΗΣ ΔΙΟΙΚΗΣΗΣ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΔΙΟΙΚΗΣΗΣ ΣΤΑΤΙΣΤΙΚΗ Ακαδ. Έτος 06-07 Διδάσκων: Βασίλης ΚΟΥΤΡΑΣ Επικ. Καθηγητής v.koutra@fme.aegea.gr Τηλ: 7035468 Θα μελετήσουμε

Διαβάστε περισσότερα

Ανάλυση διακύμανσης (Μέρος 1 ο ) 17/3/2017

Ανάλυση διακύμανσης (Μέρος 1 ο ) 17/3/2017 Ανάλυση διακύμανσης (Μέρος 1 ο ) 17/3/2017 2 Γιατί ανάλυση διακύμανσης; (1) Ας θεωρήσουμε k πληθυσμούς με μέσες τιμές μ 1, μ 2,, μ k, αντίστοιχα Πως μπορούμε να συγκρίνουμε τις μέσες τιμές k πληθυσμών

Διαβάστε περισσότερα

ΠΕΡΙΓΡΑΦΙΚΗ και ΕΠΑΓΩΓΙΚΗ ΣΤΑΤΙΣΤΙΚΗ

ΠΕΡΙΓΡΑΦΙΚΗ και ΕΠΑΓΩΓΙΚΗ ΣΤΑΤΙΣΤΙΚΗ ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ ΠΕΡΙΓΡΑΦΙΚΗ και ΕΠΑΓΩΓΙΚΗ ΣΤΑΤΙΣΤΙΚΗ Επίλυση: Oneway Anova Διδάσκων: Δαφέρμος Βασίλειος ΤΜΗΜΑ ΠΟΛΙΤΙΚΗΣ ΕΠΙΣΤΗΜΗΣ ΣΧΟΛΗΣ ΚΟΙΝΩΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ Άδειες Χρήσης Το παρόν

Διαβάστε περισσότερα

ΓΡΑΜΜΙΚΗ ΠΑΛΙΝ ΡΟΜΗΣΗ

ΓΡΑΜΜΙΚΗ ΠΑΛΙΝ ΡΟΜΗΣΗ ΓΡΑΜΜΙΚΗ ΠΑΛΙΝ ΡΟΜΗΣΗ ΠΟΤΕ ΚΑΙ ΓΙΑΤΙ ΧΡΗΣΙΜΟΠΟΙΕΙΤΑΙ ΜΟΝΤΕΛΟ ΕΚΤΙΜΗΣΗ ΠΑΡΑΜΕΤΡΩΝ ΕΡΜΗΝΕΙΑ ΤΩΝ ΕΚΤΙΜΗΤΩΝ ΤΩΝ ΠΑΡΑΜΕΤΡΩΝ ΤΩΝ ΣΥΝΤΕΛΕΣΤΩΝ ΠΑΛΙΝ ΡΟΜΗΣΗΣ ΥΠΟΘΕΣΕΙΣ ΠΙΝΑΚΑΣ ΑΝΑ ΙΑ ΣΥΜΠΕΡΑΣΜΑΤΟΛΟΓΙΑ ΓΙΑ ΤΙΣ ΠΑΡΑΜΕΤΡΟΥΣ

Διαβάστε περισσότερα

ΜΟΝΟΠΑΡΑΜΕΤΡΙΚΗ ΚΑΙ ΠΟΛΥΠΑΡΑΜΕΤΡΙΚΗ ΣΤΑΤΙΣΤΙΚΗ ΑΝΑΛΥΣΗ ΔΕΔΟΜΕΝΩΝ

ΜΟΝΟΠΑΡΑΜΕΤΡΙΚΗ ΚΑΙ ΠΟΛΥΠΑΡΑΜΕΤΡΙΚΗ ΣΤΑΤΙΣΤΙΚΗ ΑΝΑΛΥΣΗ ΔΕΔΟΜΕΝΩΝ ΜΟΝΟΠΑΡΑΜΕΤΡΙΚΗ ΚΑΙ ΠΟΛΥΠΑΡΑΜΕΤΡΙΚΗ ΣΤΑΤΙΣΤΙΚΗ ΑΝΑΛΥΣΗ ΔΕΔΟΜΕΝΩΝ ΣΤΑΤΙΣΤΙΚΗ ΕΠΕΞΕΡΓΑΣΙΑ ΓΙΑ ΤΟΝ ΕΝΤΟΠΙΣΜΟ ΓΕΩΧΗΜΙΚΗΣ ΑΝΩΜΑΛΙΑΣ Στατιστική ανάλυση του γεωχημικού δείγματος μας δίνει πληροφορίες για τον

Διαβάστε περισσότερα

Απλή Γραμμική Παλινδρόμηση και Συσχέτιση 19/5/2017

Απλή Γραμμική Παλινδρόμηση και Συσχέτιση 19/5/2017 Απλή Γραμμική Παλινδρόμηση και Συσχέτιση 2 Εισαγωγή Η ανάλυση παλινδρόμησης περιλαμβάνει το σύνολο των μεθόδων της στατιστικής που αναφέρονται σε ποσοτικές σχέσεις μεταξύ μεταβλητών Πρότυπα παλινδρόμησης

Διαβάστε περισσότερα

ΑΣΚΗΣΕΙΣ Πρόβλημα απουσιών στ)

ΑΣΚΗΣΕΙΣ Πρόβλημα απουσιών στ) ΑΣΚΗΣΕΙΣ. Ο διευθυντής προσωπικού μιας μεγάλης εταιρείας πιστεύει ότι ίσως υφίσταται κάποια σχέση μεταξύ των ημερών απουσίας και της ηλικίας των εργαζομένων. Με βάση την υπόθεση αυτή ενδιαφέρεται να κατασκευάσει

Διαβάστε περισσότερα

Στατιστική Επιχειρήσεων Ι

Στατιστική Επιχειρήσεων Ι ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Τεχνολογικό Εκπαιδευτικό Ίδρυμα Πειραιά Στατιστική Επιχειρήσεων Ι Ενότητα 6: Συσχέτιση και παλινδρόμηση εμπειρική προσέγγιση Μιλτιάδης Χαλικιάς, Επίκουρος Καθηγητής Τμήμα Διοίκησης

Διαβάστε περισσότερα

Ενδεικτικές ασκήσεις ΔΙΠ 50

Ενδεικτικές ασκήσεις ΔΙΠ 50 Ενδεικτικές ασκήσεις ΔΙΠ 50 Άσκηση 1 (άσκηση 1 1 ης εργασίας 2009-10) Σε ένα ράφι μιας βιβλιοθήκης τοποθετούνται με τυχαία σειρά 11 διαφορετικά βιβλία τεσσάρων θεματικών ενοτήτων. Πιο συγκεκριμένα, υπάρχουν

Διαβάστε περισσότερα

ΠΑΛΙΝ ΡΟΜΗΣΗ..Π.Μ.Σ. Μαθηµατικά των Υπολογιστών και των Αποφάσεων. Πάτρα, 27 Ιανουαρίου 2011

ΠΑΛΙΝ ΡΟΜΗΣΗ..Π.Μ.Σ. Μαθηµατικά των Υπολογιστών και των Αποφάσεων. Πάτρα, 27 Ιανουαρίου 2011 Πάτρα, 7 Ιανουαρίου 011 Γενικά Πολλές ϕορές µας ενδιαφέρει να µελετήσουµε τις σχέσεις που υπάρχουν ανάµεσα στις µεταβλητές. Παράδειγµα 1 OZON 300 80 60 40 0 00 180 150 00 50 300 350 400 450 CFC 1 Από το

Διαβάστε περισσότερα

Χ. Εμμανουηλίδης, 1

Χ. Εμμανουηλίδης, 1 Εφαρμοσμένη Στατιστική Έρευνα Απλό Γραμμικό Υπόδειγμα AΠΛΟ ΓΡΑΜΜΙΚΟ ΥΠΟ ΕΙΓΜΑ Δρ. Χρήστος Εμμανουηλίδης Αν. Καθηγητής Αριστοτέλειο Πανεπιστήμιο Θεσσαλονίκης Εφαρμοσμένη Στατιστική, Τμήμα Ο.Ε. ΑΠΘ Χ. Εμμανουηλίδης,

Διαβάστε περισσότερα

Ύλη 1 ης Εβδομάδας. Σχέσεις Μεταβλητών ΓΡΑΜΜΙΚΑ ΜΟΝΤΕΛΑ. Σχέση μεταξύ Μεταβλητών Παραδείγματα. 2 η Διάλεξη

Ύλη 1 ης Εβδομάδας. Σχέσεις Μεταβλητών ΓΡΑΜΜΙΚΑ ΜΟΝΤΕΛΑ. Σχέση μεταξύ Μεταβλητών Παραδείγματα. 2 η Διάλεξη ΓΡΑΜΜΙΚΑ ΜΟΝΤΕΛΑ 2 η Διάλεξη Ελένη Κανδηλώρου (Αναπλ. Καθηγήτρια) Οικονομικό Πανεπιστήμιο Αθηνών Τμήμα Στατιστικής Ύλη 1 ης Εβδομάδας Γραμμική Παλινδρόμηση-Έννοια Παλινδρόμισης 1. Σχέση μεταξύ μεταβλητών

Διαβάστε περισσότερα

Στόχος µαθήµατος: ΒΙΟΣΤΑΤΙΣΤΙΚΗ ΙΙ. 1. Απλή γραµµική παλινδρόµηση. 1.2 Παράδειγµα 6 (συνέχεια)

Στόχος µαθήµατος: ΒΙΟΣΤΑΤΙΣΤΙΚΗ ΙΙ. 1. Απλή γραµµική παλινδρόµηση. 1.2 Παράδειγµα 6 (συνέχεια) ΠΜΣ ΕΠΑΓΓΕΛΜΑΤΙΚΗ ΚΑΙ ΠΕΡΙΒΑΛΛΟΝΤΙΚΗ ΥΓΕΙΑ, ΙΑΧΕΙΡΙΣΗ ΚΑΙ ΟΙΚΟΝΟΜΙΚΗ ΑΠΟΤΙΜΗΣΗ ΑΚ. ΕΤΟΣ 2006-2007, 3ο εξάµηνο ΒΙΟΣΤΑΤΙΣΤΙΚΗ ΙΙ. Απλή γραµµική παλινδρόµηση Παράδειγµα 6: Χρόνος παράδοσης φορτίου ΜΑΘΗΜΑ

Διαβάστε περισσότερα

Τεχνικές Προβλέψεων. Προετοιμασία & Ανάλυση Χρονοσειράς

Τεχνικές Προβλέψεων. Προετοιμασία & Ανάλυση Χρονοσειράς ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΚΑΙ ΜΗΧΑΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ Μονάδα Προβλέψεων & Στρατηγικής Forecasting & Strategy Unit Τεχνικές Προβλέψεων Προετοιμασία & Ανάλυση Χρονοσειράς http://www.fsu.gr

Διαβάστε περισσότερα

Στατιστικές συναρτήσεις Γραφική και πινακοποιημένη αναπαράσταση δεδομένων (ιστόγραμμα) Διαχειριστής Σεναρίων Κινητός Μέσος σε Χρονοσειρές o o o

Στατιστικές συναρτήσεις Γραφική και πινακοποιημένη αναπαράσταση δεδομένων (ιστόγραμμα) Διαχειριστής Σεναρίων Κινητός Μέσος σε Χρονοσειρές o o o ΙΩΑΝΝΗΣ Κ. ΔΗΜΗΤΡΙΟΥ Εφαρμογές Ποσοτικές Ανάλυσης με το Excel 141 ΑΝΑΛΥΣΗ ΔΕΔΟΜΕΝΩΝ Ανάλυση Δεδομένων Στατιστικές συναρτήσεις Γραφική και πινακοποιημένη αναπαράσταση δεδομένων (ιστόγραμμα) Διαχειριστής

Διαβάστε περισσότερα

Μην ξεχάσετε να προσθέσετε μόνοι σας τα Session του Minitab! Δηλαδή την ημερομηνία και ώρα που κάνατε κάθε άσκηση!

Μην ξεχάσετε να προσθέσετε μόνοι σας τα Session του Minitab! Δηλαδή την ημερομηνία και ώρα που κάνατε κάθε άσκηση! Μην ξεχάσετε να προσθέσετε μόνοι σας τα Session του Minitab! Δηλαδή την ημερομηνία και ώρα που κάνατε κάθε άσκηση! ΘΕΜΑ ο [Μονάδες 20] Ερώτημα i (4 μονάδες). Για να κάνουμε τους υπολογισμούς που χρειάζονται

Διαβάστε περισσότερα

Εισαγωγή στη Στατιστική

Εισαγωγή στη Στατιστική Εισαγωγή στη Στατιστική Μετεκπαιδευτικό Σεμινάριο στην ΨΥΧΟΚΟΙΝΩΝΙΚΗ ΑΠΟΚΑΤΑΣΤΑΣΗ ΨΥΧΟΚΟΙΝΩΝΙΚΕΣ ΘΕΡΑΠΕΥΤΙΚΕΣ ΠΡΟΣΕΓΓΙΣΕΙΣ Δημήτρης Φουσκάκης, Επίκουρος Καθηγητής, Τομέας Μαθηματικών, Σχολή Εφαρμοσμένων

Διαβάστε περισσότερα

Περιγραφή των εργαλείων ρουτινών του στατιστικού

Περιγραφή των εργαλείων ρουτινών του στατιστικού Κεφάλαιο 5 ο Περιγραφή των εργαλείων ρουτινών του στατιστικού πακέτου SPSS που χρησιµοποιήθηκαν. 5.1 Γενικά Το στατιστικό πακέτο SPSS είναι ένα λογισµικό που χρησιµοποιείται ευρέως ανά τον κόσµο από επιχειρήσεις

Διαβάστε περισσότερα

ΑΝΑΛΥΣΗ ΤΗΣ ΙΑΚΥΜΑΝΣΗΣ (ΑΝOVA)

ΑΝΑΛΥΣΗ ΤΗΣ ΙΑΚΥΜΑΝΣΗΣ (ΑΝOVA) ΑΝΑΛΥΣΗ ΤΗΣ ΙΑΚΥΜΑΝΣΗΣ (ΑΝOVA). Εισαγωγή Η ανάλυση της διακύμανσης (ANalysis Of VAriance ANOVA) είναι μια στατιστική μεθόδος με την οποία η μεταβλητότητα που υπάρχει σ ένα σύνολο δεδομένων διασπάται στις

Διαβάστε περισσότερα

Λυμένες Ασκήσεις για το μάθημα:

Λυμένες Ασκήσεις για το μάθημα: Λυμένες Ασκήσεις για το μάθημα: ΣΤΑΤΙΣΤΙΚΗ ΑΝΑΛΥΣΗ ΜΕ ΧΡΗΣΗ Η/Υ ΚΩΝΣΤΑΝΤΙΝΟΣ ΖΑΦΕΙΡΟΠΟΥΛΟΣ Τμήμα: ΔΙΕΘΝΩΝ ΚΑΙ ΕΥΡΩΠΑΪΚΩΝ ΣΠΟΥΔΩΝ Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative

Διαβάστε περισσότερα

Μέρος V. Ανάλυση Παλινδρόμηση (Regression Analysis)

Μέρος V. Ανάλυση Παλινδρόμηση (Regression Analysis) Μέρος V. Ανάλυση Παλινδρόμηση (Regresso Aalss) Βασικές έννοιες Απλή Γραμμική Παλινδρόμηση Πολλαπλή Παλινδρόμηση Εφαρμοσμένη Στατιστική Μέρος 5 ο - Κ. Μπλέκας () Βασικές έννοιες Έστω τ.μ. Χ,Υ όπου υπάρχει

Διαβάστε περισσότερα

ΣΤΑΤΙΣΤΙΚΗ ΕΠΙΧΕΙΡΗΣΕΩΝ ΕΙΔΙΚΑ ΘΕΜΑΤΑ. Κεφάλαιο 10. Εισαγωγή στην εκτιμητική

ΣΤΑΤΙΣΤΙΚΗ ΕΠΙΧΕΙΡΗΣΕΩΝ ΕΙΔΙΚΑ ΘΕΜΑΤΑ. Κεφάλαιο 10. Εισαγωγή στην εκτιμητική ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΔΥΤΙΚΗΣ ΕΛΛΑΔΑΣ ΤΜΗΜΑ ΔΙΟΙΚΗΣΗΣ ΕΠΙΧΕΙΡΗΣΕΩΝ ΠΑΤΡΑΣ Εργαστήριο Λήψης Αποφάσεων & Επιχειρησιακού Προγραμματισμού Καθηγητής Ι. Μητρόπουλος ΣΤΑΤΙΣΤΙΚΗ ΕΠΙΧΕΙΡΗΣΕΩΝ ΕΙΔΙΚΑ ΘΕΜΑΤΑ

Διαβάστε περισσότερα

9. Παλινδρόμηση και Συσχέτιση

9. Παλινδρόμηση και Συσχέτιση 9. Παλινδρόμηση και Συσχέτιση Παλινδρόμηση και Συσχέτιση Υπάρχει σχέση ανάμεσα σε δύο ή περισσότερες μεταβλητές; Αν ναι, ποια είναι αυτή η σχέση; Πως μπορεί αυτή η σχέση να χρησιμοποιηθεί για να προβλέψουμε

Διαβάστε περισσότερα

Αναπλ. Καθηγήτρια, Ελένη Κανδηλώρου. Αθήνα Σημειώσεις. Εκτίμηση των Παραμέτρων β 0 & β 1. Απλό γραμμικό υπόδειγμα: (1)

Αναπλ. Καθηγήτρια, Ελένη Κανδηλώρου. Αθήνα Σημειώσεις. Εκτίμηση των Παραμέτρων β 0 & β 1. Απλό γραμμικό υπόδειγμα: (1) Σημειώσεις Αναπλ. Καθηγήτρια, Ελένη Κανδηλώρου Αθήνα -3-7 Εκτίμηση των Παραμέτρων β & β Απλό γραμμικό υπόδειγμα: Y X () Η αναμενόμενη τιμή του Υ, δηλαδή, μέση τιμή του Υ, δίνεται παρακάτω: EY ( ) X EY

Διαβάστε περισσότερα

ΠΕΡΙΓΡΑΦΙΚΗ ΣΤΑΤΙΣΤΙΚΗ ΚΑΙ ΕΛΕΓΧΟΣ ΥΠΟΘΕΣΕΩΝ

ΠΕΡΙΓΡΑΦΙΚΗ ΣΤΑΤΙΣΤΙΚΗ ΚΑΙ ΕΛΕΓΧΟΣ ΥΠΟΘΕΣΕΩΝ Αλεξάνδρειο Τεχνολογικό Εκπαιδευτικό Ίδρυμα Θεσσαλονίκης Τμήμα Πληροφορικής Εργαστήριο «Θεωρία Πιθανοτήτων και Στατιστική» ΠΕΡΙΓΡΑΦΙΚΗ ΣΤΑΤΙΣΤΙΚΗ ΚΑΙ ΕΛΕΓΧΟΣ ΥΠΟΘΕΣΕΩΝ Περιεχόμενα 1. ΠΕΡΙΓΡΑΦΙΚΗ ΣΤΑΤΙΣΤΙΚΗ...

Διαβάστε περισσότερα

ΣΤΑΤΙΣΤΙΚΗ ΕΠΙΧΕΙΡΗΣΕΩΝ ΕΙΔΙΚΑ ΘΕΜΑΤΑ. Κεφάλαιο 12. Εκτίμηση των παραμέτρων ενός πληθυσμού

ΣΤΑΤΙΣΤΙΚΗ ΕΠΙΧΕΙΡΗΣΕΩΝ ΕΙΔΙΚΑ ΘΕΜΑΤΑ. Κεφάλαιο 12. Εκτίμηση των παραμέτρων ενός πληθυσμού ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΔΥΤΙΚΗΣ ΕΛΛΑΔΑΣ ΤΜΗΜΑ ΔΙΟΙΚΗΣΗΣ ΕΠΙΧΕΙΡΗΣΕΩΝ ΠΑΤΡΑΣ Εργαστήριο Λήψης Αποφάσεων & Επιχειρησιακού Προγραμματισμού Καθηγητής Ι. Μητρόπουλος ΣΤΑΤΙΣΤΙΚΗ ΕΠΙΧΕΙΡΗΣΕΩΝ ΕΙΔΙΚΑ ΘΕΜΑΤΑ

Διαβάστε περισσότερα

ΟΙΚΟΝΟΜΕΤΡΙΑ Κεφάλαιο 2

ΟΙΚΟΝΟΜΕΤΡΙΑ Κεφάλαιο 2 013 [Κεφάλαιο ] ΟΙΚΟΝΟΜΕΤΡΙΑ Κεφάλαιο Μάθημα Εαρινού Εξάμηνου 01-013 M.E. OE0300 Πανεπιστήμιο Θεσσαλίας Τμήμα Μηχανικών Χωροταξίας, Πολεοδομίας και Περιφερειακής Ανάπτυξης [Οικονομετρία 01-013] Μαρί-Νοέλ

Διαβάστε περισσότερα

ΜΑΘΗΜΑ 4 ο. Μοναδιαία ρίζα

ΜΑΘΗΜΑ 4 ο. Μοναδιαία ρίζα ΜΑΘΗΜΑ 4 ο Μοναδιαία ρίζα Είδαμε προηγουμένως πως ο έλεγχος της στασιμότητας μιας χρονικής σειράς μπορεί να γίνει με τη συνάρτηση αυτοσυσχέτισης. Ένας άλλος τρόπος που χρησιμοποιείται ευρύτατα στην ανάλυση

Διαβάστε περισσότερα

ΤΜΗΜΑ ΕΠΙΧΕΙΡΗΜΑΤΙΚΟΥ ΣΧΕ ΙΑΣΜΟΥ & ΠΛΗΡΟΦΟΡΙΑΚΩΝ ΣΥΣΤΗΜΑΤΩΝ

ΤΜΗΜΑ ΕΠΙΧΕΙΡΗΜΑΤΙΚΟΥ ΣΧΕ ΙΑΣΜΟΥ & ΠΛΗΡΟΦΟΡΙΑΚΩΝ ΣΥΣΤΗΜΑΤΩΝ ΤΜΗΜΑ ΕΠΙΧΕΙΡΗΜΑΤΙΚΟΥ ΣΧΕ ΙΑΣΜΟΥ & ΠΛΗΡΟΦΟΡΙΑΚΩΝ ΣΥΣΤΗΜΑΤΩΝ ΟΙΚΟΝΟΜΕΤΡΙΚΑ ΠΡΟΤΥΠΑ ΜΑΘΗΜΑ ΤΕΤΑΡΤΟ-ΠΕΜΠΤΟ ΘΕΩΡΙΑΣ- ΠΟΛΛΑΠΛΟ ΓΡΑΜΜΙΚΟ ΥΠΟ ΕΙΓΜΑ Σηµειώσεις: Θωµόπουλος Γιώργος Ρογκάκος Γιώργος Καθηγητής: Κουνετάς

Διαβάστε περισσότερα

Y Y ... y nx1. nx1

Y Y ... y nx1. nx1 6 ΓΡΑΜΜΙΚΗ ΠΑΛΙΝΔΡΟΜΗΣΗ ΜΕ ΤΗ ΧΡΗΣΗ ΠΙΚΑΚΩΝ Η χρησιμοποίηση και ο συμβολισμός πινάκων απλοποιεί σημαντικά τα αποτελέσματα της γραμμικής παλινδρόμησης, ιδίως στην περίπτωση της πολλαπλής παλινδρόμησης Γενικά,

Διαβάστε περισσότερα

Δρ. Χάϊδω Δριτσάκη. MSc Τραπεζική & Χρηματοοικονομική

Δρ. Χάϊδω Δριτσάκη. MSc Τραπεζική & Χρηματοοικονομική Ποσοτικές Μέθοδοι Δρ. Χάϊδω Δριτσάκη MSc Τραπεζική & Χρηματοοικονομική Τεχνολογικό Εκπαιδευτικό Ίδρυμα Δυτικής Μακεδονίας Western Macedonia University of Applied Sciences Κοίλα Κοζάνης 50100 Kozani GR

Διαβάστε περισσότερα

ΠΕΡΙΓΡΑΦΙΚΗ και ΕΠΑΓΩΓΙΚΗ ΣΤΑΤΙΣΤΙΚΗ

ΠΕΡΙΓΡΑΦΙΚΗ και ΕΠΑΓΩΓΙΚΗ ΣΤΑΤΙΣΤΙΚΗ ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ ΠΕΡΙΓΡΑΦΙΚΗ και ΕΠΑΓΩΓΙΚΗ ΣΤΑΤΙΣΤΙΚΗ Εισήγηση 4Β: Έλεγχοι Κανονικότητας Διδάσκων: Δαφέρμος Βασίλειος ΤΜΗΜΑ ΠΟΛΙΤΙΚΗΣ ΕΠΙΣΤΗΜΗΣ ΣΧΟΛΗΣ ΚΟΙΝΩΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ Άδειες

Διαβάστε περισσότερα

ΠΟΛΛΑΠΛΗ ΠΑΛΙΝΔΡΟΜΗΣΗ: ΑΣΚΗΣΕΙΣ

ΠΟΛΛΑΠΛΗ ΠΑΛΙΝΔΡΟΜΗΣΗ: ΑΣΚΗΣΕΙΣ ΜΕΜ264: Εφαρμοσμένη Στατιστική 1 ΠΟΛΛΑΠΛΗ ΠΑΛΙΝΔΡΟΜΗΣΗ: ΑΣΚΗΣΕΙΣ 1. Σε μελέτη της επίδρασης γεωργικών χημικών στην προσρόφηση ιζημάτων και εδάφους, δίνονται στον πιο κάτω πίνακα 13 δεδομένα για το δείκτη

Διαβάστε περισσότερα

Έλεγχος ύπαρξης στατιστικά σημαντικών διαφορών μεταξύ δύο ανεξάρτητων δειγμάτων, που ακολουθούν την κανονική κατανομή (t-test για ανεξάρτητα δείγματα)

Έλεγχος ύπαρξης στατιστικά σημαντικών διαφορών μεταξύ δύο ανεξάρτητων δειγμάτων, που ακολουθούν την κανονική κατανομή (t-test για ανεξάρτητα δείγματα) Έλεγχος ύπαρξης στατιστικά σημαντικών διαφορών μεταξύ δύο ανεξάρτητων δειγμάτων, που ακολουθούν την κανονική κατανομή (t-test για ανεξάρτητα δείγματα) Όταν απαιτείται ο έλεγχος της ύπαρξης στατιστικά σημαντικών

Διαβάστε περισσότερα

Εισαγωγή στην Ανάλυση Διακύμανσης

Εισαγωγή στην Ανάλυση Διακύμανσης Εισαγωγή στην Ανάλυση Διακύμανσης 1 Η Ανάλυση Διακύμανσης Από τα πιο συχνά χρησιμοποιούμενα στατιστικά κριτήρια στην κοινωνική έρευνα Γιατί; 1. Ενώ αναφέρεται σε διαφορές μέσων όρων, όπως και το κριτήριο

Διαβάστε περισσότερα

ΕΠΑΝΑΛΗΠΤΙΚΟ ΒΙΝΤΕΟ ΣΤΑΤΙΣΤΙΚΗ

ΕΠΑΝΑΛΗΠΤΙΚΟ ΒΙΝΤΕΟ ΣΤΑΤΙΣΤΙΚΗ ΕΠΑΝΑΛΗΠΤΙΚΟ ΒΙΝΤΕΟ ΣΤΑΤΙΣΤΙΚΗ ΠΑΛΙΝΔΡΟΜΗΣΗ Άσκηση 1: Μια τράπεζα ενδιαφέρεται να μελετήσει την αποταμιευτική συμπεριφορά των πελατών της. Θεωρείται ως δεδομένο ότι η ετήσια αποταμίευση των πελατών της

Διαβάστε περισσότερα

Στατιστική Ι (ΨΥΧ-1202) ιάλεξη 3

Στατιστική Ι (ΨΥΧ-1202) ιάλεξη 3 (ΨΥΧ-1202) Λεωνίδας Α. Ζαμπετάκης Β.Sc., M.Env.Eng., M.Ind.Eng., D.Eng. Εmail: statisticsuoc@gmail.com ιαλέξεις: ftp://ftp.soc.uoc.gr/psycho/zampetakis/ ιάλεξη 3 ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ ΤΜΗΜΑ ΨΥΧΟΛΟΓΙΑΣ Ρέθυμνο,

Διαβάστε περισσότερα

ΠΑΛΙΝΔΡΟΜΗΣΗ ΤΑΞΗΣ ΜΕΓΕΘΟΥΣ

ΠΑΛΙΝΔΡΟΜΗΣΗ ΤΑΞΗΣ ΜΕΓΕΘΟΥΣ . ΠΑΛΙΝΔΡΟΜΗΣΗ ΤΑΞΗΣ ΜΕΓΕΘΟΥΣ (RANK REGRESSION).1 Μονότονη Παλινδρόμηση (Monotonic Regression) Από τη γραφική παράσταση των δεδομένων του προηγουμένου προβλήματος παρατηρούμε ότι τα ζευγάρια (Χ i, i )

Διαβάστε περισσότερα

2. ΕΠΙΛΟΓΗ ΤΟΥ ΜΕΓΕΘΟΥΣ ΤΩΝ ΠΑΡΑΤΗΡΗΣΕΩΝ

2. ΕΠΙΛΟΓΗ ΤΟΥ ΜΕΓΕΘΟΥΣ ΤΩΝ ΠΑΡΑΤΗΡΗΣΕΩΝ 1. ΕΙΣΑΓΩΓΗ ΣΤΟ SPSS Το SPSS είναι ένα στατιστικό πρόγραμμα γενικής στατιστικής ανάλυσης αρκετά εύκολο στη λειτουργία του. Για να πραγματοποιηθεί ανάλυση χρονοσειρών με τη βοήθεια του SPSS θα πρέπει απαραίτητα

Διαβάστε περισσότερα

Απλή Παλινδρόμηση και Συσχέτιση

Απλή Παλινδρόμηση και Συσχέτιση Απλή Παλινδρόμηση και Συσχέτιση Πωλήσεις, Δαπάνες Διαφήμισης και Αριθμός Πωλητών Έτος Πωλήσεις (χιλ ) Διαφήμιση (χιλ ) Πωλητές (Άτομα) Έτος Πωλήσεις (χιλ ) Διαφήμιση (χιλ ) Πωλητές (Άτομα) 98 050 6 3 989

Διαβάστε περισσότερα

ΠΕΡΙΓΡΑΦΙΚΗ ΣΤΑΤΙΣΤΙΚΗ Ι Κ. Μ. 436

ΠΕΡΙΓΡΑΦΙΚΗ ΣΤΑΤΙΣΤΙΚΗ Ι Κ. Μ. 436 ΠΕΡΙΓΡΑΦΙΚΗ ΣΤΑΤΙΣΤΙΚΗ Ι Κ. Μ. 436 A εξάμηνο 2009-2010 Περιγραφική Στατιστική Ι users.att.sch.gr/abouras abouras@sch.gr sch.gr abouras@uth.gr Μέτρα θέσης Η θέση αντιπροσωπεύει τη θέση της κατανομής κατά

Διαβάστε περισσότερα

ΓΡΑΜΜΙΚΗ ΠΑΛΙΝ ΡΟΜΗΣΗ

ΓΡΑΜΜΙΚΗ ΠΑΛΙΝ ΡΟΜΗΣΗ ΓΡΑΜΜΙΚΗ ΠΑΛΙΝ ΡΟΜΗΣΗ ιαφάνειες για το µάθηµα Information Management ΑθανάσιοςΝ. Σταµούλης 1 ΠΗΓΗ Κονδύλης Ε. (1999) Στατιστικές τεχνικές διοίκησης επιχειρήσεων, Interbooks 2 1 Γραµµική παλινδρόµηση Είναι

Διαβάστε περισσότερα

Διερευνητική Ανάλυση Δεδομένων Exploratory Data Analysis

Διερευνητική Ανάλυση Δεδομένων Exploratory Data Analysis Διερευνητική Ανάλυση Δεδομένων Exploratory Data Analysis Περιλαμβάνει ένα σύνολο αριθμητικών και γραφικών μεθόδων, που μας επιτρέπουν να αποκτήσουμε μια πρώτη εικόνα για την κατανομή των τιμών της μεταβλητής

Διαβάστε περισσότερα

Λογιστική Παλινδρόµηση

Λογιστική Παλινδρόµηση Κεφάλαιο 10 Λογιστική Παλινδρόµηση Στο κεφάλαιο αυτό ϑα δούµε την µέθοδο της λογιστικής παλινδρόµησης η οποία χρησιµεύει στο να αναπτύξουµε σχέση µίας δίτιµης ανεξάρτητης τυχαίας µετα- ϐλητής και συνεχών

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 5 ο. 5.1 Εντολή EXPLORE 5.2 Εντολή CROSSTABS 5.3 Εντολή RAΤΙΟ STΑTISTIC 5.4 Εντολή OLAP CUBES. Daily calorie intake

ΚΕΦΑΛΑΙΟ 5 ο. 5.1 Εντολή EXPLORE 5.2 Εντολή CROSSTABS 5.3 Εντολή RAΤΙΟ STΑTISTIC 5.4 Εντολή OLAP CUBES. Daily calorie intake ----------Εισαγωγή στη Χρήση του SPSS for Windows ------------- Σελίδα: 0------------ ΚΕΦΑΛΑΙΟ 5 ο 5.1 Εντολή EXPLORE 5.2 Εντολή CROSSTABS 5.3 Εντολή RAΤΙΟ STΑTISTIC 5.4 Εντολή OLAP CUBES 5000 Daily calorie

Διαβάστε περισσότερα