Antonia Jaguljnjak Lazarevi

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "Antonia Jaguljnjak Lazarevi"

Transcript

1 Opća mehaka Atoa Jaguljjak Lazaevć Zavod za udastvo geotehku Rudasko-geološko-aft fakultet Sveučlšte u Zagebu lstopad 203.

2 Pavla ge OPĆA MEHANIKA III. semesta satca: ECTS: 85 Uvjet za dobvaje potpsa : - uedo pohañaje pedavaja vježb (maksmalo čet zostaka s pedavaja dva zostaka s vježb) - pedaja svh pogama a vjeme - a svakom kolokvju ostvaeo ajmaje 35 boda. Studet koj maju poztvu ocjeu z oba kolokvja a vjeme pedae pogame uedo pohañaje pedavaja vježb osloboñe su psmeog djela spta. Usme mogu polagat a jedom od zmskh spth okova. Potps z Opće mehake je uvjet za slušaje Otpoost matejala 2

3 Uvod: sadžaj astave Ukatko o sadžaju astave uvod: temelj pcp defcje osovh pojmova u mehac statka matejale točke: ezultata avoteža kokuetog sustava sla statka kutog tjela: ezultata avoteža postoog sustava sla uvjet avoteže uz djelovaje teja avoteža elemetah štaph sustava za djelovaja u av: pojam defcja uutajh sla ešetka posta geda geda s pepustom kozola av osač sastavlje z vše štapova: Gebeov osač kematka: matejale točke kutog tjela damka: matejale točke kutog tjela. 3

4 Uvod: temelj pojmov MEHANIKA - zaost o zakotostma uzocma gbaja l - zaost o općm zakoma avoteže gbaja tjela zložeh djelovaju sla osov pojmov: posto vjeme masa sla } posto vjeme meñusobo ezavs masa sla: povezaa s postoom vemeom masom peko Newtoovh aksoma 4

5 Uvod: podjela mehake. Podjela mehake pema zadać koju teba ješt: á ä a) statka kematka damka b) kematka damka á ä á statka: opsuje poašaje epomčog matejalog tjela a koje djeluju sle eovso o vemeu kematka: opsuje geometju gbaja e tažeć uzoke toga gbaja damka: taž zakoe gbaja tjela koje je pod djelovajem sla ovsh o vemeu l ä statka ketka 5

6 Uvod: poaču žejeskh kostukcja aaltčko ješeje 6

7 Ø umečk model umečko modelaje postupc poačua uvode dodate apoksmacje: dsketzacja podučja poačua (gubmo kotuum) sustav jedadžb s koačm bojem epozaca umečko ješavaje sustava koača atmetka ačuala Ø ekspemetale metode jedo ekspemetalo dobvamo vjedost ekh paametaa poačua zbog velkog boja petpostavk koje uvodmo u aaltčk/umečk model često je potebo ekspemetalm metodama potvdt ačuske vjedost pomaka/defomacja/apezaja Ø Uvod: poaču žejeskh kostukcja zvedea kostukcja -stva pomac/defomacje/apezaja 7

8 Idealzacja ealog čvstog tjela á ä apsoluto kut (edefomabl) defomabl kotuum: kotuum: statka kemtatka otpoost matejala damka ealo tjelo: omeñe posto spuje dsketo aspoeñeom matejom kotuum: matematčka dealzacja seda u kojoj su fzkala svojstva epekuto aspoeñea beskaja djeljvost apsoluto kuto tjelo: e mjeja oblk volume pod djelovajem sla Uvod: temelj pojmov matejala točka: za poaču su potebe dmezje tjela 8

9 Uvod: temelj pojmov 2. Podjela mehake pema matejalm geometjskm svojstvma pedmeta aalze: mehaka matejale točke mehaka apsoluto kutog (edefomablog) tjela mehaka defomablh tjela mehaka fluda (tekuća plova) mehaku apsoluto kutog defomablog tjela azvamo još mehakom čvsth tjela 9

10 Uvod: temelj pojmov Osova svojstva tjela á ä oblk obujam položaj pomjea oblka /l obujma azva se defomacjom pomjea položaja azva se gbajem za defomacju /l gbaje poteba je sla sla je fzkala velča kojom se opsuje uzajamo djelovaje tjela 0

11 Uvod: temelj pojmov Idealzacja djelovaja a tjelo/točku: djelovaje (kocetao) a malu povšu: kocetaa sla vekto [N] djelovaje dstbuao po: duž [N/m] ä povš [N/m 2 ] z volumeu [N/m 3 ] â vektoske fukcje podjela sla pema dometu: - sle katkog dometa: djelovaje dodom aspodjeljea su po većoj l majoj povš - sle dalekog dometa: gavtacjska - aspodjeljea po obujmu tjela u poačuu se kost ezultata djelovaja

12 Pmje djelovaja kocetaog a malu povšu: vlastta teža m 4 (t) G mg (N) 40 kn m 40 (kg) G m g (N)

13 Pmje djelovaja dstbuaog po duž: vlastta teža jedog (dužog) meta gede pavokutog popečog pesjeka dmezja b/h25/40 (cm) - matejal AB ρ AB 2500 (kg/m 3 ) q Aρ AB g (N/m) 25 (kn/m) - matejal dvo ρ dvo 600 (kg/m 3 ) q Aρ dvo g (N/m) 06 (kn/m) - matejal čelk ρ Č 7850 (kg/m 3 ) z tablca za IPN 400: A 80 cm 2 q Aρ Č g (N/m) 0926 (kn/m)

14 Pmje djelovaja dstbuaog po povš: vlastta teža jedog kvadatog meta AB ploče popečog pesjeka: AB 2 (cm) cemet amaz (cm) keamčke pločce 2 (cm) vlastta teža AB ploče (kn/m 2 ) vlastta teža cem. am (kn/m 2 ) vlastta teža pločca (kn/m 2 ) ukupo stalo opteećeje g 36 (kn/m 2 ) Pmje djelovaja dstbuaog po volumeu: vlastta teža jedče kocke : - za AB (kn/m 3) - za dvo (kn/m 3 )

15 Uvod: temelj pojmov Temelj zako klasče mehake Newtoov aksom aksom polaza tvdja koje se e dokazuje temelj se a skustvu phvaća se sttom bez dokazvaja Isaac Newto: Phlosophae atuals pcpa mathematca

16 Uvod: temelj pojmov I. aksom zako tomost: svako tjelo ostaje u staju movaja l jedolkog gbaja po pavcu sve dok pod djelovajem vajskh sla e pomje svoje staje gbaja (Gallejevo ačelo ecje). II. aksom zako sle: pomjea kolče gbaja popocoala je sl koja djeluje odvja se u smjeu pavca u kojem djeluje sla. III. aksom zako akcje eakcje: svakom djelovaju postoj uvjek supoto jedolko potudjelovaje odoso dva tjela djeluju jedo a dugo stm slama supoth smjeova. 6

17 Uvod: temelj pojmov Poblže o II. aksomu pomjea kolče gbaja popocoala je sl koja djeluje odvja se u smjeu pavca u kojem djeluje sla vektosk: d ( mv ) dt za sustave u kojma je masa tjela uključeog u azmataje kostata: dv m dt ma toma masa mjea tomost tjela kojom se oo ope pomje gbaja p djelovaju sle m toma a 7

18 Newtoov zako opće gavtacje Uvod: temelj pojmov odeñuje pvlaču slu zmeñu svh tjela koja maju masu zčaj zakoa: svaka matejala čestca pvlač dugu matejalu čestcu slom koja je popocoala poduktu jhovh masa a obuto popocoala kvadatu meñusobe udaljeost. Sla djeluje a pavcu spojce th čestca. sla kojom masa m pvlač masu m 2 (vektosk) : m m2 2 3 G G m kg uvezala gavtacjska kostata [ 2 2 2] s l Nm kg vjedost odeñea ekspemetalo (H.Cavedsh 798.) teža tjela mase m a povš Zemlje: G m R Z m g m m 2 teška g - teška l gavtacjska masa: svojstvo mateje zbog kojega svako tjelo djeluje pvlačom slom a eko dugo tjelo 8

19 Skalae vektoske velče skala: velče potpuo odeñee samo ealm bojem p. masa tempeatua ad eegja zos (mje boj) uz mjeu jedcu vekto: velče koje za svoju potpuu defcju taže zos smje p. sla bza ubzaje gavtacjsko polje elektčo polje zos (mje boj) smje uz mjeu jedcu ( vekto vecto vecteu Vekto beκ o) vektoske velče geometjsk pkazujemo usmjeeom (ojetaom) dužom 9

20 Skalae vektoske velče Osobtost vektoskh ozaka ačua vektoska aalza koju daas kostmo uvedea je potkaj IXX. stoljeća tvdje uz pomoć vektoa možemo zost bez uvoñeja koodatog sustava zcaje zakoa fzke pomoću vektoa e ovs o zbou koodatog sustava vektosko ozačavaje sažeto je jaso - pmje ozaka vektoa: l - teztet vektoa - skala: f f f 20

21 Zbajaje vektoa : sastavljaje l kompozcja vektoa Skalae vektoske velče svojstva zbajaja vektoa: komutatvost asocjatvost 2

22 Skalae vektoske velče možeje vektoa skalaom: + + ( ) svojstvo dstbutvost:

23 Skalae vektoske velče vektoska azlka: ( ) ( )

24 Skalae vektoske velče Uvjet koje vekto moaju zadovoljt: pavlo (pacjalog) paalelogama za zbajaje zos smje vektoa e smje ovst o zbou koodatog sustava koače otacje: pmje velče koja ma zos smje al je vekto 24

25 Vektosk podukt defcja: C A B Skalae vektoske velče ezultat vektoskog podukta je vekto okomt a avu koju defaju zada vekto teztet vektoskog podukta jedak je povš paalelogama kojeg azapju zada vekto: C A B A B B A A B sϕ smje vektoskog podukta pema pavlu desog vjka (pavlo dese uke) vektosk podukt je komutatva: A B B A vektosk podukt ščezava ako je: A 0 l B 0 l 80 ( AB) 0 l 25

26 Skala podukt defcja: cosϕ B A A B B A c skala podukt ščezava ako je: B A 0 B 0 A l l Skalae vektoske velče 26

27 Uvoñeje koodatog sustava omogućava pedstavljaje vektoa pomoću ealh bojeva opeacje s vektoma svode se a odgovaajuće algebaske opeacje s bojevma pmje desog pavokutog koodatog sustava Skalae vektoske velče 27 zaps vektoa: + + z y x z y x k j

28 vektoska oma) duga vektoa l (dulja vektoa teztet - je : gdje kutov pklo cos cos aalogo : cos cos k j desog koodatog sustava vekto jedč - k j koodate os pojekcje a kompoete vektoa - gdje su : k j z y x z y x x x z y x z y x z y x γ β α γ β α α Skalae vektoske velče 28

29 Skalae vektoske velče pklo kutov - kutov koje vekto zatvaa s jedčm vektoma 29

30 ( ) cos cos cos u k cos j cos cos k j z y x z y x γ β α γ β α zadavaje vektoa: - početa kajja točka - početa točka (hvatšte) teztet pklo kut(2d)/kutov(3d) jedč vekto ostelj smjea vektoa veza zmeñu pkloh kutova: Skalae vektoske velče 30

31 Sustav sla u postou a) opć sustav sla: u av u postou b) paalel sustav sla: u av 3

32 Sustav sla u postou c) kokuet sustav sla: u av d) kolea sustav sla: 32

33 Sustav sla Sustav sla pema uzocma edosljedu astaka ã é vajske sle uutaje sle ã é (sle pesjeka eze sle) aktve eaktve ã é sle veza sle teja vajske sle: sve sle koje pedstavljaju djelovaje dugh tjela a pomatao tjelo uutaje sle: povšske sle peko zamšljeh pesječh povša tjela astaju kao posljedca djelovaja vajskh sla pedstavljaju otpo pomje oblka /l volumea tjela 33

34 Sustav sla vajske aktve sle: - azvaju se još slama akcje l opteećejem - če h sve sle odoso opteećeja koja su ezavsa od samog tjela - vlasttu težu tjela smatamo vajskom aktvom slom vajske eaktve sle: - azvaju se još pasve sle l sle veza - astaju kao posljedca vajskh aktvh sla a mjestma vajskh veza (ležajeva) 34

35 Uvod zvo: R.C. Hbbele: Egeeg Mechacs: Statcs Eleveth edto SI uts Peaso Educato

36 Statka matejale točke Staje movaja tjela a kojega djeluje kokuet sustav sla. 36

37 Statka matejale točke ezultata kokuetog sustava sla astavljaje sle avoteža kokuetog sustava sla veze u kokuetm sustavma sla. 37

38 Rezultata kokuetog sustava sla Statka matejale točke: ezultata j k j R R R y y R x x R y x z z R y y R x x R z y x vektoska jedadžba: - posto: - ava: algebaske jedadžbe aaltčkog ješeja ezultate kokuetog sustava sla

39 Statka matejale točke: ezultata Rezultata kokuetog sustava sla gafčko ješeje a) polgo sla R

40 Statka matejale točke: ezultata Rezultata kokuetog sustava sla gafčko ješeje b) pacjal paalelogam R R R ( + ) + ( + ) 5 23 ( + )

41 Statka matejale točke: ezultata REZULTANTA sla čje je djelovaje jedako djelovaju zadah sla. (Sla koja zamjejuje djelovaje gupe sla.) 4

42 Statka matejale točke: ezultata 42

43 Pmje: Statka matejale točke ezultata. Potebo je aaltčk odedt ezultatu kokuetog sustava sla ako je zadao: j N j + 50k N 2. Potebo je aaltčk gafčk odedt ezultatu kokuetog sustava sla ako je zadao: N N N α 20 α 270 α

44 Statka matejale točke: ezultata 3. Odedte vjedost pklo kut sle ako je vjedost ezultate R 600 N pklo kut a R Za sustav sla pkaza a slc odedte kut θ vjedost sle 3 kao fukcje ako vjed. a) R 0 b) 2 2/3 44

45 Rastavljaje sle a kompoete posto: ava: Statka matejale točke: astavljaje vektoske jedadžbe cosα cosα + 2 cosα 2 sα sα + 2 sα 2 sustav algebaskh jedadžb 45

46 Statka matejale točke: astavljaje Pmje: Rastavte sle sle 2 a kompoete koje leže a pavcma u v. 46

47 Ravoteža kokuetog sustava sla avoteža: movaje uz djelovaje sla matejala točka je u avotež ako ščeze ezultata sla koje a ju djeluju tj. ako je polgo sla zatvoe j k j 0 R y x y x z y x z y x 47 Statka matejale točke: avoteža vektoska jedadžba: - posto: - ava: algebaske jedadžbe aaltčkog ješeja avoteže kokuetog sustava sla (algebask uvjet avoteže)

48 Statka matejale točke: avoteža Gafčko ješeje avoteže kokuetog sustava sla polgo sla:

49 Statka matejale točke: avoteža RAVNOTEŽA djelovaje sla se poštava. 49

50 Statka matejale točke: avoteža Pmje:. Odedte sle u užad AB CB koje pdžavaju teet mase 60 kg. 2. Odedte vsu d ako teet mase 20 kg pdžavamo hozotalom slom 00N užadma AB AC uz uvjet da je sla u užetu AC jedaka ul. Ravoteža sustava kao cjele podazumjeva avotežu svakog jegovog djela. 50

51 Statka matejale točke: avoteža 3. Za sustav u avotež pkaza a slc odedte masu teeta A. 5

52 Statka matejale točke: avoteža Veze u kokuetm sustavma sla veze: elemet kojma djelomčo l potpuo spječavamo gbaje matejale točke/tjela za potpuo spečavaje gbaja matejale točke potebo je oemogućt: - t taslacjska pomaka u postou - dva taslacjska pomaka u av x y z x y

53 Statka matejale točke: avoteža štapa veza spječava meñusob taslacjsk pomak u smjeu os štapa a dopušta ostale (kematčko svojstvo veze) peos slu u smjeu os štapa (statčko svojstvo veze) dvostaa veza (vlak tlak) ta veza kematčka statčka svojstva sta su kao kod štaph veza al samo u jedom smjeu jedostaa veza (samo vlak) 53

II. ANALITIČKA GEOMETRIJA PROSTORA

II. ANALITIČKA GEOMETRIJA PROSTORA II. NLITIČK GEMETRIJ RSTR I. I (Točka. Ravia.) d. sc. Mia Rodić Lipaović 9./. Točka u postou ( ; i, j, k ) Kateijev pavokuti koodiati sustav k i j T T (,, ) oložaj točke u postou je jedoačo odeñe jeim

Διαβάστε περισσότερα

Dinamika krutog tijela. 14. dio

Dinamika krutog tijela. 14. dio Dnaka kutog tjela 14. do 1 Pojov: 1. Vekto sle F (tanslacja). Moent sle (otacja) 3. Moent toost asa 4. Rad kutog tjela A 5. Knetka enegja E k 6. Moent kolna gbanja 7. u oenta kolne gbanja oenta sle M (

Διαβάστε περισσότερα

Polarizacija. Procesi nastajanja polarizirane svjetlosti: a) refleksija b) raspršenje c) dvolom d) dikroizam

Polarizacija. Procesi nastajanja polarizirane svjetlosti: a) refleksija b) raspršenje c) dvolom d) dikroizam Polarzacja Proces asajaja polarzrae svjelos: a refleksja b raspršeje c dvolom d dkrozam Freselove jedadžbe Svjelos prelaz z opčkog sredsva deksa loma 1 u sredsvo deksa loma, dolaz do: refleksje (prema

Διαβάστε περισσότερα

Moguća i virtuelna pomjeranja

Moguća i virtuelna pomjeranja Dnamka sstema sa vezama Moguća vrtuelna pomjeranja f k ( r 1,..., r N, t) = 0 (k = 1, 2,..., K ) df k dt = r + t = 0 d r = r dt moguća pomjeranja zadovoljavaju uvjet: df k = d r + dt = 0. t δ r = δx +

Διαβάστε περισσότερα

Metoda najmanjih kvadrata

Metoda najmanjih kvadrata Metoda ajmajh kvadrata Moday, May 30, 011 Metoda ajmajh kvadrata (MNK) MNK smo već uvel u proučavaju leare korelacje; gdje smo tražl da suma kvadrata odstupaja ekspermetalh točaka od pravca koj h a ajbolj

Διαβάστε περισσότερα

- pravac n je zadan s točkom T(2,0) i koeficijentom smjera k=2. (30 bodova)

- pravac n je zadan s točkom T(2,0) i koeficijentom smjera k=2. (30 bodova) MEHANIKA 1 1. KOLOKVIJ 04/2008. grupa I 1. Zadane su dvije sile F i. Sila F = 4i + 6j [ N]. Sila je zadana s veličinom = i leži na pravcu koji s koordinatnom osi x zatvara kut od 30 (sve komponente sile

Διαβάστε περισσότερα

) kartezijev pravokutni koordinatni sustav. Položaj točke T jednoznačno je

) kartezijev pravokutni koordinatni sustav. Položaj točke T jednoznačno je Geodetski fakultet, d sc J Beba-Bkić Pedavaja i Matematike 5 ANALITIČKA GEOMETRIJA TOČKA, PRAVAC I RAVNINA Točka u postou Neka je ( O;i, j,k kateijev pavokuti koodiati sustav Položaj točke T jedoačo je

Διαβάστε περισσότερα

dužina usmjerena (orijentirana) dužina (zna se koja je točka početna, a koja krajnja) vektor

dužina usmjerena (orijentirana) dužina (zna se koja je točka početna, a koja krajnja) vektor I. VEKTORI d. sc. Min Rodić Lipnović 009./010. 1 Pojm vekto A B dužin A B usmjeen (oijentin) dužin (n se koj je točk početn, koj kjnj) A B vekto - kls ( skup ) usmjeenih dužin C D E F AB je epeentnt vekto

Διαβάστε περισσότερα

Pismeni dio ispita iz Matematike Riješiti sistem jednačina i diskutovati rješenja u zavisnosti od parametra a:

Pismeni dio ispita iz Matematike Riješiti sistem jednačina i diskutovati rješenja u zavisnosti od parametra a: Zenica, 70006 + y+ z+ 4= 0 y+ z : i ( q) : = = y + z 4 = 0 a) Napisati pavu p u kanonskom, a pavu q u paametaskom obliku b) Naći jednačinu avni koja polazi koz pavu p i okomita je na pavu q ate su pave

Διαβάστε περισσότερα

Mašinski fakultet, Beograd - Mehanika 2 Predavanje 9 1 DINAMIKA

Mašinski fakultet, Beograd - Mehanika 2 Predavanje 9 1 DINAMIKA Mašsk fakle, eogad - Mehaka Pedavaje 9 DINAMIKA Damka je deo eojske mehake koj počava mehačka keaja ejalh ojekaa sposavljajć vez zmeđ keaja zoka koj zazvaj o keaje. Najjedosavj model ealog ela jese ejala

Διαβάστε περισσότερα

Mate Vijuga: Rijeseni zadaci iz matematike za srednju skolu

Mate Vijuga: Rijeseni zadaci iz matematike za srednju skolu 7. KOMPLEKSNI BROJEVI 7. Opc pojmov Kompleksn brojev su sastavljen dva djela: Realnog djela (Re) magnarnog djela (Im) Promatrajmo broj a+ b = + 3 Realn do jednak je Re : Imagnarna jednca: = - l = (U elektrotehnc

Διαβάστε περισσότερα

Riješeni zadaci: Nizovi realnih brojeva

Riješeni zadaci: Nizovi realnih brojeva Riješei zadaci: Nizovi realih brojeva Nizovi, aritmetički iz, geometrijski iz Fukciju a : N R azivamo beskoači) iz realih brojeva i ozačavamo s a 1, a,..., a,... ili a ), pri čemu je a = a). Aritmetički

Διαβάστε περισσότερα

REDUKCIJA SISTEMA NA TAČKU KOORDINATNOG POČETKA Glavni vektor Glavni moment. = xi. F r. r = j. M i. M r

REDUKCIJA SISTEMA NA TAČKU KOORDINATNOG POČETKA Glavni vektor Glavni moment. = xi. F r. r = j. M i. M r REUKCIJA ITEA NA TAČKU KOORINATNO POČETKA lvn vekto lvn moment O ) ( j ) ( j O k j k j j j j θ cos cosθ Pme. dt povoljn poston sstem sl speov (l.) sle su defnsne vektom: j k j k 4 j k j j j k k Pojekcje

Διαβάστε περισσότερα

v = = 4 = je vektor cu u n Npr. u = je vektor s komponentama u, u. v = su jednaki ako je u Vektori u Primjer 1 Vektori u

v = = 4 = je vektor cu u n Npr. u = je vektor s komponentama u, u. v = su jednaki ako je u Vektori u Primjer 1 Vektori u VEKTORSKI PROSTOR. peaaje..5. st.. VEKTORI U R atie koje imaj koje samo jea stpa (tipa ) zo se -ektoi ili kaće ektoi. Np. je ekto s kompoetama,., K, Vektoi i s jeaki ako je i i za se i,, K,. Pimje Vektoi

Διαβάστε περισσότερα

F (t) F (t) F (t) OGLEDNI PRIMJER SVEUČILIŠTE J.J.STROSSMAYERA U OSIJEKU ZADATAK

F (t) F (t) F (t) OGLEDNI PRIMJER SVEUČILIŠTE J.J.STROSSMAYERA U OSIJEKU ZADATAK OGLEDNI PRIMJER ZADAAK Odredte dnamčke karakterstke odzv armranobetonskog okvra C-C prkazanog na slc s prpadajućom tlorsnom površnom, na zadanu uzbudu tjekom prve tr sekunde, ako je konstrukcja prje djelovanja

Διαβάστε περισσότερα

SUČELJNI SISTEM SILA Ako se napadne linije svih sila koje sačinjavaju sistem seku u jednoj tački onda se takav sistem sila naziva sučeljnim sistemom.

SUČELJNI SISTEM SILA Ako se napadne linije svih sila koje sačinjavaju sistem seku u jednoj tački onda se takav sistem sila naziva sučeljnim sistemom. SUČELJNI SISTEM SIL ko se napadne lnje svh sla koje sačnjavaju sstem seku u jednoj tačk onda se takav sstem sla nazva sučeljnm sstemom.,, Pme. k j k j 6 k j 6 k j k j k j ( ) ( ) Pme. cos6, sn 6 cos, sn

Διαβάστε περισσότερα

OM2 V3 Ime i prezime: Index br: I SAVIJANJE SILAMA TANKOZIDNIH ŠTAPOVA

OM2 V3 Ime i prezime: Index br: I SAVIJANJE SILAMA TANKOZIDNIH ŠTAPOVA OM V me i preime: nde br: 1.0.01. 0.0.01. SAVJANJE SLAMA TANKOZDNH ŠTAPOVA A. TANKOZDN ŠTAPOV PROZVOLJNOG OTVORENOG POPREČNOG PRESEKA Preposavka: Smičući napon je konsanan po debljini ida (duž pravca upravnog

Διαβάστε περισσότερα

Ekonometrija 5. Ekonometrija, Osnovne studije. Predavač: Aleksandra Nojković

Ekonometrija 5. Ekonometrija, Osnovne studije. Predavač: Aleksandra Nojković Ekoometja 5 Ekoometja, Osove studje Pedavač: Aleksada Nojkovć Stuktua pedavaja Klasč dvostuk (všestuk) lea egeso model - metod ONK. Petpostavke všestukog KLM. Koelacja u všestukom KLM. Oča kogova. Dvostuk

Διαβάστε περισσότερα

Matematika 1 - vježbe. 11. prosinca 2015.

Matematika 1 - vježbe. 11. prosinca 2015. Matematika - vježbe. prosinca 5. Stupnjevi i radijani Ako je kut φ jednak i rad, tada je veza između i 6 = Zadatak.. Izrazite u stupnjevima: a) 5 b) 7 9 c). d) 7. a) 5 9 b) 7 6 6 = = 5 c). 6 8.5 d) 7.

Διαβάστε περισσότερα

Aritmetički i geometrijski niz

Aritmetički i geometrijski niz Zadac sa prethodh prjemh spta z matematke a Beogradskom uverztetu Artmetčk geometrjsk z. Artmetčk z. 00. FF Zbr prvh dvadeset člaova artmetčkog za čj je prv čla, a razlka A) 0 B) C) D) 880 E) 878. 000.

Διαβάστε περισσότερα

RAČUNANJE SA PRIBLIŽNIM VREDNOSTIMA BROJEVA

RAČUNANJE SA PRIBLIŽNIM VREDNOSTIMA BROJEVA RAČUNANJE SA PRIBLIŽNIM VREDNOSTIMA BROJEVA PRIBLIŽNI BROJ I GREŠKA tača vredost ekog broja X prblža vredost ekog broja X apsoluta greška Δ = X X graca apsolute greške (gorja graca) relatva greška X X

Διαβάστε περισσότερα

Dinamika krutog tijela ( ) Gibanje krutog tijela. Gibanje krutog tijela. Pojmovi: C. Složeno gibanje. A. Translacijsko gibanje krutog tijela. 14.

Dinamika krutog tijela ( ) Gibanje krutog tijela. Gibanje krutog tijela. Pojmovi: C. Složeno gibanje. A. Translacijsko gibanje krutog tijela. 14. Pojmo:. Vektor se F (transacja). oment se (rotacja) Dnamka krutog tjea. do. oment tromost masa. Rad krutog tjea A 5. Knetka energja k 6. oment kona gbanja 7. u momenta kone gbanja momenta se f ( ) Gbanje

Διαβάστε περισσότερα

KOMUTATIVNI I ASOCIJATIVNI GRUPOIDI. NEUTRALNI ELEMENT GRUPOIDA.

KOMUTATIVNI I ASOCIJATIVNI GRUPOIDI. NEUTRALNI ELEMENT GRUPOIDA. KOMUTATIVNI I ASOCIJATIVNI GRUPOIDI NEUTRALNI ELEMENT GRUPOIDA 1 Grupoid (G, ) je asocijativa akko važi ( x, y, z G) x (y z) = (x y) z Grupoid (G, ) je komutativa akko važi ( x, y G) x y = y x Asocijativa

Διαβάστε περισσότερα

Reverzibilni procesi

Reverzibilni procesi Reverzbln proces Reverzbln proces: proces pr koja sste nkada nje vše od beskonačno ale vrednost udaljen od ravnoteže, beskonačno ala proena spoljašnjh uslova ože vratt sste u blo koju tačku, proena ože

Διαβάστε περισσότερα

Analitička geometrija i linearna algebra. Kartezijev trodimenzionalni pravokutni koordinatni sustav čine 3 međusobno okomite osi: Ox os apscisa,

Analitička geometrija i linearna algebra. Kartezijev trodimenzionalni pravokutni koordinatni sustav čine 3 međusobno okomite osi: Ox os apscisa, Alitičk geoetrij i lier lger Vektori KOORDINATNI SUSTAV Krteijev prvokuti koorditi sustv Krteijev trodieioli prvokuti koorditi sustv čie eđusoo okoite osi: O os pscis O os ordit O os plikt točk O ishodište

Διαβάστε περισσότερα

Veliine u mehanici. Rad, snaga i energija. Dinamika. Meunarodni sustav mjere (SI) 1. Skalari. 2. Vektori - poetak. 12. dio. 1. Skalari. 2.

Veliine u mehanici. Rad, snaga i energija. Dinamika. Meunarodni sustav mjere (SI) 1. Skalari. 2. Vektori - poetak. 12. dio. 1. Skalari. 2. Vele u ehc Rd, g eegj D. do. Sl. Veo 3. Tezo II. ed 4. Tezo IV. ed. Sl: 3 0 pod je jedc (ezo ulog ed). Veo: 3 3 pod je jedc (ezo pog ed) 3. Tezo dugog ed 3 9 pod je jedc 4. Tezoeog ed 3 4 8 pod je jedc

Διαβάστε περισσότερα

PROSTORNI STATIČKI ODREĐENI SUSTAVI

PROSTORNI STATIČKI ODREĐENI SUSTAVI PROSTORNI STATIČKI ODREĐENI SUSTAVI - svi elementi ne leže u istoj ravnini q 1 Z F 1 F Y F q 5 Z 8 5 8 1 7 Y y z x 7 X 1 X - svi elementi su u jednoj ravnini a opterećenje djeluje izvan te ravnine Z Y

Διαβάστε περισσότερα

M086 LA 1 M106 GRP. Tema: Baza vektorskog prostora. Koordinatni sustav. Norma. CSB nejednakost

M086 LA 1 M106 GRP. Tema: Baza vektorskog prostora. Koordinatni sustav. Norma. CSB nejednakost M086 LA 1 M106 GRP Tema: CSB nejednakost. 19. 10. 2017. predavač: Rudolf Scitovski, Darija Marković asistent: Darija Brajković, Katarina Vincetić P 1 www.fizika.unios.hr/grpua/ 1 Baza vektorskog prostora.

Διαβάστε περισσότερα

Operacije s matricama

Operacije s matricama Linearna algebra I Operacije s matricama Korolar 3.1.5. Množenje matrica u vektorskom prostoru M n (F) ima sljedeća svojstva: (1) A(B + C) = AB + AC, A, B, C M n (F); (2) (A + B)C = AC + BC, A, B, C M

Διαβάστε περισσότερα

IZVODI ZADACI (I deo)

IZVODI ZADACI (I deo) IZVODI ZADACI (I deo) Najpre da se podsetimo tablice i osnovnih pravila:. C`=0. `=. ( )`= 4. ( n )`=n n-. (a )`=a lna 6. (e )`=e 7. (log a )`= 8. (ln)`= ` ln a (>0) 9. = ( 0) 0. `= (>0) (ovde je >0 i a

Διαβάστε περισσότερα

ELEKTROTEHNIČKI ODJEL

ELEKTROTEHNIČKI ODJEL MATEMATIKA. Neka je S skup svih živućih državljana Republike Hrvatske..04., a f preslikavanje koje svakom elementu skupa S pridružuje njegov horoskopski znak (bez podznaka). a) Pokažite da je f funkcija,

Διαβάστε περισσότερα

II. ANALITIČKA GEOMETRIJA PROSTORA

II. ANALITIČKA GEOMETRIJA PROSTORA II. ANALITIČA GEOMETRIJA PROSTORA II. DIO (Pv).. Min Roić Linović 9./. Pv u otou Jenž v Nek je: T (,, ) n točk oto {,, } ni vekto mje Znom točkom oto oli mo v leln nim vektoom. T (,,) - oivoljn točk v

Διαβάστε περισσότερα

UNIVERZITET U NIŠU ELEKTRONSKI FAKULTET SIGNALI I SISTEMI. Zbirka zadataka

UNIVERZITET U NIŠU ELEKTRONSKI FAKULTET SIGNALI I SISTEMI. Zbirka zadataka UNIVERZITET U NIŠU ELEKTRONSKI FAKULTET Goran Stančić SIGNALI I SISTEMI Zbirka zadataka NIŠ, 014. Sadržaj 1 Konvolucija Literatura 11 Indeks pojmova 11 3 4 Sadržaj 1 Konvolucija Zadatak 1. Odrediti konvoluciju

Διαβάστε περισσότερα

18. listopada listopada / 13

18. listopada listopada / 13 18. listopada 2016. 18. listopada 2016. 1 / 13 Neprekidne funkcije Važnu klasu funkcija tvore neprekidne funkcije. To su funkcije f kod kojih mala promjena u nezavisnoj varijabli x uzrokuje malu promjenu

Διαβάστε περισσότερα

TRIGONOMETRIJA TROKUTA

TRIGONOMETRIJA TROKUTA TRIGONOMETRIJA TROKUTA Standardne oznake u trokutuu ABC: a, b, c stranice trokuta α, β, γ kutovi trokuta t,t,t v,v,v s α,s β,s γ R r s težišnice trokuta visine trokuta simetrale kutova polumjer opisane

Διαβάστε περισσότερα

odvodi u okoliš? Rješenje 1. zadatka Zadano: q m =0,5 kg/s p 1 =1 bar =10 5 Pa zrak w 1 = 15 m/s z = z 2 -z 1 =100 m p 2 =7 bar = Pa

odvodi u okoliš? Rješenje 1. zadatka Zadano: q m =0,5 kg/s p 1 =1 bar =10 5 Pa zrak w 1 = 15 m/s z = z 2 -z 1 =100 m p 2 =7 bar = Pa .vježba iz Terodiaike rješeja zadataka 1. Zadatak Kopresor usisava 0,5 kg/s zraka tlaka 1 bar i 0 o C, tlači ga i istiskuje u eizolirai tlači cjevovod. Na ulazo presjeku usise cijevi brzia je 15 /s. Izlazi

Διαβάστε περισσότερα

Kinematika materijalne toke. 2. Prirodni koordinatni sustav. 1. Vektorski nain definiranja gibanja. Krivocrtno gibanje materijalne toke

Kinematika materijalne toke. 2. Prirodni koordinatni sustav. 1. Vektorski nain definiranja gibanja. Krivocrtno gibanje materijalne toke Kioco gibje meijle oke Kiemik meijle oke. dio ) Zje kiocog gibj b) Bi i ubje Položj meijle oke u skom euku eme možemo defiii slijedee ie:. Vekoski i defiij gibj (). Piodi i defiij gibj s s (). Vekoski

Διαβάστε περισσότερα

( , 2. kolokvij)

( , 2. kolokvij) A MATEMATIKA (0..20., 2. kolokvij). Zadana je funkcija y = cos 3 () 2e 2. (a) Odredite dy. (b) Koliki je nagib grafa te funkcije za = 0. (a) zadanu implicitno s 3 + 2 y = sin y, (b) zadanu parametarski

Διαβάστε περισσότερα

Elektrotehnički fakultet univerziteta u Beogradu 26. jun Katedra za Računarsku tehniku i informatiku

Elektrotehnički fakultet univerziteta u Beogradu 26. jun Katedra za Računarsku tehniku i informatiku Elektrotehički fakultet uiverziteta u Beogradu 6. ju 008. Katedra za Račuarku tehiku i iformatiku Performae račuarkih itema Rešeja zadataka..videti predavaja.. Kretaje Verovatoća Opi 4 4 Kretaje u itom

Διαβάστε περισσότερα

( x) ( ) dy df dg. =, ( x) e = e, ( ) ' x. Zadatak 001 (Marinela, gimnazija) Nađite derivaciju funkcije f(x) = a + b x. ( ) ( )

( x) ( ) dy df dg. =, ( x) e = e, ( ) ' x. Zadatak 001 (Marinela, gimnazija) Nađite derivaciju funkcije f(x) = a + b x. ( ) ( ) Zadatak (Mariela, gimazija) Nađite derivaciju fukcije f() a + b c + d Rješeje Neka su f(), g(), h() fukcije ezavise varijable, a f (), g (), h () derivacije tih fukcija po Osova pravila deriviraja Derivacija

Διαβάστε περισσότερα

transformacija j y i x x promatramo dva koordinatna sustava S i S sa zajedničkim ishodištem z z Homogene funkcije Ortogonalne transformacije

transformacija j y i x x promatramo dva koordinatna sustava S i S sa zajedničkim ishodištem z z Homogene funkcije Ortogonalne transformacije promatramo dva oordnatna sustava S S sa zaednčm shodštem z z y y x x blo o vetor možemo raspsat u baz, A = A x + Ay + Az = ( A ) + ( A ) + ( A ) (1) sto vred za ednčne vetore sustava S = ( ) + ( ) + (

Διαβάστε περισσότερα

PRESECI SA PRSLINOM - VELIKI EKSCENTRICITET

PRESECI SA PRSLINOM - VELIKI EKSCENTRICITET TEORJA ETONSKH KONSTRUKCJA 1 PRESEC SA PRSLNO - VELK EKSCENTRCTET ČSTO SAVJANJE - SLOODNO DENZONSANJE Poznato: Nepoznato: - statčk tcaj za pojedna opterećenja ( ) - sračnato - kvaltet materjala (, σ v

Διαβάστε περισσότερα

AKSIOMATIKA TEORIJE VEROVATNOĆE

AKSIOMATIKA TEORIJE VEROVATNOĆE AKSIOMATIKA TEORIJE VEROVATNOĆE E Aksomatka teorje verovatoće Polaz se od osovh stavova, tzv. aksoma, a osovu kojh se sve ostale osobe mogu dokazat. Za posmatra prostor el. shoda aksomatzacja daje odgovore

Διαβάστε περισσότερα

radni nerecenzirani materijal za predavanja

radni nerecenzirani materijal za predavanja Matematika 1 Funkcije radni nerecenzirani materijal za predavanja Definicija 1. Kažemo da je funkcija f : a, b R u točki x 0 a, b postiže lokalni minimum ako postoji okolina O(x 0 ) broja x 0 takva da je

Διαβάστε περισσότερα

1.4 Tangenta i normala

1.4 Tangenta i normala 28 1 DERIVACIJA 1.4 Tangenta i normala Ako funkcija f ima derivaciju u točki x 0, onda jednadžbe tangente i normale na graf funkcije f u točki (x 0 y 0 ) = (x 0 f(x 0 )) glase: t......... y y 0 = f (x

Διαβάστε περισσότερα

RIJEŠENI ZADACI I TEORIJA IZ

RIJEŠENI ZADACI I TEORIJA IZ RIJEŠENI ZADACI I TEORIJA IZ LOGARITAMSKA FUNKCIJA SVOJSTVA LOGARITAMSKE FUNKCIJE OSNOVE TRIGONOMETRIJE PRAVOKUTNOG TROKUTA - DEFINICIJA TRIGONOMETRIJSKIH FUNKCIJA - VRIJEDNOSTI TRIGONOMETRIJSKIH FUNKCIJA

Διαβάστε περισσότερα

Kinetička energija: E

Kinetička energija: E Pime 54 Za iem pikazan na lici odedii ubzanje eea mae m koji e keće naniže kao i ilu u užeu? Na homogeni doboš a dva nivoa koji e obće oko zgloba O dejvuje, zbog neidealnoi ležaja konanni momen opoa M

Διαβάστε περισσότερα

Masa, Centar mase & Moment tromosti

Masa, Centar mase & Moment tromosti FAKULTET ELEKTRTEHNIKE, STRARSTVA I BRDGRADNE - SPLIT Katedra za dinamiku i vibracije Mehanika 3 (Dinamika) Laboratorijska vježba Masa, Centar mase & Moment tromosti Ime i rezime rosinac 008. Zadatak:

Διαβάστε περισσότερα

Cauchyjev teorem. Postoji više dokaza ovog teorema, a najjednostvniji je uz pomoć Greenove formule: dxdy. int C i Cauchy Riemannovih uvjeta.

Cauchyjev teorem. Postoji više dokaza ovog teorema, a najjednostvniji je uz pomoć Greenove formule: dxdy. int C i Cauchy Riemannovih uvjeta. auchyjev teorem Neka je f-ja f (z) analitička u jednostruko (prosto) povezanoj oblasti G, i neka je zatvorena kontura koja čitava leži u toj oblasti. Tada je f (z)dz = 0. Postoji više dokaza ovog teorema,

Διαβάστε περισσότερα

UNIVERZITET U NIŠU FAKULTET ZAŠTITE NA RADU U NIŠU TEHNIČKA MEHANIKA - PREZENTACIJA PREDAVANJA PREDAVANJE

UNIVERZITET U NIŠU FAKULTET ZAŠTITE NA RADU U NIŠU TEHNIČKA MEHANIKA - PREZENTACIJA PREDAVANJA PREDAVANJE UNIVERZITET U NIŠU FAKULTET ZAŠTITE NA RADU U NIŠU TEHNIČKA MEHANIKA - PREZENTACIJA PREDAVANJA - - 4. PREDAVANJE - Dr Darko Mhajlov, doc. 1. ČAS Sredšte (cetar) sstema paralelh sla; Težšte krutog tela;

Διαβάστε περισσότερα

Kontrolni zadatak (Tačka, prava, ravan, diedar, poliedar, ortogonalna projekcija), grupa A

Kontrolni zadatak (Tačka, prava, ravan, diedar, poliedar, ortogonalna projekcija), grupa A Kontrolni zadatak (Tačka, prava, ravan, diedar, poliedar, ortogonalna projekcija), grupa A Ime i prezime: 1. Prikazane su tačke A, B i C i prave a,b i c. Upiši simbole Î, Ï, Ì ili Ë tako da dobijeni iskazi

Διαβάστε περισσότερα

Gravitacija. Gravitacija. Newtonov zakon gravitacije. Odredivanje gravitacijske konstante. Keplerovi zakoni. Gravitacijsko polje. Troma i teška masa

Gravitacija. Gravitacija. Newtonov zakon gravitacije. Odredivanje gravitacijske konstante. Keplerovi zakoni. Gravitacijsko polje. Troma i teška masa Claudius Ptolemeus (100-170) - geocentrični sustav Nikola Kopernik (1473-1543) - heliocentrični sustav Tycho Brahe (1546-1601) precizno bilježio putanje nebeskih tijela 1600. Johannes Kepler (1571-1630)

Διαβάστε περισσότερα

2 tg x ctg x 1 = =, cos 2x Zbog četvrtog kvadranta rješenje je: 2 ctg x

2 tg x ctg x 1 = =, cos 2x Zbog četvrtog kvadranta rješenje je: 2 ctg x Zadatak (Darjan, medicinska škola) Izračunaj vrijednosti trigonometrijskih funkcija broja ako je 6 sin =,,. 6 Rješenje Ponovimo trigonometrijske funkcije dvostrukog kuta! Za argument vrijede sljedeće formule:

Διαβάστε περισσότερα

Prostorni spojeni sistemi

Prostorni spojeni sistemi Prostorni spojeni sistemi K. F. (poopćeni) pomaci i stupnjevi slobode tijela u prostoru: 1. pomak po pravcu (translacija): dva kuta kojima je odreden orijentirani pravac (os) i orijentirana duljina pomaka

Διαβάστε περισσότερα

Općenito, iznos normalne deformacije u smjeru normale n dan je izrazom:

Općenito, iznos normalne deformacije u smjeru normale n dan je izrazom: Otporost mterijl. Zdtk ZDTK: U točki čeliče kostrukije postvlje su tri osjetil z mjereje deformij prem slii. ri opterećeju kostrukije izmjeree su reltive ormle (dužiske deformije: b ( - b 3 - -6 - ( b

Διαβάστε περισσότερα

Pismeni ispit iz OTPORNOSTI MATERIJALA I - grupa A

Pismeni ispit iz OTPORNOSTI MATERIJALA I - grupa A Psmen spt z OTPORNOSTI MATERIJALA I - grupa A 1. Kruta poluga ABC se oslanja pomoću dvje špke BD CE kao na slc desno. Špka BD, dužne 0.5 m, zrađena je od čelka (E AB 10 GPa) ma poprečn presjek od 500 mm.

Διαβάστε περισσότερα

radni nerecenzirani materijal za predavanja R(f) = {f(x) x D}

radni nerecenzirani materijal za predavanja R(f) = {f(x) x D} Matematika 1 Funkcije radni nerecenzirani materijal za predavanja Definicija 1. Neka su D i K bilo koja dva neprazna skupa. Postupak f koji svakom elementu x D pridružuje točno jedan element y K zovemo funkcija

Διαβάστε περισσότερα

MOMENT INERCIJE (*) Dakle, kinetička energija rotacije krutog tela može se napisati kao:

MOMENT INERCIJE (*) Dakle, kinetička energija rotacije krutog tela može se napisati kao: 35 MOMENT INECIJE Disk koji otia ili cikulaa motoa testea koja ubzao otia svakako imaju kietičku eegiju. Izaz Ek = mv, siguo ije pimeljiv, je svaki delić ovog tela koje otia opisuje kuže putaje azličitog

Διαβάστε περισσότερα

ELEKTROMAGNETSKE POJAVE

ELEKTROMAGNETSKE POJAVE ELEKTROMAGETSKE POJAVE ELEKTROMAGETSKA IDUKCIJA IDUKCIJA SJEČEJEM MAGETSKIH SILICA Pojava da se u vodiču pobuđuje ii inducia eektomotona sia ako ga siječemo magnetskim sinicama, zove se eektomagnetska

Διαβάστε περισσότερα

ZI. NEODREðENI INTEGRALI

ZI. NEODREðENI INTEGRALI ZI. Nodrđni intgrali 7 ZI. NEODREðENI INTEGRALI. Antidrvacij. Pronañi tri antidrivacij funkcij.. Odrdi sv antidrivacij funkcij.. Pronañi dvij antidrivacij funkcij.. Pronañi antidrivaciju funkcij za koju

Διαβάστε περισσότερα

Osnovni primer. (Z, +,,, 0, 1) je komutativan prsten sa jedinicom: množenje je distributivno prema sabiranju

Osnovni primer. (Z, +,,, 0, 1) je komutativan prsten sa jedinicom: množenje je distributivno prema sabiranju RAČUN OSTATAKA 1 1 Prsten celih brojeva Z := N + {} N + = {, 3, 2, 1,, 1, 2, 3,...} Osnovni primer. (Z, +,,,, 1) je komutativan prsten sa jedinicom: sabiranje (S1) asocijativnost x + (y + z) = (x + y)

Διαβάστε περισσότερα

Trigonometrija 2. Adicijske formule. Formule dvostrukog kuta Formule polovičnog kuta Pretvaranje sume(razlike u produkt i obrnuto

Trigonometrija 2. Adicijske formule. Formule dvostrukog kuta Formule polovičnog kuta Pretvaranje sume(razlike u produkt i obrnuto Trigonometrija Adicijske formule Formule dvostrukog kuta Formule polovičnog kuta Pretvaranje sume(razlike u produkt i obrnuto Razumijevanje postupka izrade složenijeg matematičkog problema iz osnova trigonometrije

Διαβάστε περισσότερα

Dvanaesti praktikum iz Analize 1

Dvanaesti praktikum iz Analize 1 Dvaaesti praktikum iz Aalize Zlatko Lazovi 20. decembar 206.. Dokazati da fukcija f = 5 l tg + 5 ima bar jedu realu ulu. Ree e. Oblast defiisaosti fukcije je D f = k Z da postoji ula fukcije a 0, π 2.

Διαβάστε περισσότερα

Pošto pretvaramo iz veće u manju mjernu jedinicu broj 2.5 množimo s 1000,

Pošto pretvaramo iz veće u manju mjernu jedinicu broj 2.5 množimo s 1000, PRERAČUNAVANJE MJERNIH JEDINICA PRIMJERI, OSNOVNE PRETVORBE, POTENCIJE I ZNANSTVENI ZAPIS, PREFIKSKI, ZADACI S RJEŠENJIMA Primjeri: 1. 2.5 m = mm Pretvaramo iz veće u manju mjernu jedinicu. 1 m ima dm,

Διαβάστε περισσότερα

RAVAN. Ravan je osnovni pojam u geometriji i kao takav se ne definiše. Ravan je određena tačkom i normalnim vektorom.

RAVAN. Ravan je osnovni pojam u geometriji i kao takav se ne definiše. Ravan je određena tačkom i normalnim vektorom. RAVAN Ravan je osnovni pojam u geometiji i kao takav se ne definiše. Ravan je odeđena tačkom i nomalnim vektoom. nabc (,, ) π M ( x,, ) y z Da bi izveli jednačinu avni, poučimo sledeću sliku: n( A, B,

Διαβάστε περισσότερα

5. PARCIJALNE DERIVACIJE

5. PARCIJALNE DERIVACIJE 5. PARCIJALNE DERIVACIJE 5.1. Izračunajte parcijalne derivacije sljedećih funkcija: (a) f (x y) = x 2 + y (b) f (x y) = xy + xy 2 (c) f (x y) = x 2 y + y 3 x x + y 2 (d) f (x y) = x cos x cos y (e) f (x

Διαβάστε περισσότερα

Pismeni ispit iz matematike Riješiti sistem jednačina i diskutovati rješenja sistema u zavisnosti od parametra: ( ) + 1.

Pismeni ispit iz matematike Riješiti sistem jednačina i diskutovati rješenja sistema u zavisnosti od parametra: ( ) + 1. Pismeni ispit iz matematike 0 008 GRUPA A Riješiti sistem jednačina i diskutovati rješenja sistema u zavisnosti od parametra: λ + z = Ispitati funkciju i nacrtati njen grafik: + ( λ ) + z = e Izračunati

Διαβάστε περισσότερα

Gauss, Stokes, Maxwell. Vektorski identiteti ( ),

Gauss, Stokes, Maxwell. Vektorski identiteti ( ), Vektorski identiteti ( ), Gauss, Stokes, Maxwell Saša Ilijić 21. listopada 2009. Saša Ilijić, predavanja FER/F2: Vektorski identiteti, nabla, Gauss, Stokes, Maxwell... (21. listopada 2009.) Skalarni i

Διαβάστε περισσότερα

Dinamika krutog tijela ( ) Gibanje krutog tijela. Gibanje krutog tijela. C. Složeno gibanje. Pojmovi: A. Translacijsko gibanje krutog tijela. 12.

Dinamika krutog tijela ( ) Gibanje krutog tijela. Gibanje krutog tijela. C. Složeno gibanje. Pojmovi: A. Translacijsko gibanje krutog tijela. 12. Pojmo:. Vekor sle F (ranslacja). omen sle (roacja) Dnamka kruog jela. do. omen romos masa. Rad kruog jela A 5. Kneka energja k 6. omen kolna gbanja L 7. u momena kolne gbanja momena sle L f ( ) Gbanje

Διαβάστε περισσότερα

MATEMATIKA I 1.kolokvij zadaci za vježbu I dio

MATEMATIKA I 1.kolokvij zadaci za vježbu I dio MATEMATIKA I kolokvij zadaci za vježbu I dio Odredie c 0 i kosinuse kueva koje s koordinanim osima čini vekor c = a b ako je a = i + j, b = i + k Odredie koliki je volumen paralelepipeda, čiji se bridovi

Διαβάστε περισσότερα

6 Primjena trigonometrije u planimetriji

6 Primjena trigonometrije u planimetriji 6 Primjena trigonometrije u planimetriji 6.1 Trgonometrijske funkcije Funkcija sinus (f(x) = sin x; f : R [ 1, 1]); sin( x) = sin x; sin x = sin(x + kπ), k Z. 0.5 1-6 -4 - -0.5 4 6-1 Slika 3. Graf funkcije

Διαβάστε περισσότερα

4.1 Zakon inercije prvi Newtonov zakon

4.1 Zakon inercije prvi Newtonov zakon FIZIK podloge za studj strojarsta 4. Daka 1 4.1 Zako ercje pr Newtoo zako Daka šr keatčke aalze uzajuć u obzr ase tjela (aterjale točke). Prje sega zučaa osost gbaja o slaa koje ga zazaju (pokreut auto

Διαβάστε περισσότερα

PRAVAC. riješeni zadaci 1 od 8 1. Nađite parametarski i kanonski oblik jednadžbe pravca koji prolazi točkama. i kroz A :

PRAVAC. riješeni zadaci 1 od 8 1. Nađite parametarski i kanonski oblik jednadžbe pravca koji prolazi točkama. i kroz A : PRAVAC iješeni adaci od 8 Nađie aameaski i kanonski oblik jednadžbe aca koji olai očkama a) A ( ) B ( ) b) A ( ) B ( ) c) A ( ) B ( ) a) n a AB { } i ko A : j b) n a AB { 00 } ili { 00 } i ko A : j 0 0

Διαβάστε περισσότερα

Veleučilište u Rijeci Stručni studij sigurnosti na radu Akad. god. 2011/2012. Matematika. Monotonost i ekstremi. Katica Jurasić. Rijeka, 2011.

Veleučilište u Rijeci Stručni studij sigurnosti na radu Akad. god. 2011/2012. Matematika. Monotonost i ekstremi. Katica Jurasić. Rijeka, 2011. Veleučilište u Rijeci Stručni studij sigurnosti na radu Akad. god. 2011/2012. Matematika Monotonost i ekstremi Katica Jurasić Rijeka, 2011. Ishodi učenja - predavanja Na kraju ovog predavanja moći ćete:,

Διαβάστε περισσότερα

, tj. ako je zbroj svih sila koje djeluju na neki sustav jednaka nuli, onda taj sustav miruje ili se giba jednoliko pravocrtno

, tj. ako je zbroj svih sila koje djeluju na neki sustav jednaka nuli, onda taj sustav miruje ili se giba jednoliko pravocrtno FORUL Z FZK eaka eodaka 5 lekttet 6 agetza elektoageta dukja 9 eačk alo lektoaget alo Geoetjska otka 3 Vala otka 4 eoja elatost 6 Kata zka 7 Nukleaa zka 8 Obada odataka jeeja Kostate Ostal zkal oda 3 HANKA

Διαβάστε περισσότερα

Vrijedi relacija: Suma kvadrata cosinusa priklonih kutova sile prema koordinatnim osima jednaka je jedinici.

Vrijedi relacija: Suma kvadrata cosinusa priklonih kutova sile prema koordinatnim osima jednaka je jedinici. Za adani sustav prostornih sila i j k () oktant i j k () oktant koje djeluju na materijalnu toku odredite: a) reultantu silu? b) ravnotežnu silu? a) eultanta sila? i j k 8 Vektor reultante: () i 8 j k

Διαβάστε περισσότερα

3n an = 4n3/2 +2n+ n 5n 3/2 +5n+2 n a 2 n = n 2. ( 2) n Dodatak. = 0, lim n! 2n 6n + 1

3n an = 4n3/2 +2n+ n 5n 3/2 +5n+2 n a 2 n = n 2. ( 2) n Dodatak. = 0, lim n! 2n 6n + 1 Nizovi 5 a = 5 +3+ + 6 a = 3 00 + 00 3 +5 7 a = +)+) ) 3 3 8 a = 3 +3+ + +3 9 a = 3 5 0 a = 43/ ++ 5 3/ +5+ a = + + a = + ) 3 a = + + + 4 a = 3 3 + 3 ) 5 a = +++ 6 a = + ++ 3 a = +)!++)! +3)! a = ) +3

Διαβάστε περισσότερα

Numerička matematika 2. kolokvij (1. srpnja 2009.)

Numerička matematika 2. kolokvij (1. srpnja 2009.) Numerička matematika 2. kolokvij (1. srpnja 29.) Zadatak 1 (1 bodova.) Teorijsko pitanje. (A) Neka je G R m n, uz m n, pravokutna matrica koja ima puni rang po stupcima, tj. rang(g) = n. (a) Napišite puni

Διαβάστε περισσότερα

MAGNETIZAM I. Magnetsko polje Magnetska indukcija Magnetska uzbuda Sile u magnetskom polju

MAGNETIZAM I. Magnetsko polje Magnetska indukcija Magnetska uzbuda Sile u magnetskom polju MAGNETIZAM I Magnetsko polje Magnetska indukcija Magnetska uzbuda Sile u magnetskom polju Teći osnovni učinak elektične stuje stvaanje magnetskog polja u okolišu vodiča i samom vodiču koji je potjecan

Διαβάστε περισσότερα

1.1. Pregled najvažnijih izraza i pojmova

1.1. Pregled najvažnijih izraza i pojmova Teorja formacje, kapactet dskretog komukacjskog kaala, Markovljev lac Pregled ajvažjh zraza pojmova Dskreto bezmemorjsko zvoršte Izvoršte X X = {x,,x,,x } [p(x ) = [p(x) = [p(x ) p(x ) p(x ) X dskreta

Διαβάστε περισσότερα

Eliminacijski zadatak iz Matematike 1 za kemičare

Eliminacijski zadatak iz Matematike 1 za kemičare Za mnoge reakcije vrijedi Arrheniusova jednadžba, koja opisuje vezu koeficijenta brzine reakcije i temperature: K = Ae Ea/(RT ). - T termodinamička temperatura (u K), - R = 8, 3145 J K 1 mol 1 opća plinska

Διαβάστε περισσότερα

MATEMATIKA 1 8. domaća zadaća: RADIJVEKTORI. ALGEBARSKE OPERACIJE S RADIJVEKTORIMA. LINEARNA (NE)ZAVISNOST SKUPA RADIJVEKTORA.

MATEMATIKA 1 8. domaća zadaća: RADIJVEKTORI. ALGEBARSKE OPERACIJE S RADIJVEKTORIMA. LINEARNA (NE)ZAVISNOST SKUPA RADIJVEKTORA. Napomena: U svim zadatcima O označava ishodište pravokutnoga koordinatnoga sustava u ravnini/prostoru (tj. točke (0,0) ili (0, 0, 0), ovisno o zadatku), označava skalarni umnožak, a vektorski umnožak.

Διαβάστε περισσότερα

S t r a n a 1. 1.Povezati jonsku jačinu rastvora: a) MgCl 2 b) Al 2 (SO 4 ) 3 sa njihovim molalitetima, m. za so tipa: M p X q. pa je jonska jačina:

S t r a n a 1. 1.Povezati jonsku jačinu rastvora: a) MgCl 2 b) Al 2 (SO 4 ) 3 sa njihovim molalitetima, m. za so tipa: M p X q. pa je jonska jačina: S t r a n a 1 1.Povezati jonsku jačinu rastvora: a MgCl b Al (SO 4 3 sa njihovim molalitetima, m za so tipa: M p X q pa je jonska jačina:. Izračunati mase; akno 3 bba(no 3 koje bi trebalo dodati, 0,110

Διαβάστε περισσότερα

a M a A. Može se pokazati da je supremum (ako postoji) jedinstven pa uvodimo oznaku sup A.

a M a A. Može se pokazati da je supremum (ako postoji) jedinstven pa uvodimo oznaku sup A. 3 Infimum i supremum Definicija. Neka je A R. Kažemo da je M R supremum skupa A ako je (i) M gornja meda skupa A, tj. a M a A. (ii) M najmanja gornja meda skupa A, tj. ( ε > 0)( a A) takav da je a > M

Διαβάστε περισσότερα

POVRŠINA TANGENCIJALNO-TETIVNOG ČETVEROKUTA

POVRŠINA TANGENCIJALNO-TETIVNOG ČETVEROKUTA POVRŠIN TNGENIJLNO-TETIVNOG ČETVEROKUT MLEN HLP, JELOVR U mnoštvu mnogokuta zanimljiva je formula za površinu četverokuta kojemu se istoobno može upisati i opisati kružnica: gje su a, b, c, uljine stranica

Διαβάστε περισσότερα

Elektrostatika. 1. zadatak. Uvodni pojmovi. Po iznosu sile F 12 i F 21 su jednake po iznosu:

Elektrostatika. 1. zadatak. Uvodni pojmovi. Po iznosu sile F 12 i F 21 su jednake po iznosu: Stanca:I lektostatka Coulombov zakon. Homogeno nehomogeno elektčno pole. lektčno pole nabene beskonačne avnne. lektčno pole točkastog naboa. lektčno pole vlo ugog avnog voča. lektčno pole nabene kugle.

Διαβάστε περισσότερα

Dijagrami: Greda i konzola. Prosta greda. II. Dijagrami unutarnjih sila. 2. Popre nih sila TZ 3. Momenata savijanja My. 1. Uzdužnih sila N. 11.

Dijagrami: Greda i konzola. Prosta greda. II. Dijagrami unutarnjih sila. 2. Popre nih sila TZ 3. Momenata savijanja My. 1. Uzdužnih sila N. 11. Dijagrami:. Udužnih sia N Greda i konoa. Popre nih sia TZ 3. Momenata savijanja My. dio Prosta greda. Optere ena koncentriranom siom F I. Reaktivne sie:. M A = 0 R B F a = 0. M B = 0 R A F b = 0 3. F =

Διαβάστε περισσότερα

numeričkih deskriptivnih mera.

numeričkih deskriptivnih mera. DESKRIPTIVNA STATISTIKA Numeričku seriju podataka opisujemo pomoću Numeričku seriju podataka opisujemo pomoću numeričkih deskriptivnih mera. Pokazatelji centralne tendencije Aritmetička sredina, Medijana,

Διαβάστε περισσότερα

Dimenzioniranje nosaa. 1. Uvjeti vrstoe

Dimenzioniranje nosaa. 1. Uvjeti vrstoe Dimenzioniranje nosaa 1. Uvjeti vrstoe 1 Otpornost materijala prouava probleme 1. vrstoe,. krutosti i 3. elastine stabilnosti konstrukcija i dijelova konstrukcija od vrstog deformabilnog materijala. Moraju

Διαβάστε περισσότερα

TRIGONOMETRIJSKE FUNKCIJE I I.1.

TRIGONOMETRIJSKE FUNKCIJE I I.1. TRIGONOMETRIJSKE FUNKCIJE I I Odredi na brojevnoj trigonometrijskoj kružnici točku Et, za koju je sin t =,cost < 0 Za koje realne brojeve a postoji realan broj takav da je sin = a? Izračunaj: sin π tg

Διαβάστε περισσότερα

σ (otvorena cijev). (34)

σ (otvorena cijev). (34) DBLOSTJN POSUD CIJVI - UNUTARNJI ILI VANJSKI TLAK 8 "Dobo je htjeti, ali teba i znati." Z. VNUČC, 9. NAPRZANJA I POMACI DBLOSTJN POSUD ILI CIJVI NASTAVAK. Debelostjena osa oteećena ntanjim tlaom Debelostjena

Διαβάστε περισσότερα

Rijeseni neki zadaci iz poglavlja 4.5

Rijeseni neki zadaci iz poglavlja 4.5 Rijeseni neki zdci iz poglvlj 4.5 Prije rijesvnj zdtk prisjetimo se itnih stvri koje ce ns prtiti tijekom njihovog promtrnj. Definicij: (Trigonometrij prvokutnog trokut) ktet nsuprot kut ϕ sin ϕ hipotenuz

Διαβάστε περισσότερα

SEMINAR IZ KOLEGIJA ANALITIČKA KEMIJA I. Studij Primijenjena kemija

SEMINAR IZ KOLEGIJA ANALITIČKA KEMIJA I. Studij Primijenjena kemija SEMINAR IZ OLEGIJA ANALITIČA EMIJA I Studij Primijenjena kemija 1. 0,1 mola NaOH je dodano 1 litri čiste vode. Izračunajte ph tako nastale otopine. NaOH 0,1 M NaOH Na OH Jak elektrolit!!! Disoira potpuno!!!

Διαβάστε περισσότερα

Praktikum iz OSNOVA FIZIKE I.

Praktikum iz OSNOVA FIZIKE I. Praktkum z OSNOVA FIZIKE I. 006./007. Pops vježb:. Pomča mjerka Mkrometarsk vjak Sferometar Vaga. Proučavaje helkodale zavojce Odreñvaje gustoće krutog tjela pomoću damometra 3. Fzkalo jhalo Matematčko

Διαβάστε περισσότερα

KONVEKSNI SKUPOVI. Definicije: potprostor, afin skup, konveksan skup, konveksan konus. 1/5. Back FullScr

KONVEKSNI SKUPOVI. Definicije: potprostor, afin skup, konveksan skup, konveksan konus. 1/5. Back FullScr KONVEKSNI SKUPOVI Definicije: potprostor, afin skup, konveksan skup, konveksan konus. 1/5 KONVEKSNI SKUPOVI Definicije: potprostor, afin skup, konveksan skup, konveksan konus. 1/5 1. Neka su x, y R n,

Διαβάστε περισσότερα

ILIŠTA U RIJECI Zavod za elektroenergetiku. Elektrostatika. Električni potencijal Električni napon. Osnove elektrotehnike I: Elektrostatika

ILIŠTA U RIJECI Zavod za elektroenergetiku. Elektrostatika. Električni potencijal Električni napon. Osnove elektrotehnike I: Elektrostatika TEHNIČKI FKULTET SVEUČILI ILIŠT U RIJECI Zavod za elektoenegetiku Studij: Peddiplomski stučni studij elektotehnike Kolegij: Osnove elektotehnike I Pedavač: v. ped. m.sc. anka Dobaš Elektostatika Elektični

Διαβάστε περισσότερα

Jednoliko pravocrtno gibanje Jednoliko promjenljivo pravocrtno gibanje Slobodni pad Kružno gibanje Mirovanje s obzirom na pomicanje Uvjeti mirovanja

Jednoliko pravocrtno gibanje Jednoliko promjenljivo pravocrtno gibanje Slobodni pad Kružno gibanje Mirovanje s obzirom na pomicanje Uvjeti mirovanja Mehanika 1 Jednoliko pavoctno gibanje Jednoliko pomjenljivo pavoctno gibanje Slobodni pad Kužno gibanje Miovanje s obziom na pomicanje Uvjeti miovanja s obziom na otaciju Sile na poluzi Sile na kosini

Διαβάστε περισσότερα

Apsolutno neprekidne raspodele Raspodele apsolutno neprekidnih sluqajnih promenljivih nazivaju se apsolutno neprekidnim raspodelama.

Apsolutno neprekidne raspodele Raspodele apsolutno neprekidnih sluqajnih promenljivih nazivaju se apsolutno neprekidnim raspodelama. Apsolutno neprekidne raspodele Raspodele apsolutno neprekidnih sluqajnih promenljivih nazivaju se apsolutno neprekidnim raspodelama. a b Verovatno a da sluqajna promenljiva X uzima vrednost iz intervala

Διαβάστε περισσότερα

SEKUNDARNE VEZE međumolekulske veze

SEKUNDARNE VEZE međumolekulske veze PRIMARNE VEZE hemijske veze među atomima SEKUNDARNE VEZE međumolekulske veze - Slabije od primarnih - Elektrostatičkog karaktera - Imaju veliki uticaj na svojstva supstanci: - agregatno stanje - temperatura

Διαβάστε περισσότερα

Elektrotehnički fakultet univerziteta u Beogradu 16.maj Odsek za Softversko inžinjerstvo

Elektrotehnički fakultet univerziteta u Beogradu 16.maj Odsek za Softversko inžinjerstvo Elektrotehnčk fakultet unverzteta u Beogradu 6.maj 8. Odsek za Softversko nžnjerstvo Performanse računarskh sstema Drug kolokvjum Predmetn nastavnk: dr Jelca Protć (35) a) () Posmatra se segment od N uzastonh

Διαβάστε περισσότερα